Toy-playing behavior, sex-role orientation, spatial ability, and science achievement
NASA Astrophysics Data System (ADS)
Tracy, Dyanne M.
The purpose of this correlational study was to examine the possible relationships among children's extracurricular toy-playing habits, sex-role orientations, spatial abilities, and science achievement. Data were gathered from 282 midwestern, suburban, fifth-grade students. It was found that boys had significantly higher spatial skills than girls. No significant differences in spatial ability were found among students with different sex-role orientations. No significant differences in science achievement were found between girls and boys, or among students with the four different sex-role orientations. Students who had high spatial ability also had significantly higher science achievement scores than students with low spatial ability. Femininely oriented boys who reported low playing in the two-dimensional, gross-body-movement, and proportional-arrangement toy categories scored significantly higher on the test of science achievement than girls with the same sex-role and toy-playing behavior.
[Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].
Yang, Xiao Ming; Li, Yi Xin; Zhu, Guo Ping
2016-12-01
As a key species in the Antarctic ecosystem, the spatial distribution of Antarctic krill (thereafter krill) often tends to present aggregation characteristics, which therefore reflects the spatial patterns of krill fishing operation. Based on the fishing data collected from Chinese krill fishing vessels, of which vessel A was professional krill fishing vessel and Vessel B was a fishing vessel which shifted between Chilean jack mackerel (Trachurus murphyi) fishing ground and krill fishing ground. In order to explore the characteristics of spatial distribution pattern and their ecological effects of two obvious different fishing fleets under a high and low nominal catch per unit effort (CPUE), from the viewpoint of spatial point pattern, the present study analyzed the spatial distribution characteristics of krill fishery in the northern Antarctic Peninsula from three aspects: (1) the two vessels' point pattern characteristics of higher CPUEs and lower CPUEs at different scales; (2) correlation of the bivariate point patterns between these points of higher CPUE and lower CPUE; and (3) correlation patterns of CPUE. Under the analysis derived from the Ripley's L function and mark correlation function, the results showed that the point patterns of the higher/lo-wer catch available were similar, both showing an aggregation distribution in this study windows at all scale levels. The aggregation intensity of krill fishing was nearly maximum at 15 km spatial scale, and kept stably higher values at the scale of 15-50 km. The aggregation intensity of krill fishery point patterns could be described in order as higher CPUE of vessel A > lower CPUE of vessel B >higher CPUE of vessel B > higher CPUE of vessel B. The relationship of the higher and lo-wer CPUEs of vessel A showed positive correlation at the spatial scale of 0-75 km, and presented stochastic relationship after 75 km scale, whereas vessel B showed positive correlation at all spatial scales. The point events of higher and lower CPUEs were synchronized, showing significant correlations at most of spatial scales because of the dynamics nature and complex of krill aggregation patterns. The distribution of vessel A's CPUEs was positively correlated at scales of 0-44 km, but negatively correlated at the scales of 44-80 km. The distribution of vessel B's CPUEs was negatively correlated at the scales of 50-70 km, but no significant correlations were found at other scales. The CPUE mark point patterns showed a negative correlation, which indicated that intraspecific competition for space and prey was significant. There were significant differences in spatial point pattern distribution between vessel A with higher fishing capacity and vessel B with lower fishing capacity. The results showed that the professional krill fishing vessel is suitable to conduct the analysis of spatial point pattern and scientific fishery survey.
High Spatial Resolution Commercial Satellite Imaging Product Characterization
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas
2005-01-01
NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.
Spatial variability of theaflavins and thearubigins fractions and their impact on black tea quality.
Bhuyan, Lakshi Prasad; Borah, Paban; Sabhapondit, Santanu; Gogoi, Ramen; Bhattacharyya, Pradip
2015-12-01
The spatial distribution of theaflavin and thearubigin fractions and their impact on black tea quality were investigated using multivariate and geostatistics techniques. Black tea samples were collected from tea gardens of six geographical regions of Assam and West Bengal, India. Total theaflavin (TF) and its four fractions of upper Assam, south bank and North Bank teas were higher than the other regions. Simple theaflavin showed highest significant correlation with tasters' quality. Low molecular weight thearubigins of south bank and North Bank were significantly higher than other regions. Total thearubigin (TR) and its fractions revealed significant positive correlation with tasters' organoleptic valuations. Tea tasters' parameters were significantly and positively correlated with each other. The semivariogram for quality parameters were best represented by gaussian models. The nugget/sill ratio indicated a strong/moderate spatial dependence of the studied parameters. Spatial variation of tea quality parameters may be used for quality assessment in the tea growing areas of India.
Gaudio, Jennifer L; Snowdon, Charles T
2008-11-01
Animals living in stable home ranges have many potential cues to locate food. Spatial and color cues are important for wild Callitrichids (marmosets and tamarins). Field studies have assigned the highest priority to distal spatial cues for determining the location of food resources with color cues serving as a secondary cue to assess relative ripeness, once a food source is located. We tested two hypotheses with captive cotton-top tamarins: (a) Tamarins will demonstrate higher rates of initial learning when rewarded for attending to spatial cues versus color cues. (b) Tamarins will show higher rates of correct responses when transferred from color cues to spatial cues than from spatial cues to color cues. The results supported both hypotheses. Tamarins rewarded based on spatial location made significantly more correct choices and fewer errors than tamarins rewarded based on color cues during initial learning. Furthermore, tamarins trained on color cues showed significantly increased correct responses and decreased errors when cues were reversed to reward spatial cues. Subsequent reversal to color cues induced a regression in performance. For tamarins spatial cues appear more salient than color cues in a foraging task. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Furnham, Adrian; Reeves, Emma; Budhani, Salima
2002-03-01
In this study, 156 participants, predominantly White British adults (M age = 44.3 years) rated themselves on overall IQ and on H. Gardner's (1983) 7 intelligence subtypes. Parents (n = 120) also estimated the intelligence of their children. Men's self-estimates were significantly higher than women's (110.15 vs. 104.84). Participants thought their verbal, mathematical, and spatial intelligence scores were the best indicators of their own overall intelligence. Parents estimated that their sons had significantly higher IQs than their daughters (115.21 vs. 107.49). Self-estimates and estimates of children's multiple intelligences were higher for men and sons, significantly so for logical-mathematical and spatial intelligence. Parents rated 2nd-born daughters as having significantly higher verbal and musical intelligence than their male counterparts. Higher parental IQ self-estimates corresponded with higher IQ estimates for children. Results for 1st-born children were clearest and showed the most significant differences. The findings are interpreted in terms of sociocultural and familial influences and the possibility of actual sex differences in particular abilities.
Verdine, Brian N.; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathryn; Newcombe, Nora S.; Filipowicz, Andrew T.; Chang, Alicia
2013-01-01
This study focuses on three main goals: First, 3-year-olds' spatial assembly skills are probed using interlocking block constructions (N = 102). A detailed scoring scheme provides insight into early spatial processing and offers information beyond a basic accuracy score. Second, the relation of spatial assembly to early mathematics skills was evaluated. Spatial skill independently predicted a significant amount of the variability in concurrent mathematics performance. Finally, the relationship between spatial assembly skill and socioeconomic status, gender, and parent-reported spatial language was examined. While children's performance did not differ by gender, lower-SES children were already lagging behind higher-SES children in block assembly. Furthermore, lower-SES parents reported using significantly fewer spatial words with their children. PMID:24112041
Li, Xiaobo; Thermenos, Heidi W; Wu, Ziyan; Momura, Yoko; Wu, Kai; Keshavan, Matcheri; Seidman, Lawrence; DeLisi, Lynn E
2016-10-01
Working memory impairment (especially in verbal and spatial domains) is the core neurocognitive impairment in schizophrenia and the familial high-risk (FHR) population. Inconsistent results have been reported in clinical and neuroimaging studies examining the verbal- and spatial-memory deficits in the FHR subjects, due to sample differences and lack of understanding on interactions of the brain regions for processing verbal- and spatial-working memory. Functional MRI data acquired during a verbal- vs. spatial-memory task were included from 51 young adults [26 FHR and 25 controls]. Group comparisons were conducted in brain activation patterns responding to 1) verbal-memory condition (A), 2) spatial-memory condition (B), 3) verbal higher than spatial (A-B), 4) spatial higher than verbal (B-A), 5) conjunction of brain regions that were activated during both A and B (A∧B). Group difference of the laterality index (LI) in inferior frontal lobe for condition A was also assessed. Compared to controls, the FHR group exhibited significantly decreased brain activity in left inferior frontal during A, and significantly stronger involvement of ACC, PCC, paracentral gyrus for the contrast of A-B. The LI showed a trend of reduced left-higher-than-right pattern for verbal-memory processing in the HR group. Our findings suggest that in the entire functional brain network for working-memory processing, verbal information processing associated brain pathways are significantly altered in people at familial high risk for developing schizophrenia. Future studies will need to examine whether these alterations may indicate vulnerability for predicting the onset of Schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.
A Spatial Analysis of County-level Variation in Syphilis and Gonorrhea in Guangdong Province, China
Tan, Nicholas X.; Messina, Jane P.; Yang, Li-Gang; Yang, Bin; Emch, Michael; Chen, Xiang-Sheng; Cohen, Myron S.; Tucker, Joseph D.
2011-01-01
Background Sexually transmitted infections (STI) have made a resurgence in many rapidly developing regions of southern China, but there is little understanding of the social changes that contribute to this spatial distribution of STI. This study examines county-level socio-demographic characteristics associated with syphilis and gonorrhea in Guangdong Province. Methods/Principal Findings This study uses linear regression and spatial lag regression to determine county-level (n = 97) socio-demographic characteristics associated with a greater burden of syphilis, gonorrhea, and a combined syphilis/gonorrhea index. Data were obtained from the 2005 China Population Census and published public health data. A range of socio-demographic variables including gross domestic product, the Gender Empowerment Measure, standard of living, education level, migrant population and employment are examined. Reported syphilis and gonorrhea cases are disproportionately clustered in the Pearl River Delta, the central region of Guangdong Province. A higher fraction of employed men among the adult population, higher fraction of divorced men among the adult population, and higher standard of living (based on water availability and people per room) are significantly associated with higher STI cases across all three models. Gross domestic product and gender inequality measures are not significant predictors of reported STI in these models. Conclusions/Significance Although many ecological studies of STIs have found poverty to be associated with higher reported STI, this analysis found a greater number of reported syphilis cases in counties with a higher standard of living. Spatially targeted syphilis screening measures in regions with a higher standard of living may facilitate successful control efforts. This analysis also reinforces the importance of changing male sexual behaviors as part of a comprehensive response to syphilis control in China. PMID:21573127
Sudakin, Daniel L.
2009-01-01
Introduction This investigation utilized spatial scan statistics, geographic information systems and multiple data sources to assess spatial clustering of statewide methamphetamine-related incidents. Temporal and spatial associations with regulatory interventions to reduce access to precursor chemicals (pseudoephedrine) were also explored. Methods Four statewide data sources were utilized including regional poison control center statistics, fatality incidents, methamphetamine laboratory seizures, and hazardous substance releases involving methamphetamine laboratories. Spatial clustering of methamphetamine incidents was assessed using SaTScan™. SaTScan™ was also utilized to assess space-time clustering of methamphetamine laboratory incidents, in relation to the enactment of regulations to reduce access to pseudoephedrine. Results Five counties with a significantly higher relative risk of methamphetamine-related incidents were identified. The county identified as the most likely cluster had a significantly elevated relative risk of methamphetamine laboratories (RR=11.5), hazardous substance releases (RR=8.3), and fatalities relating to methamphetamine (RR=1.4). A significant increase in relative risk of methamphetamine laboratory incidents was apparent in this same geographic area (RR=20.7) during the time period when regulations were enacted in 2004 and 2005, restricting access to pseudoephedrine. Subsequent to the enactment of these regulations, a significantly lower rate of incidents (RR 0.111, p=0.0001) was observed over a large geographic area of the state, including regions that previously had significantly higher rates. Conclusions Spatial and temporal scan statistics can be effectively applied to multiple data sources to assess regional variation in methamphetamine-related incidents, and explore the impact of preventive regulatory interventions. PMID:19225949
Molloy, Erin K; Meyerand, Mary E; Birn, Rasmus M
2014-02-01
Functional MRI blood oxygen level-dependent (BOLD) signal changes can be subtle, motivating the use of imaging parameters and processing strategies that maximize the temporal signal-to-noise ratio (tSNR) and thus the detection power of neuronal activity-induced fluctuations. Previous studies have shown that acquiring data at higher spatial resolutions results in greater percent BOLD signal changes, and furthermore that spatially smoothing higher resolution fMRI data improves tSNR beyond that of data originally acquired at a lower resolution. However, higher resolution images come at the cost of increased acquisition time, and the number of image volumes also influences detectability. The goal of our study is to determine how the detection power of neuronally induced BOLD fluctuations acquired at higher spatial resolutions and then spatially smoothed compares to data acquired at the lower resolutions with the same imaging duration. The number of time points acquired during a given amount of imaging time is a practical consideration given the limited ability of certain populations to lie still in the MRI scanner. We compare acquisitions at three different in-plane spatial resolutions (3.50×3.50mm(2), 2.33×2.33mm(2), 1.75×1.75mm(2)) in terms of their tSNR, contrast-to-noise ratio, and the power to detect both task-related activation and resting-state functional connectivity. The impact of SENSE acceleration, which speeds up acquisition time increasing the number of images collected, is also evaluated. Our results show that after spatially smoothing the data to the same intrinsic resolution, lower resolution acquisitions have a slightly higher detection power of task-activation in some, but not all, brain areas. There were no significant differences in functional connectivity as a function of resolution after smoothing. Similarly, the reduced tSNR of fMRI data acquired with a SENSE factor of 2 is offset by the greater number of images acquired, resulting in few significant differences in detection power of either functional activation or connectivity after spatial smoothing. © 2013.
Enhancing Allocentric Spatial Recall in Pre-schoolers through Navigational Training Programme
Boccia, Maddalena; Rosella, Michela; Vecchione, Francesca; Tanzilli, Antonio; Palermo, Liana; D'Amico, Simonetta; Guariglia, Cecilia; Piccardi, Laura
2017-01-01
Unlike for other abilities, children do not receive systematic spatial orientation training at school, even though navigational training during adulthood improves spatial skills. We investigated whether navigational training programme (NTP) improved spatial orientation skills in pre-schoolers. We administered 12-week NTP to seventeen 4- to 5-year-old children (training group, TG). The TG children and 17 age-matched children (control group, CG) who underwent standard didactics were tested twice before (T0) and after (T1) the NTP using tasks that tap into landmark, route and survey representations. We determined that the TG participants significantly improved their performances in the most demanding navigational task, which is the task that taps into survey representation. This improvement was significantly higher than that observed in the CG, suggesting that NTP fostered the acquisition of survey representation. Such representation is typically achieved by age seven. This finding suggests that NTP improves performance on higher-level navigational tasks in pre-schoolers. PMID:29085278
Controlled supercontinua via spatial beam shaping
NASA Astrophysics Data System (ADS)
Zhdanova, Alexandra A.; Shen, Yujie; Thompson, Jonathan V.; Scully, Marlan O.; Yakovlev, Vladislav V.; Sokolov, Alexei V.
2018-06-01
Recently, optimization techniques have had a significant impact in a variety of fields, leading to a higher signal-to-noise and more streamlined techniques. We consider the possibility for using programmable phase-only spatial optimization of the pump beam to influence the supercontinuum generation process. Preliminary results show that significant broadening and rough control of the supercontinuum spectrum in the visible region are possible without loss of input energy. This serves as a proof-of-concept demonstration that spatial effects can controllably influence the supercontinuum spectrum, leading to possibilities for utilizing supercontinuum power more efficiently and achieving excellent spectral control.
Joost, Stéphane; Haba-Rubio, José; Himsl, Rebecca; Vollenweider, Peter; Preisig, Martin; Waeber, Gérard; Marques-Vidal, Pedro; Heinzer, Raphaël; Guessous, Idris
2018-05-31
Daytime sleepiness is highly prevalent in the general adult population and has been linked to an increased risk of workplace and vehicle accidents, lower professional performance and poorer health. Despite the established relationship between noise and daytime sleepiness, little research has explored the individual-level spatial distribution of noise-related sleep disturbances. We assessed the spatial dependence of daytime sleepiness and tested whether clusters of individuals exhibiting higher daytime sleepiness were characterized by higher nocturnal noise levels than other clusters. Population-based cross-sectional study, in the city of Lausanne, Switzerland. Sleepiness was measured using the Epworth Sleepiness Scale (ESS) for 3697 georeferenced individuals from the CoLaus|PsyCoLaus cohort (period = 2009-2012). We used the sonBASE georeferenced database produced by the Swiss Federal Office for the Environment to characterize nighttime road traffic noise exposure throughout the city. We used the GeoDa software program to calculate the Getis-Ord G i * statistics for unadjusted and adjusted ESS in order to detect spatial clusters of high and low ESS values. Modeled nighttime noise exposure from road and rail traffic was compared across ESS clusters. Daytime sleepiness was not randomly distributed and showed a significant spatial dependence. The median nighttime traffic noise exposure was significantly different across the three ESS Getis cluster classes (p < 0.001). The mean nighttime noise exposure in the high ESS cluster class was 47.6, dB(A) 5.2 dB(A) higher than in low clusters (p < 0.001) and 2.1 dB(A) higher than in the neutral class (p < 0.001). These associations were independent of major potential confounders including body mass index and neighborhood income level. Clusters of higher daytime sleepiness in adults are associated with higher median nighttime noise levels. The identification of these clusters can guide tailored public health interventions. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Major influencing factors of indoor radon concentrations in Switzerland.
Kropat, Georg; Bochud, Francois; Jaboyedoff, Michel; Laedermann, Jean-Pascal; Murith, Christophe; Palacios, Martha; Baechler, Sébastien
2014-03-01
In Switzerland, nationwide large-scale radon surveys have been conducted since the early 1980s to establish the distribution of indoor radon concentrations (IRC). The aim of this work was to study the factors influencing IRC in Switzerland using univariate analyses that take into account biases caused by spatial irregularities of sampling. About 212,000 IRC measurements carried out in more than 136,000 dwellings were available for this study. A probability map to assess risk of exceeding an IRC of 300 Bq/m(3) was produced using basic geostatistical techniques. Univariate analyses of IRC for different variables, namely the type of radon detector, various building characteristics such as foundation type, year of construction and building type, as well as the altitude, the average outdoor temperature during measurement and the lithology, were performed comparing 95% confidence intervals among classes of each variable. Furthermore, a map showing the spatial aggregation of the number of measurements was generated for each class of variable in order to assess biases due to spatially irregular sampling. IRC measurements carried out with electret detectors were 35% higher than measurements performed with track detectors. Regarding building characteristics, the IRC of apartments are significantly lower than individual houses. Furthermore, buildings with concrete foundations have the lowest IRC. A significant decrease in IRC was found in buildings constructed after 1900 and again after 1970. Moreover, IRC decreases at higher outdoor temperatures. There is also a tendency to have higher IRC with altitude. Regarding lithology, carbonate rock in the Jura Mountains produces significantly higher IRC, almost by a factor of 2, than carbonate rock in the Alps. Sedimentary rock and sediment produce the lowest IRC while carbonate rock from the Jura Mountains and igneous rock produce the highest IRC. Potential biases due to spatially unbalanced sampling of measurements were identified for several influencing factors. Significant associations were found between IRC and all variables under study. However, we showed that the spatial distribution of samples strongly affected the relevance of those associations. Therefore, future methods to estimate local radon hazards should take the multidimensionality of the process of IRC into account. Copyright © 2013 Elsevier Ltd. All rights reserved.
Visualizing topography: Effects of presentation strategy, gender, and spatial ability
NASA Astrophysics Data System (ADS)
McAuliffe, Carla
2003-10-01
This study investigated the effect of different presentation strategies (2-D static visuals, 3-D animated visuals, and 3-D interactive, animated visuals) and gender on achievement, time-spent-on visual treatment, and attitude during a computer-based science lesson about reading and interpreting topographic maps. The study also examined the relationship of spatial ability and prior knowledge to gender, achievement, and time-spent-on visual treatment. Students enrolled in high school chemistry-physics were pretested and given two spatial ability tests. They were blocked by gender and randomly assigned to one of three levels of presentation strategy or the control group. After controlling for the effects of spatial ability and prior knowledge with analysis of covariance, three significant differences were found between the versions: (a) the 2-D static treatment group scored significantly higher on the posttest than the control group; (b) the 3-D animated treatment group scored significantly higher on the posttest than the control group; and (c) the 2-D static treatment group scored significantly higher on the posttest than the 3-D interactive animated treatment group. Furthermore, the 3-D interactive animated treatment group spent significantly more time on the visual screens than the 2-D static treatment group. Analyses of student attitudes revealed that most students felt the landform visuals in the computer-based program helped them learn, but not in a way they would describe as fun. Significant differences in attitude were found by treatment and by gender. In contrast to findings from other studies, no gender differences were found on either of the two spatial tests given in this study. Cognitive load, cognitive involvement, and solution strategy are offered as three key factors that may help explain the results of this study. Implications for instructional design include suggestions about the use of 2-D static, 3-D animated and 3-D interactive animations as well as a recommendation about the inclusion of pretests in similar instructional programs. Areas for future research include investigating the effects of combinations of presentation strategies, continuing to examine the role of spatial ability in science achievement, and gaining cognitive insights about what it is that students do when learning to read and interpret topographic maps.
Bragg, Heather R; Towle Millard, Heather A; Millard, Ralph P; Constable, Peter D; Freeman, Lyn J
2016-06-15
OBJECTIVE To determine whether gender or interest in pursuing specialty certification in internal medicine or surgery was associated with video-gaming, 3-D spatial analysis, or entry-level laparoscopic skills in third-year veterinary students. DESIGN Cross-sectional study. SAMPLE A convenience sample of 68 (42 female and 26 male) third-year veterinary students. PROCEDURES Participants completed a survey asking about their interest in pursuing specialty certification in internal medicine or surgery. Subsequently, participants' entry-level laparoscopic skills were assessed with 3 procedures performed in box trainers, their video-gaming skills were tested with 3 video games, and their 3-D spatial analysis skills were evaluated with the Purdue University Visualization of Rotations Spatial Test. Scores were assigned for laparoscopic, video-gaming, and 3-D spatial analysis skills. RESULTS Significantly more female than male students were interested in pursuing specialty certification in internal medicine (23/42 vs 7/26), and significantly more male than female students were interested in pursuing specialty certification in surgery (19/26 vs 19/42). Males had significantly higher video-gaming skills scores than did females, but spatial analysis and laparoscopic skills scores did not differ between males and females. Students interested in pursuing specialty certification in surgery had higher video-gaming and spatial analysis skills scores than did students interested in pursuing specialty certification in internal medicine, but laparoscopic skills scores did not differ between these 2 groups. CONCLUSIONS AND CLINICAL RELEVANCE For this group of students, neither gender nor interest in specialty certification in internal medicine versus surgery was associated with entry-level laparoscopy skills.
Ecology of coarse wood decomposition by the saprotrophic fungus Fomes fomentarius.
Větrovský, Tomáš; Voříšková, Jana; Snajdr, Jaroslav; Gabriel, Jiří; Baldrian, Petr
2011-07-01
Saprotrophic wood-inhabiting basidiomycetes are the most important decomposers of lignin and cellulose in dead wood and as such they attracted considerable attention. The aims of this work were to quantify the activity and spatial distribution of extracellular enzymes in coarse wood colonised by the white-rot basidiomycete Fomes fomentarius and in adjacent fruitbodies of the fungus and to analyse the diversity of the fungal and bacterial community in a fungus-colonised wood and its potential effect on enzyme production by F. fomentarius. Fungus-colonised wood and fruitbodies were collected in low management intensity forests in the Czech Republic. There were significant differences in enzyme production by F. fomentarius between Betula pendula and Fagus sylvatica wood, the activity of cellulose and xylan-degrading enzymes was significantly higher in beech wood than in birch wood. Spatial analysis of a sample B. pendula log segment proved that F. fomentarius was the single fungal representative found in the log. There was a high level of spatial variability in the amount of fungal biomass detected, but no effects on enzyme activities were observed. Samples from the fruiting body showed high β-glucosidase and chitinase activities compared to wood samples. Significantly higher levels of xylanase and cellobiohydrolase were found in samples located near the fruitbody (proximal), and higher laccase and Mn-peroxidase activities were found in the distal ones. The microbial community in wood was dominated by the fungus (fungal to bacterial DNA ratio of 62-111). Bacterial abundance composition was lower in proximal than distal parts of wood by a factor of 24. These results show a significant level of spatial heterogeneity in coarse wood. One of the explanations may be the successive colonization of wood by the fungus: due to differential enzyme production, the rates of biodegradation of coarse wood are also spatially inhomogeneous.
Spatial Reasoning and Understanding the Particulate Nature of Matter: A Middle School Perspective
NASA Astrophysics Data System (ADS)
Cole, Merryn L.
This dissertation employed a mixed-methods approach to examine the relationship between spatial reasoning ability and understanding of chemistry content for both middle school students and their science teachers. Spatial reasoning has been linked to success in learning STEM subjects (Wai, Lubinski, & Benbow, 2009). Previous studies have shown a correlation between understanding of chemistry content and spatial reasoning ability (e.g., Pribyl & Bodner, 1987; Wu & Shah, 2003: Stieff, 2013), raising the importance of developing the spatial reasoning ability of both teachers and students. Few studies examine middle school students' or in-service middle school teachers' understanding of chemistry concepts or its relation to spatial reasoning ability. The first paper in this dissertation addresses the quantitative relationship between mental rotation, a type of spatial reasoning ability, and understanding a fundamental concept in chemistry, the particulate nature of matter. The data showed a significant, positive correlation between scores on the Purdue Spatial Visualization Test of Rotations (PSVT; Bodner & Guay, 1997) and the Particulate Nature of Matter Assessment (ParNoMA; Yezierski, 2003) for middle school students prior to and after chemistry instruction. A significant difference in spatial ability among students choosing different answer choices on ParNoMA questions was also found. The second paper examined the ways in which students of different spatial abilities talked about matter and chemicals differently. Students with higher spatial ability tended to provide more of an explanation, though not necessarily in an articulate matter. In contrast, lower spatial ability students tended to use any keywords that seemed relevant, but provided little or no explanation. The third paper examined the relationship between mental reasoning and understanding chemistry for middle school science teachers. Similar to their students, a significant, positive correlation between scores on the PSVT and the ParNoMA was observed. Teachers who used consistent reasoning in providing definitions and examples for matter and chemistry tended to have higher spatial abilities than those teachers who used inconsistent reasoning on the same questions. This is the first study to explore the relationship between spatial reasoning and understanding of chemistry concepts at the middle school level. Though we are unable to infer cause and effect relationship from correlational data, these results illustrate a need to further investigate this relationship as well as identify the relationship between different spatial abilities (not just mental rotation) and other chemistry concepts.
2010-01-01
Background We conducted spatial analyses to determine the geographic variation of cancer at the neighbourhood level (dissemination areas or DAs) within the area of a single Ontario public health unit, Wellington-Dufferin-Guelph, covering a population of 238,326 inhabitants. Cancer incidence data between 1999 and 2003 were obtained from the Ontario Cancer Registry and were geocoded down to the level of DA using the enhanced Postal Code Conversion File. The 2001 Census of Canada provided information on the size and age-sex structure of the population at the DA level, in addition to information about selected census covariates, such as average neighbourhood income. Results Age standardized incidence ratios for cancer and the prevalence of census covariates were calculated for each of 331 dissemination areas in Wellington-Dufferin-Guelph. The standardized incidence ratios (SIR) for cancer varied dramatically across the dissemination areas. However, application of the Moran's I statistic, a popular index of spatial autocorrelation, suggested significant spatial patterns for only two cancers, lung and prostate, both in males (p < 0.001 and p = 0.002, respectively). Employing Bayesian hierarchical models, areas in the urban core of the City of Guelph had significantly higher SIRs for male lung cancer than the remainder of Wellington-Dufferin-Guelph; and, neighbourhoods in the urban and surrounding rural areas of Orangeville exhibited significantly higher SIRs for prostate cancer. After adjustment for age and spatial dependence, average household income attenuated much of the spatial pattern of lung cancer, but not of prostate cancer. Conclusion This paper demonstrates the feasibility and utility of a systematic approach to identifying neighbourhoods, within the area served by a public health unit, that have significantly higher risks of cancer. This exploratory, ecologic study suggests several hypotheses for these spatial patterns that warrant further investigations. To the best of our knowledge, this is the first Canadian study published in the peer-reviewed literature estimating the risk of relatively rare public health outcomes at a very small areal level, namely dissemination areas. PMID:20459738
Spatial task performance, sex differences, and motion sickness susceptibility.
Levine, Max E; Stern, Robert M
2002-10-01
There are substantial individual differences in susceptibility to motion sickness, yet little is known about what mediates these differences. Spatial ability and sex have been suggested as possible factors in this relationship. 89 participants (57 women) were administered a Motion Sickness Questionnaire that assesses motion sickness susceptibility, a Water-level Task that gauges sensitivity to gravitational upright, and a Mental Rotation Task that tests an individual's awareness of how objects typically move in space. Significant sex differences were observed in performance of both the Water-level Task (p<.01), and the Mental Rotation Task (p<.005), with women performing less accurately than men. Women also had significantly higher scores on the Motion Sickness Questionnaire (p<.005). Among men, but not women, significant negative relationships were observed between Water-level Task performance and Motion Sickness Questionnaire score (p<.001) and between Mental Rotation Task performance and Motion Sickness Questionnaire score (p<.005). In conclusion, women performed significantly more poorly than men did on the spatial ability tasks and reported significantly more bouts of motion sickness. In addition, men showed a significant negative relationship between spatial ability and motion sickness susceptibility.
Manneh, Rima; Margni, Manuele; Deschênes, Louise
2010-06-01
Spatially differentiated intake fractions (iFs) linked to Canadian emissions of toxic organic chemicals were developed using the multimedia and multipathways fate and exposure model IMPACT 2002. The fate and exposure of chemicals released to the Canadian environment were modeled with a single regional mass-balance model and three models that provided multiple mass-balance regions within Canada. These three models were based on the Canadian subwatersheds (172 zones), ecozones (15 zones), and provinces (13 zones). Releases of 32 organic chemicals into water and air were considered. This was done in order to (i) assess and compare the spatial variability of iFs within and across the three levels of regionalization and (ii) compare the spatial iFs to nonspatial ones. Results showed that iFs calculated using the subwatershed resolution presented a higher spatial variability (up to 10 orders of magnitude for emissions into water) than the ones based on the ecozones and provinces, implying that higher spatial resolution could potentially reduce uncertainty in iFs and, therefore, increase the discriminating power when assessing and comparing toxic releases for known emission locations. Results also indicated that, for an unknown emission location, a model with high spatial resolution such as the subwatershed model could significantly improve the accuracy of a generic iF. Population weighted iFs span up to 3 orders of magnitude compared to nonspatial iFs calculated by the one-box model. Less significant differences were observed when comparing spatial versus nonspatial iFs from the ecozones and provinces, respectively.
Spatial Heterogeneity, Social Capital, and Rural Larceny and Burglary
ERIC Educational Resources Information Center
Deller, Steven; Deller, Melissa
2012-01-01
We explore the role of social capital in explaining patterns of rural larceny and burglary crime rates. We find consistent evidence that higher levels of social capital tend to be associated with lower levels of rural property crime rates. We also find that there is significant spatial heterogeneity in the underlying data-generating process. This…
Zulu mothers' beliefs about their own and their children's intelligence.
Furnham, Adrian; Mkhize, Nhlanhla
2003-02-01
Zulu women (N = 133) were given a structural interview concerning their own and their children's multiple intelligences. The best predictor of their own self-estimated overall intelligence rating was mathematical and spatial intelligence. Mothers showed few significant differences in their estimates of their sons and daughters' overall or multiple intelligences. However, they rated their daughters' interpersonal intelligence higher than those of their sons, and their sons' bodily-kinesthetic intelligence higher than those of their daughters. The mothers believed that overall their children were about 6 IQ points more intelligent than themselves. Although mothers estimated their own spatial, inter-, and intrapersonal intelligence to be higher than those of their children, they also believed that their children had higher mathematical intelligence.
NASA Astrophysics Data System (ADS)
Woo, Hye-Jin; Park, Kyung-Ae
2017-09-01
Significant wave height (SWH) data of nine satellite altimeters were validated with in-situ SWH measurements from buoy stations in the East/Japan Sea (EJS) and the Northwest Pacific Ocean. The spatial and temporal variability of extreme SWHs was investigated by defining the 90th, 95th, and 99th percentiles based on percentile analysis. The annual mean of extreme SWHs was dramatically increased by 3.45 m in the EJS, which is significantly higher than the normal mean of about 1.44 m. The spatial distributions of SWHs showed significantly higher values in the eastern region of the EJS than those in the western part. Characteristic seasonality was found from the time-series SWHs with high SWHs (>2.5 m) in winter but low values (<1 m) in summer. The trends of the normal and extreme (99th percentile) SWHs in the EJS had a positive value of 0.0056 m year-1 and 0.0125 m year-1, respectively. The long-term trend demonstrated that higher SWH values were more extreme with time during the past decades. The predominant spatial distinctions between the coastal regions in the marginal seas of the Northwest Pacific Ocean and open ocean regions were presented. In spring, both normal and extreme SWHs showed substantially increasing trends in the EJS. Finally, we first presented the impact of the long-term trend of extreme SWHs on the marine ecosystem through vertical mixing enhancement in the upper ocean of the EJS.
Rojas, Flavio
2007-01-01
Background This research concerns Araucanía, often called the Ninth Region, the poorest region of Chile where inequalities are most extreme. Araucanía hasn't enjoyed the economic success Chile achieved when the country returned to democracy in 1990. The Ninth Region also has the largest ethnic Mapuche population, located in rural areas and attached to small agricultural properties. Written and oral histories of diseases have been the most frequently used methods to explore the links between an ancestral population's perception of health conditions and their deprived environments. With census data and hospital records, it is now possible to incorporate statistical data about the links between poverty and disease among ethnic communities and compare results with non-Mapuche population. Data sources Hospital discharge records from Health Services North N = 24,126 patients, year 2003, and 7 hospitals), Health Services South (N = 81,780 patients and 25 hospitals); CAS-2/Family records (N = 527,539 individuals, 439 neighborhoods, 32 Comunas). Methods Given the over-dispersion of data and the clustered nature of observations, we used the global Moran's I and General G Gettis-Ord procedures to test spatial dependence. These tests confirmed the clusters of disease and the need to use spatial regression within a General Linear Mixed Model perspective. Results Health outcomes indicate significantly higher morbidity rates for the Mapuche compared to non-Mapuche in both age groups < 5 and 15–44, respectively; for the groups 70–79 and 80 + years of age, this trend is reversed. Mortality rates, however, are higher among Mapuches than non-Mapuches for the entire Ninth Region and for all age groups. Mortality caused by respiratory infections is higher among Mapuches than non-Mapuches in all age-groups. A major finding is the link between poverty and respiratory infections. Conclusion Poverty is significantly associated with respiratory infections in the population of Chile's Ninth Region. High deprivation areas are associated with poverty, and poverty is a predictor of respiratory infections. Mapuches are at higher risk of deaths caused by respiratory infections in all age groups. Exponential and spherical spatial correlation models were tested to estimate the previous association and were compared with non-spatial Poisson, concluding that significant spatial variability was present in the data. PMID:17605804
Rojas, Flavio
2007-07-02
This research concerns Araucanía, often called the Ninth Region, the poorest region of Chile where inequalities are most extreme. Araucanía hasn't enjoyed the economic success Chile achieved when the country returned to democracy in 1990. The Ninth Region also has the largest ethnic Mapuche population, located in rural areas and attached to small agricultural properties. Written and oral histories of diseases have been the most frequently used methods to explore the links between an ancestral population's perception of health conditions and their deprived environments. With census data and hospital records, it is now possible to incorporate statistical data about the links between poverty and disease among ethnic communities and compare results with non-Mapuche population. Hospital discharge records from Health Services North N = 24,126 patients, year 2003, and 7 hospitals), Health Services South (N = 81,780 patients and 25 hospitals); CAS-2/Family records (N = 527,539 individuals, 439 neighborhoods, 32 Comunas). Given the over-dispersion of data and the clustered nature of observations, we used the global Moran's I and General G Gettis-Ord procedures to test spatial dependence. These tests confirmed the clusters of disease and the need to use spatial regression within a General Linear Mixed Model perspective. Health outcomes indicate significantly higher morbidity rates for the Mapuche compared to non-Mapuche in both age groups < 5 and 15-44, respectively; for the groups 70-79 and 80 + years of age, this trend is reversed. Mortality rates, however, are higher among Mapuches than non-Mapuches for the entire Ninth Region and for all age groups. Mortality caused by respiratory infections is higher among Mapuches than non-Mapuches in all age-groups. A major finding is the link between poverty and respiratory infections. Poverty is significantly associated with respiratory infections in the population of Chile's Ninth Region. High deprivation areas are associated with poverty, and poverty is a predictor of respiratory infections. Mapuches are at higher risk of deaths caused by respiratory infections in all age groups. Exponential and spherical spatial correlation models were tested to estimate the previous association and were compared with non-spatial Poisson, concluding that significant spatial variability was present in the data.
Cui, Henglin; Yang, Kun; Pagaling, Eulyn
2013-01-01
Recent studies have reported high levels of fecal indicator enterococci in marine beach sand. This study aimed to determine the spatial and temporal variation of enterococcal abundance and to evaluate its relationships with microbial community parameters in Hawaii beach sand and water. Sampling at 23 beaches on the Island of Oahu detected higher levels of enterococci in beach foreshore sand than in beach water on a mass unit basis. Subsequent 8-week consecutive samplings at two selected beaches (Waialae and Kualoa) consistently detected significantly higher levels of enterococci in backshore sand than in foreshore/nearshore sand and beach water. Comparison between the abundance of enterococci and the microbial communities showed that enterococci correlated significantly with total Vibrio in all beach zones but less significantly with total bacterial density and Escherichia coli. Samples from the different zones of Waialae beach were sequenced by 16S rRNA gene pyrosequencing to determine the microbial community structure and diversity. The backshore sand had a significantly more diverse community and contained different major bacterial populations than the other beach zones, which corresponded to the spatial distribution pattern of enterococcal abundance. Taken together, multiple lines of evidence support the possibility of enterococci as autochthonous members of the microbial community in Hawaii beach sand. PMID:23563940
[Spatial and temporal dynamics of the weed community in the Zoysia matrella lawn].
Liu, Jia-Qi; Li, You-Han; Zeng, Ying; Xie, Xin-Ming
2014-02-01
The heterogeneity of species composition is one of the main attributes in weed community dynamics. Based on species frequency and power law, this paper studied the variations of weed community species composition and spatial heterogeneity in a Zoysia matrella lawn in Guangzhou at different time. The results showed that there were 43 weed species belonging to 19 families in the Z. matrella lawn from 2007 to 2009, in which Gramineae, Compositae, Cyperaceae and Rubiaceae had a comparative advantage. Perennial weeds accounted for the largest proportion of weeds and increased gradually in the three years. Weed communities distributed in higher heterogeneity than in a random model. Dominant weeds varied with season and displayed regularity in the order of 'dicotyledon-monocotyledon-dicotyledon weeds' and 'perennial-annual-perennial weeds'. The spatial heterogeneity of weed community in Z. matrella lawn was higher in summer than in winter. The diversity and evenness of weed community were higher in summer and autumn than in winter and spring. The number of weed species with high heterogeneity in summer was higher than in the other seasons. The spatial heterogeneity and diversity of weed community had no significant change in the three years, while the evenness of weed community had the tendency to decline gradually.
Directional spatial frequency analysis of lipid distribution in atherosclerotic plaque
NASA Astrophysics Data System (ADS)
Korn, Clyde; Reese, Eric; Shi, Lingyan; Alfano, Robert; Russell, Stewart
2016-04-01
Atherosclerosis is characterized by the growth of fibrous plaques due to the retention of cholesterol and lipids within the artery wall, which can lead to vessel occlusion and cardiac events. One way to evaluate arterial disease is to quantify the amount of lipid present in these plaques, since a higher disease burden is characterized by a higher concentration of lipid. Although therapeutic stimulation of reverse cholesterol transport to reduce cholesterol deposits in plaque has not produced significant results, this may be due to current image analysis methods which use averaging techniques to calculate the total amount of lipid in the plaque without regard to spatial distribution, thereby discarding information that may have significance in marking response to therapy. Here we use Directional Fourier Spatial Frequency (DFSF) analysis to generate a characteristic spatial frequency spectrum for atherosclerotic plaques from C57 Black 6 mice both treated and untreated with a cholesterol scavenging nanoparticle. We then use the Cauchy product of these spectra to classify the images with a support vector machine (SVM). Our results indicate that treated plaque can be distinguished from untreated plaque using this method, where no difference is seen using the spatial averaging method. This work has the potential to increase the effectiveness of current in-vivo methods of plaque detection that also use averaging methods, such as laser speckle imaging and Raman spectroscopy.
Hu, Rui Bin; Fang, Xi; Xiang, Wen Hua; Jiang, Fang; Lei, Pi Feng; Zhao, Li Juan; Zhu, Wen Juan; Deng, Xiang Wen
2016-03-01
In order to investigate spatial variations in soil phosphorus (P) concentration and the influencing factors, one permanent plot of 1 hm 2 was established and stand structure was surveyed in Choerospondias axillaries deciduous broadleaved forest in Dashanchong Forest Park in Changsha County, Hunan Province, China. Soil samples were collected with equidistant grid point sampling method and soil P concentration and its spatial variation were analyzed by using geo-statistics and geographical information system (GIS) techniques. The results showed that the variations of total P and available P concentrations in humus layer and in the soil profile at depth of 0-10, 10-20 and 20-30 cm were moderate and the available P showed higher variability in a specific soil layer compared with total P. Concentrations of total P and available P in soil decreased, while the variations increased with the increase in soil depth. The total P and available P showed high spatial autocorrelation, primarily resulted from the structural factors. The spatial heterogeneity of available P was stronger than that of total P, and the spatial autocorrelation ranges of total P and available P varied from 92.80 to 168.90 m and from 79.43 to 106.20 m in different soil layers, respectively. At the same soil depth, fractal dimensions of total P were higher than that of available P, with more complex spatial pattern, while available P showed stronger spatial correlation with stronger spatial structure. In humus layer and soil depths of 0-10, 10-20 and 20-30 cm, the spatial variation pattern of total P and available P concentrations showed an apparent belt-shaped and spot massive gradient change. The high value appeared at low elevation and valley position, and the low value appeared in the high elevation and ridge area. The total P and available P concentrations showed significantly negative correlation with elevation and litter, but the relationship with convexity, species, numbers and soil pH was not significant. The total P and available P exhibited significant positive correlations with soil organic carbon (SOC), total nitrogen concentration, indicating the leaching characteristics of soil P. Its spatial variability was affected by many interactive factors.
Spatial Lattice Modulation for MIMO Systems
NASA Astrophysics Data System (ADS)
Choi, Jiwook; Nam, Yunseo; Lee, Namyoon
2018-06-01
This paper proposes spatial lattice modulation (SLM), a spatial modulation method for multipleinput-multiple-output (MIMO) systems. The key idea of SLM is to jointly exploit spatial, in-phase, and quadrature dimensions to modulate information bits into a multi-dimensional signal set that consists oflattice points. One major finding is that SLM achieves a higher spectral efficiency than the existing spatial modulation and spatial multiplexing methods for the MIMO channel under the constraint ofM-ary pulseamplitude-modulation (PAM) input signaling per dimension. In particular, it is shown that when the SLM signal set is constructed by using dense lattices, a significant signal-to-noise-ratio (SNR) gain, i.e., a nominal coding gain, is attainable compared to the existing methods. In addition, closed-form expressions for both the average mutual information and average symbol-vector-error-probability (ASVEP) of generic SLM are derived under Rayleigh-fading environments. To reduce detection complexity, a low-complexity detection method for SLM, which is referred to as lattice sphere decoding, is developed by exploiting lattice theory. Simulation results verify the accuracy of the conducted analysis and demonstrate that the proposed SLM techniques achieve higher average mutual information and lower ASVEP than do existing methods.
Martinez, Edson Zangiacomi; Roza, Daiane Leite da; Caccia-Bava, Maria do Carmo Gullaci Guimarães; Achcar, Jorge Alberto; Dal-Fabbro, Amaury Lelis
2011-05-01
Teenage pregnancy is a common public health problem worldwide. The objective of this ecological study was to investigate the spatial association between teenage pregnancy rates and socioeconomic characteristics of municipalities in São Paulo State, Southeast Brazil. We used a Bayesian model with a spatial distribution following a conditional autoregressive (CAR) form based on Markov Chain Monte Carlo algorithm. We used data from the Live Birth Information System (SINASC) and the Brazilian Institute of Geography and Statistics (IBGE). Early pregnancy was more frequent in municipalities with lower per capital gross domestic product (GDP), higher poverty rate, smaller population, lower human development index (HDI), and a higher percentage of individuals with State social vulnerability index of 5 or 6 (more vulnerable). The study demonstrates a significant association between teenage pregnancy and socioeconomic indicators.
Comparative analysis of 2D and 3D distance measurements to study spatial genome organization.
Finn, Elizabeth H; Pegoraro, Gianluca; Shachar, Sigal; Misteli, Tom
2017-07-01
The spatial organization of genomes is non-random, cell-type specific, and has been linked to cellular function. The investigation of spatial organization has traditionally relied extensively on fluorescence microscopy. The validity of the imaging methods used to probe spatial genome organization often depends on the accuracy and precision of distance measurements. Imaging-based measurements may either use 2 dimensional datasets or 3D datasets which include the z-axis information in image stacks. Here we compare the suitability of 2D vs 3D distance measurements in the analysis of various features of spatial genome organization. We find in general good agreement between 2D and 3D analysis with higher convergence of measurements as the interrogated distance increases, especially in flat cells. Overall, 3D distance measurements are more accurate than 2D distances, but are also more susceptible to noise. In particular, z-stacks are prone to error due to imaging properties such as limited resolution along the z-axis and optical aberrations, and we also find significant deviations from unimodal distance distributions caused by low sampling frequency in z. These deviations are ameliorated by significantly higher sampling frequency in the z-direction. We conclude that 2D distances are preferred for comparative analyses between cells, but 3D distances are preferred when comparing to theoretical models in large samples of cells. In general and for practical purposes, 2D distance measurements are preferable for many applications of analysis of spatial genome organization. Published by Elsevier Inc.
Statistical analysis of atmospheric turbulence about a simulated block building
NASA Technical Reports Server (NTRS)
Steely, S. L., Jr.
1981-01-01
An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.
Power quality analysis based on spatial correlation
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Gang; Liu, Haibo; Li, Fenghou; Liu, Xiaoli
2018-03-01
With the industrialization and urbanization, the status of electricity in the production and life is getting higher and higher. So the prediction of power quality is the more potential significance. Traditional power quality analysis methods include: power quality data compression, disturbance event pattern classification, disturbance parameter calculation. Under certain conditions, these methods can predict power quality. This paper analyses the temporal variation of power quality of one provincial power grid in China from time angle. The distribution of power quality was analyzed based on spatial autocorrelation. This paper tries to prove that the research idea of geography is effective for mining the potential information of power quality.
Examining Impulse-Variability in Kicking.
Chappell, Andrew; Molina, Sergio L; McKibben, Jonathon; Stodden, David F
2016-07-01
This study examined variability in kicking speed and spatial accuracy to test the impulse-variability theory prediction of an inverted-U function and the speed-accuracy trade-off. Twenty-eight 18- to 25-year-old adults kicked a playground ball at various percentages (50-100%) of their maximum speed at a wall target. Speed variability and spatial error were analyzed using repeated-measures ANOVA with built-in polynomial contrasts. Results indicated a significant inverse linear trajectory for speed variability (p < .001, η2= .345) where 50% and 60% maximum speed had significantly higher variability than the 100% condition. A significant quadratic fit was found for spatial error scores of mean radial error (p < .0001, η2 = .474) and subject-centroid radial error (p < .0001, η2 = .453). Findings suggest variability and accuracy of multijoint, ballistic skill performance may not follow the general principles of impulse-variability theory or the speed-accuracy trade-off.
Pseudo color ghost coding imaging with pseudo thermal light
NASA Astrophysics Data System (ADS)
Duan, De-yang; Xia, Yun-jie
2018-04-01
We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.
Student Moon Observations and Spatial-Scientific Reasoning
NASA Astrophysics Data System (ADS)
Cole, Merryn; Wilhelm, Jennifer; Yang, Hongwei
2015-07-01
Relationships between sixth grade students' moon journaling and students' spatial-scientific reasoning after implementation of an Earth/Space unit were examined. Teachers used the project-based Realistic Explorations in Astronomical Learning curriculum. We used a regression model to analyze the relationship between the students' Lunar Phases Concept Inventory (LPCI) post-test score variables and several predictors, including moon journal score, number of moon journal entries, student gender, teacher experience, and pre-test score. The model shows that students who performed better on moon journals, both in terms of overall score and number of entries, tended to score higher on the LPCI. For every 1 point increase in the overall moon journal score, participants scored 0.18 points (out of 20) or nearly 1% point higher on the LPCI post-test when holding constant the effects of the other two predictors. Similarly, students who increased their scores by 1 point in the overall moon journal score scored approximately 1% higher in the Periodic Patterns (PP) and Geometric Spatial Visualization (GSV) domains of the LPCI. Also, student gender and teacher experience were shown to be significant predictors of post-GSV scores on the LPCI in addition to the pre-test scores, overall moon journal score, and number of entries that were also significant predictors on the LPCI overall score and the PP domain. This study is unique in the purposeful link created between student moon observations and spatial skills. The use of moon journals distinguishes this study further by fostering scientific observation along with skills from across science, technology, engineering, and mathematics disciplines.
NASA Astrophysics Data System (ADS)
Hu, Jing; Li, Chenxiao; Wen, Yifang; Gao, Xinhao; Shi, Feifei; Han, Luhua
2018-01-01
To determine the best leaf position for nitrogen diagnosis in cucumber with SPAD meter, greenhouse experiments were carried out to study spatial distribution of SPAD value of different position of the 3rd fully expanded cucumber leaf in the effect of different nitrogen levels, and the correlations between SPAD values and nitrogen concentration of chlorophyll. The results show that there is remarkable different SPAD value in different positions of the 3rd fully expanded leaf in the flowering and fruiting stage. Comparing the coefficients of SPAD value variation, we find that the coefficient of variation of leaf edge was significantly higher than the edge of the main vein, and the coefficient of variation of triangular area of leaf tip is significantly higher than any other leaf area. There is a significant correlation between SPAD values and leaf nitrogen content. Preliminary study shows that triangular area of leaf tip from the 20% leaf tip to leaf edge is the best position for nitrogen diagnosis.
Giannopoulos, Georgios; Dilaveris, Polychronis; Batchvarov, Velislav; Synetos, Andreas; Hnatkova, Katerina; Gatzoulis, Konstantinos; Malik, Marek; Stefanadis, Christodoulos
2009-01-01
We investigated the predictive value of the spatial QRS-T angle (QRSTA) circadian variation in myocardial infarction (MI) patients. Analyzing 24-hour recordings (SEER MC, GE Marquette) from 151 MI patients (age 63 +/- 12.7), the QRSTA was computed in derived XYZ leads. QRS-T angle values were compared between daytime and night time. The end point was cardiac death or life-threatening ventricular arrhythmia in 1 year. Overall, QRSTA was slightly higher during the day vs. the night (91 degrees vs. 87 degrees, P = .005). However, 33.8% of the patients showed an inverse diurnal QRSTA variation (higher values at night), which was correlated to the outcome (P = .001, odds ratio 6.7). In multivariate analysis, after entering all factors exhibiting univariate trend towards significance, inverse QRSTA circadian pattern remained significant (P = .036). Inverse QRSTA circadian pattern was found to be associated with adverse outcome (22.4%) in MI patients, whereas a normal pattern was associated (96%) with a favorable outcome.
Zeitoun, Jack H.; Kim, Hyungtae
2017-01-01
Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011
NASA Astrophysics Data System (ADS)
Shoko, Cletah; Clark, David; Mengistu, Michael; Dube, Timothy; Bulcock, Hartley
2015-01-01
This study evaluated the effect of two readily available multispectral sensors: the newly launched 30 m spatial resolution Landsat 8 and the long-serving 1000 m moderate resolution imaging spectroradiometer (MODIS) datasets in the spatial representation of total evaporation in the heterogeneous uMngeni catchment, South Africa, using the surface energy balance system model. The results showed that sensor spatial resolution plays a critical role in the accurate estimation of energy fluxes and total evaporation across a heterogeneous catchment. Landsat 8 estimates showed better spatial representation of the biophysical parameters and total evaporation for different land cover types, due to the relatively higher spatial resolution compared to the coarse spatial resolution MODIS sensor. Moreover, MODIS failed to capture the spatial variations of total evaporation estimates across the catchment. Analysis of variance (ANOVA) results showed that MODIS-based total evaporation estimates did not show any significant differences across different land cover types (one-way ANOVA; F1.924=1.412, p=0.186). However, Landsat 8 images yielded significantly different estimates between different land cover types (one-way ANOVA; F1.993=5.185, p<0.001). The validation results showed that Landsat 8 estimates were more comparable to eddy covariance (EC) measurements than the MODIS-based total evaporation estimates. EC measurement on May 23, 2013, was 3.8 mm/day, whereas the Landsat 8 estimate on the same day was 3.6 mm/day, with MODIS showing significantly lower estimates of 2.3 mm/day. The findings of this study underscore the importance of spatial resolution in estimating spatial variations of total evaporation at the catchment scale, thus, they provide critical information on the relevance of the readily available remote sensing products in water resources management in data-scarce environments.
Tani, Kazuki; Mio, Motohira; Toyofuku, Tatsuo; Kato, Shinichi; Masumoto, Tomoya; Ijichi, Tetsuya; Matsushima, Masatoshi; Morimoto, Shoichi; Hirata, Takumi
2017-01-01
Spatial normalization is a significant image pre-processing operation in statistical parametric mapping (SPM) analysis. The purpose of this study was to clarify the optimal method of spatial normalization for improving diagnostic accuracy in SPM analysis of arterial spin-labeling (ASL) perfusion images. We evaluated the SPM results of five spatial normalization methods obtained by comparing patients with Alzheimer's disease or normal pressure hydrocephalus complicated with dementia and cognitively healthy subjects. We used the following methods: 3DT1-conventional based on spatial normalization using anatomical images; 3DT1-DARTEL based on spatial normalization with DARTEL using anatomical images; 3DT1-conventional template and 3DT1-DARTEL template, created by averaging cognitively healthy subjects spatially normalized using the above methods; and ASL-DARTEL template created by averaging cognitively healthy subjects spatially normalized with DARTEL using ASL images only. Our results showed that ASL-DARTEL template was small compared with the other two templates. Our SPM results obtained with ASL-DARTEL template method were inaccurate. Also, there were no significant differences between 3DT1-conventional and 3DT1-DARTEL template methods. In contrast, the 3DT1-DARTEL method showed higher detection sensitivity, and precise anatomical location. Our SPM results suggest that we should perform spatial normalization with DARTEL using anatomical images.
Poultry, pig and the risk of BSE following the feed ban in France--a spatial analysis.
Abrial, David; Calavas, Didier; Jarrige, Nathalie; Ducrot, Christian
2005-01-01
A spatial analysis was carried out in order to analyse the reason why the risk of Bovine Spongiform Encephalopathy (BSE) was spatially heterogeneous in France, during the period following the feed ban of Meat and Bone Meal to cattle. The hypothesis of cross-contamination between cattle feedstuff and monogastric feedstuff, which was strongly suggested from previous investigations, was assessed, with the assumption that the higher the pig or poultry density is in a given area, the higher the risk of cross-contamination and cattle infection might be. The data concerned the 467 BSE cases born in France after the ban of meat and bone meal (July 1990) and detected between July 1st, 2001 and December 31, 2003, when the surveillance system was optimal and not spatially biased. The disease mapping models were elaborated with the Bayesian graphical modelling methods and based on a Poisson distribution with spatial smoothing (hierarchical approach) and covariates. The parameters were estimated by a Markov Chain Monte Carlo simulation method. The main result was that the poultry density did not significantly influence the risk of BSE whereas the pig density was significantly associated with an increase in the risk of 2.4% per 10 000 pigs. The areas with a significant pig effect were located in regions with a high pig density as well as a high ratio of pigs to cattle. Despite the absence of a global effect of poultry density on the BSE risk, some areas had a significant poultry effect and the risk was better explained in some others when considering both pig and poultry densities. These findings were in agreement with the hypothesis of cross-contamination, which could take place at the feedstuff factory, during the shipment of food or on the farm. Further studies are needed to more precisely explore how the cross-contamination happened.
Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination
Ha, Hoehun; Rogerson, Peter A.; Olson, James R.; Han, Daikwon; Bian, Ling; Shao, Wanyun
2016-01-01
Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations. PMID:27649221
Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination.
Ha, Hoehun; Rogerson, Peter A; Olson, James R; Han, Daikwon; Bian, Ling; Shao, Wanyun
2016-09-14
Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations.
Chen, Peii; Hreha, Kimberly; Kong, Yekyung; Barrett, A. M.
2015-01-01
Objective To examine the impact of spatial neglect on rehabilitation outcome, risk of falls, and discharge disposition in stroke survivors. Design Inception cohort Setting Inpatient rehabilitation facility (IRF) Participants 108 individuals with unilateral brain damage after their first stroke were assessed at the times of IRF admission and discharge. At admission, 74 of them (68.5%) demonstrated symptoms of spatial neglect, as measured with the Kessler Foundation Neglect Assessment Process (KF-NAP™). Interventions Usual and standard IRF care. Main Outcome Measures Functional Independence Measure (FIM™), Conley Scale, number of falls, length of stay (LOS), and discharge disposition. Results The greater severity of spatial neglect (higher KF-NAP scores) at IRF admission, the lower FIM scores at admission as well as at discharge. Higher KF-NAP scores also correlated with greater LOS and slower FIM improvement rate. The presence of spatial neglect (KF-NAP > 0), but not Conley Scale scores, predicted falls such that participants with spatial neglect fell 6.5 times more often than those without symptoms. More severe neglect, by KF-NAP scores at IRF admission, reduced the likelihood of returning home at discharge. A model that took spatial neglect and other demographic, socioeconomic, and clinical factors into account predicted home discharge. Rapid FIM improvement during IRF stay and lower annual income level were significant predictors of home discharge. Conclusions Spatial neglect following a stroke is a prevalent problem, and may negatively affect rehabilitation outcome, risk of falls, and length of hospital stay. PMID:25862254
Zhang, Shengwei; Arfanakis, Konstantinos
2012-01-01
Purpose To investigate the effect of standardized and study-specific human brain diffusion tensor templates on the accuracy of spatial normalization, without ignoring the important roles of data quality and registration algorithm effectiveness. Materials and Methods Two groups of diffusion tensor imaging (DTI) datasets, with and without visible artifacts, were normalized to two standardized diffusion tensor templates (IIT2, ICBM81) as well as study-specific templates, using three registration approaches. The accuracy of inter-subject spatial normalization was compared across templates, using the most effective registration technique for each template and group of data. Results It was demonstrated that, for DTI data with visible artifacts, the study-specific template resulted in significantly higher spatial normalization accuracy than standardized templates. However, for data without visible artifacts, the study-specific template and the standardized template of higher quality (IIT2) resulted in similar normalization accuracy. Conclusion For DTI data with visible artifacts, a carefully constructed study-specific template may achieve higher normalization accuracy than that of standardized templates. However, as DTI data quality improves, a high-quality standardized template may be more advantageous than a study-specific template, since in addition to high normalization accuracy, it provides a standard reference across studies, as well as automated localization/segmentation when accompanied by anatomical labels. PMID:23034880
NASA Astrophysics Data System (ADS)
Chi, Yuan; Shi, Honghua; Wang, Xiaoli; Qin, Xuebo; Zheng, Wei; Peng, Shitao
2016-09-01
Herbaceous plants are widely distributed on islands and where they exhibit spatial heterogeneity. Accurately identifying the impact factors that drive spatial heterogeneity can reveal typical island biodiversity patterns. Five southern islands in the Miaodao Archipelago, North China were studied herein. The spatial distribution of herbaceous plant diversity on these islands was analyzed, and the impact factors and their degree of impact on spatial heterogeneity were identified using CCA ordination and ANOVA. The results reveal 114 herbaceous plant species, belonging to 94 genera from 34 families in the 50 plots sampled. The total species numbers on different islands were significantly positively correlated with island area, and the average α diversity was correlated with human activities, while the β diversity among islands was more affected by island area than mutual distances. Spatial heterogeneity within islands indicated that the diversities were generally high in areas with higher altitude, slope, total nitrogen, total carbon, and canopy density, and lower moisture content, pH, total phosphorus, total potassium, and aspect. Among the environmental factors, pH, canopy density, total K, total P, moisture content, altitude, and slope had significant gross effects, but only canopy density exhibited a significant net effect. Terrain affected diversity by restricting plantation, plantation in turn influenced soil properties and the two together affected diversity. Therefore, plantation was ultimately the fundamental driving factor for spatial heterogeneity in herbaceous plant diversity on the five islands.
NASA Astrophysics Data System (ADS)
Wang, D. H.; Yang, X. J.; Hao, F. J.
2017-07-01
This paper used SPSS and ARCGIS to measure the urban integration degree and well-being index, spatial features, and their correlation. This results show: (1) The space differentiation of migrant workers’ urban integration degree in Xi’an distinct: The northern great site protection zone area is low, eastern military area is peak and the western electronic district and southwest high-tech zone are second peak areas. (2) Migrant workers’ well-being index has differentiation spatial distribution: eastern military area is significantly higher than other regions, northern economic zone shows low-lying shape, southern cultural and educational area is higher than northern economic development zone, and central business district is higher than the surrounding. (3) As the result of correlation analysis in SPSS 19.0, it is shown that there is certain positive correlation between urban integration degree and well-being index of migrant workers in main urban districts of Xi’an. Economic integration and social integration have positive prediction to well-being.
BDNF and TNF-α polymorphisms in memory.
Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R
2013-09-01
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.
Muška, Milan; Tušer, Michal; Frouzová, Jaroslava; Mrkvička, Tomáš; Ricard, Daniel; Seďa, Jaromír; Morelli, Federico; Kubečka, Jan
2018-03-29
Understanding spatial distribution of organisms in heterogeneous environment remains one of the chief issues in ecology. Spatial organization of freshwater fish was investigated predominantly on large-scale, neglecting important local conditions and ecological processes. However, small-scale processes are of an essential importance for individual habitat preferences and hence structuring trophic cascades and species coexistence. In this work, we analysed the real-time spatial distribution of pelagic freshwater fish in the Římov Reservoir (Czechia) observed by hydroacoustics in relation to important environmental predictors during 48 hours at 3-h interval. Effect of diurnal cycle was revealed of highest significance in all spatial models with inverse trends between fish distribution and predictors in day and night in general. Our findings highlighted daytime pelagic fish distribution as highly aggregated, with general fish preferences for central, deep and highly illuminated areas, whereas nighttime distribution was more disperse and fish preferred nearshore steep sloped areas with higher depth. This turnover suggests prominent movements of significant part of fish assemblage between pelagic and nearshore areas on a diel basis. In conclusion, hydroacoustics, GIS and spatial modelling proved as valuable tool for predicting local fish distribution and elucidate its drivers, which has far reaching implications for understanding freshwater ecosystem functioning.
Interdependent encoding of pitch, timbre and spatial location in auditory cortex
Bizley, Jennifer K.; Walker, Kerry M. M.; Silverman, Bernard W.; King, Andrew J.; Schnupp, Jan W. H.
2009-01-01
Because we can perceive the pitch, timbre and spatial location of a sound source independently, it seems natural to suppose that cortical processing of sounds might separate out spatial from non-spatial attributes. Indeed, recent studies support the existence of anatomically segregated ‘what’ and ‘where’ cortical processing streams. However, few attempts have been made to measure the responses of individual neurons in different cortical fields to sounds that vary simultaneously across spatial and non-spatial dimensions. We recorded responses to artificial vowels presented in virtual acoustic space to investigate the representations of pitch, timbre and sound source azimuth in both core and belt areas of ferret auditory cortex. A variance decomposition technique was used to quantify the way in which altering each parameter changed neural responses. Most units were sensitive to two or more of these stimulus attributes. Whilst indicating that neural encoding of pitch, location and timbre cues is distributed across auditory cortex, significant differences in average neuronal sensitivity were observed across cortical areas and depths, which could form the basis for the segregation of spatial and non-spatial cues at higher cortical levels. Some units exhibited significant non-linear interactions between particular combinations of pitch, timbre and azimuth. These interactions were most pronounced for pitch and timbre and were less commonly observed between spatial and non-spatial attributes. Such non-linearities were most prevalent in primary auditory cortex, although they tended to be small compared with stimulus main effects. PMID:19228960
Alarcón, Gabriela; Ray, Siddharth; Nagel, Bonnie J.
2017-01-01
Objectives Elevated body mass index (BMI) is associated with deficits in working memory, reduced gray matter volume in frontal and parietal lobes, as well as changes in white matter (WM) microstructure. The current study examined whether BMI was related to working memory performance and blood oxygen level dependent (BOLD) activity, as well as WM microstructure during adolescence. Methods Linear regressions with BMI and (1) verbal working memory BOLD signal, (2) spatial working memory BOLD signal, and (3) fractional anisotropy (FA), a measure of WM microstructure, were conducted in a sample of 152 healthy adolescents ranging in BMI. Results BMI was inversely related to IQ and verbal and spatial working memory accuracy; however, there was no significant relationship between BMI and BOLD response for either verbal or spatial working memory. Furthermore, BMI was negatively correlated with FA in the left superior longitudinal fasciculus (SLF) and left inferior longitudinal fasciculus (ILF). ILF FA and IQ significantly mediated the relationship between BMI and verbal working memory performance, whereas SLF FA, but not IQ, significantly mediated the relationship between BMI and accuracy of both verbal and spatial working memory. Conclusions These findings indicate that higher BMI is associated with decreased FA in WM fibers connecting brain regions that support working memory, and that WM microstructural deficits may underlie inferior working memory performance in youth with higher BMI. Of interest, BMI did not show the same relationship with working memory BOLD activity, which may indicate that changes in brain structure precede changes in function. PMID:26708324
NASA Astrophysics Data System (ADS)
Dugin, A. V.; Zel'dovich, Boris Ya; Il'inykh, P. N.; Liberman, V. S.; Nesterkin, O. P.
1992-11-01
The higher spatial harmonics of the photorefractive response have been studied theoretically and experimentally for gratings written by phase-locked detection in an alternating external field. The conditions for writing higher spatial harmonics are derived analytically. The amplitude of the second spatial harmonic has been found experimentally as a function of the spatial frequency in two Bi12TiO20 crystals.
Fan, Yong; Batmanghelich, Nematollah; Clark, Chris M.; Davatzikos, Christos
2010-01-01
Spatial patterns of brain atrophy in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) were measured via methods of computational neuroanatomy. These patterns were spatially complex and involved many brain regions. In addition to the hippocampus and the medial temporal lobe gray matter, a number of other regions displayed significant atrophy, including orbitofrontal and medial-prefrontal grey matter, cingulate (mainly posterior), insula, uncus, and temporal lobe white matter. Approximately 2/3 of the MCI group presented patterns of atrophy that overlapped with AD, whereas the remaining 1/3 overlapped with cognitively normal individuals, thereby indicating that some, but not all, MCI patients have significant and extensive brain atrophy in this cohort of MCI patients. Importantly, the group with AD-like patterns presented much higher rate of MMSE decline in follow-up visits; conversely, pattern classification provided relatively high classification accuracy (87%) of the individuals that presented relatively higher MMSE decline within a year from baseline. High-dimensional pattern classification, a nonlinear multivariate analysis, provided measures of structural abnormality that can potentially be useful for individual patient classification, as well as for predicting progression and examining multivariate relationships in group analyses. PMID:18053747
Evaluation of focused multipolar stimulation for cochlear implants in long-term deafened cats
NASA Astrophysics Data System (ADS)
George, Shefin S.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.
2015-06-01
Objective. Focused multipolar (FMP) stimulation has been shown to produce restricted neural activation using intracochlear stimulation in animals with a normal population of spiral ganglion neurons (SGNs). However, in a clinical setting, the widespread loss of SGNs and peripheral fibres following deafness is expected to influence the effectiveness of FMP. Approach. We compared the efficacy of FMP stimulation to both monopolar (MP) and tripolar (TP) stimulation in long-term deafened cat cochleae (n = 8). Unlike our previous study, these cochleae contained <10% of the normal SGN population adjacent to the electrode array. We also evaluated the effect of electrode position on stimulation modes by using either modiolar facing or lateral wall facing half-band electrodes. The spread of neural activity across the inferior colliculus, a major nucleus within the central auditory pathway, was used as a measure of spatial selectivity. Main results. In cochleae with significant SGN degeneration, we observed that FMP and TP stimulation resulted in greater spatial selectivity than MP stimulation (p < 0.001). However, thresholds were significantly higher for FMP and TP stimulation compared to MP stimulation (p < 0.001). No difference between FMP and TP stimulation was found in any measures. The high threshold levels for FMP stimulation was significantly reduced without compromising spatial selectivity by varying the degree of current focusing (referred as ‘partial-FMP’ stimulation). Spatial selectivity of all stimulation modes was unaffected by the electrode position. Finally, spatial selectivity in long-term deafened cochleae was significantly less than that of cochleae with normal SGN population (George S S et al 2014 J. Neural Eng. 11 065003). Significance. The present results indicate that the greater spatial selectivity of FMP and TP stimulation over MP stimulation is maintained in cochleae with significant neural degeneration and is not adversely affected by electrode position. The greater spatial selectivity of FMP and TP stimulation would be expected to result in improved clinical performance.
NASA Astrophysics Data System (ADS)
Sun, Shanlei; Wang, Guojie; Huang, Jin; Mu, Mengyuan; Yan, Guixia; Liu, Chunwei; Gao, Chujie; Li, Xing; Yin, Yixing; Zhang, Fangmin; Zhu, Siguang; Hua, Wenjian
2017-11-01
Due to the close relationship of climate change with reference evapotranspiration (ETo), detecting changes in ETo spatial distribution and its temporal evolution at local and regional levels is favorable to comprehensively understand climate change-induced impacts on hydrology and agriculture. In this study, the objective is to identify whether climate change has caused variation of ETo spatial distribution in different analysis periods [i.e., long- (20-year), medium- (10-year), and short-term (5-year)] and to investigate its temporal evolution (namely, when these changes happened) at annual and monthly scales in Southwest China (SWC). First, we estimated ETo values using the United Nations Food and Agriculture Organization (FAO) Penman-Monteith equation, based on historical climate data measured at 269 weather sites during 1973-2012. The analysis of variance (ANOVA) results indicated that the spatial pattern of annual ETo had significantly changed during the past 40 years, particularly in west SWC for the long-term analysis period, and west and southeast SWC in both medium- and short-term periods, which corresponded to the percent area of significant differences which were 21.9, 58.0, and 48.2 %, respectively. For investigating temporal evolution of spatial patterns of annual ETo, Duncan's multiple range test was used, and we found that the most significant changes appeared during 1988-2002 with the significant area of higher than 25.0 %. In addition, for long-, medium-, and short-term analysis periods, the spatial distribution has significantly changed during March, September, November, and December, especially in the corresponding periods of 1988-1997, 1983-1992, 1973-1977, and 1988-2002. All in all, climate change has resulted in significant ETo changes in SWC since the 1970s. Knowledge of climate change-induced spatial distribution of ETo and its temporal evolution would aid in formulating strategies for water resources and agricultural managements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Commodore, Adwoa, A.; Jannik, G. Timothy; Eddy, Teresa, P.
In this study we compare airborne radionuclide concentrations during prescribed burns at the Savannah River Site (SRS) and a sample of forests in the Southeastern United States. The spatial trends of airborne radionuclide concentrations from prescribed burn areas at SRS are also characterized. Total suspended particulate (TSP) samples were taken at three settings (subsequently termed burn sample populations): during prescribed burns at SRS (n = 34), on nonburn days at SRS (n = 12) and during prescribed burns at five offsite locations in the Southeastern United States (n = 2 per location). Mass concentrations of TSP were calculated and alpha,more » beta and gamma spectroscopy was performed to determine radionuclide activity concentrations. Spatial correlation in radionuclide concentration was assessed and ordinary kriging was used to create continuous surface maps across our study area. Median activity concentrations of natural radionuclides including {sup 40}K, thorium and uranium isotopes (n = 34) were higher in samples from SRS prescribed fires (p < 0.02) compared to offsite locations (n = 10) and nonburn days (n = 12). Median gross beta activity was also higher at SRS (p < 0.0001). Median concentrations of anthropogenic radionuclides did not significantly differ among burn sample populations except for {sup 238}Pu (p = 0.0022) and {sup 239,240}Pu (p = 0.014) with median concentrations of 8.41 x 10{sup -4} and 6.72 x 10{sup -5} pCi m{sup -3} at SRS compared to 1.55 x 10{sup -4} and -7.07 x 10{sup -6} pCi m{sup -3} (nonburn days) and 1.46 x 10{sup -4} and 2.78 x 10{sup -6} pCi m{sup 3} (offsite burns) respectively. Results from our spatial analysis found that only {sup 40}K demonstrated significant spatial correlation (X{sup 2} = 15.48, p = 0.0004) and spatial trends do not appear to directly link areas with higher activity concentrations with SRS facilities.« less
Fei, Xufeng; Lou, Zhaohan; Christakos, George; Liu, Qingmin; Ren, Yanjun; Wu, Jiaping
2018-02-01
The thyroid cancer (TC) incidence in China has increased dramatically during the last three decades. Typical in this respect is the case of Hangzhou city (China), where 7147 new TC cases were diagnosed during the period 2008-2012. Hence, the assessment of the TC incidence risk increase due to environmental exposure is an important public health matter. Correlation analysis, Analysis of Variance (ANOVA) and Poisson regression were first used to evaluate the statistical association between TC and key risk factors (industrial density and socioeconomic status). Then, the Bayesian maximum entropy (BME) theory and the integrative disease predictability (IDP) criterion were combined to quantitatively assess both the overall and the spatially distributed strength of the "exposure-disease" association. Overall, higher socioeconomic status was positively correlated with higher TC risk (Pearson correlation coefficient=0.687, P<0.01). Compared to people of low socioeconomic status, people of median and high socioeconomic status showed higher TC risk: the Relative Risk (RR) and associated 95% confidence interval (CI) were found to be, respectively, RR=2.29 with 95% CI=1.99 to 2.63, and RR=3.67 with 95% CI=3.22 to 4.19. The "industrial density-TC incidence" correlation, however, was non-significant. Spatially, the "socioeconomic status-TC" association measured by the corresponding IDP coefficient was significant throughout the study area: the mean IDP value was -0.12 and the spatial IDP values were consistently negative at the township level. It was found that stronger associations were distributed among residents mainly on a stripe of land from northeast to southwest (consisting mainly of sub-district areas). The "industrial density-TC" association measured by its IDP coefficient was spatially non-consistent. Socioeconomic status is an important indicator of TC risk factor in Hangzhou (China) whose effect varies across space. Hence, socioeconomic status shows the highest TC risk effect in sub-district areas. Copyright © 2017. Published by Elsevier B.V.
Governance and Regional Variation of Homicide Rates: Evidence From Cross-National Data.
Cao, Liqun; Zhang, Yan
2017-01-01
Criminological theories of cross-national studies of homicide have underestimated the effects of quality governance of liberal democracy and region. Data sets from several sources are combined and a comprehensive model of homicide is proposed. Results of the spatial regression model, which controls for the effect of spatial autocorrelation, show that quality governance, human development, economic inequality, and ethnic heterogeneity are statistically significant in predicting homicide. In addition, regions of Latin America and non-Muslim Sub-Saharan Africa have significantly higher rates of homicides ceteris paribus while the effects of East Asian countries and Islamic societies are not statistically significant. These findings are consistent with the expectation of the new modernization and regional theories. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Yao, Yao
2017-08-01
A factorial inferential grid grouping and representativeness analysis (FIGGRA) approach is developed to achieve a systematic selection of representative grids in large-scale climate change impact assessment and adaptation (LSCCIAA) studies and other fields of Earth and space sciences. FIGGRA is applied to representative-grid selection for temperature (Tas) and precipitation (Pr) over the Loess Plateau (LP) to verify methodological effectiveness. FIGGRA is effective at and outperforms existing grid-selection approaches (e.g., self-organizing maps) in multiple aspects such as clustering similar grids, differentiating dissimilar grids, and identifying representative grids for both Tas and Pr over LP. In comparison with Pr, the lower spatial heterogeneity and higher spatial discontinuity of Tas over LP lead to higher within-group similarity, lower between-group dissimilarity, lower grid grouping effectiveness, and higher grid representativeness; the lower interannual variability of the spatial distributions of Tas results in lower impacts of the interannual variability on the effectiveness of FIGGRA. For LP, the spatial climatic heterogeneity is the highest in January for Pr and in October for Tas; it decreases from spring, autumn, summer to winter for Tas and from summer, spring, autumn to winter for Pr. Two parameters, i.e., the statistical significance level (α) and the minimum number of grids in every climate zone (Nmin), and their joint effects are significant for the effectiveness of FIGGRA; normalization of a nonnormal climate-variable distribution is helpful for the effectiveness only for Pr. For FIGGRA-based LSCCIAA studies, a low value of Nmin is recommended for both Pr and Tas, and a high and medium value of α for Pr and Tas, respectively.
Evaluating Middle School Students' Spatial-scientific Performance in Earth-space Science
NASA Astrophysics Data System (ADS)
Wilhelm, Jennifer; Jackson, C.; Toland, M. D.; Cole, M.; Wilhelm, R. J.
2013-06-01
Many astronomical concepts cannot be understood without a developed understanding of four spatial-mathematics domains defined as follows: a) Geometric Spatial Visualization (GSV) - Visualizing the geometric features of a system as it appears above, below, and within the system’s plane; b) Spatial Projection (SP) - Projecting to a different location and visualizing from that global perspective; c) Cardinal Directions (CD) - Distinguishing directions (N, S, E, W) in order to document an object’s vector position in space; and d) Periodic Patterns - (PP) Recognizing occurrences at regular intervals of time and/or space. For this study, differences were examined between groups of sixth grade students’ spatial-scientific development pre/post implementation of an Earth/Space unit. Treatment teachers employed a NASA-based curriculum (Realistic Explorations in Astronomical Learning), while control teachers implemented their regular Earth/Space units. A 2-level hierarchical linear model was used to evaluate student performance on the Lunar Phases Concept Inventory (LPCI) and four spatial-mathematics domains, while controlling for two variables (gender and ethnicity) at the student level and one variable (teaching experience) at the teacher level. Overall LPCI results show pre-test scores predicted post-test scores, boys performed better than girls, and Whites performed better than non-Whites. We also compared experimental and control groups’ by spatial-mathematics domain outcomes. For GSV, it was found that boys, in general, tended to have higher GSV post-scores. For domains CD and SP, no statistically significant differences were observed. PP results show Whites performed better than non-Whites. Also for PP, a significant cross-level interaction term (gender-treatment) was observed, which means differences in control and experimental groups are dependent on students’ gender. These findings can be interpreted as: (a) the experimental girls scored higher than the control girls and/or (b) the control group displayed a gender gap in favor of boys while no gender gap was displayed within the experimental group.
Hendricks, Brian; Mark-Carew, Miguella; Conley, Jamison
2017-11-13
Domestic dogs and cats are potentially effective sentinel populations for monitoring occurrence and spread of Lyme disease. Few studies have evaluated the public health utility of sentinel programmes using geo-analytic approaches. Confirmed Lyme disease cases diagnosed by physicians and ticks submitted by veterinarians to the West Virginia State Health Department were obtained for 2014-2016. Ticks were identified to species, and only Ixodes scapularis were incorporated in the analysis. Separate ordinary least squares (OLS) and spatial lag regression models were conducted to estimate the association between average numbers of Ix. scapularis collected on pets and human Lyme disease incidence. Regression residuals were visualised using Local Moran's I as a diagnostic tool to identify spatial dependence. Statistically significant associations were identified between average numbers of Ix. scapularis collected from dogs and human Lyme disease in the OLS (β=20.7, P<0.001) and spatial lag (β=12.0, P=0.002) regression. No significant associations were identified for cats in either regression model. Statistically significant (P≤0.05) spatial dependence was identified in all regression models. Local Moran's I maps produced for spatial lag regression residuals indicated a decrease in model over- and under-estimation, but identified a higher number of statistically significant outliers than OLS regression. Results support previous conclusions that dogs are effective sentinel populations for monitoring risk of human exposure to Lyme disease. Findings reinforce the utility of spatial analysis of surveillance data, and highlight West Virginia's unique position within the eastern United States in regards to Lyme disease occurrence.
Spatial-temporal analysis of building surface temperatures in Hung Hom
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shen, Yueqian
2015-12-01
This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.
ICA-based artefact and accelerated fMRI acquisition for improved Resting State Network imaging
Griffanti, Ludovica; Salimi-Khorshidi, Gholamreza; Beckmann, Christian F.; Auerbach, Edward J.; Douaud, Gwenaëlle; Sexton, Claire E.; Zsoldos, Enikő; Ebmeier, Klaus P; Filippini, Nicola; Mackay, Clare E.; Moeller, Steen; Xu, Junqian; Yacoub, Essa; Baselli, Giuseppe; Ugurbil, Kamil; Miller, Karla L.; Smith, Stephen M.
2014-01-01
The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB’s ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures were assessed using timeseries (amplitude and spectra), network matrix and spatial map analyses. For timeseries and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition, and, crucially, with higher spatial and temporal resolution. Moreover, we were able to perform higher dimensionality ICA decompositions with the accelerated data, which is very valuable for detailed network analyses. PMID:24657355
Griffanti, Ludovica; Salimi-Khorshidi, Gholamreza; Beckmann, Christian F; Auerbach, Edward J; Douaud, Gwenaëlle; Sexton, Claire E; Zsoldos, Enikő; Ebmeier, Klaus P; Filippini, Nicola; Mackay, Clare E; Moeller, Steen; Xu, Junqian; Yacoub, Essa; Baselli, Giuseppe; Ugurbil, Kamil; Miller, Karla L; Smith, Stephen M
2014-07-15
The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB's ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures was assessed using time series (amplitude and spectra), network matrix and spatial map analyses. For time series and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition, and, crucially, with higher spatial and temporal resolution. Moreover, we were able to perform higher dimensionality ICA decompositions with the accelerated data, which is very valuable for detailed network analyses. Copyright © 2014 Elsevier Inc. All rights reserved.
Liu, Yu; Gao, Peng; Zhang, Liyong; Niu, Xiang; Wang, Bing
2016-10-01
Soil total nitrogen (STN) and total phosphorus (STP) are important indicators of soil nutrients and the important indexes of soil fertility and soil quality evaluation. Using geographic information system (GIS) and geostatistics, the spatial heterogeneity distribution of STN and STP in the Yaoxiang watershed in a hilly area of northern China was studied. The results showed that: (1) The STN and STP contents showed a declining trend with the increase in soil depth; the variation coefficients ( C v ) of STN and STP in the 0- to 10-cm soil layer (42.25% and 14.77%, respectively) were higher than in the 10- to 30-cm soil layer (28.77% and 11.60%, respectively). Moreover, the C v of STN was higher than that of STP. (2) The maximum C 0 /( C 0 + C 1 ) of STN and STP in the soil layers was less than 25%, this indicated that a strong spatial distribution autocorrelation existed for STN and STP; and the STP showed higher intensity and more stable variation than the STN. (3) From the correlation analysis, we concluded that the topographic indexes such as elevation and slope direction all influenced the spatial distribution of STN and STP (correlation coefficients were 0.688 and 0.518, respectively). (4) The overall distribution of STN and STP in the Yaoxiang watershed decreased from the northwest to the southeast. This variation trend was similar to the watershed DEM trend and was significantly influenced by vegetation and topographic factors. These results revealed the spatial heterogeneity distribution of STN and STP, and addressed the influences of forest vegetation coverage, elevation, and other topographic factors on the spatial distribution of STN and STP at the watershed scale.
Exploratory spatial data analysis of global MODIS active fire data
NASA Astrophysics Data System (ADS)
Oom, D.; Pereira, J. M. C.
2013-04-01
We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.
Exploring the association between visual perception abilities and reading of musical notation.
Lee, Horng-Yih
2012-06-01
In the reading of music, the acquisition of pitch information depends primarily upon the spatial position of notes as well as upon an individual's spatial processing ability. This study investigated the relationship between the ability to read single notes and visual-spatial ability. Participants with high and low single-note reading abilities were differentiated based upon differences in musical notation-reading abilities and their spatial processing; object recognition abilities were then assessed. It was found that the group with lower note-reading abilities made more errors than did the group with a higher note-reading abilities in the mental rotation task. In contrast, there was no apparent significant difference between the two groups in the object recognition task. These results suggest that note-reading may be related to visual spatial processing abilities, and not to an individual's ability with object recognition.
Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I
2016-05-01
White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.
Temporal and spatial resolution required for imaging myocardial function
NASA Astrophysics Data System (ADS)
Eusemann, Christian D.; Robb, Richard A.
2004-05-01
4-D functional analysis of myocardial mechanics is an area of significant interest and research in cardiology and vascular/interventional radiology. Current multidimensional analysis is limited by insufficient temporal resolution of x-ray and magnetic resonance based techniques, but recent improvements in system design holds hope for faster and higher resolution scans to improve images of moving structures allowing more accurate functional studies, such as in the heart. This paper provides a basis for the requisite temporal and spatial resolution for useful imaging during individual segments of the cardiac cycle. Multiple sample rates during systole and diastole are compared to determine an adequate sample frequency to reduce regional myocardial tracking errors. Concurrently, out-of-plane resolution has to be sufficiently high to minimize partial volume effect. Temporal resolution and out-of-plane spatial resolution are related factors that must be considered together. The data used for this study is a DSR dynamic volume image dataset with high temporal and spatial resolution using implanted fiducial markers to track myocardial motion. The results of this study suggest a reduced exposure and scan time for x-ray and magnetic resonance imaging methods, since a lower sample rate during systole is sufficient, whereas the period of rapid filling during diastole requires higher sampling. This could potentially reduce the cost of these procedures and allow higher patient throughput.
Spatial distribution of citizen science casuistic observations for different taxonomic groups.
Tiago, Patrícia; Ceia-Hasse, Ana; Marques, Tiago A; Capinha, César; Pereira, Henrique M
2017-10-16
Opportunistic citizen science databases are becoming an important way of gathering information on species distributions. These data are temporally and spatially dispersed and could have limitations regarding biases in the distribution of the observations in space and/or time. In this work, we test the influence of landscape variables in the distribution of citizen science observations for eight taxonomic groups. We use data collected through a Portuguese citizen science database (biodiversity4all.org). We use a zero-inflated negative binomial regression to model the distribution of observations as a function of a set of variables representing the landscape features plausibly influencing the spatial distribution of the records. Results suggest that the density of paths is the most important variable, having a statistically significant positive relationship with number of observations for seven of the eight taxa considered. Wetland coverage was also identified as having a significant, positive relationship, for birds, amphibians and reptiles, and mammals. Our results highlight that the distribution of species observations, in citizen science projects, is spatially biased. Higher frequency of observations is driven largely by accessibility and by the presence of water bodies. We conclude that efforts are required to increase the spatial evenness of sampling effort from volunteers.
Recent accretion in two managed marsh impoundments in coastal Louisiana
Cahoon, D.R.
1994-01-01
Recent accretion was measured by the feldspar marker horizon method in two gravity-drained, managed, marsh impoundments and unmanaged reference marshes located on the rapidly subsiding coast of Louisiana. Water level management was designed to limit hydrologic exchange to the managed marsh by regulating the direction and rate of water flows. During a drawdown-flooding water management cycle, the unmanaged reference marshes had significantly higher vertical accretion rates, higher soil bulk density and soil mineral matter content, lower soil organic matter content, and higher rates of organic matter accumulation than the managed marsh. The rate of mineral matter accumulation was higher in both reference marshes, but was significantly higher in only one. Spatial variability in accumulation rates was low when analyzed in one managed marsh site, suggesting a primarily autochthonous source of matter. In contrast, the associated reference marsh apparently received allochthonous material that settled out in a distinct spatial pattern as water velocity decreased. The impoundment marshes experienced an accretion deficit of one full order of magnitude (0.1 vs. 1.0 m/yr) based on comparison of accretion and sea level rise data, while the unmanaged reference marshes experienced a five-fold smaller deficit or no deficit. These data suggest that the gravity-drained impoundments likely have a shorter life expectancy than the reference marshes in the rapidly subsiding Louisiana coast.
Mapping the Distribution of Anthrax in Mainland China, 2005–2013
Yang, Yang; Liu, Kun; Li, Xin-Lou; Yao, Hong-Wu; Li, Yu; Zhou, Hang; Wang, Li-Ping; Mu, Di; Yin, Wen-Wu; Fang, Li-Qun; Yu, Hong-Jie; Cao, Wu-Chun
2016-01-01
Background Anthrax, a global re-emerging zoonotic disease in recent years is enzootic in mainland China. Despite its significance to the public health, spatiotemporal distributions of the disease in human and livestock and its potential driving factors remain poorly understood. Methodology/Principal Findings Using the national surveillance data of human and livestock anthrax from 2005 to 2013, we conducted a retrospective epidemiological study and risk assessment of anthrax in mainland China. The potential determinants for the temporal and spatial distributions of human anthrax were also explored. We found that the majority of human anthrax cases were located in six provinces in western and northeastern China, and five clustering areas with higher incidences were identified. The disease mostly peaked in July or August, and males aged 30–49 years had higher incidence than other subgroups. Monthly incidence of human anthrax was positively correlated with monthly average temperature, relative humidity and monthly accumulative rainfall with lags of 0–2 months. A boosted regression trees (BRT) model at the county level reveals that densities of cattle, sheep and human, coverage of meadow, coverage of typical grassland, elevation, coverage of topsoil with pH > 6.1, concentration of organic carbon in topsoil, and the meteorological factors have contributed substantially to the spatial distribution of the disease. The model-predicted probability of occurrence of human cases in mainland China was mapped at the county level. Conclusions/Significance Anthrax in China was characterized by significant seasonality and spatial clustering. The spatial distribution of human anthrax was largely driven by livestock husbandry, human density, land cover, elevation, topsoil features and climate. Enhanced surveillance and intervention for livestock and human anthrax in the high-risk regions, particularly on the Qinghai-Tibetan Plateau, is the key to the prevention of human infections. PMID:27097318
Sun, Yu Cheng; Chen, Fa Jun; Ge, Feng
2009-02-01
Effects of elevated CO2 (twice ambient) on the interspecific competition among three species of wheat aphids (Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum) and on wheat-aphid interactions were studied. Wheat plants had higher biomass and yield and lower water and nitrogen content of grain when grown under elevated CO2 than under ambient CO2; levels of condensed tannins, total phenols, and total nonstructural carbohydrates were also higher in wheat ears under elevated CO2. Compared with ambient CO2, elevated CO2 increased the abundance of R. padi when introduced solely but reduced its abundance when S. avenae was also present. The spatial distribution of wheat aphids was apparently influenced by CO2 levels, with significantly more S. avenae on ears and a more even distribution of R. padi on wheat plants under elevated CO2 versus ambient CO2. Elevated CO2 did not affect the abundance and spatial distribution of S. graminus when inoculated solely. Moreover, when S. avenae was present with either R. padi or S. graminum, spatial niche overlap was significantly decreased with elevated CO2. When three species co-occurred, elevated CO2 reduced spatial niche overlap between S. avenae and S. graminum and between R. padi and S. graminum. Our results suggest that increases in atmospheric CO2 would alleviate interspecific competition for these cases, which would accentuate the abundance of and the damage caused by these wheat aphids.
The landscape context of cereal aphid–parasitoid interactions
Thies, Carsten; Roschewitz, Indra; Tscharntke, Teja
2005-01-01
Analyses at multiple spatial scales may show how important ecosystem services such as biological control are determined by processes acting on the landscape scale. We examined cereal aphid–parasitoid interactions in wheat fields in agricultural landscapes differing in structural complexity (32–100% arable land). Complex landscapes were associated with increased aphid mortality resulting from parasitism, but also with higher aphid colonization, thereby counterbalancing possible biological control by parasitoids and lastly resulting in similar aphid densities across landscapes. Thus, undisturbed perennial habitats appeared to enhance both pests and natural enemies. Analyses at multiple spatial scales (landscape sectors of 0.5–6 km diameter) showed that correlations between parasitism and percentage of arable land were significant at scales of 0.5–2 km, whereas aphid densities responded to percentage of arable land at scales of 1–6 km diameter. Hence, the higher trophic level populations appeared to be determined by smaller landscape sectors owing to dispersal limitation, showing the ‘functional spatial scale’ for species-specific landscape management. PMID:15695212
Rasul, M G; Islam, Mir Sujaul; Yunus, Rosli Bin Mohd; Mokhtar, Mazlin Bin; Alam, Lubna; Yahaya, F M
2017-12-01
The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.
Accounting for and predicting the influence of spatial autocorrelation in water quality modeling
NASA Astrophysics Data System (ADS)
Miralha, L.; Kim, D.
2017-12-01
Although many studies have attempted to investigate the spatial trends of water quality, more attention is yet to be paid to the consequences of considering and ignoring the spatial autocorrelation (SAC) that exists in water quality parameters. Several studies have mentioned the importance of accounting for SAC in water quality modeling, as well as the differences in outcomes between models that account for and ignore SAC. However, the capacity to predict the magnitude of such differences is still ambiguous. In this study, we hypothesized that SAC inherently possessed by a response variable (i.e., water quality parameter) influences the outcomes of spatial modeling. We evaluated whether the level of inherent SAC is associated with changes in R-Squared, Akaike Information Criterion (AIC), and residual SAC (rSAC), after accounting for SAC during modeling procedure. The main objective was to analyze if water quality parameters with higher Moran's I values (inherent SAC measure) undergo a greater increase in R² and a greater reduction in both AIC and rSAC. We compared a non-spatial model (OLS) to two spatial regression approaches (spatial lag and error models). Predictor variables were the principal components of topographic (elevation and slope), land cover, and hydrological soil group variables. We acquired these data from federal online sources (e.g. USGS). Ten watersheds were selected, each in a different state of the USA. Results revealed that water quality parameters with higher inherent SAC showed substantial increase in R² and decrease in rSAC after performing spatial regressions. However, AIC values did not show significant changes. Overall, the higher the level of inherent SAC in water quality variables, the greater improvement of model performance. This indicates a linear and direct relationship between the spatial model outcomes (R² and rSAC) and the degree of SAC in each water quality variable. Therefore, our study suggests that the inherent level of SAC in response variables can predict improvements in models even before performing spatial regression approaches. We also recognize the constraints of this research and suggest that further studies focus on better ways of defining spatial neighborhoods, considering the differences among stations set in tributaries near to each other and in upstream areas.
Novaes, J L C; Moreira, S I L; Freire, C E C; Sousa, M M O; Costa, R S
2014-05-01
The aim of this study was to analyse the composition, structure and spatial and temporal patterns of diversity and abundance of the ichthyofauna of the Santa Cruz Reservoir in semi-arid Brazil. Data were collected quarterly at eight sampling locations on the reservoir between February 2010 and November 2011 using gillnets from 12- to 70-mm mesh that were left in the water for 12h00min during the night. We evaluated the composition, structure and assemblage descriptors (Shannon-Wiener diversity index and equitability, respectively) and catch per unit effort by the number (CPUEn) and biomass (CPUEb) of the ichthyofauna. The 6,047 individuals (399,211.6 g) captured represented three orders, ten families and 20 species, of which four belonged to introduced species. The family Characidae was the most abundant with a total of 2,772 (45.8%) individuals captured. The species-abundance curve fit the log-normal model. In the spatial analysis of diversity, there were significant differences between sampling sites in the lacustrine and fluvial regions, and the highest values were found in the lacustrine region. In the temporal analysis of diversity, significant differences were also observed between the rainy and dry seasons, and the higher values were found during the dry season. Equitability followed the same spatiotemporal pattern as diversity. The Spearman correlation was significantly negative between diversity and rainfall. A cluster analysis spatially separated the ichthyofauna into two groups: one group formed by sampling sites in the fluvial region and another group formed by the remainder of the points in the lacustrine region. Both the CPUEn and CPUEb values were higher at point 8 (fluvial region) and during the rainy season. A two-way ANOVA showed that the CPUEn and CPUEb values were spatially and temporally significant. We conclude that the spatial and temporal trends of diversity in the Santa Cruz reservoir differ from those of other Brazilian reservoirs but that the fish community composition and spatiotemporal patterns of abundance were similar.
Liu, Xiaoxiao; Bertazzon, Stefania
2017-01-01
Spatial and temporal analyses are critical to understand the pattern of myocardial infarction (MI) hospitalizations over space and time, and to identify their underlying determinants. In this paper, we analyze MI hospitalizations in Calgary from 2004 to 2013, stratified by age and gender. First, a seasonal trend decomposition analyzes the seasonality; then a linear regression models the trend component. Moran’s I and hot spot analyses explore the spatial pattern. Though exploratory, results show that most age and gender groups feature a statistically significant decline over the 10 years, consistent with previous studies in Canada. Decline rates vary across ages and genders, with the slowest decline observed for younger males. Each gender exhibits a seasonal pattern with peaks in both winter and summer. Spatially, MI hot spots are identified in older communities, and in socioeconomically and environmentally disadvantaged communities. In the older communities, higher MI rates appear to be more highly associated with demographics. Conversely, worse air quality appears to be locally associated with higher MI incidence in younger age groups. The study helps identify areas of concern, where MI hot spots are identified for younger age groups, suggesting the need for localized public health policies to target local risk factors. PMID:29232910
Effect of spatial variability of storm on the optimal placement of best management practices (BMPs).
Chang, C L; Chiueh, P T; Lo, S L
2007-12-01
It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.
Yu, Chang Ho; Fan, Zhi-Hua; Meng, Qingyu; Zhu, Xianlei; Korn, Leo; Bonanno, Linda J.
2014-01-01
An urban community PM10 (particulate matter ≤ 10 μm in aerodynamic diameter) air pollution study was conducted in Paterson, NJ, a mixed land-use community that is interspersed with industrial, commercial, mobile, and residential land-use types. This paper examines (1) the spatial/temporal variation of PM10, elemental carbon (EC), organic carbon (OC), and nine elements; and (2) the impact of land-use type on those variations. Air samples were collected from three community-oriented locations in Paterson that attempted to capture industrial, commercial, and mobile source-dominated emissions. Sampling was conducted for 24 hr every 6 days from November 2005 through December 2006. Samples were concurrently collected at the New Jersey Department of Environmental Protection-designated air toxics background site in Chester, NJ. PM10 mass, EC, OC, and nine elements (Ca, Cu, Fe, Pb, Mn, Ni, S, Ti, and Zn) that had more than 50% of samples above detection and known sources or are toxic were selected for spatial/temporal analysis in this study. The concentrations of PM10, EC, OC, and eight elements (except S) were significantly higher in Paterson than in Chester (P < 0.05). The concentrations of these elements measured in Paterson were also found to be higher during winter than the other three seasons (except S), and higher on weekdays than on weekends (except Pb). The concentrations of EC, Cu, Fe, and Zn at the commercial site in Paterson were significantly higher than the industrial and mobile sites; however, the other eight species were not significantly different within the city (P > 0.05). These results indicated that anthropogenic sources of air pollution were present in Paterson. The source apportionment confirmed the impact of vehicular and industrial emissions on the PM10 ambient air pollution in Paterson. The multiple linear regression analysis showed that categorical land-use type was a significant predictor for all air pollution levels, explaining up to 42% of the variability in concentration by land-use type only. PMID:21751583
Cappuccio, Francesco P; Ji, Chen; Donfrancesco, Chiara; Palmieri, Luigi; Ippolito, Renato; Vanuzzo, Diego; Giampaoli, Simona; Strazzullo, Pasquale
2015-01-01
Objectives To assess geographic and socioeconomic gradients in sodium and potassium intake in Italy. Setting Cross-sectional survey in Italy. Participants 3857 men and women, aged 39–79 years, randomly sampled in 20 regions (as part of a National cardiovascular survey of 8714 men and women). Primary outcome measures Participants’ dietary sodium and potassium intakes were measured by 24 h urinary sodium and potassium excretions. 2 indicators measured socioeconomic status: education and occupation. Bayesian geoadditive models were used to assess spatial and socioeconomic patterns of sodium and potassium intakes accounting for sociodemographic, anthropometric and behavioural confounders. Results There was a significant north-south pattern of sodium excretion in Italy. Participants living in southern Italy (eg, Calabria, Basilicata and Puglia >180 mmol/24 h) had a significantly higher sodium excretion than elsewhere (eg, Val d'Aosta and Trentino-Alto Adige <140 mmol/24 h; p<0.001). There was a linear association between occupation and sodium excretion (p<0.001). When compared with occupation I (top managerial), occupations III and IV had a 6.5% higher sodium excretion (coefficients: 0.054 (90% credible levels 0.014, 0.093) and 0.064 (0.024, 0.104), respectively). A similar relationship was found between educational attainment and sodium excretion (p<0.0001). When compared with those with a university degree, participants with primary and junior school education had a 5.9% higher urinary sodium (coefficients: 0.074 (0.031, 0.116) and 0.038 (0.001, 0.075), respectively). The socioeconomic gradient explained the spatial variation. Potassium excretion was higher in central regions and in some southern regions. Those in occupation V (low-skill workers) showed a 3% lower potassium excretion compared with those in occupation I. However, the socioeconomic gradient only partially explained the spatial variation. Conclusions Salt intake in Italy is significantly higher in less advantaged social groups. This gradient is independent of confounders and explains the geographical variation. PMID:26359282
Cappuccio, Francesco P; Ji, Chen; Donfrancesco, Chiara; Palmieri, Luigi; Ippolito, Renato; Vanuzzo, Diego; Giampaoli, Simona; Strazzullo, Pasquale
2015-09-10
To assess geographic and socioeconomic gradients in sodium and potassium intake in Italy. Cross-sectional survey in Italy. 3857 men and women, aged 39-79 years, randomly sampled in 20 regions (as part of a National cardiovascular survey of 8714 men and women). Participants' dietary sodium and potassium intakes were measured by 24 h urinary sodium and potassium excretions. 2 indicators measured socioeconomic status: education and occupation. Bayesian geoadditive models were used to assess spatial and socioeconomic patterns of sodium and potassium intakes accounting for sociodemographic, anthropometric and behavioural confounders. There was a significant north-south pattern of sodium excretion in Italy. Participants living in southern Italy (eg, Calabria, Basilicata and Puglia >180 mmol/24 h) had a significantly higher sodium excretion than elsewhere (eg, Val d'Aosta and Trentino-Alto Adige <140 mmol/24 h; p<0.001). There was a linear association between occupation and sodium excretion (p<0.001). When compared with occupation I (top managerial), occupations III and IV had a 6.5% higher sodium excretion (coefficients: 0.054 (90% credible levels 0.014, 0.093) and 0.064 (0.024, 0.104), respectively). A similar relationship was found between educational attainment and sodium excretion (p<0.0001). When compared with those with a university degree, participants with primary and junior school education had a 5.9% higher urinary sodium (coefficients: 0.074 (0.031, 0.116) and 0.038 (0.001, 0.075), respectively). The socioeconomic gradient explained the spatial variation. Potassium excretion was higher in central regions and in some southern regions. Those in occupation V (low-skill workers) showed a 3% lower potassium excretion compared with those in occupation I. However, the socioeconomic gradient only partially explained the spatial variation. Salt intake in Italy is significantly higher in less advantaged social groups. This gradient is independent of confounders and explains the geographical variation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Walrave, Laura; Vinken, Mathieu; Albertini, Giulia; De Bundel, Dimitri; Leybaert, Luc; Smolders, Ilse J
2016-01-01
Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs). We here investigated whether interfering with connexin43 (Cx43) HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19) into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory.
Padmanabhan, Prema; Mrochen, Michael; Basuthkar, Subam; Viswanathan, Deepa; Joseph, Roy
2008-03-01
To compare the outcomes of wavefront-guided and wavefront-optimized treatment in fellow eyes of patients having laser in situ keratomileusis (LASIK) for myopia. Medical and Vision Research Foundation, Tamil Nadu, India. This prospective comparative study comprised 27 patients who had wavefront-guided LASIK in 1 eye and wavefront-optimized LASIK in the fellow eye. The Hansatome (Bausch & Lomb) was used to create a superior-hinged flap and the Allegretto laser (WaveLight Laser Technologie AG), for photoablation. The Allegretto wave analyzer was used to measure ocular wavefront aberrations and the Functional Acuity Contrast Test chart, to measure contrast sensitivity before and 1 month after LASIK. The refractive and visual outcomes and the changes in aberrations and contrast sensitivity were compared between the 2 treatment modalities. One month postoperatively, 92% of eyes in the wavefront-guided group and 85% in the wavefront-optimized group had uncorrected visual acuity of 20/20 or better; 93% and 89%, respectively, had a postoperative spherical equivalent refraction of +/-0.50 diopter. The differences between groups were not statistically significant. Wavefront-guided LASIK induced less change in 18 of 22 higher-order Zernike terms than wavefront-optimized LASIK, with the change in positive spherical aberration the only statistically significant one (P= .01). Contrast sensitivity improved at the low and middle spatial frequencies (not statistically significant) and worsened significantly at high spatial frequencies after wavefront-guided LASIK; there was a statistically significant worsening at all spatial frequencies after wavefront-optimized LASIK. Although both wavefront-guided and wavefront-optimized LASIK gave excellent refractive correction results, the former induced less higher-order aberrations and was associated with better contrast sensitivity.
Using higher-level inquiry to improve spatial ability in an introductory geology course
NASA Astrophysics Data System (ADS)
Stevens, Lacey A.
Visuo-spatial skills, the ability to visually take in information and create a mental image are crucial for success in fields involving science, technology, engineering, and math (STEM) as well as fine arts. Unfortunately, due to a lack of curriculum focused on developing spatial skills, students enrolled in introductory college-level science courses tend to have difficulty with spatially-related activities. One of the best ways to engage students in science activities is through a learning and teaching strategy called inquiry. There are lower levels of inquiry wherein learning and problem-solving are guided by instructions and higher levels of inquiry wherein students have a greater degree of autonomy in learning and creating their own problem-solving strategy. A study involving 112 participants was conducted during the fall semester in 2014 at Bowling Green State University (BGSU) in an 1040 Introductory Geology Lab to determine if a new, high-level, inquiry-based lab would increase participants' spatial skills more than the traditional, low-level inquiry lab. The study also evaluated whether a higher level of inquiry differentially affected low versus high spatial ability participants. Participants were evaluated using a spatial ability assessment, and pre- and post-tests. The results of this study show that for 3-D to 2-D visualization, the higher-level inquiry lab increased participants' spatial ability more than the lower-level inquiry lab. For spatial rotational skills, all participants' spatial ability scores improved, regardless of the level of inquiry to which they were exposed. Low and high spatial ability participants were not differentially affected. This study demonstrates that a lab designed with a higher level of inquiry can increase students' spatial ability more than a lab with a low level of inquiry. A lab with a higher level of inquiry helped all participants, regardless of their initial spatial ability level. These findings show that curriculum that incorporates a high level of inquiry that integrates practice of spatial skills can increase students' spatial abilities in Geology-related coursework.
NASA Astrophysics Data System (ADS)
Armstrong-Hall, Judy Gail
The purpose of this study was to apply the Hunter-Gatherer Theory of sex spatial skills to responses to individual questions by eighth grade students on the Science component of the Michigan Educational Assessment Program (MEAP) to determine if sex bias was inherent in the test. The Hunter-Gatherer Theory on Spatial Sex Differences, an original theory, that suggested a spatial dimorphism concept with female spatial skill of pattern recall of unconnected items and male spatial skills requiring mental movement. This is the first attempt to apply the Hunter-Gatherer Theory on Spatial Sex Differences to a standardized test. An overall hypothesis suggested that the Hunter-Gatherer Theory of Spatial Sex Differences could predict that males would perform better on problems involving mental movement and females would do better on problems involving the pattern recall of unconnected items. Responses to questions on the 1994-95 MEAP requiring the use of male spatial skills and female spatial skills were analyzed for 5,155 eighth grade students. A panel composed of five educators and a theory developer determined which test items involved the use of male and female spatial skills. A MANOVA, using a random sample of 20% of the 5,155 students to compare male and female correct scores, was statistically significant, with males having higher scores on male spatial skills items and females having higher scores on female spatial skills items. Pearson product moment correlation analyses produced a positive correlation for both male and female performance on both types of spatial skills. The Hunter-Gatherer Theory of Spatial Sex Differences appears to be able to predict that males could perform better on the problems involving mental movement and females could perform better on problems involving the pattern recall of unconnected items. Recommendations for further research included: examination of male/female spatial skill differences at early elementary and high school levels to determine impact of gender on difficulties in solving spatial problems; investigation of the relationship between dominant female spatial skills for students diagnosed with ADHD; study effects of teaching male spatial skills to female students starting in early elementary school to determine the effect on standardized testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Yuxing; Fan, Jiwen; Xiao, Heng
Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less
Garcia-Vargas, Gonzalo G; Rothenberg, Stephen J; Silbergeld, Ellen K; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J; Steuerwald, Amy J; Navas-Acién, Ana; Guallar, Eliseo
2014-11-01
High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world's fourth largest lead-zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12-15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6-14.7 μg/dl) and urine cadmium (0.18-1.14 μg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28-0.93 μg/g creatinine) and uranium (0.07-0.13 μg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods.
Garcia-Vargas, Gonzalo G.; Rothenberg, Stephen J.; Silbergeld, Ellen K.; Weaver, Virginia; Zamoiski, Rachel; Resnick, Carol; Rubio-Andrade, Marisela; Parsons, Patrick J.; Steuerwald, Amy J.; Navas-Acién, Ana; Guallar, Eliseo
2016-01-01
High blood lead (BPb) levels in children and elevated soil and dust arsenic, cadmium, and lead were previously found in Torreón, northern Mexico, host to the world’s fourth largest lead–zinc metal smelter. The objectives of this study were to determine spatial distributions of adolescents with higher BPb and creatinine-corrected urine total arsenic, cadmium, molybdenum, thallium, and uranium around the smelter. Cross-sectional study of 512 male and female subjects 12–15 years of age was conducted. We measured BPb by graphite furnace atomic absorption spectrometry and urine trace elements by inductively coupled plasma-mass spectrometry, with dynamic reaction cell mode for arsenic. We constructed multiple regression models including sociodemographic variables and adjusted for subject residence spatial correlation with spatial lag or error terms. We applied local indicators of spatial association statistics to model residuals to identify hot spots of significant spatial clusters of subjects with higher trace elements. We found spatial clusters of subjects with elevated BPb (range 3.6–14.7 µg/dl) and urine cadmium (0.18–1.14 µg/g creatinine) adjacent to and downwind of the smelter and elevated urine thallium (0.28–0.93 µg/g creatinine) and uranium (0.07–0.13 µg/g creatinine) near ore transport routes, former waste, and industrial discharge sites. The conclusion derived from this study was that spatial clustering of adolescents with high BPb and urine cadmium adjacent to and downwind of the smelter and residual waste pile, areas identified over a decade ago with high lead and cadmium in soil and dust, suggests that past and/or present plant operations continue to present health risks to children in those neighborhoods. PMID:24549228
Jia, Xiaoxu; Xie, Baoni; Shao, Ming’an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands. PMID:26295954
Jia, Xiaoxu; Xie, Baoni; Shao, Ming'an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.
Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum
Rico, Y; Wagner, H H
2016-01-01
Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations. PMID:27381322
Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.
Rico, Y; Wagner, H H
2016-11-01
Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.
Yang, Da; He, Hong-shi; Wu, Zhi-wei; Liang, Yu; Huang, Chao; Luo, Xu; Xiao, Jiang-tao; Zhang, Qing-long
2015-02-01
Based on the field inventory data, the aboveground deadwood debris carbon storage under different fire severities was analyzed in Huzhong forest region of Great Xing' an Mountains. The results showed that the fire severity had a significant effect on aboveground deadwood debris carbon storage. The deadwood debris carbon storage was in the order of high-severity > low-severity > unburned in Larix gmelinii stands, and mixed conifer-broadleaf stands ( L. gmelinii and Betula platyphylla), and in the order of high severity > unburned > low-severity in B. platyphylla stands. Fire disturbance significantly changed the component percentage of the deadwood debris carbon storage. The component percentage of snags increased and litter decreased with the increasing fire severity. Logs and stumps did not change significantly with the increasing fire severity. The spatial variation of deadwood debris carbon storage in forests burned with low-severity fire was higher than that in unburned forests. The spatial variation of deadwood debris carbon storage with high-severity fires was lowest. This spatial variation needed to be accounted when calculating forest deadwood debris carbon storage.
Effects of Weaning and Spatial Enrichment on Behavior of Turkish Saanen Goat Kids.
Tölü, Cemil; Göktürk, Semra; Sava, Türker
2016-06-01
As is in all economic activities, the highest yield per unit area is the main goal in animal production, while addressing the temperamental needs of animals often is ignored. Animal welfare is not only an ethical fact; it also has an economic value. Spatial environmental enrichment contributes positively to animal welfare by addressing their behavioral and mental requirements. The present study was conducted to determine the effects of weaning and spatial environmental arrangements on behaviors of goat-kids. Experimental groups were arranged in structured and unstructured spatial environments. Roughage feeder, semi-automatic concentrate feeder, bunk, bridge, and wood block were placed in the structured environment. No equipment was placed in the unstructured environment and paddock sides were enclosed with an iron sheet to prevent bipedal stance and to provide environmental isolation. In the study 10 male and 10 female Turkish Saanen goat kids were used in each group. Spatial environmental arrangements did not have significant impacts on the growth performance of kids (p>0.05). All objects in the structured group were accepted by the kids. Average use ratios of roughage feeder, semi-automatic concentrate feeder, bunk, bridge and wood block were observed as 19.3%, 14.0%, 12.6%, 3.8%, and 0.7%, respectively. There were significant differences between before- and after-weaning in use of all objects except for underneath bridge (p≤0.05). Concentrate feed consumption, locomotion, and resting behaviors in kids showed significant differences by structural group and growth period. Roughage consumption was similar between groups, while it differed by growth period (p≤0.05). Interaction frequency was significantly higher in structured group (p = 0.0023). Playing behavior significantly differentiated based on the growth period rather than on groups (p≤0.05). Playing behavior significantly decreased after weaning. Abnormal oral activity was significantly higher in the structured group before weaning (p≤0.05). Despite there being no installations facilitating climbing and bipedal stance, the kids of the unstructured group were able to exhibit 1/3 as much bipedal stance behavior as the kids of the structured group through leaning over slippery paddock wall or over their groupmates. Bipedal stance behavior of unstructured group was similar before and after weaning, while bipedal stance behavior before weaning was about 2 times that of after weaning in structured group. It was concluded that unstructured environmental arrangement limited the behavior repertoire of the goat kids.
Effects of Weaning and Spatial Enrichment on Behavior of Turkish Saanen Goat Kids
Tölü, Cemil; Göktürk, Semra; Sava, Türker
2016-01-01
As is in all economic activities, the highest yield per unit area is the main goal in animal production, while addressing the temperamental needs of animals often is ignored. Animal welfare is not only an ethical fact; it also has an economic value. Spatial environmental enrichment contributes positively to animal welfare by addressing their behavioral and mental requirements. The present study was conducted to determine the effects of weaning and spatial environmental arrangements on behaviors of goat-kids. Experimental groups were arranged in structured and unstructured spatial environments. Roughage feeder, semi-automatic concentrate feeder, bunk, bridge, and wood block were placed in the structured environment. No equipment was placed in the unstructured environment and paddock sides were enclosed with an iron sheet to prevent bipedal stance and to provide environmental isolation. In the study 10 male and 10 female Turkish Saanen goat kids were used in each group. Spatial environmental arrangements did not have significant impacts on the growth performance of kids (p>0.05). All objects in the structured group were accepted by the kids. Average use ratios of roughage feeder, semi-automatic concentrate feeder, bunk, bridge and wood block were observed as 19.3%, 14.0%, 12.6%, 3.8%, and 0.7%, respectively. There were significant differences between before- and after-weaning in use of all objects except for underneath bridge (p≤0.05). Concentrate feed consumption, locomotion, and resting behaviors in kids showed significant differences by structural group and growth period. Roughage consumption was similar between groups, while it differed by growth period (p≤0.05). Interaction frequency was significantly higher in structured group (p = 0.0023). Playing behavior significantly differentiated based on the growth period rather than on groups (p≤0.05). Playing behavior significantly decreased after weaning. Abnormal oral activity was significantly higher in the structured group before weaning (p≤0.05). Despite there being no installations facilitating climbing and bipedal stance, the kids of the unstructured group were able to exhibit 1/3 as much bipedal stance behavior as the kids of the structured group through leaning over slippery paddock wall or over their groupmates. Bipedal stance behavior of unstructured group was similar before and after weaning, while bipedal stance behavior before weaning was about 2 times that of after weaning in structured group. It was concluded that unstructured environmental arrangement limited the behavior repertoire of the goat kids. PMID:26954169
Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.
2013-01-01
Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.
The effect of virtual reality training on unilateral spatial neglect in stroke patients.
Kim, Yong Mi; Chun, Min Ho; Yun, Gi Jeong; Song, Young Jin; Young, Han Eun
2011-06-01
To investigate the effect of virtual reality training on unilateral spatial neglect in stroke patients. Twenty-four stroke patients (14 males and 10 females, mean age=64.7) who had unilateral spatial neglect as a result of right hemisphere stroke were recruited. All patients were randomly assigned to either the virtual reality (VR) group (n=12) or the control group (n=12). The VR group received VR training, which stimulated the left side of their bodies. The control group received conventional neglect therapy such as visual scanning training. Both groups received therapy for 30 minutes a day, five days per week for three weeks. Outcome measurements included star cancellation test, line bisection test, Catherine Bergego scale (CBS), and the Korean version of modified Barthel index (K-MBI). These measurements were taken before and after treatment. There were no significant differences in the baseline characteristics and initial values between the two groups. The changes in star cancellation test results and CBS in the VR group were significantly higher than those of the control group after treatment. The changes in line bisection test score and the K-MBI in the VR group were not statistically significant. This study suggests that virtual reality training may be a beneficial therapeutic technique on unilateral spatial neglect in stroke patients.
Chen, Xiu-Duan; Lu, Xin-Wei; Yang, Guang
2013-03-01
The magnetic susceptibility and the concentrations of Co, Cr, Cu, Pb, Sn, Sr and Ba in topsoil samples from Xi'an City were measured to study their spatial distribution and their correlation in this study. The results show that the concentrations of all measured heavy metals are higher than their background values in Cinnamon topsoil, which is the main soil type of Xi'an City. The heavy metals concentrations and the magnetic susceptibility of the studied samples display moderate variance. Co, Cr, Cu, Pb, Sn, Sr and Ba are significantly positively correlated with low-frequency magnetic susceptibility, while are significantly negatively correlated with frequency susceptibility. The spatial distribution of low-frequency magnetic susceptibility is identical with the concentrations of Pb and Cu. However, the spatial variation of frequency magnetic susceptibility is different from the concentrations of Co, Cr and Ba. The pollution assessment results show that the heavy metal pollution in topsoil of Xi'an City is moderate. The spatial contribution of the pollution load index was significantly correlated with the magnetic susceptibility of topsoil in Xi'an City. Therefore, soil magnetic susceptibility can be used as an effective monitoring means for heavy metal pollution in urban soil.
Sheldon, Signy; Chu, Sonja
2017-09-01
Autobiographical memory research has investigated how cueing distinct aspects of a past event can trigger different recollective experiences. This research has stimulated theories about how autobiographical knowledge is accessed and organized. Here, we test the idea that thematic information organizes multiple autobiographical events whereas spatial information organizes individual past episodes by investigating how retrieval guided by these two forms of information differs. We used a novel autobiographical fluency task in which participants accessed multiple memory exemplars to event theme and spatial (location) cues followed by a narrative description task in which they described the memories generated to these cues. Participants recalled significantly more memory exemplars to event theme than to spatial cues; however, spatial cues prompted faster access to past memories. Results from the narrative description task revealed that memories retrieved via event theme cues compared to spatial cues had a higher number of overall details, but those recalled to the spatial cues were recollected with a greater concentration on episodic details than those retrieved via event theme cues. These results provide evidence that thematic information organizes and integrates multiple memories whereas spatial information prompts the retrieval of specific episodic content from a past event.
Raica, Marius; Cimpean, Anca Maria; Nico, Beatrice; Guidolin, Diego; Ribatti, Domenico
2010-02-01
Mast cells (MCs) are widely distributed in human and animal tissues and have been shown to play an important role in angiogenesis in normal and pathological conditions. Few data are available about the relationship between MCs and blood vessels in the normal human thymus, and there are virtually no data about their distribution and significance in thymoma. The aim of this study was to analyse the spatial distribution of MCs and microvessels in the normal foetal and adult thymus and thymoma. Twenty biopsy specimens of human thymus, including foetal and adult normal thymus and thymoma were analysed. Double staining with CD34 and mast cell tryptase was used to count both mast cells and microvessels in the same fields. Computer-assisted image analysis was performed to characterize the spatial distribution of MCs and blood vessels in selected specimens. Results demonstrated that MCs were localized exclusively to the medulla. Their number was significantly higher in thymoma specimens as compared with adult and foetal normal specimens respectively. In contrast the microvessel area was unchanged. The analysis of the spatial distribution and relationship between MCs and microvessels revealed that only in the thymoma specimens was there a significant spatial association between MCs and microvessels. Overall, these data suggest that MCs do not contribute significantly to the development of the vascular network in foetal and adult thymus, whereas in thymoma they show a close relationship to blood vessels. This could be an expression of their involvement not only in endothelial cells but also in tumour cell proliferation.
Vision, visuo-cognition and postural control in Parkinson's disease: An associative pilot study.
Hill, E; Stuart, S; Lord, S; Del Din, S; Rochester, L
2016-07-01
Impaired postural control (PC) is common in patients with Parkinson's disease (PD) and is a major contributor to falls, with significant consequences. Mechanisms underpinning PC are complex and include motor and non-motor features. Research has focused predominantly on motor and sensory inputs. Vision and visuo-cognitive function are also integral to PC but have largely been ignored to date. The aim of this observational cross-sectional pilot study was to explore the relationship of vision and visuo-cognition with PC in PD. Twelve people with PD and ten age-matched healthy controls (HC) underwent detailed assessments for vision, visuo-cognition and postural control. Vision assessments included visual acuity and contrast sensitivity. Visuo-cognition was measured by visuo-perception (object identification), visuo-construction (ability to copy a figure) and visuo-spatial ability (judge distances and location of object within environment). PC was measured by an accelerometer for a range of outcomes during a 2-min static stance. Spearman's correlations identified significant associations. Contrast sensitivity, visuo-spatial ability and postural control (ellipsis) were significantly impaired in PD (p=0.017; p=0.001; and p=0.017, respectively). For PD only, significant correlations were found for higher visuo-spatial function and larger ellipsis (r=0.64; p=0.024) and impaired attention and reduced visuo-spatial function (r=-0.62; p=0.028). Visuo-spatial ability is associated with PC deficit in PD, but in an unexpected direction. This suggests a non-linear pattern of response. Further research is required to examine this novel and important finding. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grineski, Sara E.; Collins, Timothy W.; de Lourdes Romo Aguilar, María
2015-09-01
Research in the Global North (e.g., US, Europe) has revealed robust patterns of environmental injustice whereby low income and minority residents face exposure to industrial hazards in their neighborhoods. A small body of research suggests that patterns of environmental injustice may diverge between the Global North and South due to differing urban development trajectories. This study uses quantitative environmental justice methods to examine spatial relationships between residential socio-demographics and industrial parks in Tijuana, Baja California Norte, Mexico using 2010 census data for Tijuana’s 401 neighborhoods and municipality-provided locations of industrial parks in the city. Results of spatial lag regression models reveal that formal development is significantly associated with industrial park density, and it accounts for the significant effect of higher socioeconomic status (measured using mean education) on greater industrial density. Higher proportions of female-headed households are also significantly associated with industrial park density, while higher proportions of children and recent migrants are not. The formal development findings align with other studies in Mexico and point to the importance of urban development trajectories in shaping patterns of environmental injustice. The risks for female-headed households are novel in the Mexican context. One potential explanation is that women factory workers live near their places of employment. A second, albeit counterintuitive explanation, is the relative economic advantage experienced by female-headed households in Mexico.
Multiple paternity and sporophytic inbreeding depression in a dioicous moss species.
Szövényi, P; Ricca, M; Shaw, A J
2009-11-01
Multiple paternity (polyandry) frequently occurs in flowering plants and animals and is assumed to have an important function in the evolution of reproductive traits. Polyandry in bryophytes may occur among multiple sporophytes of a female gametophyte; however, its occurrence and extent is unknown. In this study we investigate the occurrence and extent of multiple paternity, spatial genetic structure, and sporophytic inbreeding depression in natural populations of a dioicous bryophyte species, Sphagnum lescurii, using microsatellite markers. Multiple paternity is prevalent among sporophytes of a female gametophyte and male genotypes exhibit significant skew in paternity. Despite significant spatial genetic structure in the population, suggesting frequent inbreeding, the number of inbred and outbred sporophytes was balanced, resulting in an average fixation coefficient and population level selfing rate of zero. In line with the prediction of sporophytic inbreeding depression sporophyte size was significantly correlated with the level of heterozygosity. Furthermore, female gametophytes preferentially supported sporophytes with higher heterozygosity. These results indicate that polyandry provides the opportunity for postfertilization selection in bryophytes having short fertilization distances and spatially structured populations facilitating inbreeding. Preferential maternal support of the more heterozygous sporophytes suggests active inbreeding avoidance that may have significant implications for mating system evolution in bryophytes.
NASA Astrophysics Data System (ADS)
Yang, Yang; Dou, Yanxing; Liu, Dong; An, Shaoshan
2017-07-01
Spatial pattern and heterogeneity of soil moisture is important for the hydrological process on the Loess Plateau. This study combined the classical and geospatial statistical techniques to examine the spatial pattern and heterogeneity of soil moisture along a transect scale (e.g. land use types and topographical attributes) on the Loess Plateau. The average values of soil moisture were on the order of farmland > orchard > grassland > abandoned land > shrubland > forestland. Vertical distribution characteristics of soil moisture (0-500 cm) were similar among land use types. Highly significant (p < 0.01) negative correlations were found between soil moisture and elevation (h) except for shrubland (p > 0.05), whereas no significant correlations were found between soil moisture and plan curvature (Kh), stream power index (SPI), compound topographic index (CTI) (p > 0.05), indicating that topographical attributes (mainly h) have a negative effect on the soil moisture spatial heterogeneity. Besides, soil moisture spatial heterogeneity decreased from forestland to grassland and farmland, accompanied by a decline from 15° to 1° alongside upper to lower slope position. This study highlights the importance of land use types and topographical attributes on the soil moisture spatial heterogeneity from a combined analysis of the structural equation model (SEM) and generalized additive models (GAMs), and the relative contribution of land use types to the soil moisture spatial heterogeneity was higher than that of topographical attributes, which provides insights for researches focusing on soil moisture varitions on the Loess Plateau.
The Prison Is Another Country: Incarcerated Students and (Im)Mobility in Australian Prisons
ERIC Educational Resources Information Center
Farley, Helen; Hopkins, Susan
2017-01-01
Space, time and movement have particular meanings and significance for Australian prisoners attempting higher education while incarcerated. In a sense, the prison is another "world" or "country" with its own spatial and temporal arrangements and constraints for incarcerated university students. The contemporary digital…
NASA Astrophysics Data System (ADS)
Ye, Ran; Cai, Yanhong; Wei, Yongjie; Li, Xiaoming
2017-04-01
The spatial pattern of phytoplankton community can indicate potential environmental variation in different water bodies. In this context, spatial pattern of phytoplankton community and its response to environmental and spatial factors were studied in the coastal waters of northern Zhejiang, East China Sea using multivariate statistical techniques. Results showed that 94 species belonging to 40 genera, 5 phyla were recorded (the remaining 9 were identified to genus level) with diatoms being the most dominant followed by dinoflagellates. Hierarchical clustering analysis (HCA), nonmetric multidimentional scaling (NMDS), and analysis of similarity (ANOSIM) all demomstrated that the whole study area could be divided into 3 subareas with significant differences. Indicator species analysis (ISA) further confirmed that the indicator species of each subarea correlated significantly with specific environmental factors. Distance-based linear model (Distlm) and Mantel test revealed that silicate (SiO32-), phosphate (PO43-), pH, and dissolved oxygen (DO) were the most important environmental factors influencing phytoplankton community. Variation portioning (VP) finally concluded that the shared fractions of environmental and spatial factors were higher than either the pure environmental effects or the pure spatial effects, suggesting phytoplankton biogeography were mainly affected by both the environmental variability and dispersal limitation. Additionally, other factors (eg., trace metals, biological grazing, climate change, and time-scale variation) may also be the sources of the unexplained variation which need further study.
Effects of voluntary and automatic control of center of pressure sway during quiet standing.
Ueta, Kozo; Okada, Yohei; Nakano, Hideki; Osumi, Michihiro; Morioka, Shu
2015-01-01
The authors investigated the effects of voluntary and automatic control on the spatial variables (envelope area, maximal amplitude, and root mean square [RMS]) of center of pressure (COP) displacement during quiet standing and identified differences in their postural control strategies (mean velocity [MV], mean power frequency [MPF], and power density). COP data were recorded under relaxed (experimental control), still (voluntary control), and dual (automatic control) conditions. RMS was significantly lower in the still and dual conditions than in the relaxed condition. MV, MPF, and power density were significantly higher in the still condition than in the dual condition. These results indicate that both voluntary and automatic control decrease the spatial variables of COP displacement; however, their postural control strategies are different.
Cruz, Antonio M; Vidondo, Beatriz; Ramseyer, Alessandra A; Maninchedda, Ugo E
2018-02-01
OBJECTIVE To assess effects of speed on kinematic variables measured by use of extremity-mounted inertial measurement units (IMUs) in nonlame horses performing controlled exercise on a treadmill. ANIMALS 10 nonlame horses. PROCEDURES 6 IMUs were attached at predetermined locations on 10 nonlame Franches Montagnes horses. Data were collected in triplicate during trotting at 3.33 and 3.88 m/s on a high-speed treadmill. Thirty-three selected kinematic variables were analyzed. Repeated-measures ANOVA was used to assess the effect of speed. RESULTS Significant differences between the 2 speeds were detected for most temporal (11/14) and spatial (12/19) variables. The observed spatial and temporal changes would translate into a gait for the higher speed characterized by increased stride length, protraction and retraction, flexion and extension, mediolateral movement of the tibia, and symmetry, but with similar temporal variables and a reduction in stride duration. However, even though the tibia coronal range of motion was significantly different between speeds, the high degree of variability raised concerns about whether these changes were clinically relevant. For some variables, the lower trotting speed apparently was associated with more variability than was the higher trotting speed. CONCLUSIONS AND CLINICAL RELEVANCE At a higher trotting speed, horses moved in the same manner (eg, the temporal events investigated occurred at the same relative time within the stride). However, from a spatial perspective, horses moved with greater action of the segments evaluated. The detected changes in kinematic variables indicated that trotting speed should be controlled or kept constant during gait evaluation.
Liu, Qianqian; Wang, Shaojian; Zhang, Wenzhong; Zhan, Dongsheng; Li, Jiaming
2018-02-01
Environmental pollution has aroused extensive concern worldwide. Existing literature on the relationship between foreign direct investment (FDI) and environmental pollution has, however, seldom taken into account spatial effects. Addressing this gap, this paper investigated the spatial agglomeration effects and dynamics at work in FDI and environmental pollution (namely, in waste soot and dust, sulfur dioxide, and wastewater) in 285 Chinese cities during the period 2003-2014, using global and local measures of spatial autocorrelation. Our results showed significant spatial autocorrelation in FDI and environmental pollution levels, both of which demonstrated obvious path dependence characteristics in their geographical distribution. A range of agglomeration regions were observed. The high-value and low-value agglomeration areas of FDI were not fully consistent with those of environmental pollution. This result indicates that higher inflows of FDI did not necessarily lead to greater environmental pollution from a geographic perspective, and vice versa. Spatial panel data models were further adopted to explore the impact of FDI on environmental pollution. The results of a spatial lag model (SLM) and a spatial error model (SEM) revealed that the inflow of FDI had distinct effects on different environmental pollutants, thereby confirming the Pollution Heaven Hypothesis and Pollution Halo Hypothesis. The inflow of FDI was found to have reduced waste soot and dust pollution to a certain extent, while it increased the degree of wastewater and sulfur dioxide pollution. The findings set out in this paper hold significant implications for Chinese environmental pollution protection. Copyright © 2017 Elsevier B.V. All rights reserved.
Antunes, Ana Carolina Lopes; Halasa, Tariq; Lauritsen, Klara Tølbøl; Kristensen, Charlotte Sonne; Larsen, Lars Erik; Toft, Nils
2015-12-21
Porcine reproductive and respiratory syndrome (PRRS) has been a cause for great concern to the Danish pig industry since it was first diagnosed in 1992. The causative agent of PRRS is an RNA virus which is divided into different genotypes. The clinical signs, as well as its morbidity and mortality, is highly variable between herds and regions. Two different genotypes of PRRS virus (PRRSV) are found in Denmark: type 1 and type 2. Approximately 40% of Danish swine herds are seropositive for one or both PRRSV types. The objective of this study was to describe the temporal trend and spatial distribution of PRRSV in Danish swine herds from 2007 to 2010, based on type-specific serological tests from the PRRS surveillance and control program in Denmark using the results stored in the information management system at the National Veterinary Institute, Technical University of Denmark (DTU Vet). The average monthly seroprevalence of PRRSV type 1 was 9% (minimum of 5%; maximum of 13%) in breeding herds, and 20% (minimum of 14%; maximum of 26%) in production herds; PRRSV type 2 had an average seroprevalence of 3% (minimum of 1%; maximum of 9%) in breeding herds and of 9% (minimum of 5%; maximum of 13%) within production herds. The seroconversion rate followed a similar and consistent pattern, being higher for type 1 than for type 2 for both PRRSV types. Regarding the spatiotemporal results, the relative risk distribution maps changed over time as a consequence of the changes in PRRSV seroprevalence, suggesting a general decline in the extent of areas with higher relative risk for both type 1 and 2. Local spatial analysis results demonstrated the existence of statistically significant clusters in areas where the relative risk was higher for both herds. PRRSV type 1 seroprevalence was constantly higher than for PRRSV type 2 in both herd types. Significant spatial clusters were consistently found in Denmark, suggesting that PRRSV is endemic in these areas. Furthermore, relative risk distribution maps revealed different patterns over time as a consequence of the changes in seroprevalence.
Bedford, D.R.; Small, E.E.
2008-01-01
Spatial patterns of soil properties are linked to patchy vegetation in arid and semi-arid landscapes. The patterns of soil properties are generally assumed to be linked to the ecohydrological functioning of patchy dryland vegetation ecosystems. We studied the effects of vegetation canopy, its spatial pattern, and landforms on soil properties affecting overland flow and infiltration in shrublands at the Sevilleta National Wildlife Refuge/LTER in central New Mexico, USA. We studied the patterns of microtopography and saturated conductivity (Ksat), and generally found it to be affected by vegetation canopy and pattern, as well as landform type. On gently sloping alluvial fans, both microtopography and Ksat are high under vegetation canopy and decay with distance from plant center. On steeper hillslope landforms, only microtopography was significantly higher under vegetation canopy, while there was no significant difference in Ksat between vegetation and interspaces. Using geostatistics, we found that the spatial pattern of soil properties was determined by the spatial pattern of vegetation. Most importantly, the effects of vegetation were present in the unvegetated interspaces 2-4 times the extent of vegetation canopy, on the order of 2-3??m. Our results have implications for the understanding the ecohydrologic function of semi-arid ecosystems as well as the parameterization of hydrologic models. ?? 2007 Elsevier B.V. All rights reserved.
An investigation of immune system disorder as a "marker" for anomalous dominance.
Rich, D A; McKeever, W F
1990-01-01
Geschwind and Galaburda (1987) proposed that immune disorder (ID) susceptibility, along with left handedness and familial sinistrality (FS), is a "marker" for anomalous dominance. The theory predicts lesser left lateralization for language processes, lessened left hemisphere abilities, and enhanced right hemisphere abilities. We assessed language laterality (dichotic consonant vowel task) and performances on spatial and verbal tasks. Subjects were 128 college students. The factors of handedness, sex, FS, and immune disorder history (negative or positive) were perfectly counterbalanced. Left-handers were significantly less lateralized for language and scored lower than right-handers on the spatial tasks. Females scored lower on mental rotation than males, but performed comparably to males on the spatial relations task. The only effect of ID was by way of interaction with FS on both spatial tasks--subjects who were either negative or positive on both FS and ID status factors scored significantly higher than subjects negative for one but positive for the other factor. A speculative explanatory model for this interaction was proposed. The model incorporates the notion that FS and ID factors are comparably correlated, but in opposite directions, with hormonal factors implicated by other research as relevant for spatial ability differences. Finally, no support for the "anomalous dominance" hypothesis predictions was found.
Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle.
Wu, Chang-fu; Liu, L-J Sally; Cullen, Alison; Westberg, Hal; Williamson, John
2011-01-01
In the Seattle Air Toxics Monitoring Pilot Program, we measured 15 hazardous air pollutants (HAPs) at 6 sites for more than a year between 2000 and 2002. Spatial-temporal variations were evaluated with random-effects models and principal component analyses. The potential health risks were further estimated based on the monitored data, with the incorporation of the bootstrapping technique for the uncertainty analysis. It is found that the temporal variability was generally higher than the spatial variability for most air toxics. The highest temporal variability was observed for tetrachloroethylene (70% temporal vs. 34% spatial variability). Nevertheless, most air toxics still exhibited significant spatial variations, even after accounting for the temporal effects. These results suggest that it would require operating multiple air toxics monitoring sites over a significant period of time with proper monitoring frequency to better evaluate population exposure to HAPs. The median values of the estimated inhalation cancer risks ranged between 4.3 × 10⁻⁵ and 6.0 × 10⁻⁵, with the 5th and 95th percentile levels exceeding the 1 in a million level. VOCs as a whole contributed over 80% of the risk among the HAPs measured and arsenic contributed most substantially to the overall risk associated with metals. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Samuel, Putra A.; Widyaningsih, Yekti; Lestari, Dian
2016-02-01
The objective of this study is modeling the Unemployment Rate (UR) in West Java, Central Java, and East Java, with rate of disease, infant mortality rate, educational level, population size, proportion of married people, and GDRP as the explanatory variables. Spatial factors are also considered in the modeling since the closer the distance, the higher the correlation. This study uses the secondary data from BPS (Badan Pusat Statistik). The data will be analyzed using Moran I test, to obtain the information about spatial dependence, and using Spatial Autoregressive modeling to obtain the information, which variables are significant affecting UR and how great the influence of the spatial factors. The result is, variables proportion of married people, rate of disease, and population size are related significantly to UR. In all three regions, the Hotspot of unemployed will also be detected districts/cities using Spatial Scan Statistics Method. The results are 22 districts/cities as a regional group with the highest unemployed (Most likely cluster) in the study area; 2 districts/cities as a regional group with the highest unemployed in West Java; 1 district/city as a regional groups with the highest unemployed in Central Java; 15 districts/cities as a regional group with the highest unemployed in East Java.
Spatial variation of pneumonia hospitalization risk in Twin Cities metro area, Minnesota.
Iroh Tam, P Y; Krzyzanowski, B; Oakes, J M; Kne, L; Manson, S
2017-11-01
Fine resolution spatial variability in pneumonia hospitalization may identify correlates with socioeconomic, demographic and environmental factors. We performed a retrospective study within the Fairview Health System network of Minnesota. Patients 2 months of age and older hospitalized with pneumonia between 2011 and 2015 were geocoded to their census block group, and pneumonia hospitalization risk was analyzed in relation to socioeconomic, demographic and environmental factors. Spatial analyses were performed using Esri's ArcGIS software, and multivariate Poisson regression was used. Hospital encounters of 17 840 patients were included in the analysis. Multivariate Poisson regression identified several significant associations, including a 40% increased risk of pneumonia hospitalization among census block groups with large, compared with small, populations of ⩾65 years, a 56% increased risk among census block groups in the bottom (first) quartile of median household income compared to the top (fourth) quartile, a 44% higher risk in the fourth quartile of average nitrogen dioxide emissions compared with the first quartile, and a 47% higher risk in the fourth quartile of average annual solar insolation compared to the first quartile. After adjusting for income, moving from the first to the second quartile of the race/ethnic diversity index resulted in a 21% significantly increased risk of pneumonia hospitalization. In conclusion, the risk of pneumonia hospitalization at the census-block level is associated with age, income, race/ethnic diversity index, air quality, and solar insolation, and varies by region-specific factors. Identifying correlates using fine spatial analysis provides opportunities for targeted prevention and control.
NASA Astrophysics Data System (ADS)
Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez Hidalgo, Jose Carlos; Brunetti, Michele
2017-04-01
In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of spring and its corresponding months (March, April, May) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal Tmax shows that global trend was positive and significant until the mid 80's with higher values than 75% from between 1954-2010 to 1979-2010, being reduced after to the north region. So, from 1985-2010 no significant trend have been detected. Monthly analyses show differences. March trend is not significant (<20% of area) since 1974-2010, while significant trend in April and May varies between 1961-2010/1979-2010 and 1965-2010/1980-2010 respectively, clearly located in northern midland and Mediterranean coastland. • Spring Tmin trend analyses is significantly (>20%) during all temporal windows, notwithstanding NW do not show global significant trend, and in the most recent temporal windows only affect significantly SE. Monthly analyses also differ. Not significant trend is detected in March from 1979-2010, and from 1985-2010 in May, being April the month in any temporal windows with more than 20% of land affected by significant trend. • Spatial differences are detected between windows (South-North in March, East-West in April-May. We can conclude Tmax trend varies accordingly temporal windows dramatically in spring and no significance has been detected in the recent decades. Northern areas and Mediterranean coastland seems to be the most affected. Monthy Tmax trend spatial analyses confirm the heterogeneity of diurnal temperatures; different spatial gradients in windows have been detected between months. Seasonal Tmin show a more global temporal pattern. Spatial gradients of significance between months have been detected, in some sense contraries to the observed in Tmax.
NASA Astrophysics Data System (ADS)
Baeza, Andrés; Estrada-Barón, Alejandra; Serrano-Candela, Fidel; Bojórquez, Luis A.; Eakin, Hallie; Escalante, Ana E.
2018-06-01
Due to unplanned growth, large extension and limited resources, most megacities in the developing world are vulnerable to hydrological hazards and infectious diseases caused by waterborne pathogens. Here we aim to elucidate the extent of the relation between the spatial heterogeneity of physical and socio-economic factors associated with hydrological hazards (flooding and scarcity) and the spatial distribution of gastrointestinal disease in Mexico City, a megacity with more than 8 million people. We applied spatial statistics and multivariate regression analyses to high resolution records of gastrointestinal diseases during two time frames (2007–2009 and 2010–2014). Results show a pattern of significant association between water flooding events and disease incidence in the city center (lowlands). We also found that in the periphery (highlands), higher incidence is generally associated with household infrastructure deficiency. Our findings suggest the need for integrated and spatially tailored interventions by public works and public health agencies, aimed to manage socio-hydrological vulnerability in Mexico City.
NASA Astrophysics Data System (ADS)
Fu, Z.; Qin, Q.; Wu, C.; Chang, Y.; Luo, B.
2017-09-01
Due to the differences of imaging principles, image matching between visible and thermal infrared images still exist new challenges and difficulties. Inspired by the complementary spatial and frequency information of geometric structural features, a robust descriptor is proposed for visible and thermal infrared images matching. We first divide two different spatial regions to the region around point of interest, using the histogram of oriented magnitudes, which corresponds to the 2-D structural shape information to describe the larger region and the edge oriented histogram to describe the spatial distribution for the smaller region. Then the two vectors are normalized and combined to a higher feature vector. Finally, our proposed descriptor is obtained by applying principal component analysis (PCA) to reduce the dimension of the combined high feature vector to make our descriptor more robust. Experimental results showed that our proposed method was provided with significant improvements in correct matching numbers and obvious advantages by complementing information within spatial and frequency structural information.
The spatial resolving power of earth resources satellites: A review
NASA Technical Reports Server (NTRS)
Townshend, J. R. G.
1980-01-01
The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.
Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D
2016-10-01
When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; Arora, B.; Torn, M. S.
2017-12-01
Differences of surface elevation in arctic polygonal landforms cause spatial variation in soil water contents (θ), active layer depths (ALD), and thereby in CO2 and CH4 exchange. Here we test hypotheses in ecosys for topographic controls on CO2 and CH4 exchange in trough, rim, and center features of low- and flat-centered polygons (LCP and FCP) against chamber and eddy covariance (EC) measurements during 2013 at Barrow, Alaska. Larger CO2 influxes and CH4 effluxes were measured with chambers and modeled with ecosys in LCPs than in FCPs and in lower features (troughs) than in higher (rims) within LCPs and FCPs. Spatially aggregated CO2 and CH4 fluxes from ecosys were significantly correlated with EC flux measurements. Lower features were modeled as C sinks (52-56 g C m-2 yr-1) and CH4 sources (4-6 g C m-2 yr-1), and higher features as near C neutral (-2-15 g C m-2 yr-1) and CH4 neutral (0.0-0.1 g C m-2 yr-1). Much of the spatial and temporal variations in CO2 and CH4 fluxes were modeled from topographic effects on water and snow movement and thereby on θ, ALD, and soil O2 concentrations. Model results forced with meteorological data from 1981 to 2015 indicated increasing net primary productivity in higher features and CH4 emissions in some lower and higher features since 2008, attributed mostly to recent rises in precipitation. Small-scale variation in surface elevation causes large spatial variation of greenhouse gas (GHG) exchanges and therefore should be considered in estimates of GHG exchange in polygonal landscapes.
Bradley, Arthur; Xu, Renfeng; Thibos, Larry; Marin, Gildas; Hernandez, Martha
2014-01-01
Purpose To test competing hypotheses (Stiles Crawford pupil apodising or superior imaging of high spatial frequencies by the central pupil) for the pupil size independence of subjective refractions in the presence of primary spherical aberration. Methods Subjective refractions were obtained with a variety of test stimuli (high contrast letters, urban cityscape, high and low spatial frequency gratings) while modulating pupil diameter, levels of primary spherical aberration and pupil apodisation. Subjective refractions were also obtained with low-pass and high-pass stimuli and using “darker” and “sharper” subjective criteria. Results Subjective refractions for stimuli containing high spatial frequencies focus a near paraxial region of the pupil and are affected only slightly by level of Seidel spherical aberration, degree of pupil apodisation and pupil diameter, and generally focused a radius of about 1 to 1.5 mm from the pupil centre. Low spatial frequency refractions focus a marginal region of the pupil, and are significantly affected by level of spherical aberration, amount of pupil apodisation, and pupil size. Clinical refractions that employ the “darker” or “sharper” subjective criteria bias the patient to use lower or higher spatial frequencies respectively. Conclusions In the presence of significant levels of spherical aberration, the pupil size independence of subjective refractions occurs with or without Stiles Crawford apodisation for refractions that optimise high spatial frequency content in the image. If low spatial frequencies are optimised by a subjective refraction, spherical refractive error varies with spherical aberration, pupil size, and level of apodisation. As light levels drop from photopic to scotopic, therefore, we expect a shift from pupil size independent to pupil size dependent subjective refractions. Emphasising a “sharper” criterion during subjective refractions will improve image quality for high spatial frequencies and generate pupil size independent refractions. PMID:24397356
Sociodemographic Predictors of Vaccination Exemptions on the Basis of Personal Belief in California.
Yang, Y Tony; Delamater, Paul L; Leslie, Timothy F; Mello, Michelle M
2016-01-01
We examined the variability in the percentage of students with personal belief exemptions (PBEs) from mandatory vaccinations in California schools and communities according to income, education, race, and school characteristics. We used spatial lag models to analyze 2007-2013 PBE data from the California Department of Public Health. The analyses included school- and regional-level models, and separately examined the percentage of students with exemptions in 2013 and the change in percentages over time. The percentage of students with PBEs doubled from 2007 to 2013, from 1.54% to 3.06%. Across all models, higher median household income and higher percentage of White race in the population, but not educational attainment, significantly predicted higher percentages of students with PBEs in 2013. Higher income, White population, and private school type significantly predicted greater increases in exemptions from 2007 to 2013, whereas higher educational attainment was associated with smaller increases. Personal belief exemptions are more common in areas with a higher percentage of White race and higher income.
NASA Astrophysics Data System (ADS)
Wang, Liping; Jiang, Weiwei; Song, Jinxi; Dou, Xinyi; Guo, Hongtao; Xu, Shaofeng; Zhang, Guotao; Wen, Ming; Long, Yongqing; Li, Qi
2017-08-01
Investigating the interaction of groundwater and surface water is key to understanding the hyporheic processes. The vertical water fluxes through a streambed were determined using Darcian flux calculations and vertical sediment temperature profiles to assess the pattern and magnitude of groundwater/surface-water interaction in Beiluo River, China. Field measurements were taken in January 2015 at three different stream morphologies including a meander bend, an anabranching channel and a straight stream channel. Despite the differences of flux direction and magnitude, flux directions based on vertical temperature profiles are in good agreement with results from Darcian flux calculations at the anabranching channel, and the Kruskal-Wallis tests show no significant differences between the estimated upward fluxes based on the two methods at each site. Also, the upward fluxes based on the two methods show similar spatial distributions on the streambed, indicating (1) that higher water fluxes at the meander bend occur from the center of the channel towards the erosional bank, (2) that water fluxes at the anabranching channel are higher near the erosional bank and in the center of the channel, and (3) that in the straight channel, higher water fluxes appear from the center of the channel towards the depositional bank. It is noted that higher fluxes generally occur at certain locations with higher streambed vertical hydraulic conductivity ( K v) or where a higher vertical hydraulic gradient is observed. Moreover, differences of grain size, induced by stream morphology and contrasting erosional and depositional conditions, have significant effects on streambed K v and water fluxes.
NASA Astrophysics Data System (ADS)
Jiang, C.; Xu, Q.; Gu, Y. K.; Qian, X. Y.; He, J. N.
2018-04-01
Aerosol Optical Depth (AOD) is of great value for studying air mass and its changes. In this paper, we studied the spatial-temporal changes of AOD and its driving factors based on spatial autocorrelation model, gravity model and multiple regression analysis in Jiangsu Province from 2007 to 2016. The results showed that in terms of spatial distribution, the southern AOD value is higher, and the high-value aggregation areas are significant, while the northern AOD value is lower, but the low-value aggregation areas constantly change. The AOD gravity centers showed a clear point-like aggregation. In terms of temporal changes, the overall AOD in Jiangsu Province increased year by year in fluctuation. In terms of driving factors, the total amount of vehicles, precipitation and temperature are important factors for the growth of AOD.
Spatial and temporal variability of hyperspectral signatures of terrain
NASA Astrophysics Data System (ADS)
Jones, K. F.; Perovich, D. K.; Koenig, G. G.
2008-04-01
Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.
Tanaka, Hiroshi O; Itioka, Takao
2011-10-23
Little is known about the spatial distribution of lianas on emergent trees in tropical rainforests and the factors affecting this distribution. The present study investigated the effects of an arboreal ant species, Crematogaster difformis, which forms myrmecophytic symbioses with two epiphytic ferns, Lecanopteris sp. and Platycerium sp., on the spatial distribution of lianas associated with emergent trees. Living lianas were placed onto trunk surfaces inside and outside the territories of the ants in the canopy, to examine their ability to remove them. The number of leaves pruned by the ants was significantly higher on lianas inside than outside their territories. The spatial overlap of the distributions of lianas and the two ferns on emergent trees were then examined. The frequency of liana colonization of tree crowns was found to be significantly lower on trees with than without ferns. Under the natural conditions, C. difformis workers were observed biting and pruning the lianas. These results suggest that C. difformis regulates the distribution of lianas on emergent trees.
Blake, Sarah Brown
2014-01-01
Access to clean and affordable water is a significant public health issue globally, in the United States, and in California where land is heavily used for agriculture and dairy operations. The purpose of this study was to explore the geographic relationships among dairy farms, nitrate levels in drinking water, low birth weight, and socioeconomic data at the ZIP code level in the San Joaquin Valley. This ecological study used a Geographic Information System (GIS) to explore and analyze secondary data. A total of 211 ZIP codes were analyzed using spatial autocorrelation and regression analysis methods in ArcGIS version 10.1. ZIP codes with dairies had a higher percentage of Hispanic births (p = .001). Spatial statistics revealed that ZIP codes with more dairy farms and a higher dairy cow density had higher levels of nitrate contamination. No correlation was detected between LBW and unsafe nitrate levels at the ZIP code level. Further research examining communities that use private and small community wells in the San Joaquin Valley should be conducted. Birth data from smaller geographic areas should be used to continue exploring the relationship between birth outcomes and nitrate contamination in drinking water. © 2014 Wiley Periodicals, Inc.
Underlying mechanisms of writing difficulties among children with neurofibromatosis type 1.
Gilboa, Yafit; Josman, Naomi; Fattal-Valevski, Aviva; Toledano-Alhadef, Hagit; Rosenblum, Sara
2014-06-01
Writing is a complex activity in which lower-level perceptual-motor processes and higher-level cognitive processes continuously interact. Preliminary evidence suggests that writing difficulties are common to children with Neurofibromatosis type 1 (NF1). The aim of this study was to compare the performance of children with and without NF1 in lower (visual perception, motor coordination and visual-motor integration) and higher processes (verbal and performance intelligence, visual spatial organization and visual memory) required for intact writing; and to identify the components that predict the written product's spatial arrangement and content among children with NF1. Thirty children with NF1 (ages 8-16) and 30 typically developing children matched by gender and age were tested, using standardized assessments. Children with NF1 had a significantly inferior performance in comparison to control children, on all tests that measured lower and higher level processes. The cognitive planning skill was found as a predictor of the written product's spatial arrangement. The verbal intelligence predicted the written content level. Results suggest that high level processes underlie the poor quality of writing product in children with NF1. Treatment approaches for children with NF1 must include detailed assessments of cognitive planning and language skills. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pineda, M.; Stamatakis, M.
2017-07-01
Modeling the kinetics of surface catalyzed reactions is essential for the design of reactors and chemical processes. The majority of microkinetic models employ mean-field approximations, which lead to an approximate description of catalytic kinetics by assuming spatially uncorrelated adsorbates. On the other hand, kinetic Monte Carlo (KMC) methods provide a discrete-space continuous-time stochastic formulation that enables an accurate treatment of spatial correlations in the adlayer, but at a significant computation cost. In this work, we use the so-called cluster mean-field approach to develop higher order approximations that systematically increase the accuracy of kinetic models by treating spatial correlations at a progressively higher level of detail. We further demonstrate our approach on a reduced model for NO oxidation incorporating first nearest-neighbor lateral interactions and construct a sequence of approximations of increasingly higher accuracy, which we compare with KMC and mean-field. The latter is found to perform rather poorly, overestimating the turnover frequency by several orders of magnitude for this system. On the other hand, our approximations, while more computationally intense than the traditional mean-field treatment, still achieve tremendous computational savings compared to KMC simulations, thereby opening the way for employing them in multiscale modeling frameworks.
Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan
2013-01-01
Objective Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. Approach We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Main Results Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Significance Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research. PMID:24312477
NASA Astrophysics Data System (ADS)
Breau, Sébastien; Shin, Michael; Burkhart, Nick
2018-01-01
The spatial configurations of changes in the distribution of incomes within Canada's eight largest metropolitan areas are examined using a new approach based on dynamic local indicators of spatial association. These changes are characterized by increasing spatial polarization (or divergence) between higher- and lower-income neighbourhoods in Montreal, Toronto, Ottawa-Gatineau, Calgary and Vancouver. Though patterns of spatial polarization are less pronounced in Edmonton, Winnipeg and Quebec City, several lower-income neighbourhoods in these cities nevertheless appear to be losing ground relative to other neighbourhoods. These neighbourhoods are typically characterized by higher levels of precarious employment and higher shares of visible minority and recent immigrant populations.
Bioeconomic modeling for a small-scale sea cucumber fishery in Yucatan, Mexico
Hernández-Flores, Alvaro; Cuevas-Jiménez, Alfonso; Condal, Alfonso; Espinoza-Méndez, Juan Carlos
2018-01-01
Due to the heavy exploitation of holothurians over the last few decades, it is necessary to implement fishing regulations aimed at reversing this situation. Holothurians require specific regulations that take into account their biology and ecology. Their behavior to group and form patches as a strategy for feeding, defense and reproduction, makes them vulnerable to overfishing. The higher the population density, the higher the catchability coefficient, and because they are sedentary organisms, the catchability does not change significantly until the density is very low. Hence, the stock assessment of holothurians can be improved by analyzing their spatial distribution. This paper proposes a stock assessment technique that considers the spatial distribution pattern of the sea cucumber Isostichopus badionotus from Yucatan, Mexico. A bioeconomic spatial model was developed to explain the interactions between fishing effort allocation, quasi-profits and the population in the short term. Because of the high price of the species and the low production costs, artisanal fishers preferred to maximize short-term quasi-profits, rather than the long-term benefits they could gain with low fishing mortality rates. PMID:29315339
Chen, J Y C; Terrence, P I
2008-08-01
This study examined the concurrent performance of military gunnery, robotics control and communication tasks in a simulated environment. More specifically, the study investigated how aided target recognition (AiTR) capabilities (delivered either through tactile or tactile + visual cueing) for the gunnery task might benefit overall performance. Results showed that AiTR benefited not only the gunnery task, but also the concurrent robotics and communication tasks. The participants' spatial ability was found to be a good indicator of their gunnery and robotics task performance. However, when AiTR was available to assist their gunnery task, those participants of lower spatial ability were able to perform their robotics tasks as well as those of higher spatial ability. Finally, participants' workload assessment was significantly higher when they teleoperated (i.e. remotely operated) a robot and when their gunnery task was unassisted. These results will further understanding of multitasking performance in military tasking environments. These results will also facilitate the implementation of robots in military settings and will provide useful data to military system designs.
Bioeconomic modeling for a small-scale sea cucumber fishery in Yucatan, Mexico.
Hernández-Flores, Alvaro; Cuevas-Jiménez, Alfonso; Poot-Salazar, Alicia; Condal, Alfonso; Espinoza-Méndez, Juan Carlos
2018-01-01
Due to the heavy exploitation of holothurians over the last few decades, it is necessary to implement fishing regulations aimed at reversing this situation. Holothurians require specific regulations that take into account their biology and ecology. Their behavior to group and form patches as a strategy for feeding, defense and reproduction, makes them vulnerable to overfishing. The higher the population density, the higher the catchability coefficient, and because they are sedentary organisms, the catchability does not change significantly until the density is very low. Hence, the stock assessment of holothurians can be improved by analyzing their spatial distribution. This paper proposes a stock assessment technique that considers the spatial distribution pattern of the sea cucumber Isostichopus badionotus from Yucatan, Mexico. A bioeconomic spatial model was developed to explain the interactions between fishing effort allocation, quasi-profits and the population in the short term. Because of the high price of the species and the low production costs, artisanal fishers preferred to maximize short-term quasi-profits, rather than the long-term benefits they could gain with low fishing mortality rates.
Shin, Michael E; McCarthy, William J
2013-11-01
We examined whether stable, county-level, voter preferences were significantly associated with county-level obesity prevalence using data from the 2012 US Presidential election. County voting preference for the 2012 Republican Party presidential candidate was used as a proxy for voter endorsement of personal responsibility approaches to reducing population obesity risk versus approaches featuring government-sponsored, multi-sectoral efforts like those recommended by the Centers for Disease Control Centers for Disease Control (CDC, 2009). Cartographic visualization and spatial analysis were used to evaluate the geographic clustering of obesity prevalence rates by county, and county-level support for the Republican Party candidate in the 2012 U.S. presidential election. The spatial analysis informed the spatial econometric approach employed to model the relationship between political preferences and other covariates with obesity prevalence. After controlling for poverty rate, percent African American and Latino populations, educational attainment, and spatial autocorrelation in the error term, we found that higher county-level obesity prevalence rates were associated with higher levels of support for the 2012 Republican Party presidential candidate. Future public health efforts to understand and reduce obesity risk may benefit from increased surveillance of this and similar linkages between political preferences and health risks. © 2013.
Predictors of Clinical Pain in Fibromyalgia: Examining the Role of Sleep
Anderson, Ryan J.; McCrae, Christina S.; Staud, Roland; Berry, Richard B.; Robinson, Michael E.
2013-01-01
Understanding individual differences in the variability of fibromyalgia pain can help elucidate etiological mechanisms and treatment targets. Past research has shown that spatial extent of pain, negative mood, and aftersensation (pain ratings taken after experimental induction of pain) accounts for 40 to 50% of the variance in clinical pain. Poor sleep is hypothesized to have a reciprocal relationship with pain, and over 75% of individuals with fibromyalgia report disturbed sleep. We hypothesized that measures of sleep would increase the predictive ability of the clinical pain model. Measures of usual pain, spatial extent of pain, negative mood, and pain aftersensation were taken from 74 adults with fibromyalgia. Objective (actigraph) and subjective (diary) measures of sleep duration and nightly wake time were also obtained from the participants over 14 days. Hierarchical regression indicated that greater spatial extent (R2 = .26), higher aftersensation ratings (R2 = .06), and higher negative mood (R2 = .04) accounted for 36% of the variance in clinical pain (average of 14 daily pain ratings). None of the sleep variables were significant predictors of clinical pain. Results replicate previous research and suggest that spatial extent of pain, pain aftersensation, and negative mood play important roles in clinical pain, but sleep disturbance did not aid in its prediction. PMID:22381437
Pena, Roberta Ribas; Medeiros, Daniel de Castro; Guarnieri, Leonardo de Oliveira; Guerra, Julio Boriollo; Carvalho, Vinícius Rezende; Mendes, Eduardo Mazoni Andrade Marçal; Pereira, Grace Schenatto; Moraes, Márcio Flávio Dutra
2017-11-05
The brain oscillations may play a critical role in synchronizing neuronal assemblies in order to establish appropriate sensory-motor integration. In fact, studies have demonstrated phase-amplitude coupling of distinct oscillatory rhythms during cognitive processes. Here we investigated whether olfacto-hippocampal coupling occurs when mice are detecting familiar odors located in a spatially restricted area of a new context. The spatial olfactory task (SOT) was designed to expose mice to a new environment in which only one quadrant (target) contains odors provided by its own home-cage bedding. As predicted, mice showed a significant higher exploration preference to the target quadrant; which was impaired by olfactory epithelium lesion (ZnSO 4 ). Furthermore, mice were able to discriminate odors from a different cage and avoided the quadrant with predator odor 2,4,5-trimethylthiazoline (TMT), reinforcing the specificity of the SOT. The local field potential (LFP) analysis of non-lesioned mice revealed higher gamma activity (35-100Hz) in the main olfactory bulb (MOB) and a significant theta phase/gamma amplitude coupling between MOB and dorsal hippocampus, only during exploration of home-cage odors (i.e. in the target quadrant). Our results suggest that exploration of familiar odors in a new context involves dynamic coupling between the olfactory bulb and dorsal hippocampus. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation
NASA Technical Reports Server (NTRS)
Zhang, Zhou; Pasolli, Edoardo; Crawford, Melba M.; Tilton, James C.
2015-01-01
Augmenting spectral data with spatial information for image classification has recently gained significant attention, as classification accuracy can often be improved by extracting spatial information from neighboring pixels. In this paper, we propose a new framework in which active learning (AL) and hierarchical segmentation (HSeg) are combined for spectral-spatial classification of hyperspectral images. The spatial information is extracted from a best segmentation obtained by pruning the HSeg tree using a new supervised strategy. The best segmentation is updated at each iteration of the AL process, thus taking advantage of informative labeled samples provided by the user. The proposed strategy incorporates spatial information in two ways: 1) concatenating the extracted spatial features and the original spectral features into a stacked vector and 2) extending the training set using a self-learning-based semi-supervised learning (SSL) approach. Finally, the two strategies are combined within an AL framework. The proposed framework is validated with two benchmark hyperspectral datasets. Higher classification accuracies are obtained by the proposed framework with respect to five other state-of-the-art spectral-spatial classification approaches. Moreover, the effectiveness of the proposed pruning strategy is also demonstrated relative to the approaches based on a fixed segmentation.
Higgins, Nathan C; McLaughlin, Susan A; Rinne, Teemu; Stecker, G Christopher
2017-09-05
Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues-particularly interaural time and level differences (ITD and ILD)-that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and-critically-for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues.
McLaughlin, Susan A.; Rinne, Teemu; Stecker, G. Christopher
2017-01-01
Few auditory functions are as important or as universal as the capacity for auditory spatial awareness (e.g., sound localization). That ability relies on sensitivity to acoustical cues—particularly interaural time and level differences (ITD and ILD)—that correlate with sound-source locations. Under nonspatial listening conditions, cortical sensitivity to ITD and ILD takes the form of broad contralaterally dominated response functions. It is unknown, however, whether that sensitivity reflects representations of the specific physical cues or a higher-order representation of auditory space (i.e., integrated cue processing), nor is it known whether responses to spatial cues are modulated by active spatial listening. To investigate, sensitivity to parametrically varied ITD or ILD cues was measured using fMRI during spatial and nonspatial listening tasks. Task type varied across blocks where targets were presented in one of three dimensions: auditory location, pitch, or visual brightness. Task effects were localized primarily to lateral posterior superior temporal gyrus (pSTG) and modulated binaural-cue response functions differently in the two hemispheres. Active spatial listening (location tasks) enhanced both contralateral and ipsilateral responses in the right hemisphere but maintained or enhanced contralateral dominance in the left hemisphere. Two observations suggest integrated processing of ITD and ILD. First, overlapping regions in medial pSTG exhibited significant sensitivity to both cues. Second, successful classification of multivoxel patterns was observed for both cue types and—critically—for cross-cue classification. Together, these results suggest a higher-order representation of auditory space in the human auditory cortex that at least partly integrates the specific underlying cues. PMID:28827357
Nucleus incertus inactivation impairs spatial learning and memory in rats.
Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh
2015-02-01
Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.
Eisele, Adam P; Mukerjee, Shaibal; Smith, Luther A; Thoma, Eben D; Whitaker, Donald A; Oliver, Karen D; Wu, Tai; Colon, Maribel; Alston, Lillian; Cousett, Tamira A; Miller, Michael C; Smith, Donald M; Stallings, Casson
2016-04-01
A pilot study was conducted in application of the U.S. Environmental Protection Agency (EPA) Methods 325A/B variant for monitoring volatile organic compounds (VOCs) near two oil and natural gas (ONG) production well pads in the Texas Barnett Shale formation and Colorado Denver-Julesburg Basin (DJB), along with a traffic-dominated site in downtown Denver, CO. As indicated in the EPA method, VOC concentrations were measured for 14-day sampling periods using passive-diffusive tube samplers with Carbopack X sorbent at fenceline perimeter and other locations. VOCs were significantly higher at the DJB well pad versus the Barnett well pad and were likely due to higher production levels at the DJB well pad during the study. Benzene and toluene were significantly higher at the DJB well pad versus downtown Denver. Except for perchloroethylene, VOCs measured at passive sampler locations (PSs) along the perimeter of the Barnett well pad were significantly higher than PSs farther away. At the DJB well pad, most VOC concentrations, except perchloroethylene, were significantly higher prior to operational changes than after these changes were made. Though limited, the results suggest passive samplers are precise (duplicate precision usually ≤10%) and that they can be useful to assess spatial gradients and operational conditions at well pad locations over time-integrated periods. Recently enacted EPA Methods 325A/B use passive-diffusive tube samplers to measure benzene at multiple fenceline locations at petrochemical refineries. This pilot study presents initial data demonstrating the utility of Methods 325A/B for monitoring at ONG facilities. Measurements revealed elevated concentrations reflective of production levels and spatial gradients of VOCs relative to source proximity at the Barnett well pad, as well as operational changes at the DJB well pad. Though limited, these findings indicate that Methods 325A/B can be useful in application to characterize VOCs at well pad boundaries.
Roads Investments, Spatial Intensification and Deforestation in the Brazilian Amazon
NASA Technical Reports Server (NTRS)
Pfaff, Alexander; Robalino, Juan; Walker, Robert; Aldrich, Steven; Caldas, Marcellus; Reis, Eustaquio; Perz, Stephen; Bohrer, Claudio; Arima, Eugenio; Laurance, William;
2007-01-01
Understanding the impact of road investments on deforestation is part of a complete evaluation of the expansion of infrastructure for development. We find evidence of spatial spillovers from roads in the Brazilian Amazon: deforestation rises in the census tracts that lack roads but are in the same county as and within 100 km of a tract with a new paved or unpaved road. At greater distances from the new roads the evidence is mixed, including negative coefficients of inconsistent significance between 100 and 300 km, and if anything, higher neighbor deforestation at distances over 300 km.
Acousto-optic resonant coupling of three spatial modes in an optical fiber.
Park, Hee Su; Song, Kwang Yong
2014-01-27
A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.
Benitez, Aline do Nascimento; Martins, Felippe Danyel Cardoso; Mareze, Marcelle; Santos, Nelson Jessé Rodrigues; Ferreira, Fernanda Pinto; Martins, Camila Marinelli; Garcia, João Luis; Mitsuka-Breganó, Regina; Freire, Roberta Lemos; Biondo, Alexander Welker
2017-01-01
Toxoplasmosis, caused by Toxoplasma gondii, has traditionally been considered an important water and foodborne protozoonosis with important public health considerations. Although felids play a well-established role as definitive hosts, canine epidemiological involvement in the parasite’s life cycle remains questionable and controversial. The increasing closeness of the human-dog bond, particularly seen in urban settings, has been recognized as a historically unprecedented worldwide movement. Sharing daily lives in the same households, dogs may be exposed to similar associated risks of T. gondii infection as their owners. Thus, epidemiological assessment of the intra-domiciled environment, especially among socio-economically different human populations, may provide novel information regarding the actual role of dogs in animal and human toxoplasmosis. Despite spatial approaches being recently used for other water and foodborne diseases, no study has been conducted on the simultaneous spatial seroprevalence of both human and animal IgG anti-T. gondii antibodies in urban areas of major cities. Accordingly, the aim of the present study was to assess the seroprevalence and associated variables of Toxoplasma infection in owners and their domiciled dogs in Londrina, southern Brazil. Human and canine seroprevalence rates and variables associated with seroprevalence were investigated through representative random sampling among 564 households, which included 597 owners and 729 dogs. Overall, statistically significant differences between the seroprevalence of human and dog anti-T. gondii antibodies were found by Immunofluorescence Antibody Testing in 248/597 (41.54%) owners and 119/729 (16.32%) dogs. Through multiple analysis, significant concomitant variables for seropositivity of household individuals (people and dogs) were determined, including public sewer service, yard cleaning frequency, and having a dirty yard. Although no statistically significant multiple logistic model was observed among owners, univariate analysis detected associations with monthly income, soil contact, and occupation. Among dogs, the absence of other dogs and the absence of a dirty yard were concomitant significantly protective associated factors. Age differences between seropositive and seronegative individuals was significant only for human beings, with the median age of negative individuals significantly higher than positive individuals. Although no spatial clusters were identified for humans or residences, a significant cluster was identified for dogs. In conclusion, characteristics of urban toxoplasmosis may include significantly higher owner seroprevalence than their owned dogs, with canine seroprevalence directly associated with having more dogs and a dirty backyard, and spatial differences in both human and dog exposures. Although not a good indicator for human foodborne diseases, dogs may be a reliable sentinel for environmental infection. Moreover, such a holistic approach may provide crucial information for more focused prevention and monitoring programs, particularly in households with multiple pets and trash-filled backyards. PMID:28732033
Benitez, Aline do Nascimento; Martins, Felippe Danyel Cardoso; Mareze, Marcelle; Santos, Nelson Jessé Rodrigues; Ferreira, Fernanda Pinto; Martins, Camila Marinelli; Garcia, João Luis; Mitsuka-Breganó, Regina; Freire, Roberta Lemos; Biondo, Alexander Welker; Navarro, Italmar Teodorico
2017-01-01
Toxoplasmosis, caused by Toxoplasma gondii, has traditionally been considered an important water and foodborne protozoonosis with important public health considerations. Although felids play a well-established role as definitive hosts, canine epidemiological involvement in the parasite's life cycle remains questionable and controversial. The increasing closeness of the human-dog bond, particularly seen in urban settings, has been recognized as a historically unprecedented worldwide movement. Sharing daily lives in the same households, dogs may be exposed to similar associated risks of T. gondii infection as their owners. Thus, epidemiological assessment of the intra-domiciled environment, especially among socio-economically different human populations, may provide novel information regarding the actual role of dogs in animal and human toxoplasmosis. Despite spatial approaches being recently used for other water and foodborne diseases, no study has been conducted on the simultaneous spatial seroprevalence of both human and animal IgG anti-T. gondii antibodies in urban areas of major cities. Accordingly, the aim of the present study was to assess the seroprevalence and associated variables of Toxoplasma infection in owners and their domiciled dogs in Londrina, southern Brazil. Human and canine seroprevalence rates and variables associated with seroprevalence were investigated through representative random sampling among 564 households, which included 597 owners and 729 dogs. Overall, statistically significant differences between the seroprevalence of human and dog anti-T. gondii antibodies were found by Immunofluorescence Antibody Testing in 248/597 (41.54%) owners and 119/729 (16.32%) dogs. Through multiple analysis, significant concomitant variables for seropositivity of household individuals (people and dogs) were determined, including public sewer service, yard cleaning frequency, and having a dirty yard. Although no statistically significant multiple logistic model was observed among owners, univariate analysis detected associations with monthly income, soil contact, and occupation. Among dogs, the absence of other dogs and the absence of a dirty yard were concomitant significantly protective associated factors. Age differences between seropositive and seronegative individuals was significant only for human beings, with the median age of negative individuals significantly higher than positive individuals. Although no spatial clusters were identified for humans or residences, a significant cluster was identified for dogs. In conclusion, characteristics of urban toxoplasmosis may include significantly higher owner seroprevalence than their owned dogs, with canine seroprevalence directly associated with having more dogs and a dirty backyard, and spatial differences in both human and dog exposures. Although not a good indicator for human foodborne diseases, dogs may be a reliable sentinel for environmental infection. Moreover, such a holistic approach may provide crucial information for more focused prevention and monitoring programs, particularly in households with multiple pets and trash-filled backyards.
NASA Astrophysics Data System (ADS)
Kaskaoutis, D. G.; Nastos, P. T.; Kosmopoulos, P. G.; Kambezidis, H. D.; Kharol, S. K.; Badarinath, K. V. S.
2009-04-01
The Aerosol Index (AI) observations derived from the Ozone Monitoring Instrument (OMI) on board the Dutch-Finnish Aura satellite are analyzed over Greece covering the whole period of the OMI available data, from September 2004 to August 2008. The objective of this study was to analyze the spatial, seasonal and inter-annual variability of AI over Greece, detected by OMI during 2004-2008, with an evaluation of potential contributing factors, including precipitation and long-range transport (Sahara dust and European pollution). The AI data cover the whole Greek territory (34o-42oN, 20o-28oE) with a spatial resolution of 0.25o x 0.25o (13 km x 24 km at nadir). The results show significant spatial and temporal variability of the seasonal and monthly mean AI, with higher values at the southern parts and lower values over northern Greece. On the other hand, the AI values do not show significant differences between the western and eastern parts and, therefore, the longitude-averaged AI values can be utilized to reveal the strong south-to-north gradient. This gradient significantly changes from season to season being more intense in spring and summer, while it is minimized in winter. Another significant remark is the dominance of negative AI values over northern Greece in the summer months, indicating the presence of non-UV absorbing aerosols, such as sulfate and sea-salt particles. The great geographical extent of the negative AI values in the summer months is indicative of long-range transport of such aerosols. In contrast, the high positive AI values over south Greece, mainly in spring, clearly reveal the UV-absorbing nature of desert-dust particles affecting the area during Saharan dust events. Synoptically, the spatial distribution in OMI-AI values was related to the Saharan dust events mainly over southern Greece and to the trans-boundary-pollution transport, consisting mainly of sulfate particles, in northern Greece. The annual variation of spatial-averaged AI values shows a predominant spring maximum (0.424±0.329, in April) and a summer minimum due to the negative AI values observed over northern Greece. In the cold period of the year (November to February) the AI values are higher over northern Greece compared to those in south, while in the rest of the year the opposite exists. This study is first of its kind utilizing OMI-AI data and its spatial and temporal distribution over Greece and can be the basis for other studies in the future.
Supine breast US: how to correlate breast lesions from prone MRI
Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato A; Angelelli, Giuseppe
2016-01-01
Objective: To evaluate spatial displacement of breast lesions from prone MR to supine ultrasound positions, and to determine whether the degree of displacement may be associated with breast density and lesion histotype. Methods: 380 patients underwent breast MR and second-look ultrasound. The MR and ultrasound lesion location within the breast gland, distances from anatomical landmarks (nipple, skin and pectoral muscle), spatial displacement (distance differences from the landmarks within the same breast region) and region displacement (breast region change) were prospectively evaluated. Differences between MR and ultrasound measurements, association between the degree of spatial displacement and both breast density and lesion histotypes were calculated. Results: In 290/380 (76%) patients, 300 MR lesions were detected. 285/300 (95%) lesions were recognized on ultrasound. By comparing MR and ultrasound, spatial displacement occurred in 183/285 (64.3%) cases while region displacement in 102/285 (35.7%) cases with a circumferential movement along an arc centred on the nipple, having supine ultrasound as the reference standard. A significant association between the degree of lesion displacement and breast density was found (p < 0.00001) with a significant higher displacement in case of fatty breasts. No significant association between the degree of displacement and lesion histotype was found (p = 0.1). Conclusion: Lesion spatial displacement from MRI to ultrasound may occur especially in adipose breasts. Lesion–nipple distance and circumferential displacement from the nipple need to be considered for ultrasound lesion detection. Advances in knowledge: Second-look ultrasound breast lesion detection could be improved by calculating the lesion–nipple distance and considering that spatial displacement from MRI occurs with a circumferential movement along an arc centred on the nipple. PMID:26689093
Supine breast US: how to correlate breast lesions from prone MRI.
Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato A; Angelelli, Giuseppe; Moschetta, Marco
2016-01-01
To evaluate spatial displacement of breast lesions from prone MR to supine ultrasound positions, and to determine whether the degree of displacement may be associated with breast density and lesion histotype. 380 patients underwent breast MR and second-look ultrasound. The MR and ultrasound lesion location within the breast gland, distances from anatomical landmarks (nipple, skin and pectoral muscle), spatial displacement (distance differences from the landmarks within the same breast region) and region displacement (breast region change) were prospectively evaluated. Differences between MR and ultrasound measurements, association between the degree of spatial displacement and both breast density and lesion histotypes were calculated. In 290/380 (76%) patients, 300 MR lesions were detected. 285/300 (95%) lesions were recognized on ultrasound. By comparing MR and ultrasound, spatial displacement occurred in 183/285 (64.3%) cases while region displacement in 102/285 (35.7%) cases with a circumferential movement along an arc centred on the nipple, having supine ultrasound as the reference standard. A significant association between the degree of lesion displacement and breast density was found (p < 0.00001) with a significant higher displacement in case of fatty breasts. No significant association between the degree of displacement and lesion histotype was found (p = 0.1). Lesion spatial displacement from MRI to ultrasound may occur especially in adipose breasts. Lesion-nipple distance and circumferential displacement from the nipple need to be considered for ultrasound lesion detection. Second-look ultrasound breast lesion detection could be improved by calculating the lesion-nipple distance and considering that spatial displacement from MRI occurs with a circumferential movement along an arc centred on the nipple.
Bakhiet, Salaheldin Farah Attallah; Lynn, Richard
2015-12-01
Sex differences on the Wechsler Intelligence Scale for Children-III (WISC-III) are reported for children in Bahrain and the United States. The results for the two samples were consistent in showing no significant differences in Verbal, Performance, and Full Scale IQs, higher average scores by boys on the Block design and Mazes subtests of spatial ability, and higher average scores by girls on Coding. There was also greater variability in boys than in girls.
Nasehi, Mohammad; Alaghmandan-Motlagh, Niyousha; Ebrahimi-Ghiri, Mohaddeseh; Nami, Mohammad; Zarrindast, Mohammad-Reza
2017-10-01
Previous studies have postulated functional links between GABA and cannabinoid systems in the hippocampus. The aim of the present study was to investigate any possible interaction between these systems in spatial change and object novelty discrimination memory consolidation in the dorsal hippocampus (CA1 region) of NMRI mice. Assessment of the spatial change and object novelty discrimination memory function was carried out in a non-associative task. The experiment comprised mice exposure to an open field containing five objects followed by the examination of their reactivity to object displacement (spatial change) and object substitution (object novelty) after three sessions of habituation. Our results showed that the post-training intraperitoneal administration of the higher dose of ACPA (0.02 mg/kg) impaired both spatial change and novelty discrimination memory functions. Meanwhile, the higher dose of GABA-B receptor agonist, baclofen, impaired the spatial change memory by itself. Moreover, the post-training intra-CA1 microinjection of a subthreshold dose of baclofen increased the ACPA effect on spatial change and novelty discrimination memory at a lower and higher dose, respectively. On the other hand, the lower and higher but not mid-level doses of GABA-B receptor antagonist, phaclofen, could reverse memory deficits induced by ACPA. However, phaclofen at its mid-level dose impaired the novelty discrimination memory and whereas the higher dose impaired the spatial change memory. Based on our findings, GABA-B receptors in the CA1 region appear to modulate the ACPA-induced cannabinoid CB1 signaling upon spatial change and novelty discrimination memory functions.
Kim, Min-Kook; Daigle, John J
2011-09-01
This study examines the efficacy of management strategies implemented in 2000 to reduce visitor-induced vegetation impact and enhance vegetation recovery at the summit loop trail on Cadillac Mountain at Acadia National Park, Maine. Using single-spectral high-resolution remote sensing datasets captured in 1979, 2001, and 2007, pre-classification change detection analysis techniques were applied to measure fractional vegetation cover changes between the time periods. This popular sub-alpine summit with low-lying vegetation and attractive granite outcroppings experiences dispersed visitor use away from the designated trail, so three pre-defined spatial scales (small, 0-30 m; medium, 0-60 m; and large, 0-90 m) were examined in the vicinity of the summit loop trail with visitor use (experimental site) and a site chosen nearby in a relatively pristine undisturbed area (control site) with similar spatial scales. Results reveal significant changes in terms of rates of vegetation impact between 1979 and 2001 extending out to 90 m from the summit loop trail with no management at the site. No significant differences were detected among three spatial zones (inner, 0-30 m; middle, 30-60 m; and outer, 60-90 m) at the experimental site, but all were significantly higher rates of impact compared to similar spatial scales at the control site (all p < 0.001). In contrast, significant changes in rates of recovery between 2001 and 2007 were observed in the medium and large spatial scales at the experimental site under management as compared to the control site (all p < 0.05). Also during this later period a higher rate of recovery was observed in the outer zone as compared to the inner zone at the experimental site (p < 0.05). The overall study results suggest a trend in the desired direction for the site and visitor management strategies designed to reduce vegetation impact and enhance vegetation recovery at the summit loop trail of Cadillac Mountain since 2000. However, the vegetation recovery has been rather minimal and did not reach the level of cover observed during the 1979 time period. In addition, the advantages and some limitations of using remote sensing technologies are discussed in detecting vegetation change in this setting and potential application to other recreation settings.
Tian, Yingze; Liu, Jiayuan; Han, Suqin; Shi, Xurong; Shi, Guoliang; Xu, Hong; Yu, Haofei; Zhang, Yufen; Feng, Yinchang; Russell, Armistead G
2018-01-15
Day and night PM 2.5 samples were collected at coastal and inland stations in a megacity in China. Temporal, spatial, and directional characteristics of PM 2.5 concentrations and compositions were investigated. Average PM 2.5 concentration was higher at inland (153.28μg/m 3 ) than at coastal (114.46μg/m 3 ). PM 2.5 were significantly influenced by season and site but insignificantly by diurnal pattern. Sources were quantified by a two-way and a newly developed three-way receptor models conducted using ME2. Secondary sulfate and SOC (SS&SOC, 25% and 23%), coal and biomass burning (CC&BB, 20% and 21%), crustal and cement dust (CRD&CED, 19% and 21%), secondary nitrate (SN, 13% and 18%), vehicular exhaust (VE, 14% and 17%), and sea salt (SEA, 6% and 2%) were major sources for coastal and inland. Different mechanisms of heavy pollution were observed: heavy PM 2.5 caused by primary sources and secondary sources showed similar frequency at coast, while most of heavy pollutions at inland site might be associated with the elevation of secondary particles. For spatial characteristics, SS&SOC, CRD&CED contributions were higher at coastal; SN and VE presented higher fractions at inland. Higher SS&SOC, SN and CC&BB in winter might be attributed to intensive coal combustion for residential warming and to stable meteorological conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Fire structures pine serotiny at different scales.
Hernández-Serrano, Ana; Verdú, Miguel; González-Martínez, Santiago C; Pausas, Juli G
2013-12-01
Serotiny (delayed seed release with the consequent accumulation of a canopy seedbank) confers fitness benefits in environments with crown-fire regimes. Thus, we predicted that serotiny level should be higher in populations recurrently subjected to crown-fires than in populations where crown-fires are rare. In addition, under a high frequency of fires, space and resources are recurrently available, permitting recruitment around each mother to follow the seed rain shadow. Thus, we also predicted spatial aggregation of serotiny within populations. We compared serotiny, considering both the proportion and the age of serotinous cones, in populations living in contrasting fire regimes for two iconic Mediterranean pine species (Pinus halepensis, P. pinaster). We framed our results by quantitatively comparing the strength of the fire-serotiny relationship with previous studies worldwide. For the two species, populations living under high crown-fire recurrence regimes had a higher serotiny level than those populations where the recurrence of crown-fires was low. For P. halepensis (the species with higher serotiny), populations in high fire recurrence regimes had higher fine-scale spatial aggregation of serotiny than those inhabiting low fire recurrence systems. The strength of the observed fire-serotiny relationship in P. halepensis is among the highest in published literature. Fire regime shapes serotiny level among populations, and in populations with high serotiny, recurrent fires maintain a significant spatial structure for this trait. Consequently, fire has long-term evolutionary implications at different scales, emphasizing its prominent role in shaping the ecology of pines.
Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.
Liu, Da; Li, Jianxun
2016-12-16
Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.
Jia, Zhenyi; Zhou, Shenglu; Su, Quanlong; Yi, Haomin; Wang, Junxiao
2017-12-26
Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution.
NASA Astrophysics Data System (ADS)
Henry, Mary Catherine
The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.
The Effect of Virtual Reality Training on Unilateral Spatial Neglect in Stroke Patients
Kim, Yong Mi; Yun, Gi Jeong; Song, Young Jin; Young, Han Eun
2011-01-01
Objective To investigate the effect of virtual reality training on unilateral spatial neglect in stroke patients. Method Twenty-four stroke patients (14 males and 10 females, mean age=64.7) who had unilateral spatial neglect as a result of right hemisphere stroke were recruited. All patients were randomly assigned to either the virtual reality (VR) group (n=12) or the control group (n=12). The VR group received VR training, which stimulated the left side of their bodies. The control group received conventional neglect therapy such as visual scanning training. Both groups received therapy for 30 minutes a day, five days per week for three weeks. Outcome measurements included star cancellation test, line bisection test, Catherine Bergego scale (CBS), and the Korean version of modified Barthel index (K-MBI). These measurements were taken before and after treatment. Results There were no significant differences in the baseline characteristics and initial values between the two groups. The changes in star cancellation test results and CBS in the VR group were significantly higher than those of the control group after treatment. The changes in line bisection test score and the K-MBI in the VR group were not statistically significant. Conclusion This study suggests that virtual reality training may be a beneficial therapeutic technique on unilateral spatial neglect in stroke patients. PMID:22506138
NASA Astrophysics Data System (ADS)
Luo, Kai; Li, Runkui; Li, Wenjing; Wang, Zongshuang; Ma, Xinming; Zhang, Ruiming; Fang, Xin; Wu, Zhenglai; Cao, Yang; Xu, Qun
2016-12-01
The exploration of spatial variation and predictors of the effects of nitrogen dioxide (NO2) on fatal health outcomes is still sparse. In a multilevel case-crossover study in Beijing, China, we used mixed Cox proportional hazard model to examine the citywide effects and conditional logistic regression to evaluate the district-specific effects of NO2 on cardiovascular mortality. District-specific predictors that could be related to the spatial pattern of NO2 effects were examined by robust regression models. We found that a 10 μg/m3 increase in daily mean NO2 concentration was associated with a 1.89% [95% confidence interval (CI): 1.33-2.45%], 2.07% (95% CI: 1.23-2.91%) and 1.95% (95% CI: 1.16-2.72%) increase in daily total cardiovascular (lag03), cerebrovascular (lag03) and ischemic heart disease (lag02) mortality, respectively. For spatial variation of NO2 effects across 16 districts, significant effects were only observed in 5, 4 and 2 districts for the above three outcomes, respectively. Generally, NO2 was likely having greater adverse effects on districts with larger population, higher consumption of coal and more civilian vehicles. Our results suggested independent and spatially varied effects of NO2 on total and subcategory cardiovascular mortalities. The identification of districts with higher risk can provide important insights for reducing NO2 related health hazards.
Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity
Liang, Yuting; Wu, Liyou; Clark, Ian M.; ...
2015-04-07
Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receivingmore » nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. These results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on short-term perturbations, and hence, the results observed could represent transient responses. This study examined the spatial patterns of microbial communities in response to different fertilization regimes at the Rothamsted Research Experimental Station, which has become an invaluable resource for ecologists, environmentalists, and soil scientists. The current study is the first showing that long-term fertilization has dramatic impacts on the spatial scaling of microbial communities. By identifying the spatial patterns in response to long-term fertilization and their underlying mechanisms, this study makes fundamental contributions to predictive understanding of microbial biogeography.« less
Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yuting; Wu, Liyou; Clark, Ian M.
Spatial scaling is a critical issue in ecology, but how anthropogenic activities like fertilization affect spatial scaling is poorly understood, especially for microbial communities. Here, we determined the effects of long-term fertilization on the spatial scaling of microbial functional diversity and its relationships to plant diversity in the 150-year-old Park Grass Experiment, the oldest continuous grassland experiment in the world. Nested samples were taken from plots with contrasting inorganic fertilization regimes, and community DNAs were analyzed using the GeoChip-based functional gene array. The slopes of microbial gene-area relationships (GARs) and plant species-area relationships (SARs) were estimated in a plot receivingmore » nitrogen (N), phosphorus (P), and potassium (K) and a control plot without fertilization. Our results indicated that long-term inorganic fertilization significantly increased both microbial GARs and plant SARs. Microbial spatial turnover rates (i.e., z values) were less than 0.1 and were significantly higher in the fertilized plot (0.0583) than in the control plot (0.0449) (P < 0.0001). The z values also varied significantly with different functional genes involved in carbon (C), N, P, and sulfur (S) cycling and with various phylogenetic groups (archaea, bacteria, and fungi). Similarly, the plant SARs increased significantly (P < 0.0001), from 0.225 in the control plot to 0.419 in the fertilized plot. Soil fertilization, plant diversity, and spatial distance had roughly equal contributions in shaping the microbial functional community structure, while soil geochemical variables contributed less. These results indicated that long-term agricultural practice could alter the spatial scaling of microbial biodiversity. Determining the spatial scaling of microbial biodiversity and its response to human activities is important but challenging in microbial ecology. Most studies to date are based on different sites that may not be truly comparable or on short-term perturbations, and hence, the results observed could represent transient responses. This study examined the spatial patterns of microbial communities in response to different fertilization regimes at the Rothamsted Research Experimental Station, which has become an invaluable resource for ecologists, environmentalists, and soil scientists. The current study is the first showing that long-term fertilization has dramatic impacts on the spatial scaling of microbial communities. By identifying the spatial patterns in response to long-term fertilization and their underlying mechanisms, this study makes fundamental contributions to predictive understanding of microbial biogeography.« less
The spatial distribution of underage tobacco sales in Los Angeles.
Lipton, Robert; Banerjee, Aniruddha; Levy, David; Manzanilla, Nora; Cochrane, Michelle
2008-01-01
Underage tobacco sales is considered a serious public health problem in Los Angeles. Anecdotally, rates have been thought to be quite high. In this paper, using spatial statistical techniques, we describe underage tobacco sales, identifying areas with high levels of sales and hot spots controlling for sociodemographic measures. Six hundred eighty-nine tobacco outlets were investigated throughout the city of Los Angeles in 2001. We consider the factors that explain vendor location of illegal sales of tobacco to underage youth and focus on those areas with especially high rates of illegal sales when controlling for other independent measures. Using data from the census, the LA City Attorney's Office, and public records on school locations in Los Angeles, we employ general least-squares (GLS) estimators in order to avoid biased estimates. vendor location of underage tobacco compliance checks, violators, and nonviolators. Underage tobacco sales in Los Angeles were very high (33.5%) for the entire city in 2001. In many zip codes this rate is considerably higher (60%-100%). When conducting spatial modeling, lower income and ethnicity were strongly associated with increases in underage tobacco sales. Hotspot areas of underage tobacco sales also had much lower mean family income and a much higher percentage of foreign born and greater population density. Spatial techniques were used to better identify areas where vendors sell tobacco to underage youth. Lower income areas were much more likely to both have higher rates of underage tobacco sales and to be a hot spot for such sales. Population density is also significantly associated with underage tobacco sales. The study's limitations are noted.
Li, Jiabao; Shen, Zehao; Li, Chaonan; Kou, Yongping; Wang, Yansu; Tu, Bo; Zhang, Shiheng; Li, Xiangzhen
2018-01-01
Ecological understandings of soil bacterial community succession and assembly mechanism along elevational gradients in mountains remain not well understood. Here, by employing the high-throughput sequencing technique, we systematically examined soil bacterial diversity patterns, the driving factors, and community assembly mechanisms along the elevational gradients of 1800–4100 m on Gongga Mountain in China. Soil bacterial diversity showed an extraordinary stair-step pattern along the elevational gradients. There was an abrupt decrease of bacterial diversity between 2600 and 2800 m, while no significant change at either lower (1800–2600 m) or higher (2800–4100 m) elevations, which coincided with the variation in soil pH. In addition, the community structure differed significantly between the lower and higher elevations, which could be primarily attributed to shifts in soil pH and vegetation types. Although there was no direct effect of MAP and MAT on bacterial community structure, our partial least squares path modeling analysis indicated that bacterial communities were indirectly influenced by climate via the effect on vegetation and the derived effect on soil properties. As for bacterial community assembly mechanisms, the null model analysis suggested that environmental filtering played an overwhelming role in the assembly of bacterial communities in this region. In addition, variation partition analysis indicated that, at lower elevations, environmental attributes explained much larger fraction of the β-deviation than spatial attributes, while spatial attributes increased their contributions at higher elevations. Our results highlight the importance of environmental filtering, as well as elevation-related spatial attributes in structuring soil bacterial communities in mountain ecosystems. PMID:29636740
Allen, Lauren K; Eagleson, Roy; de Ribaupierre, Sandrine
2016-10-01
Neuroanatomy is one of the most challenging subjects in anatomy, and novice students often experience difficulty grasping the complex three-dimensional (3D) spatial relationships. This study evaluated a 3D neuroanatomy e-learning module, as well as the relationship between spatial abilities and students' knowledge in neuroanatomy. The study's cross-over design divided the participants into two groups, each starting with tests for anatomy knowledge and spatial ability, followed by access to either the 3D online learning module or the gross anatomy laboratory. Participants completed a second knowledge test prior to accessing the other learning modality. Participants in both groups scored significantly higher on Quiz 1 than on the Pretest knowledge assessment (W = 47, P < 0.01; W = 30, P < 0.01). Students who initially accessed the 3D online resources scored significantly better on the Quiz 1 than students who accessed the gross anatomy resources (W = 397.5, P < 0.01). Scores significantly improved on Quiz 2 for participants who accessed the 3D learning module following exposure to the cadaveric resources (W = 94, P < 0.01). After exposure to both learning modalities, there were no significant differences between groups. Significant positive correlations were found between participants' spatial ability score and their performance on the Pretest, Quiz 1, and Quiz 2 assessments (r = 0.22, P = 0.04; r = 0.25, P = 0.02; r = 0.26, P = 0.02). These preliminary results found students appreciated working with the 3D e-learning module, and their learning outcomes significantly improved after accessing the resource. Anat Sci Educ 9: 431-439. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
NASA Astrophysics Data System (ADS)
Gao, Tian; Qiu, Ling; Hammer, Mårten; Gunnarsson, Allan
2012-02-01
Temporal and spatial vegetation structure has impact on biodiversity qualities. Yet, current schemes of biotope mapping do only to a limited extend incorporate these factors in the mapping. The purpose of this study is to evaluate the application of a modified biotope mapping scheme that includes temporal and spatial vegetation structure. A refined scheme was developed based on a biotope classification, and applied to a green structure system in Helsingborg city in southern Sweden. It includes four parameters of vegetation structure: continuity of forest cover, age of dominant trees, horizontal structure, and vertical structure. The major green structure sites were determined by interpretation of panchromatic aerial photographs assisted with a field survey. A set of biotope maps was constructed on the basis of each level of modified classification. An evaluation of the scheme included two aspects in particular: comparison of species richness between long-continuity and short-continuity forests based on identification of woodland continuity using ancient woodland indicators (AWI) species and related historical documents, and spatial distribution of animals in the green space in relation to vegetation structure. The results indicate that (1) the relationship between forest continuity: according to verification of historical documents, the richness of AWI species was higher in long-continuity forests; Simpson's diversity was significantly different between long- and short-continuity forests; the total species richness and Shannon's diversity were much higher in long-continuity forests shown a very significant difference. (2) The spatial vegetation structure and age of stands influence the richness and abundance of the avian fauna and rabbits, and distance to the nearest tree and shrub was a strong determinant of presence for these animal groups. It is concluded that continuity of forest cover, age of dominant trees, horizontal and vertical structures of vegetation should now be included in urban biotope classifications.
Li, Meng-Jiao; Ge, Miao; Wang, Cong-Xia; Cen, Min-Yi; Jiang, Ji-Lin; He, Jin-Wei; Lin, Qian-Yi; Liu, Xin
2016-08-20
To analyze the relationship between the reference values of fibrinogen (FIB) in healthy Chinese adults and geographical factors to provide scientific evidences for establishing the uniform standard. The reference values of FIB of 10701 Chinese healthy adults from 103 cities were collected to investigate their relationship with 18 geographical factors including spatial index, terrain index, climate index, and soil index. Geographical factors that significantly correlated with the reference values were selected for constructing the BP neural network model. The spatial distribution map of the reference value of FIB of healthy Chinese adults was fitted by disjunctive kriging interpolation. We used the 5-layer neural network and selected 2000 times of training covering 11 hidden layers to build the simulation rule for simulating the relationship between FIB and geographical environmental factors using the MATLAB software. s The reference value of FIB in healthy Chinese adults was significantly correlated with the latitude, sunshine duration, annual average temperature, annual average relative humidity, annual precipitation, annual range of air temperature, average annual soil gravel content, and soil cation exchange capacity (silt). The artificial neural networks were created to analyze the simulation of the selected indicators of geographical factors. The spatial distribution map of the reference values of FIB in healthy Chinese adults showed a distribution pattern that FIB levels were higher in the South and lower in the North, and higher in the East and lower in the West. When the geographical factors of a certain area are known, the reference values of FIB in healthy Chinese adults can be obtained by establishing the neural network mode or plotting the spatial distribution map.
Bak, Jia; Pyeon, Hae-In; Seok, Jin-I; Choi, Yun-Sik
2017-03-01
Y maze has been used to test spatial working memory in rodents. To this end, the percentage of spontaneous alternation has been employed. Alternation indicates sequential entries into all three arms; e.g., when an animal visits all three arms clockwise or counterclockwise sequentially, alternation is achieved. Interestingly, animals have a tendency to rotate or turn to a preferred side. Thus, when an animal has a high rotation preference, this may influence their alternation behavior. Here, we have generated a new analytical method, termed entropy of spontaneous alternation, to offset the effect of rotation preference on Y maze. To validate the entropy of spontaneous alternation, we employed a free rotation test using a cylinder and a spatial working memory test on Y maze. We identified that mice showed 65.1% rotation preference on average. Importantly, the percentage of spontaneous alternation in the high preference group (more than 70% rotation to a preferred side) was significantly higher than that in the no preference group (<55%). In addition, there was a clear correlation between rotation preference on cylinder and turning preference on Y maze. On the other hand, this potential leverage effect that arose from rotation preference disappeared when the animal behavior on Y maze was analyzed with the entropy of spontaneous alternation. Further, entropy of spontaneous alternation significantly determined the loss of spatial working memory by scopolamine administration. Combined, these data indicate that the entropy of spontaneous alternation provides higher credibility when spatial working memory is evaluated using Y maze. Copyright © 2016 Elsevier B.V. All rights reserved.
Targeting regional pediatric congenital hearing loss using a spatial scan statistic.
Bush, Matthew L; Christian, Warren Jay; Bianchi, Kristin; Lester, Cathy; Schoenberg, Nancy
2015-01-01
Congenital hearing loss is a common problem, and timely identification and intervention are paramount for language development. Patients from rural regions may have many barriers to timely diagnosis and intervention. The purpose of this study was to examine the spatial and hospital-based distribution of failed infant hearing screening testing and pediatric congenital hearing loss throughout Kentucky. Data on live births and audiological reporting of infant hearing loss results in Kentucky from 2009 to 2011 were analyzed. The authors used spatial scan statistics to identify high-rate clusters of failed newborn screening tests and permanent congenital hearing loss (PCHL), based on the total number of live births per county. The authors conducted further analyses on PCHL and failed newborn hearing screening tests, based on birth hospital data and method of screening. The authors observed four statistically significant (p < 0.05) high-rate clusters with failed newborn hearing screenings in Kentucky, including two in the Appalachian region. Hospitals using two-stage otoacoustic emission testing demonstrated higher rates of failed screening (p = 0.009) than those using two-stage automated auditory brainstem response testing. A significant cluster of high rate of PCHL was observed in Western Kentucky. Five of the 54 birthing hospitals were found to have higher relative risk of PCHL, and two of those hospitals are located in a very rural region of Western Kentucky within the cluster. This spatial analysis in children in Kentucky has identified specific regions throughout the state with high rates of congenital hearing loss and failed newborn hearing screening tests. Further investigation regarding causative factors is warranted. This method of analysis can be useful in the setting of hearing health disparities to focus efforts on regions facing high incidence of congenital hearing loss.
Liu, Xiaoqin; Sun, Yanchao
2017-01-01
The objective of this study was to investigate the effects of long-term mental abacus calculation training (MACT) on children's spatial attention orientation. Fifteen children with intensive MACT (MACT group) and 15 children without MACT (non-MACT group) were selected. The two groups of children were matched in age, sex, handedness, and academic grade. The participants were tested with a Posner spatial cueing task while their neural activities were recorded with a 32-channel electroencephalogram system. The participants' behavior scores (reaction time and accuracy) as well as early components of event-related potential (ERP) during the tests were statistically analyzed. The behavioral scores showed no significant difference between the two groups of children, although the MACT group tended to have a shorter reaction time. The early ERP components showed that under valid cueing condition, the MACT group had significantly higher P1 amplitude [F(1, 28)=5.06, P<0.05, effective size=0.72] and lower N1 amplitude [F(1, 28)=6.05, P<0.05, effective size=0.82] in the occipital region compared with the non-MACT group. In the centrofrontal brain region, the MACT group had lower N1 amplitude [F(1, 28)=4.89, P<0.05, effect size=0.70] and longer N1 latency [F(1, 28)=6.26, P<0.05, effect size=0.80] than the non-MACT group. In particular, the MACT group also showed a higher centrofrontal P2 amplitude in the right hemisphere [F(1, 28)=4.82, P<0.05, effect size 0.81] compared with the left hemisphere and the middle location. MACT enhances the children's spatial attention orientation, which can be detected in the early components of ERP.
Mapping the Distribution of Anthrax in Mainland China, 2005-2013.
Chen, Wan-Jun; Lai, Sheng-Jie; Yang, Yang; Liu, Kun; Li, Xin-Lou; Yao, Hong-Wu; Li, Yu; Zhou, Hang; Wang, Li-Ping; Mu, Di; Yin, Wen-Wu; Fang, Li-Qun; Yu, Hong-Jie; Cao, Wu-Chun
2016-04-01
Anthrax, a global re-emerging zoonotic disease in recent years is enzootic in mainland China. Despite its significance to the public health, spatiotemporal distributions of the disease in human and livestock and its potential driving factors remain poorly understood. Using the national surveillance data of human and livestock anthrax from 2005 to 2013, we conducted a retrospective epidemiological study and risk assessment of anthrax in mainland China. The potential determinants for the temporal and spatial distributions of human anthrax were also explored. We found that the majority of human anthrax cases were located in six provinces in western and northeastern China, and five clustering areas with higher incidences were identified. The disease mostly peaked in July or August, and males aged 30-49 years had higher incidence than other subgroups. Monthly incidence of human anthrax was positively correlated with monthly average temperature, relative humidity and monthly accumulative rainfall with lags of 0-2 months. A boosted regression trees (BRT) model at the county level reveals that densities of cattle, sheep and human, coverage of meadow, coverage of typical grassland, elevation, coverage of topsoil with pH > 6.1, concentration of organic carbon in topsoil, and the meteorological factors have contributed substantially to the spatial distribution of the disease. The model-predicted probability of occurrence of human cases in mainland China was mapped at the county level. Anthrax in China was characterized by significant seasonality and spatial clustering. The spatial distribution of human anthrax was largely driven by livestock husbandry, human density, land cover, elevation, topsoil features and climate. Enhanced surveillance and intervention for livestock and human anthrax in the high-risk regions, particularly on the Qinghai-Tibetan Plateau, is the key to the prevention of human infections.
Rangeland degradation in savannas of South Africa: spatial patterns of soil and vegetation
NASA Astrophysics Data System (ADS)
Sandhage-Hofmann, Alexandra; Löffler, Jörg; du Preez, Chris; Kotzé, Elmarie; Weijers, Stef; Wundram, Dirk; Zacharias, Maximilan; Amelung, Wulf
2017-04-01
Extensive bush encroachment by Acacia mellifera and associated woody species at semi-arid and arid sites are the most notable forms of rangeland degradation in savannas of South Africa. Concerns are growing over the threat of suppression and loss of nutritious perennial grass species. Grazing and different rangeland management systems (communal and freehold) are considered to be of major importance for degradation, but the process of encroachment is not restricted to communal land. A vegetation change is mostly accompanied by changes in soil properties, where soils in savanna systems can profit from woody species due to litter fall, root distribution, shadow and animal resting time. Savannas are very heterogeneous systems with high spatial variation of patches with wood, herbaceous species and bare ground. We hypothesized that the spatial patterns of soil properties in South Africás rangelands are controlled by present or past vegetation, modulated by the tenure systems with higher rangeland degradation in communal areas. To test this, we sampled soils at communal and commercial land in the Kuruman area of South Africa with the following design: three farms per tenure system, 6 randomly chosen plots (100x100m) per farm, and 25 soil samples (0-10 cm) per plot, each in a 5x5m sampling area. At every sampling point, information of overlying vegetation was recorded (species or bare soil, canopy size, height). For each sampling area, if present, trees/ shrubs were sampled and their ages estimated through the counting of annual growth rings. For each plot, high resolution UAV aerial photos were taken to evaluate the extent of bush encroachment. Analyses involved main physical and chemical soil parameters and isotopic analyses. The results of a rough aerial image classification (grass, woody species, bare ground) revealed significant differences between the tenure systems with higher coverage of bare ground and shrubs at communal farms, and higher grass cover at commercial farms. The tenure systems had no differences in main texture classes of the soils, but significant differences in the composition of the sand fraction, with higher levels of fine sand and lower levels of coarse sand in communal farms. The chemical soil properties showed a high variability both within and between the farms, with much higher variability within communal than commercial farms. Additionally, concentrations of nitrogen, carbon, calcium and pH were significant higher in communal farms. Isotopic analyses in soils showed significant differences for 15N with higher levels in commercial farms. Different photosynthetic pathways are responsible for differences found in 13C values, with higher levels (-16-18‰) in C4-grassland and lower values (-22-26‰) in soils under Acacia (C3). We found relationships between soil properties and species or bare ground, where differences in texture likely interact with both, vegetation cover and soil properties.
Li, Weibin; Bai, Zhen; Jin, Changjie; Zhang, Xinzhong; Guan, Dexin; Wang, Anzhi; Yuan, Fenghui; Wu, Jiabing
2017-07-15
Soil respiration is the largest terrestrial carbon flux into the atmosphere, and different tree species could directly influence root derived respiration and indirectly regulate soil respiration rates by altering soil chemical and microbial properties. In this study, we assessed the small scale spatial heterogeneity of soil respiration and the microbial community below the canopy of three dominant tree species (Korean pine (Pinus koraiensis), Mongolian oak (Quercus mongolica), and Manchuria ash (Fraxinus mandshurica)) in a temperate mixed forest in Northeast China. Soil respiration differed significantly during several months and increased in the order of oak
Engineers' Spatial Orientation Ability Development at the European Space for Higher Education
ERIC Educational Resources Information Center
Carrera, C. Carbonell; Perez, J. L. Saorin; Cantero, J. de la Torre; Gonzalez, A. M. Marrero
2011-01-01
The aim of this research was to determine whether the new geographic information technologies, included as teaching objectives in the new European Space for Higher Education Engineering degrees, develop spatial abilities. Bearing this in mind, a first year seminar using the INSPIRE Geoportal (Infrastructure for Spatial Information in Europe) was…
NASA Astrophysics Data System (ADS)
Ossés de Eicker, Margarita; Zah, Rainer; Triviño, Rubén; Hurni, Hans
The spatial accuracy of top-down traffic emission inventory maps obtained with a simplified disaggregation method based on street density was assessed in seven mid-sized Chilean cities. Each top-down emission inventory map was compared against a reference, namely a more accurate bottom-up emission inventory map from the same study area. The comparison was carried out using a combination of numerical indicators and visual interpretation. Statistically significant differences were found between the seven cities with regard to the spatial accuracy of their top-down emission inventory maps. In compact cities with a simple street network and a single center, a good accuracy of the spatial distribution of emissions was achieved with correlation values>0.8 with respect to the bottom-up emission inventory of reference. In contrast, the simplified disaggregation method is not suitable for complex cities consisting of interconnected nuclei, resulting in correlation values<0.5. Although top-down disaggregation of traffic emissions generally exhibits low accuracy, the accuracy is significantly higher in compact cities and might be further improved by applying a correction factor for the city center. Therefore, the method can be used by local environmental authorities in cities with limited resources and with little knowledge on the pollution situation to get an overview on the spatial distribution of the emissions generated by traffic activities.
Spatial Growth of Informal Settlements in Delhi; An Application of Remote Sensing
NASA Astrophysics Data System (ADS)
Prakash, Mihir
Slum development and growth is quite popular in developing countries. Many studies have been done on what social and economic factors are the drivers in establishment of informal settlements at a single cross-section of time, however limited work has been done in studying their spatial growth patterns over time. This study attempts to study a sample of 30 informal settlements that exist in the National Capital Territory of India over a period of 40 years and identify relationships between the spatial growth rates and relevant factors identified in previous socio-economic studies of slums using advanced statistical methods. One of the key contributions of this paper is indicating the usefulness of satellite imagery or remote sensing data in spatial-longitudinal studies. This research utilizes readily available LANDSAT images to recognize the decadal spatial growth from 1970 to 2000, and also in extension, calculate the BI (transformed NDVI) as a proxy for the intensity of development for the settlements. A series of regression models were run after processing the data, and the levels of significance were then studied and compared to see which relationships indicated the highest levels of significance. It was observed that the change in BI had a higher strength of relationships with the change in independent variables than the settlement area growth. Also, logarithmic and cubic models showed the highest R-Square values than any other tested models.
Li, Xiaojuan; Pai, Alex; Blumenkrantz, Gabrielle; Carballido-Gamio, Julio; Link, Thomas; Ma, Benjamin; Ries, Michael; Majumdar, Sharmila
2009-01-01
T1ρ and T2 relaxation time constants have been proposed to probe biochemical changes in osteoarthritic cartilage. This study aimed to evaluate the spatial correlation and distribution of T1ρ and T2 values in osteoarthritic cartilage. Ten patients with osteoarthritis (OA) and 10 controls were studied at 3T. The spatial correlation of T1ρ and T2 values was investigated using Z-scores. The spatial variation of T1ρ and T2 values in patellar cartilage was studied in different cartilage layers. The distribution of these relaxation time constants was measured using texture analysis parameters based on gray-level co-occurrence matrices (GLCM). The mean Z-scores for T1ρ and T2 values were significantly higher in OA patients vs. controls (P < 0.05). Regional correlation coefficients of T1ρ and T2 Z-scores showed a large range in both controls and OA patients (0.2– 0.7). OA patients had significantly greater GLCM contrast and entropy of T1ρ values than controls (P < 0.05). In summary, T1ρ and T2 values are not only increased but are also more heterogeneous in osteoarthritic cartilage. T1ρ and T2 values show different spatial distributions and may provide complementary information regarding cartilage degeneration in OA. PMID:19319904
Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming
2015-01-01
The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain.
Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming
2015-01-01
The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain. PMID:26098548
A Spatial and Temporal Frequency Based Figure-Ground Processor
NASA Astrophysics Data System (ADS)
Weisstein, Namoi; Wong, Eva
1990-03-01
Recent findings in visual psychophysics have shown that figure-ground perception can be specified by the spatial and temporal response characteristics of the visual system. Higher spatial frequency regions of the visual field are perceived as figure and lower spatial frequency regions are perceived as background/ (Klymenko and Weisstein, 1986, Wong and Weisstein, 1989). Higher temporal frequency regions are seen as background and lower temporal frequency regions are seen as figure (Wong and Weisstein, 1987, Klymenko, Weisstein, Topolski, and Hsieh, 1988). Thus, high spatial and low temporal frequencies appear to be associated with figure and low spatial and high temporal frequencies appear to be associated with background.
Spatial and seasonal variation of particulate matter (PM10 and PM2.5) in Middle Eastern classrooms
NASA Astrophysics Data System (ADS)
Elbayoumi, Maher; Ramli, Nor Azam; Md Yusof, Noor Faizah Fitri; Al Madhoun, Wesam
2013-12-01
Monitoring of PM10 and PM2.5 particularly in school microenvironments is extremely important due to their impact on the global burden of disease. PM10 and PM2.5 levels were monitored inside and outside the classrooms of twelve naturally ventilated schools located in Gaza strip, Palestine. The measurements were carried out using hand held particulate matter instrument during fall, winter and spring seasons from October 2011 to May 2012. The average concentration of indoor PM10 was 349.49 (±196.57) μg m-3 and for PM2.5 was 103.96 (±84.96) μg m-3. The indoor/outdoor ratios for PM10 and PM2.5 were found to be much greater than 1.00 for all case study schools due to resuspension of deposited particles from the floors. Furthermore, strong correlations were found between indoor-outdoor PM10 and PM2.5. The variations of PM10 and PM2.5 concentrations were significant for the three seasons. During winter, the mean indoor PM10 was 1.30 and 2.50 times higher than fall and spring concentrations respectively. Meanwhile, PM2.5 concentration in winter was 3.00 times higher than fall and spring concentrations. In relation to spatial variation, the concentration of PM10 in the lower storey level was significantly higher than the classrooms located in the higher storey level.
ERIC Educational Resources Information Center
Hooghe, Marc; Vanhoutte, Bram
2011-01-01
An ecological study of age-standardized suicide rates in Belgian communities (1996-2005) was conducted using spatial regression techniques. Community characteristics were significantly related to suicide rates. There was mixed support for the social integration perspective: single person households were associated with higher suicide rates, while…
Neto, Félix; Furnham, Adrian
2011-05-01
In this study, 148 Portuguese adults (M = 45.4 years) rated themselves and their children on overall IQ and on H. Gardner (1999) 10 intelligence subtypes. Men's self-estimates were not significantly higher than women's on any of the 11 estimates. The results were in line with previous studies, in that both sexes rated the overall intelligence of their first male children higher than the first female children. Higher parental IQ self-estimates correspond with higher IQ estimates for children. Globally parents estimated that their sons had significantly higher IQs than their daughters. In particular, parents rated their son's spiritual intelligence higher than those of their daughters. Children's age and sex, and parents' age and sex were all non-significant predictors of the overall "g" score estimates of the first two children. Participants thought verbal, mathematical, and spatial intelligence were the best indicators of the overall intelligence for self and children. There were no sex differences in experience of, or attitudes towards, intelligence testing. Results are discussed in terms of the growing literature in the self-estimates of intelligence, as well as limitations of that approach.
Wong, Man Sing; Ho, Hung Chak; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Chan, Ta-Chien
2017-07-24
Dust events have long been recognized to be associated with a higher mortality risk. However, no study has investigated how prolonged dust events affect the spatial variability of mortality across districts in a downwind city. In this study, we applied a spatial regression approach to estimate the district-level mortality during two extreme dust events in Hong Kong. We compared spatial and non-spatial models to evaluate the ability of each regression to estimate mortality. We also compared prolonged dust events with non-dust events to determine the influences of community factors on mortality across the city. The density of a built environment (estimated by the sky view factor) had positive association with excess mortality in each district, while socioeconomic deprivation contributed by lower income and lower education induced higher mortality impact in each territory planning unit during a prolonged dust event. Based on the model comparison, spatial error modelling with the 1st order of queen contiguity consistently outperformed other models. The high-risk areas with higher increase in mortality were located in an urban high-density environment with higher socioeconomic deprivation. Our model design shows the ability to predict spatial variability of mortality risk during an extreme weather event that is not able to be estimated based on traditional time-series analysis or ecological studies. Our spatial protocol can be used for public health surveillance, sustainable planning and disaster preparation when relevant data are available.
SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).
Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T
2016-01-01
In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity.
Jang, Dae-Hyun; Kim, Min-Wook; Park, Kyoung Ha; Lee, Jae Woo
2015-03-01
The purpose of the present study was to investigate the relationship between Korean language-specific dysgraphia and unilateral spatial neglect in 31 right brain stroke patients. All patients were tested for writing errors in spontaneous writing, dictation, and copying tests. The dysgraphia was classified into visuospatial omission, visuospatial destruction, syllabic tilting, stroke omission, stroke addition, and stroke tilting. Twenty-three (77.4%) of the 31 patients made dysgraphia and 18 (58.1%) demonstrated unilateral spatial neglect. The visuospatial omission was the most common dysgraphia followed by stroke addition and omission errors. The highest number of errors was made in the copying and the least was in the spontaneous writing test. Patients with unilateral spatial neglect made a significantly higher number of dysgraphia in the copying test than those without. We identified specific dysgraphia features such as a right side space omission and a vertical stroke addition in Korean right brain stroke patients. In conclusion, unilateral spatial neglect influences copy writing system of Korean language in patients with right brain stroke.
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...
2017-06-18
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai
2013-01-01
Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p < 0.05). The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
2014-01-01
Background This study aims to suggest an approach that integrates multilevel models and eigenvector spatial filtering methods and apply it to a case study of self-rated health status in South Korea. In many previous health-related studies, multilevel models and single-level spatial regression are used separately. However, the two methods should be used in conjunction because the objectives of both approaches are important in health-related analyses. The multilevel model enables the simultaneous analysis of both individual and neighborhood factors influencing health outcomes. However, the results of conventional multilevel models are potentially misleading when spatial dependency across neighborhoods exists. Spatial dependency in health-related data indicates that health outcomes in nearby neighborhoods are more similar to each other than those in distant neighborhoods. Spatial regression models can address this problem by modeling spatial dependency. This study explores the possibility of integrating a multilevel model and eigenvector spatial filtering, an advanced spatial regression for addressing spatial dependency in datasets. Methods In this spatially filtered multilevel model, eigenvectors function as additional explanatory variables accounting for unexplained spatial dependency within the neighborhood-level error. The specification addresses the inability of conventional multilevel models to account for spatial dependency, and thereby, generates more robust outputs. Results The findings show that sex, employment status, monthly household income, and perceived levels of stress are significantly associated with self-rated health status. Residents living in neighborhoods with low deprivation and a high doctor-to-resident ratio tend to report higher health status. The spatially filtered multilevel model provides unbiased estimations and improves the explanatory power of the model compared to conventional multilevel models although there are no changes in the signs of parameters and the significance levels between the two models in this case study. Conclusions The integrated approach proposed in this paper is a useful tool for understanding the geographical distribution of self-rated health status within a multilevel framework. In future research, it would be useful to apply the spatially filtered multilevel model to other datasets in order to clarify the differences between the two models. It is anticipated that this integrated method will also out-perform conventional models when it is used in other contexts. PMID:24571639
Playing an action video game reduces gender differences in spatial cognition.
Feng, Jing; Spence, Ian; Pratt, Jay
2007-10-01
We demonstrate a previously unknown gender difference in the distribution of spatial attention, a basic capacity that supports higher-level spatial cognition. More remarkably, we found that playing an action video game can virtually eliminate this gender difference in spatial attention and simultaneously decrease the gender disparity in mental rotation ability, a higher-level process in spatial cognition. After only 10 hr of training with an action video game, subjects realized substantial gains in both spatial attention and mental rotation, with women benefiting more than men. Control subjects who played a non-action game showed no improvement. Given that superior spatial skills are important in the mathematical and engineering sciences, these findings have practical implications for attracting men and women to these fields.
Xu, Manhou; Ma, Li; Jia, Yanyan; Liu, Min
2017-01-01
Varying patterns of plant community diversity along geographical gradients are a significant topic in biodiversity research. Here, to explore the integrated effects of latitude and altitude on the plant community diversity in a mountainous ecosystem, we set Guancen Mountain in the northern section, Guandi Mountain in the middle section, and Wulu Mountain in the southern section of the Lvliang Mountains as study areas, and the plant community diversity (basal diameter and height of tree and species diversity indices of shrub and herb) was measured horizontally at different latitude gradients and vertically at different altitude gradients in late July 2015. The results showed that (1) the trees were taller and wider at the middle latitude and higher altitude with a stronger spatial heterogeneity in the structures along the latitudinal and altitudinal gradients. The evergreen tree growth preceded that of the deciduous trees in the higher latitude and lower altitude regions, whereas the deciduous tree growth preceded that of the evergreen trees in the middle latitude and higher altitude regions. (2) Shrubs and herbs tended to grow well in the lower latitude and middle-lower altitude regions. The shrubs had a larger species diversity at lower latitude and lower altitude, but the species diversity of the herbs was not sensitive to the influences of the latitudinal and altitudinal gradients. With the latitude and altitude increasing, perennial herbs tended to grow well at higher latitude and higher altitude, while annual herbs tended to thrive at the middle latitude and lower altitude. In conclusion, environmental deviations caused by latitudinal and altitudinal gradients had great influences on the spatial distributions of the plant community diversity in the Lvliang Mountains. PMID:28323909
Xu, Manhou; Ma, Li; Jia, Yanyan; Liu, Min
2017-01-01
Varying patterns of plant community diversity along geographical gradients are a significant topic in biodiversity research. Here, to explore the integrated effects of latitude and altitude on the plant community diversity in a mountainous ecosystem, we set Guancen Mountain in the northern section, Guandi Mountain in the middle section, and Wulu Mountain in the southern section of the Lvliang Mountains as study areas, and the plant community diversity (basal diameter and height of tree and species diversity indices of shrub and herb) was measured horizontally at different latitude gradients and vertically at different altitude gradients in late July 2015. The results showed that (1) the trees were taller and wider at the middle latitude and higher altitude with a stronger spatial heterogeneity in the structures along the latitudinal and altitudinal gradients. The evergreen tree growth preceded that of the deciduous trees in the higher latitude and lower altitude regions, whereas the deciduous tree growth preceded that of the evergreen trees in the middle latitude and higher altitude regions. (2) Shrubs and herbs tended to grow well in the lower latitude and middle-lower altitude regions. The shrubs had a larger species diversity at lower latitude and lower altitude, but the species diversity of the herbs was not sensitive to the influences of the latitudinal and altitudinal gradients. With the latitude and altitude increasing, perennial herbs tended to grow well at higher latitude and higher altitude, while annual herbs tended to thrive at the middle latitude and lower altitude. In conclusion, environmental deviations caused by latitudinal and altitudinal gradients had great influences on the spatial distributions of the plant community diversity in the Lvliang Mountains.
Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun
2014-06-01
The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.
Effects of VR system fidelity on analyzing isosurface visualization of volume datasets.
Laha, Bireswar; Bowman, Doug A; Socha, John J
2014-04-01
Volume visualization is an important technique for analyzing datasets from a variety of different scientific domains. Volume data analysis is inherently difficult because volumes are three-dimensional, dense, and unfamiliar, requiring scientists to precisely control the viewpoint and to make precise spatial judgments. Researchers have proposed that more immersive (higher fidelity) VR systems might improve task performance with volume datasets, and significant results tied to different components of display fidelity have been reported. However, more information is needed to generalize these results to different task types, domains, and rendering styles. We visualized isosurfaces extracted from synchrotron microscopic computed tomography (SR-μCT) scans of beetles, in a CAVE-like display. We ran a controlled experiment evaluating the effects of three components of system fidelity (field of regard, stereoscopy, and head tracking) on a variety of abstract task categories that are applicable to various scientific domains, and also compared our results with those from our prior experiment using 3D texture-based rendering. We report many significant findings. For example, for search and spatial judgment tasks with isosurface visualization, a stereoscopic display provides better performance, but for tasks with 3D texture-based rendering, displays with higher field of regard were more effective, independent of the levels of the other display components. We also found that systems with high field of regard and head tracking improve performance in spatial judgment tasks. Our results extend existing knowledge and produce new guidelines for designing VR systems to improve the effectiveness of volume data analysis.
Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando
2013-01-01
Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135
The Differential Role of Verbal and Spatial Working Memory in the Neural Basis of Arithmetic
Demir, Özlem Ece; Prado, Jérôme; Booth, James R.
2014-01-01
We examine the relations of verbal and spatial WM ability to the neural bases of arithmetic in school-age children. We independently localize brain regions subserving verbal versus spatial representations. For multiplication, higher verbal WM ability is associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. For multiplication and subtraction, higher spatial WM ability is associated with greater recruitment of right parietal cortex, identified by the spatial localizer. Depending on their WM ability, children engage different neural systems that manipulate different representations to solve arithmetic problems. PMID:25144257
A spatial and temporal analysis of four cancers in African gold miners from Southern Africa.
Harington, J S; McGlashan, N D; Bradshaw, E; Geddes, E W; Purves, L R
1975-06-01
The pattern of cancer in African gold miners over the 8-year period 1964-71, comprising 2,926,461 man-years of employment was studied. Of the 1344 cancers found, primary liver cancer accounted for 52-8%, oesophageal cancer 12-1%, cancer of the respiratory system 5-4% and cancer of the bladder 4-8%. Analysis of the spatial distribution of these four cancers, both on subcontinental and local scale, showed distinct gradients of occurrence between areas of significantly higher and lower incidence than expected. In the case of primary liver cancer in Mozambique and oesophageal cancer in the Transkei, the spatial distribution reflects closely that found in the general resident population of each territory. The crude incidence rate of primary liver cancer in gold miners from Mozambique dropped sharply over the period of the survey.
Single-photon-level quantum image memory based on cold atomic ensembles
Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can
2013-01-01
A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711
Regional inequalities in premature mortality in Great Britain
Laroze, Denise; Neumayer, Eric
2018-01-01
Premature mortality exhibits strong spatial patterns in Great Britain. Local authorities that are located further North and West, that are more distant from its political centre London and that are more urban tend to have a higher premature mortality rate. Premature mortality also tends to cluster among geographically contiguous and proximate local authorities. We develop a novel analytical research design that relies on spatial pattern recognition to demonstrate that an empirical model that contains only socio-economic variables can eliminate these spatial patterns almost entirely. We demonstrate that socioeconomic factors across local authority districts explain 81 percent of variation in female and 86 percent of variation in male premature mortality in 2012–14. As our findings suggest, policy-makers cannot hope that health policies alone suffice to significantly reduce inequalities in health. Rather, it requires strong efforts to reduce the inequalities in socio-economic factors, or living conditions for short, in order to overcome the spatial disparities in health, of which premature mortality is a clear indication. PMID:29489918
Rodriguez-Falces, Javier; Maffiuletti, Nicola A; Place, Nicolas
2013-11-01
In this study we investigated differences in the spatial recruitment of motor units (MUs) in the quadriceps when electrical stimulation is applied over the quadriceps belly versus the femoral nerve. M-waves and mechanical twitches were evoked using over-the-quadriceps and femoral nerve stimulation of gradually increasing intensity from 22 young, healthy subjects. Spatial recruitment was investigated using recruitment curves of M-waves recorded from the vastus medialis (VM) and vastus lateralis (VL) and of twitches recorded from the quadriceps. At maximal stimulation intensity (Imax), no differences were found between nerve and over-the-quadriceps stimulation. At submaximal intensities, VL M-wave amplitude was higher for over-the-quadriceps stimulation at 40% Imax, and peak twitch force was greater for nerve stimulation at 60% and 80% Imax. For the VM, MU spatial recruitment during nerve and over-the-quadriceps stimulation of increasing intensity occurred in a similar manner, whereas significant differences were observed for the VL. Copyright © 2013 Wiley Periodicals, Inc.
Speech Intelligibility Advantages using an Acoustic Beamformer Display
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Sunder, Kaushik; Godfroy, Martine; Otto, Peter
2015-01-01
A speech intelligibility test conforming to the Modified Rhyme Test of ANSI S3.2 "Method for Measuring the Intelligibility of Speech Over Communication Systems" was conducted using a prototype 12-channel acoustic beamformer system. The target speech material (signal) was identified against speech babble (noise), with calculated signal-noise ratios of 0, 5 and 10 dB. The signal was delivered at a fixed beam orientation of 135 deg (re 90 deg as the frontal direction of the array) and the noise at 135 deg (co-located) and 0 deg (separated). A significant improvement in intelligibility from 57% to 73% was found for spatial separation for the same signal-noise ratio (0 dB). Significant effects for improved intelligibility due to spatial separation were also found for higher signal-noise ratios (5 and 10 dB).
Kumi-Kyereme, Akwasi; Amo-Adjei, Joshua
2013-06-17
This study compares ownership of health insurance among Ghanaian women with respect to wealth status and spatial location. We explore the overarching research question by employing geographic and proxy means targeting through interactive analysis of wealth status and spatial issues. The paper draws on the 2008 Ghana Demographic and Health Survey. Bivariate descriptive analysis coupled with binary logistic regression estimation technique was used to analyse the data. By wealth status, the likelihood of purchasing insurance was significantly higher among respondents from the middle, richer and richest households compared to the poorest (reference category) and these differences widened more profoundly in the Northern areas after interacting wealth with zone of residence. Among women at the bottom of household wealth (poorest and poorer), there were no statistically significant differences in insurance subscription in all the areas. The results underscore the relevance of geographic and proxy means targeting in identifying populations who may be need of special interventions as part of the efforts to increase enrolment as well as means of social protection against the vulnerable.
2013-01-01
Background This study compares ownership of health insurance among Ghanaian women with respect to wealth status and spatial location. We explore the overarching research question by employing geographic and proxy means targeting through interactive analysis of wealth status and spatial issues. Methods The paper draws on the 2008 Ghana Demographic and Health Survey. Bivariate descriptive analysis coupled with binary logistic regression estimation technique was used to analyse the data. Results By wealth status, the likelihood of purchasing insurance was significantly higher among respondents from the middle, richer and richest households compared to the poorest (reference category) and these differences widened more profoundly in the Northern areas after interacting wealth with zone of residence. Among women at the bottom of household wealth (poorest and poorer), there were no statistically significant differences in insurance subscription in all the areas. Conclusions The results underscore the relevance of geographic and proxy means targeting in identifying populations who may be need of special interventions as part of the efforts to increase enrolment as well as means of social protection against the vulnerable. PMID:23768255
Realisation and robustness evaluation of a blind spatial domain watermarking technique
NASA Astrophysics Data System (ADS)
Parah, Shabir A.; Sheikh, Javaid A.; Assad, Umer I.; Bhat, Ghulam M.
2017-04-01
A blind digital image watermarking scheme based on spatial domain is presented and investigated in this paper. The watermark has been embedded in intermediate significant bit planes besides the least significant bit plane at the address locations determined by pseudorandom address vector (PAV). The watermark embedding using PAV makes it difficult for an adversary to locate the watermark and hence adds to security of the system. The scheme has been evaluated to ascertain the spatial locations that are robust to various image processing and geometric attacks JPEG compression, additive white Gaussian noise, salt and pepper noise, filtering and rotation. The experimental results obtained, reveal an interesting fact, that, for all the above mentioned attacks, other than rotation, higher the bit plane in which watermark is embedded more robust the system. Further, the perceptual quality of the watermarked images obtained in the proposed system has been compared with some state-of-art watermarking techniques. The proposed technique outperforms the techniques under comparison, even if compared with the worst case peak signal-to-noise ratio obtained in our scheme.
Tanaka, Hiroshi O.; Itioka, Takao
2011-01-01
Little is known about the spatial distribution of lianas on emergent trees in tropical rainforests and the factors affecting this distribution. The present study investigated the effects of an arboreal ant species, Crematogaster difformis, which forms myrmecophytic symbioses with two epiphytic ferns, Lecanopteris sp. and Platycerium sp., on the spatial distribution of lianas associated with emergent trees. Living lianas were placed onto trunk surfaces inside and outside the territories of the ants in the canopy, to examine their ability to remove them. The number of leaves pruned by the ants was significantly higher on lianas inside than outside their territories. The spatial overlap of the distributions of lianas and the two ferns on emergent trees were then examined. The frequency of liana colonization of tree crowns was found to be significantly lower on trees with than without ferns. Under the natural conditions, C. difformis workers were observed biting and pruning the lianas. These results suggest that C. difformis regulates the distribution of lianas on emergent trees. PMID:21508025
Pitteloud, Camille; Arrigo, Nils; Suchan, Tomasz; Mastretta-Yanes, Alicia; Dincă, Vlad; Hernández-Roldán, Juan; Brockmann, Ernst; Chittaro, Yannick; Kleckova, Irena; Fumagalli, Luca; Buerki, Sven; Pellissier, Loïc
2017-01-01
Understanding how speciation relates to ecological divergence has long fascinated biologists. It is assumed that ecological divergence is essential to sympatric speciation, as a mechanism to avoid competition and eventually lead to reproductive isolation, while divergence in allopatry is not necessarily associated with niche differentiation. The impact of the spatial context of divergence on the evolutionary rates of abiotic dimensions of the ecological niche has rarely been explored for an entire clade. Here, we compare the magnitude of climatic niche shifts between sympatric versus allopatric divergence of lineages in butterflies. By combining next-generation sequencing, parametric biogeography and ecological niche analyses applied to a genus-wide phylogeny of Palaearctic Pyrgus butterflies, we compare evolutionary rates along eight climatic dimensions across sister lineages that diverged in large-scale sympatry versus allopatry. In order to examine the possible effects of the spatial scale at which sympatry is defined, we considered three sets of biogeographic assignments, ranging from narrow to broad definition. Our findings suggest higher rates of niche evolution along all climatic dimensions for sister lineages that diverge in sympatry, when using a narrow delineation of biogeographic areas. This result contrasts with significantly lower rates of climatic niche evolution found in cases of allopatric speciation, despite the biogeographic regions defined here being characterized by significantly different climates. Higher rates in allopatry are retrieved when biogeographic areas are too widely defined—in such a case allopatric events may be recorded as sympatric. Our results reveal the macro-evolutionary significance of abiotic niche differentiation involved in speciation processes within biogeographic regions, and illustrate the importance of the spatial scale chosen to define areas when applying parametric biogeographic analyses. PMID:28404781
Roijendijk, Linsey; Farquhar, Jason; van Gerven, Marcel; Jensen, Ole; Gielen, Stan
2013-01-01
Covert visual spatial attention is a relatively new task used in brain computer interfaces (BCIs) and little is known about the characteristics which may affect performance in BCI tasks. We investigated whether eccentricity and task difficulty affect alpha lateralization and BCI performance. We conducted a magnetoencephalography study with 14 participants who performed a covert orientation discrimination task at an easy or difficult stimulus contrast at either a near (3.5°) or far (7°) eccentricity. Task difficulty was manipulated block wise and subjects were aware of the difficulty level of each block. Grand average analyses revealed a significantly larger hemispheric lateralization of posterior alpha power in the difficult condition than in the easy condition, while surprisingly no difference was found for eccentricity. The difference between task difficulty levels was significant in the interval between 1.85 s and 2.25 s after cue onset and originated from a stronger decrease in the contralateral hemisphere. No significant effect of eccentricity was found. Additionally, single-trial classification analysis revealed a higher classification rate in the difficult (65.9%) than in the easy task condition (61.1%). No effect of eccentricity was found in classification rate. Our results indicate that manipulating the difficulty of a task gives rise to variations in alpha lateralization and that using a more difficult task improves covert visual spatial attention BCI performance. The variations in the alpha lateralization could be caused by different factors such as an increased mental effort or a higher visual attentional demand. Further research is necessary to discriminate between them. We did not discover any effect of eccentricity in contrast to results of previous research.
Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten
2015-03-01
Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Soil Greenhouse Gas Emissions from a Subtropical Mangrove in Hong Kong
NASA Astrophysics Data System (ADS)
Lai, D. Y. F.; Xu, J.
2014-12-01
The concept of "blue carbon" has received increasing attention recently, which points to the potential role of vegetated coastal wetlands in carbon sequestration. Yet, the magnitude and controls of greenhouse gas emissions from coastal wetland ecosystems, especially mangroves in the subtropical regions, are still largely unknown. In this study, we conducted chamber measurements in the Mai Po Marshes Nature Reserve of Hong Kong at monthly intervals to characterize the spatial and temporal variability of the emission of greenhouse gases, including CO2, CH4 and N2O from mangrove soils, and examine the influence of environmental and biotic variables on greenhouse gas fluxes. We found the highest mean CH4 and N2O emissions in autumn and the highest CO2 flux in summer. Along the tidal gradient, we observed significantly higher CH4 and N2O emissions from the middle zones and landward zones, respectively, while no clear spatial variation of CO2 emissions was observed. There were significantly higher soil greenhouse gas emissions from sites dominated by Avicennia marina than those dominated by Kandelia obovata, which might be due to the presence of pneumatophores which facilitated gas transport. We found a significant, negative correlation between CH4 flux and soil NO3-N concentration, while CO2 flux was positively correlation with total Kjeldahl nitrogen content. Soil temperature was positively correlated with the emissions of all three greenhouse gases, while water table depth was positively and negatively correlated with CH4 and N2O emissions, respectively. Our findings demonstrate the high spatial and temporal variability of greenhouse gas emissions from mangrove soils which could be attributed in part to the differences in environmental conditions and dominant plant species.
Azuma, M; Hirai, T; Yamada, K; Yamashita, S; Ando, Y; Tateishi, M; Iryo, Y; Yoneda, T; Kitajima, M; Wang, Y; Yamashita, Y
2016-05-01
Quantitative susceptibility mapping is useful for assessing iron deposition in the substantia nigra of patients with Parkinson disease. We aimed to determine whether quantitative susceptibility mapping is useful for assessing the lateral asymmetry and spatial difference in iron deposits in the substantia nigra of patients with Parkinson disease. Our study population comprised 24 patients with Parkinson disease and 24 age- and sex-matched healthy controls. They underwent 3T MR imaging by using a 3D multiecho gradient-echo sequence. On reconstructed quantitative susceptibility mapping, we measured the susceptibility values in the anterior, middle, and posterior parts of the substantia nigra, the whole substantia nigra, and other deep gray matter structures in both hemibrains. To identify the more and less affected hemibrains in patients with Parkinson disease, we assessed the severity of movement symptoms for each hemibrain by using the Unified Parkinson's Disease Rating Scale. In the posterior substantia nigra of patients with Parkinson disease, the mean susceptibility value was significantly higher in the more than the less affected hemibrain substantia nigra (P < .05). This value was significantly higher in both the more and less affected hemibrains of patients with Parkinson disease than in controls (P < .05). Asymmetry of the mean susceptibility values was significantly greater for patients than controls (P < .05). Receiver operating characteristic analysis showed that quantitative susceptibility mapping of the posterior substantia nigra in the more affected hemibrain provided the highest power for discriminating patients with Parkinson disease from the controls. Quantitative susceptibility mapping is useful for assessing the lateral asymmetry and spatial difference of iron deposition in the substantia nigra of patients with Parkinson disease. © 2016 by American Journal of Neuroradiology.
Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses
Kim, Hyun Seok; Park, Kwang Suk
2017-01-01
Most of the retinal prostheses use a head-fixed camera and a video processing unit. Some studies proposed various image processing methods to improve visual perception for patients. However, previous studies only focused on using spatial information. The present study proposes a spatiotemporal pixelization method mimicking fixational eye movements to generate stimulation images for artificial retina arrays by combining spatial and temporal information. Input images were sampled with a resolution that was four times higher than the number of pixel arrays. We subsampled this image and generated four different phosphene images. We then evaluated the recognition scores of characters by sequentially presenting phosphene images with varying pixel array sizes (6 × 6, 8 × 8 and 10 × 10) and stimulus frame rates (10 Hz, 15 Hz, 20 Hz, 30 Hz, and 60 Hz). The proposed method showed the highest recognition score at a stimulus frame rate of approximately 20 Hz. The method also significantly improved the recognition score for complex characters. This method provides a new way to increase practical resolution over restricted spatial resolution by merging the higher resolution image into high-frame time slots. PMID:29073735
Video quality assessment method motivated by human visual perception
NASA Astrophysics Data System (ADS)
He, Meiling; Jiang, Gangyi; Yu, Mei; Song, Yang; Peng, Zongju; Shao, Feng
2016-11-01
Research on video quality assessment (VQA) plays a crucial role in improving the efficiency of video coding and the performance of video processing. It is well acknowledged that the motion energy model generates motion energy responses in a middle temporal area by simulating the receptive field of neurons in V1 for the motion perception of the human visual system. Motivated by the biological evidence for the visual motion perception, a VQA method is proposed in this paper, which comprises the motion perception quality index and the spatial index. To be more specific, the motion energy model is applied to evaluate the temporal distortion severity of each frequency component generated from the difference of Gaussian filter bank, which produces the motion perception quality index, and the gradient similarity measure is used to evaluate the spatial distortion of the video sequence to get the spatial quality index. The experimental results of the LIVE, CSIQ, and IVP video databases demonstrate that the random forests regression technique trained by the generated quality indices is highly correspondent to human visual perception and has many significant improvements than comparable well-performing methods. The proposed method has higher consistency with subjective perception and higher generalization capability.
Brehme, C.S.; Boarman, W.I.; Hathaway, S.A.; Herring, A.; Lyren, L.; Mendelsohn, M.; Pease, K.; Rahn, M.; Rochester, C.; Stokes, D.; Turschak, G.; Fisher, R.N.
2009-01-01
We documented changes in the abundance and composition of terrestrial flora and fauna with respect to distance from the sea edge and timing of large allochthonous inputs from the Salton Sea, California. We found significant effects that were most pronounced within 300 m of the shore, but extended 3 km inland via coyote scat deposition. The zone within 300 m of the sea had a higher density of vegetation with a distinctly different plant composition. The denser vegetation supported higher abundances of birds and reptiles. Coyotes exhibited spatial and temporal responses to marine subsidies of fish, while birds were likely subsidized by aquatic aerial insects. Top-down control, as well as dietary and habitat preferences, may have resulted in reduced number of ants, beetles, and small mammals near the sea. Species responses to the habitat edge appeared to be associated with life history, as the near shore habitat favored habitat generalists and shore specialists, while inland desert habitat favored many sand and open desert specialists. Ecosystem responses support current theories of allochthonous spatial subsidies and consumer-resource dynamics but were limited in scope, magnitude, and distance.
Skirvin, D J; Stavrinides, M C; Skirvin, D J
2003-08-01
The effect of plant architecture, in terms of leaf hairiness, and prey spatial arrangement, on predation rate of eggs of the spider mite, Tetranychus urticae Koch, by the predatory mite Phytoseiulus persimilis Athias-Henriot was examined on cut stems of chrysanthemums. Three levels of leaf hairiness (trichome density) were obtained using two different chrysanthemum cultivars and two ages within one of the cultivars. The number of prey consumed by P. persimilis was inversely related to trichome density. At low prey densities (less than ten eggs per stem), prey consumption did not differ in a biologically meaningful way between treatments. The effect of prey spatial arrangement on the predation rate of P. persimilis was also examined. Predation rates were higher in prey patches on leaves adjacent to the release point of P. persimilis, but significantly greater numbers of prey were consumed in higher density prey patches compared to low density patches. The predators exhibited non-random searching behaviour, spending more time on leaves closest to the release point. The implications of these findings for biological control and predator-prey dynamics are discussed.
Spatial analysis of precipitation time series over the Upper Indus Basin
NASA Astrophysics Data System (ADS)
Latif, Yasir; Yaoming, Ma; Yaseen, Muhammad
2018-01-01
The upper Indus basin (UIB) holds one of the most substantial river systems in the world, contributing roughly half of the available surface water in Pakistan. This water provides necessary support for agriculture, domestic consumption, and hydropower generation; all critical for a stable economy in Pakistan. This study has identified trends, analyzed variability, and assessed changes in both annual and seasonal precipitation during four time series, identified herein as: (first) 1961-2013, (second) 1971-2013, (third) 1981-2013, and (fourth) 1991-2013, over the UIB. This study investigated spatial characteristics of the precipitation time series over 15 weather stations and provides strong evidence of annual precipitation by determining significant trends at 6 stations (Astore, Chilas, Dir, Drosh, Gupis, and Kakul) out of the 15 studied stations, revealing a significant negative trend during the fourth time series. Our study also showed significantly increased precipitation at Bunji, Chitral, and Skardu, whereas such trends at the rest of the stations appear insignificant. Moreover, our study found that seasonal precipitation decreased at some locations (at a high level of significance), as well as periods of scarce precipitation during all four seasons. The observed decreases in precipitation appear stronger and more significant in autumn; having 10 stations exhibiting decreasing precipitation during the fourth time series, with respect to time and space. Furthermore, the observed decreases in precipitation appear robust and more significant for regions at high elevation (>1300 m). This analysis concludes that decreasing precipitation dominated the UIB, both temporally and spatially including in the higher areas.
Identifying change in spatial accumulation of soil salinity in an inland river watershed, China.
Wang, Yugang; Deng, Caiyun; Liu, Yan; Niu, Ziru; Li, Yan
2018-04-15
Soil salinity accumulation is strong in arid areas and it has become a serious environmental problem. Knowledge of the process and spatial changes of accumulated salinity in soil can provide an insight into the spatial patterns of soil salinity accumulation. This is especially useful for estimating the spatial transport of soil salinity at the watershed scale. This study aimed to identify spatial patterns of salt accumulation in the top 20cm soils in a typical inland watershed, the Sangong River watershed in arid northwest China, using geostatistics, spatial analysis technology and the Lorenz curve. The results showed that: (1) soil salt content had great spatial variability (coefficient variation >1.0) in both in 1982 and 2015, and about 56% of the studied area experienced transition the degree of soil salt content from one class to another during 1982-2015. (2) Lorenz curves describing the proportions of soil salinity accumulation (SSA) identified that the boundary between soil salinity migration and accumulation regions was 24.3m lower in 2015 than in 1982, suggesting a spatio-temporal inequality in loading of the soil salinity transport region, indicating significant migration of soil salinity from the upstream to the downstream watershed. (3) Regardless of migration or accumulation region, the mean value of SSA per unit area was 0.17kg/m 2 higher in 2015 than 1982 (p<0.01) and the increasing SSA per unit area in irrigated land significantly increased by 0.19kg/m 2 compared with the migration region. Dramatic accumulation of soil salinity in all land use types was clearly increased by 0.29kg/m 2 in this agricultural watershed during the studied period in the arid northwest of China. This study demonstrates the spatial patterns of soil salinity accumulation, which is particularly useful for estimating the spatial transport of soil salinity at the watershed scale. Copyright © 2017 Elsevier B.V. All rights reserved.
Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yersak, Alexander S.; Sharma, Kashish; Wallas, Jasmine M.
Ultrathin atomic layer deposition (ALD) coatings on the electrodes of Li-ion batteries can enhance the capacity stability of the Li-ion batteries. To commercialize ALD for Li-ion battery production, spatial ALD is needed to decrease coating times and provide a coating process compatible with continuous roll-to-roll (R2R) processing. The porous electrodes of Li-ion batteries provide a special challenge because higher reactant exposures are needed for spatial ALD in porous substrates. This work utilized a modular rotating cylinder spatial ALD reactor operating at rotation speeds up to 200 revolutions/min (RPM) and substrate speeds up to 200 m/min. The conditions for spatial ALDmore » were adjusted to coat flexible porous substrates. The reactor was initially used to characterize spatial Al2O3 and ZnO ALD on flat, flexible metalized polyethylene terephthalate foils. These studies showed that slower rotation speeds and spacers between the precursor module and the two adjacent pumping modules could significantly increase the reactant exposure. The modular rotating cylinder reactor was then used to coat flexible, model porous anodic aluminum oxide (AAO) membranes. The uniformity of the ZnO ALD coatings on the porous AAO membranes was dependent on the aspect ratio of the pores and the reactant exposures. Larger reactant exposures led to better uniformity in the pores with higher aspect ratios. The reactant exposures were increased by adding spacers between the precursor module and the two adjacent pumping modules. The modular rotating cylinder reactor was also employed for Al2O3 ALD on porous LiCoO2 (LCO) battery electrodes. Uniform Al coverages were obtained using spacers between the precursor module and the two adjacent pumping modules at rotation speeds of 25 and 50 RPM. The LCO electrodes had a thickness of ~49 um and pores with aspect ratios of ~12-25. Coin cells were then constructed using the ALD-coated LCO electrodes and were tested to determine their battery performance. The capacity of the Al2O3 ALD-coated LCO battery electrodes was measured versus the number of charge-discharge cycles. Both temporal and spatial ALD processing methods led to higher capacity stability compared with uncoated LCO battery electrodes. The results for improved battery performance were comparable for temporal and spatial ALD-coated electrodes. The next steps are also presented for scale-up to R2R spatial ALD using the modular rotating cylinder reactor.« less
Mercier Shanks, Catherine; Sérodes, Jean-Baptiste; Rodriguez, Manuel J
2013-06-01
The non-regulated disinfection by-products (NrDBP) targeted in this study include four haloacetonitriles (trichloroacetonitrile (TCAN); dichloroacetonitrile (DCAN); bromochloroacetonitrile (BCAN) and dibromoacetonitrile (DBAN)); one halonitromethane (trichloronitromethane, better known under the name chloropicrin (CPK)); and two haloketones (1,1-dichloro-2-propanone (11DCPone) and 1,1,1-trichloro-2-propanone (111TCPone)). This study provides a detailed picture of the spatial and temporal variability of these NrDBP concentrations throughout a drinking water distribution system located in a region with major seasonal climate variations. The results obtained show that the concentrations of the investigated NrDBPs varied significantly according to time and location. The average concentrations of TCAN, DCAN, CKP and 111TCPone were significantly higher in summer. Surprisingly, the average concentrations of 11DCPone were significantly higher in winter. For BCAN and DBAN, the average concentrations observed in winter were higher, but not in a statistically significant way. On the other hand, the four HANs, CPK and 111TCPone generally had spatial profiles involving an increase of the concentrations along the network according to increasing water residence times, whereas 11DCPone overall had a profile where concentrations increased at the beginning of the network, followed by a drop in the concentrations towards the ends of the network. In spite of certain disparities in the individual spatio-temporal variation profiles, strong correlations were generally observed between NrDBPs, and trihalomethanes (THMs) and haloacetic acids (HAAs). Therefore, THMs and HAAs could be good statistical indicators of the presence of NrDBPs in the drinking water of the system under study. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhou, Shenglu; Su, Quanlong; Yi, Haomin
2017-01-01
Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution. PMID:29278363
Evaluation of focused multipolar stimulation for cochlear implants in acutely deafened cats
NASA Astrophysics Data System (ADS)
George, Shefin S.; Wise, Andrew K.; Shivdasani, Mohit N.; Shepherd, Robert K.; Fallon, James B.
2014-12-01
Objective. The conductive nature of the fluids and tissues of the cochlea can lead to broad activation of spiral ganglion neurons using contemporary cochlear implant stimulation configurations such as monopolar (MP) stimulation. The relatively poor spatial selectivity is thought to limit implant performance, particularly in noisy environments. Several current focusing techniques have been proposed to reduce the spread of activation with the aim towards achieving improved clinical performance. Approach. The present research evaluated the efficacy of focused multipolar (FMP) stimulation, a relatively new focusing technique in the cochlea, and compared its efficacy to both MP stimulation and tripolar (TP) stimulation. The spread of neural activity across the inferior colliculus (IC), measured by recording the spatial tuning curve, was used as a measure of spatial selectivity. Adult cats (n = 6) were acutely deafened and implanted with an intracochlear electrode array before multi-unit responses were recorded across the cochleotopic gradient of the contralateral IC. Recordings were made in response to acoustic and electrical stimulation using the MP, TP and FMP configurations. Main results. FMP and TP stimulation resulted in greater spatial selectivity than MP stimulation. However, thresholds were significantly higher (p < 0.001) for FMP and TP stimulation compared to MP stimulation. There were no differences found in spatial selectivity and threshold between FMP and TP stimulation. Significance. The greater spatial selectivity of FMP and TP stimulation would be expected to result in improved clinical performance. However, further research will be required to demonstrate the efficacy of these modes of stimulation after longer durations of deafness.
Root, Elisabeth Dowling; Lucero, Marilla; Nohynek, Hanna; Anthamatten, Peter; Thomas, Deborah S K; Tallo, Veronica; Tanskanen, Antti; Quiambao, Beatriz P; Puumalainen, Taneli; Lupisan, Socorro P; Ruutu, Petri; Ladesma, Erma; Williams, Gail M; Riley, Ian; Simões, Eric A F
2014-03-04
Pneumococcal conjugate vaccines (PCVs) have demonstrated efficacy against childhood pneumococcal disease in several regions globally. We demonstrate how spatial epidemiological analysis of a PCV trial can assist in developing vaccination strategies that target specific geographic subpopulations at greater risk for pneumococcal pneumonia. We conducted a secondary analysis of a randomized, placebo-controlled, double-blind vaccine trial that examined the efficacy of an 11-valent PCV among children less than 2 y of age in Bohol, Philippines. Trial data were linked to the residential location of each participant using a geographic information system. We use spatial interpolation methods to create smoothed surface maps of vaccination rates and local-level vaccine efficacy across the study area. We then measure the relationship between distance to the main study hospital and local-level vaccine efficacy, controlling for ecological factors, using spatial autoregressive models with spatial autoregressive disturbances. We find a significant amount of spatial variation in vaccination rates across the study area. For the primary study endpoint vaccine efficacy increased with distance from the main study hospital from -14% for children living less than 1.5 km from Bohol Regional Hospital (BRH) to 55% for children living greater than 8.5 km from BRH. Spatial regression models indicated that after adjustment for ecological factors, distance to the main study hospital was positively related to vaccine efficacy, increasing at a rate of 4.5% per kilometer distance. Because areas with poor access to care have significantly higher VE, targeted vaccination of children in these areas might allow for a more effective implementation of global programs.
Vegetation change alters soil profile δ15N values at the landscape scale in a subtropical savanna
NASA Astrophysics Data System (ADS)
Zhou, Y.; Mushinski, R. M.; Hyodo, A.; Wu, X. B.; Boutton, T. W.
2017-12-01
The assessment of spatial variation in soil δ15N could provide integrative insights on soil N cycling processes across multiple spatial scales. However, little is known about spatial patterns of δ15N within soil profiles in arid and semiarid ecosystems, especially those undergoing vegetation change with a distinct shift in dominance and/or functional type. We quantified how changes from grass to woody plant dominance altered spatial patterns of δ15N throughout a 1.2 m soil profile by collecting 320 spatially-specific soil cores in a 160 m × 100 m subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2-fixer) during the past century. Leaf δ15N was comparable among different plant life-forms, while fine roots from woody species had significantly lower δ15N than herbaceous species across this landscape. Woody encroachment significantly decreased soil δ15N throughout the entire soil profile, and created horizontal spatial patterns of soil δ15N that strongly resembled the spatial distribution of woody patches and were evident within each depth increment. The lower soil δ15N values that characterized areas beneath woody canopies were mostly due to the encroaching woody species, especially the N2-fixer P. glandulosa, which delivered 15N-depleted organic matter via root turnover to soils along the profile. Soil δ15N increased with depth, reached maximum values at an intermediate depth, and decreased at greater depths. Higher δ15N values at intermediate soil depths were correlated with the presence of a subsurface clay-rich argillic horizon across this landscape which may favor more rapid rates of N-cycling processes that can cause N losses and 15N enrichment of the residual soil N. These results indicate that succession from grassland to woodland has altered spatial variation in soil δ15N across the landscape and to considerable depth, suggesting significant changes in the relative rates of N-inputs vs. N-losses in this subtropical system after vegetation change.
Air Pollution Measurements by Citizen Scientists and NASA Satellites: Data Integration and Analysis
NASA Astrophysics Data System (ADS)
Gupta, P.; Maibach, J.; Levy, R. C.; Doraiswamy, P.; Pikelnaya, O.; Feenstra, B.; Polidori, A.
2017-12-01
PM2.5, or fine particulate matter, is a category of air pollutant consisting of solid particles with effective aerodynamic diameter of less than 2.5 microns. These particles are hazardous to human health, as their small size allows them to penetrate deep into the lungs. Since the late 1990's, the US Environmental Protection Agency has been monitoring PM2.5 using a network of ground-level sensors. Due to cost and space restrictions, the EPA monitoring network remains spatially sparse. That is, while the network spans the extent of the US, the distance between sensors is large enough that significant spatial variation in PM concentration can go undetected. To increase the spatial resolution of monitoring, previous studies have used satellite data to estimate ground-level PM concentrations. From imagery, one can create a measure of haziness due to aerosols, called aerosol optical depth (AOD), which then can be used to estimate PM concentrations using statistical and physical modeling. Additionally, previous research has identified a number of meteorological variables, such as relative humidity and mixing height, which aide in estimating PM concentrations from AOD. Although the high spatial resolution of satellite data is valuable alone for forecasting air quality, higher resolution ground-level data is needed to effectively study the relationship between PM2.5 concentrations and AOD. To this end, we discuss a citizen-science PM monitoring network deployed in California. Using low-cost PM sensors, this network achieves higher spatial resolution. We additionally discuss a software pipeline for integrating resulting PM measurements with satellite data, as well as initial data analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.
Differences of surface elevation in arctic polygonal landforms cause spatial variation in soil water contents (θ), active layer depths (ALD), and thereby in CO 2 and CH 4 exchange. In this paper, we test hypotheses in ecosys for topographic controls on CO 2 and CH 4 exchange in trough, rim, and center features of low- and flat-centered polygons (LCP and FCP) against chamber and eddy covariance (EC) measurements during 2013 at Barrow, Alaska. Larger CO 2 influxes and CH 4 effluxes were measured with chambers and modeled with ecosys in LCPs than in FCPs and in lower features (troughs) thanmore » in higher (rims) within LCPs and FCPs. Spatially aggregated CO 2 and CH 4 fluxes from ecosys were significantly correlated with EC flux measurements. Lower features were modeled as C sinks (52–56 g C m -2 yr -1) and CH 4 sources (4–6 g C m -2 yr -1), and higher features as near C neutral (-2–15 g C m -2 yr -1) and CH 4 neutral (0.0–0.1 g C m -2 yr -1). Much of the spatial and temporal variations in CO 2 and CH 4 fluxes were modeled from topographic effects on water and snow movement and thereby on θ, ALD, and soil O 2 concentrations. Model results forced with meteorological data from 1981 to 2015 indicated increasing net primary productivity in higher features and CH 4 emissions in some lower and higher features since 2008, attributed mostly to recent rises in precipitation. Finally, small-scale variation in surface elevation causes large spatial variation of greenhouse gas (GHG) exchanges and therefore should be considered in estimates of GHG exchange in polygonal landscapes.« less
Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.; ...
2017-11-17
Differences of surface elevation in arctic polygonal landforms cause spatial variation in soil water contents (θ), active layer depths (ALD), and thereby in CO 2 and CH 4 exchange. In this paper, we test hypotheses in ecosys for topographic controls on CO 2 and CH 4 exchange in trough, rim, and center features of low- and flat-centered polygons (LCP and FCP) against chamber and eddy covariance (EC) measurements during 2013 at Barrow, Alaska. Larger CO 2 influxes and CH 4 effluxes were measured with chambers and modeled with ecosys in LCPs than in FCPs and in lower features (troughs) thanmore » in higher (rims) within LCPs and FCPs. Spatially aggregated CO 2 and CH 4 fluxes from ecosys were significantly correlated with EC flux measurements. Lower features were modeled as C sinks (52–56 g C m -2 yr -1) and CH 4 sources (4–6 g C m -2 yr -1), and higher features as near C neutral (-2–15 g C m -2 yr -1) and CH 4 neutral (0.0–0.1 g C m -2 yr -1). Much of the spatial and temporal variations in CO 2 and CH 4 fluxes were modeled from topographic effects on water and snow movement and thereby on θ, ALD, and soil O 2 concentrations. Model results forced with meteorological data from 1981 to 2015 indicated increasing net primary productivity in higher features and CH 4 emissions in some lower and higher features since 2008, attributed mostly to recent rises in precipitation. Finally, small-scale variation in surface elevation causes large spatial variation of greenhouse gas (GHG) exchanges and therefore should be considered in estimates of GHG exchange in polygonal landscapes.« less
Liu, Yang; Paciorek, Christopher J; Koutrakis, Petros
2009-06-01
Studies of chronic health effects due to exposures to particulate matter with aerodynamic diameters
Haghparast-Bidgoli, Hassan; Rinaldi, Giulia; Shahnavazi, Hossein; Bouraghi, Hamid; Kiadaliri, Aliasghar A
2018-06-14
Suicide is a major global health problem, especially among youth. Suicide is known to be associated with a variety of social, economic, political and religious factors, vary across geographical and cultural regions. The current study aimed to investigate the effects of socioeconomic factors on suicide mortality rate across different regions in Iran. The data on distribution of population and socio-economic factors (such as unemployment rate, divorce rate, urbanization rate, average household expenditure etc.) at province level were obtained from the Statistical Centre of Iran and the National Organization for Civil Registration. The data on the annual number of deaths caused by suicide in each province was extracted from the published reports of the Iranian Forensic Medicine Organization. We used a decomposition model to distinguish between spatial and temporal variation in suicide mortality. The average rate of suicide mortality was 5.5 per 100,000 population over the study period. Across the provinces (spatial variation), suicide mortality rate was positively associated with household expenditure and the proportion of people aged 15-24 and older than 65 years and was negatively associated with the proportion of literate people. Within the provinces (temporal variation), higher divorce rate was associated with higher suicide mortality. By excluding the outlier provinces, the results showed that in addition to the proportion of people aged 15-24 and older than 65, divorce and unemployment rates were also significant predictors of spatial variation in suicide mortality while divorce rate was associated with higher suicide mortality within provinces. The findings indicate that both spatial and temporal variations in suicide mortality rates across the provinces and over time are determined by a number of socio-economic factors. The study provides information that can be of importance in developing preventive strategies.
Malcolm North; Jiquan Chen; Brian Oakley; Bo Song; Mark Rudnicki; Andrew Gray; Jim Innes
2004-01-01
With fire suppression, many western forests are expected to have fewer gaps and higher stem density of shade-tolerant species as light competition becomes a more significant influence on stand pattern and composition. We compared species composition, structure, spatial pattern, and environmental factors such as light and soil moisture between two old-growth forests:...
Siyadatpanah, Abolghasem; Sharif, Mehdi; Daryani, Ahmad; Sarvi, Shahabeddin; Kohansal, Mohammad Hasan; Barzegari, Saeed; Pagheh, Abdol Sattar; Gholami, Shirzad
2018-06-01
Giardia lamblia is the most prevalent intestinal parasites of humans in Iran and other in the world although information on geographical distribution of giardiasis plays significant role in identifying communities at high risk, little attention has been paid to study human giardiasis using geographical information system. Therefore, the aim of the current study was to determine temporal and spatial patterns of human giardiasis distribution to identify possible high risk areas and seasons in northern Iran. A total of 4788 people referred to health centers in the Mazandaran Province of northern Iran were surveyed January to December 2015. From each person stool sample and questionnaire with socio-demographic data were collected. Giardia infection was diagnosed using direct wet mount, formalin ether concentration and trichrome staining. The results were analyzed using Moran Local Indicators of spatial association and geographically weighted regression. The overall prevalence of Giardia infection was 4.6% (222/4788), and was significantly higher among those aged 5-9 years compared to their older peers ( P < 0.0001). Our data showed a significant dependency between the prevalence of G. lamblia and age, job, residence, season and height from the sea ( P < 0.0001). The results of this study provided a precise and specific spatial and temporal pattern of human giardiasis distribution in the Mazandaran Province, Iran. These evidences should be considered for proper control of disease decisions and strategies.
Keedy, Alexander W; Durack, Jeremy C; Sandhu, Parmbir; Chen, Eric M; O'Sullivan, Patricia S; Breiman, Richard S
2011-01-01
This study was designed to determine whether an interactive three-dimensional presentation depicting liver and biliary anatomy is more effective for teaching medical students than a traditional textbook format presentation of the same material. Forty-six medical students volunteered for participation in this study. Baseline demographic information, spatial ability, and knowledge of relevant anatomy were measured. Participants were randomized into two groups and presented with a computer-based interactive learning module comprised of animations and still images to highlight various anatomical structures (3D group), or a computer-based text document containing the same images and text without animation or interactive features (2D group). Following each teaching module, students completed a satisfaction survey and nine-item anatomic knowledge post-test. The 3D group scored higher on the post-test than the 2D group, with a mean score of 74% and 64%, respectively; however, when baseline differences in pretest scores were accounted for, this difference was not statistically significant (P = 0.33). Spatial ability did not statistically significantly correlate with post-test scores for the 3D group or the 2D group. In the post-test satisfaction survey the 3D group expressed a statistically significantly higher overall satisfaction rating compared to students in the 2D control group (4.5 versus 3.7 out of 5, P = 0.02). While the interactive 3D multimedia module received higher satisfaction ratings from students, it neither enhanced nor inhibited learning of complex hepatobiliary anatomy compared to an informationally equivalent traditional textbook style approach. . Copyright © 2011 American Association of Anatomists.
Kuehnl, Andreas; Salvermoser, Michael; Erk, Alexander; Trenner, Matthias; Schmid, Volker; Eckstein, Hans-Henning
2018-06-01
This study aimed to analyze the spatial distribution and regional variation of the hospital incidence and in hospital mortality of abdominal aortic aneurysms (AAA) in Germany. German DRG statistics (2011-2014) were analysed. Patients with ruptured AAA (rAAA, I71.3, treated or not) and patients with non-ruptured AAA (nrAAA, I71.4, treated by open or endovascular aneurysm repair) were included. Age, sex, and risk standardisation was done using standard statistical procedures. Regional variation was quantified using systematic component of variation. To analyse spatial auto-correlation and spatial pattern, global Moran's I and Getis-Ord Gi* were calculated. A total of 50,702 cases were included. Raw hospital incidence of AAA was 15.7 per 100,000 inhabitants (nrAAA 13.1; all rAAA 2.7; treated rAAA 1.6). The standardised hospital incidence of AAA ranged from 6.3 to 30.3 per 100,000. Systematic component of variation proportion was 96% in nrAAA and 55% in treated rAAA. Incidence rates of all AAA were significantly clustered with above average values in the northwestern parts of Germany and below average values in the south and eastern regions. Standardised mortality of nrAAA ranged from 1.7% to 4.3%, with that of treated rAAA ranging from 28% to 52%. Regional variation and spatial distribution of standardised mortality was not different from random. There was significant regional variation and clustering of the hospital incidence of AAA in Germany, with higher rates in the northwest and lower rates in the southeast. There was no significant variation in standardised (age/sex/risk) mortality between counties. Copyright © 2018. Published by Elsevier B.V.
Zielinski, Mark R.; Davis, J. Mark; Fadel, James R.; Youngstedt, Shawn D.
2013-01-01
Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (~4 h loss/day) vs. ad libitum sleep] × 2 [exercise (1 h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction. PMID:23644185
Hassan, A N; Dister, S; Beck, L
1998-04-01
Geographic information system (GIS) was used to analyze the spatial distribution of filariasis in the Nile Delta. The study involved 201 villages belonging to Giza, Qalubiya, Monoufiya, Gharbiya, and Dakahliya governorates. Villages with similar microfilarial (mf) prevalence rates were observed to cluster within 1-2 km distance, then, clustering started to decrease significantly with distance up to 5 km (Pearson correlation coefficient = -0.98). the likelihood of negative and high prevalence villages being contiguous was very low (approximately 1.8%, n = 612 village-pairs) indicating homogeneity in disease processes within the defined spatial scales. Of the villages located within 2 km from the main Nile branches (n = 46), 95% exhibited low prevalence. In addition, the spatial pattern of mf prevalence was shown to be negatively associated with annual rainfall and relative humidity, while it was positively associated with annual daily temperature. Average mf prevalence in warmer, relatively drier areas receiving 25 mm of rain was significantly higher (3.9%) than that in less warmer but more humid areas receiving 50 mm of rain (1.6%) (P < 0.0001). Based on the results of the present study, GIS was used to generate a "filariasis risk map" that could be used by health authorities to efficiently direct surveillance and control efforts. This investigation identified some of the factors underlying filariasis spatial pattern, quantified clustering and demonstrated the potential of GIS application in vector-borne disease epidemiology.
Oliver, David M; Bartie, Phil J; Louise Heathwaite, A; Reaney, Sim M; Parnell, Jared A Q; Quilliam, Richard S
2018-03-01
Effective management of diffuse microbial water pollution from agriculture requires a fundamental understanding of how spatial patterns of microbial pollutants, e.g. E. coli, vary over time at the landscape scale. The aim of this study was to apply the Visualising Pathogen &Environmental Risk (ViPER) model, developed to predict E. coli burden on agricultural land, in a spatially distributed manner to two contrasting catchments in order to map and understand changes in E. coli burden contributed to land from grazing livestock. The model was applied to the River Ayr and Lunan Water catchments, with significant correlations observed between area of improved grassland and the maximum total E. coli per 1km 2 grid cell (Ayr: r=0.57; p<0.001, Lunan: r=0.32; p<0.001). There was a significant difference in the predicted maximum E. coli burden between seasons in both catchments, with summer and autumn predicted to accrue higher E. coli contributions relative to spring and winter (P<0.001), driven largely by livestock presence. The ViPER model thus describes, at the landscape scale, spatial nuances in the vulnerability of E. coli loading to land as driven by stocking density and livestock grazing regimes. Resulting risk maps therefore provide the underpinning evidence to inform spatially-targeted decision-making with respect to managing sources of E. coli in agricultural environments. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ehleringer, J. R.; Hopkins, F. M.; Xu, X.; Barnette, J.; Randerson, J. T.; Bush, S.; Lai, C.
2013-12-01
Carbon-14 analyses of mature deciduous tree leaves (aspen and cottonwood) were used to measure the increases in atmospheric carbon dioxide within the expansive urbanizing Salt Lake Valley, Utah, USA associated with fossil fuel combustion. Our objectives were twofold: to understand the fine scale spatial structure of elevated carbon dioxide levels in this urban environment and to relate these observations to actual carbon dioxide observations collected using both long-term monitoring sites and a mobile measurement vehicle. Paired observations of aspen and cottonwood at sites across the valley showed that there was no significant difference in carbon-14 values, allowing spatial pattern evaluations at sites where one but not the other species was present. Statistically significant patterns were observed over a two-year measurement period, with elevated carbon dioxide levels associated with carbon-14 depleted leaves, particularly in regions with higher vehicle travel. Carbon-14 content of leaves was significantly lower on 4-lane roads than on nearby 2-lane roads in both residential and commercial zones, consistent with atmospheric carbon dioxide observations. The analysis of spatial patterns in the carbon-14 in leaves was then used to evaluate how well these observations compared to instantaneous and long-term observations of carbon dioxide using traditional infrared gas analyzer approaches.
Jiang, Zhou; Jin, Peizhen; Mishra, Nishikant; Song, Malin
2017-09-01
The problems with China's regional industrial overcapacity are often influenced by local governments. This study constructs a framework that includes the resource and environmental costs to analyze overcapacity using the non-radial direction distance function and the price method to measure industrial capacity utilization and market segmentation in 29 provinces in China from 2002 to 2014. The empirical analysis of the spatial panel econometric model shows that (1) the industrial capacity utilization in China's provinces has a ladder-type distribution with a gradual decrease from east to west and there is a severe overcapacity in the traditional heavy industry areas; (2) local government intervention has serious negative effects on regional industry utilization and factor market segmentation more significantly inhibits the utilization rate of regional industry than commodity market segmentation; (3) economic openness improves the utilization rate of industrial capacity while the internet penetration rate and regional environmental management investment have no significant impact; and(4) a higher degree of openness and active private economic development have a positive spatial spillover effect, while there is a significant negative spatial spillover effect from local government intervention and industrial structure sophistication. This paper includes the impact of resources and the environment in overcapacity evaluations, which should guide sustainable development in emerging economies.
Space-time description of dengue outbreaks in Cruzeiro, São Paulo, in 2006 and 2011.
Carvalho, Renata Marzzano de; Nascimento, Luiz Fernando Costa
2014-01-01
to identify patterns in the spatial and temporal distribution of cases of dengue fever occurring in the city of Cruzeiro, state of São Paulo (SP). an ecological and exploratory study was undertaken using spatial analysis tools and data from dengue cases obtained on the SinanNet. The analysis was carried out by area, using the IBGE census sector as a unit. The months of March to June 2006 and 2011 were assessed, revealing progress of the disease. TerraView 3.3.1 was used to calculate the Global Moran's I, month to month, and the Kernel estimator. in the year 2006, 691 cases of dengue fever (rate of 864.2 cases/100,000 inhabitants) were georeferenced; and the Moran's I and p-values were significant in the months of April and May (IM = 0.28; p = 0.01; IM = 0.20; p = 0.01) with higher densities in the central, north, northeast and south regions. In the year 2011, 654 cases of dengue fever (rate of 886.8 cases/100,000 inhabitants) were georeferenced; and the Moran's I and p-values were significant in the months of April and May (IM = 0.28; p = 0.01; IM = 0.16; p = 0.05) with densities in the same regions as 2006. The Global Moran's I is a global measure of spatial autocorrelation, which indicates the degree of spatial association in the set of information from the product in relation to the average. The I varies between -1 and +1 and can be attributed to a level of significance (p-value). The positive value points to a positive or direct spatial autocorrelation. we were able to identify patterns in the spatial and temporal distribution of dengue cases occurring in the city of Cruzeiro, SP, and locate the census sectors where the outbreak began and how it evolved.
Gender Dimorphism in Aspartame-Induced Impairment of Spatial Cognition and Insulin Sensitivity
Collison, Kate S.; Makhoul, Nadine J.; Zaidi, Marya Z.; Saleh, Soad M.; Andres, Bernard; Inglis, Angela; Al-Rabiah, Rana; Al-Mohanna, Futwan A.
2012-01-01
Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05). Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training), the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05). Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame, commencing in utero, may affect spatial cognition and glucose homeostasis in C57BL/6J mice, particularly in males. PMID:22509243
Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity.
Collison, Kate S; Makhoul, Nadine J; Zaidi, Marya Z; Saleh, Soad M; Andres, Bernard; Inglis, Angela; Al-Rabiah, Rana; Al-Mohanna, Futwan A
2012-01-01
Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05). Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training), the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05). Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame, commencing in utero, may affect spatial cognition and glucose homeostasis in C57BL/6J mice, particularly in males.
Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G
2010-12-15
Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.
The spatial and temporal patterns of falciparum and vivax malaria in Perú: 1994–2006
Chowell, Gerardo; Munayco, Cesar V; Escalante, Ananias A; McKenzie, F Ellis
2009-01-01
Background Malaria is the direct cause of approximately one million deaths worldwide each year, though it is both preventable and curable. Increasing the understanding of the transmission dynamics of falciparum and vivax malaria and their relationship could suggest improvements for malaria control efforts. Here the weekly number of malaria cases due to Plasmodium falciparum (1994–2006) and Plasmodium vivax (1999–2006) in Perú at different spatial scales in conjunction with associated demographic, geographic and climatological data are analysed. Methods Malaria periodicity patterns were analysed through wavelet spectral analysis, studied patterns of persistence as a function of community size and assessed spatial heterogeneity via the Lorenz curve and the summary Gini index. Results Wavelet time series analyses identified annual cycles in the incidence of both malaria species as the dominant pattern. However, significant spatial heterogeneity was observed across jungle, mountain and coastal regions with slightly higher levels of spatial heterogeneity for P. vivax than P. falciparum. While the incidence of P. falciparum has been declining in recent years across geographic regions, P. vivax incidence has remained relatively steady in jungle and mountain regions with a slight decline in coastal regions. Factors that may be contributing to this decline are discussed. The time series of both malaria species were significantly synchronized in coastal (ρ = 0.9, P < 0.0001) and jungle regions (ρ = 0.76, P < 0.0001) but not in mountain regions. Community size was significantly associated with malaria persistence due to both species in jungle regions, but not in coastal and mountain regions. Conclusion Overall, findings highlight the importance of highly refined spatial and temporal data on malaria incidence together with demographic and geographic information in improving the understanding of malaria persistence patterns associated with multiple malaria species in human populations, impact of interventions, detection of heterogeneity and generation of hypotheses. PMID:19558695
Amazonian forest-savanna bistability and human impact
NASA Astrophysics Data System (ADS)
Wuyts, Bert; Champneys, Alan R.; House, Joanna I.
2017-05-01
A bimodal distribution of tropical tree cover at intermediate precipitation levels has been presented as evidence of fire-induced bistability. Here we subdivide satellite vegetation data into those from human-unaffected areas and those from regions close to human-cultivated zones. Bimodality is found to be almost absent in the unaffected regions, whereas it is significantly enhanced close to cultivated zones. Assuming higher logging rates closer to cultivated zones and spatial diffusion of fire, our spatiotemporal mathematical model reproduces these patterns. Given a gradient of climatic and edaphic factors, rather than bistability there is a predictable spatial boundary, a Maxwell point, that separates regions where forest and savanna states are naturally selected. While bimodality can hence be explained by anthropogenic edge effects and natural spatial heterogeneity, a narrow range of bimodality remaining in the human-unaffected data indicates that there is still bistability, although on smaller scales than claimed previously.
Maternal Scaffolding and Preterm Toddlers’ Visual-Spatial Processing and Emerging Working Memory
Poehlmann, Julie; Hilgendorf, Amy E; Miller, Kyle; Lambert, Heather
2010-01-01
Objective We examined longitudinal associations among neonatal and socioeconomic risks, maternal scaffolding behaviors, and 24-month visual-spatial processing and working memory in a sample of 73 toddlers born preterm or low birthweight (PT LBW). Methods Risk data were collected at hospital discharge and dyadic play interactions were observed at 16-months postterm. Abbreviated IQ scores, verbal/nonverbal working memory, and verbal/nonverbal visual-spatial processing data were collected at 24-months postterm. Results Higher attention scaffolding and lower emotion scaffolding during 16-month play were associated with 24-month verbal working memory scores. A joint significance test revealed that maternal attention and emotion scaffolding during 16-month play mediated the relationship between socioeconomic risk and 24-month verbal working memory. Conclusions These findings suggest areas for future research and intervention with children born PT LBW who also experience high socioeconomic risk. PMID:19505998
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
NASA Astrophysics Data System (ADS)
Tecklenburg, Christina; Blume, Theresa
2017-10-01
Lacustrine groundwater discharge (LGD) can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer-lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual) measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control) to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m-2 d-1 with maximum rates in certain locations going up to 169 L m-2 d-1. Offshore LGD was negligible except for two local hotspots on steep steps in the lake bed topography. Large-scale groundwater inflow patterns were correlated with topography and the groundwater flow field, whereas small-scale patterns correlated with grain size distributions of the lake sediment. These findings confirm results and assumptions of theoretical and modelling studies more systematically than was previously possible with coarser sampling designs. However, we also found that a significant fraction of the variance in LGD could not be explained by these controls alone and that additional processes need to be considered. While regression models using these controls as explanatory variables had limited power to predict LGD rates, the results nevertheless encourage the use of topographic indices and sediment heterogeneity as an aid for targeted campaigns in future studies of groundwater discharge to lakes.
Stern, G A; Macdonald, C R; Armstrong, D; Dunn, B; Fuchs, C; Harwood, L; Muir, D C G; Rosenberg, B
2005-12-01
Organochlorine pesticides and PCBs were analysed in blubber from beluga (Delphinapterus leucas), or white whales, collected at 15 sites in the Canadian Arctic between 1993 and 2001. The objective of the study was to define and interpret the spatial trends of major organic contaminants in northern beluga in terms of sources and transport pathways, and the biological factors influencing accumulation. When compared on a lipid weight basis, the concentrations of beta-HCH, cis-CHL and SigmaCHL, cis-nonachlor, heptachlor epoxide and p,p'-DDT were significantly higher in males than females at all five sites in the eastern Arctic where the two sexes were harvested. The differences were attributed to losses from the females during fetal development and lactation as reported in previous studies. Major compounds increased with age in males at most sites, however the lack of a significant increase with age at some sites was in part due to high organochlorine concentrations in young year classes (2-5 years), particularly at eastern sites such as Iqaluit and Pangnirtung. Lower concentrations of SigmaHCH and SigmaDDT compounds in young males in 2001 relative to 1995 at Hendrickson Island could be due to declining levels in the environment, changes in the diet, or differences in organochlorine loads transferred from the female after birth. Age-corrected least square mean concentrations in males showed significantly higher levels of many compounds, such as p,p'-DDE and SigmaCHB, at south Baffin Island sites than those in the west. Two notable exceptions were HCBz and beta-HCH which were higher in the west. Methoxyclor was detected in males at Sanikiluaq (58 ng g-1) and in both sexes at Kimmirut, but at no other sites. Principal component analysis grouped the 16 sites into five major groupings based on the similarity of normalised organochlorine pesticide and PCB levels. Sites from the western Arctic were grouped by higher proportions of HCBz, beta-HCH and gamma-HCH and higher chlorinated PCBs. Endosulfan and alpha-HCH comprised a larger proportion of total organochlorine residues in the northern Hudson Bay sites, while methoxychlor, chlordane compounds and octachlorobiphenyls were enriched at Sanikiluaq in eastern Hudson Bay. The analysis showed that the relative amounts of several key compounds are similar in the beluga stocks over large spatial areas (i.e. eastern versus western sites), however, some stocks have distinct fingerprints which can be used to differentiate them from adjacent stocks. Ratios of major HCH isomers largely corresponded with air and surface water measurements conducted during the 1990s, but low alpha-/beta- and alpha-/gamma-HCH ratios in all three western Arctic collections indicate rapid losses of the alpha-isomer from the food web, proportionately higher beta- and gamma-isomers in the Beaufort Sea, or a combination of the two processes. Chlordane residue patterns generally correspond to those from previous studies, however, interpretation of spatial trends are difficult due to the aging of the probable sources in the south, possible atmospheric input from new sources and complex transport pathways.
Dong, Wen; Yang, Kun; Xu, Quan-Li; Yang, Yu-Lian
2015-01-01
This study investigated the spatial distribution, spatial autocorrelation, temporal cluster, spatial-temporal autocorrelation and probable risk factors of H7N9 outbreaks in humans from March 2013 to December 2014 in China. The results showed that the epidemic spread with significant spatial-temporal autocorrelation. In order to describe the spatial-temporal autocorrelation of H7N9, an improved model was developed by introducing a spatial-temporal factor in this paper. Logistic regression analyses were utilized to investigate the risk factors associated with their distribution, and nine risk factors were significantly associated with the occurrence of A(H7N9) human infections: the spatial-temporal factor φ (OR = 2546669.382, p < 0.001), migration route (OR = 0.993, p < 0.01), river (OR = 0.861, p < 0.001), lake(OR = 0.992, p < 0.001), road (OR = 0.906, p < 0.001), railway (OR = 0.980, p < 0.001), temperature (OR = 1.170, p < 0.01), precipitation (OR = 0.615, p < 0.001) and relative humidity (OR = 1.337, p < 0.001). The improved model obtained a better prediction performance and a higher fitting accuracy than the traditional model: in the improved model 90.1% (91/101) of the cases during February 2014 occurred in the high risk areas (the predictive risk > 0.70) of the predictive risk map, whereas 44.6% (45/101) of which overlaid on the high risk areas (the predictive risk > 0.70) for the traditional model, and the fitting accuracy of the improved model was 91.6% which was superior to the traditional model (86.1%). The predictive risk map generated based on the improved model revealed that the east and southeast of China were the high risk areas of A(H7N9) human infections in February 2014. These results provided baseline data for the control and prevention of future human infections. PMID:26633446
Dissecting the chromatin interactome of microRNA genes.
Chen, Dijun; Fu, Liang-Yu; Zhang, Zhao; Li, Guoliang; Zhang, Hang; Jiang, Li; Harrison, Andrew P; Shanahan, Hugh P; Klukas, Christian; Zhang, Hong-Yu; Ruan, Yijun; Chen, Ling-Ling; Chen, Ming
2014-03-01
Our knowledge of the role of higher-order chromatin structures in transcription of microRNA genes (MIRs) is evolving rapidly. Here we investigate the effect of 3D architecture of chromatin on the transcriptional regulation of MIRs. We demonstrate that MIRs have transcriptional features that are similar to protein-coding genes. RNA polymerase II-associated ChIA-PET data reveal that many groups of MIRs and protein-coding genes are organized into functionally compartmentalized chromatin communities and undergo coordinated expression when their genomic loci are spatially colocated. We observe that MIRs display widespread communication in those transcriptionally active communities. Moreover, miRNA-target interactions are significantly enriched among communities with functional homogeneity while depleted from the same community from which they originated, suggesting MIRs coordinating function-related pathways at posttranscriptional level. Further investigation demonstrates the existence of spatial MIR-MIR chromatin interacting networks. We show that groups of spatially coordinated MIRs are frequently from the same family and involved in the same disease category. The spatial interaction network possesses both common and cell-specific subnetwork modules that result from the spatial organization of chromatin within different cell types. Together, our study unveils an entirely unexplored layer of MIR regulation throughout the human genome that links the spatial coordination of MIRs to their co-expression and function.
Astié, Andrea A; Scardamaglia, Romina C; Muzio, Rubén N; Reboreda, Juan C
2015-10-01
Females of avian brood parasites, like the shiny cowbird (Molothrus bonariensis), locate host nests and on subsequent days return to parasitize them. This ecological pressure for remembering the precise location of multiple host nests may have selected for superior spatial memory abilities. We tested the hypothesis that shiny cowbirds show sex differences in spatial memory abilities associated with sex differences in host nest searching behavior and relative hippocampus volume. We evaluated sex differences during acquisition, reversal and retention after extinction in a visual and a spatial discrimination learning task. Contrary to our prediction, females did not outperform males in the spatial task in either the acquisition or the reversal phases. Similarly, there were no sex differences in either phase in the visual task. During extinction, in both tasks the retention of females was significantly higher than expected by chance up to 50 days after the last rewarded session (∼85-90% of the trials with correct responses), but the performance of males at that time did not differ than that expected by chance. This last result shows a long-term memory capacity of female shiny cowbirds, which were able to remember information learned using either spatial or visual cues after a long retention interval. Copyright © 2015 Elsevier B.V. All rights reserved.
Shimizu, Hironori; Isoda, Hiroyoshi; Ohno, Tsuyoshi; Yamashita, Rikiya; Kawahara, Seiya; Furuta, Akihiro; Fujimoto, Koji; Kido, Aki; Kusahara, Hiroshi; Togashi, Kaori
2015-01-01
To compare and evaluate images of non-contrast enhanced magnetic resonance (MR) portography and hepatic venography acquired with two different fat suppression methods, the chemical shift selective (CHESS) method and short tau inversion recovery (STIR) method. Twenty-two healthy volunteers were examined using respiratory-triggered three-dimensional true steady-state free-precession with two time-spatial labeling inversion pulses. The CHESS or STIR methods were used for fat suppression. The relative signal-to-noise ratio and contrast-to-noise ratio (CNR) were quantified, and the quality of visualization was scored. Image acquisition was successfully conducted in all volunteers. The STIR method significantly improved the CNRs of MR portography and hepatic venography. The image quality scores of main portal vein and right portal vein were higher with the STIR method, but there were no significant differences. The image quality scores of right hepatic vein, middle hepatic vein, and left hepatic vein (LHV) were all higher, and the visualization of LHV was significantly better (p<0.05). The STIR method contributes to further suppression of the background signal and improves visualization of the portal and hepatic veins. The results support using non-contrast-enhanced MR portography and hepatic venography in clinical practice. Copyright © 2014 Elsevier Inc. All rights reserved.
Benavides-Varela, S; Piva, D; Burgio, F; Passarini, L; Rolma, G; Meneghello, F; Semenza, C
2017-03-01
Arithmetical deficits in right-hemisphere damaged patients have been traditionally considered secondary to visuo-spatial impairments, although the exact relationship between the two deficits has rarely been assessed. The present study implemented a voxelwise lesion analysis among 30 right-hemisphere damaged patients and a controlled, matched-sample, cross-sectional analysis with 35 cognitively normal controls regressing three composite cognitive measures on standardized numerical measures. The results showed that patients and controls significantly differ in Number comprehension, Transcoding, and Written operations, particularly subtractions and multiplications. The percentage of patients performing below the cutoffs ranged between 27% and 47% across these tasks. Spatial errors were associated with extensive lesions in fronto-temporo-parietal regions -which frequently lead to neglect- whereas pure arithmetical errors appeared related to more confined lesions in the right angular gyrus and its proximity. Stepwise regression models consistently revealed that spatial errors were primarily predicted by composite measures of visuo-spatial attention/neglect and representational abilities. Conversely, specific errors of arithmetic nature linked to representational abilities only. Crucially, the proportion of arithmetical errors (ranging from 65% to 100% across tasks) was higher than that of spatial ones. These findings thus suggest that unilateral right hemisphere lesions can directly affect core numerical/arithmetical processes, and that right-hemisphere acalculia is not only ascribable to visuo-spatial deficits as traditionally thought. Copyright © 2017 Elsevier Ltd. All rights reserved.
Spatial pattern characteristics of water footprint for maize production in Northeast China.
Duan, Peili; Qin, Lijie; Wang, Yeqiao; He, Hongshi
2016-01-30
Water footprint (WF) methodology is essential for quantifying total water consumption of crop production and making efficient water management policies. This study calculated the green, blue, grey and total WFs of maize production in Northeast China from 1998 to 2012 and compared the values of the provinces. This study also analyzed the spatial variation and structure characteristics of the WFs at the prefecture level. The annual average WF of maize production was 1029 m(3) per ton, which was 51% green, 21% blue and 28% grey. The WF of maize production was highest in Liaoning Province, moderate in Heilongjiang Province and lowest in Jilin Province. The spatial differences of the WFs calculated for the 36 major maize production prefectures were significant in Northeast China. There was a moderate positive spatial autocorrelation among prefectures that had similar WFs. Local indicator of spatial autocorrelation index (LISA) analysis identified prefectures with higher WFs in the southeast region of Liaoning Province and the southwest region of Heilongjiang Province and prefectures with lower WFs in the middle of Jilin Province. Spatial differences in the WF of maize production were caused mainly by variations in climate conditions, soil quality, irrigation facilities and maize yield. The spatial distribution of WFs can help provide a scientific basis for optimizing maize production distribution and then formulate strategies to reduce the WF of maize production. © 2015 Society of Chemical Industry.
Xu, Xinxing
2017-01-01
The overall entropy method is used to evaluate the development level of the logistics industry in the city based on a mechanism analysis of the spillover effect of the development of the logistics industry on economic growth, according to the panel data of 26 cities in the Yangtze River delta. On this basis, the paper uses the spatial durbin model to study the direct impact of the development of the logistics industry on economic growth and the spatial spillover effect. The results show that the direct impact coefficient of the development of the logistics industry in the Yangtze River Delta urban agglomeration on local economic growth is 0.092, and the significant spatial spillover effect on the economic growth in the surrounding area is 0.197. Compared with the labor force input, capital investment and the degree of opening to the world, and government functions, the logistics industry’s direct impact coefficient is the largest, other than capital investment; the coefficient of the spillover effect is higher than other control variables, making it a “strong engine” of the Yangtze River Delta urban agglomeration economic growth. PMID:29207555
Xu, Xinxing; Wang, Yuhong
2017-12-04
The overall entropy method is used to evaluate the development level of the logistics industry in the city based on a mechanism analysis of the spillover effect of the development of the logistics industry on economic growth, according to the panel data of 26 cities in the Yangtze River delta. On this basis, the paper uses the spatial durbin model to study the direct impact of the development of the logistics industry on economic growth and the spatial spillover effect. The results show that the direct impact coefficient of the development of the logistics industry in the Yangtze River Delta urban agglomeration on local economic growth is 0.092, and the significant spatial spillover effect on the economic growth in the surrounding area is 0.197. Compared with the labor force input, capital investment and the degree of opening to the world, and government functions, the logistics industry's direct impact coefficient is the largest, other than capital investment; the coefficient of the spillover effect is higher than other control variables, making it a "strong engine" of the Yangtze River Delta urban agglomeration economic growth.
Brooker, Simon; Clarke, Siân; Njagi, Joseph Kiambo; Polack, Sarah; Mugo, Benbolt; Estambale, Benson; Muchiri, Eric; Magnussen, Pascal; Cox, Jonathan
2004-07-01
The epidemiology of malaria over small areas remains poorly understood, and this is particularly true for malaria during epidemics in highland areas of Africa, where transmission intensity is low and characterized by acute within and between year variations. We report an analysis of the spatial distribution of clinical malaria during an epidemic and investigate putative risk factors. Active case surveillance was undertaken in three schools in Nandi District, Western Kenya for 10 weeks during a malaria outbreak in May-July 2002. Household surveys of cases and age-matched controls were conducted to collect information on household construction, exposure factors and socio-economic status. Household geographical location and altitude were determined using a hand-held geographical positioning system and landcover types were determined using high spatial resolution satellite sensor data. Among 129 cases identified during the surveillance, which were matched to 155 controls, we identified significant spatial clusters of malaria cases as determined using the spatial scan statistic. Conditional multiple logistic regression analysis showed that the risk of malaria was higher in children who were underweight, who lived at lower altitudes, and who lived in households where drugs were not kept at home. Copyright 2004 Blackwell Publishing Ltd
Spatial and temporal patterns of North Carolina pedestrian and bicycle plans.
Aytur, Semra A; Rodriguez, Daniel A; Kerr, Zachary Y; Ji, Kai; Evenson, Kelly R
2013-01-01
Pedestrian and bicycle plans support community-level physical activity. In North Carolina, pedestrian/bicycle plans are becoming more prevalent. However, no studies have examined the spatial and temporal diffusion of pedestrian/bicycle plans. This study assessed (a) temporal trends associated with municipal pedestrian/bicycle planning from 1974 to 2011 and (b) spatial patterns associated with municipal plans, specifically, whether the publication of a pedestrian/bicycle plan in a given year was associated with the number of neighboring municipalities with plans. North Carolina from 1974 to 2011. The main outcome was date of publication of all North Carolina municipal pedestrian and bicycle plans (1974-2011). We calculated Euclidean distances from each municipality center to all other municipality centers to derive whether municipalities were within 20 and 50 miles of each other. Sociodemographic covariates (eg, education, grant funding status, poverty, urbanicity, racial composition, population size, population growth) were collected from the US Census of Population (1980-2010) and the American Community Survey (2006-2010). Time series models fitted by generalized estimating equations were used to assess relationships between plan presence and the temporal and spatial predictor variables. The number of pedestrian and bicycle plans significantly increased over time, especially after 2006 when a state grant funding program was initiated. Unadjusted models indicated that municipalities were significantly more likely to have a pedestrian plan if higher numbers of neighboring municipalities had pedestrian plans. After adjustment for sociodemographic covariates and funding source, this relationship was attenuated but remained statistically significant. For bicycle plans, no significant associations were observed between plan presence and the number of neighboring municipalities with bicycle plans in adjusted models. Findings from this study can be used to generate hypotheses to test theories about diffusion of innovation and social contagion processes in pedestrian/bicycle planning.
Kao, Chuan-Liang; Chan, Ta-Chien; Tsai, Chu-Han; Chu, Kuan-Ying; Chuang, Shu-Fang; Lee, Chang-Chun; Li, Zheng-Rong Tiger; Wu, Ko-Wen; Chang, Luan-Yin; Shen, Yea-Huei; Huang, Li-Min; Lee, Ping-Ing; Yang, ChingLai; Compans, Richard; Rouse, Barry T.; King, Chwan-Chuen
2012-01-01
The 2009 influenza pandemic provided an opportunity to observe dynamic changes of the hemagglutinin (HA) and neuraminidase (NA) of pH1N1 strains that spread in two metropolitan areas -Taipei and Kaohsiung. We observed cumulative increases of amino acid substitutions of both HA and NA that were higher in the post–peak than in the pre-peak period of the epidemic. About 14.94% and 3.44% of 174 isolates had one and two amino acids changes, respective, in the four antigenic sites. One unique adaptive mutation of HA2 (E374K) was first detected three weeks before the epidemic peak. This mutation evolved through the epidemic, and finally emerged as the major circulated strain, with significantly higher frequency in the post-peak period than in the pre-peak (64.65% vs 9.28%, p<0.0001). E374K persisted until ten months post-nationwide vaccination without further antigenic changes (e.g. prior to the highest selective pressure). In public health measures, the epidemic peaked at seven weeks after oseltamivir treatment was initiated. The emerging E374K mutants spread before the first peak of school class suspension, extended their survival in high-density population areas before vaccination, dominated in the second wave of class suspension, and were fixed as herd immunity developed. The tempo-spatial spreading of E374K mutants was more concentrated during the post–peak (p = 0.000004) in seven districts with higher spatial clusters (p<0.001). This is the first study examining viral changes during the naïve phase of a pandemic of influenza through integrated virological/serological/clinical surveillance, tempo-spatial analysis, and intervention policies. The vaccination increased the percentage of E374K mutants (22.86% vs 72.34%, p<0.001) and significantly elevated the frequency of mutations in Sa antigenic site (2.36% vs 23.40%, p<0.001). Future pre-vaccination public health efforts should monitor amino acids of HA and NA of pandemic influenza viruses isolated at exponential and peak phases in areas with high cluster cases. PMID:22328930
Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan
2018-02-01
Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64-66% in summer and fall. Obvious seasonal and spatial variations of CH 4 and CO 2 emissions were also found with the average CH 4 and CO 2 emission rates of 3.78-35.54 mg m -2 d -1 and 610.78-8992.71 mg m -2 d -1 , respectively, while the higher CH 4 and CO 2 emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH 4 emission, but they appeared to have a weak influence on CO 2 emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8-2.0 g m -2 d -1 and temperature of 15-20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Different Perspectives: Spatial Ability Influences Where Individuals Look on a Timed Spatial Test
ERIC Educational Resources Information Center
Roach, Victoria A.; Fraser, Graham M.; Kryklywy, James H.; Mitchell, Derek G. V.; Wilson, Timothy D.
2017-01-01
Learning in anatomy can be both spatially and visually complex. Pedagogical investigations have begun exploration as to how spatial ability may mitigate learning. Emerging hypotheses suggests individuals with higher spatial reasoning may attend to images differently than those who are lacking. To elucidate attentional patterns associated with…
Root, Elisabeth Dowling; Gonzales, Louis; Persse, David E.; Hinchey, Paul R.; McNally, Bryan; Sasson, Comilla
2013-01-01
Background Despite evidence to suggest significant spatial variation in out-of-hospital cardiac arrest (OHCA) and bystander cardiopulmonary resuscitation (BCPR) rates, geographic information systems (GIS) and spatial analysis have not been widely used to understand the reasons behind this variation. This study employs spatial statistics to identify the location and extent of clusters of bystander CPR in Houston and Travis County, TX. Methods Data were extracted from the Cardiac Arrest Registry to Enhance Survival for two U.S. sites –Austin-Travis County EMS and the Houston Fire Department – between October 1, 2006 and December 31, 2009. Hierarchical logistic regression models were used to assess the relationship between income and racial/ethnic composition of a neighborhood and BCPR for OHCA and to adjust expected counts of BCPR for spatial cluster analysis. The spatial scan statistic was used to find the geographic extent of clusters of high and low BCPR. Results Results indicate spatial clusters of lower than expected BCPR rates in Houston. Compared to BCPR rates in the rest of the community, there was a circular area of 4.2 km radius where BCPR rates were lower than expected (RR = 0.62; p < 0.0001 and RR = 0.55; p = 0.037) which persist when adjusted for individual-level patient characteristics (RR = 0.34; p = 0.027) and neighborhood-level race (RR = 0.34; p = 0.034) and household income (RR = 0.34; p = 0.046). We also find a spatial cluster of higher than expected BCPR in Austin. Compared to the rest of the community, there was a 23.8 km radius area where BCPR rates were higher than expected (RR = 1.75; p = 0.07) which disappears after controlling for individual-level characteristics. Conclusions A geographically targeted CPR training strategy which is tailored to individual and neighborhood population characteristics may be effective in reducing existing disparities in the provision of bystander CPR for out-of-hospital cardiac arrest. PMID:23318916
NASA Astrophysics Data System (ADS)
Li, Weiyao; Huang, Guanhua; Xiong, Yunwu
2016-04-01
The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and solute transport complexity weakened, and the corresponding information entropy also decreased. Longitudinal macro dispersivity declined slightly at early time then rose. Solute spatial and temporal distribution had significant impacts on the information entropy. Information entropy could reflect the change of solute distribution. Information entropy appears a tool to characterize the spatial and temporal complexity of solute migration and provides a reference for future research.
Yamazaki, Yudai; Sato, Daisuke; Yamashiro, Koya; Tsubaki, Atsuhiro; Yamaguchi, Yui; Takehara, Nana; Maruyama, Atsuo
2017-01-01
Acute aerobic exercise at a mild intensity improves cognitive function. However, the response to exercise exhibits inter-individual differences, and the mechanisms underlying these differences remain unclear. The objective of this study was to determine potential factors in the brain that underlie differential responses to exercise in terms of cognitive improvement using functional near-infrared spectroscopy. Fourteen healthy subjects participated in these experiments. Participants performed a low intensity cycling exercise at 30% maximal oxygen uptake (VO 2peak ) for 10 min and performed a spatial memory task before and after exercising (5 and 30 min). The spatial memory task comprised two levels of difficulty (low: 1-dot EXERCISE, high: 3-dot EXERCISE). Cortical oxy-hemoglobin (O 2 Hb) levels were recorded using near-infrared spectroscopy during both the exercise and the spatial memory task phases. Regions of interests included the dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and frontopolar area (FPA). The participants were divided into two groups depending on whether they were responders (improved task reaction time) or non-responders (no improvement). Subsequently, we analyzed the group characteristics and differences in the change in O 2 Hb levels during exercise and spatial working memory tasks. Acute mild exercise significantly improved mean reaction times in the 1-dot memory task but not in the 3-dot task across the participants. In the 1-dot EXERCISE, 10 subjects were responders and four subjects were non-responders, whereas in the 3-dot EXERCISE, seven subjects were non-responders. In responders, during exercise, we found higher O 2 Hb levels in the right VLPFC response for the 1-dot memory task. Acute mild exercise caused inter-individual differences in spatial memory improvement, which were associated with changes in O 2 Hb activity in the prefrontal area during the exercise phase but not during the actual spatial memory task. Therefore, individuals who respond with higher reactivity to mild intensity exercise in the VLPFC might obtain larger spatial working memory improvements following exercise than non-responders.
NASA Astrophysics Data System (ADS)
Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc
2017-03-01
Dynamic CT perfusion acquisitions are intrinsically high-dose examinations, due to repeated scanning. To keep radiation dose under control, relatively noisy images are acquired. Noise is then further enhanced during the extraction of functional parameters from the post-processing of the time attenuation curves of the voxels (TACs) and normally some smoothing filter needs to be employed to better visualize any perfusion abnormality, but sacrificing spatial resolution. In this study we propose a new method to detect perfusion abnormalities keeping both high spatial resolution and high CNR. To do this we first perform the singular value decomposition (SVD) of the original noisy spatial temporal data matrix to extract basis functions of the TACs. Then we iteratively cluster the voxels based on a smoothed version of the three most significant singular vectors. Finally, we create high spatial resolution 3D volumes where to each voxel is assigned a distance from the centroid of each cluster, showing how functionally similar each voxel is compared to the others. The method was tested on three noisy clinical datasets: one brain perfusion case with an occlusion in the left internal carotid, one healthy brain perfusion case, and one liver case with an enhancing lesion. Our method successfully detected all perfusion abnormalities with higher spatial precision when compared to the functional maps obtained with a commercially available software. We conclude this method might be employed to have a rapid qualitative indication of functional abnormalities in low dose dynamic CT perfusion datasets. The method seems to be very robust with respect to both spatial and temporal noise and does not require any special a priori assumption. While being more robust respect to noise and with higher spatial resolution and CNR when compared to the functional maps, our method is not quantitative and a potential usage in clinical routine could be as a second reader to assist in the maps evaluation, or to guide a dataset smoothing before the modeling part.
Spatial Release From Masking in 2-Year-Olds With Normal Hearing and With Bilateral Cochlear Implants
Hess, Christi L.; Misurelli, Sara M.; Litovsky, Ruth Y.
2018-01-01
This study evaluated spatial release from masking (SRM) in 2- to 3-year-old children who are deaf and were implanted with bilateral cochlear implants (BiCIs), and in age-matched normal-hearing (NH) toddlers. Here, we examined whether early activation of bilateral hearing has the potential to promote SRM that is similar to age-matched NH children. Listeners were 13 NH toddlers and 13 toddlers with BiCIs, ages 27 to 36 months. Speech reception thresholds (SRTs) were measured for target speech in front (0°) and for competitors that were either Colocated in front (0°) or Separated toward the right (+90°). SRM was computed as the difference between SRTs in the front versus in the asymmetrical condition. Results show that SRTs were higher in the BiCI than NH group in all conditions. Both groups had higher SRTs in the Colocated and Separated conditions compared with Quiet, indicating masking. SRM was significant only in the NH group. In the BiCI group, the group effect of SRM was not significant, likely limited by the small sample size; however, all but two children had SRM values within the NH range. This work shows that to some extent, the ability to use spatial cues for source segregation develops by age 2 to 3 in NH children and is attainable in most of the children in the BiCI group. There is potential for the paradigm used here to be used in clinical settings to evaluate outcomes of bilateral hearing in very young children. PMID:29761735
Effects of intraocular lenses with different diopters on chromatic aberrations in human eye models.
Song, Hui; Yuan, Xiaoyong; Tang, Xin
2016-01-11
In this study, the effects of intraocular lenses (IOLs) with different diopters (D) on chromatic aberration were investigated in human eye models, and the influences of the central thickness of IOLs on chromatic aberration were compared. A Liou-Brennan-based IOL eye model was constructed using ZEMAX optical design software. Spherical IOLs with different diopters (AR40e, AMO Company, USA) were implanted; modulation transfer function (MTF) values at 3 mm of pupil diameter and from 0 to out-of-focus blur were collected and graphed. MTF values, measured at 555 nm of monochromatic light under each spatial frequency, were significantly higher than the values measured at 470 to 650 nm of polychromatic light. The influences of chromatic aberration on MTF values decreased with the increase in IOL diopter when the spatial frequency was ≤12 c/d, while increased effects were observed when the spatial frequency was ≥15 c/d. The MTF values of each IOL eye model were significantly lower than the MTF values of the Liou-Brennan eye models when measured at 555 nm of monochromatic light and at 470 to 650 nm of polychromatic light. The MTF values were also found to be increased with the increase in IOL diopter. With higher diopters of IOLs, the central thickness increased accordingly, which could have created increased chromatic aberration and decreased the retinal image quality. To improve the postoperative visual quality, IOLs with lower chromatic aberration should be selected for patients with short axial lengths.
Kaliappan, Saravanakumar Puthupalayam; George, Santosh; Francis, Mark Rohit; Kattula, Deepthi; Sarkar, Rajiv; Minz, Shantidani; Mohan, Venkata Raghava; George, Kuryan; Roy, Sheela; Ajjampur, Sitara Swarna Rao; Muliyil, Jayaprakash; Kang, Gagandeep
2013-12-01
To estimate the prevalence, spatial patterns and clustering in the distribution of soil-transmitted helminth (STH) infections, and factors associated with hookworm infections in a tribal population in Tamil Nadu, India. Cross-sectional study with one-stage cluster sampling of 22 clusters. Demographic and risk factor data and stool samples for microscopic ova/cysts examination were collected from 1237 participants. Geographical information systems mapping assessed spatial patterns of infection. The overall prevalence of STH was 39% (95% CI 36%–42%), with hookworm 38% (95% CI 35–41%) and Ascaris lumbricoides 1.5% (95% CI 0.8–2.2%). No Trichuris trichiura infection was detected. People involved in farming had higher odds of hookworm infection (1.68, 95% CI 1.31–2.17, P < 0.001). In the multiple logistic regression, adults (2.31, 95% CI 1.80–2.96, P < 0.001), people with pet cats (1.55, 95% CI 1.10–2.18, P = 0.011) and people who did not wash their hands with soap after defecation (1.84, 95% CI 1.27–2.67, P = 0.001) had higher odds of hookworm infection, but gender and poor usage of foot wear did not significantly increase risk. Cluster analysis, based on design effect calculation, did not show any clustering of cases among the study population; however, spatial scan statistic detected a significant cluster for hookworm infections in one village. Multiple approaches including health education, improving the existing sanitary practices and regular preventive chemotherapy are needed to control the burden of STH in similar endemic areas.
Image Quality Characteristics of Handheld Display Devices for Medical Imaging
Yamazaki, Asumi; Liu, Peter; Cheng, Wei-Chung; Badano, Aldo
2013-01-01
Handheld devices such as mobile phones and tablet computers have become widespread with thousands of available software applications. Recently, handhelds are being proposed as part of medical imaging solutions, especially in emergency medicine, where immediate consultation is required. However, handheld devices differ significantly from medical workstation displays in terms of display characteristics. Moreover, the characteristics vary significantly among device types. We investigate the image quality characteristics of various handheld devices with respect to luminance response, spatial resolution, spatial noise, and reflectance. We show that the luminance characteristics of the handheld displays are different from those of workstation displays complying with grayscale standard target response suggesting that luminance calibration might be needed. Our results also demonstrate that the spatial characteristics of handhelds can surpass those of medical workstation displays particularly for recent generation devices. While a 5 mega-pixel monochrome workstation display has horizontal and vertical modulation transfer factors of 0.52 and 0.47 at the Nyquist frequency, the handheld displays released after 2011 can have values higher than 0.63 at the respective Nyquist frequencies. The noise power spectra for workstation displays are higher than 1.2×10−5 mm2 at 1 mm−1, while handheld displays have values lower than 3.7×10−6 mm2. Reflectance measurements on some of the handheld displays are consistent with measurements for workstation displays with, in some cases, low specular and diffuse reflectance coefficients. The variability of the characterization results among devices due to the different technological features indicates that image quality varies greatly among handheld display devices. PMID:24236113
Occlusion therapy improves phase-alignment of the cortical response in amblyopia.
Kelly, John P; Tarczy-Hornoch, Kristina; Herlihy, Erin; Weiss, Avery H
2015-09-01
The visual evoked potential (VEP) generated by the amblyopic visual system demonstrates reduced amplitude, prolonged latency, and increased variation in response timing (phase-misalignment). This study examined VEPs before and after occlusion therapy (OT) and whether phase-misalignment can account for the amblyopic VEP deficits. VEPs were recorded to 0.5-4cycles/degree gratings in 10 amblyopic children (2-6years age) before and after OT. Phase-misalignment was measured by Fourier analysis across a limited bandwidth. Signal-to-noise ratios (SNRs) were estimated from amplitude and phase synchrony in the Fourier domain. Responses were compared to VEPs corrected for phase-misalignment (individual epochs shifted in time to correct for the misalignment). Before OT, amblyopic eyes (AE) had significantly more phase-misalignment, latency prolongation, and lower SNR relative to the fellow eye. Phase-misalignment contributed significantly to low SNR but less so to latency delay in the AE. After OT, phase-alignment improved, SNR improved and latency shortened in the AE. Raw averaged waveforms from the AE improved after OT, primarily at higher spatial frequencies. Correcting for phase-misalignment in the AE sharpened VEP peak responses primarily at low spatial frequencies, but could not account for VEP waveform improvements in the AE after OT at higher spatial frequencies. In summary, VEP abnormalities from the AE are associated with phase-misalignment and reduced SNR possibly related to desynchronization of neuronal activity. The effect of OT on VEP responses is greater than that accounted for by phase-misalignment and SNR alone. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Veiga, Puri; Rubal, Marcos; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel
2013-10-01
The crustose calcareous red macroalgae Lithophyllum byssoides (Lamarck) Foslie is a common ecosystem engineer along the Atlantic and Mediterranean coast of the Iberian Peninsula. This species is threatened by several anthropogenic impacts acting at different spatial scales, such as pollution or global warming. The aim of this study is to identify scales of spatial variation in the abundance and fragmentation patterns of L. byssoides along the Atlantic coast of the Iberian Peninsula. For this aim we used a hierarchical sampling design considering four spatial scales (from metres to 100s of kilometres). Results of the present study indicated no significant variability among regions investigated whereas significant variability was found at the scales of shore and site in spatial patterns of abundance and fragmentation of L. byssoides. Variance components were higher at the spatial scale of shore for abundance and fragmentation of L. byssoides with the only exception of percentage cover and thus, processes acting at the scale of 10s of kilometres seem to be more relevant in shaping the spatial variability both in abundance and fragmentation of L. byssoides. These results provided quantitative estimates of abundance and fragmentation of L. byssoides at the Atlantic coast of the Iberian Peninsula establishing the observational basis for future assessment, monitoring and experimental investigations to identify the processes and anthropogenic impacts affecting L. byssoides populations. Finally we have also identified percentage cover and patch density as the best variables for long-term monitoring programs aimed to detect future anthropogenic impacts on L. byssoides. Therefore, our results have important implications for conservation and management of this valuable ecosystem engineer along the Atlantic coast of the Iberian Peninsula.
Root, Elisabeth Dowling; Lucero, Marilla; Nohynek, Hanna; Anthamatten, Peter; Thomas, Deborah S. K.; Tallo, Veronica; Tanskanen, Antti; Quiambao, Beatriz P.; Puumalainen, Taneli; Lupisan, Socorro P.; Ruutu, Petri; Ladesma, Erma; Williams, Gail M.; Riley, Ian; Simões, Eric A. F.
2014-01-01
Pneumococcal conjugate vaccines (PCVs) have demonstrated efficacy against childhood pneumococcal disease in several regions globally. We demonstrate how spatial epidemiological analysis of a PCV trial can assist in developing vaccination strategies that target specific geographic subpopulations at greater risk for pneumococcal pneumonia. We conducted a secondary analysis of a randomized, placebo-controlled, double-blind vaccine trial that examined the efficacy of an 11-valent PCV among children less than 2 y of age in Bohol, Philippines. Trial data were linked to the residential location of each participant using a geographic information system. We use spatial interpolation methods to create smoothed surface maps of vaccination rates and local-level vaccine efficacy across the study area. We then measure the relationship between distance to the main study hospital and local-level vaccine efficacy, controlling for ecological factors, using spatial autoregressive models with spatial autoregressive disturbances. We find a significant amount of spatial variation in vaccination rates across the study area. For the primary study endpoint vaccine efficacy increased with distance from the main study hospital from −14% for children living less than 1.5 km from Bohol Regional Hospital (BRH) to 55% for children living greater than 8.5 km from BRH. Spatial regression models indicated that after adjustment for ecological factors, distance to the main study hospital was positively related to vaccine efficacy, increasing at a rate of 4.5% per kilometer distance. Because areas with poor access to care have significantly higher VE, targeted vaccination of children in these areas might allow for a more effective implementation of global programs. PMID:24550454
NASA Astrophysics Data System (ADS)
Verma, S.; Gupta, R. D.
2014-11-01
In recent times, Japanese Encephalitis (JE) has emerged as a serious public health problem. In India, JE outbreaks were recently reported in Uttar Pradesh, Gorakhpur. The present study presents an approach to use GIS for analyzing the reported cases of JE in the Gorakhpur district based on spatial analysis to bring out the spatial and temporal dynamics of the JE epidemic. The study investigates spatiotemporal pattern of the occurrence of disease and detection of the JE hotspot. Spatial patterns of the JE disease can provide an understanding of geographical changes. Geospatial distribution of the JE disease outbreak is being investigated since 2005 in this study. The JE incidence data for the years 2005 to 2010 is used. The data is then geo-coded at block level. Spatial analysis is used to evaluate autocorrelation in JE distribution and to test the cases that are clustered or dispersed in space. The Inverse Distance Weighting interpolation technique is used to predict the pattern of JE incidence distribution prevalent across the study area. Moran's I Index (Moran's I) statistics is used to evaluate autocorrelation in spatial distribution. The Getis-Ord Gi*(d) is used to identify the disease areas. The results represent spatial disease patterns from 2005 to 2010, depicting spatially clustered patterns with significant differences between the blocks. It is observed that the blocks on the built up areas reported higher incidences.
Ageing and spatial reversal learning in humans: findings from a virtual water maze.
Schoenfeld, R; Foreman, N; Leplow, B
2014-08-15
Deterioration in spatial memory with normal ageing is well accepted. Animal research has shown spatial reversal learning to be most vulnerable to pathological changes in the brain, but this has never been tested in humans. We studied ninety participants (52% females, 20-80 yrs) in a virtual water maze with a reversal learning procedure. Neuropsychological functioning, mood and personality were assessed to control moderator effects. For data analysis, participants were subdivided post hoc into groups aged 20-24, 25-34, 35-44, 45-64 and 65-80 yrs. Initial spatial learning occurred in all age groups but 65-80-yrs-olds never reached the level of younger participants. When tested for delayed recall of spatial memory, younger people frequented the target area but those over 65 yrs did not. In spatial reversal learning, age groups over 45 yrs were deficient and the 65-80-yrs-olds showed no evidence of reversal. Spatial measures were associated with neuropsychological functioning. Extraversion and measures of depression moderated the age effect on the learning index with older introverted and non-depressed individuals showing better results. Measures of anxiety moderated the age effect on reversal learning with older people having higher anxiety scores showing a preserved reversal learning capability. Results confirmed age to be a major factor in spatial tasks but further showed neuropsychological functioning, psycho-affective determinants and personality traits to be significant predictors of individual differences. Copyright © 2014 Elsevier B.V. All rights reserved.
Ge, Lan; Kino, Aya; Lee, Daniel; Dharmakumar, Rohan; Carr, James C; Li, Debiao
2010-01-01
First-pass perfusion magnetic resonance imaging (MRI) is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. A combination of sliding window and conjugate-gradient HighlY constrained back-PRojection reconstruction (SW-CG-HYPR) method has been proposed in healthy volunteer studies to reduce the acquisition window for each slice while maintaining the temporal resolution of 1 frame per heartbeat in myocardial perfusion MRI. This method allows for improved spatial coverage, resolution, and SNR. In this study, we use a controlled animal model to test whether the myocardial territory supplied by a stenotic coronary artery can be detected accurately by SW-CG-HYPR perfusion method under pharmacological stress. Results from 6 mongrel dogs (15-25 kg) studies demonstrate the feasibility of SW-CG-HYPR to detect regional perfusion defects. Using this method, the acquisition time per cardiac cycle was reduced by a factor of 4, and the spatial coverage was increased from 2 to 3 slices to 6 slices as compared with the conventional techniques including both turbo-Fast Low Angle Short (FLASH) and echoplanar imaging (EPI). The SNR of the healthy myocardium at peak enhancement with SW-CG-HYPR (12.68 ± 2.46) is significantly higher (P < 0.01) than the turbo-FLASH (8.65 ± 1.93) and EPI (5.48 ± 1.24). The spatial resolution of SW-CG-HYPR images is 1.2 × 1.2 × 8.0 mm, which is better than the turbo-FLASH (1.8 × 1.8 × 8.0 mm) and EPI (2.0 × 1.8 × 8.0 mm). Sliding-window CG-HYPR is a promising technique for myocardial perfusion MRI. This technique provides higher image quality with respect to significantly improved SNR and spatial resolution of the myocardial perfusion images, which might improve myocardial perfusion imaging in a clinical setting.
[Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].
Yuan, Zheming; Fu, Wei; Li, Fangyi
2004-04-01
Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.
Johnson, Sarah A.; Sacks, Patricia K.; Turner, Sean M.; Gaynor, Leslie S.; Ormerod, Brandi K.; Maurer, Andrew P.; Bizon, Jennifer L.
2016-01-01
Hippocampal-dependent episodic memory and stimulus discrimination abilities are both compromised in the elderly. The reduced capacity to discriminate between similar stimuli likely contributes to multiple aspects of age-related cognitive impairment; however, the association of these behaviors within individuals has never been examined in an animal model. In the present study, young and aged F344×BN F1 hybrid rats were cross-characterized on the Morris water maze test of spatial memory and a dentate gyrus-dependent match-to-position test of spatial discrimination ability. Aged rats showed overall impairments relative to young in spatial learning and memory on the water maze task. Although young and aged learned to apply a match-to-position response strategy in performing easy spatial discriminations within a similar number of trials, a majority of aged rats were impaired relative to young in performing difficult spatial discriminations on subsequent tests. Moreover, all aged rats were susceptible to cumulative interference during spatial discrimination tests, such that error rate increased on later trials of test sessions. These data suggest that when faced with difficult discriminations, the aged rats were less able to distinguish current goal locations from those of previous trials. Increasing acetylcholine levels with donepezil did not improve aged rats’ abilities to accurately perform difficult spatial discriminations or reduce their susceptibility to interference. Interestingly, better spatial memory abilities were not significantly associated with higher performance on difficult spatial discriminations. This observation, along with the finding that aged rats made more errors under conditions in which interference was high, suggests that match-to-position spatial discrimination performance may rely on extra-hippocampal structures such as the prefrontal cortex, in addition to the dentate gyrus. PMID:27317194
Reduced Lung Cancer Mortality With Lower Atmospheric Pressure.
Merrill, Ray M; Frutos, Aaron
2018-01-01
Research has shown that higher altitude is associated with lower risk of lung cancer and improved survival among patients. The current study assessed the influence of county-level atmospheric pressure (a measure reflecting both altitude and temperature) on age-adjusted lung cancer mortality rates in the contiguous United States, with 2 forms of spatial regression. Ordinary least squares regression and geographically weighted regression models were used to evaluate the impact of climate and other selected variables on lung cancer mortality, based on 2974 counties. Atmospheric pressure was significantly positively associated with lung cancer mortality, after controlling for sunlight, precipitation, PM2.5 (µg/m 3 ), current smoker, and other selected variables. Positive county-level β coefficient estimates ( P < .05) for atmospheric pressure were observed throughout the United States, higher in the eastern half of the country. The spatial regression models showed that atmospheric pressure is positively associated with age-adjusted lung cancer mortality rates, after controlling for other selected variables.
Baskan, Oguz; Kosker, Yakup; Erpul, Gunay
2013-12-01
Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0-34 cm) than the KeS (0-134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43% for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.
Macro-level safety analysis of pedestrian crashes in Shanghai, China.
Wang, Xuesong; Yang, Junguang; Lee, Chris; Ji, Zhuoran; You, Shikai
2016-11-01
Pedestrian safety has become one of the most important issues in the field of traffic safety. This study aims at investigating the association between pedestrian crash frequency and various predictor variables including roadway, socio-economic, and land-use features. The relationships were modeled using the data from 263 Traffic Analysis Zones (TAZs) within the urban area of Shanghai - the largest city in China. Since spatial correlation exists among the zonal-level data, Bayesian Conditional Autoregressive (CAR) models with seven different spatial weight features (i.e. (a) 0-1 first order, adjacency-based, (b) common boundary-length-based, (c) geometric centroid-distance-based, (d) crash-weighted centroid-distance-based, (e) land use type, adjacency-based, (f) land use intensity, adjacency-based, and (g) geometric centroid-distance-order) were developed to characterize the spatial correlations among TAZs. Model results indicated that the geometric centroid-distance-order spatial weight feature, which was introduced in macro-level safety analysis for the first time, outperformed all the other spatial weight features. Population was used as the surrogate for pedestrian exposure, and had a positive effect on pedestrian crashes. Other significant factors included length of major arterials, length of minor arterials, road density, average intersection spacing, percentage of 3-legged intersections, and area of TAZ. Pedestrian crashes were higher in TAZs with medium land use intensity than in TAZs with low and high land use intensity. Thus, higher priority should be given to TAZs with medium land use intensity to improve pedestrian safety. Overall, these findings can help transportation planners and managers understand the characteristics of pedestrian crashes and improve pedestrian safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benitez, Aline do Nascimento; Martins, Felippe Danyel Cardoso; Mareze, Marcelle; Nino, Beatriz de Souza Lima; Caldart, Eloiza Teles; Ferreira, Fernanda Pinto; Mitsuka-Breganó, Regina; Freire, Roberta Lemos; Galhardo, Juliana Arena; Martins, Camila Marinelli; Biondo, Alexander Welker; Navarro, Italmar Teodorico
2018-06-01
Although leishmaniasis has been described as a classic example of a zoonosis requiring a comprehensive approach for control, to date, no study has been conducted on the spatial distribution of simultaneous Leishmania spp. seroprevalence in dog owners and dogs from randomly selected households in urban settings. Accordingly, the present study aimed to simultaneously identify the seroprevalence, spatial distribution and associated factors of infection with Leishmania spp. in dog owners and their dogs in the city of Londrina, a county seat in southern Brazil with a population of half a million people and ranked 18th in population and 145th in the human development index (HDI) out of 5570 Brazilian cities. Overall, 564 households were surveyed and included 597 homeowners and their 729 dogs. Anti-Leishmania spp. antibodies were detected by ELISA in 9/597 (1.50%) dog owners and in 32/729 (4.38%) dogs, with significantly higher prevalence (p = 0.0042) in dogs. Spatial analysis revealed associations between seropositive dogs and households located up to 500 m from the local railway. No clusters were found for either owner or dog case distributions. In summary, the seroepidemiological and spatial results collectively show a lack of association of the factors for infection, and the results demonstrated higher exposure for dogs than their owners. However, railway areas may provide favorable conditions for the maintenance of infected phlebotomines, thereby causing infection in nearby domiciled dogs. In such an urban scenario, local sanitary barriers should be focused on the terrestrial routes of people and surrounding areas, particularly railways, via continuous vector surveillance and identification of phlebotomines infected by Leishmania spp. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sadro, S.; MacIntyre, S.
2014-12-01
Alaskan arctic lakes lay covered by up to three meters of ice and snow for approximately two-thirds of the year, yet comparatively little is known about their ecosystem metabolism during this period. We combined the use of free-water measurements of dissolved oxygen (DO) and the laboratory incubation of sediment cores to characterize spatial and temporal patterns in the ecosystem respiration (ER) of five arctic lakes spanning a gradient in size from 1 to 150 ha. Seasonal rates of ER throughout the water column ranged from < 0.001 to 0.034 mg L-1 h-1; sediment ER ranged from mg 6.1 m-2 h-1 to 50.7 mg m-2 h-1. Although there were significant differences in sediment ER among lakes, average water column ER did not differ significantly. Seasonal patterns of DO draw down were most often linear. However, within the water column above the deepest basin of each lake, rates were higher during autumn - winter than winter - spring, with the lowest rates typically found in the upper 70% of the water column and the highest rates near the bottom. ER measured near the bottom along the slope of lake basins was lower than that at the center of lake basins and closer in magnitude to water column ER. Spatial patters in free-water rates were reflected by sediment ER, which was 21 - 66 % higher in cores collected from the deepest point of lake basins than in sediments collected at shallower locations found at the margin of basins. These observations suggest that two mechanisms operating in tandem account for the higher apparent rates of DO drawdown found within lake basins during the winter. Higher local rates of sediment ER and, similar to observations in other lakes, the transport of DO depleted waters from lake margins to deep basins. Together they contribute to the formation of hypoxia in the deeper basins of lakes and the concentration of other respiratory products, with important implications for energy flow within lakes and carbon budgets across the arctic.
Prevalence and spatial distribution of bovine brucellosis in San Luis and La Pampa, Argentina.
Aznar, M N; Linares, F J; Cosentino, B; Sago, A; La Sala, L; León, E; Duffy, S; Perez, A
2015-08-15
Bovine brucellosis (BB) is a zoonotic disease caused by Brucella abortus. BB is endemic in Argentina, where vaccination with Brucella abortus strain 19 is compulsory for 3-to-8 month-old heifers. The objectives of this study were to quantify the prevalence of BB and to identify factors associated with its occurrence, along with the spatial distribution of the disease, in the provinces of La Pampa and San Luis. A two-stage random sampling design was used to sample 8,965 cows (3,513 in La Pampa and 5,452 in San Luis) from 451 farms (187 in La Pampa and 264 in San Luis). Cow and herd prevalence were 1.8 % (95 % CI: 1.3-2.2; n = 157) and 19.7 % (95 % CI: 17.0-22.4; n = 89), respectively. Both cow-level and herd-level prevalence in La Pampa (2.4 and 26.0 %, respectively) were significantly higher than in San Luis (1.4 and 15.5 %, respectively). There were not differences between the proportions of reactive cattle compared to that obtained in a survey conducted in 2005. However, herd prevalence in La Pampa was significantly (P < 0.05) higher compared to that study. Disease was found to be spatially clustered in west La Pampa. The lower the bovine density and the calf/cow ratio, the higher odds of belonging to the cluster. The increase of farm prevalence in the last five years suggests that the disease is spreading and that control measures should be applied in the region. The cluster of infected farms was located in the west region of La Pampa. There, farms have lower animal densities and smaller cow/calf indices compared to the rest of the province. Although western La Pampa has more infected herds, within-farm prevalence was not higher, which suggests that the control program has been relatively successful in controlling the disease at the farm level, and/or that low animal density inherently results in low disease prevalence. Our results provide baseline information on the epidemiology of BB and its potential pattern of transmission in Argentina, which will ultimately help to improve BB control programs in the country.
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Mishra, U.; Riley, W. J.
2015-01-01
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ~ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
NASA Astrophysics Data System (ADS)
Mishra, U.; Riley, W. J.
2015-07-01
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data set with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales (s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions (R2 = 0.83-0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks (R2 ∼ 0.55-0.63). Current ESMs operate at coarse spatial scales (50-100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
Mishra, U.; Riley, W. J.
2015-07-02
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less
Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks
Mishra, U.; Riley, W. J.
2015-01-01
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing heterogeneity of terrestrial hydrological and biogeochemical processes in earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a dataset with reasonablemore » fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, 500 m, 1, 2, 5, 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98% of variability in the variance of SOC stocks. We found moderately-accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ~ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks can improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less
Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice
Souza, Bruno Oliveira Ferreira; Abou Rjeili, Mira; Quintana, Clémentine; Beaulieu, Jean M.; Casanova, Christian
2018-01-01
Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p < 0.01) were higher in D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development. PMID:29379422
Hendriks, Rob J J; Carvalheiro, Luisa G; Kleukers, Roy M J C; Biesmeijer, Jacobus C
2013-01-01
Nutrient availability in ecosystems has increased dramatically over the last century. Excess reactive nitrogen deposition is known to negatively impact plant communities, e.g. by changing species composition, biomass and vegetation structure. In contrast, little is known on how such impacts propagate to higher trophic levels. To evaluate how nitrogen deposition affects plants and herbivore communities through time, we used extensive databases of spatially explicit historical records of Dutch plant species and Orthoptera (grasshoppers and crickets), a group of animals that are particularly susceptible to changes in the C:N ratio of their resources. We use robust methods that deal with the unstandardized nature of historical databases to test whether nitrogen deposition levels and plant richness changes influence the patterns of richness change of Orthoptera, taking into account Orthoptera species functional traits. Our findings show that effects indeed also propagate to higher trophic levels. Differences in functional traits affected the temporal-spatial dynamics of assemblages of Orthoptera. While nitrogen deposition affected plant diversity, contrary to our expectations, we could not find a strong significant effect of food related traits. However we found that species with low habitat specificity, limited dispersal capacity and egg deposition in the soil were more negativly affected by nitrogen deposition levels. Despite the lack of significant effect of plant richness or food related traits on Orthoptera, the negative effects of nitrogen detected within certain trait groups (e.g. groups with limited disperse ability) could be related to subtle changes in plant abundance and plant quality. Our results, however, suggest that the changes in soil conditions (where many Orthoptera species lay their eggs) or other habitat changes driven by nitrogen have a stronger influence than food related traits. To fully evaluate the negative effects of nitrogen deposition on higher trophic levels it is essential to take into account species life-history traits.
Muir, Derek; Wang, Xiaowa; Bright, Doug; Lockhart, Lyle; Köck, Günter
2005-12-01
Spatial and temporal trends of mercury (Hg) and 22 other elements were examined in landlocked Arctic char (Salvelinus alpinus) from six lakes in the Canadian Arctic (Char, Resolute and North Lakes, and Amituk Lake on Cornwallis Island, Sapphire Lake on Devon Island and Boomerang Lake on Somerset Island). The objectives of the study were to compare recent concentrations of Hg and other metals in char with older data from Amituk, Resolute and Char Lakes, in order to examine temporal trends as well as to investigate factors influencing spatial trends in contaminant levels such as lake characteristics, trophic position, size and age of the fish. Geometric mean Hg concentrations in dorsal muscle ranged from 0.147 microg/g wet weight (ww) in Resolute Lake to 1.52 microg/g ww in Amituk Lake for samples collected over the period 1999-2003. Char from Amituk Lake also had significantly higher selenium (Se). Mercury in char from Resolute Lake was strongly correlated with fish length, weight, and age, as well as with thallium, lead and Se. In 5 of 6 lakes, Hg concentrations were correlated with stable nitrogen isotope ratios (delta15N) and larger char were feeding at a higher trophic level presumably due to feeding on smaller char. Weight adjusted mean Hg concentrations in char from Amituk Lake, and unadjusted geometric means in Char Lake and Resolute Lakes, did not show any statistically significant increase from the early 1990s to 2003. However, small sample sizes from 1999-2003 for fish <1000 g limited the power of this comparison in Char and Amituk Lakes. In Resolute Lake char, manganese, strontium and zinc showed consistent decreases from 1997 or 1999 to 2003 while nickel generally increased over the 6 year period. Differences in char trophic level inferred from delta15N values best explained the higher concentrations of Hg in Amituk Lake compared to the other lakes.
Milner-Bolotin, Marina; Nashon, Samson Madera
2012-02-01
Science, engineering and mathematics-related disciplines have relied heavily on a researcher's ability to visualize phenomena under study and being able to link and superimpose various abstract and concrete representations including visual, spatial, and temporal. The spatial representations are especially important in all branches of biology (in developmental biology time becomes an important dimension), where 3D and often 4D representations are crucial for understanding the phenomena. By the time biology students get to undergraduate education, they are supposed to have acquired visual-spatial thinking skills, yet it has been documented that very few undergraduates and a small percentage of graduate students have had a chance to develop these skills to a sufficient degree. The current paper discusses the literature that highlights the essence of visual-spatial thinking and the development of visual-spatial literacy, considers the application of the visual-spatial thinking to biology education, and proposes how modern technology can help to promote visual-spatial literacy and higher order thinking among undergraduate students of biology.
Nonlinear vibrational microscopy
Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas
2000-01-01
The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.
NASA Astrophysics Data System (ADS)
Padalia, H.; Mondal, P. P.
2014-11-01
Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.
Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation.
Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian
2012-01-01
Sharp spatial selectivity is critical to auditory performance, particularly in pitch-related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear-implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear-implant performance. Copyright © 2011 Elsevier B.V. All rights reserved.
Cochlear Implant Spatial Selectivity with Monopolar, Bipolar and Tripolar Stimulation
Zhu, Ziyan; Tang, Qing; Zeng, Fan-Gang; Guan, Tian; Ye, Datian
2011-01-01
Sharp spatial selectivity is critical to auditory performance, particularly in pitch related tasks. Most contemporary cochlear implants have employed monopolar stimulation that produces broad electric fields, which presumably contribute to poor pitch and pitch-related performance by implant users. Bipolar or tripolar stimulation can generate focused electric fields but requires higher current to reach threshold and, more interestingly, has not produced any apparent improvement in cochlear implant performance. The present study addressed this dilemma by measuring psychophysical and physiological spatial selectivity with both broad and focused stimulations in the same cohort of subjects. Different current levels were adjusted by systematically measuring loudness growth for each stimulus, each stimulation mode, and in each subject. Both psychophysical and physiological measures showed that, although focused stimulation produced significantly sharper spatial tuning than monopolar stimulation, it could shift the tuning position or even split the tuning tips. The altered tuning with focused stimulation is interpreted as a result of poor electrode-to-neuron interface in the cochlea, and is suggested to be mainly responsible for the lack of consistent improvement in implant performance. A linear model could satisfactorily quantify the psychophysical and physiological data and derive the tuning width. Significant correlation was found between the individual physiological and psychophysical tuning widths, and the correlation was improved by log-linearly transforming the physiological data to predict the psychophysical data. Because the physiological measure took only one-tenth of the time of the psychophysical measure, the present model is of high clinical significance in terms of predicting and improving cochlear implant performance. PMID:22138630
Petrella, L I; Cai, Y; Sereno, J V; Gonçalves, S I; Silva, A J; Castelo-Branco, M
2016-09-01
Neurofibromatosis type-1 (NF1) is a common neurogenetic disorder and an important cause of intellectual disability. Brain-behaviour associations can be examined in vivo using morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) to study brain structure. Here, we studied structural and behavioural phenotypes in heterozygous Nf1 mice (Nf1(+/-) ) using T2-weighted imaging MRI and DTI, with a focus on social recognition deficits. We found that Nf1(+/-) mice have larger volumes than wild-type (WT) mice in regions of interest involved in social cognition, the prefrontal cortex (PFC) and the caudate-putamen (CPu). Higher diffusivity was found across a distributed network of cortical and subcortical brain regions, within and beyond these regions. Significant differences were observed for the social recognition test. Most importantly, significant structure-function correlations were identified concerning social recognition performance and PFC volumes in Nf1(+/-) mice. Analyses of spatial learning corroborated the previously known deficits in the mutant mice, as corroborated by platform crossings, training quadrant time and average proximity measures. Moreover, linear discriminant analysis of spatial performance identified 2 separate sub-groups in Nf1(+/-) mice. A significant correlation between quadrant time and CPu volumes was found specifically for the sub-group of Nf1(+/-) mice with lower spatial learning performance, suggesting additional evidence for reorganization of this region. We found strong evidence that social and spatial cognition deficits can be associated with PFC/CPu structural changes and reorganization in NF1. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
David, Arthur; Tournoud, Marie-George; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Salles, Christian; Bancon-Montigny, Chrystelle; Picot, Bernadette
2013-03-01
This paper analyzes how changes in hydrological conditions can affect the water quality of a temporary river that receives direct inputs of sewage effluents. Data from 12 spatial surveys of the Vène river were examined. Physico-chemical parameters, major ion, and nutrient concentrations were measured. Analyses of variance (ANOVA) and multivariate analyses were performed. ANOVA revealed significant spatial differences for conductivity and major ion but no significant spatial differences for nutrient concentrations even if higher average concentrations were observed at stations located downstream from sewage effluent discharge points. Significant temporal differences were observed among all the parameters. Karstic springs had a marked dilution effect on the direct disposal of sewage effluents. During high-flow periods, nutrient concentrations were high to moderate whereas nutrient concentrations ranged from moderate to bad at stations located downstream from the direct inputs of sewage effluents during low-flow periods. Principal component analysis showed that water quality parameters that explained the water quality of the Vène river were highly dependent on hydrological conditions. Cluster analysis showed that when the karstic springs were flowing, water quality was homogeneous all along the river, whereas when karstic springs were dry, water quality at the monitoring stations was more fragmented. These results underline the importance of considering hydrological conditions when monitoring the water quality of temporary rivers. In view of the pollution observed in the Vène river, "good water chemical status" can probably only be achieved by improving the management of sewage effluents during low-flow periods.
Wang, Yijun; Wang, Yu-Te; Jung, Tzyy-Ping
2012-01-01
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters. PMID:22666377
Bauder, Javan M.; Breininger, David R.; Bolt, M. Rebecca; Legare, Michael L.; Jenkins, Christopher L.; Rothermel, Betsie B.; McGarigal, Kevin
2016-01-01
Understanding the factors influencing the degree of spatial overlap among conspecifics is important for understanding multiple ecological processes. Compared to terrestrial carnivores, relatively little is known about the factors influencing conspecific spatial overlap in snakes, although across snake taxa there appears to be substantial variation in conspecific spatial overlap. In this study, we described conspecific spatial overlap of eastern indigo snakes (Drymarchon couperi) in peninsular Florida and examined how conspecific spatial overlap varied by sex and season (breeding season vs. non-breeding season). We calculated multiple indices of spatial overlap using 6- and 3-month utilization distributions (UD) of dyads of simultaneously adjacent telemetered snakes. We also measured conspecific UD density values at each telemetry fix and modeled the distribution of those values as a function of overlap type, sex, and season using generalized Pareto distributions. Home range overlap between males and females was significantly greater than overlap between individuals of the same sex and male home ranges often completely contained female home ranges. Male home ranges overlapped little during both seasons, whereas females had higher levels of overlap during the non-breeding season. The spatial patterns observed in our study are consistent with those seen in many mammalian carnivores, in which low male-male overlap and high inter-sexual overlap provides males with greater access to females. We encourage additional research on the influence of prey availability on conspecific spatial overlap in snakes as well as the behavioral mechanisms responsible for maintaining the low levels of overlap we observed. PMID:27490346
Temporal and spatial patterns in ichthyoplankton assemblages in bay and open coastal environments.
Kent, J; Jenkins, G; Acevedo, S
2013-02-01
The larval fish fauna occurring in temperate bay and shelf waters off Victoria, southern Australia, was found to be diverse, comprising taxa from 52 families. The most abundant groups collected were gobiids, tripterygiids, gobiesocids and clupeids. Fish egg concentrations were highest during spring and summer (September to February). Eggs of the Australian anchovy Engraulis australis occurred mainly during spring (September to November). Total larval fish concentrations were highest during summer (December to February), and were significantly higher at 1 km than 2 and 5 km from shore in offshore samples. Larval concentrations of a number of families, mainly reef-associated taxa that attach their eggs to hard substrata, were also higher nearer to shore. These larvae are more developed upon hatching than those of pelagic spawners and more capable of avoiding passive drift. Multivariate analyses found that larval taxonomic composition did not vary significantly with distance from shore, but that seasonal and monthly groupings were evident, with different taxa dominating at different times of the year. Larvae of the families Gobiidae and Tripterygiidae occurred in all months, but were less abundant during winter. Spatial differences in the larval fish assemblage between offshore samples and samples taken in the bay were only apparent during summer. This was primarily due to a higher abundance of seagrass-associated species, such as syngnathids and hemiramphids, utilizing specific habitats in the bay. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.
Wolff, Cecilia; Stevenson, Mark; Emanuelson, Ulf; Egenvall, Agneta; Lindberg, Ann
2011-11-01
Clinical mastitis (CM) is the most common veterinary treated disease in Swedish dairy cattle. To investigate if the distribution of veterinary registered cases of CM in Sweden follows that of the spatial distribution of cows with high somatic cell counts (SCCs), the spatial distribution of CM odds was estimated from available records and compared with udder health measures based on measurements of SCC derived from official milk recording. The study revealed areas with significantly lower odds for CM but with a high proportion of cows with a poor udder health score, suggesting an under-reporting of CM. We also found areas of significantly higher odds for CM despite a low proportion of cows with a poor udder health score, suggestive of over-treatment of mastitis. The results should enable targeted studies of reasons for discrepancies, e.g. farmers' and veterinarians' attitudes to mastitis treatment and disease recording in areas with a deficit or excess of registered CM cases. High quality disease records for dairy cattle are of interest not only for the dairy management but also for disease surveillance, monitoring of use of antibiotics and food safety purposes.
Kandala, Ngianga-Bakwin; Madungu, Tumwaka P; Emina, Jacques B O; Nzita, Kikhela P D; Cappuccio, Francesco P
2011-04-25
Although there are inequalities in child health and survival in the Democratic Republic of Congo (DRC), the influence of distal determinants such as geographic location on children's nutritional status is still unclear. We investigate the impact of geographic location on child nutritional status by mapping the residual net effect of malnutrition while accounting for important risk factors. We examine spatial variation in under-five malnutrition with flexible geo-additive semi-parametric mixed model while simultaneously controlling for spatial dependence and possibly nonlinear effects of covariates within a simultaneous, coherent regression framework based on Markov Chain Monte Carlo techniques. Individual data records were constructed for children. Each record represents a child and consists of nutritional status information and a list of covariates. For the 8,992 children born within the last five years before the survey, 3,663 children have information on anthropometric measures.Our novel empirical approach is able to flexibly determine to what extent the substantial spatial pattern of malnutrition is driven by detectable factors such as socioeconomic factors and can be attributable to unmeasured factors such as conflicts, political, environmental and cultural factors. Although childhood malnutrition was more pronounced in all provinces of the DRC, after accounting for the location's effects, geographic differences were significant: malnutrition was significantly higher in rural areas compared to urban centres and this difference persisted after multiple adjustments. The findings suggest that models of nutritional intervention must be carefully specified with regard to residential location. Childhood malnutrition is spatially structured and rates remain very high in the provinces that rely on the mining industry and comparable to the level seen in Eastern provinces under conflicts. Even in provinces such as Bas-Congo that produce foods, childhood malnutrition is higher probably because of the economic decision to sell more than the population consumes. Improving maternal and child nutritional status is a prerequisite for achieving MDG 4, to reduce child mortality rate in the DRC.
NASA Astrophysics Data System (ADS)
Pak, G.; HAN, K.; Kim, H.; Yeum, Y.; Hong, Y.; Kim, Y.; Yoon, J.
2016-12-01
Abandoned mine areas have increased the pollution problem through waste tailings, rock wastes, and acid mine drainage (AMD), all of which contain high amounts of heavy metals. They have various spatial and seasonal characteristics that can significantly affect water quality in the stream so it is important to assess these characteristics of AMD. The aim of this work is to study the characteristics of the spatial and seasonal behavior of heavy metals through the sediment and dissolved metal concentrations in the Geopung Mine Watershed, Korea. Seasonal variation of metal concentration in the stream sediment was found to be elevated during the summer than during any other seasons (at GP-5: 17.5 mg/kg for As, 7.5 mg/kg for Cd, 1,313 mg/kg for Zn). Similarly, heavy metal concentration in the water was also higher during the summer season (at GP-5: 0.283 mg/L for Cd, 2.554 mg/L for Cu, 12.354 mg/L for Zn). Moreover, the metal loadings were found to be increased during the summer season at the all of the point. The loading of Cd during this season was about 150 times higher than during the other seasons. This phenomenon is correlated with the pattern of the pH and TDS concentration at the upstream during summer. Low pH and High TDS concentrations significantly affect in-stream mechanisms which contribute to the fate and transport of metals. In addition, the concentration of spatial variation in sediment and water, most of the metal concentration decrease with distance from the tailing due to a dilution effect by the mixing of uncontaminated water and sediment. These study revealed that heavy metals in the stream coming from AMD and contaminant soil loss from the mine area are affected by physical influences such as rainfall intensity and velocity, and chemical influences such as pH.
Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael
2015-01-01
At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general conclusion multi-center studies would be helpful. PMID:26509448
Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning
Quercia, Angelica; Zappasodi, Filippo; Committeri, Giorgia; Ferrara, Michele
2018-01-01
Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in wakefulness, associated with performance failures, could be functionally linked to learning-related cortical plasticity. PMID:29666574
Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes
NASA Astrophysics Data System (ADS)
Wong, Hon Lun; Visscher, Pieter T.; White, Richard Allen, III; Smith, Daniela-Lee; Patterson, Molly M.; Burns, Brendan P.
2017-04-01
The role of archaea in microbial mats is poorly understood. Delineating the spatial distribution of archaea with mat depth will enable resolution of putative niches in these systems. In the present study, high throughput amplicon sequencing was undertaken in conjunction with analysis of key biogeochemical properties of two mats (smooth and pustular) from Shark Bay, Australia. One-way analysis of similarity tests indicated the archaeal community structures of smooth and pustular mats were significantly different (global R = 1, p = 0.1%). Smooth mats possessed higher archaeal diversity, dominated by Parvarchaeota. The methanogenic community in smooth mats was dominated by hydrogenotrophic Methanomicrobiales, as well as methylotrophic Methanosarcinales, Methanococcales, Methanobacteriales and Methanomassiliicoccaceae. Pustular mats were enriched with Halobacteria and Parvarchaeota. Key metabolisms (bacterial and archaeal) were measured, and the rates of oxygen production/consumption and sulfate reduction were up to four times higher in smooth than in pustular mats. Methane production peaked in the oxic layers and was up to seven-fold higher in smooth than pustular mats. The finding of an abundance of anaerobic methanogens enriched at the surface where oxygen levels were highest, coupled with peak methane production in the oxic zone, suggests putative surface anoxic niches in these microbial mats.
[Spatial analysis of mortality from cardiovascular diseases in Madrid City, Spain].
Gómez-Barroso, Diana; Prieto-Flores, María-Eugenia; Mellado San Gabino, Ana; Moreno Jiménez, Antonio
2015-01-01
Cardiovascular disease is the leading cause of death worldwide, but its spatial distribution is not homogeneous. The objective of this study is to analyze the spatial pattern of mortality from these diseases for men and women, in the populated urban area (AUP) of the municipality of Madrid, and to identify spatial aggregations. An ecological study was carried out by census tract, for men and women in 2010. Standardized Mortality Ratio (SMR), Relative Risk Smoothing (RRS) and Posterior Probability (PP) were calculated to consider the spatial pattern of the disease. To identify spatial clusters the Moran index (Moran I) and the Local Index of Spatial Autocorrelation (LISA) were used. The results were mapped. SMR higher than 1.1 was observed mainly in central areas among men and in peripheral areas among women. The PP that RRS was higher than 1 surpassed 0.8 in the center and in the periphery, in both men and women. Moran's I was 0.04 for men and 0.03 for women (p <0.05 in both cases). Sex differences were observed in the spatial distribution of mortality cases. RME RRS and PP maps showed a heterogeneous pattern in men, whereas in women a clearer pattern was detected, with a relatively higher risk in peripheral areas of the AUP. The LISA method showed similar patterns to those previously observed.
Spatial complexity of solutions of higher order partial differential equations
NASA Astrophysics Data System (ADS)
Kukavica, Igor
2004-03-01
We address spatial oscillation properties of solutions of higher order parabolic partial differential equations. In the case of the Kuramoto-Sivashinsky equation ut + uxxxx + uxx + u ux = 0, we prove that for solutions u on the global attractor, the quantity card {x epsi [0, L]:u(x, t) = lgr}, where L > 0 is the spatial period, can be bounded by a polynomial function of L for all \\lambda\\in{\\Bbb R} . A similar property is proven for a general higher order partial differential equation u_t+(-1)^{s}\\partial_x^{2s}u+ \\sum_{k=0}^{2s-1}v_k(x,t)\\partial_x^k u =0 .
NASA Astrophysics Data System (ADS)
Aguilar-Perera, Alfonso; Appeldoorn, Richard S.
2008-01-01
Despite an extensive study of the fish community off southwestern Puerto Rico, little information is available on the fish spatial distribution along an inshore-offshore, cross-shelf gradient containing a continuum of mangrove-seagrass-coral reefs. We investigated the spatial distribution of reef-associated fish species using a stratified sampling procedure. A total of 52,138 fishes were recorded, representing 102 species belonging to 32 families. Significant differences in mean fish density were evident among strata. Mean densities at shallow fore reefs and deep fore reefs (Romero key) were significantly higher compared to the rest of strata along the gradient. Mean densities of fishes in mangroves and seagrass (Montalva Bay) were comparable to those at shallow back reefs and deep fore reefs offshore (Turrumote), but lower to those inshore (Romero); the lowest fish densities were found in mangroves and seagrass (Montalva Bay) and seagrass (Romero and Corral). At least 17 species, in 7 families, were among the most common in terms of relative abundance representing 76% of the total individuals sampled. A detrended correspondence analysis (DCA) applied to more abundant fish species showed a spatial pattern in density distribution. Three major groupings were evident corresponding to mangroves and seagrass (Montalva Bay), shallow and deep reefs (Romero), and shallow and deep reefs (Corral and Turrumote). A cluster analysis on mean fish densities of the more abundant species revealed a consistent spatial distribution according to biotope by separating the ichthyofauna associated with mangroves, seagrass and that of shallow (back and fore) reefs, and deep fore reefs.
Zielinski, Mark R; Davis, J Mark; Fadel, James R; Youngstedt, Shawn D
2013-08-01
Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (∼4h loss/day) vs. ad libitum sleep] × 2 [exercise (1h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction. Published by Elsevier B.V.
Growth and certain chemical constituents of tobacco plants exposed to air ions
NASA Astrophysics Data System (ADS)
Barthakur, N. N.; Arnold, N. P.
1988-06-01
Controlled experiments were performed in Faraday cages on the effects of positive and negative air ions on flue-cured tobacco plants. Continuous exposures for 15 days to air ions showed no significant differences in any plant growth characteristic between the treated and control plants. Standard errors in the measurement of the growth parameters for ion exposed plants were, however, consistently higher than those of control plants. Spatial variation in concentration gradients of air ions produced by corona discharge might have contributed to masking of the relatively small effects of air ions on biological organisms observed in previous experiments in this laboratory. No significant difference was observed between the experimental and control plants in nicotine, total alkaloid, and reducing sugar contents. Total nitrogen content was slightly higher for treated than control plants.
Vacca, A; Ribatti, D; Ruco, L; Giacchetta, F; Nico, B; Quondamatteo, F; Ria, R; Iurlaro, M; Dammacco, F
1999-01-01
Node biopsies of 30 benign lymphadenopathies and 71 B-cell non-Hodgkin's lymphomas (B-NHLs) were investigated for microvessel and macrophage counts using immunohistochemistry and morphometric analysis. Both counts were significantly higher in B-NHL. Moreover, when these were grouped into low-grade and high-grade lymphomas, according to the Kiel classification and Working Formulation (WF), statistically significant higher counts were found in the high-grade tumours. Immunohistochemistry and electron microscopy revealed a close spatial association between microvessels and macrophages. Overall, the results suggest that, in analogy to what has already been shown in solid tumours, angiogenesis occurring in B-NHLs increases with tumour progression, and that macrophages promote the induction of angiogenesis via the release of their angiogenic factors. © 1999 Cancer Research Campaign PMID:10070898
Chin, John J; Kim, Anna J; Takahashi, Lois; Wiebe, Douglas J
2015-01-01
Social determinants of health may be substantially affected by spatial factors, which together may explain the persistence of health inequities. Clustering of possible sources of negative health and social outcomes points to a spatial focus for future interventions. We analyzed the spatial clustering of sex work businesses in Southern California to examine where and why they cluster. We explored economic and legal factors as possible explanations of clustering. We manually coded data from a website used by paying members to post reviews of female massage parlor workers. We identified clusters of sexually oriented massage parlor businesses using spatial autocorrelation tests. We conducted spatial regression using census tract data to identify predictors of clustering. A total of 889 venues were identified. Clusters of tracts having higher-than-expected numbers of sexually oriented massage parlors ("hot spots") were located outside downtowns. These hot spots were characterized by a higher proportion of adult males, a higher proportion of households below the federal poverty level, and a smaller average household size. Sexually oriented massage parlors in Los Angeles and Orange counties cluster in particular neighborhoods. More research is needed to ascertain the causal factors of such clusters and how interventions can be designed to leverage these spatial factors.
Pansing, Elizabeth R; Tomback, Diana F; Wunder, Michael B; French, Joshua P; Wagner, Aaron C
2017-11-01
Tree recruitment is a spatially structured process that may undergo change over time because of variation in postdispersal processes. We examined seed pilferage, seed germination, and seedling survival in whitebark pine to determine whether 1) microsite type alters the initial spatial pattern of seed caches, 2) higher abiotic stress (i.e. higher elevations) exacerbates spatial distribution changes, and 3) these postdispersal processes are spatially clustered. At two study areas, we created a seed distribution pattern by burying seed caches in microsite types frequently used by whitebark pine's avian seed disperser (Clark's nutcracker) in upper subalpine forest and at treeline, the latter characterized by high abiotic environmental stress. We monitored caches for two years for pilferage, germination, and seedling survival. Odds of pilferage (both study areas), germination (northern study area), and survival (southern study area) were higher at treeline relative to subalpine forest. At the southern study area, we found higher odds of 1) pilferage near rocks and trees relative to no object in subalpine forest, 2) germination near rocks relative to trees within both elevation zones, and 3) seedling survival near rocks and trees relative to no object at treeline. No microsite effects were detected at the northern study area. Findings indicated that the microsite distribution of seed caches changes with seed/seedling stage. Higher odds of seedling survival near rocks and trees were observed at treeline, suggesting abiotic stress may limit safe site availability, thereby shifting the spatial distribution toward protective microsites. Higher odds of pilferage at treeline, however, suggest rodents may limit treeline recruitment. Further, odds of pilferage were higher near rocks and trees relative to no object in subalpine forest but did not differ among microsites at treeline, suggesting pilferage can modulate the spatial structure of regeneration, a finding supported by limited clustering of postdispersal processes.
Determinants of tuberculosis transmission and treatment abandonment in Fortaleza, Brazil.
Harling, Guy; Lima Neto, Antonio S; Sousa, Geziel S; Machado, Marcia M T; Castro, Marcia C
2017-05-25
Tuberculosis (TB) remains a public health problem, despite recent achievements in reducing incidence and mortality rates. In Brazil, these achievements were above the worldwide average, but marked by large regional heterogeneities. In Fortaleza (5th largest city in Brazil), the tuberculosis cure rate has been declining and treatment abandonment has been increasing in the past decade, despite a reduction in incidence and an increase in directly observed therapy (DOT). These trends put efforts to eliminate tuberculosis at risk. We therefore sought to determine social and programmatic determinants of tuberculosis incidence and treatment abandonment in Fortaleza. We analyzed sociodemographic and clinical data for all new tuberculosis cases notified in the Notifiable Diseases Information System (SINAN) from Fortaleza between 2007 and 2014. We calculated incidence rates for 117 neighborhoods in Fortaleza, assessed their spatial clustering, and used spatial regression models to quantify associations between neighborhood-level covariates and incidence rates. We used hierarchical logistic regression models to evaluate how individual- and neighborhood-level covariates predicted tuberculosis treatment abandonment. There were 12,338 new cases reported during the study period. Case rates across neighborhoods were significantly positively clustered in two low-income areas close to the city center. In an adjusted model, tuberculosis rates were significantly higher in neighborhoods with lower literacy, higher sewerage access and homicide rates, and a greater proportion of self-reported black residents. Treatment was abandoned in 1901 cases (15.4%), a rate that rose by 71% between 2007 and 2014. Abandonment was significantly associated with many individual sociodemographic and clinical factors. Notably, being recommended for DOT was protective for those who completed DOT, but associated with abandonment for those who did not. Low socioeconomic status areas have higher tuberculosis rates, and low socioeconomic individuals have higher risk of treatment abandonment, in Fortaleza. Treatment abandonment rates are growing despite the advent of universal DOT recommendations in Brazil. Proactive social policies, and active contact tracing to find missed cases, may help reduce the tuberculosis burden in this setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, U.; Riley, W. J.
The spatial heterogeneity of land surfaces affects energy, moisture, and greenhouse gas exchanges with the atmosphere. However, representing the heterogeneity of terrestrial hydrological and biogeochemical processes in Earth system models (ESMs) remains a critical scientific challenge. We report the impact of spatial scaling on environmental controls, spatial structure, and statistical properties of soil organic carbon (SOC) stocks across the US state of Alaska. We used soil profile observations and environmental factors such as topography, climate, land cover types, and surficial geology to predict the SOC stocks at a 50 m spatial scale. These spatially heterogeneous estimates provide a data setmore » with reasonable fidelity to the observations at a sufficiently high resolution to examine the environmental controls on the spatial structure of SOC stocks. We upscaled both the predicted SOC stocks and environmental variables from finer to coarser spatial scales ( s = 100, 200, and 500 m and 1, 2, 5, and 10 km) and generated various statistical properties of SOC stock estimates. We found different environmental factors to be statistically significant predictors at different spatial scales. Only elevation, temperature, potential evapotranspiration, and scrub land cover types were significant predictors at all scales. The strengths of control (the median value of geographically weighted regression coefficients) of these four environmental variables on SOC stocks decreased with increasing scale and were accurately represented using mathematical functions ( R 2 = 0.83–0.97). The spatial structure of SOC stocks across Alaska changed with spatial scale. Although the variance (sill) and unstructured variability (nugget) of the calculated variograms of SOC stocks decreased exponentially with scale, the correlation length (range) remained relatively constant across scale. The variance of predicted SOC stocks decreased with spatial scale over the range of 50 m to ~ 500 m, and remained constant beyond this scale. The fitted exponential function accounted for 98 % of variability in the variance of SOC stocks. We found moderately accurate linear relationships between mean and higher-order moments of predicted SOC stocks ( R 2 ∼ 0.55–0.63). Current ESMs operate at coarse spatial scales (50–100 km), and are therefore unable to represent environmental controllers and spatial heterogeneity of high-latitude SOC stocks consistent with observations. We conclude that improved understanding of the scaling behavior of environmental controls and statistical properties of SOC stocks could improve ESM land model benchmarking and perhaps allow representation of spatial heterogeneity of biogeochemistry at scales finer than those currently resolved by ESMs.« less
NASA Astrophysics Data System (ADS)
Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing
2014-02-01
Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p < 0.05). A spatial distribution map of FCT aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p < 0.05). Areas with light aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p < 0.05). Areas with heavy aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p < 0.05). The output produced by classification and regression trees showed that sunshine hours, rainfall, and maximum temperature were the most important factors affecting FCT aroma types at national scale.
Song, Guangyan; Li, Ying; Zhang, Jiahui; Li, Meiling; Hou, Jihua; He, Nianpeng
2016-11-18
Leaf caloric value (LCV) is a useful index to represent the conversion efficiency of leaves for solar energy. We investigated the spatial pattern of LCV and explored the factors (phylogeny, climate, and soil) that influence them at a large scale by determining LCV standardized by leaf area in 920 plant species from nine forest communities along the 3700 km North-South Transect of Eastern China. LCV ranged from 0.024 to 1.056 kJ cm -2 with an average of 0.151 kJ cm -2 . LCV declined linearly with increasing latitude along the transect. Altogether, 57.29% of the total variation in LCV was explained by phylogenetic group (44.03% of variation), climate (1.27%), soil (0.02%) and their interacting effects. Significant phylogenetic signals in LCV were observed not only within forest communities but also across the whole transect. This phylogenetic signal was higher at higher latitudes, reflecting latitudinal change in the species composition of forest communities from complex to simple. We inferred that climate influences the spatial pattern of LCV through directly regulating the species composition of plant communities, since most plant species might tolerate only a limited temperature range. Our findings provide new insights into the adaptive mechanisms in plant traits in future studies.
Mohan, Venkata Raghava; Sarkar, Rajiv; Abraham, Vinod Joseph; Balraj, Vinohar; Naumova, Elena N
2015-03-01
To describe spatial and temporal profiles of Road Traffic Injuries (RTIs) on different road networks in Vellore district of southern India. Using the information in the police maintained First Information Reports (FIRs), daily time series of RTI counts were created and temporal characteristics were analysed with respect to the vehicle, road types and time of the day for the period January 2005 to May 2007. Daily incidence and trend of RTIs were estimated using a Poisson regression analysis. Of the reported 3262 RTIs, 52% had occurred on the National Highway (NH). The overall RTI rate on the NH was 8.8/100 000 vehicles per day with significantly higher pedestrian involvement. The mean numbers of RTIs were significantly higher on weekends. Thirteen percentage of all RTIs were associated with fatalities. Hotspots are major town junctions, and RTI rates differ over different stretches of the NH. In India, FIRs form a valuable source of RTI information. Information on different vehicle profile, RTI patterns, and their spatial and temporal trends can be used by administrators to devise effective strategies for RTI prevention by concentrating on the high-risk areas, thereby optimising the use of available personnel and resources. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wu, Yi-Hua; Chan, Chang-Chuan; Rao, Carol Y.; Lee, Chung-Te; Hsu, Hsiao-Hsien; Chiu, Yueh-Hsiu; Chao, H. Jasmine
This study was conducted to investigate the temporal and spatial distributions, compositions, and determinants of ambient aeroallergens in Taipei, Taiwan, a subtropical metropolis. We monitored ambient culturable fungi in Shin-Jhuang City, an urban area, and Shi-Men Township, a rural area, in Taipei metropolis from 2003 to 2004. We collected ambient fungi in the last week of every month during the study period, using duplicate Burkard portable samplers and Malt Extract Agar. The median concentration of total fungi was 1339 colony-forming units m -3 of air over the study period. The most prevalent fungi were non-sporulating fungi, Cladosporium, Penicillium, Curvularia and Aspergillus at both sites. Airborne fungal concentrations and diversity of fungal species were generally higher in urban than in rural areas. Most fungal taxa had significant seasonal variations, with higher levels in summer. Multivariate analyses showed that the levels of ambient fungi were associated positively with temperature, but negatively with ozone and several other air pollutants. Relative humidity also had a significant non-linear relationship with ambient fungal levels. We concluded that the concentrations and the compositions of ambient fungi are diverse in urban and rural areas in the subtropical region. High ambient fungal levels were related to an urban environment and environmental conditions of high temperature and low ozone levels.
Hain, Christopher R; Anderson, Martha C
2017-10-16
Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required to attain near-global coverage (60°N to 60°S). While these LST observations are available from polar-orbiting sensors, providing global coverage at higher spatial resolutions, the temporal sampling (twice daily observations) can pose significant limitations. For example, the Atmosphere Land Exchange Inverse (ALEXI) surface energy balance model, used for monitoring evapotranspiration and drought, requires an observation of the morning change in LST - a quantity not directly observable from polar-orbiting sensors. Therefore, we have developed and evaluated a data-mining approach to estimate the mid-morning rise in LST from a single sensor (2 observations per day) of LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Aqua platform. In general, the data-mining approach produced estimates with low relative error (5 to 10%) and statistically significant correlations when compared against geostationary observations. This approach will facilitate global, near real-time applications of ALEXI at higher spatial and temporal coverage from a single sensor than currently achievable with current geostationary datasets.
Seasonal dynamics of bacterioplankton community in a large, shallow, highly dynamic freshwater lake.
Kong, Zhaoyu; Kou, Wenbo; Ma, Yantian; Yu, Haotian; Ge, Gang; Wu, Lan
2018-05-23
The spatio-temporal shifts of bacterioplankton community can mirror their transition of functional traits in aquatic ecosystem. However, our understanding of spatio-temporal variation of bacterioplankton community composition structure (BCCs) within large, shallow and highly dynamic freshwater lake is still elusive. Here we examined the seasonal and spatial variability of BCCs in the Poyang Lake by 16S rRNA gene amplicon sequencing to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of BCCs were mainly attributed to the differences between autumn and spring/winter. Higher alpha diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significant lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1 and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature and nutrient status shaped the seasonal patterns of BCCs in the Poyang Lake.
Pernetta, A P; Allen, J A; Beebee, T J C; Reading, C J
2011-09-01
Human-induced alteration of natural habitats has the potential to impact on the genetic structuring of remnant populations at multiple spatial scales. Species from higher trophic levels, such as snakes, are expected to be particularly susceptible to land-use changes. We examined fine-scale population structure and looked for evidence of sex-biased dispersal in smooth snakes (Coronella austriaca), sampled from 10 heathland localities situated within a managed coniferous forest in Dorset, United Kingdom. Despite the limited distances between heathland areas (maximum <6 km), there was a small but significant structuring of populations based on eight microsatellite loci. This followed an isolation-by-distance model using both straight line and 'biological' distances between sampling sites, suggesting C. austriaca's low vagility as the causal factor, rather than closed canopy conifer forest exerting an effect as a barrier to dispersal. Within population comparisons of male and female snakes showed evidence for sex-biased dispersal, with three of four analyses finding significantly higher dispersal in males than in females. We suggest that the fine-scale spatial genetic structuring and sex-biased dispersal have important implications for the conservation of C. austriaca, and highlight the value of heathland areas within commercial conifer plantations with regards to their future management.
The Future Role of GIS Education in Creating Critical Spatial Thinkers
ERIC Educational Resources Information Center
Bearman, Nick; Jones, Nick; André, Isabel; Cachinho, Herculano Alberto; DeMers, Michael
2016-01-01
Teaching of critical spatial thinking in higher education empowers graduates to effectively engage with spatial data. Geographic information systems (GIS) and science are taught to undergraduates across many disciplines; we evaluate how this contributes to critical spatial thinking. The discipline of GIS covers the whole process of spatial…
Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu
2014-01-01
Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771
Non-ECG-gated unenhanced MRA of the carotids: optimization and clinical feasibility.
Raoult, H; Gauvrit, J Y; Schmitt, P; Le Couls, V; Bannier, E
2013-11-01
To optimise and assess the clinical feasibility of a carotid non-ECG-gated unenhanced MRA sequence. Sixteen healthy volunteers and 11 patients presenting with internal carotid artery (ICA) disease underwent large field-of-view balanced steady-state free precession (bSSFP) unenhanced MRA at 3T. Sampling schemes acquiring the k-space centre either early (kCE) or late (kCL) in the acquisition window were evaluated. Signal and image quality was scored in comparison to ECG-gated kCE unenhanced MRA and TOF. For patients, computed tomography angiography was used as the reference. In volunteers, kCE sampling yielded higher image quality than kCL and TOF, with fewer flow artefacts and improved signal homogeneity. kCE unenhanced MRA image quality was higher without ECG-gating. Arterial signal and artery/vein contrast were higher with both bSSFP sampling schemes than with TOF. The kCE sequence allowed correct quantification of ten significant stenoses, and it facilitated the identification of an infrapetrous dysplasia, which was outside of the TOF imaging coverage. Non-ECG-gated bSSFP carotid imaging offers high-quality images and is a promising sequence for carotid disease diagnosis in a short acquisition time with high spatial resolution and a large field of view. • Non-ECG-gated unenhanced bSSFP MRA offers high-quality imaging of the carotid arteries. • Sequences using early acquisition of the k-space centre achieve higher image quality. • Non-ECG-gated unenhanced bSSFP MRA allows quantification of significant carotid stenosis. • Short MR acquisition times and ungated sequences are helpful in clinical practice. • High 3D spatial resolution and a large field of view improve diagnostic performance.
Quality evaluation of pansharpened hyperspectral images generated using multispectral images
NASA Astrophysics Data System (ADS)
Matsuoka, Masayuki; Yoshioka, Hiroki
2012-11-01
Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.
Zhang, Yun-lin; Yang, Long-yuan; Qin, Bo-qiang; Gao, Guang; Luo, Lian-cong; Zhu, Guang-wei; Liu, Ming-liang
2008-06-01
Spatial variation of chemical oxygen demand (COD) concentration was documented and significant correlations between COD concentration and chromophoric dissolved organic matter (CDOM) absorption, fluorescence, DOC concentration were found based on a cruise sampling in the northern region of Lake Taihu in summer including 42 samplings. The possible source of COD was also discussed using every two cruise samplings in summer and winter, respectively. The COD concentration ranged from 3.77 to 7.96 mg x L(-1) with a mean value of (5.90 +/- 1.54) mg x L(-1). The mean COD concentrations in Meiliang Bay and the central lake basin were (6.93 +/- 0.89) mg x L(-1) and (4.21 +/- 0.49) mg x L(-1) respectively. A significant spatial difference was found between Meiliang Bay and the central lake basin in COD concentration, CDOM absorption coefficient, fluorescence, DOC and phytoplankton pigment concentrations, decreasing from the river mouth to inner bay, outer bay and the central lake basin. Significant correlations between COD concentration and CDOM absorption, fluorescence, DOC concentration, suggested that COD concentration could be estimated and organic pollution could be assessed using CDOM absorption retrieved from remote sensing images. Significant and positive correlation was found between COD concentration and chlorophyll a concentration in summer. However, the correlation was weak or no correlation was found in winter. Furthermore, a significant higher COD concentration was found in summer than in winter (p < 0.001). Our results indicated that degradation of phytoplankton blooms was the main source of COD in summer, except for river terrestrial input.
NASA Astrophysics Data System (ADS)
Xu, Yong; Li, Xinzheng; Ma, Lin; Dong, Dong; Kou, Qi; Sui, Jixing; Gan, Zhibin; Wang, Hongfa
2017-09-01
In spring and summer 2011, the macro- and megabenthic fauna in two sections of the East China Sea were investigated using an Agassiz net trawl to detect the seasonal and spatial variations of benthic community characteristics and the relation to environmental variables. The total number of species increased slightly from spring (131 species) to summer (133) whereas the percentage of Mollusca decreased significantly. The index of relative importance (IRI) indicated that the top five important species changed completely from spring to summer. Species number, abundance and biomass in summer were significantly higher than in spring, but no significant difference was observed among areas (coastal, transitional and oceanic areas, divided basically from inshore to offshore). Species richness ( d), diversity ( H') and evenness ( J') showed no significant seasonal or spatial variations. Cluster analysis and nMDS ordination identified three benthic communities from inshore to offshore, corresponding to the three areas. Analysis of Similarity (ANOSIM) indicated the overall significant difference in community structure between seasons and among areas. K-dominance curves revealed the high intrinsic diversity in the offshore area. Canonical correspondence analysis showed that the coastal community was positively correlated to total nitrogen and total organic carbon in spring, but negatively in summer; oceanic community was positively correlated to total nitrogen and total organic carbon in both seasons. Species such as Coelorhynchus multispinulosus, Neobythites sivicola, Lepidotrigla alata, Solenocera melantho, Parapenaeus fissuroides, Oratosquilla gonypetes and Spiropagurus spiriger occurred exclusively in the offshore oceanic area and their presence may reflect the influence of the offshore Kuroshio Current.
NASA Astrophysics Data System (ADS)
Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.
2017-10-01
Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season ( kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics ( α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test ( α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.
The Vineyard Yeast Microbiome, a Mixed Model Microbial Map
Setati, Mathabatha Evodia; Jacobson, Daniel; Andong, Ursula-Claire; Bauer, Florian
2012-01-01
Vineyards harbour a wide variety of microorganisms that play a pivotal role in pre- and post-harvest grape quality and will contribute significantly to the final aromatic properties of wine. The aim of the current study was to investigate the spatial distribution of microbial communities within and between individual vineyard management units. For the first time in such a study, we applied the Theory of Sampling (TOS) to sample gapes from adjacent and well established commercial vineyards within the same terroir unit and from several sampling points within each individual vineyard. Cultivation-based and molecular data sets were generated to capture the spatial heterogeneity in microbial populations within and between vineyards and analysed with novel mixed-model networks, which combine sample correlations and microbial community distribution probabilities. The data demonstrate that farming systems have a significant impact on fungal diversity but more importantly that there is significant species heterogeneity between samples in the same vineyard. Cultivation-based methods confirmed that while the same oxidative yeast species dominated in all vineyards, the least treated vineyard displayed significantly higher species richness, including many yeasts with biocontrol potential. The cultivatable yeast population was not fully representative of the more complex populations seen with molecular methods, and only the molecular data allowed discrimination amongst farming practices with multivariate and network analysis methods. Importantly, yeast species distribution is subject to significant intra-vineyard spatial fluctuations and the frequently reported heterogeneity of tank samples of grapes harvested from single vineyards at the same stage of ripeness might therefore, at least in part, be due to the differing microbiota in different sections of the vineyard. PMID:23300721
Relationships among Musical Aptitude, Digit Ratio and Testosterone in Men and Women
Borniger, Jeremy C.; Chaudhry, Adeel; Muehlenbein, Michael P.
2013-01-01
Circulating adult testosterone levels, digit ratio (length of the second finger relative to the fourth finger), and directional asymmetry in digit ratio are considered sexually dimorphic traits in humans. These have been related to spatial abilities in men and women, and because similar brain structures appear to be involved in both spatial and musical abilities, neuroendocrine function may be related to musical as well as spatial cognition. To evaluate relationships among testosterone and musical ability in men and women, saliva samples were collected, testosterone concentrations assessed, and digit ratios calculated using standardized protocols in a sample of university students (N = 61), including both music and non-music majors. Results of Spearman correlations suggest that digit ratio and testosterone levels are statistically related to musical aptitude and performance only within the female sample: A) those females with greater self-reported history of exposure to music (p = 0.016) and instrument proficiency (p = 0.040) scored higher on the Advanced Measures of Music Audiation test, B) those females with higher left hand digit ratio (and perhaps lower fetal testosterone levels) were more highly ranked (p = 0.007) in the orchestra, C) female music students exhibited a trend (p = 0.082) towards higher testosterone levels compared to female non-music students, and D) female music students with higher rank in the orchestra/band had higher testosterone levels (p = 0.003) than lower ranked students. None of these relationships were significant in the male sample, although a lack of statistical power may be one cause. The effects of testosterone are likely a small part of a poorly understood system of biological and environmental stimuli that contribute to musical aptitude. Hormones may play some role in modulating the phenotype of musical ability, and this may be the case for females more so than males. PMID:23520475
NASA Astrophysics Data System (ADS)
Saha, Provat K.; Khlystov, Andrey; Snyder, Michelle G.; Grieshop, Andrew P.
2018-03-01
We present field measurement data and modeling of multiple traffic-related air pollutants during two seasons at a site adjoining Interstate 40, near Durham, North Carolina. We analyze spatial-temporal and seasonal trends and fleet-average pollutant emission factors and use our data to evaluate a line source dispersion model. Month-long measurement campaigns were performed in summer 2015 and winter 2016. Data were collected at a fixed near-road site located within 10 m from the highway edge, an upwind background site and, under favorable meteorological conditions, along downwind perpendicular transects. Measurements included the size distribution, chemical composition, and volatility of submicron particles, black carbon (BC), nitrogen oxides (NOx), meteorological conditions and traffic activity data. Results show strong seasonal and diurnal differences in spatial distribution of traffic sourced pollutants. A strong signature of vehicle emissions was observed within 100-150 m from the highway edge with significantly higher concentrations during morning. Substantially higher concentrations and less-sharp near-road gradients were observed in winter for many species. Season-specific fleet-average fuel-based emission factors for NO, NOx, BC, and particle number (PN) were derived based on up- and down-wind roadside measurements. The campaign-average NOx and PN emission factors were 20% and 300% higher in winter than summer, respectively. These results suggest that the combined effect of higher emissions and their slower downwind dispersion in winter dictate the observed higher downwind concentrations and wider highway influence zone in winter for several species. Finally, measurements of traffic data, emission factors, and pollutant concentrations were integrated to evaluate a line source dispersion model (R-LINE). The dispersion model captured the general trends in the spatial and temporal patterns in near-road concentrations. However, there was a tendency for the model to under-predict concentrations near the road in the mornings and over-predict concentrations in the evenings.
Monnat, Shannon M.
2016-01-01
Hispanics have the lowest health insurance rates of any racial/ethnic group, but rates vary significantly across the U.S. The unprecedented growth of the Hispanic population since 1990 in rural areas with previously small or non-existent Hispanic populations raises questions about disparities in access to health insurance coverage. Identifying spatial disparities in Hispanic health insurance rates can illuminate the specific contexts within which Hispanics are least likely to have health care access and inform policy approaches for increasing coverage in different spatial contexts. Using county-level data from the 2009/2013 American Community Survey, I find that early new destinations (i.e., those that experienced rapid Hispanic population growth during the 1990s) have the lowest Hispanic adult health insurance coverage rates, with little variation by metropolitan status. Conversely, among the most recent new destinations that experienced significant Hispanic population growth during the 2000s, metropolitan counties have Hispanic health insurance rates that are similar to established destinations, but rural counties have Hispanic health insurance rates that are significantly lower than those in established destinations. Findings demonstrate that the new destination disadvantage is driven entirely by higher concentrations of immigrant non-citizen Hispanics in these counties, but labor market conditions were salient drivers of the spatially uneven distribution of foreign-born non-citizen Hispanics to new destinations, particularly in rural areas. PMID:28479612
Spatial Analysis of Tuberculosis Cases in Migrants and Permanent Residents, Beijing, 2000–2006
Jia, Zhong-Wei; Jia, Xiao-Wei; Dye, Christopher; Chen, Feng; Chen, Chang-Sheng; Zhang, Wen-Yi; Li, Xiao-Wen
2008-01-01
To determine the role of the migrant population in the transmission of tuberculosis (TB), we investigated the distribution and magnitude of TB in permanent residents and migrant populations of Beijing, People’s Republic of China, from 2000 through 2006. An exploratory spatial data analysis was applied to detect the “hot spots” of TB among the 2 populations. Results, using the data obtained from 2004–2006, showed that people who migrated from the western, middle, and eastern zones of China had a significantly higher risk of having TB than did permanent residents. These findings indicate that population fluctuations have affected the rate of TB prevalence in Beijing, and interventions to control TB should include the migrant population. PMID:18760008
Measuring the anisotropy in the CMB
NASA Astrophysics Data System (ADS)
Page, L. A.
The CMB is perhaps the cleanest cosmological observable. Its angular spectrum may be both computed and measured to percent accuracy. The current data clearly show a rise in the angular spectrum to a peak of roughly Tl = (l(l + 1)Cl/2)1/2 80 K at l 200, and a fall at higher l. In particular, δTl at l = 400 is significantly less than at l = 200. This is shown through a combined analysis of data sets and by the TOCO data alone. For spatially flat models, a peak in the angular spectrum near l = 200 is indicated, whereas for Ω0 = 0.35 models one expects a peak near l = 400. The data clearly prefer the spatially flat models.
Valle, Denis; Lima, Joanna M Tucker
2014-11-20
Most of the malaria burden in the Americas is concentrated in the Brazilian Amazon but a detailed spatial characterization of malaria risk has yet to be undertaken. Utilizing 2004-2008 malaria incidence data collected from six Brazilian Amazon states, large-scale spatial patterns of malaria risk were characterized with a novel Bayesian multi-pathogen geospatial model. Data included 2.4 million malaria cases spread across 3.6 million sq km. Remotely sensed variables (deforestation rate, forest cover, rainfall, dry season length, and proximity to large water bodies), socio-economic variables (rural population size, income, and literacy rate, mortality rate for children age under five, and migration patterns), and GIS variables (proximity to roads, hydro-electric dams and gold mining operations) were incorporated as covariates. Borrowing information across pathogens allowed for better spatial predictions of malaria caused by Plasmodium falciparum, as evidenced by a ten-fold cross-validation. Malaria incidence for both Plasmodium vivax and P. falciparum tended to be higher in areas with greater forest cover. Proximity to gold mining operations was another important risk factor, corroborated by a positive association between migration rates and malaria incidence. Finally, areas with a longer dry season and areas with higher average rural income tended to have higher malaria risk. Risk maps reveal striking spatial heterogeneity in malaria risk across the region, yet these mean disease risk surface maps can be misleading if uncertainty is ignored. By combining mean spatial predictions with their associated uncertainty, several sites were consistently classified as hotspots, suggesting their importance as priority areas for malaria prevention and control. This article provides several contributions. From a methodological perspective, the benefits of jointly modelling multiple pathogens for spatial predictions were illustrated. In addition, maps of mean disease risk were contrasted with that of statistically significant disease clusters, highlighting the critical importance of uncertainty in determining disease hotspots. From an epidemiological perspective, forest cover and proximity to gold mining operations were important large-scale drivers of disease risk in the region. Finally, the hotspot in Western Acre was identified as the area that should receive highest priority from the Brazilian national malaria prevention and control programme.
Li, Lianfa; Laurent, Olivier; Wu, Jun
2016-02-05
Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes. Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use patterns and unaccounted exposures. Yet, few studies have systematically investigated the impact of these factors on spatial variability of the air pollution's effects. This study aimed to examine spatial variability of the effects of air pollution on term birth weight across Census tracts and the influence of tract-level factors on such variability. We obtained over 900,000 birth records from 2001 to 2008 in Los Angeles County, California, USA. Air pollution exposure was modeled at individual level for nitrogen dioxide (NO2) and nitrogen oxides (NOx) using spatiotemporal models. Two-stage Bayesian hierarchical non-linear models were developed to (1) quantify the associations between air pollution exposure and term birth weight within each tract; and (2) examine the socio-demographic, land-use, and exposure-related factors contributing to the between-tract variability of the associations between air pollution and term birth weight. Higher air pollution exposure was associated with lower term birth weight (average posterior effects: -14.7 (95 % CI: -19.8, -9.7) g per 10 ppb increment in NO2 and -6.9 (95 % CI: -12.9, -0.9) g per 10 ppb increment in NOx). The variation of the association across Census tracts was significantly influenced by the tract-level socio-demographic, exposure-related and land-use factors. Our models captured the complex non-linear relationship between these factors and the associations between air pollution and term birth weight: we observed the thresholds from which the influence of the tract-level factors was markedly exacerbated or attenuated. Exacerbating factors might reflect additional exposure to environmental insults or lower socio-economic status with higher vulnerability, whereas attenuating factors might indicate reduced exposure or higher socioeconomic status with lower vulnerability. Our Bayesian models effectively combined a priori knowledge with training data to infer the posterior association of air pollution with term birth weight and to evaluate the influence of the tract-level factors on spatial variability of such association. This study contributes new findings about non-linear influences of socio-demographic factors, land-use patterns, and unaccounted exposures on spatial variability of the effects of air pollution.
Improving the accuracy of livestock distribution estimates through spatial interpolation.
Bryssinckx, Ward; Ducheyne, Els; Muhwezi, Bernard; Godfrey, Sunday; Mintiens, Koen; Leirs, Herwig; Hendrickx, Guy
2012-11-01
Animal distribution maps serve many purposes such as estimating transmission risk of zoonotic pathogens to both animals and humans. The reliability and usability of such maps is highly dependent on the quality of the input data. However, decisions on how to perform livestock surveys are often based on previous work without considering possible consequences. A better understanding of the impact of using different sample designs and processing steps on the accuracy of livestock distribution estimates was acquired through iterative experiments using detailed survey. The importance of sample size, sample design and aggregation is demonstrated and spatial interpolation is presented as a potential way to improve cattle number estimates. As expected, results show that an increasing sample size increased the precision of cattle number estimates but these improvements were mainly seen when the initial sample size was relatively low (e.g. a median relative error decrease of 0.04% per sampled parish for sample sizes below 500 parishes). For higher sample sizes, the added value of further increasing the number of samples declined rapidly (e.g. a median relative error decrease of 0.01% per sampled parish for sample sizes above 500 parishes. When a two-stage stratified sample design was applied to yield more evenly distributed samples, accuracy levels were higher for low sample densities and stabilised at lower sample sizes compared to one-stage stratified sampling. Aggregating the resulting cattle number estimates yielded significantly more accurate results because of averaging under- and over-estimates (e.g. when aggregating cattle number estimates from subcounty to district level, P <0.009 based on a sample of 2,077 parishes using one-stage stratified samples). During aggregation, area-weighted mean values were assigned to higher administrative unit levels. However, when this step is preceded by a spatial interpolation to fill in missing values in non-sampled areas, accuracy is improved remarkably. This counts especially for low sample sizes and spatially even distributed samples (e.g. P <0.001 for a sample of 170 parishes using one-stage stratified sampling and aggregation on district level). Whether the same observations apply on a lower spatial scale should be further investigated.
Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer.
Ashtiani, Matin N; Kheradpisheh, Saeed R; Masquelier, Timothée; Ganjtabesh, Mohammad
2017-01-01
The human visual system contains a hierarchical sequence of modules that take part in visual perception at different levels of abstraction, i.e., superordinate, basic, and subordinate levels. One important question is to identify the "entry" level at which the visual representation is commenced in the process of object recognition. For a long time, it was believed that the basic level had a temporal advantage over two others. This claim has been challenged recently. Here we used a series of psychophysics experiments, based on a rapid presentation paradigm, as well as two computational models, with bandpass filtered images of five object classes to study the processing order of the categorization levels. In these experiments, we investigated the type of visual information required for categorizing objects in each level by varying the spatial frequency bands of the input image. The results of our psychophysics experiments and computational models are consistent. They indicate that the different spatial frequency information had different effects on object categorization in each level. In the absence of high frequency information, subordinate and basic level categorization are performed less accurately, while the superordinate level is performed well. This means that low frequency information is sufficient for superordinate level, but not for the basic and subordinate levels. These finer levels rely more on high frequency information, which appears to take longer to be processed, leading to longer reaction times. Finally, to avoid the ceiling effect, we evaluated the robustness of the results by adding different amounts of noise to the input images and repeating the experiments. As expected, the categorization accuracy decreased and the reaction time increased significantly, but the trends were the same. This shows that our results are not due to a ceiling effect. The compatibility between our psychophysical and computational results suggests that the temporal advantage of the superordinate (resp. basic) level to basic (resp. subordinate) level is mainly due to the computational constraints (the visual system processes higher spatial frequencies more slowly, and categorization in finer levels depends more on these higher spatial frequencies).
Object Categorization in Finer Levels Relies More on Higher Spatial Frequencies and Takes Longer
Ashtiani, Matin N.; Kheradpisheh, Saeed R.; Masquelier, Timothée; Ganjtabesh, Mohammad
2017-01-01
The human visual system contains a hierarchical sequence of modules that take part in visual perception at different levels of abstraction, i.e., superordinate, basic, and subordinate levels. One important question is to identify the “entry” level at which the visual representation is commenced in the process of object recognition. For a long time, it was believed that the basic level had a temporal advantage over two others. This claim has been challenged recently. Here we used a series of psychophysics experiments, based on a rapid presentation paradigm, as well as two computational models, with bandpass filtered images of five object classes to study the processing order of the categorization levels. In these experiments, we investigated the type of visual information required for categorizing objects in each level by varying the spatial frequency bands of the input image. The results of our psychophysics experiments and computational models are consistent. They indicate that the different spatial frequency information had different effects on object categorization in each level. In the absence of high frequency information, subordinate and basic level categorization are performed less accurately, while the superordinate level is performed well. This means that low frequency information is sufficient for superordinate level, but not for the basic and subordinate levels. These finer levels rely more on high frequency information, which appears to take longer to be processed, leading to longer reaction times. Finally, to avoid the ceiling effect, we evaluated the robustness of the results by adding different amounts of noise to the input images and repeating the experiments. As expected, the categorization accuracy decreased and the reaction time increased significantly, but the trends were the same. This shows that our results are not due to a ceiling effect. The compatibility between our psychophysical and computational results suggests that the temporal advantage of the superordinate (resp. basic) level to basic (resp. subordinate) level is mainly due to the computational constraints (the visual system processes higher spatial frequencies more slowly, and categorization in finer levels depends more on these higher spatial frequencies). PMID:28790954
Landsat 7 thermal-IR image sharpening using an artificial neural network and sensor model
Lemeshewsky, G.P.; Schowengerdt, R.A.; ,
2001-01-01
The enhanced thematic mapper (plus) (ETM+) instrument on Landsat 7 shares the same basic design as the TM sensors on Landsats 4 and 5, with some significant improvements. In common are six multispectral bands with a 30-m ground-projected instantaneous field of view (GIFOV). However, the thermaL-IR (TIR) band now has a 60-m GIFOV, instead of 120-m. Also, a 15-m panchromatic band has been added. The artificial neural network (NN) image sharpening method described here uses data from the higher spatial resolution ETM+ bands to enhance (sharpen) the spatial resolution of the TIR imagery. It is based on an assumed correlation over multiple scales of resolution, between image edge contrast patterns in the TIR band and several other spectral bands. A multilayer, feedforward NN is trained to approximate TIR data at 60m, given degraded (from 30-m to 60-m) spatial resolution input from spectral bands 7, 5, and 2. After training, the NN output for full-resolution input generates an approximation of a TIR image at 30-m resolution. Two methods are used to degrade the spatial resolution of the imagery used for NN training, and the corresponding sharpening results are compared. One degradation method uses a published sensor transfer function (TF) for Landsat 5 to simulate sensor coarser resolution imagery from higher resolution imagery. For comparison, the second degradation method is simply Gaussian low pass filtering and subsampling, wherein the Gaussian filter approximates the full width at half maximum amplitude characteristics of the TF-based spatial filter. Two fixed-size NNs (that is, number of weights and processing elements) were trained separately with the degraded resolution data, and the sharpening results compared. The comparison evaluates the relative influence of the degradation technique employed and whether or not it is desirable to incorporate a sensor TF model. Preliminary results indicate some improvements for the sensor model-based technique. Further evaluation using a higher resolution reference image and strict application of sensor model to data is recommended.
Xie, Li-Na; Guo, Hong-Yu; Gabler, Christopher A.; Li, Qing-Fang; Ma, Cheng-Cang
2015-01-01
Few studies have investigated the influence of water availability on plant population spatial patterns. We studied changes in the spatial patterns of Caragana stenophylla along a climatic drought gradient within the Inner Mongolian Plateau, China. We examined spatial patterns, seed density, “nurse effects” of shrubs on seedlings, transpiration rates and water use efficiency (WUE) of C. stenophylla across semi-arid, arid, and intensively arid zones. Our results showed that patches of C. stenophylla populations shifted from a random to a clumped spatial pattern towards drier environments. Seed density and seedling survival rate of C. stenophylla decreased from the semi-arid zone to the intensively arid zone. Across the three zones, there were more C. stenophylla seeds and seedlings underneath shrub canopies than outside shrub canopies; and in the intensively arid zone, there were almost no seeds or seedlings outside shrub canopies. Transpiration rates of outer-canopy leaves and WUE of both outer-canopy and inner-canopy leaves increased from the semi-arid zone to the intensively arid zone. In the intensively arid zone, transpiration rates and WUE of inner-canopy leaves were significantly lower and higher, respectively, than those of outer-canopy leaves. We conclude that, as drought stress increased, seed density decreased, seed proportions inside shrubs increased, and “nurse effects” of shrubs on seedlings became more important. These factors, combined with water-saving characteristics associated with clumped spatial patterns, are likely driving the changes in C. stenophylla spatial patterns. PMID:25785848
Optimization and universality of Brownian search in a basic model of quenched heterogeneous media
NASA Astrophysics Data System (ADS)
Godec, Aljaž; Metzler, Ralf
2015-05-01
The kinetics of a variety of transport-controlled processes can be reduced to the problem of determining the mean time needed to arrive at a given location for the first time, the so-called mean first-passage time (MFPT) problem. The occurrence of occasional large jumps or intermittent patterns combining various types of motion are known to outperform the standard random walk with respect to the MFPT, by reducing oversampling of space. Here we show that a regular but spatially heterogeneous random walk can significantly and universally enhance the search in any spatial dimension. In a generic minimal model we consider a spherically symmetric system comprising two concentric regions with piecewise constant diffusivity. The MFPT is analyzed under the constraint of conserved average dynamics, that is, the spatially averaged diffusivity is kept constant. Our analytical calculations and extensive numerical simulations demonstrate the existence of an optimal heterogeneity minimizing the MFPT to the target. We prove that the MFPT for a random walk is completely dominated by what we term direct trajectories towards the target and reveal a remarkable universality of the spatially heterogeneous search with respect to target size and system dimensionality. In contrast to intermittent strategies, which are most profitable in low spatial dimensions, the spatially inhomogeneous search performs best in higher dimensions. Discussing our results alongside recent experiments on single-particle tracking in living cells, we argue that the observed spatial heterogeneity may be beneficial for cellular signaling processes.
Analysis of Extreme Snow Water Equivalent Data in Central New Hampshire
NASA Astrophysics Data System (ADS)
Vuyovich, C.; Skahill, B. E.; Kanney, J. F.; Carr, M.
2017-12-01
Heavy snowfall and snowmelt-related events have been linked to widespread flooding and damages in many regions of the U.S. Design of critical infrastructure in these regions requires spatial estimates of extreme snow water equivalent (SWE). In this study, we develop station specific and spatially explicit estimates of extreme SWE using data from fifteen snow sampling stations maintained by the New Hampshire Department of Environmental Services. The stations are located in the Mascoma, Pemigewasset, Winnipesaukee, Ossipee, Salmon Falls, Lamprey, Sugar, and Isinglass basins in New Hampshire. The average record length for the fifteen stations is approximately fifty-nine years. The spatial analysis of extreme SWE involves application of two Bayesian Hierarchical Modeling methods, one that assumes conditional independence, and another which uses the Smith max-stable process model to account for spatial dependence. We also apply additional max-stable process models, albeit not in a Bayesian framework, that better model the observed dependence among the extreme SWE data. The spatial process modeling leverages readily available and relevant spatially explicit covariate data. The noted additional max-stable process models also used the nonstationary winter North Atlantic Oscillation index, which has been observed to influence snowy weather along the east coast of the United States. We find that, for this data set, SWE return level estimates are consistently higher when derived using methods which account for the observed spatial dependence among the extreme data. This is particularly significant for design scenarios of relevance for critical infrastructure evaluation.
Parsons, Jessica E; Cain, Charles A; Fowlkes, J Brian
2007-03-01
Spatial variability in acoustic backscatter is investigated as a potential feedback metric for assessment of lesion morphology during cavitation-mediated mechanical tissue disruption ("histotripsy"). A 750-kHz annular array was aligned confocally with a 4.5 MHz passive backscatter receiver during ex vivo insonation of porcine myocardium. Various exposure conditions were used to elicit a range of damage morphologies and backscatter characteristics [pulse duration = 14 micros, pulse repetition frequency (PRF) = 0.07-3.1 kHz, average I(SPPA) = 22-44 kW/cm2]. Variability in backscatter spatial localization was quantified by tracking the lag required to achieve peak correlation between sequential RF A-lines received. Mean spatial variability was observed to be significantly higher when damage morphology consisted of mechanically disrupted tissue homogenate versus mechanically intact coagulation necrosis (2.35 +/- 1.59 mm versus 0.067 +/- 0.054 mm, p < 0.025). Statistics from these variability distributions were used as the basis for selecting a threshold variability level to identify the onset of homogenate formation via an abrupt, sustained increase in spatially dynamic backscatter activity. Specific indices indicative of the state of the homogenization process were quantified as a function of acoustic input conditions. The prevalence of backscatter spatial variability was observed to scale with the amount of homogenate produced for various PRFs and acoustic intensities.
Cleary, Daniel F R
2003-04-01
The impact of disturbance on species diversity may be related to the spatial scales over which it occurs. Here I assess the impact of logging and ENSO (El Niño Southern Oscillation) -induced burning and forest isolation on the species richness (477 species out of more than 28,000 individuals) and community composition of butterflies and butterfly guilds using small (0.9 ha) plots nested within large (450 ha) landscapes. The landscapes were located in three habitat classes: (1) continuous, unburned forest; (2) unburned isolates surrounded by burned forest; and (3) burned forest. Plots with different logging histories were sampled within the two unburned habitat classes, allowing for independent assessment of the two disturbance factors (logging and burning). Disturbance within habitat classes (logging) had a very different impact on butterfly diversity than disturbance among habitat classes (due to ENSO-induced burning and isolation). Logging increased species richness, increased evenness, and lowered dominance. Among guilds based on larval food plants, the species richness of tree and herb specialists was higher in logged areas but their abundance was lower. Both generalist species richness and abundance was higher in logged areas. Among habitat classes, species richness was lower in burned forest and isolates than continuous forest but there was no overall difference in evenness or dominance. Among guilds, generalist species richness was significantly lower in burned forest and isolates than continuous forest. Generalist abundance was also very low in the isolates. There was no difference among disturbance classes in herb specialist species richness but abundance was significantly higher in the isolates and burned forest than in continuous forest. Tree specialist species richness was lower in burned forest than continuous forest but did not differ between continuous forest and isolates. The scale of assessment proved important in estimating the impact of disturbance on species richness. Within disturbance classes, the difference in species richness between primary and logged forest was more pronounced at the smaller spatial scale. Among disturbance classes, the difference in species richness between continuous forest and isolates or burned forest was more pronounced at the larger spatial scale. The lower levels of species richness in ENSO-affected areas and at the larger (landscape) spatial scale indicate that future severe ENSO events may prove one of the most serious threats to extant biodiversity.
NASA Astrophysics Data System (ADS)
Barnea, Nitza; Dori, Yehudit J.
1999-12-01
Computerized molecular modeling (CMM) contributes to the development of visualization skills via vivid animation of three dimensional representations. Its power to illustrate and explore phenomena in chemistry teaching stems from the convenience and simplicity of building molecules of any size and color in a number of presentation styles. A new CMM-based learning environment for teaching and learning chemistry in Israeli high schools has been designed and implemented. Three tenth grade experimental classes used this discovery CMM approach, while two other classes, who studied the same topic in the customary approach, served as a control group. We investigated the effects of using molecular modeling on students' spatial ability, understanding of new concepts related to geometric and symbolic representations and students' perception of the model concept. Each variable was examined for gender differences. Students of the experimental group performed better than control group students in all three performance aspects. Experimental group students scored higher than the control group students in the achievement test on structure and bonding. Students' spatial ability improved in both groups, but students from the experimental group scored higher. For the average students in the two groups the improvement in all three spatial ability sub-tests —paper folding, card rotation, and cube comparison—was significantly higher for the experimental group. Experimental group students gained better insight into the model concept than the control group and could explain more phenomena with the aid of a variety of models. Hence, CMM helps in particular to improve the examined cognitive aspects of the average student population. In most of the achievement and spatial ability tests no significant differences between the genders were found, but in some aspects of model perception and verbal argumentation differences still exist. Experimental group females improved their model perception more than the control group females in understanding ways to create models and in the role of models as mental structures and prediction tools. Teachers' and students' feedback on the CMM learning environment was found to be positive, as it helped them understand concepts in molecular geometry and bonding. The results of this study suggest that teaching/learning of topics in chemistry that are related to three dimensional structures can be improved by using a discovery approach in a computerized learning environment.
NASA Astrophysics Data System (ADS)
Chen, Yingjun; Zheng, Mei; Edgerton, Eric S.; Ke, Lin; Sheng, Guoying; Fu, Jiamo
2012-04-01
The seasonal and spatial variations of source contributions of 112 composite fine particulate matter (PM2.5) samples collected in the Southeastern Aerosol Research and Characterization Study (SEARCH) monitoring network during 2001-2005 using molecular marker-based chemical mass balance (CMB-MM) model were determined. The lowest PM2.5 concentration occurs in January with higher values in warm months (maxima in July at four inland sites versus October at the coastal sites). Sulfate shows a similar pattern and plays a primary role in PM2.5 seasonality. Carbonaceous material (organic matter plus EC) exhibits less seasonality, but more spatial variations between the inland and coastal sites. Compared with the data at coastal sites, source attributions of diesel exhaust, gasoline exhaust, other organic matter (other OM), secondary sulfate, nitrate, and ammonium in PM2.5 mass at inland sites are higher. The difference in source attributions of wood combustion, meat cooking, vegetative detritus, and road dust among the eight sites is not significant. Contributions of eight primary sources to fine OC are wood burning (17 ± 19%), diesel exhaust (9 ± 4%), gasoline exhaust (5 ± 7%), meat cooking (5 ± 5%), road dust (2 ± 3%), vegetative detritus (2 ± 2%), cigarette smoke (2 ± 2% at four urban sites), and coke production (2 ± 1% only at BHM). Primary and secondary sources explain 82-100% of measured PM2.5 mass at the eight sites, including secondary ionic species (SO42-, NH4+, and NO3-; 41.4 ± 5.7%), identified OM (24.9 ± 11.3%), "other OM" (unexplained OM, 23.3 ± 10.3%), and "other mass" (11.4 ± 9.6%). Vehicle exhaust from both diesel and gasoline contributes the lowest fraction to PM2.5 mass in July and higher fractions at BHM and JST than other sites. Wood combustion, in contrast, contributes significantly to a larger fraction in winter than in summer. Road dust shows relatively high levels in July and April across the eight sites, while minor sources such as meat cooking and other sources (e.g., vegetative detritus, coke production, and cigarette smoke) show relatively small seasonal and spatial variations in the SEARCH monitoring network.
Lee, Young Sub; Kim, Jin Su; Kim, Kyeong Min; Kang, Joo Hyun; Lim, Sang Moo; Kim, Hee-Joung
2014-05-01
The Siemens Biograph TruePoint TrueV (B-TPTV) positron emission tomography (PET) scanner performs 3D PET reconstruction using a system matrix with point spread function (PSF) modeling (called the True X reconstruction). PET resolution was dramatically improved with the True X method. In this study, we assessed the spatial resolution and image quality on a B-TPTV PET scanner. In addition, we assessed the feasibility of animal imaging with a B-TPTV PET and compared it with a microPET R4 scanner. Spatial resolution was measured at center and at 8 cm offset from the center in transverse plane with warm background activity. True X, ordered subset expectation maximization (OSEM) without PSF modeling, and filtered back-projection (FBP) reconstruction methods were used. Percent contrast (% contrast) and percent background variability (% BV) were assessed according to NEMA NU2-2007. The recovery coefficient (RC), non-uniformity, spill-over ratio (SOR), and PET imaging of the Micro Deluxe Phantom were assessed to compare image quality of B-TPTV PET with that of the microPET R4. When True X reconstruction was used, spatial resolution was <3.65 mm with warm background activity. % contrast and % BV with True X reconstruction were higher than those with the OSEM reconstruction algorithm without PSF modeling. In addition, the RC with True X reconstruction was higher than that with the FBP method and the OSEM without PSF modeling method on the microPET R4. The non-uniformity with True X reconstruction was higher than that with FBP and OSEM without PSF modeling on microPET R4. SOR with True X reconstruction was better than that with FBP or OSEM without PSF modeling on the microPET R4. This study assessed the performance of the True X reconstruction. Spatial resolution with True X reconstruction was improved by 45 % and its % contrast was significantly improved compared to those with the conventional OSEM without PSF modeling reconstruction algorithm. The noise level was higher than that with the other reconstruction algorithm. Therefore, True X reconstruction should be used with caution when quantifying PET data.
Beaudrot, Lydia; Du, Yanjun; Rahman Kassim, Abdul; Rejmánek, Marcel; Harrison, Rhett D.
2011-01-01
The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation. PMID:21625558
Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza
NASA Astrophysics Data System (ADS)
Viboud, Cécile; Bjørnstad, Ottar N.; Smith, David L.; Simonsen, Lone; Miller, Mark A.; Grenfell, Bryan T.
2006-04-01
Quantifying long-range dissemination of infectious diseases is a key issue in their dynamics and control. Here, we use influenza-related mortality data to analyze the between-state progression of interpandemic influenza in the United States over the past 30 years. Outbreaks show hierarchical spatial spread evidenced by higher pairwise synchrony between more populous states. Seasons with higher influenza mortality are associated with higher disease transmission and more rapid spread than are mild ones. The regional spread of infection correlates more closely with rates of movement of people to and from their workplaces (workflows) than with geographical distance. Workflows are described in turn by a gravity model, with a rapid decay of commuting up to around 100 km and a long tail of rare longer range flow. A simple epidemiological model, based on the gravity formulation, captures the observed increase of influenza spatial synchrony with transmissibility; high transmission allows influenza to spread rapidly beyond local spatial constraints.
Manzano-Piedras, Esperanza; Marcer, Arnald; Alonso-Blanco, Carlos; Picó, F Xavier
2014-01-01
The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.
Using Geo-Spatial Technologies for Field Applications in Higher Geography Education
ERIC Educational Resources Information Center
Karatepe, Akif
2012-01-01
Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…
The structural and functional connectivity of the grassland plant Lychnis flos-cuculi
Aavik, T; Holderegger, R; Bolliger, J
2014-01-01
Understanding the relationship between structural and functional connectivity is essential for successful restoration and conservation management, particularly in intensely managed agricultural landscapes. We evaluated the relationship between structural and functional connectivity of the wetland plant Lychnis flos-cuculi in a fragmented agricultural landscape using landscape genetic and network approaches. First, we studied the effect of structural connectivity, such as geographic distance and various landscape elements (forest, agricultural land, settlements and ditch verges), on gene flow among populations as a measurement of functional connectivity. Second, we examined the effect of structural graph-theoretic connectivity measures on gene flow among populations and on genetic diversity within populations of L. flos-cuculi. Among landscape elements, forests hindered gene flow in L. flos-cuculi, whereas gene flow was independent of geographic distance. Among the structural graph-theoretic connectivity variables, only intrapopulation connectivity, which was based on population size, had a significant positive effect on gene flow, that is, more gene flow took place among larger populations. Unexpectedly, interpopulation connectivity of populations, which takes into account the spatial location and distance among populations, did not influence gene flow in L. flos-cuculi. However, higher observed heterozygosity and lower inbreeding was observed in populations characterised by higher structural interpopulation connectivity. This finding shows that a spatially coherent network of populations is significant for maintaining the genetic diversity of populations. Nevertheless, lack of significant relationships between gene flow and most of the structural connectivity measures suggests that structural connectivity does not necessarily correspond to functional connectivity. PMID:24253937
Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality
Zhang, Qingyin; Shao, Ming’an; Jia, Xiaoxu; Wei, Xiaorong
2017-01-01
Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P < 0.01). Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation <1000 mm. Mortality rates varied amongst species. The global annual rate of mortality was much higher for gymnosperms (7.1%) than angiosperms (4.8%) but did not differ significantly between evergreen (6.2%) and deciduous (6.1%) species. Stand age and wood density affected the mortality rate. Saplings (4.6%) had a higher mortality rate than mature trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P < 0.01). We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes. PMID:28095437
Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality.
Zhang, Qingyin; Shao, Ming'an; Jia, Xiaoxu; Wei, Xiaorong
2017-01-01
Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P < 0.01). Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation <1000 mm. Mortality rates varied amongst species. The global annual rate of mortality was much higher for gymnosperms (7.1%) than angiosperms (4.8%) but did not differ significantly between evergreen (6.2%) and deciduous (6.1%) species. Stand age and wood density affected the mortality rate. Saplings (4.6%) had a higher mortality rate than mature trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P < 0.01). We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes.
Speciated atmospheric mercury in the marine boundary layer of the Bohai Sea and Yellow Sea
NASA Astrophysics Data System (ADS)
Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan; Guo, Jia
2016-04-01
The objectives of this study are to identify the spatial and temporal distributions of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and fine particulate mercury (HgP2.5) in the marine boundary layer (MBL) of the Bohai Sea (BS) and Yellow Sea (YS), and to investigate the relationships between mercury species and meteorological parameters. The mean concentrations of GEM, RGM, and HgP2.5 were 2.03 ng m-3, 2.5 pg m-3, and 8.2 pg m-3 in spring, and 2.09 ng m-3, 4.3 pg m-3, and 8.3 pg m-3 in fall. Reactive mercury (RGM + HgP2.5) represented < 1% of total atmospheric mercury (GEM + RGM + HgP2.5), which indicated that most mercury export in the MBL was GEM and the direct outflow of reactive mercury was very small. Moreover, GEM concentrations over the BS were generally higher than those over the YS both in spring and fall. Although RGM showed a homogeneous distribution over the BS and YS both in spring and fall, the mean RGM concentration in fall was significantly higher than that in spring. In contrast, the spatial distribution of HgP2.5 generally reflected a gradient with high levels near the coast of China and low levels in the open sea, suggesting the significant atmospheric mercury outflow from China. Interestingly, the mean RGM concentrations during daytime were significantly higher than those during nighttime both in spring and fall, while the opposite results were observed for HgP2.5. Additionally, RGM positively correlates with air temperature while negatively correlates with relative humidity. In conclusion, the elevated atmospheric mercury levels in the BS and YS compared to other open seas suggested that the human activities had a significant influence on the oceanic mercury cycle downwind of China.
Yang, Li-Na; Li, Zheng-Yan; Zhang, Xue-Qing
2011-01-01
Based on field surveys in the upper estuarine zone of the Daliaohe River in Spring and Summer of 2009, the spatial and temporal distributions of dissolved oxygen were analyzed and the mechanism of hypoxia were preliminarily discussed. The results indicated that DO concentrations were higher in the river mouth and lower in the upper reaches, higher in surface layers and lower in bottom concerning its spatial distribution. For its temporal distribution, DO concentrations were higher in daytime and lower at night, higher in Spring and lower in Summer. The DO concentrations in the upper estuarine zone of the Daliaohe River in Summer ranged between 1.36-4.77 mg/L with an average of 3.44 mg/L. The concentrations in the lower reaches were higher with an average of 3.94 mg/L. A large hypoxia area was recorded in Summer in the upper reaches of the estuary starting from about 45 km away from the river gate with an average DO concentration of 2.33 mg/L and a minimum of 1.36 mg/L. The correlation analysis showed that DO concentration was significantly correlated with nutrients and permanganate index. Excessive discharge of nutrients and organic pollutants were, therefore, main factors causing hypoxia, and water column stratification due to temperature rise in Summer in surface layers led to further reduction of DO in bottom layers of the water.
Tyler, Carrie L; Kowalewski, Michał
2017-03-15
Rigorous documentation of spatial heterogeneity (β-diversity) in present-day and preindustrial ecosystems is required to assess how marine communities respond to environmental and anthropogenic drivers. However, the overwhelming majority of contemporary and palaeontological assessments have centred on single higher taxa. To evaluate the validity of single taxa as community surrogates and palaeontological proxies, we compared macrobenthic communities and sympatric death assemblages at 52 localities in Onslow Bay (NC, USA). Compositional heterogeneity did not differ significantly across datasets based on live molluscs, live non-molluscs, and all live organisms. Death assemblages were less heterogeneous spatially, likely reflecting homogenization by time-averaging. Nevertheless, live and dead datasets were greater than 80% congruent in pairwise comparisons to the literature estimates of β-diversity in other marine ecosystems, yielded concordant bathymetric gradients, and produced nearly identical ordinations consistently delineating habitats. Congruent estimates from molluscs and non-molluscs suggest that single groups can serve as reliable community proxies. High spatial fidelity of death assemblages supports the emerging paradigm of Conservation Palaeobiology. Integrated analyses of ecological and palaeontological data based on surrogate taxa can quantify anthropogenic changes in marine ecosystems and advance our understanding of spatial and temporal aspects of biodiversity. © 2017 The Author(s).
Gouge, Brian; Ries, Francis J; Dowlatabadi, Hadi
2010-09-15
Macroscale emissions modeling approaches have been widely applied in impact assessments of mobile source emissions. However, these approaches poorly characterize the spatial distribution of emissions and have been shown to underestimate emissions of some pollutants. To quantify the implications of these limitations on exposure assessments, CO, NO(X), and HC emissions from diesel transit buses were estimated at 50 m intervals along a bus rapid transit route using a microscale emissions modeling approach. The impacted population around the route was estimated using census, pedestrian count and transit ridership data. Emissions exhibited significant spatial variability. In intervals near major intersections and bus stops, emissions were 1.6-3.0 times higher than average. The coincidence of these emission hot spots and peaks in pedestrian populations resulted in a 20-40% increase in exposure compared to estimates that assumed homogeneous spatial distributions of emissions and/or populations along the route. An additional 19-30% increase in exposure resulted from the underestimate of CO and NO(X) emissions by macroscale modeling approaches. The results of this study indicate that macroscale modeling approaches underestimate exposure due to poor characterization of the influence of vehicle activity on the spatial distribution of emissions and total emissions.
Walle, Kjersti Mæhlum; Kyler, Hillary Lynn; Nordvik, Jan Egil; Becker, Frank; Laeng, Bruno
2017-10-01
Binocular rivalry is when perception fluctuates while the stimuli, consisting of different images presented to each eye, remain unchanged. The fluctuation rate and predominance ratio of these images are regarded as information source for understanding properties of consciousness and perception. We administered a binocular rivalry task to 26 right-hemisphere stroke patients and 26 healthy control participants, using stimuli such as simple Gabor anaglyphs. Each single Gabor image was of unequal spatial frequency compared to its counterpart, allowing assessment of the effect of relative spatial frequency on rivalry predominance. Results revealed that patients had significantly decreased alternation rate compared to healthy controls, with severity of patients' attention impairment predicting alternation rates. The patient group had higher predominance ratio for high compared to low relative spatial frequency stimuli consistent with the hypothesis that damage to the right hemisphere may disrupt processing of relatively low spatial frequencies. Degree of attention impairment also predicted the effect of relative spatial frequencies. Lastly, both groups showed increased predominance rates in the right eye compared to the left eye. This right eye dominance was more pronounced in patients than controls, suggesting that right hemisphere stroke may additionally affect eye predominance ratios. Copyright © 2017 Elsevier Inc. All rights reserved.
Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.
2007-01-01
The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.
Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network
NASA Astrophysics Data System (ADS)
Zhang, Z.; Glaser, S.; Bales, R.; Conklin, M.; Rice, R.; Marks, D.
2017-08-01
A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity, and snow depth in the Sierra Nevada, California. The network consisted of 10 sensor clusters, each with 10 measurement nodes, distributed to capture the variability in topography and vegetation cover. The sensor network captured significant spatial heterogeneity in rain versus snow precipitation for water-year 2014, variability that was not apparent in the more limited operational data. Using daily dew-point temperature to track temporal elevational changes in the rain-snow transition, the amount of snow accumulation at each node was used to estimate the fraction of rain versus snow. This resulted in an underestimate of total precipitation below the 0°C dew-point elevation, which averaged 1730 m across 10 precipitation events, indicating that measuring snow does not capture total precipitation. We suggest blending lower elevation rain gauge data with higher-elevation sensor-node data for each event to estimate total precipitation. Blended estimates were on average 15-30% higher than using either set of measurements alone. Using data from the current operational snow-pillow sites gives even lower estimates of basin-wide precipitation. Given the increasing importance of liquid precipitation in a warming climate, a strategy that blends distributed measurements of both liquid and solid precipitation will provide more accurate basin-wide precipitation estimates, plus spatial and temporal patters of snow accumulation and melt in a basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, Tyler J.; Yip, Stephen; Jallow, Ngoneh
2014-06-01
Purpose: In dose painting, in which functional imaging is used to define biological targets for radiation therapy dose escalation, changes in spatial distributions of biological properties during treatment can compromise the quality of therapy. The goal of this study was to assess the spatiotemporal stability of 2 potential dose painting targets—hypoxia and proliferation—in canine tumors during radiation therapy. Methods and Materials: Twenty-two canine patients with sinonasal tumors (14 carcinoma and 8 sarcoma) were imaged before hypofractionated radiation therapy with copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) for hypoxia and 3′-deoxy-3′-{sup 18}F-fluorothymidine (FLT) PET/CT for proliferation. The FLT scans were repeatedmore » after 2 fractions and the Cu-ATSM scans after 3 fractions. Midtreatment PET/CT images were deformably registered to pretreatment PET/CT images. Voxel-based Spearman correlation coefficients quantified the spatial stability of Cu-ATSM and FLT uptake distributions between pretreatment and midtreatment scans. Paired t tests determined significant differences between the patients' respective Cu-ATSM and FLT correlations coefficients. Standardized uptake value measures were also compared between pretreatment and midtreatment scans by use of paired t tests. Results: Spatial distributions of Cu-ATSM and FLT uptake were stable through midtreatment for both sarcomas and carcinomas: the population mean ± standard deviation in Spearman correlation coefficient was 0.88 ± 0.07 for Cu-ATSM and 0.79 ± 0.13 for FLT. The patients' Cu-ATSM correlation coefficients were significantly higher than their respective FLT correlation coefficients (P=.001). Changes in Cu-ATSM SUV measures from pretreatment to midtreatment were histology dependent: carcinomas experienced significant decreases in Cu-ATSM uptake (P<.05), whereas sarcomas did not (P>.20). Both histologies experienced significant decreases in FLT uptake (P<.05). Conclusions: Spatial distributions of Cu-ATSM were very stable after a few fractions of radiation therapy. FLT spatial distributions were generally stable early in therapy, although they were significantly less stable than Cu-ATSM distributions. Canine tumors had significantly lower proliferative activity at midtreatment than at pretreatment, and they experienced histology-dependent changes in Cu-ATSM uptake.« less
Spatial variability of trace elements and sources for improved exposure assessment in Barcelona
NASA Astrophysics Data System (ADS)
Minguillón, María Cruz; Cirach, Marta; Hoek, Gerard; Brunekreef, Bert; Tsai, Ming; de Hoogh, Kees; Jedynska, Aleksandra; Kooter, Ingeborg M.; Nieuwenhuijsen, Mark; Querol, Xavier
2014-06-01
Trace and major elements concentrations in PM10 and PM2.5 were measured at 20 sites spread in the Barcelona metropolitan area (1 rural background, 6 urban background, 13 road traffic sites) and at 1 reference site. Three 2-week samples per site and size fraction were collected during 2009 using low volume samplers, adding a total of 120 samples. Collected samples were analysed for elemental composition using Energy Dispersive X-ray fluorescence (XRF). EC, OC, and hopanes and steranes concentrations in PM2.5 were determined. Positive Matrix Factorisation (PMF) model was used for a source apportionment analysis. The work was performed as part of the ESCAPE project. Elements were found in concentrations within the usual range in Spanish urban areas. Mineral elements were measured in higher concentrations during the warm season, due to enhanced resuspension; concentrations of fueloil combustion elements were also higher in summer. Elements in higher concentration at the traffic sites were: Ba, Cr, Cu, Fe, Mn, Mo, Pb, Sn, Zn and Zr. Spatial variations related to non-traffic sources were observed for concentrations of Br, Cl, K, and Na (sea salt origin) and Ni, V and S (shipping emissions), which were higher at the coastal sites, as well as for Zn and Pb, higher at sites closer to industrial facilities. Five common sources for PM10 and PM2.5 were identified by PMF: road traffic (with tracers Ba, Cr, Cu, Fe, Mo and Zn); fueloil combustion (Ni and V); secondary sulphate; industry (Pb and Zn); and mineral source (Al, Ca, Mg, Si, Sr and Ti). A marine aerosol source, a mixture of sea salt with aged anthropogenic aerosols, was found only in PM10. EC, hopanes and steranes concentrations correlate strongly with the PM10 road traffic source contributions, being hence all attributed to the same source. OC may arise from other sources in addition to road traffic and have a high contribution of secondary OC. Significant spatial and temporal variation in the PM2.5 and PM10 elemental composition was found. Spatial patterns differed per element, related to the main source. The identified source contributions can be used in health studies of source-specific particles.
Liu, Yang; Paciorek, Christopher J.; Koutrakis, Petros
2009-01-01
Background Studies of chronic health effects due to exposures to particulate matter with aerodynamic diameters ≤ 2.5 μm (PM2.5) are often limited by sparse measurements. Satellite aerosol remote sensing data may be used to extend PM2.5 ground networks to cover a much larger area. Objectives In this study we examined the benefits of using aerosol optical depth (AOD) retrieved by the Geostationary Operational Environmental Satellite (GOES) in conjunction with land use and meteorologic information to estimate ground-level PM2.5 concentrations. Methods We developed a two-stage generalized additive model (GAM) for U.S. Environmental Protection Agency PM2.5 concentrations in a domain centered in Massachusetts. The AOD model represents conditions when AOD retrieval is successful; the non-AOD model represents conditions when AOD is missing in the domain. Results The AOD model has a higher predicting power judged by adjusted R2 (0.79) than does the non-AOD model (0.48). The predicted PM2.5 concentrations by the AOD model are, on average, 0.8–0.9 μg/m3 higher than the non-AOD model predictions, with a more smooth spatial distribution, higher concentrations in rural areas, and the highest concentrations in areas other than major urban centers. Although AOD is a highly significant predictor of PM2.5, meteorologic parameters are major contributors to the better performance of the AOD model. Conclusions GOES aerosol/smoke product (GASP) AOD is able to summarize a set of weather and land use conditions that stratify PM2.5 concentrations into two different spatial patterns. Even if land use regression models do not include AOD as a predictor variable, two separate models should be fitted to account for different PM2.5 spatial patterns related to AOD availability. PMID:19590678
Quattrochi, John; Jasseh, Momodou; Mackenzie, Grant; Castro, Marcia C
2015-07-01
To describe the spatial pattern in under-5 mortality rates in the Basse Health and Demographic Surveillance System (BHDSS) and to test for associations between under-5 deaths and biodemographic and socio-economic risk factors. Using data on child survival from 2007 to 2011 in the BHDSS, we mapped under-5 mortality by km(2) . We tested for spatial clustering of high or low death rates using Kulldorff's spatial scan statistic. Associations between child death and a variety of biodemographic and socio-economic factors were assessed with Cox proportional hazards models, and deviance residuals from the best-fitting model were tested for spatial clustering. The overall death rate among children under 5 was 0.0195 deaths per child-year. We found two spatial clusters of high death rates and one spatial cluster of low death rates; children in the two high clusters died at a rate of 0.0264 and 0.0292 deaths per child-year, while in the low cluster, the rate was 0.0144 deaths per child-year. We also found that children born to Fula mothers experienced, on average, a higher hazard of death, whereas children born in the households in the upper two quintiles of asset ownership experienced, on average, a lower hazard of death. After accounting for the spatial distribution of biodemographic and socio-economic characteristics, we found no residual spatial pattern in child mortality risk. This study demonstrates that significant inequality in under-5 death rates can occur within a relatively small area (1100 km(2) ). Risks of under-5 mortality were associated with mother's ethnicity and household wealth. If high mortality clusters persist, then equity concerns may require additional public health efforts in those areas. © 2015 John Wiley & Sons Ltd.
Spatial Frequency Discrimination: Effects of Age, Reward, and Practice
Peters, Judith Carolien
2017-01-01
Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5–6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5–6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7–12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7–12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future developmental studies that require multiple stimulus presentations such as visual perceptual learning. PMID:28135272
Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.
van den Boomen, Carlijn; Peters, Judith Carolien
2017-01-01
Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future developmental studies that require multiple stimulus presentations such as visual perceptual learning.
Stres, Blaz; Sul, Woo Jun; Murovec, Bostjan; Tiedje, James M.
2013-01-01
Background The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events. Methodology/Principal Findings Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4–12 µm) suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (co)deposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria. Conclusions/Significance The spatial, environmental and temporal complexity of the high-altitude soils of the Himalaya generates ongoing disturbance and colonization events that subject heterogeneous microniches to stochastic colonization by far away dust associated microbes and result in the observed spatially divergent bacterial communities. PMID:24086740
Louridas, Marisa; Quinn, Lauren E; Grantcharov, Teodor P
2016-03-01
Emerging evidence suggests that despite dedicated practice, not all surgical trainees have the ability to reach technical competency in minimally invasive techniques. While selecting residents that have the ability to reach technical competence is important, evidence to guide the incorporation of technical ability into selection processes is limited. Therefore, the purpose of the present study was to evaluate whether background experiences and 2D-3D visual spatial test results are predictive of baseline laparoscopic skill for the novice surgical trainee. First-year residents were studied. Demographic data and background surgical and non-surgical experiences were obtained using a questionnaire. Visual spatial ability was evaluated using the PicSOr, cube comparison (CC) and card rotation (CR) tests. Technical skill was assessed using the camera navigation (LCN) task and laparoscopic circle cut (LCC) task. Resident performance on these technical tasks was compared and correlated with the questionnaire and visual spatial findings. Previous experience in observing laparoscopic procedures was associated with significantly better LCN performance, and experience in navigating the laparoscopic camera was associated with significantly better LCC task results. Residents who scored higher on the CC test demonstrated a more accurate LCN path length score (r s(PL) = -0.36, p = 0.03) and angle path (r s(AP) = -0.426, p = 0.01) score when completing the LCN task. No other significant correlations were found between the visual spatial tests (PicSOr, CC or CR) and LCC performance. While identifying selection tests for incoming surgical trainees that predict technical skill performance is appealing, the surrogate markers evaluated correlate with specific metrics of surgical performance related to a single task but do not appear to reliably predict technical performance of different laparoscopic tasks. Predicting the acquisition of technical skills will require the development of a series of evidence-based tests that measure a number of innate abilities as well as their inherent interactions.
Exploring Youth Socio-Spatial Perceptions of Higher Education Landscapes through Sketch Maps
ERIC Educational Resources Information Center
Pearsall, Hamil; Hawthorne, Timothy; Block, Daniel; Walker, Barbara Louise Endemaño; Masucci, Michele
2015-01-01
Previous research on broadening participation in higher education and Science Technology Engineering and Math has inadequately examined the role of place. This article explores the socio-spatial perceptions of youth of a college campus and changes in perceptions youth experience during their transition from being a university neighbor to becoming…
Is There a Relationship Between the Concentration of Same-Sex Couples and Tobacco Retailer Density?
Pan, William K.; Henriksen, Lisa; Goldstein, Adam O.; Ribisl, Kurt M.
2016-01-01
Background: Tobacco use is markedly higher among lesbian, gay, and bisexual populations than heterosexuals. Higher density of tobacco retailers is found in neighborhoods with lower income and more racial/ethnic minorities. Same-sex couples tend to live in similar neighborhoods, but the association of this demographic with tobacco retailer density has not been examined. Methods: For a national sample of 97 US counties, we calculated the number of tobacco retailers per 1000 persons and rates of same-sex couples per 1000 households in each census tract (n = 17 941). Using spatial regression, we examined the association of these variables in sex-stratified models, including neighborhood demographics and other environmental characteristics to examine confounding. Results: Results from spatial regression show that higher rates of both female and male same-sex couples were associated with a higher density of tobacco retailers. However the magnitude of this association was small. For female couples, the association was not significant after controlling for area-level characteristics, such as percent black, percent Hispanic, median household income, the presence of interstate highways, and urbanicity, which are neighborhood correlates of higher tobacco retailer density. For male couples, the association persisted after control for these characteristics. Conclusion: Same-sex couples reside in areas with higher tobacco retailer density, and for men, this association was not explained by neighborhood confounders, such as racial/ethnic composition and income. While lesbian, gay, and bisexual disparities in tobacco use may be influenced by neighborhood environment, the magnitude of the association suggests other explanations of these disparities remain important areas of research. PMID:25744959
Kim, Anna J.; Takahashi, Lois; Wiebe, Douglas J.
2015-01-01
Objective Social determinants of health may be substantially affected by spatial factors, which together may explain the persistence of health inequities. Clustering of possible sources of negative health and social outcomes points to a spatial focus for future interventions. We analyzed the spatial clustering of sex work businesses in Southern California to examine where and why they cluster. We explored economic and legal factors as possible explanations of clustering. Methods We manually coded data from a website used by paying members to post reviews of female massage parlor workers. We identified clusters of sexually oriented massage parlor businesses using spatial autocorrelation tests. We conducted spatial regression using census tract data to identify predictors of clustering. Results A total of 889 venues were identified. Clusters of tracts having higher-than-expected numbers of sexually oriented massage parlors (“hot spots”) were located outside downtowns. These hot spots were characterized by a higher proportion of adult males, a higher proportion of households below the federal poverty level, and a smaller average household size. Conclusion Sexually oriented massage parlors in Los Angeles and Orange counties cluster in particular neighborhoods. More research is needed to ascertain the causal factors of such clusters and how interventions can be designed to leverage these spatial factors. PMID:26327731
Network of Spaces and Interaction-Related Behaviors in Adult Intensive Care Units
Rashid, Mahbub; Boyle, Diane K.; Crosser, Michael
2014-01-01
Using three spatial network measures of “space syntax”, this correlational study describes four interaction-related behaviors among three groups of users in relation to visibility and accessibility of spaces in four adult intensive care units (ICUs) of different size, geometry, and specialty. Systematic field observations of interaction-related behaviors show significant differences in spatial distribution of interaction-related behaviors in the ICUs. Despite differences in unit characteristics and interaction-related behaviors, the study finds that when nurses and physicians “interact while sitting” they prefer spaces that help maintain a high level of environmental awareness; that when nurses “walk” and “interact while walking” they avoid spaces with better global access and visibility; and that everyone in ICUs “walk” more in spaces with higher control over neighboring spaces. It is argued that such consistent behavioral patterns occur due to the structural similarities of spatial networks over and above the more general functional similarities of ICUs. PMID:25469838
Membrane Driven Spatial Organization of GPCRs
NASA Astrophysics Data System (ADS)
Mondal, Sayan; Johnston, Jennifer M.; Wang, Hao; Khelashvili, George; Filizola, Marta; Weinstein, Harel
2013-10-01
Spatial organization of G-protein coupled receptors (GPCRs) into dimers and higher order oligomers has been demonstrated in vitro and in vivo. The pharmacological readout was shown to depend on the specific interfaces, but why particular regions of the GPCR structure are involved, and how ligand-determined states change them remains unknown. Here we show why protein-membrane hydrophobic matching is attained upon oligomerization at specific interfaces from an analysis of coarse-grained molecular dynamics simulations of the spontaneous diffusion-interaction of the prototypical beta2-adrenergic (β2AR) receptors in a POPC lipid bilayer. The energy penalty from mismatch is significantly reduced in the spontaneously emerging oligomeric arrays, making the spatial organization of the GPCRs dependent on the pattern of mismatch in the monomer. This mismatch pattern is very different for β2AR compared to the highly homologous and structurally similar β1AR, consonant with experimentally observed oligomerization patterns of β2AR and β1AR. The results provide a mechanistic understanding of the structural context of oligomerization.
Spatial Patterns of Snow Cover in North Carolina: Surface and Satellite Perspectives
NASA Technical Reports Server (NTRS)
Fuhrmann, Christopher M.; Hall, Dorothy K.; Perry, L. Baker; Riggs, George A.
2010-01-01
Snow mapping is a common practice in regions that receive large amounts of snowfall annually, have seasonally-continuous snow cover, and where snowmelt contributes significantly to the hydrologic cycle. Although higher elevations in the southern Appalachian Mountains average upwards of 100 inches of snow annually, much of the remainder of the Southeast U.S. receives comparatively little snowfall (< 10 inches). Recent snowy winters in the region have provided an opportunity to assess the fine-grained spatial distribution of snow cover and the physical processes that act to limit or improve its detection across the Southeast. In the present work, both in situ and remote sensing data are utilized to assess the spatial distribution of snow cover for a sample of recent snowfall events in North Carolina. Specifically, this work seeks to determine how well ground measurements characterize the fine-grained patterns of snow cover in relation to Moderate- Resolution Imaging Spectroradiometer (MODIS) snow cover products (in this case, the MODIS Fractional Snow Cover product).
Risch, Martin R.; Gay, David A.; Fowler, Kathleen K.; Keeler, Gerard J.; Backus, Sean M.; Blanchard, Pierrette; Barres, James A.; Dvonch, J. Timothy
2012-01-01
Annual and weekly mercury (Hg) concentrations, precipitation depths, and Hg wet deposition in the Great Lakes region were analyzed by using data from 5 monitoring networks in the USA and Canada for a 2002-2008 study period. High-resolution maps of calculated annual data, 7-year mean data, and net interannual change for the study period were prepared to assess spatial patterns. Areas with 7-year mean annual Hg concentrations higher than the 12 ng per liter water-quality criterion were mapped in 4 states. Temporal trends in measured weekly data were determined statistically. Monitoring sites with significant 7-year trends in weekly Hg wet deposition were spatially separated and were not sites with trends in weekly Hg concentration. During 2002-2008, Hg wet deposition was found to be unchanged in the Great Lakes region and its subregions. Any small decreases in Hg concentration apparently were offset by increases in precipitation.
Reversing storm hotspots on sandy beaches: Spatial and temporal characteristics
List, J.H.; Farris, A.S.; Sullivan, C.
2006-01-01
Coastal erosion hotspots are defined as sections of coast that exhibit significantly higher rates of erosion than adjacent areas. This paper describes the spatial and temporal characteristics of a recently identified type of coastal erosion hotspot, which forms in response to storms on uninterrupted sandy coasts largely free from human intervention. These are referred to here as reversing storm hotspots because the erosion is reversed by accretion of a similar magnitude to the storm-induced erosion. The accretion occurs within a few days or weeks of fair weather after the storm. Reversing storm hotspots observed here, on two US east coast beaches, have a longshore length averaging 3.86 km, a cross-shore excursion (magnitude of erosion or accretion) averaging 15.4 m, and a time scale of days to weeks associated with individual storm events. These spatial and temporal scales clearly distinguish reversing storm hotspots from previously described forms of longshore variability in erosion, including those attributed to several types of shoreline undulations and hotspots associated with long-term shoreline change.
NASA Astrophysics Data System (ADS)
Tomaro, Robert F.
1998-07-01
The present research is aimed at developing a higher-order, spatially accurate scheme for both steady and unsteady flow simulations using unstructured meshes. The resulting scheme must work on a variety of general problems to ensure the creation of a flexible, reliable and accurate aerodynamic analysis tool. To calculate the flow around complex configurations, unstructured grids and the associated flow solvers have been developed. Efficient simulations require the minimum use of computer memory and computational times. Unstructured flow solvers typically require more computer memory than a structured flow solver due to the indirect addressing of the cells. The approach taken in the present research was to modify an existing three-dimensional unstructured flow solver to first decrease the computational time required for a solution and then to increase the spatial accuracy. The terms required to simulate flow involving non-stationary grids were also implemented. First, an implicit solution algorithm was implemented to replace the existing explicit procedure. Several test cases, including internal and external, inviscid and viscous, two-dimensional, three-dimensional and axi-symmetric problems, were simulated for comparison between the explicit and implicit solution procedures. The increased efficiency and robustness of modified code due to the implicit algorithm was demonstrated. Two unsteady test cases, a plunging airfoil and a wing undergoing bending and torsion, were simulated using the implicit algorithm modified to include the terms required for a moving and/or deforming grid. Secondly, a higher than second-order spatially accurate scheme was developed and implemented into the baseline code. Third- and fourth-order spatially accurate schemes were implemented and tested. The original dissipation was modified to include higher-order terms and modified near shock waves to limit pre- and post-shock oscillations. The unsteady cases were repeated using the higher-order spatially accurate code. The new solutions were compared with those obtained using the second-order spatially accurate scheme. Finally, the increased efficiency of using an implicit solution algorithm in a production Computational Fluid Dynamics flow solver was demonstrated for steady and unsteady flows. A third- and fourth-order spatially accurate scheme has been implemented creating a basis for a state-of-the-art aerodynamic analysis tool.
Greve, Klaus; Atiemo, Sampson M.
2016-01-01
Objectives This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. Methods A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (Cdeg), we analyzed the individual contribution of each heavy metal contamination and the overall Cdeg. We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall Cdeg. Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Conclusions Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and Cdeg, indicating soil contamination in AEPS with the nine heavy metals studied. PMID:26987962
Habes, M; Janowitz, D; Erus, G; Toledo, J B; Resnick, S M; Doshi, J; Van der Auwera, S; Wittfeld, K; Hegenscheid, K; Hosten, N; Biffar, R; Homuth, G; Völzke, H; Grabe, H J; Hoffmann, W; Davatzikos, C
2016-04-05
We systematically compared structural imaging patterns of advanced brain aging (ABA) in the general-population, herein defined as significant deviation from typical BA to those found in Alzheimer disease (AD). The hypothesis that ABA would show different patterns of structural change compared with those found in AD was tested via advanced pattern analysis methods. In particular, magnetic resonance images of 2705 participants from the Study of Health in Pomerania (aged 20-90 years) were analyzed using an index that captures aging atrophy patterns (Spatial Pattern of Atrophy for Recognition of BA (SPARE-BA)), and an index previously shown to capture atrophy patterns found in clinical AD (Spatial Patterns of Abnormality for Recognition of Early Alzheimer's Disease (SPARE-AD)). We studied the association between these indices and risk factors, including an AD polygenic risk score. Finally, we compared the ABA-associated atrophy with typical AD-like patterns. We observed that SPARE-BA had significant association with: smoking (P<0.05), anti-hypertensive (P<0.05), anti-diabetic drug use (men P<0.05, women P=0.06) and waist circumference for the male cohort (P<0.05), after adjusting for age. Subjects with ABA had spatially extensive gray matter loss in the frontal, parietal and temporal lobes (false-discovery-rate-corrected q<0.001). ABA patterns of atrophy were partially overlapping with, but notably deviating from those typically found in AD. Subjects with ABA had higher SPARE-AD values; largely due to the partial spatial overlap of associated patterns in temporal regions. The AD polygenic risk score was significantly associated with SPARE-AD but not with SPARE-BA. Our findings suggest that ABA is likely characterized by pathophysiologic mechanisms that are distinct from, or only partially overlapping with those of AD.
Kyere, Vincent Nartey; Greve, Klaus; Atiemo, Sampson M
2016-01-01
This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (C deg ), we analyzed the individual contribution of each heavy metal contamination and the overall C deg . We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall C deg . Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and C deg , indicating soil contamination in AEPS with the nine heavy metals studied.
NASA Astrophysics Data System (ADS)
Gochis, D. J.; Dugger, A. L.; Karsten, L. R.; Barlage, M. J.; Sampson, K. M.; Yu, W.; Pan, L.; McCreight, J. L.; Howard, K.; Busto, J.; Deems, J. S.
2017-12-01
Hydrometeorological processes vary over comparatively short length scales in regions of complex terrain such as the southern Rocky Mountains. Changes in temperature, precipitation, wind and solar radiation can vary significantly across elevation gradients, terrain landform and land cover conditions throughout the region. Capturing such variability in hydrologic models can necessitate the utilization of so-called `hyper-resolution' spatial meshes with effective element spacings of less than 100m. However, it is often difficult to obtain meteorological forcings of high quality in such regions at those resolutions which can result in significant uncertainty in fundamental in hydrologic model inputs. In this study we examine the comparative influences of meteorological forcing data fidelity and spatial resolution on seasonal simulations of snowpack evolution, runoff and streamflow in a set of high mountain watersheds in southern Colorado. We utilize the operational, NOAA National Water Model configuration of the community WRF-Hydro system as a baseline and compare against it, additional model scenarios with differing specifications of meteorological forcing data, with and without topographic downscaling adjustments applied, with and without experimental high resolution radar derived precipitation estimates and with WRF-Hydro configurations of progressively finer spatial resolution. The results suggest significant influence from and importance of meteorological downscaling techniques in controlling spatial distributions of meltout and runoff timing. The use of radar derived precipitation exhibits clear sensitivity on hydrologic simulation skill compared with the use of coarser resolution, background precipitation analyses. Advantages and disadvantages of the utilization of progressively higher resolution model configurations both in terms of computational requirements and model fidelity are also discussed.
Sung, Jin-Young; Goo, June-Seo; Lee, Dong-Eun; Jin, Da-Qing; Bizon, Jennifer L; Gallagher, Michela; Han, Jung-Soo
2008-04-01
Learning strategy selection was assessed in two different inbred strains of mice, C57BL/6 and DBA/2, which are used for developing genetically modified mouse models. Male mice received a training protocol in a water maze using alternating blocks of visible and hidden platform trials, during which mice escaped to a single location. After training, mice were required to choose between the spatial location where the platform had been during training (a place strategy) and a visible platform presented in a new location (a cued/response strategy). Both strains of mice had similar escape performance on the visible and hidden platform trials during training. However, in the strategy preference test, C57BL/6 mice selected a place strategy significantly more often than DBA/2 mice. Because much evidence implicates the hippocampus and striatum as important neural substrates for spatial/place and cued/response learning, respectively, the engagement of the hippocampus was then assessed after either place or cue training by determining levels of cAMP response element-binding protein (CREB) and phosphorylated CREB (pCREB) in these two mouse strains. Results revealed that hippocampal CREB levels in both strains of mice were significantly increased after place in comparison to cued training. However, the relation of hippocampal pCREB levels to training was strain dependent; pCREB was significantly higher in C57BL/6 mice than in DBA/2 mice after place training, while hippocampal pCREB levels did not differ between strains after cued training. These findings indicate that pCREB, specifically associated with place/spatial training, is closely tied to differences in spatial/place strategy preference between C57BL/6 and DBA/2 mice.
Identifying clusters of active transportation using spatial scan statistics.
Huang, Lan; Stinchcomb, David G; Pickle, Linda W; Dill, Jennifer; Berrigan, David
2009-08-01
There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007-2008. Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units.
Identifying Clusters of Active Transportation Using Spatial Scan Statistics
Huang, Lan; Stinchcomb, David G.; Pickle, Linda W.; Dill, Jennifer; Berrigan, David
2009-01-01
Background There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Methods Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007–2008. Results Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. Conclusions The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units. PMID:19589451
2011-01-01
Background This paper analyses the relationship between public perceptions of access to general practitioners (GPs) surgeries and hospitals against health status, car ownership and geographic distance. In so doing it explores the different dimensions associated with facility access and accessibility. Methods Data on difficulties experienced in accessing health services, respondent health status and car ownership were collected through an attitudes survey. Road distances to the nearest service were calculated for each respondent using a GIS. Difficulty was related to geographic distance, health status and car ownership using logistic generalized linear models. A Geographically Weighted Regression (GWR) was used to explore the spatial non-stationarity in the results. Results Respondent long term illness, reported bad health and non-car ownership were found to be significant predictors of difficulty in accessing GPs and hospitals. Geographic distance was not a significant predictor of difficulty in accessing hospitals but was for GPs. GWR identified the spatial (local) variation in these global relationships indicating locations where the predictive strength of the independent variables was higher or lower than the global trend. The impacts of bad health and non-car ownership on the difficulties experienced in accessing health services varied spatially across the study area, whilst the impacts of geographic distance did not. Conclusions Difficulty in accessing different health facilities was found to be significantly related to health status and car ownership, whilst the impact of geographic distance depends on the service in question. GWR showed how these relationships were varied across the study area. This study demonstrates that the notion of access is a multi-dimensional concept, whose composition varies with location, according to the facility being considered and the health and socio-economic status of the individual concerned. PMID:21787394
Spatiotemporal Distribution of Chinavia hilaris (Hemiptera: Pentatomidae) in Corn Farmscapes
Cottrell, Ted E.; Tillman, P. Glynn
2015-01-01
The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States but little is known concerning its spatiotemporal distribution in corn cropping systems. Therefore, the spatiotemporal distribution of C. hilaris in farmscapes, when corn was adjacent to cotton, peanut, or both, was examined weekly. The spatial patterns of C. hilaris counts were analyzed using Spatial Analysis by Distance Indices methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops in corn–peanut–cotton farmscapes. This stink bug was detected in six of seven corn–cotton farmscapes, four of six corn–peanut farmscapes, and in both corn–peanut–cotton farmscapes. The frequency of C. hilaris in cotton (89.47%) was significantly higher than in peanut (7.02%) or corn (3.51%). This stink bug fed on noncrop hosts that grew in field borders adjacent to crops. The spatial distribution of C. hilaris in crops and the capture of C. hilaris adults and nymphs in pheromone-baited traps near noncrop hosts indicated that these hosts were sources of this stink bug dispersing into crops, primarily cotton. Significant aggregated spatial distributions were detected in cotton on some dates within corn–peanut–cotton farmscapes. Maps of local clustering indices depicted small patches of C. hilaris in cotton or cotton–sorghum at the peanut–cotton interface. Factors affecting the spatiotemporal dynamics of C. hilaris in corn farmscapes are discussed. PMID:25843581
Patel, Krupa J; Trédan, Olivier; Tannock, Ian F
2013-07-01
Pharmacokinetic analyses estimate the mean concentration of drug within a given tissue as a function of time, but do not give information about the spatial distribution of drugs within that tissue. Here, we compare the time-dependent spatial distribution of three anticancer drugs within tumors, heart, kidney, liver and brain. Mice bearing various xenografts were treated with doxorubicin, mitoxantrone or topotecan. At various times after injection, tumors and samples of heart, kidney, liver and brain were excised. Within solid tumors, the distribution of doxorubicin, mitoxantrone and topotecan was limited to perivascular regions at 10 min after administration and the distance from blood vessels at which drug intensity fell to half was ~25-75 μm. Although drug distribution improved after 3 and 24 h, there remained a significant decrease in drug fluorescence with increasing distance from tumor blood vessels. Drug distribution was relatively uniform in the heart, kidney and liver with substantially greater perivascular drug uptake than in tumors. There was significantly higher total drug fluorescence in the liver than in tumors after 10 min, 3 and 24 h. Little to no drug fluorescence was observed in the brain. There are marked differences in the spatial distributions of three anticancer drugs within tumor tissue and normal tissues over time, with greater exposure to most normal tissues and limited drug distribution to many cells in tumors. Studies of the spatial distribution of drugs are required to complement pharmacokinetic data in order to better understand and predict drug effects and toxicities.
Determinants of spikes in ultrafine particle concentration whilst commuting by bus
NASA Astrophysics Data System (ADS)
Lim, Shanon; Dirks, Kim N.; Salmond, Jennifer A.; Xie, Shanju
2015-07-01
This paper examines concentration of ultrafine particles (UFPs) based on data collected using high-resolution UFP monitors whilst travelling by bus during rush hour along three different urban routes in Auckland, New Zealand. The factors influencing in-bus UFP concentration were assessed using a combination of spatial, statistical and GIS analysis techniques to determine both spatial and temporal variability. Results from 68 bus trips showed that concentrations varied more within a route than between on a given day, despite differences in urban morphology, land use and traffic densities between routes. A number of trips were characterised by periods of very rapid increases in UFPs (concentration 'spikes'), followed by slow declines. Trips which recorded at least one spike (an increase of greater than 10,000 pt/cm3) resulted in significantly higher mean concentrations. Spikes in UFPs were significantly more likely to occur when travelling at low speeds and when passengers were alighting and boarding at bus stops close to traffic light intersections.
Evolution of genuine cross-correlation strength of focal onset seizures.
Müller, Markus F; Baier, Gerold; Jiménez, Yurytzy López; Marín García, Arlex O; Rummel, Christian; Schindler, Kaspar
2011-10-01
To quantify the evolution of genuine zero-lag cross-correlations of focal onset seizures, we apply a recently introduced multivariate measure to broad band and to narrow-band EEG data. For frequency components below 12.5 Hz, the strength of genuine cross-correlations decreases significantly during the seizure and the immediate postseizure period, while higher frequency bands show a tendency of elevated cross-correlations during the same period. We conclude that in terms of genuine zero-lag cross-correlations, the electrical brain activity as assessed by scalp electrodes shows a significant spatial fragmentation, which might promote seizure offset.
Teaching the Gifted Visual Spatial Learner
ERIC Educational Resources Information Center
Freed, Jeff
2006-01-01
In working with right-brained or visual spatial children for the past 20 years, the author has noticed that they all learn in a similar manner. He has also noticed that a high percentage of gifted children are visual spatial learners. The more visual spatial a child is, the higher the potential for school difficulties. Since most teachers are…
Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography
NASA Astrophysics Data System (ADS)
Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.
2016-10-01
Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.
NASA Astrophysics Data System (ADS)
Huntington, B. E.; Lirman, D.
2012-12-01
Landscape-scale attributes of patch size, spatial isolation, and topographic complexity are known to influence diversity and abundance in terrestrial and marine systems, but remain collectively untested for reef-building corals. To investigate the relationship between the coral assemblage and seascape variation in reef habitats, we took advantage of the distinct boundaries, spatial configurations, and topographic complexities among artificial reef patches to overcome the difficulties of manipulating natural reefs. Reef size (m2) was found to be the foremost predictor of coral richness in accordance with species-area relationship predictions. Larger reefs were also found to support significantly higher colony densities, enabling us to reject the null hypothesis of random placement (a sampling artifact) in favor of target area predictions that suggest greater rates of immigration on larger reefs. Unlike the pattern previously documented for reef fishes, topographic complexity was not a significant predictor of any coral assemblage response variable, despite the range of complexity values sampled. Lastly, coral colony density was best explained by both increasing reef size and decreasing reef spatial isolation, a pattern found exclusively among brooding species with shorter larval dispersal distances. We conclude that seascape attributes of reef size and spatial configuration within the seascape can influence the species richness and abundance of the coral community at relatively small spatial scales (<1 km). Specifically, we demonstrate how patterns in the coral communities that have naturally established on these manipulated reefs agree with the target area and island biogeography mechanisms to drive species-area relationships in reef-building corals. Based on the patterns documented in artificial reefs, habitat degradation that results in smaller, more isolated natural reefs may compromise coral diversity.
Kashani, Masoud Soheili; Tavirani, Mostafa Rezaei; Talaei, Sayyed Alireza; Salami, Mahmoud
2011-04-01
Alzheimer's disease (AD) is one of the most important neurodegenerative disorders. It is characterized by dementia including deficits in learning and memory. The present study aimed to evaluate the effects of aqueous extract of lavender (Lavandula angustifolia) on spatial performance of AD rats. Male Wistar rats were first divided into control and AD groups. Rat model of AD was established by intracerebroventricular injection of 10 μg Aβ1-42 20 d prior to administration of the lavender extract. Rats in both groups were then introduced to 2 stages of task learning (with an interval of 20 d) in Morris water maze, each followed by one probe test. After the first stage of spatial learning, control and AD animals received different doses (50, 100 and 200 mg/kg) of the lavender extract. In the first stage of experiment, the latency to locate the hidden platform in AD group was significantly higher than that in control group. However, in the second stage of experiment, control and AD rats that received distilled water (vehicle) showed similar performance, indicating that the maze navigation itself could improve the spatial learning of AD animals. Besides, in the second stage of experiment, control and AD rats that received lavender extract administration at different doses (50, 100, and 200 mg/ kg) spent less time locating the platform (except for the AD rats with 50 mg/kg extract treatment), as compared with their counterparts with vehicle treatment, respectively. In addition, lavender extract significantly improved the performance of control and AD rats in the probe test, only at the dose of 200 mg/kg, as compared with their counterparts with vehicle treatment. The lavender extract can effectively reverse spatial learning deficits in AD rats.
Dai, Dajun; Oyana, Tonny J
2008-01-01
Background High levels of dioxins in soil and higher-than-average body burdens of dioxins in local residents have been found in the city of Midland and the Tittabawassee River floodplain in Michigan. The objective of this study is threefold: (1) to evaluate dioxin levels in soils; (2) to evaluate the spatial variations in breast cancer incidence in Midland, Saginaw, and Bay Counties in Michigan; (3) to evaluate whether breast cancer rates are spatially associated with the dioxin contamination areas. Methods We acquired 532 published soil dioxin data samples collected from 1995 to 2003 and data pertaining to female breast cancer cases (n = 4,604) at ZIP code level in Midland, Saginaw, and Bay Counties for years 1985 through 2002. Descriptive statistics and self-organizing map algorithm were used to evaluate dioxin levels in soils. Geographic information systems techniques, the Kulldorff's spatial and space-time scan statistics, and genetic algorithms were used to explore the variation in the incidence of breast cancer in space and space-time. Odds ratio and their corresponding 95% confidence intervals, with adjustment for age, were used to investigate a spatial association between breast cancer incidence and soil dioxin contamination. Results High levels of dioxin in soils were observed in the city of Midland and the Tittabawassee River 100-year floodplain. After adjusting for age, we observed high breast cancer incidence rates and detected the presence of spatial clusters in the city of Midland, the confluence area of the Tittabawassee, and Saginaw Rivers. After accounting for spatiotemporal variations, we observed a spatial cluster of breast cancer incidence in Midland between 1985 and 1993. The odds ratio further suggests a statistically significant (α = 0.05) increased breast cancer rate as women get older, and a higher disease burden in Midland and the surrounding areas in close proximity to the dioxin contaminated areas. Conclusion These findings suggest that increased breast cancer incidences are spatially associated with soil dioxin contamination. Aging is a substantial factor in the development of breast cancer. Findings can be used for heightened surveillance and education, as well as formulating new study hypotheses for further research. PMID:18939976
Davey, Nicholas G; Fitzpatrick, Cole T E; Etzkorn, Jacob M; Martinsen, Morten; Crampton, Robert S; Onstad, Gretchen D; Larson, Timothy V; Yost, Michael G; Krogh, Erik T; Gilroy, Michael; Himes, Kathy H; Saganić, Erik T; Simpson, Christopher D; Gill, Christopher G
2014-09-19
The objective of this study was to use membrane introduction mass spectrometry (MIMS), implemented on a mobile platform, in order to provide real-time, fine-scale, temporally and spatially resolved measurements of several hazardous air pollutants. This work is important because there is now substantial evidence that fine-scale spatial and temporal variations of air pollutant concentrations are important determinants of exposure to air pollution and adverse health outcomes. The study took place in Tacoma, WA during periods of impaired air quality in the winter and summer of 2008 and 2009. Levels of fine particles were higher in winter compared to summer, and were spatially uniform across the study area. Concentrations of vapor phase pollutants measured by membrane introduction mass spectrometry (MIMS), notably benzene and toluene, had relatively uniform spatial distributions at night, but exhibited substantial spatial variation during the day-daytime levels were up to 3-fold higher at traffic-impacted locations compared to a reference site. Although no direct side-by-side comparison was made between the MIMS system and traditional fixed site monitors, the MIMS system typically reported higher concentrations of specific VOCs, particularly benzene, ethylbenzene and naphthalene, compared to annual average concentrations obtained from SUMA canisters and gas chromatographic analysis at the fixed sites.
Brochu, Paul J.; Yanosky, Jeff D.; Paciorek, Christopher J.; Schwartz, Joel; Chen, Jarvis T.; Herrick, Robert F.
2011-01-01
Objectives. Although differential exposure by socioeconomic position (SEP) to hazardous waste and lead is well demonstrated, there is less evidence for particulate air pollution (PM), which is associated with risk of death and illness. This study determined the relationship of ambient PM and SEP across several spatial scales. Methods. Geographic information system-based, spatio-temporal models were used to predict PM in the Northeastern United States. Predicted concentrations were related to census tract SEP and racial composition using generalized additive models. Results. Lower SEP was associated with small, significant increases in PM. Annual PM10 decreased between 0.09 and 0.93 micrograms per cubic meter and PM2.5 between 0.02 and 0.94 micrograms per cubic meter for interquartile range increases in income. Decrements in PM with SEP increased with spatial scale, indicating that between-city spatial gradients were greater than within-city differences. The PM–SEP relation in urban tracts was not substantially modified by racial composition. Conclusions. Lower compared with higher SEP populations were exposed to higher ambient PM in the Northeastern United States. Given the small percentage change in annual PM2.5 and PM10, SEP was not likely a major source of confounding in epidemiological studies of PM, especially those conducted within a single urban/metropolitan area. PMID:21836114
Linear and non-linear flow mode in Pb-Pb collisions at √{sNN} = 2.76 TeV
NASA Astrophysics Data System (ADS)
Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration
2017-10-01
The second and the third order anisotropic flow, V2 and V3, are mostly determined by the corresponding initial spatial anisotropy coefficients, ε2 and ε3, in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, Vn (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow Vn for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider. The measurements are done for particles in the pseudorapidity range | η | < 0.8 and the transverse momentum range 0.2
Space-time patterns of Campylobacter spp. colonization in broiler flocks, 2002-2006.
Jonsson, M E; Norström, M; Sandberg, M; Ersbøll, A K; Hofshagen, M
2010-09-01
This study was performed to investigate space-time patterns of Campylobacter spp. colonization in broiler flocks in Norway. Data on the Campylobacter spp. status at the time of slaughter of 16 054 broiler flocks from 580 farms between 2002 and 2006 was included in the study. Spatial relative risk maps together with maps of space-time clustering were generated, the latter by using spatial scan statistics. These maps identified the same areas almost every year where there was a higher risk for a broiler flock to test positive for Campylobacter spp. during the summer months. A modified K-function analysis showed significant clustering at distances between 2.5 and 4 km within different years. The identification of geographical areas with higher risk for Campylobacter spp. colonization in broilers indicates that there are risk factors associated with Campylobacter spp. colonization in broiler flocks varying with region and time, e.g. climate, landscape or geography. These need to be further explored. The results also showed clustering at shorter distances indicating that there are risk factors for Campylobacter spp. acting in a more narrow scale as well.
Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, S.; Adamová, D.; Adolfsson, J.
The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less
The link between mental rotation ability and basic numerical representations
Thompson, Jacqueline M.; Nuerk, Hans-Christoph; Moeller, Korbinian; Cohen Kadosh, Roi
2013-01-01
Mental rotation and number representation have both been studied widely, but although mental rotation has been linked to higher-level mathematical skills, to date it has not been shown whether mental rotation ability is linked to the most basic mental representation and processing of numbers. To investigate the possible connection between mental rotation abilities and numerical representation, 43 participants completed four tasks: 1) a standard pen-and-paper mental rotation task; 2) a multi-digit number magnitude comparison task assessing the compatibility effect, which indicates separate processing of decade and unit digits; 3) a number-line mapping task, which measures precision of number magnitude representation; and 4) a random number generation task, which yields measures both of executive control and of spatial number representations. Results show that mental rotation ability correlated significantly with both size of the compatibility effect and with number mapping accuracy, but not with any measures from the random number generation task. Together, these results suggest that higher mental rotation abilities are linked to more developed number representation, and also provide further evidence for the connection between spatial and numerical abilities. PMID:23933002
Jay, Chadwick V.; Grebmeier, Jacqueline M.; Fischbach, Anthony S.
2012-01-01
Arctic species such as the Pacific walrus (Odobenus rosmarus divergens) are facing a rapidly changing environment. Walruses are benthic foragers and may shift their spatial patterns of foraging in response to changes in prey distribution. We used data from satellite radio-tags attached to walruses in 2009-2010 to map walrus foraging locations with concurrent sampling of benthic infauna to examine relationships between distributions of dominant walrus prey and spatial patterns of walrus foraging. Walrus foraging was concentrated offshore in the NE Chukchi Sea, and coastal areas of northwestern Alaska when sea ice was sparse. Walrus foraging areas in August-September were coincident with the biomass of two dominant bivalve taxa (Tellinidae and Nuculidae) and sipunculid worms. Walrusforaging costs associated with increased travel time to higher biomass food patches from land may be significantly higher than the costs from sea ice haul-outs and result in reduced energy storesin walruses. Identifying what resources are selected by walruses and how those resources are distributed in space and time will improve our ability to forecast how walruses might respond to a changing climate.
Linear and non-linear flow mode in Pb–Pb collisions at s NN = 2.76 TeV
Acharya, S.; Adamová, D.; Adolfsson, J.; ...
2017-08-04
The second and the third order anisotropic flow, V 2 and V 3, are mostly determined by the corresponding initial spatial anisotropy coefficients, and , in the initial density distribution. In addition to their dependence on the same order initial anisotropy coefficient, higher order anisotropic flow, V n (n > 3), can also have a significant contribution from lower order initial anisotropy coefficients, which leads to mode-coupling effects. In this Letter we investigate the linear and non-linear modes in higher order anisotropic flow V n for n = 4, 5, 6 with the ALICE detector at the Large Hadron Collider.more » The measurements are done for particles in the pseudorapidity range |η| < 0.8 and the transverse momentum range 0.2 < p T < 5.0 GeV/c as a function of collision centrality. The results are compared with theoretical calculations and provide important constraints on the initial conditions, including initial spatial geometry and its fluctuations, as well as the ratio of the shear viscosity to entropy density of the produced system.« less
Spatial analysis of alcohol-related motor vehicle crash injuries in southeastern Michigan.
Meliker, Jaymie R; Maio, Ronald F; Zimmerman, Marc A; Kim, Hyungjin Myra; Smith, Sarah C; Wilson, Mark L
2004-11-01
Temporal, behavioral and social risk factors that affect injuries resulting from alcohol-related motor vehicle crashes have been characterized in previous research. Much less is known about spatial patterns and environmental associations of alcohol-related motor vehicle crashes. The aim of this study was to evaluate geographic patterns of alcohol-related motor vehicle crashes and to determine if locations of alcohol outlets are associated with those crashes. In addition, we sought to demonstrate the value of integrating spatial and traditional statistical techniques in the analysis of this preventable public health risk. The study design was a cross-sectional analysis of individual-level blood alcohol content, traffic report information, census block group data, and alcohol distribution outlets. Besag and Newell's spatial analysis and traditional logistic regression both indicated that areas of low population density had more alcohol-related motor vehicle crashes than expected (P < 0.05). There was no significant association between alcohol outlets and alcohol-related motor vehicle crashes using distance analyses, logistic regression, and Chi-square. Differences in environmental or behavioral factors characteristic of areas of low population density may be responsible for the higher proportion of alcohol-related crashes occurring in these areas.
NASA Astrophysics Data System (ADS)
Tang, U. W.; Wang, Z. S.
2008-10-01
Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.
[Spatial distribution prediction of surface soil Pb in a battery contaminated site].
Liu, Geng; Niu, Jun-Jie; Zhang, Chao; Zhao, Xin; Guo, Guan-Lin
2014-12-01
In order to enhance the reliability of risk estimation and to improve the accuracy of pollution scope determination in a battery contaminated site with the soil characteristic pollutant Pb, four spatial interpolation models, including Combination Prediction Model (OK(LG) + TIN), kriging model (OK(BC)), Inverse Distance Weighting model (IDW), and Spline model were employed to compare their effects on the spatial distribution and pollution assessment of soil Pb. The results showed that Pb concentration varied significantly and the data was severely skewed. The variation coefficient of the site was higher in the local region. OK(LG) + TIN was found to be more accurate than the other three models in predicting the actual pollution situations of the contaminated site. The prediction accuracy of other models was lower, due to the effect of the principle of different models and datum feature. The interpolation results of OK(BC), IDW and Spline could not reflect the detailed characteristics of seriously contaminated areas, and were not suitable for mapping and spatial distribution prediction of soil Pb in this site. This study gives great contributions and provides useful references for defining the remediation boundary and making remediation decision of contaminated sites.
Scale dependence of the diversity-stability relationship in a temperate grassland.
Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo
2018-05-01
A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity-stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m 2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m 2 ). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity-area relationship was significantly higher than that of the stability-area relationship, resulting in a decline of the slope of the diversity-stability relationship with increasing area. Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes.
Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro
2015-03-01
Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation. Copyright © 2014 Elsevier Inc. All rights reserved.
Spatial Skills as a Predictor of First Grade Girls' Use of Higher Level Arithmetic Strategies
ERIC Educational Resources Information Center
Laski, Elida V.; Casey, Beth M.; Yu, Qingyi; Dulaney, Alana; Heyman, Miriam; Dearing, Eric
2013-01-01
Girls are more likely than boys to use counting strategies rather than higher-level mental strategies to solve arithmetic problems. Prior research suggests that dependence on counting strategies may have negative implications for girls' later math achievement. We investigated the relation between first-grade girls' verbal and spatial skills and…
Geospatial clustering in sugar-sweetened beverage consumption among Boston youth.
Tamura, Kosuke; Duncan, Dustin T; Athens, Jessica K; Bragg, Marie A; Rienti, Michael; Aldstadt, Jared; Scott, Marc A; Elbel, Brian
2017-09-01
The objective was to detect geospatial clustering of sugar-sweetened beverage (SSB) intake in Boston adolescents (age = 16.3 ± 1.3 years [range: 13-19]; female = 56.1%; White = 10.4%, Black = 42.6%, Hispanics = 32.4%, and others = 14.6%) using spatial scan statistics. We used data on self-reported SSB intake from the 2008 Boston Youth Survey Geospatial Dataset (n = 1292). Two binary variables were created: consumption of SSB (never versus any) on (1) soda and (2) other sugary drinks (e.g., lemonade). A Bernoulli spatial scan statistic was used to identify geospatial clusters of soda and other sugary drinks in unadjusted models and models adjusted for age, gender, and race/ethnicity. There was no statistically significant clustering of soda consumption in the unadjusted model. In contrast, a cluster of non-soda SSB consumption emerged in the middle of Boston (relative risk = 1.20, p = .005), indicating that adolescents within the cluster had a 20% higher probability of reporting non-soda SSB intake than outside the cluster. The cluster was no longer significant in the adjusted model, suggesting spatial variation in non-soda SSB drink intake correlates with the geographic distribution of students by race/ethnicity, age, and gender.
Ho, N T; Hoang, V M T; Le, N N T; Nguyen, D T; Tran, A; Kaki, D; Tran, P M; Thompson, C N; Ngo, M N Q; Truong, K H; Nguyen, H T; Ha, T M; Nguyen, C V V; Thwaites, G E; Thakur, K T; Hesdorffer, D; Baker, S
2017-11-01
Central nervous system infections (CNSI) are a leading cause of death and long-term disability in children. Using ICD-10 data from 2005 to 2015 from three central hospitals in Ho Chi Minh City (HCMC), Vietnam, we exploited generalized additive mixed models (GAMM) to examine the spatial-temporal distribution and spatial and climatic risk factors of paediatric CNSI, excluding tuberculous meningitis, in this setting. From 2005 to 2015, there were 9469 cases of paediatric CNSI; 33% were ⩽1 year old at admission and were mainly diagnosed with presumed bacterial CNSI (BI) (79%), the remainder were >1 year old and mainly diagnosed with presumed non-bacterial CNSI (non-BI) (59%). The urban districts of HCMC in proximity to the hospitals as well as some outer districts had the highest incidences of BI and non-BI; BI incidence was higher in the dry season. Monthly BI incidence exhibited a significant decreasing trend over the study. Both BI and non-BI were significantly associated with lags in monthly average temperature, rainfall, and river water level. Our findings add new insights into this important group of infections in Vietnam, and highlight where resources for the prevention and control of paediatric CNSI should be allocated.
Miller, Ek Fillatre; Bradbury, Ir; Heath, Dd
2011-12-01
Allochronic divergence, like spatial isolation, may contribute to population diversity and adaptation, however the challenges for tracking habitat utilization in shared environments are far greater. Adult Klukshu River (Yukon, Canada) sockeye salmon, Oncorhynchus nerka, return as genetically distinct "early" and "late" runs. Early and late adult spawning populations (1999 and 2000) and their subsequent fry (sampled at 7 sites in 2000 and at 8 sites in 2001 throughout Klukshu Lake and River) were genotyped at eight microsatellite loci. Bayesian assignment was used to determine the spatial distribution of early versus late fry; although intermixed, the distribution of fry significantly differed in Klukshu Lake and in the Klukshu River in 2001, based on crosstab analyses. Late-run fry predominated in Klukshu Lake at all sites, while early-run fry were most common in the north and south of Klukshu Lake and in Klukshu River. Early-run spawners had significantly higher relative productivity (early life survival) than late-run fish (2.9 times more fry produced per early-run adult in 2000, and 9.2 times more in 2001). This study demonstrates spatial habitat partitioning and differences in the contribution of allochronically isolated populations to fry abundance, and highlights annual variability that likely contributes to recruitment variation.
Miller, EK Fillatre; Bradbury, IR; Heath, DD
2011-01-01
Allochronic divergence, like spatial isolation, may contribute to population diversity and adaptation, however the challenges for tracking habitat utilization in shared environments are far greater. Adult Klukshu River (Yukon, Canada) sockeye salmon, Oncorhynchus nerka, return as genetically distinct “early” and “late” runs. Early and late adult spawning populations (1999 and 2000) and their subsequent fry (sampled at 7 sites in 2000 and at 8 sites in 2001 throughout Klukshu Lake and River) were genotyped at eight microsatellite loci. Bayesian assignment was used to determine the spatial distribution of early versus late fry; although intermixed, the distribution of fry significantly differed in Klukshu Lake and in the Klukshu River in 2001, based on crosstab analyses. Late-run fry predominated in Klukshu Lake at all sites, while early-run fry were most common in the north and south of Klukshu Lake and in Klukshu River. Early-run spawners had significantly higher relative productivity (early life survival) than late-run fish (2.9 times more fry produced per early-run adult in 2000, and 9.2 times more in 2001). This study demonstrates spatial habitat partitioning and differences in the contribution of allochronically isolated populations to fry abundance, and highlights annual variability that likely contributes to recruitment variation. PMID:22393527
Abdul Wahab, Noor Alaudin; Zakaria, Mohd Normani; Abdul Rahman, Abdul Hamid; Sidek, Dinsuhaimi; Wahab, Suzaily
2017-11-01
The present, case-control, study investigates binaural hearing performance in schizophrenia patients towards sentences presented in quiet and noise. Participants were twenty-one healthy controls and sixteen schizophrenia patients with normal peripheral auditory functions. The binaural hearing was examined in four listening conditions by using the Malay version of hearing in noise test. The syntactically and semantically correct sentences were presented via headphones to the randomly selected subjects. In each condition, the adaptively obtained reception thresholds for speech (RTS) were used to determine RTS noise composite and spatial release from masking. Schizophrenia patients demonstrated significantly higher mean RTS value relative to healthy controls (p=0.018). The large effect size found in three listening conditions, i.e., in quiet (d=1.07), noise right (d=0.88) and noise composite (d=0.90) indicates statistically significant difference between the groups. However, noise front and noise left conditions show medium (d=0.61) and small (d=0.50) effect size respectively. No statistical difference between groups was noted in regards to spatial release from masking on right (p=0.305) and left (p=0.970) ear. The present findings suggest an abnormal unilateral auditory processing in central auditory pathway in schizophrenia patients. Future studies to explore the role of binaural and spatial auditory processing were recommended.
Spatial and Temporal Variation of Archaeal, Bacterial and Fungal Communities in Agricultural Soils
Pereira e Silva, Michele C.; Dias, Armando Cavalcante Franco; van Elsas, Jan Dirk; Salles, Joana Falcão
2012-01-01
Background Soil microbial communities are in constant change at many different temporal and spatial scales. However, the importance of these changes to the turnover of the soil microbial communities has been rarely studied simultaneously in space and time. Methodology/Principal Findings In this study, we explored the temporal and spatial responses of soil bacterial, archaeal and fungal β-diversities to abiotic parameters. Taking into account data from a 3-year sampling period, we analyzed the abundances and community structures of Archaea, Bacteria and Fungi along with key soil chemical parameters. We questioned how these abiotic variables influence the turnover of bacterial, archaeal and fungal communities and how they impact the long-term patterns of changes of the aforementioned soil communities. Interestingly, we found that the bacterial and fungal β-diversities are quite stable over time, whereas archaeal diversity showed significantly higher fluctuations. These fluctuations were reflected in temporal turnover caused by soil management through addition of N-fertilizers. Conclusions Our study showed that management practices applied to agricultural soils might not significantly affect the bacterial and fungal communities, but cause slow and long-term changes in the abundance and structure of the archaeal community. Moreover, the results suggest that, to different extents, abiotic and biotic factors determine the community assembly of archaeal, bacterial and fungal communities. PMID:23284712
Rapalino, O; Kamalian, Shervin; Kamalian, Shahmir; Payabvash, S; Souza, L C S; Zhang, D; Mukta, J; Sahani, D V; Lev, M H; Pomerantz, S R
2012-04-01
To safeguard patient health, there is great interest in CT radiation-dose reduction. The purpose of this study was to evaluate the impact of an iterative-reconstruction algorithm, ASIR, on image-quality measures in reduced-dose head CT scans for adult patients. Using a 64-section scanner, we analyzed 100 reduced-dose adult head CT scans at 6 predefined levels of ASIR blended with FBP reconstruction. These scans were compared with 50 CT scans previously obtained at a higher routine dose without ASIR reconstruction. SNR and CNR were computed from Hounsfield unit measurements of normal GM and WM of brain parenchyma. A blinded qualitative analysis was performed in 10 lower-dose CT datasets compared with higher-dose ones without ASIR. Phantom data analysis was also performed. Lower-dose scans without ASIR had significantly lower mean GM and WM SNR (P = .003) and similar GM-WM CNR values compared with higher routine-dose scans. However, at ASIR levels of 20%-40%, there was no statistically significant difference in SNR, and at ASIR levels of ≥60%, the SNR values of the reduced-dose scans were significantly higher (P < .01). CNR values were also significantly higher at ASIR levels of ≥40% (P < .01). Blinded qualitative review demonstrated significant improvements in perceived image noise, artifacts, and GM-WM differentiation at ASIR levels ≥60% (P < .01). These results demonstrate that the use of ASIR in adult head CT scans reduces image noise and increases low-contrast resolution, while allowing lower radiation doses without affecting spatial resolution.
Abiotic and biotic dynamics during the initial stages of high solids switchgrass degradation.
Fontenelle, L T; Corgie, S C; Walker, L P
2011-07-01
An understanding of the underlying dynamics of how biotic variables drive changes in abiotic parameters in the early stages of biomass biodegradation is essential for better control of the process. Probe hybridization was used to quantitatively study the growth of bacteria, yeast and fungi for three levels of initial moisture content (60, 65 and 75% MC) over a period of 64 h. Changes in abiotic parameters were also documented. By 64 h, samples were significantly differentiated both in temporal and spatial dimension, proving that considerable changes had occurred in these initial stages. Maximum carbon (C) conversion occurred in the 75% MC reactor at a peak value of 49%, with 40% and 37% in the 65 and 60% MC reactors, respectively. Higher temperature, higher pH, higher rates of O2 consumption and CO2 evolution were also observed in the highest moisture reactor; suggesting that of the three MCs studied, 75% MC was the optimal one for the process. MC during the process also proved to be important because it greatly influenced variation in the spatial dimension, further underscoring the importance of characterizing changes with bed height. Most importantly, we were able to positively correlate the rate of substrate degradation with bacterial biomass levels and highlight the critical role of bacteria in biological decomposition.
Albatross species demonstrate regional differences in North Pacific marine contamination
Finkelstein, M.; Keitt, B.S.; Croll, D.A.; Tershy, B.; Jarman, Walter M.; Rodriguez-Pastor, S.; Anderson, D.J.; Sievert, P.R.; Smith, D.R.
2006-01-01
Recent concern about negative effects on human health from elevated organochlorine and mercury concentrations in marine foods has highlighted the need to understand temporal and spatial patterns of marine pollution. Seabirds, long-lived pelagic predators with wide foraging ranges, can be used as indicators of regional contaminant patterns across large temporal and spatial scales. Here we evaluate contaminant levels, carbon and nitrogen stable isotope ratios, and satellite telemetry data from two sympatrically breeding North Pacific albatross species to demonstrate that (1) organochlorine and mercury contaminant levels are significantly higher in the California Current compared to levels in the high-latitude North Pacific and (2) levels of organochlorine contaminants in the North Paci.c are increasing over time. Black-footed Albatrosses (Phoebastria nigripes) had 370-460% higher organochlorine (polychlorinated biphenyls [PCBs], dichlorodiphenyltrichloroethanes [DDTs]) and mercury body burdens than a closely related species, the Laysan Albatross (P. immutabilis), primarily due to regional segregation of their North Pacific foraging areas. PCBs (the sum of the individual PCB congeners analyzed) and DDE concentrations in both albatross species were 130-360% higher than concentrations measured a decade ago. Our results demonstrate dramatically high and increasing contaminant concentrations in the eastern North Pacific Ocean, a finding relevant to other marine predators, including humans. ?? 2006 by the Ecological Society of America.
[Environment spatial distribution of mercury pollution in Songhua River upstream gold mining areas].
Zou, Ting-Ting; Wang, Ning; Zhang, Gang; Zhao, Dan-Dan
2010-09-01
Using Zeeman mercury spectrometer RA915+ monitoring the total gaseous mercury concentration were collected from gold mining area in Huadian, in the upper reaches of the Songhua River, during summer and autumn of 2008, where we simultaneously collected samples of air, water, sediment and soil. The research is focused on analyzing of the spatial and temporal distribution characteristics of atmospheric mercury pollution and the correlation with other environmental factors. The results show that: the concentration of atmospheric mercury in summer is higher than that in autumn and in the evening is higher than at noon, and it present a gradual decay with the distance to the gold mining area as the center point increasing. The distribution rule of mercury pollution of environmental factors in the gold mining area is: in sediment > in soil > in plant > in water, the characteristics of mercury pollution distribution in plant is: root > stem and leaf, and the content of mercury in plant in autumn is commonly higher than that in summer. This is thought due to the accumulation of pollutant element from soil during the growth of plant. The atmospheric mercury has a significant correlation with the root of plant, respectively 0.83 in summer and 0.97 in autumn.
Spatial distribution of tropospheric ozone in western Washington, USA
Cooper, S.M.; Peterson, D.L.
2000-01-01
We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area a??6000 km2), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55a??67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.
Temporally variable environments maintain more beta-diversity in Mediterranean landscapes
NASA Astrophysics Data System (ADS)
Martin, Beatriz; Ferrer, Miguel
2015-10-01
We examined the relationships between different environmental factors and the alpha and beta-diversity of terrestrial vertebrates (birds, mammals, amphibians and reptiles) in a Mediterranean region at the landscape level. We investigated whether the mechanisms underlying alpha and beta-diversity patterns are influenced by energy availability, habitat heterogeneity and temporal variability and if the drivers of the diversity patterns differed between both components of diversity. We defined alpha-diversity as synonym of species richness whereas beta-diversity was measured as distinctiveness. We evaluated a total of 13 different predictors using generalized linear mixed model (GLMM) analysis. Habitat spatial heterogeneity increased alpha-diversity, but contrastingly, it did not significantly affect beta-diversity among sites. Disturbed landscapes may show higher habitat spatial variation and higher alpha-diversity due to the contribution of highly generalist species that are wide-distributed and do not differ in composition (beta-diversity) among different sites within the region. Contrastingly, higher beta-diversity levels were negatively related to more stable sites in terms of temporal environmental variation. This negative relationship between environmental stability and beta-diversity levels is explained in terms of species adaptation to the local environmental conditions. Our study highlights the importance of temporal environmental variability in maintaining beta-diversity patterns under highly variable environmental conditions.
Bose, Anushika; Dürr, Tobias; Klenke, Reinhard A; Henle, Klaus
2018-02-28
Biodiversity-related impacts at wind energy facilities have increasingly become a cause of conservation concern, central issue being the collision of birds. Utilizing spatial information of their carcass detections at wind turbines (WTs), we quantified the detections in relation to the metric distances of the respective turbines to different land-use types. We used ecological niche factor analysis (ENFA) to identify combinations of land-use distances with respect to the spatial allocation of WTs that led to higher proportions of collisions among the worst affected bird-groups: Buntings, Crows, Larks, Pigeons and Raptors. We also assessed their respective similarities to the collision phenomenon by checking for overlaps amongst their distance combinations. Crows and Larks showed the narrowest "collision sensitive niche"; a part of ecological niche under higher risk of collisions with turbines, followed by that of Buntings and Pigeons. Raptors had the broadest niche showing significant overlaps with the collision sensitive niches of the other groups. This can probably be attributed to their larger home range combined with their hunting affinities to open landscapes. Identification of collision sensitive niches could be a powerful tool for landscape planning; helping avoid regions with higher risks of collisions for turbine allocations and thus protecting sensitive bird populations.
Oral exposure to low-dose of nonylphenol impairs memory performance in Sprague-Dawley rats.
Kawaguchi, Shinichiro; Kuwahara, Rika; Kohara, Yumi; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro
2015-02-01
Nonylphenol ethoxylate (NPE) is a non-ionic surfactant, that is degraded to short-chain NPE and 4-nonylphenol (NP) by bacteria in the environment. NP, one of the most common environmental endocrine disruptors, exhibits weak estrogen-like activity. In this study, we investigated whether oral administration of NP (at 0.5 and 5 mg/kg doses) affects spatial learning and memory, general activity, emotionality, and fear-motivated learning and memory in male and female Sprague-Dawley (SD) rats. SD rats of both sexes were evaluated using a battery of behavioral tests, including an appetite-motivated maze test (MAZE test) that was used to assess spatial learning and memory. In the MAZE test, the time required to reach the reward in male rats treated with 0.5 mg/kg NP group and female rats administered 5 mg/kg NP was significantly longer than that for control animals of the corresponding sex. In other behavioral tests, no significant differences were observed between the control group and either of the NP-treated groups of male rats. In female rats, inner and ambulation values for animals administered 0.5 mg/kg NP were significantly higher than those measured in control animals in open-field test, while the latency in the group treated with 5 mg/kg NP was significantly shorter compared to the control group in step-through passive avoidance test. This study indicates that oral administration of a low-dose of NP slightly impairs spatial learning and memory performance in male and female rats, and alters emotionality and fear-motivated learning and memory in female rats only.
2011-01-01
Background Many sub-Saharan countries are confronted with persistently high levels of infant mortality because of the impact of a range of biological and social determinants. In particular, infant mortality has increased in sub-Saharan Africa in recent decades due to the HIV/AIDS epidemic. The geographic distribution of health problems and their relationship to potential risk factors can be invaluable for cost effective intervention planning. The objective of this paper is to determine and map the spatial nature of infant mortality in South Africa at a sub district level in order to inform policy intervention. In particular, the paper identifies and maps high risk clusters of infant mortality, as well as examines the impact of a range of determinants on infant mortality. A Bayesian approach is used to quantify the spatial risk of infant mortality, as well as significant associations (given spatial correlation between neighbouring areas) between infant mortality and a range of determinants. The most attributable determinants in each sub-district are calculated based on a combination of prevalence and model risk factor coefficient estimates. This integrated small area approach can be adapted and applied in other high burden settings to assist intervention planning and targeting. Results Infant mortality remains high in South Africa with seemingly little reduction since previous estimates in the early 2000's. Results showed marked geographical differences in infant mortality risk between provinces as well as within provinces as well as significantly higher risk in specific sub-districts and provinces. A number of determinants were found to have a significant adverse influence on infant mortality at the sub-district level. Following multivariable adjustment increasing maternal mortality, antenatal HIV prevalence, previous sibling mortality and male infant gender remained significantly associated with increased infant mortality risk. Of these antenatal HIV sero-prevalence, previous sibling mortality and maternal mortality were found to be the most attributable respectively. Conclusions This study demonstrates the usefulness of advanced spatial analysis to both quantify excess infant mortality risk at the lowest administrative unit, as well as the use of Bayesian modelling to quantify determinant significance given spatial correlation. The "novel" integration of determinant prevalence at the sub-district and coefficient estimates to estimate attributable fractions further elucidates the "high impact" factors in particular areas and has considerable potential to be applied in other locations. The usefulness of the paper, therefore, not only suggests where to intervene geographically, but also what specific interventions policy makers should prioritize in order to reduce the infant mortality burden in specific administration areas. PMID:22093084
NASA Technical Reports Server (NTRS)
Yasunari, Teppei J.; Colarco, Peter R.; Lau, William K. M.; Osada, Kazuo; Kido, Mizuka; Mahanama, Sarith P. P.; Kim, Kyu-Myong; Da Silva, Arlindo M.
2015-01-01
We compared the observed total dust deposition fluxes during precipitation (TDP) mainly at Toyama in Japan during the period January - April 2009 with results available from four NASA GEOS-5 global model experiments. The modeled results were obtained from three previous experiments and carried out in one experiment, which were all driven by assimilated meteorology and simulating aerosol distributions for the time period. We focus mainly on the observations of two distinct TDP events, which were reported in Osada et al. (2011), at Toyama, Japan, in February (Event B) and March 2009 (Event C). Although all of our GEOS-5 simulations captured aspects of the observed TDP, we found that our low horizontal spatial resolution control experiment performed generally the worst. The other three experiments were run at a higher spatial resolution, with the first differing only in that respect from the control, the second adding imposed a prescribed corrected precipitation product, and the final experiment adding as well assimilation of aerosol optical depth based on MODIS observations. During Event C, the increased horizontal resolution could increase TDP with precipitation increase. There was no significant improvement, however, due to the imposition of the corrected precipitation product. The simulation that incorporated aerosol data assimilation performed was by far the best for this event, but even so could only reproduce less than half of the observed TDP despite the significantly increased atmospheric dust mass concentrations. All three of the high spatial resolution experiments had higher simulated precipitation at Toyama than was observed and that in the lower resolution control run. During Event B, the aerosol data assimilation run did not perform appreciably better than the other higher resolution simulations, suggesting that upstream conditions (i.e., upstream cloudiness), or vertical or horizontal misplacement of the dust plume did not allow for significant improvement in the simulated aerosol distributions. Furthermore, a detailed comparison of observed hourly precipitation and surface particulate mass concentration data suggests that the observed TDP during Event B was highly dependent on short periods of weak precipitation correlated with elevated dust surface concentrations, important details possibly not captured well in a current global model.
Yoon, Kyung Jae; Lee, Yong-Taek; Chae, Seoung Wan; Park, Chae Ri; Kim, Dae Yul
2016-03-15
Transcranial direct current stimulation (tDCS) is a noninvasive technique to modulate the neural membrane potential. Its effects in the early stage of traumatic brain injury (TBI) have rarely been investigated. This study assessed the effects of anodal tDCS on behavioral and spatial memory in a rat model of traumatic brain injury. Thirty six rats underwent lateral fluid percussion and were then randomly assigned to one of three groups: control (n=12), five-day tDCS over peri-lesional cortex at one (1W, n=12), or two (2W, n=12) weeks post-injury. The Barnes maze (BM) and Rotarod (RR) tests were evaluated in a blind manner on day 1, week 3 and week 5 post-injury. After three weeks, both the 1W and 2W groups showed significant improvements in the BM ratio (P<0.05), whereas only group 2W obtained a significant improvement in the RR ratio compared with the control group (P<0.05). However, there were no significant differences between any of the groups at five weeks after TBI. Immunohistochemistry revealed that only group 2W had a significantly higher brain-derived neurotrophic factor (BDNF) expression in the peri-lesional cortex, which was significantly correlated with the improvement of the Rotarod test at 3-week post-injury. However, BDNF expression in the ipsi-lesional hippocampus was not significantly different among the three groups. Group 1W tended to have increased choline/creatine ratios, as measured by magnetic resonance spectroscopy in the peri-lesional cortex, than the control group (P=0.051). Neither regimen aggravated the lesion volume or brain edema measured by MRI. These beneficial effects were not observed with either regimen at five weeks post-injury. In conclusions, anodal tDCS ameliorated behavioral and spatial memory function in the early phase after TBI when it is delivered two weeks post-injury. Earlier stimulation (one week post-injury) improves spatial memory only. However, the beneficial effects did not persist after cessation of the anodal stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Coherence properties of the radiation from FLASH
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2016-02-01
Free electron LASer in Hamburg is the first free electron laser user facility operating in the vacuum ultraviolet and soft X-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper, we present a theoretical analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach their maxima close to the free electron laser (FEL) saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that nonazimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.
Novel Electrochemical Raman Spectroscopy Enabled by Water Immersion Objective.
Zeng, Zhi-Cong; Hu, Shu; Huang, Sheng-Chao; Zhang, Yue-Jiao; Zhao, Wei-Xing; Li, Jian-Feng; Jiang, Chaoyang; Ren, Bin
2016-10-04
Electrochemical Raman spectroscopy is a powerful molecular level diagnostic technique for in situ investigation of adsorption and reactions on various material surfaces. However, there is still a big room to improve the optical path to meet the increasing request of higher detection sensitivity and spatial resolution. Herein, we proposed a novel electrochemical Raman setup based on a water immersion objective. It dramatically reduces mismatch of the refractive index in the light path. Consequently, significant improvement in detection sensitivity and spatial resolution has been achieved from both Zemax simulation and the experimental results. Furthermore, the thickness of electrolyte layer could be expanded to 2 mm without any influence on the signal collection. Such a thick electrolyte layer allows a much normal electrochemical response during the spectroelectrochemical investigations of the methanol oxidation.
[Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].
Feng, Er-Cui; Jiang, Li
2017-12-01
To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P<0.05); more than 10 days after birth, the leptin intervention group had rapid growth with higher body weight than the model and sham-operation groups (P>0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (P<0.05); from the fourth day of experiment, the leptin intervention group had a similar latency period as the sham-operation and a significantly shorter latency period than the model group (P<0.05). The results of space search experiment showed that compared with the sham-operation group, the model group had a significant reduction in the number of platform crossings and a significantly longer latency period (P<0.05); compared with the model group, the leptin intervention group had a significantly increased number of platform crossings and a significantly shortened latency period (P<0.05), while there was no significant difference between the leptin intervention and sham-operation groups. Leptin can alleviate spatial memory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.
NASA Astrophysics Data System (ADS)
Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M. B.; Mast, M. Alisa
2018-03-01
Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N-NO3- at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from -3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N-NO3- is significantly lower ranging from -7.6‰ to -1.3‰ while winter δ15N-NO3- ranges from -2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N-NO3- is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3- and δ15N-NO3- are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3- concentrations and δ15N-NO3- in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N-NH4+ ranged from -10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N-NH4+(-9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N-NH4+ observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and seasonal variation in N isotope data that reflect differences in sources of anthropogenic N deposition to high-elevation ecosystems and have important implications for environmental policy across the Rocky Mountain region.
Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices
Sprague, Thomas C.; Serences, John T.
2014-01-01
Computational theories propose that attention modulates the topographical landscape of spatial ‘priority’ maps in regions of visual cortex so that the location of an important object is associated with higher activation levels. While single-unit recording studies have demonstrated attention-related increases in the gain of neural responses and changes in the size of spatial receptive fields, the net effect of these modulations on the topography of region-level priority maps has not been investigated. Here, we used fMRI and a multivariate encoding model to reconstruct spatial representations of attended and ignored stimuli using activation patterns across entire visual areas. These reconstructed spatial representations reveal the influence of attention on the amplitude and size of stimulus representations within putative priority maps across the visual hierarchy. Our results suggest that attention increases the amplitude of stimulus representations in these spatial maps, particularly in higher visual areas, but does not substantively change their size. PMID:24212672
PKMζ Differentially Utilized between Sexes for Remote Long-Term Spatial Memory
Sebastian, Veronica; Vergel, Tatyana; Baig, Raheela; Schrott, Lisa M.; Serrano, Peter A.
2013-01-01
It is well established that male rats have an advantage in acquiring place-learning strategies, allowing them to learn spatial tasks more readily than female rats. However many of these differences have been examined solely during acquisition or in 24h memory retention. Here, we investigated whether sex differences exist in remote long-term memory, lasting 30d after training, and whether there are differences in the expression pattern of molecular markers associated with long-term memory maintenance. Specifically, we analyzed the expression of protein kinase M zeta (PKMζ) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2. To adequately evaluate memory retention, we used a robust training protocol to attenuate sex differences in acquisition and found differential effects in memory retention 1d and 30d after training. Female cohorts tested for memory retention 1d after 60 training trials outperformed males by making significantly fewer reference memory errors at test. In contrast, male cohorts tested 30d after 60 training trials outperformed females of the same condition, making fewer reference memory errors and achieving significantly higher retention test scores. Furthermore, given 60 training trials, females tested 30d later showed significantly worse memory compared to females tested 1d later, while males tested 30d later did not differ from males tested 1d later. Together these data suggest that with robust training males do no retain spatial information as well as females do 24h post-training but maintain this spatial information for longer. Males also showed a significant increase in synaptic PKMζ expression and a positive correlation with retention test scores, while females did not. Interestingly, both sexes showed a positive correlation between retention test scores and synaptic GluA2 expression. Furthermore, the increased expression of synaptic PKMζ, associated with male memory but not with female memory, identifies another potential sex-mediated difference in memory processing. PMID:24244733
Brehony, C; Cullinan, J; Cormican, M; Morris, D
2018-10-01
Shiga toxigenic Escherichia coli (STEC) are pathogenic E. coli that cause infectious diarrhoea. In some cases infection may be complicated by renal failure and death. The incidence of human infection with STEC in Ireland is the highest in Europe. The objective of the study was to examine the spatial incidence of human STEC infection in a region of Ireland with significantly higher rates of STEC incidence than the national average and to identify possible risk factors of STEC incidence at area level. Anonymised laboratory records (n = 379) from 2009 to 2015 were obtained from laboratories serving three counties in the West of Ireland. Data included location and sample date. Population and electoral division (ED) data were obtained from the Irish 2011 Census of Population. STEC incidence was calculated for each ED (n = 498) and used to map hotspots/coldspots using the Getis-Ord Gi* spatial statistic and significant spatial clustering using the Anselin's Local Moran's I statistic. Multivariable regression analysis was used to consider the importance of a number of potential predictors of STEC incidence. Incidence rates for the seven-year period ranged from 0 to 10.9 cases per 1000. A number of areas with significant local clustering of STEC incidence as well as variation in the spatial distribution of the two main serogroups associated with disease in the region i.e. O26 and O157 were identified. Cattle density was found to be a statistically significant predictor of STEC in the region. GIS analysis of routine data indicates that cattle density is associated STEC infection in this high incidence region. This finding points to the importance of agricultural practices for human health and the importance of a "one-health" approach to public policy in relation to agriculture, health and environment. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Petrou, Zisis I.; Xian, Yang; Tian, YingLi
2018-04-01
Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.
Mapping Chinese tallow with color-infrared photography
Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.; Seeger, E.B.; Martella, K.D.
2002-01-01
Airborne color-infrared photography (CIR) (1:12,000 scale) was used to map localized occurrences of the widespread and aggressive Chinese tallow (Sapium sebiferum), an invasive species. Photography was collected during senescence when Chinese tallow's bright red leaves presented a high spectral contrast within the native bottomland hardwood and upland forests and marsh land-cover types. Mapped occurrences were conservative because not all senescing tallow leaves are bright red simultaneously. To simulate low spectral but high spatial resolution satellite/airborne image and digital video data, the CIR photography was transformed into raster images at spatial resolutions approximating 0.5 in and 1.0 m. The image data were then spectrally classified for the occurrence of bright red leaves associated with senescing Chinese tallow. Classification accuracies were greater than 95 percent at both spatial resolutions. There was no significant difference in either forest in the detection of tallow or inclusion of non-tallow trees associated with the two spatial resolutions. In marshes, slightly more tallow occurrences were mapped with the lower spatial resolution, but there were also more misclassifications of native land covers as tallow. Combining all land covers, there was no difference at detecting tallow occurrences (equal omission errors) between the two resolutions, but the higher spatial resolution was associated with less inclusion of non-tallow land covers as tallow (lower commission error). Overall, these results confirm that high spatial (???1 m) but low spectral resolution remote sensing data can be used for mapping Chinese tallow trees in dominant environments found in coastal and adjacent upland landscapes.
NASA Astrophysics Data System (ADS)
Ribera, M.
2016-02-01
Identification of biological hotspots may be a necessary step toward ecosystem-based management goals, as these often signal underlying processes that aggregate or stimulate resources in a particular location. However, previously used metrics to locate these hotspots are not easily adapted to local marine datasets, in part due to the high spatial and temporal variability of phytoplankton populations. While most fish species in temperate regions are well adapted to the seasonal variability of phytoplankton abundance, it is the variability beyond this predictable pattern (i.e. anomalies) that may heavily impact the abundance and spatial distribution of organisms higher up the food chain. The objective of this study was to identify local-scale biological hotspots in a region in the western side of the Gulf of Maine using remote sensing chlorophyll-a data (from MERIS sensor), and to study the spatial overlap between these hotspots and high concentrations of fish abundance (derived from VTR dataset). For this reason, we defined a new hotspot metric that identified as a hotspot any area that consistently exhibited high-magnitude anomalies through time, a sign of highly dynamic communities. We improved on previous indices by minimizing the effect that different means and variances across space may have on the results, a situation that often occurs when comparing coastal and offshore systems. Results show a significant spatial correlation between pelagic fish abundance and aggregations of primary productivity. Spatial correlations were also significant between benthic fish abundance and primary productivity hotspots, but only during spring months. We argue that this new hotspot index compliments existing global measures as it helps managers understand the dynamic characteristics of a complex marine system. It also provides a unique metric that is easily compared across space and between different trophic levels, which may facilitate future ecosystem-wide studies.
NASA Astrophysics Data System (ADS)
Ribera, M.
2016-12-01
Identification of biological hotspots may be a necessary step toward ecosystem-based management goals, as these often signal underlying processes that aggregate or stimulate resources in a particular location. However, previously used metrics to locate these hotspots are not easily adapted to local marine datasets, in part due to the high spatial and temporal variability of phytoplankton populations. While most fish species in temperate regions are well adapted to the seasonal variability of phytoplankton abundance, it is the variability beyond this predictable pattern (i.e. anomalies) that may heavily impact the abundance and spatial distribution of organisms higher up the food chain. The objective of this study was to identify local-scale biological hotspots in a region in the western side of the Gulf of Maine using remote sensing chlorophyll-a data (from MERIS sensor), and to study the spatial overlap between these hotspots and high concentrations of fish abundance (derived from VTR dataset). For this reason, we defined a new hotspot metric that identified as a hotspot any area that consistently exhibited high-magnitude anomalies through time, a sign of highly dynamic communities. We improved on previous indices by minimizing the effect that different means and variances across space may have on the results, a situation that often occurs when comparing coastal and offshore systems. Results show a significant spatial correlation between pelagic fish abundance and aggregations of primary productivity. Spatial correlations were also significant between benthic fish abundance and primary productivity hotspots, but only during spring months. We argue that this new hotspot index compliments existing global measures as it helps managers understand the dynamic characteristics of a complex marine system. It also provides a unique metric that is easily compared across space and between different trophic levels, which may facilitate future ecosystem-wide studies.
NASA Astrophysics Data System (ADS)
Rasam, A. R. A.; Ghazali, R.; Noor, A. M. M.; Mohd, W. M. N. W.; Hamid, J. R. A.; Bazlan, M. J.; Ahmad, N.
2014-02-01
Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia.
Spatial imaging of hydrogen Lyman-alpha emission from Jupiter
NASA Technical Reports Server (NTRS)
Clarke, J. T.; Weaver, H. A.; Feldman, P. D.; Moos, H. W.; Fastie, W. G.; Opal, C. B.
1980-01-01
A sounding rocket measurement of the H I L-alpha emission from Jupiter made on Dec. 1, 1978 shows limb darkening and an average disk brightness of 13 kR. This brightness is significantly higher than in previous measurements, and was confirmed by an IUE observation on Dec. 10, 1978. Comparison with a plane-parallel hydrogen layer model indicates that there is enhanced emission from the equatorial regions, reaching a peak near 80 deg longitude.
2015-07-01
channel and near- field plume region of a 600 W Hall thruster operating on xenon. Results show significant fluctuations in LIF signal intensity... LIF signal intensity (corre- lated with the density of the probed excited metastable state) in time during the discharge current cycle, with the peak...fluorescence ( LIF ).1 LIF provides the opportunity to investigate plasma sources non-intrusively with higher spatial resolution (typically < 1 mm) than
Analytical treatment of self-phase-modulation beyond the slowly varying envelope approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syrchin, M.S.; Zheltikov, A.M.; International Laser Center, M.V. Lomonosov Moscow State University, 119899 Moscow
Analytical treatment of the self-phase-modulation of an ultrashort light pulse is extended beyond the slowly varying envelope approximation. The resulting wave equation is modified to include corrections to self-phase-modulation due to higher-order spatial and temporal derivatives. Analytical solutions are found in the limiting regimes of high nonlinearities and very short pulses. Our results reveal features that can significantly impact both pulse shape and the evolution of the phase.
NASA Astrophysics Data System (ADS)
Hang, F.; Wang, X.; Yu, Z.
2017-12-01
The Yellow-Bohai Sea is a semi-closed marginal sea in the east of China, affected much by human activities, especially the Bohai Sea. The present study evaluates spatial and seasonal variations of surface particulate organic carbon (POC) that was derived from MODIS month-average data for the period of July 2002-December 2016. Our analyses show that POC concentrations are significantly higher in the Bohai Sea (314.7-587.9 mg m-3) than in the Yellow Sea (181.3-492.2 mg m-3). In general, POC concentrations were higher in the nearshore waters than in the offshore. There are strong seasonal to interannual variations in POC. Mean POC was highest in spring in both Bohai Sea and Yellow Sea; the lowest POC was found in summer in the Yellow Sea, but in winter in the Bohai Sea. The elevated POC from summer to fall indicates that there was allochthonous source of POC. Overall, there was a decreasing trend in POC prior to year 2012, followed by a strong upward trend until the end of 2015. The interannual variability in POC was significantly correlated with NPGO, PDO and ENSO in the Yellow Sea, but only with NPGO in the Bohai Sea. Our analyses point out that both climate variability and human activity may impacts the carbon cycle in the Yellow-Bohai Sea.
Wang, Shaorui; Salamova, Amina; Hites, Ronald A; Venier, Marta
2018-06-05
The authors analyzed spatial and seasonal variations of current use pesticides (CUPs) levels in the atmospheric particulate phase in the Great Lakes basin. Twenty-four hour air samples were collected at six sites (two urban, two rural, and two remote) in 2015. The concentrations of 15 CUPs, including nine pyrethroid insecticides, four herbicides, one organophosphate insecticide, and one fungicide, were measured. The total CUPs concentrations were higher at the urban sites (0.38-1760 pg/m 3 ) than at the rural and remote sites (0.07-530 pg/m 3 ). The most abundant CUPs were pyrethroid insecticides at the urban sites. The levels of the other CUPs did not vary much among the six sites, except at the most remote site at Eagle Harbor, where the levels were significantly lower. Chlorothalonil was the most frequently detected CUP, which was detected in more than 76% of the samples. The atmospheric concentrations of total pyrethroid insecticides and total herbicides were correlated with local human population and developed land use. Significantly higher concentrations of most CUPs were observed in the warmer months than in the colder months at all sites. In addition to agricultural applications, which occur during the warmer months, the CUPs atmospheric concentrations may also be influenced by nonagricultural activities and the urban development.
Spatial and Temporal Distribution of Imidacloprid Within the Crown of Eastern Hemlock
Turcotte, Richard M.; Lagalante, Anthony; Jones, Jonathan; Cook, Frank; Elliott, Thomas; Billings, Anthony A.
2017-01-01
Systemic imidacloprid is the most widely used insecticide to control the hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), an exotic pest of eastern hemlock, Tsuga canadensis (L.) Carriére in the United States. This study was conducted to 1) determine the effect of treatment timing (spring vs. fall) and application method (trunk injection vs. soil injection) on the spatial and temporal distribution of imidacloprid within the crown of A. tsugae-free eastern hemlock using a competitive enzyme-linked immunosorbent assay (ELISA), 2) compare ELISA to gas chromatography-mass spectrometry (GC/MS) for the detection of imidacloprid in xylem fluid, and 3) determine the concentration of imidacloprid in leaf tissue using high performance liquid chromatography with tandem mass spectrometric (LC/MS/MS) detection methods. Xylem fluid concentrations of imidacloprid were found to be significantly higher for spring applications than for fall applications and for trunk injections than soil injections in the first year posttreatment. A total of 69% of samples analyzed by ELISA gave 1.8 times higher concentrations of imidacloprid than those found by GC/MS, leading to evidence of a matrix effect and overestimation of imidacloprid in xylem fluid by ELISA. A comparison of the presence of imidacloprid with xylem fluid and in leaf tissue on the same branch showed significant differences, suggesting that imidacloprid moved intermittently within the crown of eastern hemlock. PMID:28130463
Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.
Assessment of rural ecosystem health and type classification in Jiangsu province, China.
Meng, Lingran; Huang, Jiu; Dong, Jihong
2018-02-15
Quantitative analysis of rural ecosystem health (REH) is required to comprehend the spatial differentiation of rural landscape and promote rural sustainable development under the pressure of urbanization and industrialization, especially those with dramatic changes in rural ecology of China and other developing countries. In this study, taking Jiangsu province as the case study, appropriate indicators were selected in the perspective of compound ecosystem and the rural ecosystem health index (REHI) was developed including four rural ecological subsystems of resource, environmental, social and economic. The comprehensive indicator assessment models and geographic information system (GIS) spatial methods were used to analyze the REH status and spatial differentiation of 57 counties in Jiangsu province. The REH scores of 57 rural counties were in a higher range of 0.686-0.882 and fluctuating increased from north to south, indicating that the rural ecosystem in Jiangsu province was at a relatively healthy level and counties in southern Jiangsu were healthier than those in central and northern regions. The spatial concentration of REH in Jiangsu was poor and the spatial distribution of four subsystems health levels were significantly different by spatial Gini coefficient analysis. The REH of 57 counties in Jiangsu province were classified into 13 types according to the identification of the health levels and quantity of four subsystems. Moreover, we analyzed the influencing factors of each type and proposed paths to promote the development and management of rural ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
Ibert, Fabienne; Eckstein, Monika; Günther, Frank; Mutters, Nico T
2017-01-01
Background: Spatial isolation is a common infection control measure, but negative psychological effects are often neglected. We investigated which factors influence the perception of single room isolated patients. Methods: In the present correlative cross-sectional study, 32 isolated patients have been interviewed within three departments of the Heidelberg University Hospital, one of Germany's largest hospitals. The following questionnaires were used: 10-Item Big Five Inventory (BFI-10), Positive and Negative Affect Schedule (PANAS), Hospital Anxiety and Depression Scale (HADS) and a self-developed questionnaire to evaluate the individual experience of isolation. Data were analysed using correlation and regression analysis. Results: A significant positive correlation was found between the isolation period and anxiety (r=.42, p<.05). Interestingly, a significant positive correlation was demonstrated between the duration of contact to nursing staff and negative daydreaming (r=.89, p<.01). The activity watching television was associated with higher levels of anxiety (r=.38, p<.05). Surfing the internet had a positive relationship with thinking about beautiful things (r=.41, p<.05). Conclusions: Our study results have implications how to improve the psychological situation of patients during spatial isolation. Contact between nursing staff and patients is crucial, since this contact significantly associated with negative daydreaming, probably due to increased neediness of emotional and physical care in some patients. The duration of the isolation has an influence on the experience of anxiety. Activities to cope with the isolation, however, not always have positive effects on the well-being of the patient.
Milioni, Ana Luiza V; Nagy, Balázs V; Moura, Ana Laura A; Zachi, Elaine C; Barboni, Mirella T S; Ventura, Dora F
2017-03-01
Mercury vapor is highly toxic to the human body. The present study aimed to investigate the occurrence of neuropsychological dysfunction in former workers of fluorescent lamps factories that were exposed to mercury vapor (years after cessation of exposure), diagnosed with chronic mercurialism, and to investigate the effects of such exposure on the Autonomic Nervous System (ANS) using the non-invasive method of dynamic pupillometry. The exposed group and a control group matched by age and educational level were evaluated by the Beck Depression Inventory and with the computerized neuropsychological battery CANTABeclipse - subtests of working memory (Spatial Span), spatial memory (Spatial Recognition Memory), visual memory (Pattern Recognition Memory) and action planning (Stockings of Cambridge). The ANS was assessed by dynamic pupillometry, which provides information on the operation on both the sympathetic and parasympathetic functions. Depression scores were significantly higher among the former workers when compared with the control group. The exposed group also showed significantly worse performance in most of the cognitive functions assessed. In the dynamic pupillometry test, former workers showed significantly lower response than the control group in the sympathetic response parameter (time of 75% of pupillary recovery at 10cd/m 2 luminance). Our study found indications that are suggestive of cognitive deficits and losses in sympathetic autonomic activity among patients occupationally exposed to mercury vapor. Copyright © 2016 Elsevier B.V. All rights reserved.
Marin, Dario; Madotto, Eleonora; Fabbro, Franco; Skrap, Miran; Tomasino, Barbara
2017-10-01
We addressed the neuroanatomical correlates of 54 right-brain-damaged neurosurgical patients on visuo-spatial design fluency, which is a measure of the ability to generate/plan a series of new abstract combinations in a flexible way. 22.2% of the patients were impaired. They failed the task because they did not use strategic behavior, in particular they used rotational strategy to a significantly lower extent and produced a significantly higher rate of perseverative errors. Overall performance did not correlate with neuropsychological tests, suggesting that proficient performance was independent of other cognitive domains. Performance significantly correlated with use of rotational strategy. Tasks related to executive functions such as psychomotor speed and capacity to shift were positively correlated to the number of strategies used to solve the task. Lesion analysis showed that the maximum density of the patients' lesions-obtained by subtracting the overlap of lesions of spared patients from the overlap of lesions of impaired patients-overlaps with the precentral gyrus, rolandic operculum/insula, superior/middle temporal gyrus/hippocampus and, at subcortical level, with part of the superior longitudinal fasciculus, external capsule, retrolenticular part of the internal capsule and sagittal stratum (inferior longitudinal fasciculus and inferior fronto-occipital fasciculus). These areas are part of the fronto-parietal-temporal network known to be involved in top-down control of visuo-spatial attention, suggesting that the mechanisms and the strategies needed for proficient performance are essentially visuo-spatial in nature.
Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults.
Piber, Dominique; Nowacki, Jan; Mueller, Sven C; Wingenfeld, Katja; Otte, Christian
2018-01-15
Sex differences have been found in spatial learning and spatial memory, with several studies indicating that males outperform females. We tested in the virtual Morris Water Maze (vMWM) task, whether sex differences in spatial cognitive processes are attributable to differences in spatial learning or spatial memory retrieval in a large student sample. We tested 90 healthy students (45 women and 45 men) with a mean age of 23.5 years (SD=3.5). Spatial learning and spatial memory retrieval were measured by using the vMWM task, during which participants had to search a virtual pool for a hidden platform, facilitated by visual cues surrounding the pool. Several learning trials assessed spatial learning, while a separate probe trial assessed spatial memory retrieval. We found a significant sex effect during spatial learning, with males showing shorter latency and shorter path length, as compared to females (all p<0.001). Yet, there was no significant sex effect in spatial memory retrieval (p=0.615). Furthermore, post-hoc analyses revealed significant sex differences in spatial search strategies (p<0.05), but no difference in the number of platform crossings (p=0.375). Our results indicate that in healthy young adults, males show faster spatial learning in a virtual environment, as compared to females. Interestingly, we found no significant sex differences during spatial memory retrieval. Our study raises the question, whether men and women use different learning strategies, which nevertheless result in equal performances of spatial memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.
Mapping spatial patterns with morphological image processing
Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham
2006-01-01
We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...
Casualty Risk From Tornadoes in the United States is Highest in Urbanized Areas Across the Mid South
NASA Astrophysics Data System (ADS)
Fricker, T.; Elsner, J.
2017-12-01
Risk factors for tornado casualties are well known. Less understood is how and to what degree these determinants, after controlling for strength and urban density, vary spatially and temporally. Here we fit models to casualty counts from all casualty-producing tornadoes since 1995 in order to quantify the interactions between urbanization and energy on casualty rates. Results from the models show that the more urbanized areas of the Mid South are substantively and significantly more vulnerable to casualties from tornadoes than elsewhere in the country. Casualty rates are significantly higher on the weekend for tornadoes in this region. Night and day casualty rates are similar regardless of where they occur. Higher vulnerability to casualties from tornadoes occurring in more urbanized areas correspond significantly with greater percentages of elderly people. Many of the micro cities in the Mid South are threatened by tornadoes annually and this threat might potentially be exacerbated by climate change.
Bouchet, Audrey; Bräuer-Krisch, Elke; Prezado, Yolanda; El Atifi, Michèle; Rogalev, Léonid; Le Clec'h, Céline; Laissue, Jean Albert; Pelletier, Laurent; Le Duc, Géraldine
2016-08-01
Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control and on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses. Copyright © 2016 Elsevier Inc. All rights reserved.
Wathen, Steve; Thorne, James H.; Holguin, Andrew; Schwartz, Mark W.
2014-01-01
Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations. PMID:25469873
Towards real-time thermometry using simultaneous multislice MRI
NASA Astrophysics Data System (ADS)
Borman, P. T. S.; Bos, C.; de Boorder, T.; Raaymakers, B. W.; Moonen, C. T. W.; Crijns, S. P. M.
2016-09-01
MR-guided thermal therapies, such as high-intensity focused ultrasound (MRgHIFU) and laser-induced thermal therapy (MRgLITT) are increasingly being applied in oncology and neurology. MRI is used for guidance since it can measure temperature noninvasively based on the proton resonance frequency shift (PRFS). For therapy guidance using PRFS thermometry, high temporal resolution and large spatial coverage are desirable. We propose to use the parallel imaging technique simultaneous multislice (SMS) in combination with controlled aliasing (CAIPIRINHA) to accelerate the acquisition. We compare this with the sensitivity encoding (SENSE) acceleration technique. Two experiments were performed to validate that SMS can be used to increase the spatial coverage or the temporal resolution. The first was performed in agar gel using LITT heating and a gradient-echo sequence with echo-planar imaging (EPI), and the second was performed in bovine muscle using HIFU heating and a gradient-echo sequence without EPI. In both experiments temperature curves from an unaccelerated scan and from SMS, SENSE, and SENSE/SMS accelerated scans were compared. The precision was quantified by a standard deviation analysis of scans without heating. Both experiments showed a good agreement between the temperature curves obtained from the unaccelerated, and SMS accelerated scans, confirming that accuracy was maintained during SMS acceleration. The standard deviations of the temperature measurements obtained with SMS were significantly smaller than when SENSE was used, implying that SMS allows for higher acceleration. In the LITT and HIFU experiments SMS factors up to 4 and 3 were reached, respectively, with a loss of precision of less than a factor of 3. Based on these results we conclude that SMS acceleration of PRFS thermometry is a valuable addition to SENSE, because it allows for a higher temporal resolution or bigger spatial coverage, with a higher precision.
Uncertainties in mapping forest carbon in urban ecosystems.
Chen, Gang; Ozelkan, Emre; Singh, Kunwar K; Zhou, Jun; Brown, Marilyn R; Meentemeyer, Ross K
2017-02-01
Spatially explicit urban forest carbon estimation provides a baseline map for understanding the variation in forest vertical structure, informing sustainable forest management and urban planning. While high-resolution remote sensing has proven promising for carbon mapping in highly fragmented urban landscapes, data cost and availability are the major obstacle prohibiting accurate, consistent, and repeated measurement of forest carbon pools in cities. This study aims to evaluate the uncertainties of forest carbon estimation in response to the combined impacts of remote sensing data resolution and neighborhood spatial patterns in Charlotte, North Carolina. The remote sensing data for carbon mapping were resampled to a range of resolutions, i.e., LiDAR point cloud density - 5.8, 4.6, 2.3, and 1.2 pt s/m 2 , aerial optical NAIP (National Agricultural Imagery Program) imagery - 1, 5, 10, and 20 m. Urban spatial patterns were extracted to represent area, shape complexity, dispersion/interspersion, diversity, and connectivity of landscape patches across the residential neighborhoods with built-up densities from low, medium-low, medium-high, to high. Through statistical analyses, we found that changing remote sensing data resolution introduced noticeable uncertainties (variation) in forest carbon estimation at the neighborhood level. Higher uncertainties were caused by the change of LiDAR point density (causing 8.7-11.0% of variation) than changing NAIP image resolution (causing 6.2-8.6% of variation). For both LiDAR and NAIP, urban neighborhoods with a higher degree of anthropogenic disturbance unveiled a higher level of uncertainty in carbon mapping. However, LiDAR-based results were more likely to be affected by landscape patch connectivity, and the NAIP-based estimation was found to be significantly influenced by the complexity of patch shape. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchet, Audrey, E-mail: audrey.m.bouchet@gmail.com; Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble; Bräuer-Krisch, Elke
Purpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Methods and Materials: Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control andmore » on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. Results: MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. Conclusions: These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses.« less
Wathen, Steve; Thorne, James H; Holguin, Andrew; Schwartz, Mark W
2014-01-01
Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations.
NASA Astrophysics Data System (ADS)
De Clippele, L. H.; Huvenne, V. A. I.; Orejas, C.; Lundälv, T.; Fox, A.; Hennige, S. J.; Roberts, J. M.
2018-03-01
This study demonstrates how cold-water coral morphology and habitat distribution are shaped by local hydrodynamics, using high-definition video from Tisler Reef, an inshore reef in Norway. A total of 334 video frames collected on the north-west (NW) and south-east (SE) side of the reef were investigated for Lophelia pertusa coral cover and morphology and for the cover of the associated sponges Mycale lingua and Geodia sp. Our results showed that the SE side was a better habitat for L. pertusa (including live and dead colonies). Low cover of Geodia sp. was found on both sides of Tisler Reef. In contrast, Mycale lingua had higher percentage cover, especially on the NW side of the reef. Bush-shaped colonies of L. pertusa with elongated branches were the most abundant coral morphology on Tisler Reef. The highest abundance and density of this morphology were found on the SE side of the reef, while a higher proportion of cauliflower-shaped corals with short branches were found on the NW side. The proportion of very small L. pertusa colonies was also significantly higher on the SE side of the reef. The patterns in coral spatial distribution and morphology were related to local hydrodynamics—there were more frequent periods of downwelling currents on the SE side—and to the availability of suitable settling substrates. These factors make the SE region of Tisler Reef more suitable for coral growth. Understanding the impact of local hydrodynamics on the spatial extent and morphology of coral, and their relation to associated organisms such as sponges, is key to understanding the past and future development of the reef.
Spatial and Temporal Comparison of DNRA Communities in New River Estuary, USA
NASA Astrophysics Data System (ADS)
Song, B.; Lisa, J.; Tobias, C. R.
2016-02-01
Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate respiring pathway, competing with denitrification, in various ecosystems. Studies examining the diversity and composition of DNRA communities are limited and their link to DNRA activity is unknown. We conducted a multidisciplinary investigation of sediment communities in the upper reaches of a eutrophic estuary to examine spatial and temporal variation of DNRA community structures and determine their linkage to activities. Sediment samples were collected seasonally from two study sites (AA2 and JAX) in the New River Estuary, North Carolina, USA. 15N-nitrate tracer experiments were conducted to measure potential DNRA rates while abundance of DNRA communities was measured using quantitative PCR of cytochrome C nitrite reductase genes (nrfA). Composition and diversity of DNRA communities were also examined based on next generation sequencing (NGS) of nrfA genes using an Ion Torrent PGM. Bioinformatic analysis was conducted using the FunGene pipeline and Mothur program. Higher DNRA activities were measured at JAX and associated with higher abundance of nrfA genes. Seasonal variation in DNRA rates and nrfA gene abundance was more evident at JAX than AA2. Nitrate concentration and dissolved oxygen in bottom water were significantly and positively correlated with activities and abundance of DNRA communities. The nrfA NGS analysis revealed that spatial variation of DNRA communities was much greater than temporal variation with salinity, dissolved organic carbon, and nitrate as the most important environmental variables affecting these communities. Diversity of DNRA communities was negative correlated with the DNRA rates and nrfA gene abundance, which suggests that dominant members of the DNRA community are responsible for higher rates. Thus, our multidisciplinary study clearly demonstrates the linkage between structure and activities of DNRA communities in the upper reaches of New River Estuary.
Efficient Reformulation of HOTFGM: Heat Conduction with Variable Thermal Conductivity
NASA Technical Reports Server (NTRS)
Zhong, Yi; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)
2002-01-01
Functionally graded materials (FGMs) have become one of the major research topics in the mechanics of materials community during the past fifteen years. FGMs are heterogeneous materials, characterized by spatially variable microstructure, and thus spatially variable macroscopic properties, introduced to enhance material or structural performance. The spatially variable material properties make FGMs challenging to analyze. The review of the various techniques employed to analyze the thermodynamical response of FGMs reveals two distinct and fundamentally different computational strategies, called uncoupled macromechanical and coupled micromechanical approaches by some investigators. The uncoupled macromechanical approaches ignore the effect of microstructural gradation by employing specific spatial variations of material properties, which are either assumed or obtained by local homogenization, thereby resulting in erroneous results under certain circumstances. In contrast, the coupled approaches explicitly account for the micro-macrostructural interaction, albeit at a significantly higher computational cost. The higher-order theory for functionally graded materials (HOTFGM) developed by Aboudi et al. is representative of the coupled approach. However, despite its demonstrated utility in applications where micro-macrostructural coupling effects are important, the theory's full potential is yet to be realized because the original formulation of HOTFGM is computationally intensive. This, in turn, limits the size of problems that can be solved due to the large number of equations required to mimic realistic material microstructures. Therefore, a basis for an efficient reformulation of HOTFGM, referred to as user-friendly formulation, is developed herein, and subsequently employed in the construction of the efficient reformulation using the local/global conductivity matrix approach. In order to extend HOTFGM's range of applicability, spatially variable thermal conductivity capability at the local level is incorporated into the efficient reformulation. Analytical solutions to validate both the user-friendly and efficient reformulations am also developed. Volume discretization sensitivity and validation studies, as well as a practical application of the developed efficient reformulation are subsequently carried out. The presented results illustrate the accuracy and implementability of both the user-friendly formulation and the efficient reformulation of HOTFGM.
2017-01-01
Forests are experiencing significant changes; studying geographic patterns in forests is critical in understanding the impact of forest dynamics to biodiversity, soil erosion, water chemistry and climate. Few studies have examined forest geographic pattern changes other than fragmentation; however, other spatial processes of forest dynamics are of equal importance. Here, we study forest attrition, the complete removal of forest patches, that can result in complete habitat loss, severe decline of population sizes and species richness, and shifts of local and regional environmental conditions. We aim to develop a simple yet insightful proximity-based spatial indicator capturing forest attrition that is independent of spatial scale and boundaries with worldwide application potential. Using this proximity indicator, we evaluate forest attrition across ecoregions, land ownership and urbanization stratifications across continental United States of America. Nationally, the total forest cover loss was approximately 90,400 km2, roughly the size of the state of Maine, constituting a decline of 2.96%. Examining the spatial arrangement of this change the average FAD was 3674m in 1992 and increased by 514m or 14.0% in 2001. Simulations of forest cover loss indicate only a 10m FAD increase suggesting that the observed FAD increase was more than an order of magnitude higher than expected. Furthermore, forest attrition is considerably higher in the western United States, in rural areas and in public lands. Our mathematical model (R2 = 0.93) supports estimation of attrition for a given forest cover. The FAD metric quantifies forest attrition across spatial scales and geographic boundaries and assesses unambiguously changes over time. The metric is applicable to any landscape and offers a new complementary insight on forest landscape patterns from local to global scales, improving future exploration of drivers and repercussions of forest cover changes and supporting more informative management of forest carbon, changing climate and species biodiversity. PMID:28225787
NASA Astrophysics Data System (ADS)
Adams, P. J.; Marks, M.
2015-12-01
The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant differences are also evident with respect to model-measurement comparisons, and will be discussed.
Yang, Sheng; Mountrakis, Giorgos
2017-01-01
Forests are experiencing significant changes; studying geographic patterns in forests is critical in understanding the impact of forest dynamics to biodiversity, soil erosion, water chemistry and climate. Few studies have examined forest geographic pattern changes other than fragmentation; however, other spatial processes of forest dynamics are of equal importance. Here, we study forest attrition, the complete removal of forest patches, that can result in complete habitat loss, severe decline of population sizes and species richness, and shifts of local and regional environmental conditions. We aim to develop a simple yet insightful proximity-based spatial indicator capturing forest attrition that is independent of spatial scale and boundaries with worldwide application potential. Using this proximity indicator, we evaluate forest attrition across ecoregions, land ownership and urbanization stratifications across continental United States of America. Nationally, the total forest cover loss was approximately 90,400 km2, roughly the size of the state of Maine, constituting a decline of 2.96%. Examining the spatial arrangement of this change the average FAD was 3674m in 1992 and increased by 514m or 14.0% in 2001. Simulations of forest cover loss indicate only a 10m FAD increase suggesting that the observed FAD increase was more than an order of magnitude higher than expected. Furthermore, forest attrition is considerably higher in the western United States, in rural areas and in public lands. Our mathematical model (R2 = 0.93) supports estimation of attrition for a given forest cover. The FAD metric quantifies forest attrition across spatial scales and geographic boundaries and assesses unambiguously changes over time. The metric is applicable to any landscape and offers a new complementary insight on forest landscape patterns from local to global scales, improving future exploration of drivers and repercussions of forest cover changes and supporting more informative management of forest carbon, changing climate and species biodiversity.
NASA Astrophysics Data System (ADS)
Hoang Thi Thu, Duyen; Razavi, Bahar S.
2016-04-01
Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology & Biochemistry 67, 192-211.
How far do schools of roving herbivores rove? A case study using Scarus rivulatus
NASA Astrophysics Data System (ADS)
Welsh, J. Q.; Bellwood, D. R.
2012-12-01
Herbivorous reef fish play an important role in shaping ecosystem processes on coral reefs. Often found in schools, Scarus rivulatus, is an abundant herbivorous species on the Great Barrier Reef (GBR), Australia, especially on inshore reefs. Recent evidence has highlighted the limited spatial movements of some herbivorous fishes. However, individuals in schools are thought to be much more mobile. The aim of this study, therefore, was to evaluate the spatial range of schooling S. rivulatus to measure the spatial scale over which they exert their functional role. Furthermore, we assess the influence of the schooling behaviour on their feeding rates and thus their ecological impact. The diurnal movements of S. rivulatus were monitored using acoustic transmitters and a passive acoustic array for up to 7 months in Pioneer Bay, Orpheus Island, GBR. In addition, behavioural observations recorded school size-frequency distributions and feeding rates of S. rivulatus inside and outside foraging schools. Despite schooling, all S. rivulatus were site attached. On average, the maximum potential home range of individuals was 24,440 m2 and ranges overlapped extensively in individuals captured from the same school. School size was highly variable, with a mean school size of 5.7 individuals. Schooling had a significant impact on the functional role of individuals, with feeding rates in schools being two times higher for S. rivulatus and over three times higher for other scarid species. Our results suggest that, despite schooling, individual S. rivulatus only rove over a limited area of reef (occupying a linear stretch of reef, measuring only approximately 250 m for individuals and 220 m for entire schools). Each individual may therefore have little impact on the spatial resilience of coral reefs.
Tur, Carmen; Wheeler-Kingshott, Claudia AM; Altmann, Daniel R; Miller, David H; Thompson, Alan J; Ciccarelli, Olga
2014-01-01
We characterized metabolic changes along the cortico-spinal tract (CST) in multiple sclerosis (MS) patients using a novel application of chemical shift imaging (CSI) and considering the spatial variation of metabolite levels. Thirteen relapsing-remitting (RR) and 13 primary-progressive (PP) MS patients and 16 controls underwent 1H-MR CSI, which was applied to coronal-oblique scans to sample the entire CST. The concentrations of the main metabolites, i.e., N-acetyl-aspartate, myo-Inositol (Ins), choline containing compounds (Cho) and creatine and phosphocreatine (Cr), were calculated within voxels placed in regions where the CST is located, from cerebral peduncle to corona radiata. Differences in metabolite concentrations between groups and associations between metabolite concentrations and disability were investigated, allowing for the spatial variability of metabolite concentrations in the statistical model. RRMS patients showed higher CST Cho concentration than controls, and higher CST Ins concentration than PPMS, suggesting greater inflammation and glial proliferation in the RR than in the PP course. In RRMS, a significant, albeit modest, association between greater Ins concentration and greater disability suggested that gliosis may be relevant to disability. In PPMS, lower CST Cho and Cr concentrations correlated with greater disability, suggesting that in the progressive stage of the disease, inflammation declines and energy metabolism reduces. Attention to the spatial variation of metabolite concentrations made it possible to detect in patients a greater increase in Cr concentration towards the superior voxels as compared to controls and a stronger association between Cho and disability, suggesting that this step improves our ability to identify clinically relevant metabolic changes. PMID:23281189
Lando, Asiyanthi Tabran; Nakayama, Hirofumi; Shimaoka, Takayuki
2017-01-01
Methane from landfills contributes to global warming and can pose an explosion hazard. To minimize these effects emissions must be monitored. This study proposed application of portable gas detector (PGD) in point and scanning measurements to estimate spatial distribution of methane emissions in landfills. The aims of this study were to discover the advantages and disadvantages of point and scanning methods in measuring methane concentrations, discover spatial distribution of methane emissions, cognize the correlation between ambient methane concentration and methane flux, and estimate methane flux and emissions in landfills. This study was carried out in Tamangapa landfill, Makassar city-Indonesia. Measurement areas were divided into basic and expanded area. In the point method, PGD was held one meter above the landfill surface, whereas scanning method used a PGD with a data logger mounted on a wire drawn between two poles. Point method was efficient in time, only needed one person and eight minutes in measuring 400m 2 areas, whereas scanning method could capture a lot of hot spots location and needed 20min. The results from basic area showed that ambient methane concentration and flux had a significant (p<0.01) positive correlation with R 2 =0.7109 and y=0.1544 x. This correlation equation was used to describe spatial distribution of methane emissions in the expanded area by using Kriging method. The average of estimated flux from scanning method was 71.2gm -2 d -1 higher than 38.3gm -2 d -1 from point method. Further, scanning method could capture the lower and higher value, which could be useful to evaluate and estimate the possible effects of the uncontrolled emissions in landfill. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kong, Tae Hoon; Park, Yoon Ah; Bong, Jeong Pyo; Park, Sang Yoo
2017-07-01
Spatial hearing refers to the ability to understand speech and identify sounds in various environments. We assessed the validity of the Korean version of the Spatial Hearing Questionnaire (K-SHQ). We performed forward translation of the original English SHQ to Korean and backward translation from the Korean to English. Forty-eight patients who were able to read and understand Korean and received a score of 24 or higher on the Mini-Mental Status Examination were included in the study. Patients underwent pure tone audiometry (PTA) using a standard protocol and completed the K-SHQ. Internal consistency was evaluated using Cronbach's alpha, and factor analysis was performed to prove reliability. Construct validity was tested by comparing K-SHQ scores from patients with normal hearing to those with hearing impairment. Scores were compared between subjects with unilateral or bilateral hearing loss and between symmetrical and asymmetrical hearing impairment. Cronbach's alpha showed good internal consistency (0.982). Two factors were identified by factor analysis: There was a significant difference in K-SHQ scores for patients with normal hearing compared to those with hearing impairment. Patients with asymmetric hearing impairment had higher K-SHQ scores than those with symmetric hearing impairment. This is related to a lower threshold of PTA in the better ear of subjects. The hearing ability of the better ear is correlated with K-SHQ score. The K-SHQ is a reliable and valid tool with which to assess spatial hearing in patients who speak and read Korean. K-SHQ score reflects the severity and symmetry of hearing impairment. © Copyright: Yonsei University College of Medicine 2017
Thorvaldsson, Valgeir; Skoog, Ingmar; Johansson, Boo
2017-03-01
Terminal decline (TD) refers to acceleration in within-person cognitive decline prior to death. The cognitive reserve hypothesis postulates that individuals with higher IQ are able to better tolerate age-related increase in brain pathologies. On average, they will exhibit a later onset of TD, but once they start to decline, their trajectory is steeper relative to those with lower IQ. We tested these predictions using data from initially nondemented individuals (n = 179) in the H70-study repeatedly measured at ages 70, 75, 79, 81, 85, 88, 90, 92, 95, 97, 99, and 100, or until death, on cognitive tests of perceptual-and-motor-speed and spatial and verbal ability. We quantified IQ using the Raven's Coloured Progressive Matrices (RCPM) test administrated at age 70. We fitted random change point TD models to the data, within a Bayesian framework, conditioned on IQ, age of death, education, and sex. In line with predictions, we found that 1 additional standard deviation on the IQ scale was associated with a delay in onset of TD by 1.87 (95% highest density interval [HDI; 0.20, 4.08]) years on speed, 1.96 (95% HDI [0.15, 3.54]) years on verbal ability, but only 0.88 (95% HDI [-0.93, 3.49]) year on spatial ability. Higher IQ was associated with steeper rate of decline within the TD phase on measures of speed and verbal ability, whereas results on spatial ability were nonconclusive. Our findings provide partial support for the cognitive reserve hypothesis and demonstrate that IQ can be a significant moderator of cognitive change trajectories in old age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Disturbance Is an Important Driver of Clonal Richness in Tropical Seagrasses
McMahon, Kathryn M.; Evans, Richard D.; van Dijk, Kor-jent; Hernawan, Udhi; Kendrick, Gary A.; Lavery, Paul S.; Lowe, Ryan; Puotinen, Marji; Waycott, Michelle
2017-01-01
Clonality is common in many aquatic plant species, including seagrasses, where populations are maintained through a combination of asexual and sexual reproduction. One common measure used to describe the clonal structure of populations is clonal richness. Clonal richness is strongly dependent on the biological characteristics of the species, and how these interact with the environment but can also reflect evolutionary scale processes especially at the edge of species ranges. However, little is known about the spatial patterns and drivers of clonal richness in tropical seagrasses. This study assessed the spatial patterns of clonal richness in meadows of three tropical seagrass species, Thalassia hemprichii, Halodule uninervis, and Halophila ovalis, spanning a range of life-history strategies and spatial scales (2.5–4,711 km) in Indonesia and NW Australia. We further investigated the drivers of clonal richness using general additive mixed models for two of the species, H. uninervis and H. ovalis, over 8° latitude. No significant patterns were observed in clonal richness with latitude, yet disturbance combined with sea surface temperature strongly predicted spatial patterns of clonal richness. Sites with a high probability of cyclone disturbance had low clonal richness, whereas an intermediate probability of cyclone disturbance and the presence of dugong grazing combined with higher sea surface temperatures resulted in higher levels of clonal richness. We propose potential mechanisms for these patterns related to the recruitment and mortality rates of individuals as well as reproductive effort. Under a changing climate, increased severity of tropical cyclones and the decline in populations of mega-grazers have the potential to reduce clonal richness leading to less genetically diverse populations. PMID:29259609
NASA Astrophysics Data System (ADS)
Scott, B. E.; Webb, A.; Palmer, M. R.; Embling, C. B.; Sharples, J.
2013-10-01
As we begin to manage our oceans in much more spatial detail we must understand a great deal more about oceanographic habitat preferences of marine mobile top predators. In this unique field study we test a hypothesis on the mechanisms defining mobile predator foraging habitat characteristics by comparing temporally and spatially detailed bio-physical oceanographic data from contrasting topographical locations. We contrast the foraging locations of two very different seabird species, gannets and storm petrels, by repeatedly sampling a bank and a nearby flat area over daily tidal cycles during spring and neap tides. The results suggest that storm petrels are linked to foraging in specific locations where internal waves are produced, which is mainly on banks. These locations can also include the presence of high biomass of chlorophyll. In contrast, the location where more gannets are foraging is significantly influenced by temporal variables with higher densities of foraging birds much more likely during the neap tide than times of spring tide. The foraging times of both species was influenced by differences between the vertical layers of the water column above and below the thermocline; via either vertical shear of horizontal currents or absolute differences in speed between layers. Higher densities of foraging gannets were significantly more likely to be found at ebb tides in both bank and flat regions however over the bank, the density of foraging gannets was higher when the differences in speed between the layers were at a maximum. Both gannets and storm petrels appear to be more likely to forage when wind direction is opposed to tidal direction. This detailed understanding links foraging behaviour to predictable spatial and temporal bio-physical vertical characteristics and thus can be immediately used to explain variance and increase certainty in past abundance and distributional surveys. These results also illuminate the types of variables that should be considered when assessing potential changes to the distribution and characteristics of habitats from increased anthropogenic disturbances such as large scale offshore wind, wave and tidal renewable deployments.
Spatiotemporal study of elderly suicide in Korea by age cohort.
Joo, Y
2017-01-01
This study analyzed the spatiotemporal pattern and spatial diffusion of elderly suicide by age cohort, in Korea. The research investigated the elderly suicide rates of the 232 municipal units in South Korea between 2001 and 2011. The Gi* score, which is a spatially weighted indicator of area attributes, was used to identify hot spots and the spatiotemporal pattern of elderly suicide in the nation during the last 10 years. The spatial Markov matrix and spatial dynamic panel data model were employed to identify and estimate the diffusion effect. The suicide rate among elderly individuals 75 years and older was substantially higher than the rate for those between 65 and 74 years of age; however, the spatial patterns of the suicide clusters were similar between the two groups. From 2001 to 2011, the spatial distribution of elderly suicide hot spots differed each year. For both age cohorts, elderly suicide hot spots developed around the north area of South Korea in 2001 and moved to the mid-east area and the mid-western coastal area over 10 years. The spatial Markov matrix indicates that the change in the suicide rate of one area was affected by the suicide rates of neighbouring areas from the previous year, which suggests that suicide increase in one area inflates a neighbouring area's suicide rate over time. Using a spatial dynamic panel data model, elderly suicide diffusion effects were found to be statistically significant for both age cohorts even after economic and demographic indicators and a time variable are included. For individuals 75 years and older, the diffusion effect appeared to be larger. This study demonstrates that elderly suicide can spread spatially over time in both age cohorts. Thus, it is necessary to design a place-based and age-differentiated intervention policy that precisely considers the spatial diffusion of elderly suicide. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
LaDage, Lara D.; Roth, Timothy C.; Downs, Cynthia J.; Sinervo, Barry; Pravosudov, Vladimir V.
2017-01-01
Variation in an animal's spatial environment can induce variation in the hippocampus, an area of the brain involved in spatial cognitive processing. Specifically, increased spatial area use is correlated with increased hippocampal attributes, such as volume and neurogenesis. In the side-blotched lizard (Uta stansburiana), males demonstrate alternative reproductive tactics and are either territorial—defending large, clearly defined spatial boundaries—or non-territorial—traversing home ranges that are smaller than the territorial males' territories. Our previous work demonstrated cortical volume (reptilian hippocampal homolog) correlates with these spatial niches. We found that territorial holders have larger medial cortices than non-territory holders, yet these differences in the neural architecture demonstrated some degree of plasticity as well. Although we have demonstrated a link among territoriality, spatial use, and brain plasticity, the mechanisms that underlie this relationship are unclear. Previous studies found that higher testosterone levels can induce increased use of the spatial area and can cause an upregulation in hippocampal attributes. Thus, testosterone may be the mechanistic link between spatial area use and the brain. What remains unclear, however, is if testosterone can affect the cortices independent of spatial experiences and whether testosterone differentially interacts with territorial status to produce the resultant cortical phenotype. In this study, we compared neurogenesis as measured by the total number of doublecortin-positive cells and cortical volume between territorial and non-territorial males supplemented with testosterone. We found no significant differences in the number of doublecortin-positive cells or cortical volume among control territorial, control non-territorial, and testosterone-supplemented non-territorial males, while testosterone-supplemented territorial males had smaller medial cortices containing fewer doublecortin-positive cells. These results demonstrate that testosterone can modulate medial cortical attributes outside of differential spatial processing experiences but that territorial males appear to be more sensitive to alterations in testosterone levels compared with non-territorial males. PMID:28298883
Casey, R; Chaix, B; Weber, C; Schweitzer, B; Charreire, H; Salze, P; Badariotti, D; Banos, A; Oppert, J-M; Simon, C
2012-07-01
Some characteristics of the built environment have been associated with obesity in youth. Our aim was to determine whether individual and environmental socio-economic characteristics modulate the relation between youth overweight and spatial accessibility to physical activity (PA) facilities and to food outlets. Cross-sectional study. 3293 students, aged 12 ± 0.6 years, randomly selected from eastern France middle schools. Using geographical information systems (GIS), spatial accessibility to PA facilities (urban and nature) was assessed using the distance to PA facilities at the municipality level; spatial accessibility to food outlets (general food outlets, bakeries and fast-food outlets) was calculated at individual level using the student home address and the food outlets addresses. Relations of weight status with spatial accessibility to PA facilities and to food outlets were analysed using mixed logistic models, testing potential direct and interaction effects of individual and environmental socio-economic characteristics. Individual socio-economic status modulated the relation between spatial accessibility to PA facilities and to general food outlets and overweight. The likelihood of being overweight was higher when spatial accessibility to urban PA facilities and to general food outlets was low, but in children of blue-collar-workers only. The odds ratio (OR) (95% confidence interval) for being overweight of blue-collar-workers children compared with non-blue-collar-workers children was 1.76 (1.25-2.49) when spatial accessibility to urban PA facilities was low. This OR was 1.86 (1.20-2.86) when spatial accessibility to general food outlets was low. There was no significant relationship of overweight with either nature PA facilities or other food outlets (bakeries and fast-food outlets). These results indicate that disparities in spatial accessibility to PA facilities and to general food outlets may amplify the risk of overweight in socio-economically disadvantaged youth. These data should be relevant for influencing health policies and urban planning at both a national and local level.
Gavish, Yoni; Ziv, Yaron
2016-01-01
Understanding the main processes that affect community similarity have been the focus of much ecological research. However, the relative effects of environmental and spatial aspects in structuring ecological communities is still unresolved and is probably scale-dependent. Here, we examine the effect of habitat identity and spatial distance on fine-grained community similarity within a biogeographic transition zone. We compared four hypotheses: i) habitat identity alone, ii) spatial proximity alone, iii) non-interactive effects of both habitat identity and spatial proximity, and iv) interactive effect of habitat identity and spatial proximity. We explored these hypotheses for spiders in three fragmented landscapes located along the sharp climatic gradient of Southern Judea Lowlands (SJL), Israel. We sampled 14,854 spiders (from 199 species or morphospecies) in 644 samples, taken in 35 patches and stratified to nine different habitats. We calculated the Bray-Curtis similarity between all samples-pairs. We divided the pairwise values to four functional distance categories (same patch, different patches from the same landscape, adjacent landscapes and distant landscapes) and two habitat categories (same or different habitats) and compared them using non-parametric MANOVA. A significant interaction between habitat identity and spatial distance was found, such that the difference in mean similarity between same-habitat pairs and different-habitat pairs decreases with spatial distance. Additionally, community similarity decayed with spatial distance. Furthermore, at all distances, same-habitat pairs had higher similarity than different-habitats pairs. Our results support the fourth hypothesis of interactive effect of habitat identity and spatial proximity. We suggest that the environmental complexity of habitats or increased habitat specificity of species near the edge of their distribution range may explain this pattern. Thus, in transitions zones care should be taken when using habitats as surrogate of community composition in conservation planning since similar habitats in different locations are more likely to support different communities.
Elbroch, L Mark; Lendrum, Patrick E; Quigley, Howard; Caragiulo, Anthony
2016-03-01
There are several alternative hypotheses about the effects of territoriality, kinship and prey availability on individual carnivore distributions within populations. The first is the land-tenure hypothesis, which predicts that carnivores regulate their density through territoriality and temporal avoidance. The second is the kinship hypothesis, which predicts related individuals will be clumped within populations, and the third is the resource dispersion hypothesis, which suggests that resource richness may explain variable sociality, spatial overlap or temporary aggregations of conspecifics. Research on the socio-spatial organization of animals is essential in understanding territoriality, intra- and interspecific competition, and contact rates that influence diverse ecology, including disease transmission between conspecifics and courtship behaviours. We explored these hypotheses with data collected on a solitary carnivore, the cougar (Puma concolor), from 2005 to 2012 in the Southern Yellowstone Ecosystem, Wyoming, USA. We employed 27 annual home ranges for 13 cougars to test whether home range overlap was better explained by land tenure, kinship, resource dispersion or some combination of the three. We found support for both the land tenure and resource dispersion hypotheses, but not for kinship. Cougar sex was the primary driver explaining variation in home range overlap. Males overlapped significantly with females, whereas the remaining dyads (F-F, M-M) overlapped significantly less. In support for the resource dispersion hypothesis, hunting opportunity (the probability of a cougar killing prey in a given location) was often higher in overlapping than in non-overlapping portions of cougar home ranges. In particular, winter hunt opportunity rather than summer hunt opportunity was higher in overlapping portions of female-female and male-female home ranges. Our results may indicate that solitary carnivores are more tolerant of sharing key resources with unrelated conspecifics than previously believed, or at least during periods of high resource availability. Further, our results suggest that the resource dispersion hypothesis, which is typically applied to social species, is applicable in describing the spatial organization of solitary carnivores. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
2011-01-01
Background Although there are inequalities in child health and survival in the Democratic Republic of Congo (DRC), the influence of distal determinants such as geographic location on children's nutritional status is still unclear. We investigate the impact of geographic location on child nutritional status by mapping the residual net effect of malnutrition while accounting for important risk factors. Methods We examine spatial variation in under-five malnutrition with flexible geo-additive semi-parametric mixed model while simultaneously controlling for spatial dependence and possibly nonlinear effects of covariates within a simultaneous, coherent regression framework based on Markov Chain Monte Carlo techniques. Individual data records were constructed for children. Each record represents a child and consists of nutritional status information and a list of covariates. For the 8,992 children born within the last five years before the survey, 3,663 children have information on anthropometric measures. Our novel empirical approach is able to flexibly determine to what extent the substantial spatial pattern of malnutrition is driven by detectable factors such as socioeconomic factors and can be attributable to unmeasured factors such as conflicts, political, environmental and cultural factors. Results Although childhood malnutrition was more pronounced in all provinces of the DRC, after accounting for the location's effects, geographic differences were significant: malnutrition was significantly higher in rural areas compared to urban centres and this difference persisted after multiple adjustments. The findings suggest that models of nutritional intervention must be carefully specified with regard to residential location. Conclusion Childhood malnutrition is spatially structured and rates remain very high in the provinces that rely on the mining industry and comparable to the level seen in Eastern provinces under conflicts. Even in provinces such as Bas-Congo that produce foods, childhood malnutrition is higher probably because of the economic decision to sell more than the population consumes. Improving maternal and child nutritional status is a prerequisite for achieving MDG 4, to reduce child mortality rate in the DRC. PMID:21518428
A Neurobehavioral Model of Flexible Spatial Language Behaviors
ERIC Educational Resources Information Center
Lipinski, John; Schneegans, Sebastian; Sandamirskaya, Yulia; Spencer, John P.; Schoner, Gregor
2012-01-01
We propose a neural dynamic model that specifies how low-level visual processes can be integrated with higher level cognition to achieve flexible spatial language behaviors. This model uses real-word visual input that is linked to relational spatial descriptions through a neural mechanism for reference frame transformations. We demonstrate that…
Wang, Wei-qun; Zhang, Jin-song; Zhao, Xiao-jin
2011-10-01
To explore the postoperative visual acuity results of wavefront-guided LASIK with iris recognition for myopia or myopic astigmatism and the changes of higher-order aberrations and contrast sensitivity function (CSF). Series of prospective case studies, 158 eyes (85 cases) of myopia or myopic astigmatism were divided into two groups: one group underwent wavefront-guided LASIK with iris recognition (iris recognition group); another group underwent wavefront-guided LASIK treatment without iris recognition through the limbus maring point (non-iris recognition group). To comparative analyze the postoperative visual acuity, residual refraction, the RMS of higher-order aberrations and CSF of two groups. There was no statistical significance difference between two groups of the average uncorrected visual acuity (t = 0.039, 0.058, 0.898; P = 0.844, 0.810, 0.343), best corrected visual acuity (t = 0.320, 0.440, 1.515; P = 0.572, 0.507, 0.218), and residual refraction [spherical equivalent (t = 0.027, 0.215, 0.238; P = 0.869, 0.643, 0.626), spherical (t = 0.145, 0.117, 0.038; P = 0.704, 0.732, 0.845) and cylinder (t = 1.676, 1.936, 0.334; P = 0.195, 0.164, 0.563)] at postoperative 10 days, 1 month and 3 month. The security index of iris recognition group at postoperative 3 month was 1.06 and non-iris recognition group was 1.03; the efficacy index of iris recognition group is 1.01 and non-iris recognition group was 1.00. Postoperative 3 month iris recognition group 93.83% eyes and non-iris recognition group of 90.91% eyes spherical equivalent within ± 0.50 D (χ(2) = 0.479, P = 0.489), iris recognition group of 98.77% eyes and non-iris recognition group of 97.40% eyes spherical equivalent within ± 1.00 D (Fisher test, P = 0.613). There was no significance difference between the two groups of security, efficacy and predictability. Non-iris recognition group postoperative 1 month and postoperative 3 months 3-order order aberrations root mean square value (RMS) higher than the iris recognition group increased (t = 3.414, -2.870; P = 0.027, 0.045), in particular of coma; the general higher-order aberrations (t = 0.386, 1.132; P = 0.719, 0.321), 4-order aberrations (t = 0.808, 2.720; P = 0.464, 0.063), and 5-order aberrations (t = 0.148, -1.717; P = 0.890, 0.161) show no statistically significant difference. Three months after surgery, two groups have recovered at all spatial frequencies of CSF, iris recognition group at 3.0 c/d (t = 3.209, P = 0.002) and 6.0 c/d (t = 2.997, P = 0.004) spatial frequencies of CSF under mesopic condition was better than non-iris recognition group, glare contrast sensitivity function (GCSF) for 3.0 c/d (t = 3.423, P = 0.001) and 6.0 c/d (t = 6.986, P = 0.000) spatial frequencies under mesopic condition and 1.5 c/d (t = 9.839, P = 0.000) and 3.0 c/d (t = 7.367, P = 0.000) spatial frequencies under photopic condition in iris recognition group were better than non-iris recognition group, there were no significant difference between two groups at the other spatial frequencies. Wavefront-guided LASIK with or without iris recognition both acquired better postoperative visual acuity, but in comparison with without iris recognition, wavefront-guided LASIK with iris recognition is efficient to reduce coma and enhance contrast sensitivity of postoperative.
Banta-Green, Caleb J; Field, Jennifer A; Chiaia, Aurea C; Sudakin, Daniel L; Power, Laura; de Montigny, Luc
2009-11-01
To determine the utility of community-wide drug testing with wastewater samples as a population measure of community drug use and to test the hypothesis that the association with urbanicity would vary for three different stimulant drugs of abuse. Single-day samples were obtained from a convenience sample of 96 municipalities representing 65% of the population of the State of Oregon. Chemical analysis of 24-hour composite influent samples for benzoylecgonine (BZE, a cocaine metabolite), methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). The distribution of community index drug loads accounting for total wastewater flow (i.e. dilution) and population are reported. The distribution of wastewater-derived drug index loads was found to correspond with expected epidemiological drug patterns. Index loads of BZE were significantly higher in urban areas and below detection in many rural areas. Conversely, methamphetamine was present in all municipalities, with no significant differences in index loads by urbanicity. MDMA was at quantifiable levels in fewer than half the communities, with a significant trend towards higher index loads in more urban areas. CONCLUSION; This demonstration provides the first evidence of the utility of wastewater-derived community drug loads for spatial analyses. Such data have the potential to improve dramatically the measurement of the true level and distribution of a range of drugs. Drug index load data provide information for all people in a community and are potentially applicable to a much larger proportion of the total population than existing measures.
Dispersion patterns and sampling plans for Diaphorina citri (Hemiptera: Psyllidae) in citrus.
Sétamou, Mamoudou; Flores, Daniel; French, J Victor; Hall, David G
2008-08-01
The abundance and spatial dispersion of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) were studied in 34 grapefruit (Citrus paradisi Macfad.) and six sweet orange [Citrus sinensis (L.) Osbeck] orchards from March to August 2006 when the pest is more abundant in southern Texas. Although flush shoot infestation levels did not vary with host plant species, densities of D. citri eggs, nymphs, and adults were significantly higher on sweet orange than on grapefruit. D. citri immatures also were found in significantly higher numbers in the southeastern quadrant of trees than other parts of the canopy. The spatial distribution of D. citri nymphs and adults was analyzed using Iowa's patchiness regression and Taylor's power law. Taylor's power law fitted the data better than Iowa's model. Based on both regression models, the field dispersion patterns of D. citri nymphs and adults were aggregated among flush shoots in individual trees as indicated by the regression slopes that were significantly >1. For the average density of each life stage obtained during our surveys, the minimum number of flush shoots per tree needed to estimate D. citri densities varied from eight for eggs to four flush shoots for adults. Projections indicated that a sampling plan consisting of 10 trees and eight flush shoots per tree would provide density estimates of the three developmental stages of D. citri acceptable enough for population studies and management decisions. A presence-absence sampling plan with a fixed precision level was developed and can be used to provide a quick estimation of D. citri populations in citrus orchards.
Oberem, Josefa; Koch, Iring; Fels, Janina
2017-06-01
Using a binaural-listening paradigm, age-related differences in the ability to intentionally switch auditory selective attention between two speakers, defined by their spatial location, were examined. Therefore 40 normal-hearing participants (20 young, Ø 24.8years; 20 older Ø 67.8years) were tested. The spatial reproduction of stimuli was provided by headphones using head-related-transfer-functions of an artificial head. Spoken number words of two speakers were presented simultaneously to participants from two out of eight locations on the horizontal plane. Guided by a visual cue indicating the spatial location of the target speaker, the participants were asked to categorize the target's number word into smaller vs. greater than five while ignoring the distractor's speech. Results showed significantly higher reaction times and error rates for older participants. The relative influence of the spatial switch of the target-speaker (switch or repetition of speaker's direction in space) was identical across age groups. Congruency effects (stimuli spoken by target and distractor may evoke the same answer or different answers) were increased for older participants and depend on the target's position. Results suggest that the ability to intentionally switch auditory attention to a new cued location was unimpaired whereas it was generally harder for older participants to suppress processing the distractor's speech. Copyright © 2017 Elsevier B.V. All rights reserved.
The Improvement of Spatial-Temporal PM2.5 Resolution in Taiwan by Using Data Assimilation Method
NASA Astrophysics Data System (ADS)
Lin, Yong-Qing; Lin, Yuan-Chien
2017-04-01
Forecasting air pollution concentration, e.g., the concentration of PM2.5, is of great significance to protect human health and the environment. Accurate prediction of PM2.5 concentrations is limited in number and the data quality of air quality monitoring stations. The spatial and temporal variations of PM2.5 concentrations are measured by 76 National Air Quality Monitoring Stations (built by the TW-EPA) in Taiwan. The National Air Quality Monitoring Stations are costly and scarce because of the highly precise instrument and their size. Therefore, many places still out of the range of National Air Quality Monitoring Stations. Recently, there are an enormous number of portable air quality sensors called "AirBox" developed jointly by the Taiwan government and a private company. By virtue of its price and portative, the AirBox can provide higher resolution of space-time PM2.5 measurement. However, the spatiotemporal distribution and data quality are different between AirBox and National Air Quality Monitoring Stations. To integrate the heterogeneous PM2.5 data, the data assimilation method should be performed before further analysis. In this study, we propose a data assimilation method based on Ensemble Kalman Filter (EnKF), which is a variant of classic Kalman Filter, can be used to combine additional heterogeneous data from different source while modeling to improve the estimation of spatial-temporal PM2.5 concentration. The assimilation procedure uses the advantages of the two kinds of heterogeneous data and merges them to produce the final estimation. The results have shown that by combining AirBox PM2.5 data as additional information in our model based EnKF can bring the better estimation of spatial-temporal PM2.5 concentration and improve the it's space-time resolution. Under the approach proposed in this study, higher spatial-temporal resoultion could provide a very useful information for a better spatial-temporal data analysis and further environmental management, such as air pollution source localization and micro-scale air pollution analysis. Keywords: PM2.5, Data Assimilation, Ensemble Kalman Filter, Air Quality
Molecular View of CO2 Capture by Polyethylenimine: Role of Structural and Dynamical Heterogeneity.
Sharma, Pragati; Chakrabarty, Suman; Roy, Sudip; Kumar, Rajnish
2018-05-01
The molecular thermodynamics and kinetics of CO 2 sorption in Polyethylenimine (PEI) melt have been investigated systematically using GCMC and MD simulations. We elucidate presence of significant structural and dynamic heterogeneity associated with the overall absorption process. CO 2 adsorption in a PEI membrane shows a distinct two-stage process of a rapid CO 2 adsorption at the interfaces (hundreds of picoseconds) followed by a significantly slower diffusion limited release toward the interior bulk regions of PEI melt (hundreds of nanoseconds to microseconds). The spatial heterogeneity of local structural features of the PEI chains lead to significantly heterogeneous absorption characterized by clustering and trapping of CO 2 molecules that then lead to subdiffusive motion of CO 2 . In the complex interplay of interaction and entropy, the latter emerges out to be the major determining factor with significantly higher solubility of CO 2 near the interfaces despite having lower density of binding amine groups. Regions having higher free-volume (entropically favorable) viz. interfaces, pores and loops demonstrate higher CO 2 capture ability. Various local structural features of PEI conformations, for example, inter- and intrachain loops, pores of different radii, and di- or tricoordinated pores are explored for their effects on the varying CO 2 adsorption abilities.
Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic
NASA Astrophysics Data System (ADS)
Aarnes, Ole Johan; Reistad, Magnar; Breivik, Øyvind; Bitner-Gregersen, Elzbieta; Ingolf Eide, Lars; Gramstad, Odin; Magnusson, Anne Karin; Natvig, Bent; Vanem, Erik
2017-04-01
Wind field ensembles from six CMIP5 models force wave model time slices of the northeast Atlantic over the last three decades of the 20th and the 21st centuries. The future wave climate is investigated by considering the RCP4.5 and RCP8.5 emission scenarios. The CMIP5 model selection is based on their ability to reconstruct the present (1971-2000) extratropical cyclone activity, but increased spatial resolution has also been emphasized. In total, the study comprises 35 wave model integrations, each about 30 years long, in total more than 1000 years. Here annual statistics of significant wave height are analyzed, including mean parameters and upper percentiles. There is general agreement among all models considered that the mean significant wave height is expected to decrease by the end of the 21st century. This signal is statistically significant also for higher percentiles, but less evident for annual maxima. The RCP8.5 scenario yields the strongest reduction in wave height. The exception to this is the north western part of the Norwegian Sea and the Barents Sea, where receding ice cover gives longer fetch and higher waves. The upper percentiles are reduced less than the mean wave height, suggesting that the future wave climate has higher variance than the historical period.
A Comparative Study of Spatial Aggregation Methodologies under the BioEarth Framework
NASA Astrophysics Data System (ADS)
Chandrasekharan, B.; Rajagopalan, K.; Malek, K.; Stockle, C. O.; Adam, J. C.; Brady, M.
2014-12-01
The increasing probability of water resource scarcity due to climate change has highlighted the need for adopting an economic focus in modelling water resource uses. Hydro-economic models, developed by integrating economic optimization with biophysical crop models, are driven by the economic value of water, revealing it's most efficient uses and helping policymakers evaluate different water management strategies. One of the challenges in integrating biophysical models with economic models is the difference in the spatial scales in which they operate. Biophysical models that provide crop production functions typically run at smaller scale than economic models, and substantial spatial aggregation is required. However, any aggregation introduces a bias, i.e., a discrepancy between the functional value at the higher spatial scale and the value at the spatial scale of the aggregated units. The objective of this work is to study the sensitivity of net economic benefits in the Yakima River basin (YRB) to different spatial aggregation methods for crop production functions. The spatial aggregation methodologies that we compare involve agro-ecological zones (AEZs) and aggregation levels that reflect water management regimes (e.g. irrigation districts). Aggregation bias can distort the underlying data and result in extreme solutions. In order to avoid this we use an economic optimization model that incorporates the synthetic and historical crop mixes approach (Onal & Chen, 2012). This restricts the solutions between the weighted averages of historical and simulated feasible planting decisions, with the weights associated with crop mixes being treated as endogenous variables. This study is focused on 5 major irrigation districts of the YRB in the Pacific Northwest US. The biophysical modeling framework we use, BioEarth, includes the coupled hydrology and crop growth model, VIC-Cropsyst and an economic optimization model. Preliminary findings indicate that the standard approach of developing AEZs does not perform well when overlaid with irrigation districts. Moreover, net economic benefits were significantly different between the two aggregation methodologies. Therefore, while developing hydro-economic models, significant consideration should be placed on the aggregation methodology.
NASA Astrophysics Data System (ADS)
Low, R.; Boger, R. A.; Mandryk, C. A.
2014-12-01
On-line learning is already revolutionizing higher education, and emerging cloud-based Geographic Information System (GIS) capabilities are poised to revolutionize the acquisition and sharing of spatial knowledge in a variety of fields. In this project, we deployed ESRI's ArcGIS Online in an on-line course environment to provide a place-based quantitative exploration of the impacts of environmental changes specifically related to climate change. As spatial thinking is not necessarily transferrable from one domain to another, we hypothesized that combining spatial literacy and climate change domain knowledge would transform student conceptions and mental models of climate change in measurable ways. To this end, we adapted and employed existing instruments for pre- post testing of general pattern recognition, interpretation, and spatial transformational skills, as well as climate system content knowledge and attitudes. A collaborative on-line course platform offered to students from University of Nebraska, Lincoln and from City College of New York (CUNY) colleges, Brooklyn and Lehman, brought to the discussion distinct urban and rural perspectives, which were the basis of place-based climate, water and food explorations in the course. The course has been offered 3 times in a shared LMS over the past 3 years. Participants in the most recent iteration of the course demonstrated statistically significant improvements in spatial skills, but they did not show the expected statistically significant improvement overall in climate knowledge that we see in other online courses where climate change literacy is the sole focus of the course. Ongoing research by our team shows strong correlation between active peer engagement in online discussions and student learning outcomes. Student-initiated discussions in the GIS-based climate change courses revealed a shift away from discussing the climate change science and a focus on technology and analyzing the spatial products created using GIS. As we improve the effectiveness of this course, we will be developing interventions in the discussion board activities that we hypothesize will increase the effectiveness of climate knowledge construction in future iterations.
Spatial regression analysis of traffic crashes in Seoul.
Rhee, Kyoung-Ah; Kim, Joon-Ki; Lee, Young-ihn; Ulfarsson, Gudmundur F
2016-06-01
Traffic crashes can be spatially correlated events and the analysis of the distribution of traffic crash frequency requires evaluation of parameters that reflect spatial properties and correlation. Typically this spatial aspect of crash data is not used in everyday practice by planning agencies and this contributes to a gap between research and practice. A database of traffic crashes in Seoul, Korea, in 2010 was developed at the traffic analysis zone (TAZ) level with a number of GIS developed spatial variables. Practical spatial models using available software were estimated. The spatial error model was determined to be better than the spatial lag model and an ordinary least squares baseline regression. A geographically weighted regression model provided useful insights about localization of effects. The results found that an increased length of roads with speed limit below 30 km/h and a higher ratio of residents below age of 15 were correlated with lower traffic crash frequency, while a higher ratio of residents who moved to the TAZ, more vehicle-kilometers traveled, and a greater number of access points with speed limit difference between side roads and mainline above 30 km/h all increased the number of traffic crashes. This suggests, for example, that better control or design for merging lower speed roads with higher speed roads is important. A key result is that the length of bus-only center lanes had the largest effect on increasing traffic crashes. This is important as bus-only center lanes with bus stop islands have been increasingly used to improve transit times. Hence the potential negative safety impacts of such systems need to be studied further and mitigated through improved design of pedestrian access to center bus stop islands. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tillman, P. Glynn; Cottrell, Ted E.
2015-01-01
The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States, but little is known concerning its spatiotemporal distribution in agricultural farmscapes. Therefore, spatiotemporal distribution of C. hilaris in farmscapes where cotton fields adjoined peanut was examined weekly. Spatial patterns of C. hilaris counts were analyzed using SADIE (Spatial Analysis by Distance Indices) methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops. For the six peanut-cotton farmscapes studied, the frequency of C. hilaris in cotton (94.8%) was significantly higher than in peanut (5.2%), and nymphs were rarely detected in peanut, indicating that peanut was not a source of C. hilaris into cotton. Significantly, aggregated spatial distributions were detected in cotton. Maps of local clustering indices depicted patches of C. hilaris in cotton, mainly at field edges including the peanut-to-cotton interface. Black cherry (Prunus serotina Ehrh.) and elderberry (Sambucus nigra subsp. canadensis [L.] R. Bolli) grew in habitats adjacent to crops, C. hilaris were captured in pheromone-baited stink bug traps in these habitats, and in most instances, C. hilaris were observed feeding on black cherry and elderberry in these habitats before colonization of cotton. Spatial distribution of C. hilaris in these farmscapes revealed that C. hilaris colonized cotton field edges near these two noncrop hosts. Altogether, these findings suggest that black cherry and elderberry were sources of C. hilaris into cotton. Factors affecting the spatiotemporal dynamics of C. hilaris in peanut-cotton farmscapes are discussed. PMID:26175464
Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi
2016-09-07
Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.
Seixas, R; Nunes, T; Machado, J; Tavares, L; Owen, S P; Bernardo, F; Oliveira, M
Salmonella 1,4,[5],12:i:- is presently considered one of the major serovars responsible for human salmonellosis worldwide. Due to its recent emergence, studies assessing the demographic characterization and spatial epidemiology of salmonellosis 1,4,[5],12:i:- at local- or country-level are lacking. In this study, a analysis was conducted over a 10year period, from 2000 to the first quarter of 2011 at the Portuguese National Laboratory in Portugal mainland, with a total of 215 Salmonella 1,4,[5],12:i:- serotyped isolates obtained from human infections by a passive surveillance system. Data regarding source, year and month of sampling, gender, age, district and municipality of the patients were registered. Descriptive statistical analysis and a spatial scan statistic combined with a geographic information system were employed to characterize the epidemiology and identify spatial clusters. Results showed that most districts have reports of Salmonella 1,4,[5],12:i:-, with a higher number of cases at the Portuguese coastland, including districts like Porto (n=60, 27.9%), Lisboa (n=29, 13.5%) and Aveiro (n=28, 13.0%). An increased incidence was observed in the period from 2004 to 2011 and most infections occurred during May and October. Spatial analysis revealed 4 clusters of higher than expected infection rates. Three were located in the north of Portugal, including two at the coastland (Cluster 1 [RR=3.58, p≤0.001] and 4 [RR=10.42 p≤0.230]), and one at the countryside (Cluster 3 [RR=17.76, p≤0.001]). A larger cluster was detected involving the center and south of Portugal (Cluster 2 [RR=4.85, p≤0.001]). The present study was elaborated with data provided by a passive surveillance system, which may originate an underestimation of disease burden. However, this is the first report describing the incidence and the distribution of areas with higher risk of infection in Portugal, revealing that Salmonella 1,4,[5],12:i:- displayed a significant geographic clustering and these areas should be further evaluated to identify risk factors in order to establish prevention programs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
TROPOMI on the Copernicus Sentinel 5 Precursor: Launched?
NASA Astrophysics Data System (ADS)
Levelt, P.; Veefkind, J. P.; Kleipool, Q.; Ludewig, A.; Aben, I.; De Vries, J.; Loyola, D. G.; Richter, A.; Van Roozendael, M.; Siddans, R.; Tamminen, J.; Wagner, T.; Nett, H.
2016-12-01
The Copernicus Sentinel 5 Precursor (S5P) is the first of the European Sentinels satellites dedicated to monitoring of the atmospheric composition. S5P is planned for launch in the 4thquarter of 2016; hopefully in time for the AGU Fall Meeting! The mission objectives of S5P are to monitor air quality, climate and the ozone layer, in the time period between 2017 and 2023. S5P will fly in a Sun-synchronized polar orbit with a 13:30 hr local equator crossing time. The single payload of the S5P mission is TROPOspheric Monitoring Instrument (TROPOMI), which is developed by The Netherlands in cooperation with the European Space Agency (ESA). TROPOMI is a nadir viewing shortwave spectrometer that measures in the UV-visible wavelength range (270-500 nm), the near infrared (710-770 nm) and the shortwave infrared (2314-2382 nm). TROPOMI will have an unprecedented spatial resolution of 7x7 km2at nadir. The spatial resolution is combined with a wide swath to allow for daily global coverage. The TROPOMI/S5P geophysical (Level 2) operational data products include nitrogen dioxide, carbon monoxide, ozone (total column, tropospheric column & profile), methane, sulfur dioxide, formaldehyde and aerosol and cloud parameters. The main heritage for TROPOMI comes from OMI on EOS Aura and SCIAMACHY on Envisat. Many of the lessons learned in these missions have resulted in design improvements for TROPOMI. One of the most striking features is the high spatial resolution of 7x7 km2at nadir. The high spatial resolution serves two goals: (1) emissions sources can be detected with a higher accuracy and (2) the number of cloud-free ground pixels will increase substantially. The higher spatial resolution is also combined with a significantly higher signal-to-noise ratio per ground pixel, compared to OMI. This will further enhance the capabilities of TROPOMI to detect small emissions sources. The S5P will fly in a so-called loose formation with the U.S. Suomi NPP (National Polar-orbiting Partnership) satellite. The primary objective for this formation flying is to use the cloud clearing capabilities of the VIIRS (Visible Infrared Imager Radiometer Suite). The temporal separation between TROPOMI and VIIRS will be less than 5 minutes. Once this formation has been established, it will enable synergistic data products and scientific research potentials.
Visual sensitivity to spatially sampled modulation in human observers
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Macleod, Donald I. A.
1991-01-01
Thresholds were measured for detecting spatial luminance modulation in regular lattices of visually discrete dots. Thresholds for modulation of a lattice are generally higher than the corresponding threshold for modulation of a continuous field, and the size of the threshold elevation, which depends on the spacing of the lattice elements, can be as large as a one log unit. The largest threshold elevations are seen when the sample spacing is 12 min arc or greater. Theories based on response compression cannot explain the further observation that the threshold elevations due to spatial sampling are also dependent on modulation frequency: the greatest elevations occur with higher modulation frequencies. The idea that this is due to masking of the modulation frequency by the spatial frequencies in the sampling lattice is considered.