Sample records for silanized glass slides

  1. 1-butanethiol vapor sensing based on gold nanoparticle immobilized on glass slide by digital color analysis

    NASA Astrophysics Data System (ADS)

    Shokoufi, Nader; Adeleh, Sara

    2017-12-01

    We demonstrate that gold nanoparticles (GNPs) immobilized on silanized glass act as an optical sensor that is able to quantify 1-butanethiol vapor. GNPs optical properties in the visible region are dominated by the surface plasmon resonance (SPR). The high affinity between 1-butanethiol and GNPs through Au-s bond leads to change in plasmon feature of GNPs that immobilized on silanized glass and causes absorption decrease at 542 nm in SPR spectrum of GNPs. It can be used as an optical sensor for quantitative detection. In this research, the glass slide surface activated by aminopropyltriethoxysilane (APTES). Spherical GNPs immobilized on silanized glass by silanization agent. The sensor is based on the spectrophotometry and digital color analysis (DCA) through RGB. We monitored R value and linear range 50-700 µM (R 2  =  0.97) with 2.05% relative standard deviation and 26.5 µM value was achieved, for the limit of detection. This method represents advantages of metal gold nanoparticles and solid substrate stability in one package, being inexpensive and low time consuming is another advantage of our method that can be conducted in petrochemical, pharmaceutical industries, and for detection of rotten food in food industries.

  2. Facile surface modification of glass with zwitterionic polymers for improving the blood compatibility

    NASA Astrophysics Data System (ADS)

    Zhang, Lingling; Chen, Xiaojuan; Liu, Pingsheng; Wang, Jing; Zhu, Haomiao; Li, Li

    2018-06-01

    A facile procedure to modify glass film with zwitterionic polymers for improving the blood compatibility was introduced. The glass slides were first silanized with 3-methacryloxypropyltrimethoxysilane (MPT) to generate methacrylate groups on the surface. Then, N, N’-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium (DMMSA), a sulfobetaine zwitterionic monomer, was polymerized on the silanized glass substrates by free-radical polymerization in order to graft the zwitterionic polymers onto the substrates. X-ray Photoelectron Spectroscopy (XPS), water contact angle, scanning electron microscope (SEM) and atomic force microscopy (AFM) were utilized to analyze the surface properties of the grafted glass. The blood compatibility of the grafted glass was verified by whole blood contacting and platelet adhesion experiments in vitro. The results showed that the zwitterionic polymers were successfully grafted on the glass surface, and consequently significantly inhibited the platelet adhesion and whole blood cell attachment.

  3. Digital One-Disc-One-Compound Method for High-Throughput Discovery of Prostate Cancer - Targeting Ligands

    DTIC Science & Technology

    2015-10-01

    shown in Fig. 1a, the prepolymer mixture was sandwiched between photo mask and glass slide. Microdiscs were fabricated on the glass substrate through...polymerization of the prepolymer mixture and the acrylated silane under UV exposure. To achieve the more stable microdiscs for peptide synthesis, the...composition of prepolymer mixture was changed to PEG (Polyethylene Glycol)-diacrylate, crosslinker, photo initiator, 2-aminoethylmethacrylate, water

  4. Tailored interphase structure for improved strength and energy absorption of composites

    NASA Astrophysics Data System (ADS)

    Gao, Xiao

    Fiber reinforced polymeric composites are lightweight, high-strength and high impact-resistant materials used widely for various applications. It has been shown that the mechanical performance of composites are dependent on the interphase, a three-dimensional region of nanometer size in the vicinity of the fiber-matrix boundary that possesses properties different from those of either the fiber reinforcement or the matrix resin and governs the load transfer from matrix to fiber. This research conducts a systematic study on glass fiber-epoxy interphase structure by tailoring adhesion between constituents and the creation of textures to control strength and energy absorption through mechanical interlocking between glass fiber and epoxy matrix. Our objective is to establish the foundation for microstructural design and optimization of the composite's structural and impact performance. Two ways of roughening the glass fiber surface have been studied to create the mechanical interlocking between fiber and resin; the first technique involves forming in-situ islands on the glass fiber surface by using silane blends of Glycidoxypropyltrimethoxy silane (GPS) and Tetraethoxy silane (TEOS); the second technique applies a silane coupling agents based sizing with the incorporation of silica nanoparticles (Ludox TMA, 22 nm) onto the fiber surface. The microdroplet test was selected to characterize the influence of adhesion and mechanical interlocking effects on interphase properties of different sizing sized glass fiber reinforced epoxy systems. A suitable data reduction scheme enables the strength and specified energy absorbed due to debonding, dynamic sliding, and quasi-static sliding to be quantified. In order to validate the effect of tailored interphase structure, which is induced by creating mechanical interlocking between fiber and resin, on macroscopic composite properties, composite panels were made from these four different sizing sized glass fibers and tested using the punch shear test. The composite panel made from the hybrid sizing sized glass fiber exhibited improved strength and energy absorption consistent with the trends in micromechanical measurements. Through all failure stages under macromechanical testing, hybrid sizing sized glass fiber/epoxyamine composite panel shows an increase in the strength and total energy absorption by 13% and 26%, respectively, compared to the compatible sizing sized baseline. Both micromechanical and macromechanical tests demonstrate the significant influence of tailoring the interphase structure on improving the impact performance of the composites. The hybrid sizing with the incorporation of nanoparticles, in particular, can greatly improve the impact resistance (i.e. energy absorption) of composites without sacrificing its structural performance (i.e. strength).

  5. Silane Modification of Glass and Silica Surfaces to Obtain Equally Oil-Wet Surfaces in Glass-Covered Silicon Micromodel Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.

    2013-08-05

    The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact anglesmore » were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.« less

  6. Bioactive glass/polymer composite materials with mechanical properties matching those of cortical bone.

    PubMed

    Koleganova, Veronika A; Bernier, Suzanne M; Dixon, S Jeffrey; Rizkalla, Amin S

    2006-06-01

    Stress shielding resulting from mismatch in dynamic mechanical properties contributes to the reduced stability of osseous implants. Our objective was to develop biocompatible composites having mechanical properties similar to those of cortical bone. Polymers of urethane dimethacrylate (UDMA) and 2-hydroxyethyl methacrylate (HEMA, 0-20%) and composites containing bioactive glass particles (70% SiO(2), 25% CaO, and 5% P(2)O(5)), with or without silane treatment were prepared. Young's moduli of composites containing silane-treated glass (16 GPa) were significantly greater than those of composites containing untreated glass (12-13 GPa) or of unfilled polymers (5-6 GPa). Bioactive glass reduced water sorption by the composites and incorporation of silane-treated glass prevented HEMA-induced increases in water sorption. Osteoblast-like cells attached equally well to UDMA polymer and composite containing silane-treated bioactive glass. Thus, silane treatment improved the mechanical properties of bioactive glass composites without compromising biocompatibility. This material has a Young's modulus comparable to that of cortical bone. Therefore, silane-treated bioactive glass composites, when used as implant or cement materials, would reduce stress shielding and improve implant stability.

  7. Coating extracellular matrix proteins on a (3-aminopropyl)triethoxysilane-treated glass substrate for improved cell culture.

    PubMed

    Masuda, Hiro-taka; Ishihara, Seiichiro; Harada, Ichiro; Mizutani, Takeomi; Ishikawa, Masayori; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    We demonstrate that a (3-aminopropyl)triethoxysilane-treated glass surface is superior to an untreated glass surface for coating with extracellular matrix (ECM) proteins when used as a cell culture substrate to observe cell physiology and behavior. We found that MDCK cells cultured on untreated glass coated with ECM removed the coated ECM protein and secreted different ECM proteins. In contrast, the cells did not remove the coated ECM protein when seeded on (3-aminopropyl)triethoxysilane-treated (i.e., silanized) glass coated with ECM. Furthermore, the morphology and motility of cells grown on silanized glass differed from those grown on non-treated glass, even when both types of glass were initially coated with laminin. We also found that cells on silanized glass coated with laminin had higher motility than those on silanized glass coated with fibronectin. Based on our results, we suggest that silanized glass is a more suitable cell culture substrate than conventional non-treated glass when coated by ECM for observations of ECM effects on cell physiology.

  8. Functionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays

    PubMed Central

    Fixe, F.; Dufva, M.; Telleman, P.; Christensen, C. B. V.

    2004-01-01

    A chemical procedure was developed to functionalize poly(methyl methacrylate) (PMMA) substrates. PMMA is reacted with hexamethylene diamine to yield an aminated surface for immobilizing DNA in microarrays. The density of primary NH2 groups was 0.29 nmol/cm2. The availability of these primary amines was confirmed by the immobilization of DNA probes and hybridization with a complementary DNA strand. The hybridization signal and the hybridization efficiency of the chemically aminated PMMA slides were comparable to the hybridization signal and the hybridization efficiency obtained from differently chemically modified PMMA slides, silanized glass, commercial silylated glass and commercial plastic Euray™ slides. Immobilized and hybridized densities of 10 and 0.75 pmol/cm2, respectively, were observed for microarrays on chemically aminated PMMA. The immobilized probes were heat stable since the hybridization performance of microarrays subjected to 20 PCR heat cycles was only reduced by 4%. In conclusion, this new strategy to modify PMMA provides a robust procedure to immobilize DNA, which is a very useful substrate for fabricating single use diagnostics devices with integrated functions, like sample preparation, treatment and detection using microfabrication and microelectronic techniques. PMID:14718554

  9. Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.

    PubMed

    Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan

    2013-10-21

    Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging from -64 to -12 mV at pH's of 10.5 and 3, respectively. The zeta potentials for the PVA/PVAc microspheres on the glass fiber surface and within the silane film significantly decrease and range from -25 to -5 mV. The shapes of the pH-dependent zeta potentials are different in the cases of silane groups over a pH range from 7 to 4. A triple-layer model is used to fit the non-silanized glass surface and the silane film. The value of the surface-site density for Γ(Xglass) and Γ(Xsilane), in which X denotes the Al-O-Si group, differs by a factor of 10(-4), which suggests an effective coupling of the silane film. A soft-layer model is used to fit the silane-PVA/PVAc complex film, which is approximated as four layers. Such a simplification and compensation of the microsphere shape gives an approximation of the relevant widths of the layers as the follows: 1) the layer of the silane groups makes up 10% of the total length (27 nm), 2) the layer of the first PVA shell contributes 30% to the total length (81 nm), 3) the layer of the PVAc core contributes 30% to the total length (81 nm), and finally 4) the layer of the second PVA shell provides 30% of the total length (81 nm). The coverage simulation resulted in a value of 0.4, which corresponds with the assumption of low-order coverage, and is supported by the AFM scans. Correlating the results of the AFM scans, and the zeta potentials sheds some light on the formation mechanism of the silane-PVA/PVAc complex film. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Programmatic Summary: Self-Regulating, Self-Pressurizing Tubules for Integrated Circulatory Systems

    DTIC Science & Technology

    2009-02-01

    Conditions: (i) 3- aminopropyl silane; (ii) 2-furoyl chloride, Et3N, CH2Cl2, 0 C to RT, 24 h; (iii) Compound 2, THF, RT, 24 h.; and (iv) Toluene, reflux... aminopropyl )trimethoxy silane. Next, we treated the amino-terminated slides with a solution of 2-furoyl chloride to yield furan functionalized slides...Conditions: (i) 3- aminopropyl silane; (ii) 2-furoyl chloride, Et3N, CH2Cl2, 0 C to RT, 24 h; (iii) Compound 2, THF, RT, 24 h.; and (iv) Toluene, reflux

  11. Effect of silane pretreatment on the immediate bonding of universal adhesives to computer-aided design/computer-aided manufacturing lithium disilicate glass ceramics.

    PubMed

    Yao, Chenmin; Zhou, Liqun; Yang, Hongye; Wang, Yake; Sun, Hualing; Guo, Jingmei; Huang, Cui

    2017-04-01

    The aim of this study was to investigate the effect of silane pretreatment on the universal adhesive bonding between lithium disilicate glass ceramic and composite resin. IPS e.max ceramic blocks etched with hydrofluoric acid were randomly assigned to one of eight groups treated with one of four universal adhesives (two silane-free adhesives and two silane-containing adhesives), each with or without silane pretreatment. Bonded specimens were stored in water for 24 h. The shear bond strength (SBS) of the ceramic-resin interface was measured to evaluate bond strength, and the debonded interface after the SBS test was analysed using field-emission scanning electron microscopy to determine failure mode. Light microscopy was performed to analyse microleakage and marginal sealing ability. Silane pretreatment significantly and positively influenced SBS and marginal sealing ability. For all the universal adhesive groups, SBS increased and the percentage of microleakage decreased after the pretreatment. Without the pretreatment, SBS and the percentage of microleakage were not significantly different between the silane-containing universal adhesive groups and the silane-free groups. Cohesive failure was the main fracture pattern. The results suggest that additional silane pretreatment can effectively improve the bonding strength and marginal sealing of adhesives to lithium disilicate glass ceramics. The bonding performance of silane-containing universal adhesives without pretreatment is similar to that of silane-free adhesives. © 2017 Eur J Oral Sci.

  12. Reinforcement of Dental Methacrylate with Glass Fiber after Heated Silane Application

    PubMed Central

    Fonseca, Rodrigo Borges; de Paula, Marcella Silva; Favarão, Isabella Negro; Kasuya, Amanda Vessoni Barbosa; de Almeida, Letícia Nunes; Mendes, Gustavo Adolfo Martins; Carlo, Hugo Lemes

    2014-01-01

    This study evaluated the influence of silane heat treatment and glass fiber fabrication type, industrially treated (I) or pure (P), on flexural and compressive strength of methacrylate resin bars (BISGMA/TEGDMA, 50/50%). Six groups (n = 10) were created: I-sil: I/silanated; P-sil: P-silanated; I-sil/heat: I/silanated heated to 100°; P-sil/heat: P/silanated heated to 100°; (I: I/not silanated; and P: P/not silanated. Specimens were prepared for flexural strength (10 × 2 × 1 mm) and for compressive strength 9.5 × 5.5 × 3 mm) and tested at 0.5 mm/min. Statistical analysis demonstrated the following for flexural strength (P < 0.05): I-sil: 155.89 ± 45.27BC; P-sil: 155.89 ± 45.27BC; I-sil/heat: 130.20 ± 22.11C; P-sil/heat: 169.86 ± 50.29AB; I: 131.87 ± 15.86C. For compressive strength, the following are demonstrated: I-sil: 1367.25 ± 188.77ab; P-sil: 867.61 ± 102.76d; I-sil/heat: 1162.98 ± 222.07c; P-sil/heat: 1499.35 ± 339.06a; and I: 1245.78 ± 211.16bc. Due to the impossibility of incorporating the stipulated amount of fiber, P group was excluded. Glass fiber treatment with heated silane enhanced flexural and compressive strength of a reinforced dental methacrylate. PMID:24967361

  13. Does 8-methacryloxyoctyl trimethoxy silane (8-MOTS) improve initial bond strength on lithium disilicate glass ceramic?

    PubMed

    Maruo, Yukinori; Nishigawa, Goro; Yoshihara, Kumiko; Minagi, Shogo; Matsumoto, Takuya; Irie, Masao

    2017-03-01

    Dental ceramic surfaces are modified with silane coupling agents, such as γ-methacryloxypropyl trimethoxy silane (γ-MPTS), to improve bond strength. For bonding between lithium disilicate glass ceramic and resin cement, the objective was to investigate if 8-methacryloxyoctyl trimethoxy silane (8-MOTS) could yield a similar performance as the widely used γ-MPTS. One hundred and ten lithium disilicate glass ceramic specimens were randomly divided into 11 groups (n=10) according to pretreatment regime. All specimens were pretreated with a different solution composed of one or a combination of these agents: 10 or 20wt% silane coupling agent of γ-MPTS or 8-MOTS, followed by a hydrolysis solution of acetic acid or 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). Each pretreated surface was luted to a stainless steel rod of 3.6mm diameter and 2.0mm height with resin cement. Shear bond strength between ceramic and cement was measured after 24-h storage in 37°C distilled water. 8-MOTS produced the same bonding performance as γ-MPTS. Both silane coupling agents significantly increased the bond strength of resin cement, depending on their concentration. When activated by 10-MDP hydrolysis solution, 20wt% concentration produced the highest values (γ-MPTS: 24.9±5.1MPa; 8-MOTS: 24.6±7.4MPa). Hydrolysis with acetic acid produced lower bond strengths than with 10-MDP. Silane coupling pretreatment with 8-MOTS increased the initial bond strength between lithium disilicate glass ceramic and resin cement, rendering the same bonding effect as the conventional γ-MPTS. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Effect of Silanization on Microtensile Bond Strength of Different Resin Cements to a Lithium Disilicate Glass Ceramic.

    PubMed

    Gré, Cristina Parise; de Ré Silveira, Renan C; Shibata, Shizuma; Lago, Carlo Tr; Vieira, Luiz Cc

    2016-02-01

    This study evaluated the influence of a silane-coupling agent on the bond strength of a self-adhesive cement and a conventional resin cement to a lithium disilicate glass ceramic. A total of eight ceramic blocks were fabricated and divided into four groups (n = 2). In groups 1 and 3, ceramic surfaces were etched with hydrofluoric acid 10% for 20 seconds, rinsed for 30 seconds, and air-dried. One layer of a silane agent was applied onto all ceramic specimens and air-dried for 30 seconds. In groups 2 and 4, ceramic surfaces were etched with hydrofluoric acid, rinsed, and air-dried without application of the silane-coupling agent. The ceramic blocks were bonded to a block of composite with a self-adhesive resin cement or with a conventional resin cement, according to the manufacturer's instructions. After 24 hours in distilled water at 37°C, the specimens were sectioned perpendicular to the bonding interface area to obtain beams with a bonding area of 0.8 mm(2) and submitted to a microtensile bond strength test at a crosshead speed of 0.5 mm/min. Data were statistically analyzed with one-way analysis of variance and the Games-Howell post hoc test (p = 0.05). Fractured specimens were examined under optical microscopy at 40x magnification. Silanization resulted in higher microtensile bond strength compared to groups without silane. No significant differences were found between the conventional resin cement and the self-adhesive resin cement with silane agent (p = 0.983), and without silane agent (p = 0.877). Silanization appears to be crucial for resin bonding to a lithium disilicate-based ceramic, regardless of the resin cement used. The self-adhesive resin cement performed as well as the conventional resin cement. Applying one layer of a silane-coupling agent after etching the ceramic surface with hydrofluoric acid 10% enhanced the bond strength between resin cements and a glass ceramic.

  15. Controlled Interphases in Glass Fiber and Particulate Reinforced Polymers: Structure of Silane Coupling Agents in Solutions and On Substrates

    DTIC Science & Technology

    1993-01-01

    to dissolve into water. Table 3. Typical industrially used silane coupling agents Organofunctional Chemical Formula Group Cationic styryl CH2...can also react with the surface as some unreacted silanol groups remain in the oligomers. The notion of physisorbed and chemisorbed silanes is used ...silanes use many silanol groups for covalent bonding with the substrate surface whereas the loosely chemisorbed silanes use only a few silanols to bond to

  16. Heat treatment of pre-hydrolyzed silane increases adhesion of phosphate monomer-based resin cement to glass ceramic.

    PubMed

    de Carvalho, Rodrigo Furtado; Cotes, Caroline; Kimpara, Estevão Tomomitsu; Leite, Fabíola Pessoa Pereira; Özcan, Mutlu

    2015-01-01

    This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP.

  17. Exercising Spatiotemporal Control of Cell Attachment with Optically Transparent Microelectrodes

    PubMed Central

    Shah, Sunny S.; Lee, Ji Youn; Verkhoturov, Stanislav; Tuleuova, Nazgul; Schweikert, Emile A.; Ramanculov, Erlan; Revzin, Alexander

    2013-01-01

    This paper describes a novel approach of controlling cell-surface interactions through an electrochemical “switching” of biointerfacial properties of optically transparent microelectrodes. The indium tin oxide (ITO) microelectrodes, fabricated on glass substrates, were modified with poly(ethylene glycol) (PEG) silane to make glass and ITO regions resistant to protein and cell adhesion. Cyclic voltammetry, with potassium ferricyanide serving as a redox reporter molecule, was used to monitor electron transfer across the electrolyte–ITO interface. PEG silane modification of ITO correlated with diminished electron transfer, judged by the disappearance of ferricyanide redox activity. Importantly, application of reductive potential (−1.4 V vs Ag/AgCl reference) corresponded with reappearance of typical ferricyanide redox peaks, thus pointing to desorption of an insulating PEG silane layer. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization of the silanized ITO surfaces after electrical stimulation indicated complete removal of the silane layer. Significantly, electrical stimulation allowed to “switch” chosen electrodes from nonfouling to protein-adhesive while leaving other ITO and glass regions protected by a nonfouling PEG silane layer. The spatial and temporal control of biointerfacial properties afforded by our approach was utilized to micropattern proteins and cells and to construct micropatterned co-cultures. In the future, control of the biointerfacial properties afforded by this novel approach may allow the organization of multiple cell types into precise geometric configurations in order to create better in vitro mimics of cellular complexity of the native tissues. PMID:18512875

  18. Effectiveness and stability of silane coupling agent incorporated in 'universal' adhesives.

    PubMed

    Yoshihara, Kumiko; Nagaoka, Noriyuki; Sonoda, Akinari; Maruo, Yukinori; Makita, Yoji; Okihara, Takumi; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart

    2016-10-01

    For bonding indirect restorations, some 'universal' adhesives incorporate a silane coupling agent to chemically bond to glass-rich ceramics so that a separate ceramic primer is claimed to be no longer needed. With this work, we investigated the effectiveness/stability of the silane coupling function of the silanecontaining experimentally prepared adhesives and Scotchbond Universal (3MESPE). Experimental adhesives consisted of Scotchbond Universal and the silane-free Clearfil S3 ND Quick (Kuraray Noritake) mixed with Clearfil Porcelain Bond Activator (Kuraray Noritake) and the two adhesives to which γ-methacryloxypropyltrimethoxysilane (γ-MPTS) was added. Shear bond strength was measured onto silica-glass plates; the adhesive formulations were analyzed using fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (NMR). In addition, shear bond strength onto CAD-CAM composite blocks was measured without and after thermo-cycling ageing. A significantly higher bond strength was recorded when Clearfil Porcelain Bond Activator was freshly mixed with the adhesive. Likewise, the experimental adhesives, to which γ-MPTS was added, revealed a significantly higher bond strength, but only when the adhesive was applied immediately after mixing; delayed application resulted in a significantly lower bond strength. FTIR and (13)C NMR revealed hydrolysis and dehydration condensation to progress with the time after γ-MPTS was mixed with the two adhesives. After thermo-cycling, the bond strength onto CAD-CAM composite blocks remained stable only for the two adhesives with which Clearfil Porcelain Bond Activator was mixed. Only the silane coupling effect of freshly prepared silanecontaining adhesives was effective. Clinically, the use of a separate silane primer or silane freshly mixed with the adhesive remains recommended to bond glass-rich ceramics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Method of bonding functional surface materials to substrates and applications in microtechnology and anti-fouling

    DOEpatents

    Feng, Xiangdong; Liu, Jun; Liang, Liang

    2001-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer preferably, (N,N'-diethylamine) dithiocarbamoylpropyl-(trimethoxy) silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N, N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  20. Method of bonding functional surface materials to substrates and applications in microtechnology and antifouling

    DOEpatents

    Feng, Xiangdong; Liu, Jun; Liang, Liang

    1999-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer, preferably, (N,N'-diethylamine)dithiocarbamoylpropyl-(trimethoxy)silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N,N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  1. 24 CFR 3280.113 - Glass and glazed openings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Glass and glazed openings. (a) Windows and sliding glass doors. All windows and sliding glass doors shall meet the requirements of § 3280.403 the “Standard for Windows and Sliding Glass Doors Used in...

  2. Chemical treatment for silica-containing glass surfaces

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  3. Chemical treatment for silica-containing glass surfaces

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1998-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  4. Chemical treatment for silica-containing glass surfaces

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditons. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  5. Preparation of durable hydrophobic cellulose fabric from water glass and mixed organosilanes

    NASA Astrophysics Data System (ADS)

    Shang, Song-Min; Li, Zhengxiong; Xing, Yanjun; Xin, John H.; Tao, Xiao-Ming

    2010-12-01

    Durable superhydrophobic cellulose fabric was prepared from water glass and n-octadecyltriethoxysilane (ODTES) with 3-glycidyloxypropyltrimethoxysilane (GPTMS) as crosslinker by sol-gel method. The result showed that the addition of GPTMS could result in a better fixation of silica coating from water glass on cellulose fabric. The silanization of hydrolyzed ODTES at different temperatures and times was studied and optimized. The results showed that silanization time was more important than temperature in forming durable hydrophobic surface. The durability of superhydrophobicity treatment was analyzed by XPS. As a result, the superhydrophobic cotton treated under the optimal condition still remained hydrophobic properties after 50 washing cycles.

  6. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.

    PubMed

    Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria

    2015-10-01

    The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.

  7. Friction behavior of glass and metals in contact with glass in various environments

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.

  8. 24 CFR 3280.113 - Glass and glazed openings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Glass and glazed openings. 3280.113... Glass and glazed openings. (a) Windows and sliding glass doors. All windows and sliding glass doors shall meet the requirements of § 3280.403 the “Standard for Windows and Sliding Glass Doors Used in...

  9. Effect of Silane Coupling Agent on Tribological Properties of Hemp Fiber-Reinforced Plant-Derived Polyamide 1010 Biomass Composites

    PubMed Central

    Kajiyama, Tetsuto; Yamanaka, Toshiyuki

    2017-01-01

    We have studied the effects of silane coupling agents used for the surface treatment of fiber on the tribological properties of hemp fiber (HF) reinforced plant-derived polyamide 1010 (PA1010) biomass composites. Hemp fibers were surface-treated by two surface treatment methods: (a) alkali treatment by sodium hydroxide solution and (b) surface treatment by silane coupling agents. Three types of silane coupling agents, namely aminosilane, epoxysilane and ureidosilane were used. These HF/PA1010 biomass composites were extruded using a twin extruder, and injection-molded. The mechanical and tribological properties were evaluated by the ring-on-plate type sliding wear test. It was found that tribological properties of HF/PA1010 biomass composites improved with the surface treatment by the silane coupling agent. This may be attributed to the change in the mode of friction and wear mechanism by the interfacial adhesion between fiber and matrix polymer according to the type of silane coupling agent used. In particular, the ureidosilane coupling agent showed the best improvement effect for the tribological properties of these biomass composites in this study. PMID:28872624

  10. Effect of Physicochemical Anomalies of Soda-Lime Silicate Slides on Biomolecule Immobilization

    DTIC Science & Technology

    2009-01-01

    roughness. EXPERIMENTAL SECTION Materials. Standard soda - lime glass microscope slides were obtained from several sources (Table 1). Rabbit anti-lipid A...had changed, confir- mation was obtained from the manufacturers that slides in set A1 were the same soda - lime glass slides as those in set A2 and...manufacture of soda - lime glass slides. X-ray Photoelectron Spectroscopy (XPS). To identify el- emental disparities in the glass surface, relative atomic

  11. Diagnostic digital cytopathology: Are we ready yet?

    PubMed Central

    House, Jarret C.; Henderson-Jackson, Evita B.; Johnson, Joseph O.; Lloyd, Mark C.; Dhillon, Jasreman; Ahmad, Nazeel; Hakam, Ardeshir; Khalbuss, Walid E.; Leon, Marino E.; Chhieng, David; Zhang, Xiaohui; Centeno, Barbara A.; Bui, Marilyn M.

    2013-01-01

    Background: The cytology literature relating to diagnostic accuracy using whole slide imaging is scarce. We studied the diagnostic concordance between glass and digital slides among diagnosticians with different profiles to assess the readiness of adopting digital cytology in routine practice. Materials and Methods: This cohort consisted of 22 de-identified previously screened and diagnosed cases, including non-gynecological and gynecological slides using standard preparations. Glass slides were digitalized using Aperio ScanScope XT (×20 and ×40). Cytopathologists with (3) and without (3) digital experience, cytotechnologists (4) and senior pathology residents (2) diagnosed the digital slides independently first and recorded the results. Glass slides were read and recorded separately 1-3 days later. Accuracy of diagnosis, time to diagnosis and diagnostician's profile were analyzed. Results: Among 22 case pairs and four study groups, correct diagnosis (93% vs. 86%) was established using glass versus digital slides. Both methods more (>95%) accurately diagnosed positive cases than negatives. Cytopathologists with no digital experience were the most accurate in digital diagnosis, even the senior members. Cytotechnologists had the fastest diagnosis time (3 min/digital vs. 1.7 min/glass), but not the best accuracy. Digital time was 1.5 min longer than glass-slide time/per case for cytopathologists and cytotechnologists. Senior pathology residents were slower and less accurate with both methods. Cytopathologists with digital experience ranked 2nd fastest in time, yet last in accuracy for digital slides. Conclusions: There was good overall diagnostic agreement between the digital whole-slide images and glass slides. Although glass slide diagnosis was more accurate and faster, the results of technologists and pathologists with no digital cytology experience suggest that solid diagnostic ability is a strong indicator for readiness of digital adoption. PMID:24392242

  12. Effect of surface mobility on the particle sliding along a bubble or a solid sphere.

    PubMed

    Wang, Weixing; Zhou, Zhiang; Nandakumar, K; Xu, Zhenghe; Masliyah, Jacob H

    2003-03-01

    The sliding velocity of glass beads on a spherical surface, made either of an air bubble or of a glass sphere held stationary, is measured to investigate the effect of surface mobility on the particle sliding velocity. The sliding process is recorded with a digital camera and analyzed frame by frame. The sliding glass bead was found to accelerate with increasing angular position on the collector's surface. It reaches a maximum velocity at an angular position of about 100 degrees and then, under certain conditions, the glass bead leaves the surface of the collector. The sliding velocity of the glass bead depends strongly on the surface mobility of a bubble, decreasing with decreasing surface mobility. By a mobile surface we mean one which cannot set up resistive forces to an applied stress on the surface. The sliding velocity on a rigid surface, such as a glass sphere, is much lower than that on a mobile bubble surface. The sliding velocity can be described through a modified Stokes equation. A numerical factor in the modified Stokes equation is determined by fitting the experimental data and is found to increase with decreasing surface mobility. Hydrophobic glass beads sliding on a hydrophobic glass sphere were found to stick at the point of impact without sliding if the initial angular position of the impact is less than some specific angle, which is defined as the critical sticking angle. The sticking of the glass beads can be attributed to the capillary contracting force created by the formation of a cavity due to spontaneous receding of the nonwetting liquid from the contact zone. The relationship between the critical sticking angle and the particle size is established based on the Yushchenko [J. Colloid Interface Sci. 96 (1983) 307] analysis.

  13. The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures

    PubMed Central

    Eraslan, Oguz

    2016-01-01

    PURPOSE To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. MATERIALS AND METHODS 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with 60℃ heat-treatment), and G4 (silane alone-then dried with 100℃ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in N/mm2). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin–ceramic interface. RESULTS SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (P<.001). FIN ceramics had the highest rate of cohesive failure on the ceramic surfaces than other ceramic groups. AFM images showed that the surface treatment groups exhibited similar topographies, except the group treated with HF. CONCLUSION The heat treatment was not sufficient to achieve high SBS values as compared with HF acid etching. The surface topography of ceramics was affected by surface treatments. PMID:27141250

  14. Comparing whole slide digital images versus traditional glass slides in the detection of common microscopic features seen in dermatitis

    PubMed Central

    Vyas, Nikki S.; Markow, Michael; Prieto-Granada, Carlos; Gaudi, Sudeep; Turner, Leslie; Rodriguez-Waitkus, Paul; Messina, Jane L.; Jukic, Drazen M.

    2016-01-01

    Background: The quality and limitations of digital slides are not fully known. We aimed to estimate intrapathologist discrepancy in detecting specific microscopic features on glass slides and digital slides created by scanning at ×20. Methods: Hematoxylin and eosin and periodic acid–Schiff glass slides were digitized using the Mirax Scan (Carl Zeiss Inc., Germany). Six pathologists assessed 50–71 digital slides. We recorded objective magnification, total time, and detection of the following: Mast cells; eosinophils; plasma cells; pigmented macrophages; melanin in the epidermis; fungal bodies; neutrophils; civatte bodies; parakeratosis; and sebocytes. This process was repeated using the corresponding glass slides after 3 weeks. The diagnosis was not required. Results: The mean time to assess digital slides was 176.77 s and 137.61 s for glass slides (P < 0.001, 99% confidence interval [CI]). The mean objective magnification used to detect features using digital slides was 18.28 and 14.07 for glass slides (P < 0.001, 99.99% CI). Parakeratosis, civatte bodies, pigmented macrophages, melanin in the epidermis, mast cells, eosinophils, plasma cells, and neutrophils, were identified at lower objectives on glass slides (P = 0.023–0.001, 95% CI). Average intraobserver concordance ranged from κ = 0.30 to κ = 0.78. Features with poor to fair average concordance were: Melanin in the epidermis (κ = 0.15–0.58); plasma cells (κ = 0.15–0.49); and neutrophils (κ = 0.12–0.48). Features with moderate average intrapathologist concordance were: parakeratosis (κ = 0.21–0.61); civatte bodies (κ = 0.21–0.71); pigment-laden macrophages (κ = 0.34–0.66); mast cells (κ = 0.29–0.78); and eosinophils (κ = 0.31–0.79). The average intrapathologist concordance was good for sebocytes (κ = 0.51–1.00) and fungal bodies (κ = 0.47–0.76). Conclusions: Telepathology using digital slides scanned at ×20 is sufficient for detection of histopathologic features routinely encountered in dermatitis cases, though less efficient than glass slides. PMID:27563489

  15. Effect of surface treatments on the bond strength of CAD/CAM fiberglass posts.

    PubMed

    Garcia, Paula-Pontes; da Costa, Rogério-Goulart; Garcia, André-Vivan; Gonzaga, Carla-Castiglia; da Cunha, Leonardo-Fernandes; Rezende, Carlos-Eduardo-Edwards; Correr, Gisele-Maria

    2018-06-01

    There is no ideal protocol for the surface treatment of fiber posts, especially when using a computer-aided design/computer-aided manufacturing (CAD/CAM) experimental fiberglass block. The purpose of this study was to evaluate the bond strength of a CAD/CAM customized glass fiber post and core after applying different surface treatment techniques. Forty premolars were prepared to receive a customized CAD/CAM glass-fiber post and core obtained from an experimental block of glass fiber and epoxy resin. The specimens were randomly distributed in 4 groups (n=10) according to the post and core surface treatment: ETH - 70% ethanol; HP - 24% hydrogen peroxide for 1 minute; ETH/S - 70% ethanol + silane; HP/S - 24% hydrogen peroxide + silane. The universal adhesive containing silane was applied on the posts and prepared post spaces in all groups. The posts were cemented using dual cure resin cement. The specimens were stored in distilled water at 37°C for 24 h, cut (two slices of 1 mm for each root third - coronal, middle, and apical) and subjected to push-out test (0.5 mm/min). Data was subjected to two-way ANOVA (surface treatment and root third) and Tukey's test (α=0,05). There was no significant difference of bond strength values among groups, regardless the surface treatment ( p >0.05). There was significant difference on bond strength values for the different root thirds ( p <0.05) (coronal>middle=apical). The different surface treatment and application of additional silane in the CAD/CAM customized glass-fiber post and core does not interfere on bond strength values. The root dentin third interfered on the bond strength, with higher values for the coronal third. Key words: Post and core technique, cad/cam, shear strength, hydrogen peroxide.

  16. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material

    PubMed Central

    Samadi, Firoza; Jaiswal, JN; Saha, Sonali

    2014-01-01

    ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300

  17. Comparison of glass slides and various digital-slide modalities for cytopathology screening and interpretation.

    PubMed

    Hanna, Matthew G; Monaco, Sara E; Cuda, Jacqueline; Xing, Juan; Ahmed, Ishtiaque; Pantanowitz, Liron

    2017-09-01

    Whole-slide imaging in cytology is limited when glass slides are digitized without z-stacks for focusing. Different vendors have started to provide z-stacking solutions to overcome this limitation. The Panoptiq imaging system allows users to create digital files combining low-magnification panoramic images with regions of interest (ROIs) that are imaged with high-magnification z-stacks. The aim of this study was to compare such panoramic images with conventional whole-slide images and glass slides for the tasks of screening and interpretation in cytopathology. Thirty glass slides, including 10 ThinPrep Papanicolaou tests and 20 nongynecologic cytology cases, were digitized with an Olympus BX45 integrated microscope with an attached Prosilica GT camera. ViewsIQ software was used for image acquisition and viewing. These glass slides were also scanned on an Aperio ScanScope XT at ×40 (0.25 μm/pixel) with 1 z-plane and were viewed with ImageScope software. Digital and glass sides were screened and dotted/annotated by a cytotechnologist and were subsequently reviewed by 3 cytopathologists. For panoramic images, the cytotechnologist manually created digital maps and selected representative ROIs to generate z-stacks at a higher magnification. After 3-week washout periods, panoramic images were compared with Aperio digital slides and glass slides. The Panoptiq system permitted fine focusing of thick smears and cell clusters. In comparison with glass slides, the average screening times were 5.5 and 1.8 times longer with Panoptiq and Aperio images, respectively, but this improved with user experience. There was no statistical difference in diagnostic concordance between all 3 modalities. Users' diagnostic confidence was also similar for all modalities. The Aperio whole-slide scanner with 1 z-plane scanning and the Panoptiq imaging system with z-stacking are both suitable for cytopathology screening and interpretation. However, ROI z-stacks do offer a superior mechanism for overcoming focusing problems commonly encountered with digital cytology slides. Unlike whole-slide imaging, the acquisition of representative z-stack images with the Panoptiq system requires a trained cytologist to create digital files. Cancer Cytopathol 2017;125:701-9. © 2017 American Cancer Society. © 2017 American Cancer Society.

  18. MICROARRAY SYSTEM FOR CONTAMINATED WATER ANALYSIS

    EPA Science Inventory

    We used the optimum slide treatment as determined by the previous study*: water plasma cleaning, photo-hydrolytic weathering, and silane treatment using 3-aminopropyl triethoxysilane (APS). Anti-E.coli antibodies were printed onto Corning 2947 (soda-lime-silicate) ...

  19. Interfacial properties of aluminum/glass-fiberreinforced polypropylene sandwich composites

    NASA Astrophysics Data System (ADS)

    Baştürk, S. B.; Guruşçu, A.; Tanoğlu, M.

    2013-07-01

    Aluminum/glass-fiber-reinforced polypropylene (Al/GFPP) laminates were manufactured by using various surface pretreatment techniques. Adhesion at the composite/metal interface was achieved by a surface pretreatment of Al sheets with amino-based silane coupling agents, incorporation of a polyolefin-based adhesive film and modification with a PP-based film containing 20 wt.% of maleic-anhydride-modified polypropylene (PP-g-MA). In order to increase the effect of bonding between components of the laminates, the combination of silane treatment and the addition of the PP-based film was also investigated. The mechanical properties (shear, peel, and bending strengths) of adhesively bonded Al/GFPP laminates were examined to evaluate the effects of the surface treatments mentioned. It was revealed that the adhesion in the laminated Al/GFPP systems could be improved by the treatment of aluminum surface with an amino-based silane coupling agent. Judging from the results of peel and bending strength, with incorporation of polyolefin-based films, adhesion in the Al/GFPP laminates increased significantly. The modification of Al/GFPP interfaces with a PP-g-MA/PP layer led to the highest improvement in their adhesion properties. The combination of surface modification with silane and addition of PP-based films did not yield the high bending strength desired. This may be due to the insufficient bonding between silane groups and PP-based films.

  20. Effect of glass fiber surface treatments on mechanical strength of epoxy based composite materials.

    PubMed

    Iglesias, J G; González-Benito, J; Aznar, A J; Bravo, J; Baselga, J

    2002-06-01

    Sizing glass fibers with silane coupling agents enhances the adhesion and the durability of the fiber/polymer matrix interface in composite materials. There are several tests to determine the interfacial strength between a fiber and resin, but all of them present difficulties in interpreting the results and/or sample preparation. In this study, we observed the influence of different aminosilanes fiber coatings on the resistance of epoxy-based composite materials using a very easy fractographic test. In addition, we tried a new fluorescence method to get information on a molecular level precisely at the interface. Strength was taken into account from two standpoints: (i) mechanical strength and (ii) the resistance to hydrolysis of the interface in oriented glass-reinforced epoxy-based composites. Three silanes: gamma-aminopropyltriethoxysilane, gamma-Aminopropylmethyldiethoxysilane, and gamma-Aminopropyldimethylethoxysilane were used to obtain different molecular structures at the interface. It was concluded that: (i) the more accessible amine groups are, the higher the interface rigidity is; (ii) an interpenetrating network mechanism seems to be the most important for adhesion and therefore to the interfacial strength; and (iii) the higher the degree of crosslinking in the silane coupling layer is, the higher the hydrolytic damage rate is.

  1. Effect of prior silane application on the bond strength of a universal adhesive to a lithium disilicate ceramic.

    PubMed

    Moro, André Fábio Vasconcelos; Ramos, Amanda Barreto; Rocha, Gustavo Miranda; Perez, Cesar Dos Reis

    2017-11-01

    Universal adhesives combine silane and various monomers in a single bottle to make them more versatile. Their adhesive performance is unclear. The purpose of this in vitro study was to assess the effects of an additional silane application before using a universal adhesive on the adhesion between a disilicate glass ceramic and a composite resin by using a microshear bond strength test (μSBS) and fracture analysis immediately and after thermocycling. One hundred lithium disilicate glass ceramic disks were divided into 10 groups for bond strength testing according to the following 3 surface treatments: silane application (built-in universal adhesive or with additional application), adhesive (Adper Single Bond Plus [SB, 3M ESPE], Scotchbond Universal Adhesive [U, 3M ESPE], and mixed U with Dual Cure Activator [DCA, 3M ESPE]); or thermocycling (half of the specimens were thermocycled 10000 times). After surface treatment, 5 resin cylinders were bonded to each disk and submitted to a μSBS test. The failure mode was analyzed under a stereomicroscope and evaluated by scanning electron microscope and energy-dispersive x-ray spectroscopy. Data from the μSBS test were analyzed by 3-way ANOVA followed by the Tukey HSD post hoc test (α=.05). An additional silane application resulted in a higher μSBS result for all adhesive groups (P<.05). Ceramic surface treatment influenced the performance of adhesives, which may be improved with an additional silane application. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Roughened glass slides and a spectrophotometer for the detection of the wavelength-dependent refractive index of transparent liquids.

    PubMed

    Niskanen, Ilpo; Räty, Jukka; Myllylä, Risto; Sutinen, Veijo; Matsuda, Kiyofumi; Homma, Kazuhiro; Silfsten, Pertti; Peiponen, Kai-Erik

    2012-07-01

    We describe a method to determine the wavelength-dependent refractive index of liquids by measurement of light transmittance with a spectrophotometer. The method is based on using roughened glass slides with different a priori known refractive indices and immersing the slides into the transparent liquid with unknown refractive index. Using the dispersion data on the glass material it is possible to find the index match between the liquid and the glass slide, and hence the refractive index of the liquid.

  3. Through the Sliding Glass Door: #EmpowerTheReader

    ERIC Educational Resources Information Center

    Johnson, Nancy J.; Koss, Melanie D.; Martinez, Miriam

    2018-01-01

    This article seeks to complicate the understanding of Bishop's (1990) metaphor of mirrors, windows, and sliding glass doors, with particular emphasis on sliding glass doors and the emotional connections needed for readers to move through them. The authors begin by examining the importance of the reader and the characters he or she meets. Next, the…

  4. RAIN REPELLENT

    DTIC Science & Technology

    COATINGS, *RAINDROPS, *SILANES, *ULTRASONIC RADIATION, ACIDS, AEROSOLS, ALKOXY RADICALS, ALKYL RADICALS, CHLORIDES, FILMS, FLUORIDES, GLASS, LIQUIDS...MATERIALS, METHYL RADICALS, MIXTURES, ORGANIC COMPOUNDS, SALTS, STABILITY, STORAGE, SURFACES

  5. Investigation of a biofunctional polymeric coating deposited onto silicon microcantilevers

    NASA Astrophysics Data System (ADS)

    Bergese, P.; Bontempi, E.; Chiari, M.; Colombi, P.; Damin, F.; Depero, L. E.; Oliviero, G.; Pirri, G.; Zucca, M.

    2007-02-01

    The paper deals with an appealing route to activate silicon microcantilevers (90, 110 and 130 μm long, 35 μm wide and 2 μm thick) for specific binding of biochemical species. The method consists in coating the underivatized microcantilevers with a biofunctional copolymer (based on N, N-dimethylacrylamide bearing silanating moieties) that was developed for low-density microarray assays on microscope glass slides. Coating deposition was obtained by dip-coating and its microstructure investigated by analyzing the resonance frequency values of bare and coated microcantilevers, by SEM and SFM imaging, SFM tip-scratch tests and XRR experiments. Results indicate that the coating is 2.5 nm thick and has a density of 1.22 g/cm 3. The coating surface is nanostructured, displaying nanoblobs, which are from few up to 20 nm wide and, on average, 1.6 nm high. The diameter of the biggest nanoblobs is of the same order of magnitude of the gyration radius of the copolymer chains, suggesting that nanoblobs may identify individual macromolecules.

  6. Dropwise condensation

    PubMed Central

    Leach, R. N.; Stevens, F.; Langford, S. C.; Dickinson, J. T.

    2008-01-01

    Dropwise condensation of water vapor from a naturally cooling, hot water reservoir onto a hydrophobic polymer film and a silanized glass slide was studied by direct observation and simulations. The observed drop growth kinetics suggest that smallest drops grow principally by the diffusion of water adsorbed on the substrate to the drop perimeter, while drops larger than 50 μm in diameter grow principally by direct deposition from the vapor onto the drop surface. Drop coalescence plays a critical role in determining the drop size distribution, and stimulates the nucleation of new, small drops on the substrates. Simulations of drop growth incorporating these growth mechanisms provide a good description of the observed drop size distribution. Because of the large role played by coalescence, details of individual drop growth make little difference to the final drop size distribution. The rate of condensation per unit substrate area is especially high for the smallest drops, and may help account for the high heat transfer rates associated with dropwise condensation relative to filmwise condensation in heat exchange applications. PMID:17014129

  7. Rational interface design of epoxy-organoclay nanocomposites: role of structure-property relationship for silane modifiers.

    PubMed

    Bruce, Alex N; Lieber, Danielle; Hua, Inez; Howarter, John A

    2014-04-01

    Montmorillonite was modified by three silane surfactants with different functionalities to investigate the role of surfactant structure on the properties of a final epoxy-organoclay nanocomposite. N-aminopropyldimethylethoxysilane (APDMES), an aminated monofunctional silane, was chosen as a promising surfactant for several reasons: (1) it will bond to silica in montmorillonite, (2) it will bond to epoxide groups, and (3) to overcome difficulties found with trifunctional aminosilane bonding clay layers together and preventing exfoliation. A trifunctional and non-aminated version of APDMES, 3-aminopropyltriethoxysilane (APTES) and n-propyldimethylmethoxysilane (PDMMS), respectively, was also studied to provide comparison to this rationally chosen surfactant. APDMES and APTES were grafted onto montmorillonite in the same amount, while PDMMS was barely grafted (<1 wt%). The gallery spacing of APDMES organoclay was greater than APTES or PDMMS, but the final nanocomposite gallery spacing was not dependent on the surfactant used. Different concentrations of APDMES modified montmorillonite yielded different properties, as concentration decreased glass transition temperature increased, thermal stability increased, and the storage modulus decreased. Storage modulus, glass transition temperature, and thermal stability were more similar for epoxy-organoclay composites modified with the same concentration of silane surfactant, neat epoxy, and epoxy-montmorillonite nanocomposite. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Mechanical behavior of bioactive composite cements consisting of resin and glass-ceramic powder in a simulated body fluid: effect of silane coupling agent.

    PubMed

    Miyata, N; Matsuura, W; Kokubo, T; Nakamura, T

    2004-09-01

    Time-dependent strength behavior was investigated for bisphenol-a-glycidyl methacrylate/triethylene glycol dimethacrylate (Bis-GMA/TEGDMA) resin cements combined with glass-ceramic A-W filler treated with various kinds of silane coupling agents. The fracture strength of the composite resin cements was measured by three-point bending as a function of stressing rate in a simulated body fluid (SBF), and thereby the stress-corrosion susceptibility constant was evaluated. The fracture strength was found to depend on the kind of coupling agent used. For the present Bis-GMA/TEGDMA resin, the silane coupling agents without hydrophilic amine groups can be used to obtain good adhesion between resin and A-W filler owing to their nature of co-polymerizing with the resin. On the other hand, all the composite resin cements showed nearly the same degree of stress-corrosion susceptibility whether the A-W fillers were treated or untreated with silane coupling agents. This means that the stress-corrosion susceptibility of the present composite cements is predominantly affected by that of the matrix resin. Thus, the microcrack formation and growth at the resin matrix near particle - resin interface were thought to determine overall time-dependent strength behavior of the composite cements.

  9. Effect of surface treatments on the bond strength of CAD/CAM fiberglass posts

    PubMed Central

    Garcia, Paula-Pontes; da Costa, Rogério-Goulart; Garcia, André-Vivan; Gonzaga, Carla-Castiglia; da Cunha, Leonardo-Fernandes; Rezende, Carlos-Eduardo-Edwards

    2018-01-01

    Background There is no ideal protocol for the surface treatment of fiber posts, especially when using a computer-aided design/computer-aided manufacturing (CAD/CAM) experimental fiberglass block. The purpose of this study was to evaluate the bond strength of a CAD/CAM customized glass fiber post and core after applying different surface treatment techniques. Material and Methods Forty premolars were prepared to receive a customized CAD/CAM glass-fiber post and core obtained from an experimental block of glass fiber and epoxy resin. The specimens were randomly distributed in 4 groups (n=10) according to the post and core surface treatment: ETH - 70% ethanol; HP - 24% hydrogen peroxide for 1 minute; ETH/S - 70% ethanol + silane; HP/S - 24% hydrogen peroxide + silane. The universal adhesive containing silane was applied on the posts and prepared post spaces in all groups. The posts were cemented using dual cure resin cement. The specimens were stored in distilled water at 37°C for 24 h, cut (two slices of 1 mm for each root third - coronal, middle, and apical) and subjected to push-out test (0.5 mm/min). Data was subjected to two-way ANOVA (surface treatment and root third) and Tukey’s test (α=0,05). Results There was no significant difference of bond strength values among groups, regardless the surface treatment (p >0.05). There was significant difference on bond strength values for the different root thirds (p<0.05) (coronal>middle=apical). Conclusions The different surface treatment and application of additional silane in the CAD/CAM customized glass-fiber post and core does not interfere on bond strength values. The root dentin third interfered on the bond strength, with higher values for the coronal third. Key words:Post and core technique, cad/cam, shear strength, hydrogen peroxide. PMID:29930778

  10. Utilizing Whole Slide Images for Pathology Peer Review and Working Groups.

    PubMed

    Malarkey, David E; Willson, Gabrielle A; Willson, Cynthia J; Adams, E Terence; Olson, Greg R; Witt, William M; Elmore, Susan A; Hardisty, Jerry F; Boyle, Michael C; Crabbs, Torrie A; Miller, Rodney A

    2015-12-01

    This article describes the results of comparisons of digitally scanned whole slide images (WSIs) and glass microscope slides for diagnosis of tissues under peer review by the National Toxicology Program. Findings in this article were developed as a result of the data collected from 6 pathology working groups (PWGs), 1 pathology peer review, and survey comments from over 25 participating pathologists. For each PWG, 6-14 pathologists examined 10-143 tissues per study from 6- and 9-month perinatal studies and 2-year carcinogenicity studies. Overall it was found that evaluation of WSIs is generally equivalent to using glass slides. Concordance of PWG consensus diagnoses based upon review of WSIs versus glass slides ranged from 74% to 100% (median 86%). The intra- and interobserver diagnostic variation did not appear to influence the conclusions of any study. Based upon user opinions collected from surveys, WSIs may be less optimal than glass slides for evaluation of subtle lesions, large complex lesions, small lesions in a large section of tissue, and foci of altered hepatocytes. These results indicate that, although there may be some limitations, the use of WSIs can effectively accomplish the objectives of a conventional glass slide review and definitely serves as a useful adjunct to the conduct of PWGs. © 2015 by The Author(s).

  11. Sliding mode controllers for a tempered glass furnace.

    PubMed

    Almutairi, Naif B; Zribi, Mohamed

    2016-01-01

    This paper investigates the design of two sliding mode controllers (SMCs) applied to a tempered glass furnace system. The main objective of the proposed controllers is to regulate the glass plate temperature, the upper-wall temperature and the lower-wall temperature in the furnace to a common desired temperature. The first controller is a conventional sliding mode controller. The key step in the design of this controller is the introduction of a nonlinear transformation that maps the dynamic model of the tempered glass furnace into the generalized controller canonical form; this step facilitates the design of the sliding mode controller. The second controller is based on a state-dependent coefficient (SDC) factorization of the tempered glass furnace dynamic model. Using an SDC factorization, a simplified sliding mode controller is designed. The simulation results indicate that the two proposed control schemes work very well. Moreover, the robustness of the control schemes to changes in the system's parameters as well as to disturbances is investigated. In addition, a comparison of the proposed control schemes with a fuzzy PID controller is performed; the results show that the proposed SDC-based sliding mode controller gave better results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A novel glass slide filing system for pathology slides.

    PubMed

    Tsai, Steve; Kartono, Francisca; Shitabata, Paul K

    2007-07-01

    The availability of a collection of microscope glass slides for review is essential in the study and practice of pathology. A common problem facing many pathologists is the lack of a well-organized filing system. We present a novel system that would be easily accessible, informative, protective, and portable.

  13. Virtual microscopy in a veterinary curriculum.

    PubMed

    Sims, Michael H; Mendis-Handagama, Chamindrani; Moore, Robert N

    2007-01-01

    Teaching faculty in the University of Tennessee College of Veterinary Medicine assist students in their professional education by providing a new way of viewing microscopic slides digitally. Faculty who teach classes in which glass slides are used participate in a program called Virtual Microscopy. Glass slides are digitized using a state-of-the-art integrated system, and a personal computer functions as the "microscope." Additionally, distribution of the interactive images is enhanced because they are available to students online. The digital slide offers equivalent quality and resolution to the original glass slide viewed on a microscope and has several additional advantages over microscopes. Students can choose to examine the entire slide at any of several objectives; they are able to access the slides (called WebSlides) from the college's server, using either Internet Explorer or a special browser developed by Bacus Laboratories, Inc.,(a) called the WebSlide browser, which lets the student simultaneously view a low-objective image and one or two high-objective images of the same slide. The student can "move the slide" by clicking and dragging the image to a new location. Easy archiving, annotation of images, and Web conferencing are additional features of the system.

  14. Vulcanization characteristics and dynamic mechanical behavior of natural rubber reinforced with silane modified silica.

    PubMed

    Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold

    2011-03-01

    Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.

  15. Routine Digital Pathology Workflow: The Catania Experience

    PubMed Central

    Fraggetta, Filippo; Garozzo, Salvatore; Zannoni, Gian Franco; Pantanowitz, Liron; Rossi, Esther Diana

    2017-01-01

    Introduction: Successful implementation of whole slide imaging (WSI) for routine clinical practice has been accomplished in only a few pathology laboratories worldwide. We report the transition to an effective and complete digital surgical pathology workflow in the pathology laboratory at Cannizzaro Hospital in Catania, Italy. Methods: All (100%) permanent histopathology glass slides were digitized at ×20 using Aperio AT2 scanners. Compatible stain and scanning slide racks were employed to streamline operations. eSlide Manager software was bidirectionally interfaced with the anatomic pathology laboratory information system. Virtual slide trays connected to the two-dimensional (2D) barcode tracking system allowed pathologists to confirm that they were correctly assigned slides and that all tissues on these glass slides were scanned. Results: Over 115,000 glass slides were digitized with a scan fail rate of around 1%. Drying glass slides before scanning minimized them sticking to scanner racks. Implementation required introduction of a 2D barcode tracking system and modification of histology workflow processes. Conclusion: Our experience indicates that effective adoption of WSI for primary diagnostic use was more dependent on optimizing preimaging variables and integration with the laboratory information system than on information technology infrastructure and ensuring pathologist buy-in. Implementation of digital pathology for routine practice not only leveraged the benefits of digital imaging but also creates an opportunity for establishing standardization of workflow processes in the pathology laboratory. PMID:29416914

  16. Routine Digital Pathology Workflow: The Catania Experience.

    PubMed

    Fraggetta, Filippo; Garozzo, Salvatore; Zannoni, Gian Franco; Pantanowitz, Liron; Rossi, Esther Diana

    2017-01-01

    Successful implementation of whole slide imaging (WSI) for routine clinical practice has been accomplished in only a few pathology laboratories worldwide. We report the transition to an effective and complete digital surgical pathology workflow in the pathology laboratory at Cannizzaro Hospital in Catania, Italy. All (100%) permanent histopathology glass slides were digitized at ×20 using Aperio AT2 scanners. Compatible stain and scanning slide racks were employed to streamline operations. eSlide Manager software was bidirectionally interfaced with the anatomic pathology laboratory information system. Virtual slide trays connected to the two-dimensional (2D) barcode tracking system allowed pathologists to confirm that they were correctly assigned slides and that all tissues on these glass slides were scanned. Over 115,000 glass slides were digitized with a scan fail rate of around 1%. Drying glass slides before scanning minimized them sticking to scanner racks. Implementation required introduction of a 2D barcode tracking system and modification of histology workflow processes. Our experience indicates that effective adoption of WSI for primary diagnostic use was more dependent on optimizing preimaging variables and integration with the laboratory information system than on information technology infrastructure and ensuring pathologist buy-in. Implementation of digital pathology for routine practice not only leveraged the benefits of digital imaging but also creates an opportunity for establishing standardization of workflow processes in the pathology laboratory.

  17. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.

    PubMed

    Soares, Carlos Jose; Santana, Fernanda Ribeiro; Pereira, Janaina Carla; Araujo, Tatiana Santos; Menezes, Murilo Souza

    2008-06-01

    Controversy exists concerning the use of fiber-reinforced posts to improve bond strength to resin cement because some precementation treatments can compromise the mechanical properties of the posts. The purpose of this study was to analyze the influence of airborne-particle abrasion on the mechanical properties and microtensile bond strength (MTBS) of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts. Flexural strength (delta(f)), flexural modulus (E(f)), and stiffness (S) were assessed using a 3-point bending test for glass fiber-reinforced and carbon fiber-reinforced resin posts submitted to airborne-particle abrasion (AB) with 50-microm Al(2)O(3), and for posts without any surface treatment (controls) (n=10). Forty glass fiber (GF) and 40 carbon fiber (CF) posts were submitted to 1 of 4 surface treatments (n=10) prior to MTBS testing: silane (S); silane and adhesive (SA); airborne-particle abrasion with 50-microm Al(2)O(3) and silane (ABS); airborne-particle abrasion, silane, and adhesive (ABSA). Two composite resin restorations (Filtek Z250) with rounded depressions in the lateral face were bilaterally fixed to the post with resin cement (RelyX ARC). Next, the specimen was sectioned with a precision saw running perpendicular to the bonded surface to obtain 10 bonded beam specimens with a cross-sectional area of 1 mm(2). Each beam specimen was tested in a mechanical testing machine (EMIC 2,000 DL), under stress, at a crosshead speed of 0.5 mm/min until failure. Data were analyzed by 2-way ANOVA followed by Tukey HSD test (alpha=.05). Failure patterns of tested specimens were analyzed using scanning electron microscopy (SEM). The 3-point bending test demonstrated significant differences among groups only for the post type factor for flexural strength, flexural modulus, and stiffness. The carbon fiber posts exhibited significantly higher mean flexural strength (P=.001), flexural modulus (P=.003), and stiffness (P=.001) values when compared with glass fiber posts, irrespective of surface treatment. An alteration in the superficial structure of the posts could be observed by SEM after airborne-particle abrasion. MTBS testing showed no significant effect for the surface treatment type; however, significant effects for post system factor and for interaction between the 2 factors were observed. For the carbon fiber post, the ABSA surface treatment resulted in values significantly lower than the S surface treatment. SEM analysis of MTBS-tested specimens demonstrated adhesive and cohesive failures. Airborne-particle abrasion did not influence the mechanical properties of the post; however, it produced undesirable surface changes, which could reduce the bond strength to resin cement. For the surface treatments studied, if silane is applied, the adhesive system and airborne-particle abrasion are not necessary.

  18. An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes

    PubMed Central

    Deveau, Jason S.T.; Grodzinski, Bernard

    2005-01-01

    We describe an improved, efficient and reliable method for the vapour-phase silanization of multi-barreled, ion-selective microelectrodes of which the silanized barrel(s) are to be filled with neutral liquid ion-exchanger (LIX). The technique employs a metal manifold to exclusively and simultaneously deliver dimethyldichlorosilane to only the ion-selective barrels of several multi-barreled microelectrodes. Compared to previously published methods the technique requires fewer procedural steps, less handling of individual microelectrodes, improved reproducibility of silanization of the selected microelectrode barrels and employs standard borosilicate tubing rather than the less-conventional theta-type glass. The electrodes remain stable for up to 3 weeks after the silanization procedure. The efficacy of a double-barreled electrode containing a proton ionophore in the ion-selective barrel is demonstrated in situ in the leaf apoplasm of pea (Pisum) and sunflower (Helianthus). Individual leaves were penetrated to depth of ~150 μm through the abaxial surface. Microelectrode readings remained stable after multiple impalements without the need for a stabilizing PVC matrix. PMID:16136222

  19. Performance of residents using digital images versus glass slides on certification examination in anatomical pathology: a mixed methods pilot study

    PubMed Central

    Mirham, Lorna; Naugler, Christopher; Hayes, Malcolm; Ismiil, Nadia; Belisle, Annie; Sade, Shachar; Streutker, Catherine; MacMillan, Christina; Rasty, Golnar; Popovic, Snezana; Joseph, Mariamma; Gabril, Manal; Barnes, Penny; Hegele, Richard G.; Carter, Beverley; Yousef, George M.

    2016-01-01

    Background: It is anticipated that many licensing examination centres for pathology will begin fully digitizing the certification examinations. The objective of our study was to test the feasibility of a fully digital examination and to assess the needs, concerns and expectations of pathology residents in moving from a glass slide-based examination to a fully digital examination. Methods: We conducted a mixed methods study that compared, after randomization, the performance of senior residents (postgraduate years 4 and 5) in 7 accredited anatomical pathology training programs across Canada on a pathology examination using either glass slides or digital whole-slide scanned images of the slides. The pilot examination was followed by a post-test survey. In addition, pathology residents from all levels of training were invited to participate in an online survey. Results: A total of 100 residents participated in the pilot examination; 49 were given glass slides instead of digital images. We found no significant difference in examination results between the 2 groups of residents (estimated marginal mean 8.23/12, 95% confidence interval [CI] 7.72-8.87, for glass slides; 7.84/12, 95% CI 7.28-8.41, for digital slides). In the post-test survey, most of the respondents expressed concerns with the digital examination, including slowly functioning software, blurring and poor detail of images, particularly nuclear features. All of the respondents of the general survey (n = 179) agreed that additional training was required if the examination were to become fully digital. Interpretation: Although the performance of residents completing pathology examinations with glass slides was comparable to that of residents using digital images, our study showed that residents were not comfortable with the digital technology, especially given their current level of exposure to it. Additional training may be needed before implementing a fully digital examination, with consideration for a gradual transition. PMID:27280119

  20. 21. INTERIOR OF SOUTHEAST REAR BEDROOM SHOWING ALUMINUMFRAME SLIDING GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. INTERIOR OF SOUTHEAST REAR BEDROOM SHOWING ALUMINUM-FRAME SLIDING GLASS WINDOWS. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  1. 19. INTERIOR OF NORTHEAST REAR BEDROOM SHOWING ALUMINUMFRAME SLIDING GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF NORTHEAST REAR BEDROOM SHOWING ALUMINUM-FRAME SLIDING GLASS WINDOWS. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  2. Adhesion and friction between glass and rubber in the dry state and in water: role of contact hydrophobicity.

    PubMed

    Kawasaki, S; Tada, T; Persson, B N J

    2018-06-27

    We study the contact mechanics between 3 different tire tread compounds and a smooth glass surface in water. We study both adhesion and sliding friction at low-sliding speeds. For 2 of the compounds the rubber-glass contact in water is hydrophobic and we observe adhesion, and slip-stick sliding friction dynamics. For one compound the contact is hydrophilic, resulting in vanishing adhesion, and steady-state (or smooth) sliding dynamics. We also show the importance of dynamical scrape, both on the macroscopic level and at the asperity level, which reduces the water film thickness between the solids during slip. The experiments show that the fluid is removed much faster from the rubber-glass asperity contact regions for a hydrophobic contact than for a hydrophilic contact. We also study friction on sandblasted glass in water. In this case all the compounds behave similarly and we conclude that no dewetting occur in the asperity contact regions. We propose that this is due to the increased surface roughness which reduces the rubber-glass binding energy.

  3. Rigidity and retention of ceramic root canal posts.

    PubMed

    Purton, D G; Love, R M; Chandler, N P

    2000-01-01

    Ceramic root-canal posts offer potential advantages over other types with respect to aesthetics and biocompatibility. Any post must be sufficiently rigid and retentive to withstand functional forces. Ceraposts (1.2 mm coronal diameter, ceramic, tapering, smooth posts) and Paraposts (1.25 mm, stainless-steel, parallel, serrated posts) were tested for rigidity by means of a three-point bending test. To test retention in roots, ceramic posts were cemented using one of three protocols: (1) glass-ionomer cement, (2) silane coupling agent and resin cement, or (3) sandblasted post surface, silane coupling agent, and resin cement. Stainless-steel posts were cemented with resin. The tensile force required to dislodge the posts, following four weeks of storage in water, was recorded. Data were compared using Student's t-test and Mann-Whitney U analysis. Ceraposts were significantly more rigid than Paraposts (p < 0.001). Paraposts cemented with resin were significantly more strongly retained than Ceraposts following any cementation protocol (p < 0.001). Retention of the ceramic posts was significantly greater with a silane coupling agent and resin cement than with glass-ionomer cement (p < 0.001). Sandblasting the ceramic posts produced variable results and needs further investigation before it could be recommended.

  4. Silane surface modification for improved bioadhesion of esophageal stents

    NASA Astrophysics Data System (ADS)

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-08-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability.

  5. Stabilization of gold nanoparticle films on glass by thermal embedding.

    PubMed

    Karakouz, Tanya; Maoz, Ben M; Lando, Gilad; Vaskevich, Alexander; Rubinstein, Israel

    2011-04-01

    The poor adhesion of gold nanoparticles (NPs) to glass has been a known obstacle to studies and applications of NP-based systems, such as glass/Au-NP optical devices. Here we present a simple scheme for obtaining stable localized surface plasmon resonance (LSPR) transducers based on Au NP films immobilized on silanized glass and annealed. The procedure includes high-temperature annealing of the Au NP film, leading to partial embedding in the glass substrate and stabilization of the morphology and optical properties. The method is demonstrated using citrate-stabilized Au NPs, 20 and 63 nm mean diameter, immobilized electrostatically on glass microscope cover slides precoated with an aminosilane monolayer. Partial thermal embedding of the Au NPs in the glass occurs at temperatures in the vicinity of the glass transition temperature of the substrate. Upon annealing in air the Au NPs gradually settle into the glass and become encircled by a glass rim. In situ transmission UV-vis spectroscopy carried out during the annealing in a specially designed optical oven shows three regions: The most pronounced change of the surface plasmon (SP) band shape occurs in the first ca. 15 min of annealing; this is followed by a blue-shift of the SP band maximum (up to ca. 5 h), after which a steady red-shift of the SP band is observed (up to ca. 70 h, when the experiment was terminated). The development of the SP extinction spectrum was correlated to changes in the system structure, including thermal modification of the NP film morphology and embedding in the glass. The partially embedded Au NP films pass successfully the adhesive-tape test, while their morphology and optical response are stable toward immersion in solvents, drying, and thiol self-assembly. The enhanced adhesion is attributed to the metal NP embedding and rim formation. The stabilized NP films display a refractive index sensitivity (RIS) of 34-48 nm/RIU and 0.1-0.4 abs.u./RIU in SP band shift and extinction change, respectively. The RIS can be improved significantly by electroless deposition of Au on the embedded NPs, while the system stability is maintained. The method presented provides a simple route to obtaining stable Au NP film transducers. © 2011 American Chemical Society

  6. Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP.

    PubMed

    Jiang, Yuchen; Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Ding, Chunmei; Luo, Jianbin; Li, Jianshu

    2017-08-01

    Choline phosphate (CP) containing polymers modified surfaces have been shown good resist to the adhesion of proteins while prompt the attaching of mammalian cells due to the dipole pairing between the CP groups of the polymer and the phosphorylcholine (PC) groups on the cell membrane. However, the antifouling activities of CP modified surface against microbes have not been investigated at present. In addition, CP containing polymers modified surface with different molecular architectures has not been prepared and studied. To this end, glass slides surface modified with two different 2-(meth-acryloyloxy)ethyl cholinephosphate (MCP) containing polymer (PMCP) structures, i.e. brush-like (Glass-PMCP) and bottle brush-like (Glass-PHEMA-g-PMCP) architectures, were prepared in this work by surface-initiated atom transfer radical polymerization (SI-ATRP). The surface physichemical and antifouling properties of the prepared surfaces were characterized and studied. The Glass-PMCP shows improved antifouling properties against proteins and bacteria as compared to pristine glass slides (Glass-OH) and glass slides grafted with poly(2-hydroxyethyl methacrylate) (Glass-PHEMA). Notably, a synergetic fouling resistant properties of PHEMA and PMCP is presented for Glass-PHEMA-g-PMCP, which shows superior antifouling activities over Glass-PHEMA and Glass-PMCP. Furthermore, glass slides containing PMCP, i.e. Glass-PMCP and Glas-PHEMA-g-PMCP, decrease platelet adhesion and prevent their activation significantly. Therefore, the combination of antifouling PHEMA and PMCP into one system holds potential for prevention of bacterial fouling and biomaterial-centered infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mobility restrictions and glass transition behaviour of an epoxy resin under confinement.

    PubMed

    Djemour, A; Sanctuary, R; Baller, J

    2015-04-07

    Confinement can have a big influence on the dynamics of glass formers in the vicinity of the glass transition. Already 40 to 50 K above the glass transition temperature, thermal equilibration of glass formers can be strongly influenced by the confining substrate. We investigate the linear thermal expansion and the specific heat capacity cp of an epoxy resin (diglycidyl ether of bisphenol A, DGEBA) in a temperature interval of 120 K around the glass transition temperature. The epoxy resin is filled into controlled pore glasses with pore diameters between 4 and 111 nm. Since DGEBA can form H-bonds with silica surfaces, we also investigate the influence of surface silanization of the porous substrates. In untreated substrates a core/shell structure of the epoxy resin can be identified. The glass transition behaviours of the bulk phase and that of the shell phase are different. In silanized substrates, the shell phase disappears. At a temperature well above the glass transition, a second transition is found for the bulk phase - both in the linear expansion data as well as in the specific heat capacity. The cp data do not allow excluding the glass transition of a third phase as being the cause for this transition, whereas the linear expansion data do so. The additional transition temperature is interpreted as a separation between two regimes: above this temperature, macroscopic flow of the bulk phase inside the porous structure is possible to balance the mismatch of thermal expansion coefficients between DGEBA and the substrate. Below the transition temperature, this degree of freedom is hindered by geometrical constraints of the porous substrates. Moreover, this second transition could also be found in the linear expansion data of the shell phase.

  8. The effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced acrylic resin denture base material on oral epithelial cells and fibroblasts.

    PubMed

    Sipahi, Cumhur; Ozen, Julide; Ural, A Ugur; Dalkiz, Mehmet; Beydemir, Bedri

    2006-09-01

    Acrylic resin dentures may have cytotoxic effects on oral soft tissues. However, there is sparse data about the cytotoxic effect of fibre-reinforced acrylic resin denture base materials. The purpose of this in vitro study was to determine the effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced heat-polymerized acrylic resin denture base material on oral epithelial cells and fibroblasts. One hundred acrylic resin discs were assigned to five experimental groups (n = 20). One of the groups did not include any fibre. Two groups consisted of silane and monomer treated glass fibres (Vetrolex) impregnated into acrylic resin (QC-20) discs. The other two groups consisted of silane and monomer treated carbon fibres (Type Tenox J, HTA). Untreated cell culture was used as positive control. The human oral epithelial cell line and buccal fibroblast cultures were exposed to test specimens. The cytotoxicity of the test materials was determined by succinic dehydrogenase activity (MTT method) after 24 and 72 h exposures. Data were analysed with a statistical software program (SPSSFW, 9.0). A one-way analysis of variance (anova) test and Bonferroni test were used for the comparisons between the groups. All statistical tests were performed at the 0.95 confidence level (P < 0.05). After 24 and 72 h incubation, cell viability percentages of all experimental groups showed significant decrease according to the positive control cell culture. Fibroblastic cell viability percentages of silane and monomer treated fibre-reinforced groups were lower than the unreinforced group. Cell viability of monomer-treated groups displayed the lowest percentages. Elapsed incubation time decreased epithelial cell viability in silane-treated groups. Fibroblastic cell viability was not influenced by elapsed time except the unreinforced group.

  9. Method for chemical surface modification of fumed silica particles

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addleman, Raymond S; Atkinson, David A; Bays, John T

    An enhanced swipe sampler and method of making are described. The swipe sampler is made of a fabric containing selected glass, metal oxide, and/or oxide-coated glass or metal fibers. Fibers are modified with silane ligands that are directly attached to the surface of the fibers to functionalize the sampling surface of the fabric. The swipe sampler collects various target analytes including explosives and other threat agents on the surface of the sampler.

  11. Application of whole slide image markup and annotation for pathologist knowledge capture.

    PubMed

    Campbell, Walter S; Foster, Kirk W; Hinrichs, Steven H

    2013-01-01

    The ability to transfer image markup and annotation data from one scanned image of a slide to a newly acquired image of the same slide within a single vendor platform was investigated. The goal was to study the ability to use image markup and annotation data files as a mechanism to capture and retain pathologist knowledge without retaining the entire whole slide image (WSI) file. Accepted mathematical principles were investigated as a method to overcome variations in scans of the same glass slide and to accurately associate image markup and annotation data across different WSI of the same glass slide. Trilateration was used to link fixed points within the image and slide to the placement of markups and annotations of the image in a metadata file. Variation in markup and annotation placement between WSI of the same glass slide was reduced from over 80 μ to less than 4 μ in the x-axis and from 17 μ to 6 μ in the y-axis (P < 0.025). This methodology allows for the creation of a highly reproducible image library of histopathology images and interpretations for educational and research use.

  12. Application of whole slide image markup and annotation for pathologist knowledge capture

    PubMed Central

    Campbell, Walter S.; Foster, Kirk W.; Hinrichs, Steven H.

    2013-01-01

    Objective: The ability to transfer image markup and annotation data from one scanned image of a slide to a newly acquired image of the same slide within a single vendor platform was investigated. The goal was to study the ability to use image markup and annotation data files as a mechanism to capture and retain pathologist knowledge without retaining the entire whole slide image (WSI) file. Methods: Accepted mathematical principles were investigated as a method to overcome variations in scans of the same glass slide and to accurately associate image markup and annotation data across different WSI of the same glass slide. Trilateration was used to link fixed points within the image and slide to the placement of markups and annotations of the image in a metadata file. Results: Variation in markup and annotation placement between WSI of the same glass slide was reduced from over 80 μ to less than 4 μ in the x-axis and from 17 μ to 6 μ in the y-axis (P < 0.025). Conclusion: This methodology allows for the creation of a highly reproducible image library of histopathology images and interpretations for educational and research use. PMID:23599902

  13. A Randomized Study Comparing Digital Imaging to Traditional Glass Slide Microscopy for Breast Biopsy and Cancer Diagnosis.

    PubMed

    Elmore, Joann G; Longton, Gary M; Pepe, Margaret S; Carney, Patricia A; Nelson, Heidi D; Allison, Kimberly H; Geller, Berta M; Onega, Tracy; Tosteson, Anna N A; Mercan, Ezgi; Shapiro, Linda G; Brunyé, Tad T; Morgan, Thomas R; Weaver, Donald L

    2017-01-01

    Digital whole slide imaging may be useful for obtaining second opinions and is used in many countries. However, the U.S. Food and Drug Administration requires verification studies. Pathologists were randomized to interpret one of four sets of breast biopsy cases during two phases, separated by ≥9 months, using glass slides or digital format (sixty cases per set, one slide per case, n = 240 cases). Accuracy was assessed by comparing interpretations to a consensus reference standard. Intraobserver reproducibility was assessed by comparing the agreement of interpretations on the same cases between two phases. Estimated probabilities of confirmation by a reference panel (i.e., predictive values) were obtained by incorporating data on the population prevalence of diagnoses. Sixty-five percent of responding pathologists were eligible, and 252 consented to randomization; 208 completed Phase I (115 glass, 93 digital); and 172 completed Phase II (86 glass, 86 digital). Accuracy was slightly higher using glass compared to digital format and varied by category: invasive carcinoma, 96% versus 93% ( P = 0.04); ductal carcinoma in situ (DCIS), 84% versus 79% ( P < 0.01); atypia, 48% versus 43% ( P = 0.08); and benign without atypia, 87% versus 82% ( P < 0.01). There was a small decrease in intraobserver agreement when the format changed compared to when glass slides were used in both phases ( P = 0.08). Predictive values for confirmation by a reference panel using glass versus digital were: invasive carcinoma, 98% and 97% (not significant [NS]); DCIS, 70% and 57% ( P = 0.007); atypia, 38% and 28% ( P = 0.002); and benign without atypia, 97% and 96% (NS). In this large randomized study, digital format interpretations were similar to glass slide interpretations of benign and invasive cancer cases. However, cases in the middle of the spectrum, where more inherent variability exists, may be more problematic in digital format. Future studies evaluating the effect these findings exert on clinical practice and patient outcomes are required.

  14. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    PubMed

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  15. iPathology cockpit diagnostic station: validation according to College of American Pathologists Pathology and Laboratory Quality Center recommendation at the Hospital Trust and University of Verona.

    PubMed

    Brunelli, Matteo; Beccari, Serena; Colombari, Romano; Gobbo, Stefano; Giobelli, Luca; Pellegrini, Andrea; Chilosi, Marco; Lunardi, Maria; Martignoni, Guido; Scarpa, Aldo; Eccher, Albino

    2014-01-01

    Validation of digital whole slide images is crucial to ensure that diagnostic performance is at least equivalent to that of glass slides and light microscopy. The College of American Pathologists Pathology and Laboratory Quality Center recently developed recommendations for internal digital pathology system validation. Following these guidelines we sought to validate the performance of a digital approach for routine diagnosis by using an iPad and digital control widescreen-assisted workstation through a pilot study. From January 2014, 61 histopathological slides were scanned by ScanScope Digital Slides Scanner (Aperio, Vista, CA). Two independent pathologists performed diagnosis on virtual slides in front of a widescreen by using two computer devices (ImageScope viewing software) located to different Health Institutions (AOUI Verona) connected by local network and a remote image server using an iPad tablet (Aperio, Vista, CA), after uploading the Citrix receiver for iPad. Quality indicators related to image characters and work-flow of the e-health cockpit enterprise system were scored based on subjective (high vs poor) perception. The images were re-evaluated two weeks apart. The whole glass slides encountered 10 liver: hepatocarcinoma, 10 renal carcinoma, 10 gastric carcinoma and 10 prostate biopsies: adenocarcinoma, 5 excisional skin biopsies: melanoma, 5 lymph-nodes: lymphoma. 6 immuno- and 5 special stains were available for intra- and internet remote viewing. Scan times averaged two minutes and 54 seconds per slide (standard deviation 2 minutes 34 seconds). Megabytes ranged from 256 to 680 (mean 390) per slide storage. Reliance on glass slide, image quality (resolution and color fidelity), slide navigation time, simultaneous viewers in geographically remote locations were considered of high performance score. Side by side comparisons between diagnosis performed on tissue glass slides versus widescreen were excellent showing an almost perfect concordance (0.81, kappa index). We validated our institutional digital pathology system for routine diagnostic facing with whole slide images in a cockpit enterprise digital system or iPad tablet. Computer widescreens are better for diagnosing scanned glass slide that iPad. For urgent requests, iPad may be used. Legal aspects have to be soon faced with to permit the clinical use of this technology in a manner that does not compromise patient care.

  16. A method for reducing the sloughing of thick blood films for malaria diagnosis.

    PubMed

    Norgan, Andrew P; Arguello, Heather E; Sloan, Lynne M; Fernholz, Emily C; Pritt, Bobbi S

    2013-07-08

    The gold standard for malaria diagnosis is the examination of thick and thin blood films. Thick films contain 10 to 20 times more blood than thin films, correspondingly providing increased sensitivity for malaria screening. A potential complication of thick film preparations is sloughing of the blood droplet from the slide during staining or rinsing, resulting in the loss of sample. In this work, two methods for improving thick film slide adherence ('scratch' (SCM) and 'acetone dip' (ADM) methods) were compared to the 'standard method' (SM) of thick film preparation. Standardized blood droplets from 26 previously examined EDTA whole blood specimens (22 positive and four negative) were concurrently spread on glass slides using the SM, ADM, and SCM. For the SM and ADM prepared slides, the droplet was gently spread to an approximate 22 millimeters in diameter spot on the slide using the edge of a second glass slide. For the SCM, the droplet was spread by carefully grinding (or scratching) it into the slide with the point of a second glass slide. Slides were dried for one hour in a laminar flow hood. For the ADM, slides were dipped once in an acetone filled Coplin jar and allowed to air dry. All slides were then Giemsa-stained and examined in a blinded manner. Adherence was assessed by blinded reviewers. No significant or severe defects were observed for slides prepared with the SCM. In contrast, 8 slides prepared by the ADM and 3 prepared using the SM displayed significant or severe defects. Thick films prepared by the three methods were microscopically indistinguishable and concordant results (positive or negative) were obtained for the three methods. Estimated parasitaemia of the blood samples ranged from 25 to 429,169 parasites/μL of blood. The SCM is an inexpensive, rapid, and simple method that improves the adherence of thick blood films to standard glass slides without altering general slide preparation, microscopic appearance or interpretability. Using the SCM, thick films can be reliably examined less than two hours after sample receipt. This represents a significant diagnostic improvement over protocols requiring extended drying periods.

  17. Characterization of Biofouling Marine Caulobacters and Their Adhesive Holdfast

    DTIC Science & Technology

    1988-06-30

    SAD-A 197 211 _, 111 3 CEILL GJU JREPORT DOCUMENTATION PAGE la. REPORT SECURITY CLASSIFiCATION ’b RESTRICTIVE MARKIN6, S U 1 2a. SECURITY...what types of surfaces to which the Caulobacters will attach. This was approached by the preparation of glass surfaces covalently modified with a...finding that dimethyldichlorosilane treated glass (ie classical "silanizing") was reasonably effective in discouraging attachment, a convenience for many

  18. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane.

    PubMed

    Luo, Nan; Zhong, Hui; Yang, Min; Yuan, Xing; Fan, Yaobo

    2016-01-01

    Experimental design and response surface methodology (RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide (AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride) (PVDF) composite membrane (GFRP-CM). The factors considered for experimental design were the UV (ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0-0.25 wt.%, solvent of N-Dimethylacetamide (DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and energy dispersive X-ray spectroscopy (EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM. Copyright © 2015. Published by Elsevier B.V.

  19. Self-sampling for human papillomavirus DNA detection: a preliminary study of compliance and feasibility in BOLIVIA.

    PubMed

    Surriabre, Pedro; Allende, Gustavo; Prado, Marcela; Cáceres, Leyddy; Bellot, Diego; Torrico, Andrea; Ustariz, Karina; Rojas, Shirley; Barriga, Jaime; Calle, Pamela; Villarroel, Ligia; Yañez, Rosse Mary; Baay, Marc; Rodriguez, Patricia; Fontaine, Véronique

    2017-12-22

    Cervical cancer incidence and mortality rates in Bolivia are among the highest in Latin America. This investigation aims to evaluate the possibility of using simple devices, e.g. a cotton swab and a glass slide, for self-sampling in order to detect human papillomavirus (HPV) DNA by PCR in cervico-vaginal cells. In the first phase of our study we evaluated the use of a glass slide as a transport medium for cervical cells. A physician took paired-cervical samples from 235 women. One sample was transported in Easyfix® solution and the other sample was smeared over a glass slide. Both were further analyzed and compared for human DNA recovery and HPV detection. A kappa value was determined to evaluate the agreement between the HPV DNA detection rates. In the second phase of the study, 222 women from the urban, peri-urban and rural regions of Cochabamba were requested to perform self-sampling using the following devices: a cotton swab combined with a glass slide, and a vaginal tampon. Women gave their opinion about the self-sampling technique. Finally, the agreement for high risk-HPV detection between self- and physician-collected samples was performed in 201 samples in order to evaluate the self-sampling technique. Firstly, the comparison between Easyfix® solution and the glass slide to transport clinical samples gave a good agreement for HPV DNA detection (κ = 0.71, 95% CI 0.60-0.81). Secondly, self-sampling, especially with cotton swab combined with glass slide, would generally be preferred over clinician sampling for a screening program based on HPV detection. Finally, we showed a good agreement between self- and physician collected samples for high risk-HPV detection (κ = 0.71, 95% CI 0.55-0.88). Simple devices such as a cotton swab and a glass slide can be used to perform self-sampling and HPV DNA detection. Furthermore, most Bolivian women preferred self-sampling over clinician-sampling for cervical cancer screening.

  20. 9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. INTERIOR OF LIVING ROOM SHOWING ALUMINUM SLIDING GLASS WINDOW FRONT DOOR, AND ORIGINAL 6-LIGHT OVER 1-LIGHT, DOUBLE-HUNG WINDOWS IN SINGLE AND DOUBLE ARRANGEMENTS. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  1. Electronic p-Chip-Based System for Identification of Glass Slides and Tissue Cassettes in Histopathology Laboratories.

    PubMed

    Mandecki, Wlodek; Qian, Jay; Gedzberg, Katie; Gruda, Maryanne; Rodriguez, Efrain Frank; Nesbitt, Leslie; Riben, Michael

    2018-01-01

    The tagging system is based on a small, electronic, wireless, laser-light-activated microtransponder named "p-Chip." The p-Chip is a silicon integrated circuit, the size of which is 600 μm × 600 μm × 100 μm. Each p-Chip contains a unique identification code stored within its electronic memory that can be retrieved with a custom reader. These features allow the p-Chip to be used as an unobtrusive and scarcely noticeable ID tag on glass slides and tissue cassettes. The system is comprised of p-Chip-tagged sample carriers, a dedicated benchtop p-Chip ID reader that can accommodate both objects, and an additional reader (the Wand), with an adapter for reading IDs of glass slides stored vertically in drawers. On slides, p-Chips are attached with adhesive to the center of the short edge, and on cassettes - embedded directly into the plastic. ID readout is performed by bringing the reader to the proximity of the chip. Standard histopathology laboratory protocols were used for testing. Very good ID reading efficiency was observed for both glass slides and cassettes. When processed slides are stored in vertical filing drawers, p-Chips remain readable without the need to remove them from the storage location, thereby improving the speed of searches in collections. On the cassettes, the ID continues to be readable through a thin layer of paraffin. Both slides and tissue cassettes can be read with the same reader, reducing the need for redundant equipment. The p-Chip is stable to all chemical challenges commonly used in the histopathology laboratory, tolerates temperature extremes, and remains durable in long-term storage. The technology is compatible with laboratory information management systems software systems. The p-Chip system is very well suited for identification of glass slides and cassettes in the histopathology laboratory.

  2. Electronic p-Chip-Based System for Identification of Glass Slides and Tissue Cassettes in Histopathology Laboratories

    PubMed Central

    Mandecki, Wlodek; Qian, Jay; Gedzberg, Katie; Gruda, Maryanne; Rodriguez, Efrain “Frank”; Nesbitt, Leslie; Riben, Michael

    2018-01-01

    Background: The tagging system is based on a small, electronic, wireless, laser-light-activated microtransponder named “p-Chip.” The p-Chip is a silicon integrated circuit, the size of which is 600 μm × 600 μm × 100 μm. Each p-Chip contains a unique identification code stored within its electronic memory that can be retrieved with a custom reader. These features allow the p-Chip to be used as an unobtrusive and scarcely noticeable ID tag on glass slides and tissue cassettes. Methods: The system is comprised of p-Chip-tagged sample carriers, a dedicated benchtop p-Chip ID reader that can accommodate both objects, and an additional reader (the Wand), with an adapter for reading IDs of glass slides stored vertically in drawers. On slides, p-Chips are attached with adhesive to the center of the short edge, and on cassettes – embedded directly into the plastic. ID readout is performed by bringing the reader to the proximity of the chip. Standard histopathology laboratory protocols were used for testing. Results: Very good ID reading efficiency was observed for both glass slides and cassettes. When processed slides are stored in vertical filing drawers, p-Chips remain readable without the need to remove them from the storage location, thereby improving the speed of searches in collections. On the cassettes, the ID continues to be readable through a thin layer of paraffin. Both slides and tissue cassettes can be read with the same reader, reducing the need for redundant equipment. Conclusions: The p-Chip is stable to all chemical challenges commonly used in the histopathology laboratory, tolerates temperature extremes, and remains durable in long-term storage. The technology is compatible with laboratory information management systems software systems. The p-Chip system is very well suited for identification of glass slides and cassettes in the histopathology laboratory. PMID:29692946

  3. Dendrimeric coating of glass slides for sensitive DNA microarrays analysis

    PubMed Central

    Le Berre, Véronique; Trévisiol, Emmanuelle; Dagkessamanskaia, Adilia; Sokol, Serguei; Caminade, Anne-Marie; Majoral, Jean Pierre; Meunier, Bernard; François, Jean

    2003-01-01

    Successful use and reliability of microarray technology is highly dependent on several factors, including surface chemistry parameters and accessibility of cDNA targets to the DNA probes fixed onto the surface. Here, we show that functionalisation of glass slides with homemade dendrimers allow production of more sensitive and reliable DNA microarrays. The dendrimers are nanometric structures of size-controlled diameter with aldehyde function at their periphery. Covalent attachment of these spherical reactive chemical structures on amino-silanised glass slides generates a reactive ∼100 Å layer onto which amino-modified DNA probes are covalently bound. This new grafting chemistry leads to the formation of uniform and homogenous spots. More over, probe concentration before spotting could be reduced from 0.2 to 0.02 mg/ml with PCR products and from 20 to 5 µM with 70mer oligonucleotides without affecting signal intensities after hybridisation with Cy3- and Cy5-labelled targets. More interestingly, while the binding capacity of captured probes on dendrimer-activated glass surface (named dendrislides) is roughly similar to other functionalised glass slides from commercial sources, detection sensitivity was 2-fold higher than with other available DNA microarrays. This detection limit was estimated to 0.1 pM of cDNA targets. Altogether, these features make dendrimer-activated slides ideal for manufacturing cost-effective DNA arrays applicable for gene expression and detection of mutations. PMID:12907740

  4. Silane surface modification for improved bioadhesion of esophageal stents

    PubMed Central

    Karakoy, Mert; Gultepe, Evin; Pandey, Shivendra; Khashab, Mouen A.; Gracias, David H.

    2014-01-01

    Stent migration occurs in 10-40% of patients who undergo placement of esophageal stents, with higher migration rates seen in those treated for benign esophageal disorders. This remains a major drawback of esophageal stent therapy. In this paper, we propose a new surface modification method to increase the adhesion between self-expandable metallic stents (SEMS) and tissue while preserving their removability. Taking advantage of the well-known affinity between epoxide and amine terminated silane coupling agents with amine and carboxyl groups that are abundant in proteins and related molecules in the human body; we modified the surfaces of silicone coated esophageal SEMS with these adhesive self-assembled monolayers (SAMs). We utilized vapor phase silanization to modify the surfaces of different substrates including PDMS strips and SEMS, and measured the force required to slide these substrates on a tissue piece. Our results suggest that surface modification of esophageal SEMS via covalent attachment of protein-binding coupling agents improves adhesion to tissue and could offer a solution to reduce SEMS migration while preserving their removability. PMID:25663731

  5. Tunicamycin Enhances Neuroinvasion and Pathogenicity in Mice with Venezuelan Equine Encephalitis Virus

    DTIC Science & Technology

    2003-01-01

    H. Analytical Tests 35 1. Virus Titrations 35 2. RNA Analysis 37 3. Determination of TNF-a and Total Nitrite Levels 37...fluorescent microscope. H. Analytical Tests 1. Virus Titrations For determination of virus titers, brain samples were homogenized in Eppendorf tubes...tissues were mounted on silane-coated slides (Sigma Diagnostics , St. Louis, MO) and labeled for VEE virus antigen by immunohistochemistry. Additional

  6. Comparison of a virtual microscope laboratory to a regular microscope laboratory for teaching histology.

    PubMed

    Harris, T; Leaven, T; Heidger, P; Kreiter, C; Duncan, J; Dick, F

    2001-02-01

    Emerging technology now exists to digitize a gigabyte of information from a glass slide, save it in a highly compressed file format, and deliver it over the web. By accessing these images with a standard web browser and viewer plug-in, a computer can emulate a real microscope and glass slide. Using this new technology, the immediate aims of our project were to digitize the glass slides from urinary tract, male genital, and endocrine units and implement them in the Spring 2000 Histology course at the University of Iowa, and to carry out a formative evaluation of the virtual slides of these three units in a side-by-side comparison with the regular microscope laboratory. The methods and results of this paper will describe the technology employed to create the virtual slides, and the formative evaluation carried out in the course. Anat Rec (New Anat) 265:10-14, 2001. Copyright 2001 Wiley-Liss, Inc.

  7. A Randomized Study Comparing Digital Imaging to Traditional Glass Slide Microscopy for Breast Biopsy and Cancer Diagnosis

    PubMed Central

    Elmore, Joann G.; Longton, Gary M.; Pepe, Margaret S.; Carney, Patricia A.; Nelson, Heidi D.; Allison, Kimberly H.; Geller, Berta M.; Onega, Tracy; Tosteson, Anna N. A.; Mercan, Ezgi; Shapiro, Linda G.; Brunyé, Tad T.; Morgan, Thomas R.; Weaver, Donald L.

    2017-01-01

    Background: Digital whole slide imaging may be useful for obtaining second opinions and is used in many countries. However, the U.S. Food and Drug Administration requires verification studies. Methods: Pathologists were randomized to interpret one of four sets of breast biopsy cases during two phases, separated by ≥9 months, using glass slides or digital format (sixty cases per set, one slide per case, n = 240 cases). Accuracy was assessed by comparing interpretations to a consensus reference standard. Intraobserver reproducibility was assessed by comparing the agreement of interpretations on the same cases between two phases. Estimated probabilities of confirmation by a reference panel (i.e., predictive values) were obtained by incorporating data on the population prevalence of diagnoses. Results: Sixty-five percent of responding pathologists were eligible, and 252 consented to randomization; 208 completed Phase I (115 glass, 93 digital); and 172 completed Phase II (86 glass, 86 digital). Accuracy was slightly higher using glass compared to digital format and varied by category: invasive carcinoma, 96% versus 93% (P = 0.04); ductal carcinoma in situ (DCIS), 84% versus 79% (P < 0.01); atypia, 48% versus 43% (P = 0.08); and benign without atypia, 87% versus 82% (P < 0.01). There was a small decrease in intraobserver agreement when the format changed compared to when glass slides were used in both phases (P = 0.08). Predictive values for confirmation by a reference panel using glass versus digital were: invasive carcinoma, 98% and 97% (not significant [NS]); DCIS, 70% and 57% (P = 0.007); atypia, 38% and 28% (P = 0.002); and benign without atypia, 97% and 96% (NS). Conclusions: In this large randomized study, digital format interpretations were similar to glass slide interpretations of benign and invasive cancer cases. However, cases in the middle of the spectrum, where more inherent variability exists, may be more problematic in digital format. Future studies evaluating the effect these findings exert on clinical practice and patient outcomes are required. PMID:28382226

  8. Optimizing Frozen Sample Preparation for Laser Microdissection: Assessment of CryoJane Tape-Transfer System®

    PubMed Central

    Golubeva, Yelena G.; Smith, Roberta M.; Sternberg, Lawrence R.

    2013-01-01

    Laser microdissection is an invaluable tool in medical research that facilitates collecting specific cell populations for molecular analysis. Diversity of research targets (e.g., cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, etc.) and varied scientific objectives, however, present challenges toward establishing standard laser microdissection protocols. Sample preparation is crucial for quality RNA, DNA and protein retrieval, where it often determines the feasibility of a laser microdissection project. The majority of microdissection studies in clinical and animal model research are conducted on frozen tissues containing native nucleic acids, unmodified by fixation. However, the variable morphological quality of frozen sections from tissues containing fat, collagen or delicate cell structures can limit or prevent successful harvest of the desired cell population via laser dissection. The CryoJane Tape-Transfer System®, a commercial device that improves cryosectioning outcomes on glass slides has been reported superior for slide preparation and isolation of high quality osteocyte RNA (frozen bone) during laser dissection. Considering the reported advantages of CryoJane for laser dissection on glass slides, we asked whether the system could also work with the plastic membrane slides used by UV laser based microdissection instruments, as these are better suited for collection of larger target areas. In an attempt to optimize laser microdissection slide preparation for tissues of different RNA stability and cryosectioning difficulty, we evaluated the CryoJane system for use with both glass (laser capture microdissection) and membrane (laser cutting microdissection) slides. We have established a sample preparation protocol for glass and membrane slides including manual coating of membrane slides with CryoJane solutions, cryosectioning, slide staining and dissection procedure, lysis and RNA extraction that facilitated efficient dissection and high quality RNA retrieval from CryoJane preparations. CryoJane technology therefore has the potential to facilitate standardization of laser microdissection slide preparation from frozen tissues. PMID:23805281

  9. Diffractive laser beam homogenizer including a photo-active material and method of fabricating the same

    DOEpatents

    Bayramian, Andy J; Ebbers, Christopher A; Chen, Diana C

    2014-05-20

    A method of manufacturing a plurality of diffractive optical elements includes providing a partially transmissive slide, providing a first piece of PTR glass, and directing first UV radiation through the partially transmissive slide to impinge on the first piece of PTR glass. The method also includes exposing predetermined portions of the first piece of PTR glass to the first UV radiation and thermally treating the exposed first piece of PTR glass. The method further includes providing a second piece of PTR glass and directing second UV radiation through the thermally treated first piece of PTR glass to impinge on the second piece of PTR glass. The method additionally includes exposing predetermined portions of the second piece of PTR glass to the second UV radiation, thermally treating the exposed second piece of PTR glass, and repeating providing and processing of the second piece of PTR glass using additional pieces of PTR glass.

  10. Processing and properties of ceramic matrix-polymer composites for dental applications

    NASA Astrophysics Data System (ADS)

    Huang, Hsuan Yao

    The basic composite structure of natural hard tissue was used to guide the design and processing of dental restorative materials. The design incorporates the methodology of using inorganic minerals as the main structural phase reinforced with a more ductile but tougher organic phase. Ceramic-polymer composites were prepared by slip casting a porous ceramic structure, heating and chemical treating the porous preform, infiltrating with monomer and then curing. The three factors that determined the mechanical properties of alumina-polymer composites were the type of polymer used, the method of silane treatments, and the type of bond between particles in the porous preforms. Without the use of silane coupling agents, the composites were measured to have a lower strength. The composite with a more "flexible" porous alumina network had a greater ability to plastically dissipate the energy of propagating cracks. However, the aggressive nature of the alumina particles on opposing enamel requires that these alumina-polymer composites have a wear compatible coating for practical application. A route to dense bioactive apatite wollastonite glass ceramics (AWGC)-polymer composites was developed. The problems associated with glass dissolution into the aqueous medium for slip casting were overcome with the use of silane. The role of heating rate and development of ceramic compact microstructure on composite properties was explored. In general, if isothermal heating was not applied, decreasing heating rate increased glass crystallinity and particle-particle fusion, but decreased pore volume. Also composite strength and fracture toughness decreased while modulus and hardness increased with decreasing heating rate. If isothermal heating was applied, glass crystallinity, pore content, and composite mechanical properties showed relatively little change regardless of the initial heating rate. The potential of AWGC-polymer composites for dental and implant applications was explored. Strengths and toughnesses were not severely degraded by immersion in simulated body fluids up to 30 days. The composite elastic modulus approached that of hard tissues and its wear behavior with opposing tooth was excellent. Growth of apatite over the entire composite surface was achieved in SBF. Growth of apatite in human whole saliva was achieved on the bioactive glass surface, but not on the composite surface.

  11. The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: Graphene oxide vs. silane coupling agents

    NASA Astrophysics Data System (ADS)

    Jing, Mengfan; Che, Junjin; Xu, Shuman; Liu, Zhenwei; Fu, Qiang

    2018-03-01

    In this work, a comparison study was carried out to investigate the efficacy of glass fiber (GF) in reinforcing poly(lactic acid) (PLA) by using traditional silane coupling agents (GF-S) and novel graphene oxide (GF-GO) as surface modifiers. The crystallization behavior of the PLA matrix was investigated by differential scanning calorimetry. The mechanical performances and the thermomechanical properties of the composites were evaluated by uniaxial tensile testing and dynamic mechanical analysis, respectively. For neat GF without any treatment, the poor interfacial adhesion and the sharp shortening of the GF length result in the relatively poor mechanical performances of PLA/GF composites. However, the incorporation of GF-S significantly improves the mechanical strength and keeps relatively good toughness of the composites, while GF-GO exhibits excellent nucleation ability for PLA and could moderately increase the modulus of the composites. The thermomechanical properties of the composites are improved markedly resulting from the crystallinity increase. The different surface modification of glass fiber influences the crystallinity of matrix, the interfacial interaction and the length of fiber, which altogether affect the mechanical performances of the prepared PLA/GF composites.

  12. Analysis of slide exploration strategy of cytologists when reading digital slides

    NASA Astrophysics Data System (ADS)

    Pantanowitz, Liron; Parwani, Anil; Tseytlin, Eugene; Mello-Thoms, Claudia

    2012-02-01

    Cytology is the sub-domain of Pathology that deals mainly with the diagnosis of cellular changes caused by disease. Current clinical practice involves a cytotechnologist that manually screens glass slides containing fixed cytology material using a light microscope. Screened slides are then forwarded to a specialized pathologist, a cytopathologist, for microscopic review and final diagnostic interpretation. If no abnormalities are detected, the specimen is interpreted as "normal", otherwise the abnormalities are marked with a pen on the glass slide by the cytotechnologist and then are used to render a diagnosis. As Pathology is migrating towards a digital environment it is important to determine whether these crucial screening and diagnostic tasks can be performed as well using digital slides as the current practice with glass slides. The purpose of this work is to make this assessment, by using a set of digital slides depicting cytological materials of different disease processes in several organs, and then to analyze how different cytologists including cytotechnologists, cytopathologists and cytotechnology-trainees explored the digital slides. We will (1) collect visual search data from the cytologists as they navigate the digital slides, as well as record any electronic marks (annotations) made by the cytologists; (2) convert the dynamic visual search data into a static representation of the observers' exploration strategy using 'search maps'; and (3) determine slide coverage, per viewing magnification range, for each group. We have developed a virtual microscope to collect this data, and this interface allows for interactive navigation of the virtual slide (including panning and zooming), as well as annotation of reportable findings. Furthermore, all interactions with the interface are time stamped, which allows us to recreate the cytologists' search strategy.

  13. Low cost silicon solar array project silicon materials task: Establishment of the feasibility of a process capable of low-cost, high volume production of silane (step 1) and the pyrolysis of silane to semiconductor-grade silicon (step 2)

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Farrier, E. G.; Rexer, J.

    1977-01-01

    Extended operation of a small process-development unit routinely produced high quality silane in 97+% yield from dichlorosilane. The production rate was consistent with design loadings for the fractionating column and for the redistribution reactor. A glass fluid-bed reactor was constructed for room temperature operation. The behavior of a bed of silcon particles was observed as a function of various feedstocks, component configurations, and operating conditions. For operating modes other than spouting, the bed behaved in an erratic and unstable manner. A method was developed for casting molten silicon powder into crack-free solid pellets for process evaluation. The silicon powder was melted and cast into thin walled quartz tubes that sacrificially broke on cooling.

  14. Influence of Surface Conditioning Protocols on Reparability of CAD/CAM Zirconia-reinforced Lithium Silicate Ceramic.

    PubMed

    Al-Thagafi, Rana; Al-Zordk, Walid; Saker, Samah

    2016-01-01

    To test the effect of surface conditioning protocols on the reparability of CAD/CAM zirconia-reinforced lithium silicate ceramic compared to lithium-disilicate glass ceramic. Zirconia-reinforced lithium silicate ceramic (Vita Suprinity) and lithium disilicate glass-ceramic blocks (IPS e.max CAD) were categorized into four groups based on the surface conditioning protocol used. Group C: no treatment (control); group HF: 5% hydrofluoric acid etching for 60 s, silane (Monobond-S) application for 60 s, air drying; group HF-H: 5% HF acid etching for 60 s, application of silane for 60 s, air drying, application of Heliobond, light curing for 20 s; group CO: sandblasting with CoJet sand followed by silanization. Composite resin (Tetric EvoCeram) was built up into 4 x 6 x 3 mm blocks using teflon molds. All specimens were subjected to thermocycling (5000x, 5°C to 55°C). The microtensile bond strength test was employed at a crosshead speed of 1 mm/min. SEM was employed for evaluation of all the debonded microbars, the failure type was categorized as either adhesive (failure at adhesive layer), cohesive (failure at ceramic or composite resin), or mixed (failure between adhesive layer and substrate). Two-way ANOVA and the Tukey's HSD post-hoc test were applied to test for significant differences in bond strength values in relation to different materials and surface pretreatment (p < 0.05). The highest microtensile repair bond strength for Vita Suprinity was reported in group CO (33.1 ± 2.4 MPa) and the lowest in group HF (27.4 ± 4.4 MPa). Regarding IPS e.max CAD, group CO showed the highest (30.5 ± 4.9 MPa) and HF the lowest microtensile bond strength (22.4 ± 5.7 MPa). Groups HF, HF-H, and CO showed statistically significant differences in terms of all ceramic types used (p < 0.05). The control group showed exclusively adhesive failures, while in HF, HF-H, and CO groups, mixed failures were predominant. Repair bond strength to zirconia-reinforced lithium silicate ceramics and lithium-disilicate glass ceramic could be improved when ceramic surfaces are sandblasted with CoJet sand followed by silanization.

  15. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.

    PubMed

    Fang, Jian; Wang, Hongxia; Xue, Yuhua; Wang, Xungai; Lin, Tong

    2010-05-01

    In this paper, we report on the production of superhydrophobic coatings on various substrates (e.g., glass slide, silicon wafer, aluminum foil, plastic film, nanofiber mat, textile fabrics) using hydrophobic magnetic nanoparticles and a magnet-assembly technique. Fe(3)O(4) magnetic nanoparticles functionalized with a thin layer of fluoroalkyl silica on the surface were synthesized by one-step coprecipitation of Fe(2+)/Fe(3+) under an alkaline condition in the presence of a fluorinated alkyl silane. Under a magnetic field, the magnetic nanoparticles can be easily deposited on any solid substrate to form a thin superhydrophobic coating with water contact angle as high as 172 degrees , and the surface superhydrophobicity showed very little dependence on the substrate type. The particulate coating showed reasonable durability because of strong aggregation effect of nanoparticles, but the coating layer can be removed (e.g., by ultrasonication) to restore the original surface feature of the substrates. By comparison, the thin particle layer deposited under no magnetic field showed much lower hydrophobicity. The main reason for magnet-induced superhydrophobic surfaces is the formation of nano- and microstructured surface features. Such a magnet-induced temporary superhydrophobic coating may have wide applications in electronic, biomedical, and defense-related areas.

  16. An Investigation of the Incorporation of Virtual Microscopy in the Cytotechnology Educational Curriculum

    ERIC Educational Resources Information Center

    Mukherjee, Maheswari S.

    2012-01-01

    Traditionally, cytotechnology (CT) students have been trained by using light microscopy (LM) and glass slides. However, this method of training has some drawbacks. Several other educational programs with similar issues have incorporated virtual microscopy (VM) in their curricula. In VM, the specimens on glass slides are converted into virtual…

  17. Enhanced post wash retention of combed DNA molecules by varying multiple combing parameters.

    PubMed

    Yadav, Hemendra; Sharma, Pulkit

    2017-11-01

    Recent advances in genomics have created a need for efficient techniques for deciphering information hidden in various genomes. Single molecule analysis is one such technique to understand molecular processes at single molecule level. Fiber- FISH performed with the help of DNA combing can help us in understanding genetic rearrangements and changes in genome at single DNA molecule level. For performing Fiber-FISH we need high retention of combed DNA molecules post wash as Fiber-FISH requires profuse washing. We optimized combing process involving combing solution, method of DNA mounting on glass slides and coating of glass slides to enhance post-wash retention of DNA molecules. It was found that average number of DNA molecules observed post-wash per field of view was maximum with our optimized combing solution. APTES coated glass slides showed lesser retention than PEI surface but fluorescent intensity was higher in case of APTES coated surface. Capillary method used to mount DNA on glass slides also showed lesser retention but straight DNA molecules were observed as compared to force flow method. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Silane coupling agent bearing a photoremovable succinimidyl carbonate for patterning amines on glass and silicon surfaces with controlled surface densities.

    PubMed

    Nakayama, Hidekazu; Nakanishi, Jun; Shimizu, Takahiro; Yoshino, Yutaro; Iwai, Hideo; Kaneko, Shingo; Horiike, Yasuhiro; Yamaguchi, Kazuo

    2010-03-01

    Patterned immobilization of synthetic and biological ligands on material surfaces with controlled surface densities is important for various bioanalytical and cell biological purposes. This paper describes the synthesis, characterization, and application of a novel silane coupling agent bearing a photoremovable succinimidyl carbonate, which enables the photopatterning of various primary amines on glass and silicon surfaces. The silane coupling agent is 1-[5-methoxy-2-nitro-4-(3-trimethoxysilylpropyloxy)phenyl]ethyl N-succinimidyl carbonate. The distinct feature of this molecule is that it has a photocleavable 2-nitrobenzyl switch between a trimethoxysilyl group and a succinimidyl carbonate, each reactive to the hydroxy groups of inorganic oxides and primary amines. Based on this molecular design, the compound allows for the one-step introduction of succinimidyl carbonates onto the surface of glass and silicon, immobilization of primary amines, and region-selective and dose-dependent release of the amines by near-UV irradiation. Therefore, we were able to pattern amine ligands on the substrates in given surface densities and arbitrary geometries by controlling the doses and regions of photoirradiation. These features were verified by UV-vis spectroscopy, contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM). The compound was applied to form a chemical density gradient of amino-biotin on a silicon substrate in a range of 0.87-0.12 chains/nm(2) by controlling photoirradiation under a standard fluorescence microscope. Furthermore, we also succeeded in forming a chemical density gradient at a lower surface density range (0.15-0.011 chains/nm(2)) on the substrate by diluting the feed amino-biotin with an inert control amine.

  19. Tensile strength of glass fiber posts submitted to different surface treatments.

    PubMed

    Faria, Maria Isabel A; Gomes, Érica Alves; Messias, Danielle Cristine; Silva Filho, João Manoel; Souza Filho, Celso Bernardo; Paulino, Silvana Maria

    2013-01-01

    The aim of this in vitro study was to evaluate the tensile strength of glass fiber posts submitted to different surface treatments. Forty-eight maxillary canines had their crowns sectioned and root canals endodontically treated. The roots were embedded in acrylic resin and distributed into 3 groups according to the surface treatment: Group I: the posts were treated with silane agent for 30 s and adhesive; Group II: the posts were cleaned with alcohol before treatment with silane agent and adhesive; Group III: the posts were submitted to conditioning with 37% phosphoric acid for 30 s before treatment with silane agent and adhesive. Each group was divided into 2 subgroups for adhesive polymerization or not before insertion into the canal: A - adhesive was not light cured and B - adhesive was light cured. All posts were cemented with Panavia F and the samples were subjected to tensile strength test in a universal testing machine at crosshead speed of 1 mm/min. Data were submitted to one-way ANOVA and Tukey's test at 5% significance level. There was statistically significant difference (p<0.01) only between group GIII-B and groups GI-A and GI-B. No significant difference was found among the other groups (p>0.05). It was concluded that the products used for cleaning the posts influenced the retention regardless of adhesive light curing.

  20. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    PubMed

    Pluk, H; Stokes, D J; Lich, B; Wieringa, B; Fransen, J

    2009-03-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary electron (SE) and backscatter electron (BSE) images of uncoated cells can be obtained in high-vacuum SEM without charging artefacts. Interestingly, we observed that BSE imaging is influenced by both accelerating voltage and ITO coating thickness. By combining SE and BSE imaging with fluorescence light microscopy imaging, we were able to reveal detailed features of actin cytoskeletal and mitochondrial structures in mouse embryonic fibroblasts. We propose that the application of ITO glass as a substrate for cell culture can easily be extended and offers new opportunities for correlative light and electron microscopy studies of adherently growing cells.

  1. Low-pressure chemical vapor deposition of low in situ phosphorus doped silicon thin films

    NASA Astrophysics Data System (ADS)

    Sarret, M.; Liba, A.; Bonnaud, O.

    1991-09-01

    In situ low phosphorus doped silicon films are deposited onto glass substrates by low-pressure chemical vapor deposition method. The deposition parameters, temperature, total pressure, and pure silane gas flow are, respectively, fixed at 550 °C, 0.08 Torr, and 50 sccm. The varying deposition parameter is phosphine/silane mole ratio; when this ratio varies from 2×10-6 to 4×10-4, the phosphorus concentration and the resistivity after annealing, respectively, vary from 2×1018 to 3×1020 atoms cm-3 and from 1.5 Ω cm to 2.5×10-3 Ω cm.

  2. Self-organization of gold nanoparticles on silanated surfaces.

    PubMed

    Kyaw, Htet H; Al-Harthi, Salim H; Sellai, Azzouz; Dutta, Joydeep

    2015-01-01

    The self-organization of monolayer gold nanoparticles (AuNPs) on 3-aminopropyltriethoxysilane (APTES)-functionalized glass substrate is reported. The orientation of APTES molecules on glass substrates plays an important role in the interaction between AuNPs and APTES molecules on the glass substrates. Different orientations of APTES affect the self-organization of AuNps on APTES-functionalized glass substrates. The as grown monolayers and films annealed in ultrahigh vacuum and air (600 °C) were studied by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, UV-visible spectroscopy and ultraviolet photoelectron spectroscopy. Results of this study are fundamentally important and also can be applied for designing and modelling of surface plasmon resonance based sensor applications.

  3. 13. INTERIOR OF FRONT BEDROOM SHOWING BUILTIN COMBINATION CABINET/SLIDING DOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF FRONT BEDROOM SHOWING BUILT-IN COMBINATION CABINET/SLIDING DOOR CLOSET AND SLIDING GLASS WINDOW. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  4. Hardness of model dental composites - the effect of filler volume fraction and silanation.

    PubMed

    McCabe, J F; Wassell, R W

    1999-05-01

    The relationship between structure and mechanical properties for dental composites has often proved difficult to determine due to the use of commercially available materials having a number of differences in composition i.e. different type of resin, different type of filler, etc. This makes a scientific study of any one variable such as filler content difficult if not impossible. In the current study it was the aim to test the hypothesis that hardness measurements of dental composites could be used to monitor the status of the resin-filler interface and to determine the efficacy of any particle silanation process. Ten model composites formulated from a single batch of resin and containing a common type of glass filler were formulated to contain varying amounts of filler. Some materials contained silanated filler, others contained unsilanated filler. Specimens were prepared and stored in water and hardness (Vickers') was determined at 24 h using loads of 50, 100, 200 and 300 g. Composites containing silanated fillers were significantly harder than materials containing unsilanated fillers. For unsilanated products hardness was independent of applied load and in this respect they behaved like homogeneous materials. For composites containing silanated fillers there was a marked increase in measured hardness as applied load was increased. This suggests that the hardness-load profile could be used to monitor the status of the resin-filler interface. Copyright 1999 Kluwer Academic Publishers

  5. Effect of Surface Treatments on the Bond Strength to Turkom-Cera All-ceramic Material.

    PubMed

    Razak, Abdul Aa; Abu-Hassan, Mohamed I; Al-Makramani, Bandar Ma; Al-Sanabani, Fuad A; Al-Shami, Ibrahim Z; Almansour, Hosain M

    2016-11-01

    The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan). Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups. In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks. The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations.

  6. Fractography and Mechanical Properties of Urethane Dimethacrylate Dental Composites Reinforced with Glass Nanoparticles.

    PubMed

    M, Monfared; Me, Bahrololoom

    2016-12-01

    Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. The glass nano-particles were achieved via wet milling. The surface of the particles was modified with 3-(Trimethoxysilyl) propyl methacrylate (γ-MPTMS) silane in order to improve their surface. Fourier transform infra-red (FTIR) analysis showed that the silane groups provided double bonds to the surface of the particles and prevented agglomeration. Then, the composite resins were made with different weight percentages of Pyrex glass. The mechanical properties of samples flexural test were evaluated. The required energy for fracture of the specimens was achieved via this test. The fracture surfaces of the samples were analyzed using a scanning electron microscope (SEM) in order to explain the mechanisms of fracture. The results and analysis showed that increasing the glass nano-particles mass fraction had a great effect on mechanical properties of the composites due to the mechanisms of crack propagation and crack deflection as well as preventing void formation. The effective energy dissipation mechanisms such as crack pinning and deflection, was observed in SEM micrographs. Void formation in the low filler content composite is one of the mechanisms to decrease the energy required for fracture of these composites and eventually weaken them.

  7. Fractography and Mechanical Properties of Urethane Dimethacrylate Dental Composites Reinforced with Glass Nanoparticles

    PubMed Central

    M*, Monfared; ME, Bahrololoom

    2016-01-01

    Statement of Problem: Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. Objectives: The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. Materials and Methods: The glass nano-particles were achieved via wet milling. The surface of the particles was modified with 3-(Trimethoxysilyl) propyl methacrylate (γ-MPTMS) silane in order to improve their surface. Fourier transform infra-red (FTIR) analysis showed that the silane groups provided double bonds to the surface of the particles and prevented agglomeration. Then, the composite resins were made with different weight percentages of Pyrex glass. The mechanical properties of samples flexural test were evaluated. The required energy for fracture of the specimens was achieved via this test. The fracture surfaces of the samples were analyzed using a scanning electron microscope (SEM) in order to explain the mechanisms of fracture. Results: The results and analysis showed that increasing the glass nano-particles mass fraction had a great effect on mechanical properties of the composites due to the mechanisms of crack propagation and crack deflection as well as preventing void formation. The effective energy dissipation mechanisms such as crack pinning and deflection, was observed in SEM micrographs. Conclusions: Void formation in the low filler content composite is one of the mechanisms to decrease the energy required for fracture of these composites and eventually weaken them. PMID:28959761

  8. Improvement in the amine glass platform by bubbling method for a DNA microarray

    PubMed Central

    Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo

    2015-01-01

    A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool. PMID:26468293

  9. Improvement in the amine glass platform by bubbling method for a DNA microarray.

    PubMed

    Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo

    2015-01-01

    A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool.

  10. Tribological properties of glass fiber filled polytetrafluoroethylene sliding against stainless steel under dry and aqueous environments: enhanced tribological performance in sea water

    NASA Astrophysics Data System (ADS)

    Jebran Khan, Mohammad; Wani, M. F.; Gupta, Rajat

    2018-05-01

    The present study aims at investigating the tribological behavior of glass fiber filled PTFE on sliding against AISI 420 stainless steel in ambient air, distilled water and natural sea water. The friction and wear tests were carried out using a pin-on-disc configuration at room temperature on 25 wt% glass fiber filled PTFE at a normal load of 10 N. The glass fiber filled PTFE showed superior tribological performance in sea water compared to dry sliding and distilled water environment conditions. The lowest average coefficient of friction of 0.028 and lowest specific wear rate of 5.85 × 10‑6 mm3 Nm‑1 was observed under sea water environment. The worn surfaces were examined using Optical microscopy, SEM, EDS and Raman spectroscopy to reveal the wear mechanisms. It was revealed that the superior tribological performance of glass fiber filled PTFE in sea water is due to the formation of a lubricating film on the surface of glass fiber filled PTFE in sea water. The profilometric traces of the counterface after tribological tests were taken using an optical 3D surface profilometer to investigate the effect of indirect corrosive wear on the friction and wear of glass fiber filled PTFE under sea water environment.

  11. Self-organization of gold nanoparticles on silanated surfaces

    PubMed Central

    Kyaw, Htet H; Sellai, Azzouz; Dutta, Joydeep

    2015-01-01

    Summary The self-organization of monolayer gold nanoparticles (AuNPs) on 3-aminopropyltriethoxysilane (APTES)-functionalized glass substrate is reported. The orientation of APTES molecules on glass substrates plays an important role in the interaction between AuNPs and APTES molecules on the glass substrates. Different orientations of APTES affect the self-organization of AuNps on APTES-functionalized glass substrates. The as grown monolayers and films annealed in ultrahigh vacuum and air (600 °C) were studied by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, UV–visible spectroscopy and ultraviolet photoelectron spectroscopy. Results of this study are fundamentally important and also can be applied for designing and modelling of surface plasmon resonance based sensor applications. PMID:26734526

  12. Preparation and wettability examinations of transparent SiO2 binder-added MgF2 nanoparticle coatings covered with fluoro-alkyl silane self-assembled monolayer.

    PubMed

    Murata, Tsuyoshi; Hieda, Junko; Saito, Nagahiro; Takai, Osamu

    2012-05-01

    SiO2-added MgF2 nanoparticle coatings with various surface roughness properties were formed on fused silica-glass substrates from autoclaved sols prepared at 100-180 °C. To give it hydrophobicity, we treated the samples with fluoro-alkyl silane (FAS) vapor to form self-assembled monolayers on the nanoparticle coating and we examined the wettability of the samples. The samples preserved good transparency even after the FAS treatment. The wettability examination revealed that higher autoclave temperatures produced a larger average MgF2 nanoparticle particle size, a larger surface roughness, and a higher contact angle and the roll-off angle.

  13. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes

    PubMed Central

    Chen, Qi; Zhao, Yong; Wu, Weidong; Xu, Tao; Fong, Hao

    2012-01-01

    Objective To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and the corresponding composites (with conventional glass filler)containing vari ed mass fractions of halloysite nanotubes (HNTs). Methods Three dispersion methods were studied to separate the silanized halloysite as individual HNTs and to uniformly distribute them into dental matrices. Photopolymerization induced volumetric shrinkage was measured by using a mercury dilatometer. Real time near infrared spectroscopy was adopted to study the degree of vinyl double bond conversion and the photopolymerization rate. Mechanical properties of the composites were tested by a universal mechanical testing machine. Analysis of Variance (ANOVA) was used for the statistical analysis of the acquired data. Morphologies of halloysite/HNTs and representative fracture surfaces of the reinforced dental resins/composites were examined by SEM and TEM. Results Impregnation of small mass fractions (e.g., 1% and 2.5%) of the silanized HNTs in Bis-GMA/TEGDMA dental resins/composites improved mechanical properties significantly; however; large mass fractions (e.g., 5%) of impregnation did not further improve the mechanical properties. The impregnation of HNTs into dental resins/composites could result in two opposite effects: the reinforcing effect due to the highly separated and uniformly distributed HNTs, and the weakening effect due to the formation of HNT agglomerates/particles. Significance Uniform distribution of a small amount of well-separated silanized HNTs into Bis-GMA/TEGDMA dental resins/composites could result in substantial improvements on mechanical properties. PMID:22796038

  14. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes.

    PubMed

    Chen, Qi; Zhao, Yong; Wu, Weidong; Xu, Tao; Fong, Hao

    2012-10-01

    To investigate the reinforcement of Bis-GMA/TEGDMA dental resins (without conventional glass filler) and the corresponding composites (with conventional glass filler) containing varied mass fractions of halloysite nanotubes (HNTs). Three dispersion methods were studied to separate the silanized halloysite as individual HNTs and to uniformly distribute them into dental matrices. Photopolymerization induced volumetric shrinkage was measured by using a mercury dilatometer. Real time near infrared spectroscopy was adopted to study the degree of vinyl double bond conversion and the photopolymerization rate. Mechanical properties of the composites were tested by a universal mechanical testing machine. Analysis of variance (ANOVA) was used for the statistical analysis of the acquired data. Morphologies of halloysite/HNTs and representative fracture surfaces of the reinforced dental resins/composites were examined by SEM and TEM. Impregnation of small mass fractions (e.g., 1% and 2.5%) of the silanized HNTs in Bis-GMA/TEGDMA dental resins/composites improved mechanical properties significantly; however; large mass fractions (e.g., 5%) of impregnation did not further improve the mechanical properties. The impregnation of HNTs into dental resins/composites could result in two opposite effects: the reinforcing effect due to the highly separated and uniformly distributed HNTs, and the weakening effect due to the formation of HNT agglomerates/particles. Uniform distribution of a small amount of well-separated silanized HNTs into Bis-GMA/TEGDMA dental resins/composites could result in substantial improvements on mechanical properties. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides

    PubMed Central

    Lee, Jeong Heon; Hyun, Hoon; Cross, Conor J.; Henary, Maged; Nasr, Khaled A.; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V.

    2011-01-01

    We describe a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. Our optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. We also describe customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, we demonstrate live cell binding to a variety of ligands and optimize PEG linker length. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells. PMID:23467787

  16. Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane.

    PubMed

    Gruener, Simon; Wallacher, Dirk; Greulich, Stefanie; Busch, Mark; Huber, Patrick

    2016-01-01

    We experimentally explore pressure-driven flow of water and n-hexane across nanoporous silica (Vycor glass monoliths with 7- or 10-nm pore diameters, respectively) as a function of temperature and surface functionalization (native and silanized glass surfaces). Hydraulic flow rates are measured by applying hydrostatic pressures via inert gases (argon and helium, pressurized up to 70 bar) on the upstream side in a capacitor-based membrane permeability setup. For the native, hydrophilic silica walls, the measured hydraulic permeabilities can be quantitatively accounted for by bulk fluidity provided we assume a sticking boundary layer, i.e., a negative velocity slip length of molecular dimensions. The thickness of this boundary layer is discussed with regard to previous capillarity-driven flow experiments (spontaneous imbibition) and with regard to velocity slippage at the pore walls resulting from dissolved gas. Water flow across the silanized, hydrophobic nanopores is blocked up to a hydrostatic pressure of at least 70 bar. The absence of a sticking boundary layer quantitatively accounts for an enhanced n-hexane permeability in the hydrophobic compared to the hydrophilic nanopores.

  17. Studies with Laser Cooled Atoms and Single Molecules

    DTIC Science & Technology

    2007-09-01

    between soda lime glass slides. The bond-setting time can be tailored to allow time for precision optical alignment. We also extended our previous single...This method achieves 100% successful bonding rates between soda lime glass slides. The bond-setting time and be can tailored to allow time for...simple method to bond optical components using silica nanoparticle sol-gel chemistry. The silica nanoparticles polymerize into highly branched

  18. Anti-reflective and anti-soiling coatings for self-cleaning properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brophy, Brenor L.; Nair, Vinod; Dave, Bakul Champaklal

    The disclosure discloses abrasion resistant, persistently hydrophobic and oleophobic, anti-reflective and anti-soiling coatings for glass. The coatings described herein have wide application, including for example the front cover glass of solar modules. Methods of applying the coatings using various apparatus are disclosed. Methods for using the coatings in solar energy generation plants to achieve greater energy yield and reduced operations costs are disclosed. Coating materials are formed by combinations of hydrolyzed silane-base precursors through sol-gel processes. Several methods of synthesis and formulation of coating materials are disclosed.

  19. Chemical Durability Improvement and Static Fatigue of Glasses.

    DTIC Science & Technology

    1982-05-01

    Specifically, the replacement of hydroxyl groups on the glass surface with silane or Grignard reagent nearly completely eliminated stress rate dependence...CK3SiC13 in Heptane solution Cc) 2 vol % (CR3)3SIC1 in Heptane solution (d) 0.1 M CH3MgBr ( Grignard reagent ) in n-Buthyl ether solution • Corning 7900...C113)3- SiCl or C13MgBr ( Grignard reagent ) solution while it remains practi- cally unchanged in CH3SiCI3 solution. In CH3SICI3 , the strength is

  20. Interface effects on mechanical properties of particle-reinforced composites.

    PubMed

    Debnath, S; Ranade, R; Wunder, S L; McCool, J; Boberick, K; Baran, G

    2004-09-01

    Effective bonding between the filler and matrix components typically improves the mechanical properties of polymer composites containing inorganic fillers. The aim of this study was to test the hypothesis that composite flexural modulus, flexure strength, and toughness are directly proportional to filler-matrix interfacial shear strength. The resin matrix component of the experimental composite consisted of a 60:40 blend of BisGMA:TEGDMA. Two levels of photoinitiator components were used: 0.15, and 0.5%. Raman spectroscopy was used to determine degree of cure, and thermogravimetry (TGA) was used to quantify the degree of silane, rubber, or polymer attachment to silica and glass particles. Filler-matrix interfacial shear strengths were measured using a microbond test. Composites containing glass particles with various surface treatments were prepared and the modulus, flexure strength, and fracture toughness of these materials obtained using standard methods. Mechanical properties were measured on dry and soaked specimens. The interfacial strength was greatest for the 5% MPS treated silica, and it increased for polymers prepared with 0.5% initiator compared with 0.15% initiator concentrations. For the mechanical properties measured, the authors found that: (1) the flexural modulus was independent of the type of filler surface treatment, though flexural strength and toughness were highest for the silanated glass; (2) rubber at the interface, whether bonded to the filler and matrix or not, did not improve toughness; (3) less grafting of resin to silanated filler particles was observed when the initiator concentration decreased. These findings suggest that increasing the strength of the bond between filler and matrix will not result in improvements in the mechanical properties of particulate-reinforced composites in contrast to fiber-reinforced composites. Also, contraction stresses in the 0.5 vs 0.15% initiator concentration composites may be responsible for increases in interfacial shear strengths, moduli, and flexural strengths.

  1. Ceramic Surface Treatment with a Single-component Primer: Resin Adhesion to Glass Ceramics.

    PubMed

    Prado, Mayara; Prochnow, Catina; Marchionatti, Ana Maria Estivalete; Baldissara, Paolo; Valandro, Luiz Felipe; Wandscher, Vinicius Felipe

    2018-04-19

    To evaluate the microshear bond strength (μSBS) of composite cement bonded to two machined glass ceramics and its durability, comparing conventional surface conditioning (hydrofluoric acid + silane) to a one-step primer (Monobond Etch & Prime). Machined slices of lithium disilicate ceramic (LDC) (IPS e.max CAD) and feldspathic ceramic (FC) (VITA Mark II) glass ceramics were divided into two groups (n = 10) according to two factors: 1. surface treatment: HF+S (ca 5% hydrofluoric acid [IPS Ceramic Etching GEL] + silane coupling agent [SIL; Monobond Plus]) or MEP (single-component ceramic conditioner; Monobond Etch & Prime); 2. storage condition: baseline (without aging; tested 24 h after cementing) or aged (70 days of water storage + 12,000 thermal cycles). Composite cement (Multilink Automix, Ivoclar Vivadent) was applied to starch matrices on the treated ceramic surfaces and photoactivated. A μSBS test was performed (0.5 mm/min) and the failure pattern was determined. Contact angle and micromorphological analyses were also performed. Data were analyzed with Student's t-test (α = 5%). For both ceramic materials, HF+S resulted in higher mean μSBS (MPa) at baseline (LDC: HF+S 21.2 ± 2.2 > MEP 10.4 ± 2.4; FC: HF+S 19.6 ± 4.3 > MEP 13.5 ± 5.4) and after aging (LDC: HF+S 14.64 ± 2.31 > MEP 9 ± 3.4; FC HF+S: 14.73 ± 3.33 > MEP 11.1 ± 3.3). HF+S resulted in a statistically significant decrease in mean μSBS after aging (p = 0.0001), while MEP yielded no significant reduction. The main failure type was adhesive between composite cement and ceramic. HF+S resuted in the lowest contact angle. Hydrofluoric acid + silane resulted in higher mean μSBS than Monobond Etch & Prime for both ceramics; however, Monobond Etch & Prime had stable bonding after aging.

  2. Fabrication of bio-inspired nitinol alloy surface with tunable anisotropic wetting and high adhesive ability.

    PubMed

    Tian, Yan L; Zhao, Yue C; Yang, Cheng J; Wang, Fu J; Liu, Xian P; Jing, Xiu B

    2018-10-01

    In this paper, micro/nano-scale structures were fabricated on nitinol alloy (NiTi) to realize tunable anisotropic wetting and high adhesive capability. Laser texturing and silanization process are utilized to change the morphological and chemical properties of substrates. It is noted that these treated substrates exhibit the joint characteristics of anisotropic wetting and high adhesive capability. In order to investigate the influences of laser-texturing and silanization processes on NiTi, these surfaces were evaluated using scanning electron microscope (SEM), a white light confocal microscope, X-ray photoelectron spectroscopy (XPS) and goniometer. The relationship between water volume and anisotropic wetting was also established. From the experimental testing, we can obtain the following conclusions: (1) the anisotropic wetting characterized by the difference between the water contact angles (WCAs) in the vertical and parallel directions ranges from 0° to 20.3°, which is far more than the value of natural rice leaves. (2) the water sliding angles (WSAs) kept stable at 180°, successfully mimicking the adhesive ability of rose petals. (3) the silanization process could strengthen the hydrophobicity but weaken anisotropic wetting. These bio-inspired NiTi surfaces have a tremendous potential applications such as microfluidic devices, bio-mimetic materials fabrication and lab on chip. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Strength evolution of a reactive frictional interface is controlled by the dynamics of contacts and chemical effects

    NASA Astrophysics Data System (ADS)

    Renard, François; Beauprêtre, Sophie; Voisin, Christophe; Zigone, Dimitri; Candela, Thibault; Dysthe, Dag K.; Gratier, Jean-Pierre

    2012-08-01

    Assessing the healing rate of a fault is relevant to the knowledge of the seismic machinery. However, measuring fault healing at the depths where it occurs still remains inaccessible. We have designed an analog laboratory experiment of a simulated rough fault that undergoes healing and investigate the relative roles of interface chemical reactivity and sliding velocity on the healing rate. Slide-hold-slide experiments are conducted on a bare interface with various materials in contact (glass/glass, salt/glass, and salt/salt) with or without the presence of a reactive fluid and the slider-surface pull-off force is measured. Our results show that the interface strengthens with hold time, whatever the conditions of the experiments. In addition, we quantify the effect of chemical reactivity on the healing rate. Considering the glass/glass case as a reference, we show that the healing rate is increased by a factor of 2 for the salt/glass case; by a factor of 3 for the salt/salt case; and by about a factor of 20 when saturated brine is added on a salt/salt interface. We also measure that the sliding velocity affects the healing rate for salt/salt interfaces at room humidity. A careful optical monitoring of the interface allows a direct observation of the contact growth characteristics associated to each type of materials. Finally, the large differences of healing rate are interpreted through a mechanistic approach, where the various experimental conditions allow separating different healing mechanisms: increase of adhesion of the contacts by welding, contact growth due to creep or due to neck growth driven by surface tension.

  4. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    NASA Astrophysics Data System (ADS)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  5. Synthesis and Characterization of a New Class of Thermosetting Resins: Allyl and Propargyl Substituted Cyclopentadiene Derivatives

    DTIC Science & Technology

    1994-07-15

    from Fisher or Aldrich. AS-4 unsized carbon fibers were donated by Hercules Chemical Company and vinyl silane treated glass fibers were donated by Owens ... Corning Fiberglass Company. Composites were made using a mold that gave samples 60 mm long and 12.7 mm wide with variable thickness. Cure analysis

  6. 15. INTERIOR OF BATHROOM SHOWING COMBINATION TUB/SHOWER, SINK, AND SLIDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OF BATHROOM SHOWING COMBINATION TUB/SHOWER, SINK, AND SLIDING GLASS WINDOW. VIEW TO NORTH. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  7. Interfacial fracture toughness of different resin cements bonded to a lithium disilicate glass ceramic.

    PubMed

    Hooshmand, Tabassom; Rostami, Golriz; Behroozibakhsh, Marjan; Fatemi, Mostafa; Keshvad, Alireza; van Noort, Richard

    2012-02-01

    To evaluate the effect of HF acid etching and silane treatment on the interfacial fracture toughness of a self-adhesive and two conventional resin-based cements bonded to a lithium disilicate glass ceramic. Lithium disilicate glass ceramic discs were prepared with two different surface preparations consisting of gritblasted with aluminium oxide, and gritblasted and etched with hydrofluoric acid. Ceramic surfaces with a chevron shaped circular hole were treated by an optimized silane treatment followed by an unfilled resin and then three different resin cements (Variolink II, Panavia F2, and Multilink Sprint). Specimens were kept in distilled water at 37°C for 24h and then subjected to thermocycling. The interfacial fracture toughness was measured and mode of failures was also examined. Data were analysed using analysis of variance followed by T-test analysis. No statistically significant difference in the mean fracture toughness values between the gritblasted and gritblasted and etched surfaces for Variolink II resin cement was found (P>0.05). For the gritblasted ceramic surfaces, no significant difference in the mean fracture toughness values between Panavia F2 and Variolink II was observed (P>0.05). For the gritblasted and etched ceramic surfaces, a significantly higher fracture toughness for Panavia F2 than the other cements was found (P<0.05). The interfacial fracture toughness for the lithium disilicate glass ceramic system was affected by the surface treatment and the type of luting agent. Dual-cured resin cements demonstrated a better bonding efficacy to the lithium disilicate glass ceramic compared to the self-adhesive resin cement. The lithium disilicate glass ceramic surfaces should be gritblasted and etched to get the best bond when used with Panavia F2 and Multilink Sprint resin cements, whereas for the Variolink II only gritblasting is required. The best bond overall is achieved with Panavia F2. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Genomic Approaches for Detection and Treatment of Breast Cancer

    DTIC Science & Technology

    2010-07-01

    cloning them in phage display vectors. We are characterizing the libraries and trying to figure out how best to screen them. We ran into the problem...auto-antibody screening project onto glass slides for screening purposes. We have abandoned this aim in that we switched our approach to a phage ...display library which does not require glass slide. We made our first comprehensive library in a T7 display vector. Task 9 (Months 24-36) We will

  9. Patterns of aluminum hydroxychloride deposition onto the skin.

    PubMed

    Mayeux, Géraldine; Xhauflaire-Uhoda, Emmanuelle; Piérard, Gérald E

    2012-02-01

    Aluminum hydroxychloride (AlCl(3) ) is an antiperspirant. To revisit the AlCl(3) deposition in vivo and in vitro on glass slides and stratum corneum (SC) harvested by cyanoacrylate skin surface strippings (CSSS). Transepidermal water loss (TEWL) was assessed following application of 5% AlCl(3) on the forearms. The AlCl(3) -coated skin, glass slides and CSSS were observed using two ultraviolet light-emitting CCD cameras in order to record changes in specular reflectance related to AlCl(3) deposition. In addition, the corneoxenometry bioassay was performed in order to predict AlCl(3) irritation. AlCl(3) deposited on glass slides looked as linear threads and rings of similar sizes. AlCl(3) deposits on skin were almost restricted inside the microrelief lines and as annular deposits at their crossings where acrosyringia are opening. After daily AlCl(3) applications, deposits extended on the CSSS plateaus. At rest in absence of sweating, TEWL was decreased following AlCl(3) applications. During physical exercise, the TEWL increase was limited on the AlCl(3) areas. CSSS appeared unreactive to AlCl(3) at the corneoxenometry bioassay. The similar aspect of AlCl(3) deposits on human SC and on glass slides suggested a physical property of AlCl(3) . Repetitive applications of AlCl(3) increased both the deposit area and the barrier function. © 2011 John Wiley & Sons A/S.

  10. High-Q whispering-gallery mode sensor in liquids

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay L.; Ilchenko, Vladimir S.; Kossakovski, Dmitri; Bearman, Gregory H.; Maleki, Lute

    2002-06-01

    Optical sensing of biomolecules on microfabricated glass surfaces requires surface coatings that minimize nonspecific binding while preserving the optical properties of the sensor. Microspheres with whispering-gallery (WG) modes can achieve quality factor (Q) levels many orders of magnitude greater than those of other WG-based microsensors: greater than 1010 in air, and greater than 109 in a variety of solvents, including methanol, H2O and phosphate buffered saline (PBS). The presence of dyes that absorb in the wavelength of the WG excitation in the evanescent zone can cause this Q value to drop by almost 3 orders of magnitude. Silanization of the surface with mercapto-terminal silanes is compatible with high Q (>109), but chemical cross-linking of streptavidin reduces the Q to 105-106 due to build-up of a thick, irregular layer of protein. However, linkage of biotin to the silane terminus preserves the Q at a ~2x107 and yields a reactive surface sensitive to avidin-containing ligands in a concentration-dependent manner. Improvements in the reliability of the surface chemistry show promise for construction of an ultrasensitive biosensor.

  11. Improved resolution in practical light microscopy by means of a glass-fiber 2 π-tilting device

    NASA Astrophysics Data System (ADS)

    Bradl, Joachim; Rinke, Bernd; Schneider, Bernhard; Hausmann, Michael; Cremer, Christoph G.

    1996-01-01

    The spatial resolution of a conventional light microscope or a confocal laser scanning microscope can be determined by calculating the point spread function for the objective used. Normally, ideal conditions are assumed for these calculations. Such conditions, however, are often not fulfilled in biological applications especially in those cases where biochemical requirements (e.g. buffer conditions) influence the specimen preparation on the microscope slide (i.e. 'practical' light microscopy). It has been shown that the problem of a reduced z- resolution in 3D-microscopy (optical sectioning) can be overcome by a capillary in a 2(pi) - tilting device that allows object rotation into an optimal perspective. The application of the glass capillary instead of a standard slide has an additional influence on the imaging properties of the microscope. Therefore, another 2(pi) -tilting device was developed, using a glass fiber for object fixation and rotation. Such a fiber could be covered by standard cover glasses. To estimate the resolution of this setup, point spread functions were measured under different conditions using fluorescent microspheres of subwavelength dimensions. Results obtained from standard slide setups were compared to the glass fiber setup. These results showed that in practice rotation leads to an overall 3D-resolution improvement.

  12. Selective accumulation of harmful compounds by the DNA-inorganic hybrid-immobilized glass bead.

    PubMed

    Yamada, Masanori; Hamai, Akari

    2009-08-11

    Previously, we reported the DNA-inorganic hybrid material including double-stranded DNA by mixing the aqueous DNA solution and silane coupling reagents. Here, we immobilized the DNA-inorganic hybrid material onto the glass bead and prepared the DNA-immobilized glass bead column. The DNA-immobilized glass beads were stable in water and the amount of eluted DNA from the DNA-glass beads did not change for more than 1 week. Additionally, this DNA-immobilized column selectively accumulated the harmful compounds with the planar structure, such as dioxin- and polychlorinated biphenyl (PCB)-derivatives, and these accumulation percentages were 50-70%. Furthermore, the DNA-immobilized glass bead was recycled nine times by the application of ethanol solution and the accumulative ratio was maintained at more than 60% and did not appear to be decreasing. Therefore, these DNA-columns might have a potential for the selective removal and separation of DNA-intercalating molecules and harmful compounds with the planar structure from experimental or industrial drainages.

  13. Inkjet-Print Micromagnet Array on Glass Slides for Immunomagnetic Enrichment of Circulating Tumor Cells

    PubMed Central

    Chen, Peng; Huang, Yu-Yen; Bhave, Gauri; Hoshino, Kazunori; Zhang, Xiaojing

    2015-01-01

    We report an inkjet-printed microscale magnetic structure that can be integrated on regular glass slides for the immunomagnetic screening of rare Circulating Tumor Cells (CTCs). CTCs detach from the primary tumor site, circulate with the bloodstream, and initiate the cancer metastasis process. Therefore, a liquid biopsy in the form of capturing and analyzing CTCs may provide key information for cancer prognosis and diagnosis. Inkjet printing technology provides a non-contact, layer-by-layer and mask-less approach to deposit defined magnetic patterns on an arbitrary substrate. Such thin film patterns, when placed in an external magnetic field, significantly enhance the attractive force in the near-field close to the CTCs to facilitate the separation. We demonstrated the efficacy of the inkjet-print micromagnet array integrated immunomagnetic assay in separating COLO205 (human colorectal cancer cell line) from whole blood samples. The micromagnets increased the capture efficiency by 26% compared with using plain glass slide as the substrate. PMID:26289942

  14. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold-thiol monolayers, amines or lipid binding.

    PubMed

    Biggs, Caroline I; Edmondson, Steve; Gibson, Matthew I

    2015-01-01

    Carbohydrate arrays are a vital tool in studying infection, probing the mechanisms of bacterial, viral and toxin adhesion and the development of new treatments, by mimicking the structure of the glycocalyx. Current methods rely on the formation of monolayers of carbohydrates that have been chemically modified with a linker to enable interaction with a functionalised surface. This includes amines, biotin, lipids or thiols. Thiol-addition to gold to form self-assembled monolayers is perhaps the simplest method for immobilisation as thiolated glycans are readily accessible from reducing carbohydrates in a single step, but are limited to gold surfaces. Here we have developed a quick and versatile methodology which enables the use of thiolated carbohydrates to be immobilised as monolayers directly onto acrylate-functional glass slides via a 'thiol-ene'/Michael-type reaction. By combining the ease of thiol chemistry with glass slides, which are compatible with microarray scanners this offers a cost effective, but also useful method to assemble arrays.

  15. Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides.

    PubMed

    Irzh, Alexander; Genish, Isaschar; Klein, Lior; Solovyov, Leonid A; Gedanken, Aharon

    2010-04-20

    This work represents a new method to synthesis of ZnO and/or Zn nanoparticles by means of microwave plasma whose electrons are the reducing agents. Glass quadratic slides sized 2.5 x 2.5 cm were coated by ZnO and/or Zn particles whose sizes ranged from a few micrometers to approximately 20 nm. The size of the particles can be controlled by the type of the precursor and its concentration. In the current paper, the mechanism of the reactions of ZnO and/or Zn formation was proposed. Longer plasma irradiation and lower precursor concentration favor the fabrication of metallic Zn nanoparticles. The nature of the precursor's ion (acetate, nitrate, or chloride) is also of importance in determining the composition of the product. The glass slides coated by ZnO and/or Zn nanoparticles were characterized by HR-SEM, HR-TEM, AFM, XRD, ESR, contact angle and diffuse reflectance spectroscopy (DRS).

  16. Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns.

    PubMed

    Yan, Wei-Cheng; Xie, Jingwei; Wang, Chi-Hwa

    2018-06-06

    Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup. Meanwhile, we investigated the effect of experimental configurations on the gradient particle pattern formation by computational simulation. The simulation results are in line with experimental observations. The formation of gradient particle patterns was ascribed to the gradient of electric field and the corresponding focusing effect. Cell patterns can be formed on the particle patterns deposited on PDMS-coated glass slides. The formed particle patterns hold great promise for high-throughput screening of biomaterial-cell interactions and sensing.

  17. Strength and deformation mechanisms of rhyolitic glass at lower seismogenic zone conditions

    NASA Astrophysics Data System (ADS)

    Proctor, B.; Lockner, D. A.; Lowenstern, J. B.; Beeler, N. M.

    2017-12-01

    Although its relevance to coseismic earthquake source properties is still debated, frictional melting and the production of quenched glass called pseudotachylyte is a recurring process in some earthquake source regions. To investigate how glassy materials affect the post- and interseismic- strength and stability of faults, rhyolitic obsidian gouges were sheared under dry and wet conditions from 200 °C to 300 °C at effective normal stresses up to 200 MPa. Velocity-stepping and slide-hold slide tests were performed for up to three days. Dry glass gouges exhibited a brittle rheology at all conditions tested, exhibiting friction values and microstructures consistent with siliciclastic materials. Likewise, wet glass gouges at 200 °C exhibited a brittle rheology. In contrast, wet gouges at 300 °C transitioned from brittle sliding to linear-viscous (Newtonian) flow at strain rates < 3x10-4 s-1, indicating melt-like behavior well below the equilibrium melting temperature. The melt ranged from 2.1x1011 to 2.6x1012 Pa-s. The molten gouges transitioned back to glass when strain rates were increased, which, in some cases, promoted extreme strengthening. The molten gouges were fully welded with rod-shaped microlites rotated and boudinaged into the flow direction. There was very little evidence for nucleation of new phases within the glass or metasomatic alteration. Fourier transform infrared spectroscopy along with electron backscatter imaging demonstrate that hydration of the glass by diffusion of pore water was the dominant process reducing the viscosity and promoting melt flow. As much as 5 wt% water diffused into the nominally anhydrous glass. These results may provide insight into postseismic-slip behaviors and challenge some interpretations of fault kinematics which assume pseudotachylyte formation and flow is solely coseismic.

  18. Halogen Containing Gases as Lubricants for Crystallized Glass Ceramic Metal Combinations at Temperatures to 1500 F

    NASA Technical Reports Server (NTRS)

    Buckley, Donald H.; Johnson, Robert L.

    1960-01-01

    Pyroceram 9608 (a crystallized glass ceramic) has been considered for use in high-temperature bearing and seal applications. One of the problems encountered with Pyroceram is the lack of availability of lubricants for the temperature range in which this material becomes practical. Experiments were conducted with Pyroceram sliding on various nickel- and cobalt-base alloys using reactive halogen-containing gases as lubricants. Friction and wear data were obtained as a function of sliding velocity and temperature. Studies were made with a hemispherical rider (3/16-in. rad., Pyroceram 9608) sliding in a circumferential path on the flat surface of a rotating disk (2(1/2) in. diam., nickel- or cobalt-base alloys). The specimens were run in an atmosphere of the various gases with a load of 1200 grams, a sliding velocity of 3200 feet per minute, and temperatures from 75 to 1500 F. The gas CF2Br-CF2Br was found to be an effective lubricant for Pyroceram 9608 sliding on Hastelloy R-235 and Inconel X up to 1400 F. The gas CF2Cl-CF2Cl provided effective lubrication for Pyroceram sliding on various cobalt-base alloys at 1000 F.

  19. Virtual microscopy and digital pathology in training and education.

    PubMed

    Hamilton, Peter W; Wang, Yinhai; McCullough, Stephen J

    2012-04-01

    Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human-computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eye-tracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered. © 2012 The Authors APMIS © 2012 APMIS.

  20. Biofilm formation affects surface properties of novel bioactive glass-containing composites.

    PubMed

    Hyun, Hong-Keun; Salehi, Satin; Ferracane, Jack L

    2015-12-01

    This study investigated the effects of bacterial biofilm on the surface properties of novel bioactive glass (BAG)-containing composites of different initial surface roughness. BAG (65 mol% Si; 4% P; 31% Ca) and BAG-F (61% Si; 31% Ca; 4% P; 3% F; 1% B) were synthesized by the sol-gel method and micronized (size ∼0.1-10 μm). Composites with 72wt% total filler load were prepared by replacing 15% of the silanized Sr glass with BAG, BAG-F, or silanized silica. Specimens (n=10/group) were light-cured and divided into 4 subgroups of different surface roughness by wet polishing with 600 and then up to 1200, 2400, or 4000 grit SiC. Surface roughness (SR), gloss, and Knoop microhardness were measured before and after incubating in media with or without a Streptococcus mutans (UA 159) biofilm for 2 weeks. Results were analyzed with ANOVA/Tukey's test (α=0.05). The SR of the BAG-containing composites with the smoothest surfaces (2400/4000 grit) increased in media or bacteria; the SR of the roughest composites (600 grit) decreased. The gloss of the smoothest BAG-containing composites decreased in bacteria and media-only, but more in media-alone. The microhardness of all of the composites decreased with exposure to media or bacteria, with BAG-containing composites affected more than the control. Exposure to bacterial biofilm and its media produced enhanced roughness and reduced gloss and surface microhardness of highly polished dental composites containing a bioactive glass additive, which could affect further biofilm formation, as well as the esthetics, of restorations made from such a material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Cytopathology whole slide images and adaptive tutorials for postgraduate pathology trainees: a randomized crossover trial.

    PubMed

    Van Es, Simone L; Kumar, Rakesh K; Pryor, Wendy M; Salisbury, Elizabeth L; Velan, Gary M

    2015-09-01

    To determine whether cytopathology whole slide images and virtual microscopy adaptive tutorials aid learning by postgraduate trainees, we designed a randomized crossover trial to evaluate the quantitative and qualitative impact of whole slide images and virtual microscopy adaptive tutorials compared with traditional glass slide and textbook methods of learning cytopathology. Forty-three anatomical pathology registrars were recruited from Australia, New Zealand, and Malaysia. Online assessments were used to determine efficacy, whereas user experience and perceptions of efficiency were evaluated using online Likert scales and open-ended questions. Outcomes of online assessments indicated that, with respect to performance, learning with whole slide images and virtual microscopy adaptive tutorials was equivalent to using traditional methods. High-impact learning, efficiency, and equity of learning from virtual microscopy adaptive tutorials were strong themes identified in open-ended responses. Participants raised concern about the lack of z-axis capability in the cytopathology whole slide images, suggesting that delivery of z-stacked whole slide images online may be important for future educational development. In this trial, learning cytopathology with whole slide images and virtual microscopy adaptive tutorials was found to be as effective as and perceived as more efficient than learning from glass slides and textbooks. The use of whole slide images and virtual microscopy adaptive tutorials has the potential to provide equitable access to effective learning from teaching material of consistently high quality. It also has broader implications for continuing professional development and maintenance of competence and quality assurance in specialist practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Active Learning: A Small Group Histology Laboratory Exercise in a Whole Class Setting Utilizing Virtual Slides and Peer Education

    ERIC Educational Resources Information Center

    Bloodgood, Robert A.

    2012-01-01

    Histology laboratory instruction is moving away from the sole use of the traditional combination of light microscopes and glass slides in favor of virtual microscopy and virtual slides. At the same time, medical curricula are changing so as to reduce scheduled time for basic science instruction as well as focusing on student-centered learning…

  3. Photographic copy of 3 ½” x 5” glass lantern slide ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of 3 ½” x 5” glass lantern slide no. 20 of drawing. Located in wooden pine box #23 in box 84 of 94 at the National Museum of American History, Smithsonian Institution, Archives Center, Work and industry Division, Washington, D.C. Original photographer, Milton R. Homes, Philadelphia, Pennsylvania. Illustrator Unknown. DRAWING ENTITLED “THE SAND ISLAND METHOD”. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  4. Photographic copy of 3 ½” x 5” glass lantern slide ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of 3 ½” x 5” glass lantern slide no. 1 of map. Located in wooden pine box #23 in box 84 of 94 at the National Museum of American History, Smithsonian Institution, Archives Center, Work and industry Division, Washington, D.C. Original photographer, Milton R. Homes, Philadelphia, Pennsylvania. MAP SHOWING “SITES OF MAJOR BRIDGES ACROSS THE MISSISSIPPI BELOW ST. LOUIS”. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  5. Extraterrestrial materials processing and construction. [space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.; Mckenzie, J. D.

    1980-01-01

    Three different chemical processing schemes were identified for separating lunar soils into the major oxides and elements. Feedstock production for space industry; an HF acid leach process; electrorefining processes for lunar free metal and metal derived from chemical processing of lunar soils; production and use of silanes and spectrally selective materials; glass, ceramics, and electrochemistry workshops; and an econometric model of bootstrapping space industry are discussed.

  6. Evaluation environment for digital and analog pathology: a platform for validation studies

    PubMed Central

    Gallas, Brandon D.; Gavrielides, Marios A.; Conway, Catherine M.; Ivansky, Adam; Keay, Tyler C.; Cheng, Wei-Chung; Hipp, Jason; Hewitt, Stephen M.

    2014-01-01

    Abstract. We present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSIs) on a computer display to pathologists interpreting glass slides on an optical microscope. eeDAP is an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of the WSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires real-time images of the microscope field of view (FOV). Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses on the comparison of image quality. We reduced the pathologist interpretation area from an entire glass slide (10 to 30  mm2) to small ROIs (<50  μm2). We also made possible the evaluation of individual cells. We summarize eeDAP’s software and hardware and provide calculations and corresponding images of the microscope FOV and the ROIs extracted from the WSIs. The eeDAP software can be downloaded from the Google code website (project: eeDAP) as a MATLAB source or as a precompiled stand-alone license-free application. PMID:26158076

  7. Evaluation environment for digital and analog pathology: a platform for validation studies.

    PubMed

    Gallas, Brandon D; Gavrielides, Marios A; Conway, Catherine M; Ivansky, Adam; Keay, Tyler C; Cheng, Wei-Chung; Hipp, Jason; Hewitt, Stephen M

    2014-10-01

    We present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSIs) on a computer display to pathologists interpreting glass slides on an optical microscope. eeDAP is an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of the WSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires real-time images of the microscope field of view (FOV). Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses on the comparison of image quality. We reduced the pathologist interpretation area from an entire glass slide (10 to [Formula: see text]) to small ROIs ([Formula: see text]). We also made possible the evaluation of individual cells. We summarize eeDAP's software and hardware and provide calculations and corresponding images of the microscope FOV and the ROIs extracted from the WSIs. The eeDAP software can be downloaded from the Google code website (project: eeDAP) as a MATLAB source or as a precompiled stand-alone license-free application.

  8. Preparation of epoxy-based macroporous monolithic columns for the fast and efficient immunofiltration of Staphylococcus aureus.

    PubMed

    Ott, Sonja; Niessner, Reinhard; Seidel, Michael

    2011-08-01

    Macroporous epoxy-based monolithic columns were used for immunofiltration of bacteria. The prepared monolithic polymer support is hydrophilic and has large pore sizes of 21 μm without mesopores. A surface chemistry usually applied for immobilization of antibodies on glass slides is successfully transferred to monolithic columns. Step-by-step, the surface of the epoxy-based monolith is hydrolyzed, silanized, coated with poly(ethylene glycol diamine) and activated with the homobifunctional crosslinker di(N-succinimidyl)carbonate for immobilization of antibodies on the monolithic columns. The functionalization steps are characterized to ensure the coating of each monolayer. The prepared antibody-immobilized monolithic column is optimized for immunofiltration to enrich Staphylococcus aureus as an important food contaminant. Different kinds of geometries of monolithic columns, flow rates and elution buffers are tested with the goal to get high recoveries in the shortest enrichment time as possible. An effective capture of S. aureus was achieved at a flow rate of 7.0 mL/min with low backpressures of 20.1±5.4 mbar enabling a volumetric enrichment of 1000 within 145 min. The bacteria were quantified by flow cytometry using a double-labeling approach. After immunofiltration the sensitivity was significantly increased and a detection limit of the total system of 42 S. aureus/mL was reached. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of a Double Glass Mounting Method Using Formaldehyde Alcohol Azocarmine Lactophenol (FAAL) and its Evaluation for Permanent Mounting of Small Nematodes.

    PubMed

    Zahabiun, Farzaneh; Sadjjadi, Seyed Mahmoud; Esfandiari, Farideh

    2015-01-01

    Permanent slide preparation of nematodes especially small ones is time consuming, difficult and they become scarious margins. Regarding this problem, a modified double glass mounting method was developed and compared with classic method. A total of 209 nematode samples from human and animal origin were fixed and stained with Formaldehyde Alcohol Azocarmine Lactophenol (FAAL) followed by double glass mounting and classic dehydration method using Canada balsam as their mounting media. The slides were evaluated in different dates and times, more than four years. Different photos were made with different magnification during the evaluation time. The double glass mounting method was stable during this time and comparable with classic method. There were no changes in morphologic structures of nematodes using double glass mounting method with well-defined and clear differentiation between different organs of nematodes in this method. Using this method is cost effective and fast for mounting of small nematodes comparing to classic method.

  10. Development of a Double Glass Mounting Method Using Formaldehyde Alcohol Azocarmine Lactophenol (FAAL) and its Evaluation for Permanent Mounting of Small Nematodes

    PubMed Central

    ZAHABIUN, Farzaneh; SADJJADI, Seyed Mahmoud; ESFANDIARI, Farideh

    2015-01-01

    Background: Permanent slide preparation of nematodes especially small ones is time consuming, difficult and they become scarious margins. Regarding this problem, a modified double glass mounting method was developed and compared with classic method. Methods: A total of 209 nematode samples from human and animal origin were fixed and stained with Formaldehyde Alcohol Azocarmine Lactophenol (FAAL) followed by double glass mounting and classic dehydration method using Canada balsam as their mounting media. The slides were evaluated in different dates and times, more than four years. Different photos were made with different magnification during the evaluation time. Results: The double glass mounting method was stable during this time and comparable with classic method. There were no changes in morphologic structures of nematodes using double glass mounting method with well-defined and clear differentiation between different organs of nematodes in this method. Conclusion: Using this method is cost effective and fast for mounting of small nematodes comparing to classic method. PMID:26811729

  11. Scaling of wet granular flows in a rotating drum

    NASA Astrophysics Data System (ADS)

    Jarray, Ahmed; Magnanimo, Vanessa; Ramaioli, Marco; Luding, Stefan

    2017-06-01

    In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling) yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.

  12. Preparation and characterization of methacrylate hydrogels for zeta potential control

    NASA Technical Reports Server (NTRS)

    Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.

  13. Automated robust registration of grossly misregistered whole-slide images with varying stains

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Safferling, K.; Grabe, N.

    2016-03-01

    Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.

  14. Effect of disjoining pressure on terminal velocity of a bubble sliding along an inclined wall.

    PubMed

    Del Castillo, Lorena A; Ohnishi, Satomi; White, Lee R; Carnie, Steven L; Horn, Roger G

    2011-12-15

    The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter's mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. which considers hydrodynamic forces only, and with a theory developed by two of us which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ∼1-5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Chemical Composition of Latent Fingerprints by Gas Chromatography-Mass Spectrometry

    ERIC Educational Resources Information Center

    Hartzell-Baguley, Brittany; Hipp, Rachael E.; Morgan, Neal R.; Morgan, Stephen L.

    2007-01-01

    An experiment in which gas chromatography-mass spectrometry (GC-MS) is used for latent fingerprint extraction and analysis on glass beads or glass slides is conducted. The results determine that the fingerprint residues are gender dependent.

  16. Effective temperature dynamics of shear bands in metallic glasses

    NASA Astrophysics Data System (ADS)

    Daub, Eric G.; Klaumünzer, David; Löffler, Jörg F.

    2014-12-01

    We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature. We compare the predictions of STZ theory to experiments that explore the low-temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal temperatures and strain rates. By following the evolution of effective temperature with time, strain rate, and temperature through a series of approximate and numerical solutions to the STZ equations, we successfully model a suite of experimentally observed phenomena, including shear-band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow stress, and a strain-rate- and temperature-dependent transition from stick-slip (serrated flow) to steady-sliding (nonserrated flow). We find that STZ theory quantitatively matches the observed experimental data and provides a framework for relating the experimentally measured energy scales to different types of atomic rearrangements.

  17. Design of the scanning mode coated glass color difference online detection system

    NASA Astrophysics Data System (ADS)

    Bi, Weihong; Zhang, Yu; Wang, Dajiang; Zhang, Baojun; Fu, Guangwei

    2008-03-01

    A design of scanning mode coated glass color difference online detection system was introduced. The system consisted of color difference data acquirement part and orbit control part. The function of the color difference data acquirement part was to acquire glass spectral reflectance and then processed them to get the color difference value. Using fiber for light guiding, the reflected light from surface of glass was transmitted into light division part, and the dispersive light was imaged on linear CCD, and then the output signals from the CCD was sampled pixel by pixel, and the spectral reflectance of coated glass was obtained finally. Then, the acquired spectral reflectance signals was sent to industrial personal computer through USB interface, using standard color space and color difference formula nominated by International Commission on Illumination (CIE) in 1976 to process these signals, and the reflected color parameter and color difference of coated glass was gained in the end. The function of the orbit control part was to move the detection probe by way of transverse scanning mode above the glass strip, and control the measuring start-stop time of the color difference data acquirement part at the same time. The color difference data acquirement part of the system was put on the orbit which is after annealing area in coated glass production line, and the protected fiber probe was placed on slide of the orbit. Using single chip microcomputer to control transmission mechanism of the slide, which made the slide move by way of transverse scanning mode on the glass strip, meanwhile, the color difference data acquirement part of the system was also controlled by the single chip microcomputer, and it made the acquirement part measure color difference data when the probe reached the needed working speed and required place on the glass strip. The scanning mode coated glass color difference online detection system can measure color parameter and color difference of each transverse point on glass strip, it can also measure lengthways color stability on glass strip. Furthermore, the measuring results can be transmitted to coated control room through intranet, so it is very useful to improve producing technique in time. In addition, equipping necessary marking machine, this system can classify glass board automatically based on the measuring result.

  18. Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR.

    PubMed Central

    Shoffner, M A; Cheng, J; Hvichia, G E; Kricka, L J; Wilding, P

    1996-01-01

    The microreaction volumes of PCR chips (a microfabricated silicon chip bonded to a piece of flat glass to form a PCR reaction chamber) create a relatively high surface to volume ratio that increases the significance of the surface chemistry in the polymerase chain reaction (PCR). We investigated several surface passivations in an attempt to identify 'PCR friendly' surfaces and used those surfaces to obtain amplifications comparable with those obtained in conventional PCR amplification systems using polyethylene tubes. Surface passivations by a silanization procedure followed by a coating of a selected protein or polynucleotide and the deposition of a nitride or oxide layer onto the silicon surface were investigated. Native silicon was found to be an inhibitor of PCR and amplification in an untreated PCR chip (i.e. native slicon) had a high failure rate. A silicon nitride (Si(3)N(4) reaction surface also resulted in consistent inhibition of PCR. Passivating the PCR chip using a silanizing agent followed by a polymer treatment resulted in good amplification. However, amplification yields were inconsistent and were not always comparable with PCR in a conventional tube. An oxidized silicon (SiO(2) surface gave consistent amplifications comparable with reactions performed in a conventional PCR tube. PMID:8628665

  19. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    NASA Astrophysics Data System (ADS)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  20. Photographic copy of 3 ½” x 5” glass lantern slide ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of 3 ½” x 5” glass lantern slide no. 2 of March 1925 drawing by Ralph Modjeski, Consulting Engineer. Located in wooden pine box #23 in box 84 of 94 at the National Museum of American History, Smithsonian Institution, Archives Center, Work and industry Division, Washington, D.C. MARCH 1925 DRAWING OF “PROPOSED BRIDGE OVER THE MISSISSIPPI RIVER NORTH OF NEW ORLEANS, LOUISIANA, PLAN “E”. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  1. Photographic copy of 3 ½” x 5” glass lantern slide ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of 3 ½” x 5” glass lantern slide no. 11 of map. Located in wooden pine box #23 in box 84 of 94 at the National Museum of American History, Smithsonian Institution, Archives Center, Work and industry Division, Washington, D.C. Original photographer, Milton R. Homes, Philadelphia, Pennsylvania. EARLY MAP OF “LOCATION OF NEW ORLEANS BRIDGE” AND THE VARIOUS RAILROADS SERVING THE GREATER NEW ORLEANS AREA. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  2. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    PubMed

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization.

  3. Fast production of microfluidic devices by CO2 laser engraving of wax-coated glass slides.

    PubMed

    da Costa, Eric T; Santos, Mauro S F; Jiao, Hong; do Lago, Claudimir L; Gutz, Ivano G R; Garcia, Carlos D

    2016-07-01

    Glass is one of the most convenient materials for the development of microfluidic devices. However, most fabrication protocols require long processing times and expensive facilities. As a convenient alternative, polymeric materials have been extensively used due their lower cost and versatility. Although CO2 laser ablation has been used for fast prototyping on polymeric materials, it cannot be applied to glass devices because the local heating causes thermal stress and results in extensive cracking. A few papers have shown the ablation of channels or thin holes (used as reservoirs) on glass but the process is still far away from yielding functional glass microfluidic devices. To address these shortcomings, this communication describes a simple method to engrave glass-based capillary electrophoresis devices using standard (1 mm-thick) microscope glass slides. The process uses a sacrificial layer of wax as heat sink and enables the development of both channels (with semicircular shape) and pass-through reservoirs. Although microscope images showed some small cracks around the channels (that became irrelevant after sealing the engraved glass layer to PDMS) the proposed strategy is a leap forward in the application of the technology to glass. In order to demonstrate the capabilities of the approach, the separation of dopamine, catechol and uric acid was accomplished in less than 100 s. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Whole slide images and digital media in pathology education, testing, and practice: the Oklahoma experience.

    PubMed

    Fung, Kar-Ming; Hassell, Lewis A; Talbert, Michael L; Wiechmann, Allan F; Chaser, Brad E; Ramey, Joel

    2012-01-01

    Examination of glass slides is of paramount importance in pathology training. Until the introduction of digitized whole slide images that could be accessed through computer networks, the sharing of pathology slides was a major logistic issue in pathology education and practice. With the help of whole slide images, our department has developed several online pathology education websites. Based on a modular architecture, this program provides online access to whole slide images, still images, case studies, quizzes and didactic text at different levels. Together with traditional lectures and hands-on experiences, it forms the back bone of our histology and pathology education system for residents and medical students. The use of digitized whole slide images has a.lso greatly improved the communication between clinicians and pathologist in our institute.

  5. Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection

    PubMed Central

    Kumar, Suveen; Kumar, Saurabh; Tiwari, Sachchidanand; Srivastava, Saurabh; Srivastava, Manish; Yadav, Birendra Kumar; Kumar, Saroj; Tran, Thien Toan; Dewan, Ajay Kumar; Mulchandani, Ashok; Sharma, Jai Gopal; Maji, Sagar

    2015-01-01

    Results of the studies are reported relating to application of the silanized nanostructured zirconia, electrophoretically deposited onto indium tin oxide (ITO) coated glass for covalent immobilization of the monoclonal antibodies (anti‐CYFRA‐21‐1). This biosensing platform has been utilized for a simple, efficient, noninvasive, and label‐free detection of oral cancer via cyclic voltammetry technique. The results of electrochemical response studies conducted on bovine serum albumin (BSA)/anti‐CYFRA‐21‐1/3‐aminopropyl triethoxy silane (APTES)/ZrO2/ITO immunoelectrode reveal that this immunoelectrode can be used to measure CYFRA‐21‐1 (oral cancer biomarker) concentration in saliva samples, with a high sensitivity of 2.2 mA mL ng−1, a linear detection range of 2–16 ng mL−1, and stability of six weeks. The results of these studies have been validated via enzyme‐linked immunosorbent assay. PMID:27980963

  6. DeepScope: Nonintrusive Whole Slide Saliency Annotation and Prediction from Pathologists at the Microscope

    PubMed Central

    Schaumberg, Andrew J.; Sirintrapun, S. Joseph; Al-Ahmadie, Hikmat A.; Schüffler, Peter J.; Fuchs, Thomas J.

    2018-01-01

    Modern digital pathology departments have grown to produce whole-slide image data at petabyte scale, an unprecedented treasure chest for medical machine learning tasks. Unfortunately, most digital slides are not annotated at the image level, hindering large-scale application of supervised learning. Manual labeling is prohibitive, requiring pathologists with decades of training and outstanding clinical service responsibilities. This problem is further aggravated by the United States Food and Drug Administration’s ruling that primary diagnosis must come from a glass slide rather than a digital image. We present the first end-to-end framework to overcome this problem, gathering annotations in a nonintrusive manner during a pathologist’s routine clinical work: (i) microscope-specific 3D-printed commodity camera mounts are used to video record the glass-slide-based clinical diagnosis process; (ii) after routine scanning of the whole slide, the video frames are registered to the digital slide; (iii) motion and observation time are estimated to generate a spatial and temporal saliency map of the whole slide. Demonstrating the utility of these annotations, we train a convolutional neural network that detects diagnosis-relevant salient regions, then report accuracy of 85.15% in bladder and 91.40% in prostate, with 75.00% accuracy when training on prostate but predicting in bladder, despite different pathologists examining the different tissues. When training on one patient but testing on another, AUROC in bladder is 0.79±0.11 and in prostate is 0.96±0.04. Our tool is available at https://bitbucket.org/aschaumberg/deepscope PMID:29601065

  7. Effects of sol-gel processed silica coating on bond strength of resin cements to glass-infiltrated alumina ceramic.

    PubMed

    Xie, Haifeng; Wang, Xiaozu; Wang, Yu; Zhang, Feimin; Chen, Chen; Xia, Yang

    2009-02-01

    The aim of this study was to verify the effects of sol-gel processed silica coating on the bond strength between resin cement and glass-infiltrated aluminum oxide ceramic. Silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surface via the sol-gel process. Atomic Force Microscope (AFM), Fourier Transmission Infrared spectrum (FTIR), and Energy Dispersive X-ray Spectroscopy (EDS) were used for coating characterization. Forty-eight blocks of glass-infiltrated aluminum oxide ceramic were fabricated. The ceramic surfaces were polished following sandblasting. Three groups of specimens (16 for each group) with different surface treatment were prepared. Group P: no treatment; group PO: treated with silane solution; group PTO: silica coating via sol-gel process, followed by silane application. Composite cylinders were luted with resin cement to the test specimens. Half of the specimens in each group were stored in distilled water for 24 h and the other half were stored in distilled water for 30 days before shear loading in a universal testing machine until failure. Selected ceramic surfaces were analyzed to identify the failure mode using a scanning electron microscopy (SEM). Nanostructured silica coatings were prepared on glass-infiltrated aluminum oxide ceramic surfaces by the sol-gel process. The silicon element on the ceramic surface increased significantly after the coating process. The mean shear bond strength values (standard deviation) before artificial aging were: group P: 1.882 +/- 0.156 MPa; group PO: 2.177 +/- 0.226 MPa; group PTO: 3.574 +/- 0.671 MPa. Statistically significant differences existed between group PTO and group P, and group PTO and groups PO. The failure mode for group P and group PO was adhesive, while group PTO was mixed. The mean shear bond strength values (standard deviation) after artificial aging were: group P: 1.594 +/- 0.111 MPa; group PO: 2.120 +/- 0.339 MPa; group PTO: 2.955 +/- 0.113 MPa. Statistically significant differences existed between each two groups after artificial aging, group P had the lowest bond durability, and group PTO had the highest bond durability. The sol-gel process is an effective way to prepare silica coating on dental glass-infiltrated alumina ceramic. Sol-gel processed silica coating can improve the resin bond strength of glass-infiltrated alumina ceramic.

  8. Effect of disjoining pressure on terminal velocity of a bubble sliding along an inclined wall

    PubMed Central

    Del Castillo, Lorena A.; Ohnishi, Satomi; White, Lee R.; Carnie, Steven L.; Horn, Roger G.

    2011-01-01

    The influence of salt concentration on the terminal velocities of gravity-driven single bubbles sliding along an inclined glass wall has been investigated, in an effort to establish whether surface forces acting between the wall and the bubble influence the latter’s mobility. A simple sliding bubble apparatus was employed to measure the terminal velocities of air bubbles with radii ranging from 0.3 to 1.5 mm sliding along the interior wall of an inclined Pyrex glass cylinder with inclination angles between 0.6 and 40.1°. Experiments were performed in pure water, 10 mM and 100 mM KCl solutions. We compared our experimental results with a theory by Hodges et al. [1] which considers hydrodynamic forces only, and with a theory developed by two of us [2] which considers surface forces to play a significant role. Our experimental results demonstrate that the terminal velocity of the bubble not only varies with the angle of inclination and the bubble size but also with the salt concentration, particularly at low inclination angles of ∼1–5°, indicating that double-layer forces between the bubble and the wall influence the sliding behavior. This is the first demonstration that terminal velocities of sliding bubbles are affected by disjoining pressure. PMID:21924429

  9. Plastic Polymers for Efficient DNA Microarray Hybridization: Application to Microbiological Diagnostics▿

    PubMed Central

    Zhao, Zhengshan; Peytavi, Régis; Diaz-Quijada, Gerardo A.; Picard, Francois J.; Huletsky, Ann; Leblanc, Éric; Frenette, Johanne; Boivin, Guy; Veres, Teodor; Dumoulin, Michel M.; Bergeron, Michel G.

    2008-01-01

    Fabrication of microarray devices using traditional glass slides is not easily adaptable to integration into microfluidic systems. There is thus a need for the development of polymeric materials showing a high hybridization signal-to-background ratio, enabling sensitive detection of microbial pathogens. We have developed such plastic supports suitable for highly sensitive DNA microarray hybridizations. The proof of concept of this microarray technology was done through the detection of four human respiratory viruses that were amplified and labeled with a fluorescent dye via a sensitive reverse transcriptase PCR (RT-PCR) assay. The performance of the microarray hybridization with plastic supports made of PMMA [poly(methylmethacrylate)]-VSUVT or Zeonor 1060R was compared to that with high-quality glass slide microarrays by using both passive and microfluidic hybridization systems. Specific hybridization signal-to-background ratios comparable to that obtained with high-quality commercial glass slides were achieved with both polymeric substrates. Microarray hybridizations demonstrated an analytical sensitivity equivalent to approximately 100 viral genome copies per RT-PCR, which is at least 100-fold higher than the sensitivities of previously reported DNA hybridizations on plastic supports. Testing of these plastic polymers using a microfluidic microarray hybridization platform also showed results that were comparable to those with glass supports. In conclusion, PMMA-VSUVT and Zeonor 1060R are both suitable for highly sensitive microarray hybridizations. PMID:18784318

  10. Microscope Cells Containing Multiple Micromachined Wells

    NASA Technical Reports Server (NTRS)

    Turner, Walter; Skupinski, Robert

    2003-01-01

    Tech Briefs, May 2003 19 Manufacturing Microscope Cells Containing Multiple Micromachined Wells The cost per cell has been reduced substantially. John H. Glenn Research Center, Cleveland, Ohio An improved design for multiple-well microscope cells and an associated improved method of fabricating them have been devised. [As used here, "well" denotes a cavity that has a volume of about 1 or 2 L and that is used to hold a sample for examination under a microscope. As used here, "cell" denotes a laminate, based on a standard 1- by 3-in. (2.54- by 7.62-cm) microscope slide, that comprises (1) the slide as the lower layer, (2) an intermediate layer that contains holes that serve as the wells, and (3) a top layer that either consists of, or is similar to, a standard microscope-slide cover slip.] The improved design and method of fabrication make it possible to increase (relative to a prior design and method of fabrication) the number of wells per cell while reducing the fabrication loss and reducing the cost per cell to about one-tenth of the prior value. In the prior design and method, the slide, well, and cover-slip layers were made from silicate glass. The fabrication of each cell was a labor-intensive process that included precise cutting and grinding of the glass components, fusing of the glass components, and then more grinding and polishing to obtain desired dimensions. Cells of the prior design were expensive and fragile, the rate of loss in fabrication was high, and the nature of the glass made it difficult to increase the number of cells per well. Efforts to execute alternative prior designs in plastic have not yielded satisfactory results because, for typical applications, plastics are not sufficiently thermally or chemically stable, not sufficiently optically clear, and/or not hard enough to resist scratching. The figure depicts a cell of the present improved type. The slide and cover-slip layers are made of a low-thermal-expansion glass (Pyrex(TradeMark) or equivalent) and the intermediate (well layer) is made of SiO2 - a combination of materials that results in a laminate stronger than one made from layers of silicate glass. Before the layers are assembled into the laminate, the SiO2 layer is micromachined to form the wells plus shallow grooves that, when subsequently covered with the cover slip, become capillary channels that are used to fill the wells with samples. The micromachining is accomplished by use of the same patterning and etching techniques used to fabricate microelectromechanical systems (MEMS).

  11. Proposals for best-quality immunohistochemical staining of paraffin-embedded brain tissue slides in forensics.

    PubMed

    Trautz, Florian; Dreßler, Jan; Stassart, Ruth; Müller, Wolf; Ondruschka, Benjamin

    2018-01-03

    Immunohistochemistry (IHC) has become an integral part in forensic histopathology over the last decades. However, the underlying methods for IHC vary greatly depending on the institution, creating a lack of comparability. The aim of this study was to assess the optimal approach for different technical aspects of IHC, in order to improve and standardize this procedure. Therefore, qualitative results from manual and automatic IHC staining of brain samples were compared, as well as potential differences in suitability of common IHC glass slides. Further, possibilities of image digitalization and connected issues were investigated. In our study, automatic staining showed more consistent staining results, compared to manual staining procedures. Digitalization and digital post-processing facilitated direct analysis and analysis for reproducibility considerably. No differences were found for different commercially available microscopic glass slides regarding suitability of IHC brain researches, but a certain rate of tissue loss should be expected during the staining process.

  12. The nucleation of "fast" and "slow" stick slip instabilities in sheared granular aggregates

    NASA Astrophysics Data System (ADS)

    Korkolis, Evangelos; Ampuero, Jean-Paul; Niemeijer, André

    2017-04-01

    Seismological observations in the past few decades have revealed a diversity of slip behaviors of faults, involving interactions and transition between slow to fast slip phenomena. Field studies show that exhumed fault zones comprise mixtures of materials with variable frictional strength and stability. Emergent models of slip diversity emphasize the role of heterogeneities of fault zone properties and the potential interactions between seismic and aseismic deformation. Here, we develop analog laboratory experiments to study the mechanics of heterogeneous faults with the goal to identify factors controlling their slip stability and rupture style. We report on results from room temperature sliding experiments using a rotary shear apparatus. We simulated gouge heterogeneity by using materials with different frictional strength and stability. At room temperature conditions, dry glass beads typically stick slip, whereas dry granular calcite exhibits stable sliding. The peak strength of glass beads aggregates is typically lower than that of granular calcite aggregates. Our samples consisted of a layer of glass beads sandwiched between two layers of granular calcite. The initial particle size was between 100 and 200 μm for both materials and the initial thickness of each layer was about 1.5 mm. We tested our layered aggregates under 1 to 7 MPa normal stress and at sliding velocities between 1 and 100 μm/s. Within that range of conditions, high normal stress and slow sliding velocities promoted fast, regular stick slip. For normal stress values of less than about 4 MPa, the recurrence time and stress drop of stick slips became irregular, particularly at sliding rates above 20 μm/s. As the accumulated shear displacement increased, slip events became slower and the magnitudes of their stress drop, compaction and slip distance decreased. We recorded acoustic emissions (AEs) associated with each slip event (fast and slow) and estimated their source azimuth. AE activity was distributed in several clusters, some of which remained stationary, whereas others appeared to migrate with increasing shear displacement. We performed post-mortem microstructural analysis (tabletop SEM) of select AE nucleation sites and found significant mixing of glass beads with the calcite layer abutting the rotating piston ring. No mixing was observed between the glass beads and the calcite layer on the opposite side, nor any features that would indicate strain localization along the interface of the calcite and the adjacent stationary piston. These results show that the frictional behavior of our aggregates changed from fast to slow slip as the amount of glass beads mixed with granular calcite increased. Migrating AE clusters imply that nucleation occurred within the mixed calcite-glass beads layer, where most of the shear strain appears to have been accommodated, whereas stationary clusters probably originated within the adjacent, more slowly deforming layer of glass beads. This suggests that AEs belonging to migrating clusters were perhaps triggered by stress changes due to the gradual mixing of the two sample constituents. This process may explain migrating seismicity in natural fault zones.

  13. Whole Slide Images and Digital Media in Pathology Education, Testing, and Practice: The Oklahoma Experience

    PubMed Central

    Fung, Kar-Ming; Hassell, Lewis A.; Talbert, Michael L.; Wiechmann, Allan F.; Chaser, Brad E.; Ramey, Joel

    2012-01-01

    Examination of glass slides is of paramount importance in pathology training. Until the introduction of digitized whole slide images that could be accessed through computer networks, the sharing of pathology slides was a major logistic issue in pathology education and practice. With the help of whole slide images, our department has developed several online pathology education websites. Based on a modular architecture, this program provides online access to whole slide images, still images, case studies, quizzes and didactic text at different levels. Together with traditional lectures and hands-on experiences, it forms the back bone of our histology and pathology education system for residents and medical students. The use of digitized whole slide images has a.lso greatly improved the communication between clinicians and pathologist in our institute. PMID:21965282

  14. Photographic copy of 3 ½” x 5” glass lantern slide ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photographic copy of 3 ½” x 5” glass lantern slide no. 5A of June 1926 and November 1930 drawing by Ralph Modjeski, Consulting Engineer. Located in wooden pine box #23 in box 84 of 94 at the National Museum of American History, Smithsonian Institution, Archives Center, Work and Industry Division, Washington, D.C. Original photographer unknown. JUNE 1926 AND NOVEMBER 1930 DRAWING OF “PROPOSED BRIDGE OVER THE MISSISSIPPI RIVER NORTH OF NEW ORLEANS, LOUISIANA, PLAN “E”. - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  15. Optical Properties of Silver Nanoparticulate Glasses

    NASA Astrophysics Data System (ADS)

    Evans, Rachel N.; Cannavino, Sarah A.; King, Christy A.; Lamartina, Joseph A.; Magruder, Robert H.; Ferrara, Davon W.

    The ion exchange method of embedding metal nanoparticles (NPs) into float glass is an often used technique of fabricating colored glasses and graded-index waveguides. The depth and size of NP formation in the glass depends on the concentration and temperature of metal ions in the molten bath. In this study we explore the dichroic properties of silver metal ion exchange restricted to only one side of a glass microscope slide using reflection and transmission spectroscopy and its dependence on temperature, concentration of silver ions, and length of time in the molten bath.

  16. Influence of biofilm formation on the optical properties of novel bioactive glass-containing composites

    PubMed Central

    Hyun, Hong-Keun; Ferracane, Jack L.

    2016-01-01

    Objective Bioactive glass (BAG) has been suggested as a possible additive for dental restorative materials because of its antimicrobial effect and potential for promoting apatite formation in body fluids. The purpose of this study was to investigate the effects of bacterial biofilm on the change of colorimetric value and translucency of novel BAG-containing composites having different initial surface roughness. Methods Composites with 72 wt% total filler load were prepared by replacing 15% of the silanized Sr glass with BAG (65 mole% Si; 4% P; 31% Ca), BAG-F (61% Si; 31% Ca; 4% P; 3% F; 1% B), or silanized silica. Light-cured discs of 2-mm thickness (n=10/group) were divided into 4 different surface roughness subgroups produced by wet polishing with 600 and then up to 1200, 2400, or 4000 grit SiC. CIE L*a*b* were measured and the color difference and translucency parameter (TP) were calculated before and after incubating in media with or without a S. mutans (UA 159) biofilm for 2 wks (no agitation). Results were analyzed using ANOVA/Tukey's test (α = 0.05). Results All the color differences for BAG and BAG-F composite showed significant decreases with bacterial biofilm compared to media-only. The mean TP (SD) of BAG and BAG-F composite before aging [10.0 (2.8) and 8.5 (1.4)] was higher than that of the control composite [4.9 (0.8)], while the change in TP with aging was greater compared to the control with or without bacteria. BAG-F composites with the smoothest surfaces showed a greater decrease in TP under bacterial biofilm compared to the BAG composite. Significance Highly polished dental composites containing bioactive glass additives may become slightly rougher and show reduced translucency when exposed to bacterial biofilms, but do not discolor any more than control composites that do not contain the BAG. PMID:27394086

  17. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations

    PubMed Central

    Khvostenko, D.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.

    2015-01-01

    Objectives Bioactive glass (BAG) is known to possess antimicrobial and remineralizing properties; however, the use of BAG as a filler for resin based composite restorations to slow recurrent caries has not been studied. Accordingly, the objective of this study was to investigate the effect of 15 wt% BAG additions to a resin composite on bacterial biofilms penetrating into marginal gaps of simulated tooth fillings in vitro during cyclic mechanical loading. Methods Human molars were machined into approximately 3 mm thick disks of dentin and 1.5–2 mm deep composite restorations were placed. A narrow 15–20 micrometer wide dentin-composite gap was allowed to form along half of the margin by not applying dental adhesive to that region. Two different 72 wt% filled composites were used, one with 15 wt% BAG filler (15BAG) and the balance silanated strontium glass and one filled with OX-50 and silanated strontium glass without BAG (0BAG – control). Samples of both groups had Streptococcus mutans biofilms grown on the surface and were tested inside a bioreactor for two weeks while subjected to periods of cyclic mechanical loading. After post-test biofilm viability was confirmed, each specimen was fixed in glutaraldehyde, gram positive stained, mounted in resin and cross-sectioned to reveal the gap profile. Depth of biofilm penetration for 0BAG and 15BAG was quantified as the fraction of gap depth. The data were compared using a Student’s t-test. Results The average depth of bacterial penetration into the marginal gap for the 15BAG samples was significantly smaller (~61%) in comparison to 0BAG, where 100% penetration was observed for all samples with the biofilm penetrating underneath of the restoration in some cases. Significance BAG containing resin dental composites reduce biofilm penetration into marginal gaps of simulated tooth restorations. This suggests BAG containing composites may have the potential to slow the development and propagation of secondary tooth decay at restoration margins. PMID:26621028

  18. Current Status of Whole-Slide Imaging in Education.

    PubMed

    Saco, Adela; Bombi, Jose Antoni; Garcia, Adriana; Ramírez, Jose; Ordi, Jaume

    2016-01-01

    Conventional light microscopy (CLM) has classically been the basic tool to teach histology and pathology. In recent years, whole-slide imaging (WSI), which consists of generating a high-magnification digital image of an entire histological glass slide, has emerged as a useful alternative to CLM offering a myriad of opportunities for education. Navigation through the digitized slides closely simulates viewing glass slides with a microscope and is also referred to as virtual microscopy. WSI has many advantages for education. Students feel more comfortable with its use, and it can be used in any classroom as it only requires a computer with Internet access and it allows remote access from anywhere and from any device. WSI can be used simultaneously by a large number of people, stimulating cooperation between students and improving the interaction with the teachers. It allows making marks and annotations on specific fields, which enable specific directed questions to the teacher. Finally, WSI supports are cost-effective compared with CLM. Consequently, WSI has begun to replace CLM in many institutions. WSI has shown to be an extremely useful tool for undergraduate education (medical, dental and veterinary schools), for the training of residents of pathology, tele-education and in tumor boards. © 2016 S. Karger AG, Basel.

  19. eeDAP: An Evaluation Environment for Digital and Analog Pathology.

    PubMed

    Gallas, Brandon D; Cheng, Wei-Chung; Gavrielides, Marios A; Ivansky, Adam; Keay, Tyler; Wunderlich, Adam; Hipp, Jason; Hewitt, Stephen M

    2014-01-01

    The purpose of this work is to present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSI) on a computer display to pathologists interpreting glass slides on an optical microscope. Here we present eeDAP, an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of the WSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires images of the real time microscope view. Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses the comparison on image quality. We reduced the pathologist interpretation area from an entire glass slide (≈10-30 mm) 2 to small ROIs <(50 um) 2 . We also made possible the evaluation of individual cells. We summarize eeDAP's software and hardware and provide calculations and corresponding images of the microscope field of view and the ROIs extracted from the WSIs. These calculations help provide a sense of eeDAP's functionality and operating principles, while the images provide a sense of the look and feel of studies that can be conducted in the digital and analog domains. The eeDAP software can be downloaded from code.google.com (project: eeDAP) as Matlab source or as a precompiled stand-alone license-free application.

  20. Glycoproteins of the vitelline envelope of Amphibian oocyte: biological and molecular characterization of ZPC component (gp41) in Bufo arenarum.

    PubMed

    Barisone, Gustavo A; Krapf, Darío; Correa-Fiz, Florencia; Arranz, Silvia E; Cabada, Marcelo O

    2007-05-01

    The vitelline envelope (VE) participates in sperm-egg interactions during the first steps of fertilization. In Bufo arenarum, this envelope is composed of at least four glycoproteins, with molecular masses of 120, 75, 41, and 38 kDa and molar ratio of 1:1.3:7.4:4.8, respectively. These components were isolated and covalently coupled to silanized glass slides in order to study their sperm-binding capacity. When considering the molar ratio of the glycoproteins in the egg-envelope and assuming that each protein is monovalent for sperm, the assay showed that gp41 and gp38 possess 55 and 25% of total sperm-binding activity. We obtained a full-length cDNA of gp41 (ZPC), comprising a sequence for 486 amino acids, with 43.3% homology with Xenopus laevis ZPC. As in the case of mammalian ZP3 and Xenopus ZPC, Bufo ZPC presented a furin-like (convertase) and a C-terminal transmembrane domain (TMD) reflecting common biosynthetic and secretory pathways. As it was reported for some fishes, we obtained evidence that suggests the presence of more than one zpc gene in Bufo genome, based on different partial cDNA sequences of zpc, Southern blots and two-dimensional SDS-PAGE of deglycosylated egg-envelope components. As far as we are aware, this is the first observation of the presence of different zpc genes in an Amphibian species. Copyright (c) 2006 Wiley-Liss, Inc.

  1. Automatic image analysis and spot classification for detection of pathogenic Escherichia coli on glass slide DNA microarrays

    USDA-ARS?s Scientific Manuscript database

    A computer algorithm was created to inspect scanned images from DNA microarray slides developed to rapidly detect and genotype E. Coli O157 virulent strains. The algorithm computes centroid locations for signal and background pixels in RGB space and defines a plane perpendicular to the line connect...

  2. A damage-tolerant glass.

    PubMed

    Demetriou, Marios D; Launey, Maximilien E; Garrett, Glenn; Schramm, Joseph P; Hofmann, Douglas C; Johnson, William L; Ritchie, Robert O

    2011-02-01

    Owing to a lack of microstructure, glassy materials are inherently strong but brittle, and often demonstrate extreme sensitivity to flaws. Accordingly, their macroscopic failure is often not initiated by plastic yielding, and almost always terminated by brittle fracture. Unlike conventional brittle glasses, metallic glasses are generally capable of limited plastic yielding by shear-band sliding in the presence of a flaw, and thus exhibit toughness-strength relationships that lie between those of brittle ceramics and marginally tough metals. Here, a bulk glassy palladium alloy is introduced, demonstrating an unusual capacity for shielding an opening crack accommodated by an extensive shear-band sliding process, which promotes a fracture toughness comparable to those of the toughest materials known. This result demonstrates that the combination of toughness and strength (that is, damage tolerance) accessible to amorphous materials extends beyond the benchmark ranges established by the toughest and strongest materials known, thereby pushing the envelope of damage tolerance accessible to a structural metal.

  3. Surface chemistry, microstructure and friction properties of some ferrous-base metallic glasses at temperatures to 750 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.

  4. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.

    PubMed

    Jogikalmath, G; Stuart, J K; Pungor, A; Hlady, V

    1999-08-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si(3)N(4) tip surfaces was found for all modified glass surfaces.

  5. Digital pathology for the primary diagnosis of breast histopathological specimens: an innovative validation and concordance study on digital pathology validation and training.

    PubMed

    Williams, Bethany Jill; Hanby, Andrew; Millican-Slater, Rebecca; Nijhawan, Anju; Verghese, Eldo; Treanor, Darren

    2018-03-01

    To train and individually validate a group of breast pathologists in specialty-specific digital primary diagnosis by using a novel protocol endorsed by the Royal College of Pathologists' new guideline for digital pathology. The protocol allows early exposure to live digital reporting, in a risk-mitigated environment, and focuses on patient safety and professional development. Three specialty breast pathologists completed training in the use of a digital microscopy system, and were exposed to a training set of 20 challenging cases, designed to help them identify personal digital diagnostic pitfalls. Following this, the three pathologists viewed a total of 694 live, entire breast cases. All primary diagnoses were made on digital slides, with immediate glass slide review and reconciliation before final case sign-out. There was complete clinical concordance between the glass and digital impression of the case in 98.8% of cases. Only 1.2% of cases had a clinically significant difference in diagnosis/prognosis on glass and digital slide reads. All pathologists elected to continue using the digital microscope as the standard for breast histopathology specimens, with deferral to glass for a limited number of clinical/histological scenarios as a safety net. Individual training and validation for digital primary diagnosis allows pathologists to develop competence and confidence in their digital diagnostic skills, and aids safe and responsible transition from the light microscope to the digital microscope. © 2017 John Wiley & Sons Ltd.

  6. Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Basu, Rajratan; Lee, Andrew

    2017-10-01

    A monolayer graphene coated glass slide and an indium tin oxide (ITO) coated glass slide with a planar-aligning polyimide layer were placed together to make a planar hybrid liquid crystal (LC) cell. The free-ion concentration in the LC was found to be significantly reduced in the graphene-ITO hybrid cell compared to that in a conventional ITO-ITO cell. The free-ion concentration was suppressed in the hybrid cell due to the graphene-electrode's ion trapping process. The dielectric anisotropy of the LC was found to increase in the hybrid cell, indicating an increase in the nematic order parameter of the LC due to the reduction of ionic impurities.

  7. Movement of fine particles on an air bubble surface studied using high-speed video microscopy.

    PubMed

    Nguyen, Anh V; Evans, Geoffrey M

    2004-05-01

    A CCD high-speed video microscopy system operating at 1000 frames per second was used to obtain direct quantitative measurements of the trajectories of fine glass spheres on the surface of air bubbles. The glass spheres were rendered hydrophobic by a methylation process. Rupture of the intervening water film between a hydrophobic particle and an air bubble with the consequent formation of a three-phase contact was observed. The bubble-particle sliding attachment interaction is not satisfactorily described by the available theories. Surface forces had little effect on the particle sliding with a water film, which ruptured probably due to the submicrometer-sized gas bubbles existing at the hydrophobic particle-water interface.

  8. Experimental Design on Laminated Veneer Lumber Fiber Composite: Surface Enhancement

    NASA Astrophysics Data System (ADS)

    Meekum, U.; Mingmongkol, Y.

    2010-06-01

    Thick laminate veneer lumber(LVL) fibre reinforced composites were constructed from the alternated perpendicularly arrayed of peeled rubber woods. Glass woven was laid in between the layers. Native golden teak veneers were used as faces. In house formulae epoxy was employed as wood adhesive. The hand lay-up laminate was cured at 150° C for 45 mins. The cut specimen was post cured at 80° C for at least 5 hours. The 2k factorial design of experimental(DOE) was used to verify the parameters. Three parameters by mean of silane content in epoxy formulation(A), smoke treatment of rubber wood surface(B) and anti-termite application(C) on the wood surface were analysed. Both low and high levels were further subcategorised into 2 sub-levels. Flexural properties were the main respond obtained. ANOVA analysis of the Pareto chart was engaged. The main effect plot was also testified. The results showed that the interaction between silane quantity and termite treatment is negative effect at high level(AC+). Vice versa, the interaction between silane and smoke treatment was positive significant effect at high level(AB+). According to this research work, the optimal setting to improve the surface adhesion and hence flexural properties enhancement were high level of silane quantity, 15% by weight, high level of smoked wood layers, 8 out of 14 layers, and low anti termite applied wood. The further testes also revealed that the LVL composite had superior properties that the solid woods but slightly inferior in flexibility. The screw withdrawn strength of LVL showed the higher figure than solid wood. It is also better resistance to moisture and termite attack than the rubber wood.

  9. Silica Coating of Nonsilicate Nanoparticles for Resin-Based Composite Materials

    PubMed Central

    Kaizer, M.R.; Almeida, J.R.; Gonçalves, A.P.R.; Zhang, Y.; Cava, S.S.; Moraes, R.R.

    2016-01-01

    This study was designed to develop and characterize a silica-coating method for crystalline nonsilicate ceramic nanoparticles (Al2O3, TiO2, and ZrO2). The hypothesis was that the coated nonsilicate nanoparticles would stably reinforce a polymeric matrix due to effective silanation. Silica coating was applied via a sol-gel method, with tetraethyl orthosilicate as a silica precursor, followed by heat treatment. The chemical and microstructural characteristics of the nanopowders were evaluated before and after silica coating through x-ray diffraction, BET (Brunauer-Emmett-Teller), energy-dispersive x-ray spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy analyses. Coated and noncoated nanoparticles were silanated before preparation of hybrid composites, which contained glass microparticles in addition to the nanoparticles. The composites were mechanically tested in 4-point bending mode after aging (10,000 thermal cycles). Results of all chemical and microstructural analyses confirmed the successful obtaining of silica-coated nanoparticles. Two distinct aspects were observed depending on the type of nanoparticle tested: 1) formation of a silica shell on the surface of the particles and 2) nanoparticle clusters embedded into a silica matrix. The aged hybrid composites formulated with the coated nanoparticles showed improved flexural strength (10% to 30% higher) and work of fracture (35% to 40% higher) as compared with composites formulated with noncoated nanoparticles. The tested hypothesis was confirmed: silanated silica-coated nonsilicate nanoparticles yielded stable reinforcement of dimethacrylate polymeric matrix due to effective silanation. The silica-coating method presented here is a versatile and promising novel strategy for the use of crystalline nonsilicate ceramics as a reinforcing phase of polymeric composite biomaterials. PMID:27470069

  10. Fresh and aged human lymphocyte metaphase slides are equally usable for GTG banding.

    PubMed

    Sajjad, Naheed; Haque, Sayedul; SBurney, Syed Intesar; Shahid, Syed Muhammad; Zehra, Sitwat; Azhar, Abid

    2014-09-01

    The identification of chromosomes for routine cytogenetic analysis is based on quality of metaphases and good banding pattern. Fresh slides of human lymphocytes have been shown to produce good bands for the identification of chromosomes morphology. G-bands by Trypsin using Giemsa (GTG) banding of aged slides is generally considered hard to get desired band pattern of chromosomes persistently. The current study is focused on GTG banding of aged slides. A total of 340 subjects including 290 primary infertile and 50 fertile were selected. The blood samples were drawn aseptically for cytogenetic analysis. Lymphocytes were cultured and GTG banding was done on 1440 glass slides. Giemsa trypsin banding of aged slides were done by adjusting average trypsin time for each month according to the slide age and metaphase concentration. Correlation analyses showed a significant and positive correlation between slide ageing and trypsin pre-treatment time. The results of this study suggest that, the fresh and aged human lymphocyte metaphases are equally usable for GTG banding.

  11. Effects of Ozone on Exercising and Sedentary Adult Men and Women Representative of the Flight Attendant Population

    DTIC Science & Technology

    1979-10-01

    ject then ate all of a standard breakfast consisting of two scrambled eggs, two slices of bacon, two pieces of buttered toast, jelly , and a glass...SDF-l), vertical phoria (slide VPF-I), and lateral phoria (slide LPF-I). Accommodation was measured with the Royal Air Force Near Point Rule, using

  12. An Efficient Covalent Coating on Glass Slides for Preparation of Optical Oligonucleotide Microarrays

    PubMed Central

    Pourjahed, Atefeh; Rabiee, Mohammad; Tahriri, Mohammadreza

    2013-01-01

    Objective(s): Microarrays are potential analyzing tools for genomics and proteomics researches, which is in needed of suitable substrate for coating and also hybridization of biomolecules. Materials and Methods: In this research, a thin film of oxidized agarose was prepared on the glass slides which previously coated with poly-L-lysine (PLL). Some of the aldehyde groups of the activated agarose linked covalently to PLL amine groups; also bound to the amino groups of biomolecules. These linkages were fixed by UV irradiation. The prepared substrates were compared to only agarose-coated and PLL-coated slides. Results: Results on atomic force microscope (AFM) demonstrated that agarose provided three-dimensional surface which had higher loading and bindig capacity for biomolecules than PLL-coated surface which had two-dimensional surface. In addition, the signal-to-noise ratio in hybridization reactions performed on the agarose-PLL coated substrates increased two fold and four fold compared to agarose and PLL coated substrates, respectively. Conclusion: The agarose-PLL microarrays had the highest signal (2546) and lowest background signal (205) in hybridization, suggesting that the prepared slides are suitable in analyzing wide concentration range of analytes. PMID:24570832

  13. Natural Attenuation of Persistent Chemical Warfare Agent VX ...

    EPA Pesticide Factsheets

    Report Natural attenuation of persistent CWAs such as VX was investigated and occurs, given sufficient time (days to weeks). Natural attenuation was found to be faster at warmer temperatures (i.e., 35 °C and 25 °C) than cooler temperatures (i.e., 10 °C). Attenuation of VX was material dependent with a general trend of faster to slower attenuation in the order ceramic tile - galvanized metal - silanized glass - painted drywall. Trace amounts of VX may still be present weeks to months after a contamination event.

  14. Application of microstructural optical waveguides with hollow core for enzyme immunoassay

    NASA Astrophysics Data System (ADS)

    Pidenko, Pavel S.; Pidenko, Sergei A.; Burmistrova, Natalia A.; Shuvalov, Andrei A.; Chibrova, Anastasiya A.; Skibina, Yulia S.; Goryacheva, Irina Y.

    2018-04-01

    Microstructural optical waveguides with the hollow core are actively studied as a promising support for heterogeneous immunoassay in development of new optical biosensor elements for medicine and biology. Overcoming of the limitations associated with the low sorption capacity of glass used for the waveguides production is a crucial step for this assay format. In this work the possibility of silanization of microstructural optical waveguides with the hollow core using (3-glycidyloxypropyl) trimethoxysilane and their further application to enzymatic immunoassay was studied.

  15. Modification of the internal surface of photonic crystal fibers with Ag and Au nanoparticles for application as sensor elements

    NASA Astrophysics Data System (ADS)

    Pidenko, Pavel S.; Borzov, Victor M.; Savenko, Olga A.; Skaptsov, Alexander A.; Skibina, Yulia S.; Goryacheva, Irina Yu.; Rusanova, Tatiana Yu.

    2017-03-01

    Photonic crystal fibers (PCFs) are one of the most promising materials for biosensors construction due to their unique optical properties. The modification of PCF by noble metal nanoparticles (NPs) provides the SPR and SERS signal detection where as the application amino group-containing compounds allows efficient binding of biomolecules. In this work the internal surface of glass hollow core photonic crystal fibers (HC-PCFs) has been modified Ag and Au nanoparticles using three different approaches. PCFs were treated by: 1) mixture of NPs and precursors for silanization (tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES)); 2) alternately deposition of polyelectrolytes and NPs, 3) mixture of chitosan with NPs. The shift of local maxima in the HC-PCF transmission spectrum has been selected as a signal for estimating the amount of NPs on the HC-PCF inner surface. The most efficient techniques were the chitosan application for Ag NPs and silanization for Au NPs. The obtaining PCFs could be useful for creating biosensitive elements.

  16. Development and Mechanical Behavior of FML/Aluminium Foam Sandwiches

    NASA Astrophysics Data System (ADS)

    Baştürk, S. B.; Tanoğlu, M.

    2013-10-01

    In this study, the Fiber-Metal Laminates (FMLs) containing glass fiber reinforced polypropylene (GFPP) and aluminum (Al) sheet were consolidated with Al foam cores for preparing the sandwich panels. The aim of this article is the comparison of the flexural properties of FML/Al foam sandwich panels bonded with various surface modification approaches (silane treatment and combination of silane treatment with polypropylene (PP) based film addition). The FML/foam sandwich systems were fabricated by laminating the components in a mould at 200 °C under 1.5 MPa pressure. The energy absorbtion capacities and flexural mechanical properties of the prepared sandwich systems were evaluated by mechanical tests. Experiments were performed on samples of varying foam thicknesses (8, 20 and 30 mm). The bonding among the sandwich components were achieved by various surface modification techniques. The Al sheet/Al foam sandwiches were also consolidated by bonding the components with an epoxy adhesive to reveal the effect of GFPP on the flexural performance of the sandwich structures.

  17. eeDAP: An Evaluation Environment for Digital and Analog Pathology

    PubMed Central

    Gallas, Brandon D.; Cheng, Wei-Chung; Gavrielides, Marios A.; Ivansky, Adam; Keay, Tyler; Wunderlich, Adam; Hipp, Jason; Hewitt, Stephen M.

    2017-01-01

    Purpose The purpose of this work is to present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSI) on a computer display to pathologists interpreting glass slides on an optical microscope. Methods Here we present eeDAP, an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of the WSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires images of the real time microscope view. Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses the comparison on image quality. Results We reduced the pathologist interpretation area from an entire glass slide (≈10–30 mm)2 to small ROIs <(50 um)2. We also made possible the evaluation of individual cells. Conclusions We summarize eeDAP’s software and hardware and provide calculations and corresponding images of the microscope field of view and the ROIs extracted from the WSIs. These calculations help provide a sense of eeDAP’s functionality and operating principles, while the images provide a sense of the look and feel of studies that can be conducted in the digital and analog domains. The eeDAP software can be downloaded from code.google.com (project: eeDAP) as Matlab source or as a precompiled stand-alone license-free application. PMID:28845079

  18. Study of thermal stability of (3-aminopropyl)trimethoxy silane-grafted titanate nanotubes for application as nanofillers in polymers.

    PubMed

    Plodinec, Milivoj; Gajović, Andreja; Iveković, Damir; Tomašić, Nenad; Zimmermann, Boris; Macan, Jelena; Haramina, Tatjana; Su, D S; Willinger, Marc

    2014-10-31

    Protonated titanate nanotubes (TiNT-H) were surface-modified with (3-aminopropyl)trimethoxy silane (APTMS) by a novel method suitable for the syntheses of large amounts of materials at a low cost. The usage of prepared nanotubes for polymer reinforcement was studied. Since the thermal stability of the nanofiller was important to preserve its functional properties, its stability was studied by in situ high-temperature measurements. The most thermally stable nanotubes were silanized for 20 min and used for the preparation of epoxy-based nanocomposites. The nanofiller formed smaller (a few hundred nm) and larger (a few μm) aggregates in the polymer matrix, and the amount of aggregates increased as the nanofiller content increased. The APTMS-modified titanate nanotubes bonded well with the epoxy matrix since amine groups on the TiNT's surface can react with an epoxy group to form covalent bonds between the matrix and the nanofiller. A very small addition (0.19-1.52 wt%) of the nanotubes significantly increased the glass transition temperature and the modulus in the rubbery state of the epoxy-based polymer. Smaller nanofiller content leads to a larger increase in these parameters and therefore better dynamic mechanical properties due to the smaller amount of large aggregates. APTMS-modified titanate nanotubes have proven to be a promising nanofiller in epoxy-based nanocomposites.

  19. [Whole slide imaging technology: from digitization to online applications].

    PubMed

    Ameisen, David; Le Naour, Gilles; Daniel, Christel

    2012-11-01

    As e-health becomes essential to modern care, whole slide images (virtual slides) are now an important clinical, teaching and research tool in pathology. Virtual microscopy consists of digitizing a glass slide by acquiring hundreds of tiles of regions of interest at different zoom levels and assembling them into a structured file. This gigapixel image can then be remotely viewed over a terminal, exactly the way pathologists use a microscope. In this article, we will first describe the key elements of this technology, from the acquisition, using a scanner or a motorized microscope, to the broadcasting of virtual slides through a local or distant viewer over an intranet or Internet connection. As virtual slides are now commonly used in virtual classrooms, clinical data and research databases, we will highlight the main issues regarding its uses in modern pathology. Emphasis will be made on quality assurance policies, standardization and scaling. © 2012 médecine/sciences – Inserm / SRMS.

  20. Surface functionalisation with viscosity-sensitive BODIPY molecular rotor

    NASA Astrophysics Data System (ADS)

    Vyšniauskas, Aurimas; Lopez-Duarte, Ismael; Thompson, Alex J.; Bull, James A.; Kuimova, Marina K.

    2018-07-01

    Surface functionalisation with viscosity sensitive dyes termed ‘molecular rotors’ can potentially open up new opportunities in sensing, for example for non-invasive biological viscosity imaging, in studying the effect of shear stress on lipid membranes and in cells, and in imaging contacts between surfaces upon applied pressure. We have functionalised microscope slides with BODIPY-based molecular rotor capable of viscosity sensing via its fluorescence lifetime. We have optimised functionalisation conditions and prepared the slides with the BODIPY rotor attached directly to the surface of glass slides and through polymer linkers of 5 kDa and 40 kDa in mass. The slides were characterised for their sensitivity to viscosity, and used to measure viscosity of supported lipid bilayers during photooxidation, and of giant unilamellar vesicles lying on the surface of the slide. We conclude that our functionalised slides show promise for a variety of viscosity sensing applications.

  1. Preparation and characterization of PVDF-glass fiber composite membrane reinforced by interfacial UV-grafting copolymerization.

    PubMed

    Luo, Nan; Xu, Rongle; Yang, Min; Yuan, Xing; Zhong, Hui; Fan, Yaobo

    2015-12-01

    A novel inorganic-organic composite membrane, namely poly(vinylidene fluoride) PVDF-glass fiber (PGF) composite membrane, was prepared and reinforced by interfacial ultraviolet (UV)-grafting copolymerization to improve the interfacial bonding strength between the membrane layer and the glass fiber. The interfacial polymerization between inorganic-organic interfaces is a chemical cross-linking reaction that depends on the functionalized glass fiber with silane coupling (KH570) as the initiator and the polymer solution with acrylamide monomer (AM) as the grafting block. The Fourier transform infrared spectrometer-attenuated total reflectance (FTIR-ATR) spectra and the energy dispersive X-ray (EDX) pictures of the interface between the glass fiber and polymer matrix confirmed that the AM was grafted to the surface of the glass fiber fabric and that the grafting polymer was successfully embedded in the membrane matrix. The formation mechanisms, permeation, and anti-fouling performance of the PGF composite membrane were measured with different amounts of AM in the doping solutions. The results showed that the grafting composite membrane improved the interfacial bonding strength and permeability, and the peeling strength was improved by 32.6% for PGF composite membranes with an AM concentration at 2wt.%. Copyright © 2015. Published by Elsevier B.V.

  2. Validation of Digital Microscopy Compared With Light Microscopy for the Diagnosis of Canine Cutaneous Tumors.

    PubMed

    Bertram, Christof A; Gurtner, Corinne; Dettwiler, Martina; Kershaw, Olivia; Dietert, Kristina; Pieper, Laura; Pischon, Hannah; Gruber, Achim D; Klopfleisch, Robert

    2018-07-01

    Integration of new technologies, such as digital microscopy, into a highly standardized laboratory routine requires the validation of its performance in terms of reliability, specificity, and sensitivity. However, a validation study of digital microscopy is currently lacking in veterinary pathology. The aim of the current study was to validate the usability of digital microscopy in terms of diagnostic accuracy, speed, and confidence for diagnosing and differentiating common canine cutaneous tumor types and to compare it to classical light microscopy. Therefore, 80 histologic sections including 17 different skin tumor types were examined twice as glass slides and twice as digital whole-slide images by 6 pathologists with different levels of experience at 4 time points. Comparison of both methods found digital microscopy to be noninferior for differentiating individual tumor types within the category epithelial and mesenchymal tumors, but diagnostic concordance was slightly lower for differentiating individual round cell tumor types by digital microscopy. In addition, digital microscopy was associated with significantly shorter diagnostic time, but diagnostic confidence was lower and technical quality was considered inferior for whole-slide images compared with glass slides. Of note, diagnostic performance for whole-slide images scanned at 200× magnification was noninferior in diagnostic performance for slides scanned at 400×. In conclusion, digital microscopy differs only minimally from light microscopy in few aspects of diagnostic performance and overall appears adequate for the diagnosis of individual canine cutaneous tumors with minor limitations for differentiating individual round cell tumor types and grading of mast cell tumors.

  3. Method of forming shrink-fit compression seal

    NASA Technical Reports Server (NTRS)

    Podgorski, T. J. (Inventor)

    1977-01-01

    A method for making a glass-to-metal seal is described. A domed metal enclosure having a machined seal ring is fitted to a glass post machined to a slight taper and to a desired surface finish. The metal part is then heated by induction in a vacuum. As the metal part heats and expands relative to the glass post, the metal seal ring, possessing a higher coefficient of expansion than the glass post, slides down the tapered post. Upon cooling, the seal ring crushes against the glass post forming the seal. The method results in a glass-to-metal seal possessing extremely good leak resistance, while the parts are kept clean and free of the contaminants.

  4. A recommended procedure for the preparation of oriented clay-mineral specimens for X-ray diffraction analysis; modifications to Drever's filter-membrane peel technique

    USGS Publications Warehouse

    Pollastro, R.M.

    1982-01-01

    Extremely well-oriented clay mineral mounts for X-ray diffraction analysis can be prepared quickly and without introducing segregation using the filter-membrane peel technique. Mounting problems encountered with smectite-rich samples can be resolved by using minimal sample and partial air-drying of the clay film before transfer to a glass slide. Samples containing small quantities of clay can produce useful oriented specimens if Teflon masks having more restrictive areas are inserted above the membrane filter during clay deposition. War]page and thermal shock of glass slides can be controlled by using a flat, porous, ceramic plate as a holding surface during heat treatments.

  5. Toward implementation of a regional quality assurance program in cytopathology: the Hong Kong experience.

    PubMed

    Ng, Wai-Kuen; Chiu, Conrad S C; Cheng, Yue; Chan, Eva T Y; Chiu, Fanny L L; Collins, Robert J

    2006-01-01

    To develop a local quality assurance program in cytopathology based on circulation of patient specimens on glass slides, with limited resources. A working group was set up for design and running of the program. Participation is on a laboratory basis. The scope and frequency of testing are defined. Well-documented cases (including gynecologic, nongynecologic and fine needle aspiration cytology) with commonly encountered diagnoses are collected. Consensus concerning the diagnosis, interpretive menu and scoring system is sought before the actual slide circulations using express mail. After returning their answers to the program organizer, the participating laboratories receive immediate feedback on their scores, with reference answers, explanatory notes, "whole-mount" images of glass slides and cumulative responses of peer laboratories for on-site checking. At the end of each year, an electronic file containing representative photomicrographs of all cases examined is provided to individual laboratories for their permanent records and training purposes. The program was launched in mid-2003. There were 24 and 27 participating laboratories from Hong Kong (and Macau) in 2003 and 2004, respectively. To date, >150 well-documented cytology cases are available in the slide pool and ready for circulation. As the revenue is mainly to cover the expenses of express mail, the program can be carried out at a relatively low cost. In order to have any cytology quality assurance program accepted by local laboratories, it has to be fair and practical. Strict confidentiality needs to be observed throughout the process. This program emphasizes both performance assessment and educational value. Adequate representation from experienced local cytology workers, detailed documentation support from authorities and assistance from dedicated staff are essential to the success of any external proficiency testing scheme. Regular review and evaluation are also necessary for continuous improvement. The Hong Kong experience can serve as an example of running a glass slide-based cytology quality assurance program in a small region with limited resources.

  6. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Wei Liu, Xiao; Zhang, Hai Feng, E-mail: wy3121685@163.com

    We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H{sub 2}O, and then in boiling water) and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene) and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  7. In Situ Synthesis and Characterization of Fe-Based Metallic Glass Coatings by Electrospark Deposition Technique

    NASA Astrophysics Data System (ADS)

    Burkov, Alexander A.; Pyachin, S. A.; Ermakov, M. A.; Syuy, A. V.

    2017-02-01

    Crystalline FeWMoCrBC electrode materials were prepared by conventional powder metallurgy. Metallic glass (MG) coatings were produced by electrospark deposition onto AISI 1035 steel in argon atmosphere. X-ray diffraction and scanning electron microscopy verified the amorphous structure of the as-deposited coatings. The coatings have a thickness of about 40 microns and a uniform structure. The results of dry sliding wear tests against high-speed steel demonstrated that Fe-based MG coatings had a lower friction coefficient and more than twice the wear resistance for 20 km sliding distance with respect to AISI 1035 steel. High-temperature oxidation treatment of the metal glass coatings at 1073 K in air for 12 h revealed that the oxidation resistance of the best coating was 36 times higher than that for bare AISI 1035 steel. These findings are expected to broaden the applications of electrospark Fe-based MG as highly protective and anticorrosive coatings for mild steel.

  8. High-resolution topograms of fingerprints using multiwavelength digital holography

    NASA Astrophysics Data System (ADS)

    Abeywickrema, Ujitha; Banerjee, Partha; Kota, Akash; Swiontek, Stephen E.; Lakhtakia, Akhlesh

    2017-03-01

    Fingerprint analysis is a popular identification technique due to the uniqueness of fingerprints and the convenience of recording them. The quality of a latent fingerprint on a surface can depend on various conditions, such as the time of the day, temperature, and the composition of sweat. We first developed latent fingerprints on transparent and blackened glass slides by depositing 1000-nm-thick columnar thin films (CTFs) of chalcogenide glass of nominal composition Ge28Sb12Se60. Then, we used transmission-/reflection-mode multiwavelength digital holography to construct the topograms of CTF-developed fingerprints on transparent/blackened glass slides. The two wavelengths chosen were 514.5 and 457.9 nm, yielding a synthetic wavelength of 4.1624 μm, which is sufficient to resolve pores of depths 1 to 2 μm. Thus, our method can be used to measure the level-3 details that are usually difficult to observe with most other techniques applied to latent fingerprints.

  9. Impregnation of glass fibres with polymethylmethacrylate using a powder-coating method

    NASA Astrophysics Data System (ADS)

    Vallittu, Pekka K.

    1995-01-01

    The aim of this study was to evaluate the usefulness of a powder-coating method to impregnate glass fibres with polymethylmethacrylate (PMMA) for dental purposes. The continuous unidirectional E-glass fibres, the surface of which had been treated with precured silane, were powder-coated with spherical PMMA particles. Before the powder-coated prepregs were used, the incorporated PMMA powder was dissolved with methylmethacrylate monomer. The degree of impregnation of the polymerized composite was determined with a scanning electron microscope. The results revealed that the mean degree of impregnation varied from 0.87 to 0.92, being lower in the heat-cured PMMA group (which simulated fabrication of a new denture), and higher in the autopolymerizing group (which simulated the repair of a fractured denture). The means between the two groups did not, however, differ significantly ( p=0.249). The results suggest that, even though the method has some shortcomings in terms of dental laboratory technology, the powder-coating method can be used to fabricate or repair acrylic resin-based dentures.

  10. Effect of embedded silver nanoparticles on refractive index of soda lime glass

    NASA Astrophysics Data System (ADS)

    Sonal, Sharma, Annu; Aggarwal, Sanjeev

    2018-05-01

    Silver glass nanocomposites were prepared by exposing silver doped soda lime glass slides obtained via ion-exchange reaction to a beam of 200 keV Argon ions (Ar+) at an off normal angle of 400 with doses of 5x1015 ions cm-2 and 1x1016 ions cm-2. These nanocomposites were further characterized using UV-visible spectrophotometer so as to study their transmission and reflection behavior and compute their refractive index and real and imaginary parts of dielectric function.

  11. Growth and Application of Cadmium Telluride.

    DTIC Science & Technology

    1980-01-01

    25%). It was then rinsed in doubly distilled deionised water and evacuated on a glass vacuum line to 10-6 torr for several hours, while being...this condition for 10 minutes, a drop of Analar benzeneI was admitted via a glass syringe system. The benzene immediately ’cracked’ and a fine...150 0 C in a vacuum of i0-4torr for 10 minutes. The crystal was then attached to a small glass slide with impact adhesive. Fine stainless steel wires

  12. Dynamics of solid dispersions in oil during the lubrication of point contacts. Part 1: Graphite

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Sliney, H. E.

    1981-01-01

    A Hertzian contact was lubricated with dispersed graphite in mineral oils under boundary lubrication conditions. The contact was optically observed under pure rolling, combined rolling and sliding, and pure sliding conditions. The contact was formed with a steel ball on the flat surface of a glass disk. Photomicrographs are presented which show the distribution of the graphite in and around the contact. Friction and surface damage are also shown for conditions when the base oils are used alone and when graphite is added to the base oils. Under pure rolling and combined rolling and sliding conditions, it is found that, for low speeds, a graphite film can form which will separate the contacting surfaces. Under pure sliding conditions, graphite accumulates at the inlet and sweeps around the contact, but very little of the graphite passes through the contact. The accumulated graphite appears to act as a barrier which reduces the supply of oil available to the contact for boundary lubrication. Friction data show no clear short term beneficial or detrimental effect caused by addition of graphite to the base oil. However, during pure sliding, more abrasion occurs on the polished balls lubricated with the dispersion than on those lubricated with the base oil alone. All observations were for the special case of a highly-polished ball on a glass surface and may not be applicable to other geometries and materials, or to rougher surfaces.

  13. A method of mounting multiple otoliths for beam-based microchemical analyses

    USGS Publications Warehouse

    Donohoe, C.J.; Zimmerman, C.E.

    2010-01-01

    Beam-based analytical methods are widely used to measure the concentrations of elements and isotopes in otoliths. These methods usually require that otoliths be individually mounted and prepared to properly expose the desired growth region to the analytical beam. Most analytical instruments, such as LA-ICPMS and ion and electron microprobes, have sample holders that will accept only one to six slides or mounts at a time. We describe a method of mounting otoliths that allows for easy transfer of many otoliths to a single mount after they have been prepared. Such an approach increases the number of otoliths that can be analyzed in a single session by reducing the need open the sample chamber to exchange slides-a particularly time consuming step on instruments that operate under vacuum. For ion and electron microprobes, the method also greatly reduces the number of slides that must be coated with an electrical conductor prior to analysis. In this method, a narrow strip of cover glass is first glued at one end to a standard microscope slide. The otolith is then mounted in thermoplastic resin on the opposite, free end of the strip. The otolith can then be ground and flipped, if needed, by reheating the mounting medium. After otolith preparation is complete, the cover glass is cut with a scribe to free the otolith and up to 20 small otoliths can be arranged on a single petrographic slide. ?? 2010 The Author(s).

  14. Sliding mechanics of coated composite wires and the development of an engineering model for binding.

    PubMed

    Zufall, S W; Kusy, R P

    2000-02-01

    A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.

  15. Enabling digital pathology in the diagnostic setting: navigating through the implementation journey in an academic medical centre.

    PubMed

    Cheng, Chee Leong; Azhar, Rafay; Sng, Shi Hui Adeline; Chua, Yong Quan; Hwang, Jacqueline Siok Gek; Chin, Jennifer Poi Fun; Seah, Waih Khuen; Loke, Janel Chui Ling; Ang, Roy Hang Leng; Tan, Puay Hoon

    2016-09-01

    As digital pathology (DP) and whole slide imaging (WSI) technology advance and mature, there is an increasing drive to incorporate DP into the diagnostic environment. However, integration of DP into the diagnostic laboratory is a non-trivial task and filled with unexpected challenges unlike standalone implementations. We share our journey of implementing DP in the diagnostic laboratory setting, highlighting seven key guiding principles that drive the progression through implementation into deployment and beyond. The DP implementation with laboratory information system integration was completed in 8 months, including validation of the solution for diagnostic use in accordance with College of American Pathologists guidelines. We also conducted prospective validation via paired delivery of glass slides and WSI to our pathologists postdeployment. Common themes in our guiding principles included emphasis on workflow and being comprehensive in the approach, looking beyond pathologist user champions and expanding into an extended project team involving laboratory technicians, clerical/data room staff and archival staff. Concordance between glass slides and WSI ranged from 93% to 100% among various applications on validation. We also provided equal opportunities for every pathologist throughout the department to be competent and confident with DP through prospective validation, with overall concordance of 96% compared with glass slides, allowing appreciation of the advantages and limitations of WSI, hence enabling the use of DP as a useful diagnostic modality. Smooth integration of DP into the diagnostic laboratory is possible with careful planning, discipline and a systematic approach adhering to our guiding principles. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. A FED Prototype Using Patterned DLC Thin Films as the Cathode

    NASA Astrophysics Data System (ADS)

    Li, W.; Feng, T.; Mao, D. S.; Wang, X.; Liu, X. H.; Zou, S. C.; Zhu, Y. K.; Li, Q.; Xu, J. F.; Jin, S.; Zheng, J. S.

    In our study, diamond-like-carbon (DLC) thin films were prepared by filtered arc deposition (FAD), which provided a way to deposit DLC thin films on large areas at room temperature. Glass slides coated 100nm chromium or titanium thin films were used as cathode substrates. Millions of rectangular holes with sizes of 5 × 5μm were made on the DLC films using a routine patterning process. Here a special reactive ion beam etching method was applied to etch the DLC films. The anodes of the devices were made by electrophoretic deposition. ZnO:Zn phosphor (P15) was employed, which has a broad band bluish green (centered at 490nm). Before electrophoretic deposition, the anode substrates (ITO glass slides) had been patterned into 50 anode electrodes. In order to improve the adherence of phosphor layers, the as-deposited screens were treated in Na2SiO3 solution for 24h to add additional binder. A kind of matrix-addressed diode FED prototype was designed and packaged. 50-100μm-thick glass slides were used as spacers and getters were applied to maintain the vacuum after the exhaustion. The applied DC voltage was ranged in 0-3000V and much higher current density was measured in the cathode-patterned prototypes than the unpatterned ones during the test. As a result, characters could be well displayed.

  17. Determination of oestrous cycle of the rats by direct examination: how reliable?

    PubMed

    Yener, T; Turkkani Tunc, A; Aslan, H; Aytan, H; Cantug Caliskan, A

    2007-02-01

    For determination of the oestrous cycle in rats classical Papanicolaou technique has long been used successfully. Instead of using many stains in Papanicolaou, staining the vaginal secretions with only methylene blue has also been defined. Recently a new technique in which vaginal samples are directly examined under light microscope has been introduced. The aim of this study was to assess the reliability of this new technique by comparing it with the classical staining techniques. From 20 Wistar rats 60 vaginal samples were collected with a micropipette, three from each. Briefly, the vagina was flushed two to three times then the fluid was placed onto a glass slide. The fluid was equally distributed onto three glass slides. The glass slides were coded. Two samples were stained with Papanicolaou and methylene blue while the other one was examined directly. Determination of the phases of the oestrous cycle was made by the same histologist who was blinded to the groups and coding system. After determination of the oestrous phase in all samples, the results were compared and it was found that the results were matching. In conclusion, the same results can be obtained with the direct examination technique and this technique is reliable, so there is no need to use relatively time-consuming, less practical and more expensive techniques such as Papanicolaou or methylene blue.

  18. Development of a teledermatopathology consultation system using virtual slides

    PubMed Central

    2012-01-01

    Background An online consultation system using virtual slides (whole slide images; WSI) has been developed for pathological diagnosis, and could help compensate for the shortage of pathologists, especially in the field of dermatopathology and in other fields dealing with difficult cases. This study focused on the performance and future potential of the system. Method In our system, histological specimens on slide glasses are digitalized by a virtual slide instrument, converted into web data, and up-loaded to an open server. Using our own purpose-built online system, we then input patient details such as age, gender, affected region, clinical data, past history and other related items. We next select up to ten consultants. Finally we send an e-mail to all consultants simultaneously through a single command. The consultant receives an e-mail containing an ID and password which is used to access the open server and inspect the images and other data associated with the case. The consultant makes a diagnosis, which is sent to us along with comments. Because this was a pilot study, we also conducted several questionnaires with consultants concerning the quality of images, operability, usability, and other issues. Results We solicited consultations for 36 cases, including cases of tumor, and involving one to eight consultants in the field of dermatopathology. No problems were noted concerning the images or the functioning of the system on the sender or receiver sides. The quickest diagnosis was received only 18 minutes after sending our data. This is much faster than in conventional consultation using glass slides. There were no major problems relating to the diagnosis, although there were some minor differences of opinion between consultants. The results of questionnaires answered by many consultants confirmed the usability of this system for pathological consultation. (16 out of 23 consultants.) Conclusion We have developed a novel teledermatopathological consultation system using virtual slides, and investigated the usefulness of the system. The results demonstrate that our system can be a useful tool for international medical work, and we anticipate its wider application in the future. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1902376044831574 PMID:23237667

  19. Implementation of large-scale routine diagnostics using whole slide imaging in Sweden: Digital pathology experiences 2006-2013

    PubMed Central

    Thorstenson, Sten; Molin, Jesper; Lundström, Claes

    2014-01-01

    Recent technological advances have improved the whole slide imaging (WSI) scanner quality and reduced the cost of storage, thereby enabling the deployment of digital pathology for routine diagnostics. In this paper we present the experiences from two Swedish sites having deployed routine large-scale WSI for primary review. At Kalmar County Hospital, the digitization process started in 2006 to reduce the time spent at the microscope in order to improve the ergonomics. Since 2008, more than 500,000 glass slides have been scanned in the routine operations of Kalmar and the neighboring Linköping University Hospital. All glass slides are digitally scanned yet they are also physically delivered to the consulting pathologist who can choose to review the slides on screen, in the microscope, or both. The digital operations include regular remote case reporting by a few hospital pathologists, as well as around 150 cases per week where primary review is outsourced to a private clinic. To investigate how the pathologists choose to use the digital slides, a web-based questionnaire was designed and sent out to the pathologists in Kalmar and Linköping. The responses showed that almost all pathologists think that ergonomics have improved and that image quality was sufficient for most histopathologic diagnostic work. 38 ± 28% of the cases were diagnosed digitally, but the survey also revealed that the pathologists commonly switch back and forth between digital and conventional microscopy within the same case. The fact that two full-scale digital systems have been implemented and that a large portion of the primary reporting is voluntarily performed digitally shows that large-scale digitization is possible today. PMID:24843825

  20. An improved glycerin-jelly mounting procedure for permanent preparations of helminth eggs.

    PubMed

    Kumagai, M; Inaba, T; Makioka, A; Ishiwata, K; Onishi, K; Watanabe, N

    2010-04-01

    Many attempts have been undertaken to make permanent preparations of helminth eggs. However, the resulting preparations either lacked durability or tended to deform thin-shelled eggs, such as those of the hookworm. To overcome these drawbacks, we have modified 2 aspects of the glycerin-jelly mounting procedure. First, we gradually changed the media in which the helminth eggs soaked, from 10% formalin via water to a 70% ethanol and 5% glycerin solution. It took 10 days, which is much longer than the time required for the processes previously reported. Second, we used a hole slide glass instead of a slide glass. Eggs of 11 species of helminths have been prepared with this procedure, and have kept their morphology without apparent change for more than 4 yr.

  1. Covalent attachment and growth of nanocrystalline films of photocatalytic TiOF2

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lv, Fujian; Xiao, Shengxiong; Bian, Zhenfeng; Buntkowsky, Gerd; Nuckolls, Colin; Li, Hexing

    2014-11-01

    This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation.This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation. Electronic supplementary information (ESI) available: Methods for sample preparation, characterization and Fig. S1-S8. See DOI: 10.1039/c4nr05598e

  2. The friction and wear of TPS fibers

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.; Wong, S.

    1987-01-01

    The sliding friction behavior of single filaments of SiO2, SiC, and an aluminoborosilicate has been determined. These fibers are used in thermal protection systems (TPS) and are subject to damage during weaving and aero-maneuvering. All fibers exhibited stick-slip friction indicating the successive formation and rupture of strong junctions between the contacting filaments. The static frictional resistance of the sized SiC filament was 4X greater than for the same filament after heat cleaning. This result suggests that the sizing is an organic polymer with a high shear yield strength. Heat cleaning exposes the SiC surface and/or leaves an inorganic residue so that the adhesional contact between filaments has a low fracture energy and frictional sliding occurs by brittle fracture. The frictional resistances of the sized and heat cleaned SiO2 and glass filaments were all comparable to that of the heat cleaned SiC. It would appear that the sizings as well as the heat cleaned surfaces of the silica and glass have low fracture energies so that the sliding resistance is determined by brittle fracture.

  3. Characterization of Airborne Permethrin During the Manufacture of Army Combat Uniforms Using Pre-Treated Fabric

    DTIC Science & Technology

    2016-08-01

    5 Extraction Apparatus. A.5.1 Accelerated Solvent Extractor (ASE) Dionex Corporation or equal A.5.1.1 Liquid Nitrogen Cylinder to Deliver High...Chromatograph equipped with ChemStation software, or equal A.6.1 Carrier Gas Cylinder , Appropriate Regulator Set at 80psi A.6.2 Hewlett-Packard...Capillary Column, 5% Phenyl Methyl Siloxane/30.0m x 250μm 0.25μm nominal, 325oC Max, or equal. A.6.3 Split Inlet Liner , Packed with Silanized Glass

  4. Proceedings of the Critical Review: Techniques for the Characterization of Composite Materials, held Cambridge, Massachusetts, 8-10 June 1981.

    DTIC Science & Technology

    1982-05-01

    systems were used in this study : SP2)J/E-glass and Fiberite 934/ Kevlar 49. The SP250 resin is a diglycidvl ether of bis;,hennl A (DGEBA)/Epoxy...silane coupling agents to the epoxy resin, and the influence of water pH were particularly studied . The theory of generalized fracture mechanics is...the absorbed moisture water molecules are much more restricted in motion than for free water . Although further laboratory studies are needed to better

  5. The Digital Slide Archive: A Software Platform for Management, Integration, and Analysis of Histology for Cancer Research.

    PubMed

    Gutman, David A; Khalilia, Mohammed; Lee, Sanghoon; Nalisnik, Michael; Mullen, Zach; Beezley, Jonathan; Chittajallu, Deepak R; Manthey, David; Cooper, Lee A D

    2017-11-01

    Tissue-based cancer studies can generate large amounts of histology data in the form of glass slides. These slides contain important diagnostic, prognostic, and biological information and can be digitized into expansive and high-resolution whole-slide images using slide-scanning devices. Effectively utilizing digital pathology data in cancer research requires the ability to manage, visualize, share, and perform quantitative analysis on these large amounts of image data, tasks that are often complex and difficult for investigators with the current state of commercial digital pathology software. In this article, we describe the Digital Slide Archive (DSA), an open-source web-based platform for digital pathology. DSA allows investigators to manage large collections of histologic images and integrate them with clinical and genomic metadata. The open-source model enables DSA to be extended to provide additional capabilities. Cancer Res; 77(21); e75-78. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. Assessment of the contamination potentials of some foodborne bacteria in biofilms for food products.

    PubMed

    Adetunji, Victoria O; Adedeji, Adeyemi O; Kwaga, Jacob

    2014-09-01

    To assess biofilms formed by different bacterial strains on glass slides, and changes in biofilm mass and biofilm-associated cell populations after brief contacts between biofilms and either media agar or food products. Two Listeria monocytogenes and Escherichia coli (E. coli) strains and a single Staphylococcus aureus (S. aureus) strain were inoculated separately in tryptic soy broth containing glass coupons incubated for 24, 48 or 72 h at 37 °C. The biofilms formed by individual bacterial strains and biofilm-associated cell populations were determined. Biofilms were subsequently allowed to have brief contacts (1-3 times), through gentle touching, with either agar, meat or soft white cheese (2 cm(3)). Changes in biofilm mass on glass slides and cell populations embedded in biofilms were quantified. A nonpathogenic E. coli formed more biofilms than an E. coli O157:H7 strain. Biofilms formed by S. aureus and Listeria monocytogenes were essentially similar. The biofilm mass increased as incubation time increased within 48 h of incubation and was not positively correlated with cellulose production. Biofilm mass at 48 and 72 h of incubation was not significantly different. More frequent contacts with agar or foods did not remove more biofilms or biofilm-associated cells from glass slides. More S. aureus biofilms were removed followed by Listeria and E. coli biofilms. Mean contamination of agar or food models was 0.00 to 7.65 log CFU/cm(2). Greater contaminations in cell populations were observed with S. aureus and Listeria biofilms. The results provide a clearer assessment of contaminating potential of foods that comes in contact with them. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  7. Factors to keep in mind when introducing virtual microscopy.

    PubMed

    Glatz-Krieger, Katharina; Spornitz, Udo; Spatz, Alain; Mihatsch, Michael J; Glatz, Dieter

    2006-03-01

    Digitization of glass slides and delivery of so-called virtual slides (VS) emulating a real microscope over the Internet have become reality due to recent improvements in technology. We have implemented a virtual microscope for instruction of medical students and for continuing medical education. Up to 30,000 images per slide are captured using a microscope with an automated stage. The images are post-processed and then served by a plain hypertext transfer protocol (http)-server. A virtual slide client (vMic) based on Macromedia's Flash MX, a highly accepted technology available on every modern Web browser, has been developed. All necessary virtual slide parameters are stored in an XML file together with the image. Evaluation of the courses by questionnaire indicated that most students and many but not all pathologists regard virtual slides as an adequate replacement for traditional slides. All our virtual slides are publicly accessible over the World Wide Web (WWW) at http://vmic.unibas.ch . Recently, several commercially available virtual slide acquisition systems (VSAS) have been developed that use various technologies to acquire and distribute virtual slides. These systems differ in speed, image quality, compatibility, viewer functionalities and price. This paper gives an overview of the factors to keep in mind when introducing virtual microscopy.

  8. Role of surface properties in bacterial attachment

    NASA Astrophysics Data System (ADS)

    Conrad, Jacinta; Sharma, Sumedha

    2014-03-01

    Bacterial biofilms foul a wide range of engineered surfaces, from pipelines to membranes to biomedical implants, and lead to deleterious costs for industry and for human health. Designing strategies to reduce bacterial fouling requires fundamental understanding of mechanisms by which bacteria attach to surfaces. We investigate the attachment of Escherichia coli on silanized glass surfaces during flow through a linear channel at flow rates of 0.1-1 mL/min using confocal microscopy. We deposit self-assembled monolayers of organosilanes on glass and track the position and orientation of bacteria deposited on these surfaces during flow using high-throughput image processing algorithms. Here, we report differences in deposition rate and surface-tethered motion of cells as a function of surface charge and surface energy, suggesting that attachment of bacteria on these engineered surfaces is dominated by different physical mechanisms.

  9. Effect of surface condition of dental zirconia ceramic (Denzir) on bonding.

    PubMed

    Uo, Motohiro; Sjögren, Göran; Sundh, Anders; Goto, Mitsunari; Watari, Fumio; Bergman, Maud

    2006-09-01

    Yttria partially stabilized zirconia (YPSZ) ceramics are suitable for dental and medical use because of their high fracture toughness and chemical durability. The purpose of this study was to examine the bonding behavior of a dental YPSZ ceramic, Denzir. After being subjected to various surface treatments, Denzir specimens were bonded to each other using an adhesive resin composite, glass ionomer, or zinc phosphate cement. Bonding strength was then determined by the shearing test. No significant differences (p>0.05) were observed between SiC- and Al2O3-blasted specimens. In all surface treatments, the shear bond strength significantly (p<0.05) increased in the order of adhesive resin composite cement > glass ionomer cement > zinc phosphate cement. Moreover, silanization with methacryloxy propyl trimethoxysilane slightly increased the bonding strength of the adhesive resin composite cement.

  10. Bioactive composites with designed interfaces

    NASA Astrophysics Data System (ADS)

    Orefice, Rodrigo Lambert

    Bioactive glasses can bond to bone and even soft tissue. However, they are usually weak, brittle and hard to process in specific shapes. The goal of this work is to produce polymer composites having bioactive materials as a reinforcing phase that would display both bioactive behavior and mechanical properties compatible to bone. Polysulfone and bioactive glass particulate were combined in composites with different volume fractions. Composites with 40 vol.% of particulate were submitted to in vitro tests in simulated body fluids. The recorded rates of hydroxy-carbonate-apatite layer deposition were close to the ones observed for pure bioactive glasses. Mechanical properties showed values of elastic modulus, strain at failure and strength within the range of cortical bone for composites with high volume fraction of particles. Fibers can usually favor higher levels of reinforcement in composites than particles. Novel multicomponent fibers were prepared by using the sol-gel method. They were determined to be bioactive in vitro and were successfully used as a reinforcing phase in polysulfone composites. Properties of the bioactive composites were modified by altering the chemistry and structure of the interfaces. Polymers with sulfonic acid and silane groups were specially designed to interact with both the silica surface and the polymer matrix. Nano-composites with a structure and chemistry in between the macrocomponents of the composite were prepared by combining a silanated polymer and silica sol-gel. When applied as interfacial agents, these nano-composites as well as the modified polymers improved the overall properties of the bioactive system. A decay in mechanical properties was observed for composites submitted to an in vitro test. The developed interfacial agents successfully reduced the degree of degradation in properties. Interactions occurring at the interfaces of bioactive composites were studied using Atomic Force Microscopy (AFM). The effect of the structure and chemistry of interfaces was correlated to physical and chemical processes occurring at the interfaces and to the overall properties of composites.

  11. New side-view imaging technique for observing posterior chamber structures during cataract surgery in porcine eyes

    PubMed Central

    2013-01-01

    Background To develop a side-view imaging technique for observing the dynamic behavior of posterior chamber structures (PCSs) in porcine eyes which mimics closed-eye cataract surgery in humans. Methods Enucleated porcine eyes were placed into liquid nitrogen for 5 seconds and immediately bisected at about a 45-degree angle to the equatorial plane. The anterior portion was attached firmly to a glass slide with superglue and sprinkled with wheat flour. Phacoemulsification and aspiration (PEA) was performed as in humans on 10 consecutive porcine eyes. The movements of the PCSs were monitored through the glass slide with a high-resolution video camera set below the cut surface of the eye. The intraocular pressure (IOP) was monitored during the surgery. The highest IOP, operation time, and volume of irrigation fluid of 10 whole eyes were compared to that obtained from the bisected eyes glued to a glass slide. In a second set of experiments, the strength of the seal between the bisected eye and the glass slide was tested in three sets of eyes: 1) frozen eye fixed with superglue with wheat flour for 3 min; 2) frozen eye fixed with superglue for 3 min; and 3) non-frozen eye fixed with superglue for 30 min. The highest IOP that led to a disruption of the seal was compared among the three groups. Results PEA was successfully performed on 9 of 10 (90%) eyes with the movements of the PCSs clearly observed. The average maximum intraocular pressure of the 9 bisected eyes was 55.8 ± 4.7 mmHg and that for the 10 unbisected eyes was 55.3 ± 5.0 mmHg (P = 0.650). The frozen eye fixed with superglue in combination with wheat flour (Group 1) had the strongest sealing strength with an average IOP at the breaking point of 117.3 ± 36.2 mmHg. Conclusions Our side-view imaging technique can be used to evaluate the changes of the PCSs during intraocular surgery and for surgical training of new residents. PMID:24053470

  12. Characterization of Dust on Solar Devices in Southern Nevada =

    NASA Astrophysics Data System (ADS)

    Sylva, Jason R.

    Dust can impact the efficiency of solar energy collection devices, and in some arid environments, dust can reduce solar energy efficiency up to 30%. Reducing the impact of dust is therefore critical in the expansion of solar technology throughout regions where solar energy is utilized. Characterization of suspended and settled particulate matter can assist in developing strategies for dust mitigation. With the characterization of suspended and settled particulate in remote, rural, and urban environments, more informed decisions can be made regarding the selection of coating material on solar panels as well as developing cleaning and maintenance procedures. Particulate matter that deposits on a solar surface can potentially interact with solar radiation, precipitation, or even directly with the surface material itself. These interactions could lead to the formation of coatings that reduce/block radiation and/or degrade the integrity of the surface. When you extrapolate these possibilities to a larger scale preliminary characterization of dust will play a vital role when planning the construction of a solar energy facility. A variety of sampling techniques were employed to obtain particulate matter for characterization. These included direct collection of particulates from solar surfaces: via vacuum and wipe sample collection on panels, tacky dot adhesive slides and plain slides that were exposed at different intervals, desert vugs that are natural particulate collectors, as well as high volume air sampling for collection of suspended particulates. High volume air sampling was performed using glass fiber filters and 2 micron stainless steel screens. Direct collection of settled particulates was performed by sampling from solar surfaces, vugs, and by collection on exposed glass surfaces. Collection onto glass surfaces was achieved by setting up a plain microscope slide, tacky dot slides, and panes of glass. The sampling methodology allowed for the collection of samples for analyses using various analytical methods that included Raman microspectroscopy, pyrolysis gas chromatography mass spectrometry, ion chromatography and inductively coupled plasma mass spectrometry. These various methods allow for identification of organic and inorganic components as well the mineral distribution of suspended and settled particulate material. None None None None None

  13. Onset of frictional sliding of rubber–glass contact under dry and lubricated conditions

    PubMed Central

    Tuononen, Ari J.

    2016-01-01

    Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons’ law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements. PMID:27291939

  14. Measuring the Photocatalytic Breakdown of Crystal Violet Dye using a Light Emitting Diode Approach

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; O'Neal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple method to estimate the photocatalytic reactivity performance of spray-on titanium dioxide coatings for transmissive glass surfaces was developed. This novel technique provides a standardized method to evaluate the efficiency of photocatalytic material systems over a variety of illumination levels. To date, photocatalysis assessments have generally been conducted using mercury black light lamps. Illumination levels for these types of lamps are difficult to vary, consequently limiting their use for assessing material performance under a diverse range of simulated environmental conditions. This new technique uses an ultraviolet (UV) gallium nitride (GaN) light emitting diode (LED) array instead of a traditional black light to initiate and sustain photocatalytic breakdown. This method was tested with a UV-resistant dye (crystal violet) applied to a titanium dioxide coated glass slide. Experimental control is accomplished by applying crystal violet to both titanium dioxide coated slides and uncoated control slides. A slide is illuminated by the UV LED array, at various light levels representative of outdoor and indoor conditions, from the dye side of the slide. To monitor degradation of the dye over time, a temperature-stabilized white light LED, whose emission spectrum overlaps with the dye absorption spectrum, is used to illuminate the opposite side of the slide. Using a spectrometer, the amount of light from the white light LED transmitted through the slide as the dye degrades is monitored as a function of wavelength and time and is subsequently analyzed. In this way, the rate of degradation for photocatalytically coated versus uncoated slide surfaces can be compared. Results demonstrate that the dye absorption decreased much more rapidly on the photocatalytically coated slides than on the control uncoated slides, and that dye degradation is dependent on illumination level. For photocatalytic activity assessment purposes, this experimental configuration and methodology minimizes many external variable effects and enables small changes in absorption to be measured. This research also compares the advantages of this innovative LED light source design over traditional mercury black light systems and non- LED lamp approaches. This novel technology begins to address the growing need for a standard method that can assess the performance of photocatalytic materials before deployment for large scale, real world use.

  15. The influence of four dual-cure resin cements and surface treatment selection to bond strength of fiber post

    PubMed Central

    Liu, Chang; Liu, Hong; Qian, Yue-Tong; Zhu, Song; Zhao, Su-Qian

    2014-01-01

    In this study, we evaluate the influence of post surface pre-treatments on the bond strength of four different cements to glass fiber posts. Eighty extracted human maxillary central incisors and canines were endodontically treated and standardized post spaces were prepared. Four post pre-treatments were tested: (i) no pre-treatment (NS, control), (ii) sandblasting (SA), (iii) silanization (SI) and (iv) sandblasting followed by silanization (SS). Per pre-treatment, four dual-cure resin cements were used for luting posts: DMG LUXACORE Smartmix Dual, Multilink Automix, RelyX Unicem and Panavia F2.0. All the specimens were subjected to micro push-out test. Two-way analysis of variance and Tukey post hoc tests were performed (α=0.05) to analyze the data. Bond strength was significantly affected by the type of resin cement, and bond strengths of RelyX Unicem and Panavia F2.0 to the fiber posts were significantly higher than the other cement groups. Sandblasting significantly increased the bond strength of DMG group to the fiber posts. PMID:24177170

  16. Superhydrophobic Surfaces with Very Low Hysteresis Prepared by Aggregation of Silica Nanoparticles During In Situ Urea-Formaldehyde Polymerization.

    PubMed

    Diwan, Anubhav; Jensen, David S; Gupta, Vipul; Johnson, Brian I; Evans, Delwyn; Telford, Clive; Linford, Matthew R

    2015-12-01

    We present a new method for the preparation of superhydrophobic materials by in situ aggregation of silica nanoparticles on a surface during a urea-formaldehyde (UF) polymerization. This is a one-step process in which a two-tier topography is obtained. The polymerization is carried out for 30, 60, 120, 180, and 240 min on silicon shards. Silicon surfaces are sintered to remove the polymer. SEM and AFM show both an increase in the area covered by the nanoparticles and their aggregation with increasing polymerization time. Chemical vapor deposition of a fluorinated silane in the presence of a basic catalyst gives these surfaces hydrophobicity. Deposition of this low surface energy silane is confirmed by the F 1s signal in XPS. The surfaces show advancing water contact angles in excess of 160 degrees with very low hysteresis (< 7) after 120 min and 60 min polymerization times for 7 nm and 14 nm silica, respectively. Depositions are successfully demonstrated on glass substrates after they are primed with a UF polymer layer. Superhydrophobic surfaces can also be prepared on unsintered substrates.

  17. The virtual microscopy database-sharing digital microscope images for research and education.

    PubMed

    Lee, Lisa M J; Goldman, Haviva M; Hortsch, Michael

    2018-02-14

    Over the last 20 years, virtual microscopy has become the predominant modus of teaching the structural organization of cells, tissues, and organs, replacing the use of optical microscopes and glass slides in a traditional histology or pathology laboratory setting. Although virtual microscopy image files can easily be duplicated, creating them requires not only quality histological glass slides but also an expensive whole slide microscopic scanner and massive data storage devices. These resources are not available to all educators and researchers, especially at new institutions in developing countries. This leaves many schools without access to virtual microscopy resources. The Virtual Microscopy Database (VMD) is a new resource established to address this problem. It is a virtual image file-sharing website that allows researchers and educators easy access to a large repository of virtual histology and pathology image files. With the support from the American Association of Anatomists (Bethesda, MD) and MBF Bioscience Inc. (Williston, VT), registration and use of the VMD are currently free of charge. However, the VMD site is restricted to faculty and staff of research and educational institutions. Virtual Microscopy Database users can upload their own collection of virtual slide files, as well as view and download image files for their own non-profit educational and research purposes that have been deposited by other VMD clients. Anat Sci Educ. © 2018 American Association of Anatomists. © 2018 American Association of Anatomists.

  18. Design and fabricate multi channel microfluidic mold on top of glass slide using SU-8

    NASA Astrophysics Data System (ADS)

    Azman, N. A. N.; Rajapaksha, R. D. A. A.; Uda, M. N. A.; Hashim, U.

    2017-09-01

    Microfluidic is the study of fluid in microscale. Microfluidics provides miniaturized fluidic networks for processing and analyzing liquids in the nanoliter to milliliter range. Microfluidic device comprises of some essential segments or structure that are micromixer, microchannel and microchamber. The SU-8 mold is known as the most used technique in microfluidic fabrication due to the characteristic of very gooey polymer that can be spread over a thickness. In this study, in order to reduce the fabrication cost, the development and fabrication of SU-8 mold is replace by using a glass plate instead of silicon wafer which is used in the previous research. We designed a microfluidic chip for use with an IDE sensors to conduct multiplex detection of multiple channels. The microfluidic chip was designed to include multiplex detection for pathogen that consists of multiple channels of simultaneous results. The multi-channel microfluidic chip was designed, including the fluid outlet and inlet. A multi-channel microfluidic chip was used for pathogen detection. This paper sum up the fabrication of lab SU-8 mold using glass slide.

  19. Silver nanorod structures for metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Badshah, Mohsin Ali; Lu, Xun; Ju, Jonghyun; Kim, Seok-min

    2016-09-01

    Fluorescence based detection is a commonly used methodology in biotechnology and medical diagnostics. Metalenhanced fluorescence (MEF) becomes a promising strategy to improve the sensitivity of fluorescence detection, where fluorophores coupling with surface plasmon on metallic structures results fluorescence enhancement. To apply the MEF methodology in real medical diagnostics, especially for protein or DNA microarray detection, a large area (e.g., slide glass, 75 × 25 mm2) with uniform metallic nanostructures is required. In this study, we fabricated a large area MEF substrates using oblique angle deposition (OAD), which is a single step, inexpensive large area fabrication method of nanostructures. To optimize the morphological effect, Ag-nanorods with various lengths were fabricated on the conventional slide glass substrates. Streptavidin-Cy5 dissolved in buffer solution with different concentration (100ng/ml 100μg/ml) were applied to MEF substrates using a pipette, and the fluorescence signals were measured. The enhancement factor increased with the increase in length of Ag-nanorods and maximum enhancement factor 91x was obtained from Ag-nanorods 750nm length compare to bare glass due to higher surface Plasmon effect.

  20. Diagnosis of major cancer resection specimens with virtual slides: impact of a novel digital pathology workstation.

    PubMed

    Randell, Rebecca; Ruddle, Roy A; Thomas, Rhys G; Mello-Thoms, Claudia; Treanor, Darren

    2014-10-01

    Digital pathology promises a number of benefits in efficiency in surgical pathology, yet the longer time required to review a virtual slide than a glass slide currently represents a significant barrier to the routine use of digital pathology. We aimed to create a novel workstation that enables pathologists to view a case as quickly as on the conventional microscope. The Leeds Virtual Microscope (LVM) was evaluated using a mixed factorial experimental design. Twelve consultant pathologists took part, each viewing one long cancer case (12-25 slides) on the LVM and one on a conventional microscope. Total time taken and diagnostic confidence were similar for the microscope and LVM, as was the mean slide viewing time. On the LVM, participants spent a significantly greater proportion of the total task time viewing slides and revisited slides more often. The unique design of the LVM, enabling real-time rendering of virtual slides while providing users with a quick and intuitive way to navigate within and between slides, makes use of digital pathology in routine practice a realistic possibility. With further practice with the system, diagnostic efficiency on the LVM is likely to increase yet more. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. 33. SOLARIUM AND TERRACE IN EXECUTIVE SUITE LOOKING NORTH PAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. SOLARIUM AND TERRACE IN EXECUTIVE SUITE LOOKING NORTH PAST SLIDING GLASS WALL THAT DIVIDES SOLARIUM FROM EXECUTIVE DINING ROOM - Philadelphia Saving Fund Society, Twelfth & Market Streets, Philadelphia, Philadelphia County, PA

  2. Superlubricity of a Mixed Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Zuo; Zhang, Chen-Hui; Luo, Jian-Bin; Lu, Xin-Chun; Wen, Shi-Zhu

    2011-05-01

    A super-low friction coefficient of 0.0028 is measured under a pressure of 300 MPa when the friction pair (the silicon nitride ball sliding on the silicate glass) is lubricated by the mixed aqueous solution of glycerol and boric acid. The morphorlogies of the hydroxylated glass plate are observed by an atomic force microscope (AFM) in deionized water, glycerol, boric acid and their mixed aqueous solution. Bonding peaks of the retained liquids adhered on the surface of the sliding track are detected by an infrared spectrum apparatus and a Raman spectrum apparatus. The mechanism of the superlubricity of the glycerol and boric acid mixed aqueous solution is discussed. It is deduced that the formation of the lubricant film has enough strength to support higher loads, the hydration effect offering the super lower shear resistance. Key words: superlubricity, water based lubricant, ultra-low friction

  3. Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope.

    PubMed

    Fei, Yiyan; Landry, James P; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S

    2010-01-01

    We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm x 4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide.

  4. Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope

    PubMed Central

    Fei, Yiyan; Landry, James P.; Sun, Yungshin; Zhu, Xiangdong; Wang, Xiaobing; Luo, Juntao; Wu, Chun-Yi; Lam, Kit S.

    2010-01-01

    We describe a high-throughput scanning optical microscope for detecting small-molecule compound microarrays on functionalized glass slides. It is based on measurements of oblique-incidence reflectivity difference and employs a combination of a y-scan galvometer mirror and an x-scan translation stage with an effective field of view of 2 cm×4 cm. Such a field of view can accommodate a printed small-molecule compound microarray with as many as 10,000 to 20,000 targets. The scanning microscope is capable of measuring kinetics as well as endpoints of protein-ligand reactions simultaneously. We present the experimental results on solution-phase protein reactions with small-molecule compound microarrays synthesized from one-bead, one-compound combinatorial chemistry and immobilized on a streptavidin-functionalized glass slide. PMID:20210464

  5. Final Technical Report for DE-SC0002014- July 29, 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, NC

    2011-07-29

    The project titled “National Biorepository for Children’s and Women’s Cancer”. The funding received by the Biopathology Center (BPC) at the Research Institute at Nationwide Children’s Hospital was utilized to procure equipment and add resources to establish a national digital archive of tissues of children and women’s cancers to advance treatment and research. As planned in the proposal, the project allowed the BPC to procure two high-speed imaging robots and hire imaging technicians to scan a large collection of Children’s and Women’s cancer tissues. The BPC team focused on completed clinical trials, with some dating back nearly 30 years, conducted bymore » the Children’s Oncology Group (and its precursor groups) as well as the Gynecologic Oncology Group. A total of 139 clinical trials were imaged as part of the archive project allowing the team to generate 29, 488 images that are currently stored at the Ohio Supercomputer Center located in Columbus Ohio. The images are now integrated with the Virtual Imaging for Pathology, Education and Research (VIPER) application. The VIPER application allows the BPC to make the digital archive available via the Internet to approved researchers remotely eliminating the use of glass slides for this collection. The elimination of glass slides reduces costs associated with shipping, reduces breakage of glass slides and allows for the review of these cases quickly by experts on a standard desktop computer.« less

  6. Constructing a Low-budget Laser Axotomy System to Study Axon Regeneration in C. elegans

    PubMed Central

    Williams, Wes; Nix, Paola; Bastiani, Michael

    2011-01-01

    Laser axotomy followed by time-lapse microscopy is a sensitive assay for axon regeneration phenotypes in C. elegans1. The main difficulty of this assay is the perceived cost ($25-100K) and technical expertise required for implementing a laser ablation system2,3. However, solid-state pulse lasers of modest costs (<$10K) can provide robust performance for laser ablation in transparent preparations where target axons are "close" to the tissue surface. Construction and alignment of a system can be accomplished in a day. The optical path provided by light from the focused condenser to the ablation laser provides a convenient alignment guide. An intermediate module with all optics removed can be dedicated to the ablation laser and assures that no optical elements need be moved during a laser ablation session. A dichroic in the intermediate module allows simultaneous imaging and laser ablation. Centering the laser beam to the outgoing beam from the focused microscope condenser lens guides the initial alignment of the system. A variety of lenses are used to condition and expand the laser beam to fill the back aperture of the chosen objective lens. Final alignment and testing is performed with a front surface mirrored glass slide target. Laser power is adjusted to give a minimum size ablation spot (<1um). The ablation spot is centered with fine adjustments of the last kinematically mounted mirror to cross hairs fixed in the imaging window. Laser power for axotomy will be approximately 10X higher than needed for the minimum ablation spot on the target slide (this may vary with the target you use). Worms can be immobilized for laser axotomy and time-lapse imaging by mounting on agarose pads (or in microfluidic chambers4). Agarose pads are easily made with 10% agarose in balanced saline melted in a microwave. A drop of molten agarose is placed on a glass slide and flattened with another glass slide into a pad approximately 200 um thick (a single layer of time tape on adjacent slides is used as a spacer). A "Sharpie" cap is used to cut out a uniformed diameter circular pad of 13mm. Anesthetic (1ul Muscimol 20mM) and Microspheres (Chris Fang-Yen personal communication) (1ul 2.65% Polystyrene 0.1 um in water) are added to the center of the pad followed by 3-5 worms oriented so they are lying on their left sides. A glass coverslip is applied and then Vaseline is used to seal the coverslip and prevent evaporation of the sample. PMID:22126922

  7. Corrosion protection of galvanized steels by silane-based treatments

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    The possibility of using silane coupling agents as replacements for chromate treatments was investigated on galvanized steel substrates. In order to understand the influence of deposition parameters on silane film formation, pure zinc substrates were first used as a model for galvanized steel to study the interaction between silane coupling agents and zinc surfaces. The silane films formed on pure zinc substrates from aqueous solutions were characterized by ellipsometry, contact angle measurements, reflection absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscopy. The deposition parameters studied include solution concentration, solution dipping time and pH value of the applied solution. It appears that silane film formation involved a true equilibrium of hydrolysis and condensation reactions in aqueous solutions. It has been found that the silane film thickness obtained depends primarily on the solution concentration and is almost independent of the solution dipping time. The molecular orientation of applied silane films is determined by the pH value of applied silane solutions and the isoelectric point of metal substrates. The deposition window in terms of pH value for zinc substrates is between 6.0 and 9.0. The total surface energy of the silane-coated pure zinc substrates decreases with film aging time, the decrease rate, however, is determined by the nature of silane coupling agents. Selected silane coupling agents were applied as prepaint or passivation treatments onto galvanized steel substrates. The corrosion protection provided by these silane-based treatments were evaluated by salt spray test, cyclic corrosion test, electrochemical impedance spectroscopy, and stack test. The results showed that silane coupling agents can possibly be used to replace chromates for corrosion control of galvanized steel substrates. Silane coatings provided by these silane treatments serve mainly as physical barriers. Factors that affect the performance of a silane coupling agent in the application of corrosion control include chemical reactivity, hydrophobic character, siloxane crosslinker network, and film thickness. Good protections afforded by the silane treatments are a synergetic effect of all these factors.

  8. A Novel Technique for Micro-patterning Proteins and Cells on Polyacrylamide Gels

    PubMed Central

    Tang, Xin; Ali, M. Yakut; Saif, M. Taher A.

    2012-01-01

    Spatial patterning of proteins (extracellular matrix, ECM) for living cells on polyacrylamide (PA) hydrogels has been technically challenging due to the compliant nature of the hydrogels and their aqueous environment. Traditional micro-fabrication process is not applicable. Here we report a simple, novel and general method to pattern a variety of commonly used cell adhesion molecules, i.e. Fibronectin (FN), Laminin (LN) and Collagen I (CN), etc. on PA gels. The pattern is first printed on a hydrophilic glass using polydimethylsiloxane (PDMS) stamp and micro-contact printing (μCP). Pre-polymerization solution is applied on the patterned glass and is then sandwiched by a functionalized glass slide, which covalently binds to the gel. The hydrophilic glass slide is then peeled off from the gel when the protein patterns detach from the glass, but remain intact with the gel. The pattern is thus transferred to the gel. The mechanism of pattern transfer is studied in light of interfacial mechanics. It is found that hydrophilic glass offers strong enough adhesion with ECM proteins such that a pattern can be printed, but weak enough adhesion such that they can be completely peeled off by the polymerized gel. This balance is essential for successful pattern transfer. As a demonstration, lines of FN, LN and CN with widths varying from 5–400 μm are patterned on PA gels. Normal fibroblasts (MKF) are cultured on the gel surfaces. The cell attachment and proliferation are confined within these patterns. The method avoids the use of any toxic chemistry often used to pattern different proteins on gel surfaces. PMID:23002394

  9. Effect of conditioning methods on the microtensile bond strength of phosphate monomer-based cement on zirconia ceramic in dry and aged conditions.

    PubMed

    Amaral, Regina; Ozcan, Mutlu; Valandro, Luiz Felipe; Balducci, Ivan; Bottino, Marco Antonio

    2008-04-01

    The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 x 5 x 4 mm(3)) of a glass-infiltrated zirconia-alumina ceramic (In-Ceram Zirconia Classic) were randomly divided into three surface treatment groups: ST1-Air-abrasion with 110-mum Al2O3 particles + silanization; ST2-Laboratory tribochemical silica coating method (110-microm Al2O3, 110-microm silica) (Rocatec) + silanization; ST3-Chairside tribochemical silica coating method (30-microm SiO(x)) (CoJet) + silanization. Each treated ceramic block was placed in its silicone mold with the treated surface exposed. The resin cement (Panavia F) was prepared and injected into the mold over the treated surface. Specimens were sectioned to achieve nontrimmed bar specimens (14 sp/block) that were randomly divided into two conditions: (a) Dry-microtensile test after sectioning; (b) Thermocycling (TC)-(6,000x, 5-55 degrees C) and water storage (150 days). Thus, six experimental groups were obtained (n = 50): Gr1-ST1 + dry; Gr2-ST1 + TC(;) Gr3-ST2 + dry; Gr4-ST2 + TC; Gr5-ST3 + dry; Gr6-ST3 + TC. After microtensile testing, the failure types were noted. ST2 (25.1 +/- 11) and ST3 (24.1 +/- 7.4) presented statistically higher bond strength (MPa) than that of ST1 (17.5 +/- 8) regardless of aging conditions (p < 0.0001). While Gr2 revealed the lowest results (13.3 +/- 6.4), the other groups (21.7 +/- 7.4-25. 9 +/- 9.1) showed statistically no significant differences (two-way ANOVA and Tukey's test, alpha = 0.05). The majority of the failures were mixed (82%) followed by adhesive failures (18%). Gr2 presented significantly higher incidence of ADHESIVE failures (54%) than those of other groups (p = 0.0001). Both laboratory and chairside silica coating plus silanization showed durable bond strength. After aging, air-abrasion with 110-microm Al(2)O(3) + silanization showed the largest decrease indicating that aging is fundamental for bond strength testing for acid-resistant zirconia ceramics in order to estimate their long-term performance in the mouth.

  10. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    NASA Astrophysics Data System (ADS)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  11. 20. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND ORIGINAL WOODFRAMED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND ORIGINAL WOOD-FRAMED SLIDING GLASS WINDOWS OVER SINK. VIEW TO SOUTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  12. 16. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND ORIGINAL WOODFRAMED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND ORIGINAL WOOD-FRAMED SLIDING-GLASS WINDOWS OVER SINK. VIEW TO EAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  13. Acceleration induced water removal from ear canals.

    NASA Astrophysics Data System (ADS)

    Kang, Hosung; Averett, Katelee; Jung, Sunghwan

    2017-11-01

    Children and adults commonly experience having water trapped in the ear canals after swimming. To remove the water, individuals will shake their head sideways. Since a child's ear canal has a smaller diameter, it requires more acceleration of the head to remove the trapped water. In this study, we theoretically and experimentally investigated the acceleration required to break the surface meniscus of the water in artificial ear canals and hydrophobic-coated glass tubes. In experiments, ear canal models were 3D-printed from a CT-scanned human head. Also, glass tubes were coated with silane to match the hydrophobicity in ear canals. Then, using a linear stage, we measured the acceleration values required to forcefully eject the water from the artificial ear canals and glass tubes. A theoretical model was developed to predict the critical acceleration at a given tube diameter and water volume by using a modified Rayleigh-Taylor instability. Furthermore, this research can shed light on the potential of long-term brain injury and damage by shaking the head to push the water out of the ear canal. This research was supported by National Science Foundation Grant CBET-1604424.

  14. Bioinspired Catecholic Primers for Rigid and Ductile Dental Resin Composites.

    PubMed

    Shin, Eeseul; Ju, Sung Won; An, Larry; Ahn, Eungjin; Ahn, Jin-Soo; Kim, Byeong-Su; Ahn, B Kollbe

    2018-01-17

    In the construction of dental restorative polymer composite materials, surface priming on mineral fillers is essential to improve the mechanical performance of the composites. Here we present bioinspired catechol-functionalized primers for a tougher dental resin composite containing glass fillers. The catecholic primers with different polymerizable end groups were designed and then coated on glass surfaces using a simple drop-casting or dip-coating process. The surface binding ability and possible cross-linking (coupling or chemical bridging between the glass substrate and the dental resin) of the catecholic bifunctional primers were evaluated using atomic force microscopy, contact angle measurements, and the knife shear bonding test and compared to a state-of-the-art silane-based coupling agent. Various mechanical tests including shrinkage and compression tests of the dental resin composites were also conducted. Compression tests of the composites containing the catecholic primed fillers exhibited enhanced mechanical properties, owing to the bidentate hydrogen bonding of catechol moieties to the oxide mineral surface. Furthermore, the superior biocompatibility of the primed surface was confirmed via cell attachment assay, thus providing applicability of catecholic primers for practical dental and biomedical applications.

  15. Thermal expansion of an epoxy-glass microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1977-01-01

    The thermal expansion of a composite of epoxy (diglycidyl ether of bisphenol A) and solid glass microspheres was investigated. The microspheres had surfaces which were either untreated or treated with a silicone release agent, an epoxy coupling agent, or a general purpose silane coupling agent. Both room temperature (about 300 K) and elevated temperature (about 475 K) cures were used for the epoxy. Two microsphere size ranges were used, about 50 microns, which is applicable in filled moldings, and about 125 microns, which is applicable as bond line spacers. The thermal expansion of the composites was measured from 300 to 350 K or from 300 to 500 K, depending on the epoxy cure temperature. Measurements were made on composites containing up to .6 volume fraction microspheres. Two predictive models, which required only the values of thermal expansion of the polymer and glass and their specific gravities, were tested against the experimental data. A finite element analysis was made of the thermal strain of a composite cell containing a single microsphere surrounded by a finite-thickness interface.

  16. A pH sensor based on electric properties of nanotubes on a glass substrate

    PubMed Central

    Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2007-01-01

    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848

  17. Sugar microarray via click chemistry: molecular recognition with lectins and amyloid β (1-42)

    NASA Astrophysics Data System (ADS)

    Matsumoto, Erino; Yamauchi, Takahiro; Fukuda, Tomohiro; Miura, Yoshiko

    2009-06-01

    Sugar microarrays were fabricated on various substrates via click chemistry. Acetylene-terminated substrates were prepared by forming self-assembled monolayers (SAMs) on a gold substrate with alkyl-disulfide and on silicon, quartz and glass substrates with a silane-coupling reagent. The gold substrates were subjected to surface plasmon resonance measurements, and the quartz and glass substrates were subjected to spectroscopy measurements and optical microscopy observation. The saccharide-immobilized substrate on the gold substrate showed specific interaction with the corresponding lectin, and the saccharides showed inert surface properties to other proteins with a high signal-to-noise ratio. We also focused on the saccharide-protein interaction on protein amyloidosis of Alzheimer amyloid β. Amyloid β peptide showed conformation transition on the saccharide-immobilization substrate into a β-sheet, and fibril formation and amyloid aggregates were found on the specific saccharides.

  18. Creep of experimental short fiber-reinforced composite resin.

    PubMed

    Garoushi, Sufyan; Kaleem, Muhammad; Shinya, Akikazu; Vallittu, Pekka K; Satterthwaite, Julian D; Watts, David C; Lassila, Lippo V J

    2012-01-01

    The purpose of this study was to investigate the reinforcing effect of short E-glass fiber fillers oriented in different directions on composite resin under static and dynamic loading. Experimental short fiber-reinforced composite resin (FC) was prepared by mixing 22.5 wt% of short E-glass fibers, 22.5 wt% of resin, and 55 wt% of silane-treated silica fillers. Three groups of specimens (n=5) were tested: FC with isotropic fiber orientation, FC with anisotropic fiber orientation, and particulate-filled composite resin (PFC) as a control. Time-dependent creep and recovery were recorded. ANOVA revealed that after secondary curing in a vacuum oven and after storage in dry condition for 30 days, FC with isotropic fiber orientation (1.73%) exhibited significantly lower static creep value (p<0.05) than PFC (2.54%). For the different curing methods and storage conditions evaluated in this study, FC achieved acceptable static and dynamic creep values when compared to PFC.

  19. The influence of different cementation modes on the fracture resistance of feldspathic ceramic crowns.

    PubMed

    Groten, M; Pröbster, L

    1997-01-01

    One hundred twenty pressed feldspathic ceramic crowns were luted to 20 steel dies using six different cementation modes. Fracture resistance was tested under an angle of 45 degrees and was determined as the maximal fracture load. Crowns were tested with luting agent only (groups A and C) and after etching with hydrofluoric acid, silanating, and the application of a bonding agent (groups B, D, E, and F). The resulting means were: phosphate cement 294.3 (A) and 282.2 (B); glass-ionomer cement 217.2 (C) and 255.4 (D); resin composite 382.2 (E) and 687.6 (F). Statistical analysis revealed significantly greater fracture resistance (P < .01) of resin luted crowns. Bonding to the die almost doubled the fracture resistance. Conditioning of the inner surfaces of the crowns did not improve the fracture resistance of crowns luted using zinc phosphate or glass-ionomer cements.

  20. Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length

    PubMed Central

    Rufin, M. A.; Gruetzner, J. A.; Hurley, M. J.; Hawkins, M. L.; Raymond, E. S.; Raymond, J. E.

    2015-01-01

    Silicones with superior protein resistance were produced by bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles that demonstrated a higher capacity to restructure to the surface-water interface versus conventional non-amphiphilic PEO-silanes. The PEO-silane amphiphiles were prepared with a single siloxane tether length but variable PEO segment lengths: α-(EtO)3Si(CH2)2-oligodimethylsiloxane13-block-poly(ethylene oxide)n-OCH3 (n = 3, 8, and 16). Conventional PEO-silane analogues (n = 3, 8 and 16) as well as a siloxane tether-silane (i.e. no PEO segment) were prepared as controls. When surface-grafted onto silicon wafer, PEO-silane amphiphiles produced surfaces that were more hydrophobic and thus more adherent towards fibrinogen versus the corresponding PEO-silane. However, when blended into a silicone, PEO-silane amphiphiles exhibited rapid restructuring to the surface-water interface and excellent protein resistance whereas the PEO-silanes did not. Silicones modified with PEO-silane amphiphiles of PEO segment lengths n = 8 and 16 achieved the highest protein resistance. PMID:26339488

  1. Prototype Rechargeable Lithium Batteries. Phase 1

    DTIC Science & Technology

    1987-06-01

    pentoxide [ V2o5 ], titanium disulfide [TiS ], vanadium V) sulfide [V2S 5 ], and lithium cobalt oxide [Li Co02]) witi high conductivity, ester-Eased...2400 envelope while the cathodes were supported with porous glass disks to maintain good electrical contact with the expanded metal current collectors...cells consisted of an electrode stack mounted between two glass slides held together with stainless steel wire and sealed in a Fisher & Porter 3-ounce

  2. Integrated Optical Information Processing

    DTIC Science & Technology

    1988-08-01

    applications in optical disk memory systems [91. This device is constructed in a glass /SiO2/Si waveguide. The choice of a Si substrate allows for the...contact mask) were formed in the photoresist deposited on all of the samples, we covered the unwanted gratings on each sample with cover glass slides...processing, let us consider TeO2 (v, = 620 m/s) as a potential substrate for applications requiring large time delays. This con- sideration is despite

  3. Durable low surface-energy surfaces

    NASA Technical Reports Server (NTRS)

    Willis, Paul B. (Inventor); McElroy, Paul M. (Inventor); Hickey, Gregory H. (Inventor)

    1993-01-01

    A formulation for forming a low surface-energy surface on a substrate having (i) a fluoroalkyl silane having a low surface energy part, (ii) a liquid crystal silane operable for enhancing the orientation of the molecules of the fluoroalkyl silane and for crosslinking with the fluoroalkyl silane, and, (iii) a transport medium for applying the fluoroalkyl silane and the liquid crystal silane to the surface of a substrate. In one embodiment the formulation can includes a crosslinking agent for crosslinking the fluoroalkyl silane. In another embodiment the formulation has a condensation catalyst for enhancing chemical bonding of the fluoroalkyl silane to the substrate. The transport medium can be an alcohol such as methanol or ethanol.

  4. Microstructural and Wear Behavior Characterization of Porous Layers Produced by Pulsed Laser Irradiation in Glass-Ceramics Substrates

    PubMed Central

    Sola, Daniel; Conde, Ana; García, Iñaki; Gracia-Escosa, Elena; de Damborenea, Juan J.; Peña, Jose I.

    2013-01-01

    In this work, wear behavior and microstructural characterization of porous layers produced in glass-ceramic substrates by pulsed laser irradiation in the nanosecond range are studied under unidirectional sliding conditions against AISI316 and corundum counterbodies. Depending on the optical configuration of the laser beam and on the working parameters, the local temperature and pressure applied over the interaction zone can generate a porous glass-ceramic layer. Material transference from the ball to the porous glass-ceramic layer was observed in the wear tests carried out against the AISI316 ball counterface whereas, in the case of the corundum ball, the wear volume loss was concentrated in the porous layer. Wear rate and friction coefficient presented higher values than expected for dense glass-ceramics. PMID:28788311

  5. Improving the bioactivity of bioglass/ (PMMA-co-MPMA) organic/inorganic hybrid.

    PubMed

    Ravarian, R; Wei, H; Dehghani, F

    2011-01-01

    Binary system of CaO-SiO(2) glasses enables the apatite formation in simulated body fluid (SBF). However, the presence of phosphate content in SiO(2)-CaO-P(2)O(5) glasses leads to the formation of orthophosphate nanocrystalline nuclei, which facilitates the generation of carbonate hydroxyapatite; this compound is more compatible with natural bone. The brittle and less flexible properties of bioactive glasses are the major obstacle for their application as bone implant. The hybridization of essential constituents of bioactive glasses and glass-ceramics with polymers such as PMMA can improve their poor mechanical properties. The aim of this study was to improve the bioactivity of nanocomposites fabricated from poly(methyl metacrylate) (PMMA) and bioglass for bone implant applications. Bioglass compounds with various phosphate contents were used for the preparation of PMMA/bioglass hybrid matrices. Since the lack of adhesion between the two phases impedes the homogenous composite formation, a silane coupling agent such as 3-(trimethoxysilyl)propyl methacrylates (MPMA) was incorporated into the polymer structure. The effect of addition of MPMA on the molecular structure of composite was investigated. Furthermore, the presence of MPMA in the system improved the homogeneity of sample. Increasing phosphate content in the inorganic segment of hybrid up to 10 mol% resulted in the formation of apatite layer on the surface; hence the hybrid was bioactive and suitable candidate for bone tissue engineering.

  6. 27. INTERIOR OF KITCHEN SHOWING ORIGINAL CABINETS, LATCHES AND PULLS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. INTERIOR OF KITCHEN SHOWING ORIGINAL CABINETS, LATCHES AND PULLS, AND WOOD-FRAME SLIDING-GLASS WINDOWS ABOVE SINK. VIEW TO EAST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  7. 5. EXTERIOR OF FRONT AND SOUTHWEST WALL OF HOUSE SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EXTERIOR OF FRONT AND SOUTHWEST WALL OF HOUSE SHOWING GABLE-ROOFED 1965 ADDITION WITH SLIDING-GLASS WINDOWS. VIEW TO NORTH. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  8. 24. INTERIOR OF BEDROOM NO. 2 SHOWING ALUMINUMFRAMED SLIDINGGLASS WINDOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. INTERIOR OF BEDROOM NO. 2 SHOWING ALUMINUM-FRAMED SLIDING-GLASS WINDOWS ON NORTH AND EAST WALLS. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 6, Cashbaugh-Kilpatrick House, Bishop Creek, Bishop, Inyo County, CA

  9. 29. SECOND FLOOR EAST SIDE APARTMENT EAST BEDROOM INTERIOR. ALUMINUMFRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SECOND FLOOR EAST SIDE APARTMENT EAST BEDROOM INTERIOR. ALUMINUM-FRAME SLIDING-GLASS WINDOWS ARE REPLACEMENTS. VIEW TO NORTHEAST. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  10. Low-cost and easy-to-use "on-chip ELISA" for developing health-promoting foods.

    PubMed

    Hoshino, Fumihiko; Watanabe, Osamu; Wu, Xiaohong; Takimoto, Yosuke; Osawa, Toshihiko

    2014-01-01

    We have determined that a biological molecule can be physically immobilized on a polymer containing an azobenzene (azopolymer) using irradiating light. We immobilized antibodies and antigens on the surface of an azopolymer coated glass slide (antibody array) to establish "on-chip ELISAs". The assays used the flat-surface of a glass slide and could be applied to both sandwich and competitive ELISAs. The sensitivity and accuracy of the on-chip ELISA were similar to a conventional ELISA using a polystyrene plate. Using the assay system, we proved that representative oxidative-biomarkers could be simultaneously measured from uL of urine. That should realize low-cost study on animal or human, and accelerate development of health-promoting foods. So, this new concept antibody array has promising applications in proteomic studies, and could be used to examine biomarkers to investigate health-promoting food.

  11. Shrink-induced silica multiscale structures for enhanced fluorescence from DNA microarrays.

    PubMed

    Sharma, Himanshu; Wood, Jennifer B; Lin, Sophia; Corn, Robert M; Khine, Michelle

    2014-09-23

    We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30-45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays.

  12. Shrink-Induced Silica Multiscale Structures for Enhanced Fluorescence from DNA Microarrays

    PubMed Central

    2015-01-01

    We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30–45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays. PMID:25191785

  13. Study of Sb2S3 thin films deposited by SILAR method

    NASA Astrophysics Data System (ADS)

    Deshpande, M. P.; Chauhan, Krishna; Patel, Kiran N.; Rajput, Piyush; Bhoi, Hiteshkumar R.; Chaki, S. H.

    2018-05-01

    In the present work, we deposited Sb2S3 thin films on glass slide by successive ionic layer adsorption and reaction (SILAR) technique with different time cycles. From EDAX, we could observe that the films were non-stoichiometric and contained few elements from glass slide. X-ray diffraction has shown that these films are orthorhombic in structure from where we have calculated the lattice parameter and crystallize size. SEM images shows that SILAR synthesized Sb2S3 thin films are homogenous and well distributed indicating the formation of uniform thin films at lower concentration. The room temperature Raman spectra of Sb2S3 thin films showed sharp peaks at 250 cm‑1 and 300 cm‑1 for all cases. Room temperature photoluminescence emission spectrum shows broad bands over 430–480 nm range with strong blue emission peak centered at same wavelength of 460 nm (2.70 eV) for all cases.

  14. Influence of surface conditions and silane agent on the bond of resin to IPS Empress 2 ceramic.

    PubMed

    Spohr, Ana Maria; Sobrinho, Lourenço Correr; Consani, Simonides; Sinhoreti, Mario Alexandre Coelho; Knowles, Jonathan C

    2003-01-01

    The aim of this study was to evaluate the effect of different ceramic surface treatments on the tensile bond strength between IPS Empress 2 ceramic framework and Rely X adhesive resin cement, with or without the application of a silane coupling agent. One hundred twenty disks were made, embedded in resin, and randomly divided into six groups: group 1 = sandblasting (100 microm), no silanation; group 2 = sandblasting (100 microm), silane treatment; group 3 = sandblasting (50 microm), no silanation; group 4 = sandblasting (50 microm), silane treatment; group 5 = hydrofluoric acid etching, no silanation; and group 6 = hydrofluoric acid etching, silane treatment. The disks were bonded into pairs with adhesive resin cement. All samples were stored in distilled water at 37 degrees C for 24 hours and then thermocycled. The samples were submitted to tensile testing. The use of silane improved the bond strength in relation to the groups in which silane was not applied (P < .05). The most effective surface treatment was etching with 10% hydrofluoric acid, both with (25.6 MPa) and without silane application (16.4 MPa); these values showed a statistically significant difference compared to sandblasting with 50- and 100-microm Al2O3. Sandblasting with 50-microm Al2O3, with (11.8 MPa) and without silane (5.4 MPa), demonstrated significantly higher tensile bond strength than sandblasting with 100-microm Al2O3, with (8.3 MPa) and without silane (3.8 MPa). Combined application of 10% hydrofluoric acid and silane enhanced the bond strength between the IPS Empress 2 ceramic framework and resin agent.

  15. The effect of different surface treatments on the shear bond strength of luting cements to titanium.

    PubMed

    Abi-Rached, Filipe de Oliveira; Fonseca, Renata Garcia; Haneda, Isabella Gagliardi; de Almeida-Júnior, Antonio Alves; Adabo, Gelson Luis

    2012-12-01

    Although titanium presents attractive physical and mechanical properties, there is a need for improving the bond at the titanium/luting cement interface for the longevity of metal ceramic restorations. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of resin-modified glass ionomer and resin cements to commercially pure titanium (CP Ti). Two hundred and forty CP Ti cast disks (9.0 × 3.0 mm) were divided into 8 surface treatment groups (n=30): 1) 50 µm Al(2)O(3) particles; 2) 120 µm Al(2)O(3) particles; 3) 250 µm Al(2)O(3) particles; 4) 50 µm Al(2)O(3) particles + silane (RelyX Ceramic Primer); 5) 120 µm Al(2)O(3) particles + silane; 6) 250 µm Al(2)O(3) particles + silane; 7) 30 µm silica-modified Al(2)O(3) particles (Cojet Sand) + silane; and 8) 120 µm Al(2)O(3) particles, followed by 110 µm silica-modified Al(2)O(3) particles (Rocatec). The luting cements 1) RelyX Luting 2; 2) RelyX ARC; or 3) RelyX U100 were applied to the treated CP Ti surfaces (n=10). Shear bond strength (SBS) was tested after thermal cycling (5000 cycles, 5°C to 55°C). Data were analyzed by 2-way analysis of variance (ANOVA) and the Tukey HSD post hoc test (α=.05). Failure mode was determined with a stereomicroscope (×20). The surface treatments, cements, and their interaction significantly affected the SBS (P<.001). RelyX Luting 2 and RelyX U100 exhibited similar behavior for all surface treatments. For both cements, only the group abraded with 50 μm Al(2)O(3) particles had lower SBS than the other groups (P<.05). For RelyX ARC, regardless of silane application, abrasion with 50 μm Al(2)O(3) particles resulted in significantly lower SBS than abrasion with 120 μm and 250 μm particles, which exhibited statistically similar SBS values to each other. Rocatec + silane promoted the highest SBS for RelyX ARC. RelyX U100 presented the highest SBS mean values (P<.001). All groups showed a predominance of adhesive failure mode. The adhesive capability of RelyX Luting 2 and RelyX U100 on the SBS was decisive, while for RelyX ARC, mechanical and chemical factors were more influential. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  16. Whole-slide imaging in pathology: the potential impact on PACS

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.

    2007-03-01

    Pathology, the medical specialty charged with the evaluation of macroscopic and microscopic aspects of disease, is increasingly turning to digital imaging. While the conventional tissue blocks and glass slides form an "archive" that pathology departments must maintain, digital images acquired from microscopes or digital slide scanners are increasingly used for telepathology, consultation, and intra-facility communication. Since many healthcare facilities are moving to "enterprise PACS" with departments in addition to radiology using the infrastructure of such systems, some understanding of the potential of whole-slide digital images is important. Network and storage designers, in particular, are very likely to be impacted if a significant number of such images are to be moved on, or stored (even temporarily) in, enterprise PACS. As an example, a typical commercial whole-slide imaging system typically generates 15 gigabytes per slide scanned (per focal plane). Many of these whole-slide scanners have a throughput of 1000 slides per day. If that full capacity is used and all the resulting digital data is moved to the enterprise PACS, it amounts to 15 terabytes per day; the amount of data a large radiology department might generate in a year or two. This paper will review both the clinical scenarios of whole-slide imaging as well as the resulting data volumes. The author will emphasize the potential PACS infrastructure impact of such huge data volumes.

  17. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization.

    PubMed

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M

    2018-05-04

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO 2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al 2 O 3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  18. Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization

    NASA Astrophysics Data System (ADS)

    Sorvali, Miika; Vuori, Leena; Pudas, Marko; Haapanen, Janne; Mahlberg, Riitta; Ronkainen, Helena; Honkanen, Mari; Valden, Mika; Mäkelä, Jyrki M.

    2018-05-01

    Superomniphobic, i.e. liquid-repellent, surfaces have been an interesting area of research during recent years due to their various potential applications. However, producing such surfaces, especially on hard and resilient substrates like stainless steel, still remains challenging. We present a stepwise fabrication process of a multilayered nanocoating on a stainless steel substrate, consisting of a nanoparticle layer, a nanofilm, and a layer of silane molecules. Liquid flame spray was used to deposit a TiO2 nanoparticle layer as the bottom layer for producing a suitable surface structure. The interstitial Al2O3 nanofilm, fabricated by atomic layer deposition (ALD), stabilized the nanoparticle layer, and the topmost fluorosilane layer lowered the surface energy of the coating for enhanced omniphobicity. The coating was characterized with field emission scanning electron microscopy, focused ion beam scanning electron microscopy, x-ray photoelectron spectroscopy, contact angle (CA) and sliding angle (SA) measurements, and microscratch testing. The widely recognized requirements for superrepellency, i.e. CA > 150° and SA < 10°, were achieved for deioinized water, diiodomethane, and ethylene glycol. The mechanical stability of the coating could be varied by tuning the thickness of the ALD layer at the expense of repellency. To our knowledge, this is the thinnest superomniphobic coating reported so far, with the average thickness of about 70 nm.

  19. Effect of different photoperiods on the growth, infectivity and colonization of Trinidadian strains of Paecilomyces fumosoroseus on the greenhouse whitefly, Trialeurodes vaporariorum, using a glass slide bioassay.

    PubMed

    Avery, Pasco B; Faull, Jane; Simmonds, Monique S J

    2004-01-01

    Growth, infectivity and colonization rates for blastospores and conidia of Trinidadian strains T, T10, and T11 of Paecilomyces fumosoroseus (Wize) Brown and Smith were assessed for activity against late fourth-instar nymphs of Trialeurodes vaporariorum (Westwood) (Homoptera:Aleyrodidae) under two different photoperiods (24 and 16 hour photophase). A glass-slide bioassay and a fungal development index, modified for both blastospores and conidia, were used to compare the development rates of the fungal strains on the insect hosts. Fewer adult whiteflies emerged from nymphs treated with blastospores and reared under a 16:8 hour light:dark photoperiod than a 24:0 hour photoperiod. Eclosion times of whitefly adults that emerged from nymphs treated with the different strains of conidia were similar over the 8 day experimental period at both light regimes. The percent eclosion of adult whiteflies seems to be directly correlated with the speed of infection of the blastospore or conidial treatment and the photoperiod regime. The longer photophase had a significant positive effect on development index for blastospores; however, a lesser effect was observed for the conidia at either light regime. Blastospore strain T11 offered the most potential of the three Trinidadian strains against T. vaporariorum fourth-instar nymphs, especially under constant light. The glass-slide bioassay was successfully used to compare both blastospores and conidia of P. fumosoroseus. It can be used to determine the pathogenicity and the efficacy of various fungal preparations against aleyrodid pests.

  20. A novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole by using silver nanoparticles as bridges and carriers.

    PubMed

    Tan, Shu-Zhen; Hu, Yan-Jun; Gong, Fu-Chun; Cao, Zhong; Xia, Jiao-Yun; Zhang, Ling

    2009-03-23

    A novel technique of covalent immobilization of indicator dyes in the preparation of fluorescence sensors is developed. Silver nanoparticles are used as bridges and carriers for anchoring indicator dyes. 3-amino-9-ethylcarbazole (AEC) was employed as an example of indicator dyes with terminal amino groups and covalently immobilized onto the outmost surface of a quartz glass slide. First, the glass slide was functionalized by (3-mercaptopropyl) trimethoxysilane (MPS) to form a thiol-terminated self-assembled monolayer, where silver nanoparticles were strongly bound to the surface through covalent bonding. Then, 16-mercaptohexadecanoic acid (MHDA) was self-assembled to bring carboxylic groups onto the surface of silver nanoparticles. A further activation by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) converted the carboxylic groups into succinimide esters. Finally, the active succinimide esters on the surface of silver nanoparticles were reacted with AEC. Thus, AEC was covalently bound to the glass slide and an AEC-immobilized sensor was obtained. The sensor exhibited very satisfactory reproducibility and reversibility, rapid response and no dye-leaching. Rutin can quench the fluorescence intensity of the sensor and be measured by using the sensor. The linear response of the sensor to rutin covers the range from 2.0 x 10(-6) to 1.5 x 10(-4) molL(-1) with a detection limit of 8.0 x 10(-7) molL(-1). The proposed technique may be feasible to the covalent immobilization of other dyes with primary amino groups.

  1. Surface Modifications in Adhesion and Wetting

    NASA Astrophysics Data System (ADS)

    Longley, Jonathan

    Advances in surface modification are changing the world. Changing surface properties of bulk materials with nanometer scale coatings enables inventions ranging from the familiar non-stick frying pan to advanced composite aircraft. Nanometer or monolayer coatings used to modify a surface affect the macro-scale properties of a system; for example, composite adhesive joints between the fuselage and internal frame of Boeing's 787 Dreamliner play a vital role in the structural stability of the aircraft. This dissertation focuses on a collection of surface modification techniques that are used in the areas of adhesion and wetting. Adhesive joints are rapidly replacing the familiar bolt and rivet assemblies used by the aerospace and automotive industries. This transition is fueled by the incorporation of composite materials into aircraft and high performance road vehicles. Adhesive joints have several advantages over the traditional rivet, including, significant weight reduction and efficient stress transfer between bonded materials. As fuel costs continue to rise, the weight reduction is accelerating this transition. Traditional surface pretreatments designed to improve the adhesion of polymeric materials to metallic surfaces are extremely toxic. Replacement adhesive technologies must be compatible with the environment without sacrificing adhesive performance. Silane-coupling agents have emerged as ideal surface modifications for improving composite joint strength. As these coatings are generally applied as very thin layers (<50 nm), it is challenging to characterize their material properties for correlation to adhesive performance. We circumvent this problem by estimating the elastic modulus of the silane-based coatings using the buckling instability formed between two materials of a large elastic mismatch. The elastic modulus is found to effectively predict the joint strength of an epoxy/aluminum joint that has been reinforced with silane coupling agents. This buckling technique is extended to investigate the effects of chemical composition on the elastic modulus. Finally, the effect of macro-scale roughness on silane-reinforced joints is investigated within the framework of the unresolved problem of how to best characterize rough surfaces. Initially, the fractal dimension is used to characterize grit-blasted and sanded surfaces. It is found that, contrary to what has been suggested in the literature, the fractal dimension is independent of the roughening mechanism. Instead, the use of an anomalous diffusion coefficient is proposed as a more effective way to characterize a rough surface. Surface modification by preparation of surface energy gradients is then investigated. Materials with gradients in surface energy are useful in the areas of microfluidics, heat transfer and protein adsorption, to name a few. Gradients are prepared by vapor deposition of a reactive silane from a filter paper source. The technique gives control over the size and shape of the gradient. This surface modification is then used to induce droplet motion through repeated stretching and compression of a water drop between two gradient surfaces. This inchworm type motion is studied in detail and offers an alternative method to surface vibration for moving drops in microfluidic devices. The final surface modification considered is the application of a thin layer of rubber to a rigid surface. While this technique has many practical uses, such as easy release coatings in marine environments, it is applied herein to enable spontaneous healing between a rubber surface and a glass cover slip. Study of the diffusion controlled healing of a blister can be made by trapping an air filled blister between a glass cover slip and a rubber film. Through this study we find evidence for an interfacial diffusion process. This mechanism of diffusion is likely to be important in many biological systems.

  2. 18. INTERIOR OF BATHROOM SHOWING DOOR TO SOUTH BEDROOM AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR OF BATHROOM SHOWING DOOR TO SOUTH BEDROOM AND ALUMINUM-FRAMED SLIDING GLASS WINDOW ABOVE BATHTUB AT PHOTO LEFT. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  3. Semantic focusing allows fully automated single-layer slide scanning of cervical cytology slides.

    PubMed

    Lahrmann, Bernd; Valous, Nektarios A; Eisenmann, Urs; Wentzensen, Nicolas; Grabe, Niels

    2013-01-01

    Liquid-based cytology (LBC) in conjunction with Whole-Slide Imaging (WSI) enables the objective and sensitive and quantitative evaluation of biomarkers in cytology. However, the complex three-dimensional distribution of cells on LBC slides requires manual focusing, long scanning-times, and multi-layer scanning. Here, we present a solution that overcomes these limitations in two steps: first, we make sure that focus points are only set on cells. Secondly, we check the total slide focus quality. From a first analysis we detected that superficial dust can be separated from the cell layer (thin layer of cells on the glass slide) itself. Then we analyzed 2,295 individual focus points from 51 LBC slides stained for p16 and Ki67. Using the number of edges in a focus point image, specific color values and size-inclusion filters, focus points detecting cells could be distinguished from focus points on artifacts (accuracy 98.6%). Sharpness as total focus quality of a virtual LBC slide is computed from 5 sharpness features. We trained a multi-parameter SVM classifier on 1,600 images. On an independent validation set of 3,232 cell images we achieved an accuracy of 94.8% for classifying images as focused. Our results show that single-layer scanning of LBC slides is possible and how it can be achieved. We assembled focus point analysis and sharpness classification into a fully automatic, iterative workflow, free of user intervention, which performs repetitive slide scanning as necessary. On 400 LBC slides we achieved a scanning-time of 13.9±10.1 min with 29.1±15.5 focus points. In summary, the integration of semantic focus information into whole-slide imaging allows automatic high-quality imaging of LBC slides and subsequent biomarker analysis.

  4. A multilevel Lab on chip platform for DNA analysis.

    PubMed

    Marasso, Simone Luigi; Giuri, Eros; Canavese, Giancarlo; Castagna, Riccardo; Quaglio, Marzia; Ferrante, Ivan; Perrone, Denis; Cocuzza, Matteo

    2011-02-01

    Lab-on-chips (LOCs) are critical systems that have been introduced to speed up and reduce the cost of traditional, laborious and extensive analyses in biological and biomedical fields. These ambitious and challenging issues ask for multi-disciplinary competences that range from engineering to biology. Starting from the aim to integrate microarray technology and microfluidic devices, a complex multilevel analysis platform has been designed, fabricated and tested (All rights reserved-IT Patent number TO2009A000915). This LOC successfully manages to interface microfluidic channels with standard DNA microarray glass slides, in order to implement a complete biological protocol. Typical Micro Electro Mechanical Systems (MEMS) materials and process technologies were employed. A silicon/glass microfluidic chip and a Polydimethylsiloxane (PDMS) reaction chamber were fabricated and interfaced with a standard microarray glass slide. In order to have a high disposable system all micro-elements were passive and an external apparatus provided fluidic driving and thermal control. The major microfluidic and handling problems were investigated and innovative solutions were found. Finally, an entirely automated DNA hybridization protocol was successfully tested with a significant reduction in analysis time and reagent consumption with respect to a conventional protocol.

  5. Method for making thin polypropylene film

    DOEpatents

    Behymer, R.D.; Scholten, J.A.

    1985-11-21

    An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

  6. 5. EXTERIOR OF NORTH SIDE SHOWING ENCLOSED FRONT PORCH AREA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EXTERIOR OF NORTH SIDE SHOWING ENCLOSED FRONT PORCH AREA, ALUMINUM SLIDING GLASS WINDOW GLAZING REPLACEMENTS, AND RAILING FOR STAIRS TO BASEMENT. VIEW TO SOUTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  7. 17. INTERIOR OF BEDROOM NO. 3 SHOWING MODERN ALUMINUMFRAMED SLIDINGGLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR OF BEDROOM NO. 3 SHOWING MODERN ALUMINUM-FRAMED SLIDING-GLASS WINDOWS WITH WOOD SURROUNDS ON SOUTHWEST AND NORTHWEST WALLS. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  8. 17. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, SINK, AND FAUCET, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, SINK, AND FAUCET, AND ORIGINAL WOOD-FRAMED SLIDING GLASS WINDOWS ON SOUTH WALL OVER SINK. VIEW TO SOUTHEAST - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  9. 16. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND COUNTER TOP, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS AND COUNTER TOP, AND ORIGINAL WOOD-FRAMED SLIDING GLASS WINDOW IN NORTH WALL OVERLOOKING FRONT ENTRY. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  10. Terrestrial and Lunar Geological Terminology for Non-Geoscientists

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.

    2009-01-01

    This slide presentation reviews several geologic concepts applicable to lunar geology with particular interest in creating lunar regolith simulant. Fundamental ways in which the Moon differs from the Earth. Concepts that are described in detail are: minerals, glass, and rocks.

  11. Comparison of detailed and reduced kinetics mechanisms of silane oxidation in the basis of detonation wave structure problem

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Tropin, D. A.; Fomin, P. A.

    2018-03-01

    The paper deals with the problem of the structure of detonation waves in the silane-air mixture within the framework of mathematical model of a nonequilibrium gas dynamics. Detailed kinetic scheme of silane oxidation as well as the newly developed reduced kinetic model of detonation combustion of silane are used. On its basis the detonation wave (DW) structure in stoichiometric silane - air mixture and dependences of Chapman-Jouguet parameters of mixture on stoichiometric ratio between the fuel (silane) and an oxidizer (air) were obtained.

  12. Web-based virtual microscopy at the RWTH Aachen University: didactic concept, methods and analysis of acceptance by the students.

    PubMed

    Merk, Magdalene; Knuechel, Ruth; Perez-Bouza, Alberto

    2010-12-20

    Fundamental knowledge of microscopic anatomy and pathology has always been an essential part in medical education. The traditional didactic concept comprises theoretical and practical lessons using a light microscope and glass slides. High-speed Internet connections and technical improvement in whole-slide digital microscopy (commonly termed "virtual microscopy") provide a new and attractive approach for both teachers and students. High picture quality and unlimited temporal and spatial availability of histology samples from different fields are key advantages of web-based digital microscopy. In this report we discuss the technical requirements, system efficiency, optical resolution and didactic concept. Furthermore, we present a review of the experience gained in the course of one year based on an analysis of student acceptance. Three groups with a total of 192 students between the 3rd and 5th year of medical studies attending the practical courses of general and advanced histopathology had access to both glass-mounted and digitalized slides. Prior to exams, students were asked to answer an anonymous questionnaire. The results of the study reflect the high acceptance and intensive use of the web-based digital histology by students, thus encouraging the development of further Web-based learning strategies for the teaching of histology and pathology. 2010 Elsevier GmbH. All rights reserved.

  13. Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol-Gel Matrices

    DTIC Science & Technology

    2015-10-19

    PD Summary of Research Highlights Supported by ONR N00014-09-1-0217 1) Hydrophobie xerogel coatings are "robust" - good adhesion to glass , aluminum...that none of the xerogels leach materials that cause increased mortality relative to leachates from glass slides. 6) Xerogels can be tailored to...with high surface area, high surface roughness, and chemical segregation of functionality. 10) Monoliths of 5 mole-% V2O5 or 0=V(0-/Pr)3 in

  14. Polyfibroblast: A Self-Healing and Galvanic Protection Additive

    DTIC Science & Technology

    2011-07-25

    3 Key Accomplishments 3.1 Silane Formulation Processability Silane coupling agents may be added to the existing microcapsules either in low...constrained by the need to form stable microcapsules . To this end, we explored a number of recipes in which the following silane coupling agents were...Isocyanatopropyltrimethoxy silane (ITS). • Glycidoxypropyltrimethoxy silane (GPS) As expected, the lowest concentrations most readily formed stable microcapsules . The

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, Mukta; Agrawal, V. V.; Chandran, Achu

    A unique cholesterol oxidase (ChOx) liquid crystal (LC) biosensor, based on the disruption of orientation in LCs, is developed for cholesterol detection. A self-assembled monolayer (SAM) of Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP) and (3-Aminopropyl)trimethoxy-silane (APTMS) is prepared on a glass plate by adsorption. The enzyme (ChOx) is immobilized on SAM surface for 12 h before utilizing the film for biosensing purpose. LC based biosensing study is conducted on SAM/ChOx/LC (5CB) cells for cholesterol concentrations ranging from 10 mg/dl to 250 mg/dl. The sensing mechanism has been verified through polarizing optical microscopy, scanning electron microscopy, and spectrometric techniques.

  16. Control of electroosmosis in coated quartz capillaries

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Van Alstine, James; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1987-01-01

    The effectiveness of various coatings for controlling the electroosmotic fluid flow that hinders electrophoretic processes is studied using analytical particle microelectrophoresis. The mobilities of 2-micron diameter glass and polystyrene latex spheres (exhibiting both negative and zero effective surface charge) were measured in 2-mm diameter quartz capillaries filled with NaCl solutions within the 3.5-7.8 pH range. It is found that capillary inner surface coatings using 5000 molecular weight (or higher) poly(ethylene glycol): significantly reduced electroosmosis within the selected pH range, were stable for long time periods, and appeared to be more effective than dextran, methylcellulose, or silane coatings.

  17. Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers.

    PubMed

    Rinehart, J D; Taylor, T D; Tian, Y; Latour, R A

    1999-01-01

    The objective of this study was to develop an efficient "real time" measurement system able to directly measure, with microgram resolution, the dissolution rate of absorbable glass fibers, and utilize the system to evaluate the effectiveness of silane-based sizing as a means to delay the fiber dissolution process. The absorbable glass fiber used was calcium phosphate (CaP), with tetramethoxysilane selected as the sizing agent. E-glass fiber was used as a relatively nondegrading control. Both the unsized-CaP and sized-CaP degraded linearly at both the 37 degrees C and 60 degrees C test temperature levels used. No significant decrease in weight-loss rate was recorded when the CaP fiber tows were pretreated, using conventional application methods, with the tetramethoxysilane sizing for either temperature condition. The unsized-CaP and sized-CaP weight loss rates were each significantly higher at 60 than at 37 degrees C (both p < 0.02), as expected from dissolution kinetics. In terms of actual weight loss rate measured using our system for phosphate glass fiber, the unsized-CaP fiber we studied dissolved at a rate of 10.90 x 10(-09) and 41.20 x 10(-09) g/min-cm(2) at 37 degrees C and 60 degrees C, respectively. Considering performance validation of the developed system, the slope of the weight loss vs. time plot for the tested E-glass fiber was not significantly different compared to a slope equal to zero for both test temperatures. Copyright 1999 John Wiley & Sons, Inc.

  18. 15. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, OUNTER TOP, SINK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, OUNTER TOP, SINK, AND FAUCET, AND ORIGINAL WOOD FRAMED SLIDING-GLASS WINDOW IN NORTH WALL OVERLOOKING FRONT PORCH. VIEW TO NORTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  19. Technology-Enhanced Pathology Education: Nigerian Medical Students Perspectives

    ERIC Educational Resources Information Center

    Vhriterhire, Raymond A.; Orkuma, Joseph A.; Jegede, Olushola O.; Omotosho, Ayodele J.; Adekwu, Amali

    2016-01-01

    The delivery of pathology education traditionally through instructor centred didactic lectures, small group tutorials, and practical demonstrations using microscope glass slides, gross pot specimens and autopsy sessions, is paving way for electronic learner-centred methods. Successful adoption and implementation of rapidly advancing educational…

  20. Measuring Trace Hydrocarbons in Silanes

    NASA Technical Reports Server (NTRS)

    Lesser, L. A.

    1984-01-01

    Technique rapid and uses standard analytical equipment. Silane gas containing traces of hydrocarbons injected into carrier gas of moist nitrogen having about 0.2 percent water vapor. Carrier, water and silane pass through short column packed with powdered sodium hydroxide which combines moisture and silane to form nonvolatile sodium silicate. Carrier gas free of silane but containing nonreactive hydrocarbons, pass to silica-gel column where chromatographic separation takes place. Hydrocarbons measured by FID.

  1. Mechanistic Study of Nickel-Catalyzed Ynal Reductive Cyclizations Through Kinetic Analysis

    PubMed Central

    Baxter, Ryan D.; Montgomery, John

    2011-01-01

    The mechanism of nickel-catalyzed, silane-mediated reductive cyclization of ynals has been evaluated. The cyclizations are first-order in [Ni] and [ynal] and zeroth-order in [silane]. These results, in combination with the lack of rapid silane consumption upon reaction initiation are inconsistent with mechanisms involving reaction initiation by oxidative addition of Ni(0) to the silane. Silane consumption occurs only when both the alkyne and aldehyde and are present. Mechanisms involving rate-determining oxidative cyclization to a metallacycle followed by rapid reaction with the silane are consistent with the data obtained. PMID:21438642

  2. A comparative study on omnidirectional anti-reflection SiO2 nanostructure films coating by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Prachachet, R.; Samransuksamer, B.; Horprathum, M.; Eiamchai, P.; Limwichean, S.; Chananonnawathorn, C.; Lertvanithphol, T.; Muthitamongkol, P.; Boonruang, S.; Buranasiri, P.

    2018-02-01

    Fabricated omnidirectional anti-reflection nanostructure films as a one of the promising alternative solar cell applications have attracted enormous scientific and industrial research benefits to their broadband, effective over a wide range of incident angles, lithography-free and high-throughput process. Recently, the nanostructure SiO2 film was the most inclusive study on anti-reflection with omnidirectional and broadband characteristics. In this work, the three-dimensional silicon dioxide (SiO2) nanostructured thin film with different morphologies including vertical align, slant, spiral and thin films were fabricated by electron beam evaporation with glancing angle deposition (GLAD) on the glass slide and silicon wafer substrate. The morphological of the prepared samples were characterized by field-emission scanning electron microscope (FE-SEM) and high-resolution transmission electron microscope (HRTEM). The transmission, omnidirectional and birefringence property of the nanostructure SiO2 films were investigated by UV-Vis-NIR spectrophotometer and variable angle spectroscopic ellipsometer (VASE). The spectrophotometer measurement was performed at normal incident angle and a full spectral range of 200 - 2000 nm. The angle dependent transmission measurements were investigated by rotating the specimen, with incidence angle defined relative to the surface normal of the prepared samples. This study demonstrates that the obtained SiO2 nanostructure film coated on glass slide substrate exhibits a higher transmission was 93% at normal incident angle. In addition, transmission measurement in visible wavelength and wide incident angles -80 to 80 were increased in comparison with the SiO2 thin film and glass slide substrate due to the transition in the refractive index profile from air to the nanostructure layer that improve the antireflection characteristics. The results clearly showed the enhanced omnidirectional and broadband characteristic of the three dimensional SiO2 nanostructure film coating.

  3. Dynamic-robotic telepathology: Department of Veterans Affairs feasibility study.

    PubMed

    Dunn, B E; Almagro, U A; Choi, H; Sheth, N K; Arnold, J S; Recla, D L; Krupinski, E A; Graham, A R; Weinstein, R S

    1997-01-01

    In this retrospective study, we assess the accuracy, confidence levels, and viewing times of two generalist pathologists using both dynamic-robotic telepathology and conventional light microscopy (LM) to render diagnoses on a test set of 100 consecutive routine surgical pathology cases. The objective is to determine whether telepathology will allow a pathology group practice at a diagnostic hub to provide routine diagnostic services to a remote hospital without an on-site pathologist. For TP, glass slides were placed on the motorized stage of the robotic microscope of a telepathology system by a senior laboratory technologist in Iron Mountain, MI. Real-time control of the motorized microscope was then transferred to a pathologist in Milwaukee, WI, who viewed images of the glass slides on a video monitor. The telepathologists deferred rendering a diagnosis in 1.5% of cases. Clinically important concordance between the individual diagnoses rendered by telepathology and the "truth" diagnoses established by rereview of glass slides was 98.5%. In the telepathology mode, there were five incorrect diagnoses out of a total of 197 diagnoses. In four cases in which the telepathology diagnosis was incorrect, the pathologist's diagnosis by LM was identical to that rendered by telepathology. These represent errors of interpretation and cannot be ascribed to telepathology. The certainty of the pathologists with respect to their diagnoses was evaluated over time. Results for the first 50 cases served as baseline data. For the second 50 cases, confidence in rendering a diagnosis in the telepathology mode was essentially identical to that of making a diagnosis in the LM viewing mode. Viewing times in the telepathology mode also improved with more experience using the telepathology system. These results support the concept that an off-site pathologist using dynamic-robotic telepathology can substitute for an on-site pathologist as a service provider.

  4. Automated sample area definition for high-throughput microscopy.

    PubMed

    Zeder, M; Ellrott, A; Amann, R

    2011-04-01

    High-throughput screening platforms based on epifluorescence microscopy are powerful tools in a variety of scientific fields. Although some applications are based on imaging geometrically defined samples such as microtiter plates, multiwell slides, or spotted gene arrays, others need to cope with inhomogeneously located samples on glass slides. The analysis of microbial communities in aquatic systems by sample filtration on membrane filters followed by multiple fluorescent staining, or the investigation of tissue sections are examples. Therefore, we developed a strategy for flexible and fast definition of sample locations by the acquisition of whole slide overview images and automated sample recognition by image analysis. Our approach was tested on different microscopes and the computer programs are freely available (http://www.technobiology.ch). Copyright © 2011 International Society for Advancement of Cytometry.

  5. Elusive silane-alane complex [Si-H⋅⋅⋅Al]: isolation, characterization, and multifaceted frustrated Lewis pair type catalysis.

    PubMed

    Chen, Jiawei; Chen, Eugene Y-X

    2015-06-01

    The super acidity of the unsolvated Al(C6F5)3 enabled isolation of the elusive silane-alane complex [Si-H⋅⋅⋅Al], which was structurally characterized by spectroscopic and X-ray diffraction methods. The Janus-like nature of this adduct, coupled with strong silane activation, effects multifaceted frustrated-Lewis-pair-type catalysis. When compared with the silane-borane system, the silane-alane system offers unique features or clear advantages in the four types of catalytic transformations examined in this study, including: ligand redistribution of tertiary silanes into secondary and quaternary silanes, polymerization of conjugated polar alkenes, hydrosilylation of unactivated alkenes, and hydrodefluorination of fluoroalkanes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Google glass-based remote control of a mobile robot

    NASA Astrophysics Data System (ADS)

    Yu, Song; Wen, Xi; Li, Wei; Chen, Genshe

    2016-05-01

    In this paper, we present an approach to remote control of a mobile robot via a Google Glass with the multi-function and compact size. This wearable device provides a new human-machine interface (HMI) to control a robot without need for a regular computer monitor because the Google Glass micro projector is able to display live videos around robot environments. In doing it, we first develop a protocol to establish WI-FI connection between Google Glass and a robot and then implement five types of robot behaviors: Moving Forward, Turning Left, Turning Right, Taking Pause, and Moving Backward, which are controlled by sliding and clicking the touchpad located on the right side of the temple. In order to demonstrate the effectiveness of the proposed Google Glass-based remote control system, we navigate a virtual Surveyor robot to pass a maze. Experimental results demonstrate that the proposed control system achieves the desired performance.

  7. Reactor for fluidized bed silane decomposition

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1989-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  8. Locating the origin of stick slip instabilities in sheared granular layers

    NASA Astrophysics Data System (ADS)

    Korkolis, Evangelos; Niemeijer, André

    2017-04-01

    Acoustic emission (AE) monitoring is a non-invasive technique widely used to evaluate the state of materials and structures. We have developed a system that can locate the source of AE events associated with unstable sliding (stick-slip) of sheared granular layers during laboratory friction experiments. Our aim is to map the spatial distribution of energy release due to permanent microstructural changes, using AE source locations as proxies. This will allow us to determine the distribution of applied work in a granular medium, which will be useful in developing constitutive laws that describe the frictional behavior of such materials. The AE monitoring system is installed on a rotary shear apparatus. This type of apparatus is used to investigate the micromechanical processes responsible for the macroscopic frictional behavior of granular materials at large shear displacements. Two arrays of 8 piezoelectric sensors each are installed into the ring-shaped steel pistons that confine our samples. The sensors are connected to a high-speed, multichannel oscilloscope that can record full waveforms. The apparatus is also equipped with a system that continuously records normal and lateral (shear) loads and displacements, as well as pore fluid pressure. Thus, we can calculate the frictional and volumetric response of our granular aggregates, as well as the location of AE sources. Here, we report on the results of room temperature experiments on granular aggregates consisting of glass beads or segregated mixtures of glass beads and calcite, at up to 5 MPa normal stress and sliding velocities between 1 and 100 μm/s. Under these conditions, glass beads exhibit unstable sliding behavior accompanied by significant AE activity, whereas calcite exhibits stable sliding and produces no AEs. We recorded a range of unstable sliding behaviors, from fast, regular stick slip at high normal stress (> 4 MPa) and sliding velocities below 20 μm/s, to irregular stick slip at low normal stress or sliding velocities above 20 μm/s. We calculated the source location of each AE associated with significant stress drops (slip events). A very prominent feature, particularly among the large shear displacement experiments, was the development of regions that sustained increased AE activity. Some of these regions remained fixed in space, whereas others kept migrating with increasing shear displacement. We observed that for an arbitrarily small number of consecutive slip events, their associated AEs did not necessarily nucleate in the same region. We believe that the calculated AE source locations reveal the sites where load-bearing microstructures, known as force chains, begin to fail, leading to slip instabilities. The existence of regions of increased AE activity suggests that triggering of force chain failure is controlled to some extent by the loading conditions imposed on the sample by the machine, but may also indicate the lasting influence of previous particle re-organization events on the particles populating these regions.

  9. An Evaluation of the Antimicrobial Effects of Gas-Phase Ozone

    EPA Science Inventory

    This project evaluated the effects of exposing a variety of microorganisms on porous and non-porous materials to elevated gaseous ozone concentrations ranging from 100 - 1000 ppm. Gypsum wallboard (porous) and glass slide (non-porous) building materials were used. Two fungi organ...

  10. Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles

    PubMed Central

    Fernandez Rivas, David; Verhaagen, Bram; Seddon, James R. T.; Zijlstra, Aaldert G.; Jiang, Lei-Meng; van der Sluis, Luc W. M.; Versluis, Michel; Lohse, Detlef; Gardeniers, Han J. G. E.

    2012-01-01

    We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled cavities micromachined in a silicon surface, which, when vibrated ultrasonically at a frequency of 200 kHz, generate a stream of bubbles that travel to the layer deposited on an opposing glass slide. Depending on the pressure amplitude, the bubble clouds ejected from the micropits attain different shapes as a result of complex bubble interaction forces, leading to distinct shapes of the cleaned areas. We have determined the removal rates for several inorganic and organic materials and obtained an improved efficiency in cleaning when compared to conventional cleaning equipment. We also provide values of the force the bubbles are able to exert on an atomic force microscope tip. PMID:23964308

  11. Dissolved oxygen sensing using organometallic dyes deposited within a microfluidic environment

    NASA Astrophysics Data System (ADS)

    Chen, Q. L.; Ho, H. P.; Jin, L.; Chu, B. W.-K.; Li, M. J.; Yam, V. W.-W.

    2008-02-01

    This work primarily aims to integrate dissolved oxygen sensing capability with a microfluidic platform containing arrays of micro bio-reactors or bio-activity indicators. The measurement of oxygen concentration is of significance for a variety of bio-related applications such as cell culture and gene expression. Optical oxygen sensors based on luminescence quenching are gaining much interest in light of their low power consumption, quick response and high analyte sensitivity in comparison to similar oxygen sensing devices. In our microfluidic oxygen sensor device, a thin layer of oxygen-sensitive luminescent organometallic dye is covalently bonded to a glass slide. Micro flow channels are formed on the glass slide using patterned PDMS (Polydimethylsiloxane). Dissolved oxygen sensing is then performed by directing an optical excitation probe beam to the area of interest within the microfluidic channel. The covalent bonding approach for sensor layer formation offers many distinct advantages over the physical entrapment method including minimizing dye leaching, ensuring good stability and fabrication simplicity. Experimental results confirm the feasibility of the device.

  12. Corrosion Protection of Nd-Fe Magnets via Phophatization, Silanization and Electrostatic Spraying with Organic Resin Composite Coatings

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Li, Jingjie; Li, Musen; Ge, Shengsong; Wang, Xiuchun; Ding, Kaihong; Cui, Shengli; Sun, Yongcong

    2014-09-01

    Nd-Fe-B permanent magnets possess excellent properties. However, they are highly sensitive to the attack of corrosive environment. The aim of this work is to improve the corrosion resistance of the magnets by phosphatization, silanization, and electrostatic spraying with organic resin composite coatings. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectrometer (EDS) tests showed that uniform phosphate conversion coatings and spray layers were formed on the surface of the Nd-Fe-B magnets. Neutral salt spray tests exhibited that, after treated by either phosphating, silanization or electrostatic spraying, the protectiveness of Nd-Fe-B alloys was apparently increased. And corrosion performance of magnets treated with silane only was slightly inferior to those of phosphatized ones. However, significant improvement in corrosion protection was achieved after two-step treatments, i.e. by top-coating spray layer with phosphate or silane films underneath. Grid test indicated that the phosphate and silane coating were strongly attached to the substrate while silane film was slightly weaker than the phosphate-treated ones. Magnetic property analysis revealed phosphatization, silanization, and electrostatic spraying caused decrease in magnetism, but silanization had the relatively smaller effect.

  13. Zone heating for fluidized bed silane pyrolysis

    NASA Technical Reports Server (NTRS)

    Iya, Sridhar K. (Inventor)

    1987-01-01

    An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.

  14. Mechanical contact induced transformation from the amorphous to the crystalline state in metallic glass

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear tests were conducted with 3.2- and 6.4-millimeter-diameter aluminum oxide spheres sliding, in reciprocating motion, on a Fe67Co18B14Si1 metallic foil. Crystallites with a size range of 10 to 150 nanometers were produced on the wear surface of the amorphous alloy. A strong interaction between transition metals and metalloids such as silicon and boron results in strong segregation during repeated sliding, provides preferential transition metal-metalloid clustering in the amorphous alloy, and subsequently produces the diffused honeycomb structure formed by dark grey bands and primary crystals, that is, alpha-Fe in the matrix. Large plastic flow occurs on an amorphous alloy surface with sliding and the flow film of the alloy transfers to the aluminum oxide pin surface. Multiple slip bands due to shear deformation are observed on the side of the wear track. Two distinct types of wear debris were observed as a result of sliding: an alloy wear debris, and/or powdery-whiskery oxide debris.

  15. Surface friction of hydrogels with well-defined polyelectrolyte brushes.

    PubMed

    Ohsedo, Yutaka; Takashina, Rikiya; Gong, Jian Ping; Osada, Yoshihito

    2004-08-03

    Hydrogels of poly(2-hydroxyethyl methacrylate) (PHEMA) with well-defined polyelectrolyte brushes of poly(sodium 4-styrenesulfonate) (PNaSS) of various molecular weights were synthesized, keeping the distance between the polymer brushes constant at ca. 20 nm. The effect of polyelectrolyte brush length on the sliding friction against a glass plate, an electrorepulsive solid substrate, was investigated in water in a velocity range of 7.5 x 10(-5) to 7.5 x 10(-2) m/s. It is found that the presence of polymer brush can dramatically reduce the friction when the polymer brushes are short. With an increase in the length of the polymer brush, this drag reduction effect only works at a low sliding velocity, and the gel with long polymer brushes even shows a higher friction than that of a normal network gel at a high sliding velocity. The strong polymer length and sliding velocity dependence indicate a dynamic mechanism of the polymer brush effect.

  16. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    PubMed Central

    Witecka, Agnieszka; Yamamoto, Akiko; Dybiec, Henryk; Swieszkowski, Wojciech

    2012-01-01

    Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation. PMID:27877541

  17. Resin adhesion strengths to zirconia ceramics after primer treatment with silane coupling monomer or oligomer.

    PubMed

    Okada, Masahiro; Inoue, Kazusa; Irie, Masao; Taketa, Hiroaki; Torii, Yasuhiro; Matsumoto, Takuya

    2017-09-26

    Resin bonding to zirconia ceramics is difficult to achieve using the standard methods for conventional silica-based dental ceramics, which employ silane coupling monomers as primers. The hypothesis in this study was that a silane coupling oligomer -a condensed product of silane coupling monomers- would be a more suitable primer for zirconia. To prove this hypothesis, the shear bond strengths between a composite resin and zirconia were compared after applying either a silane coupling monomer or oligomer. The shear bond strength increased after applying a non-activated ethanol solution of the silane coupling oligomer compared with that achieved when applying the monomer. Thermal treatment of the zirconia at 110°C after application of the silane coupling agents was essential to improve the shear bond strength between the composite resin cement and zirconia.

  18. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    NASA Astrophysics Data System (ADS)

    Witecka, Agnieszka; Yamamoto, Akiko; Dybiec, Henryk; Swieszkowski, Wojciech

    2012-12-01

    Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.

  19. Medical implants and methods of making medical implants

    DOEpatents

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  20. Effect of silane concentration on the supersonic combustion of a silane/methane mixture

    NASA Technical Reports Server (NTRS)

    Northam, G. B.; Mclain, A. G.; Pellett, G. L.; Diskin, G. S.

    1986-01-01

    A series of direct connect combustor tests was conducted to determine the effect of silane concentration on the supersonic combustion characteristics of silane/methane mixtures. Shock tube ignition delay data indicated more than an order of magnitude reduction in ignition delay times for both 10 and 20 percent silane/methane mixtures as compared to methane. The ignition delay time of the 10 percent mixture was only a factor of 2.3 greater than that of the 20 percent mixture. Supersonic combustion tests were conducted with the fuel injected into a model scramjet combustor. The combustor was mounted at the exit of a Mach 2 nozzle and a hydrogen fired heater was used to provide a variation in test gas total temperature. Tests using the 20 percent silane/methane mixture indicated considerable combustion enhancement when compared to methane alone. This mixture had an autoignition total temperature of 1650 R. This autoignition temperature can be contrasted with 2330 R for hydrogen and 1350 R for a 20 percent silane/hydrogen mixture in similar hardware. Methane without the silane additive did not autoignite in this configuration at total temperatures as high as 3900 R, the maximum temperature at which tests were conducted. Supersonic combustion tests with the silane concentration reduced to 10 percent indicated little improvement in combustion performance over pure methane. The addition of 20 percent silane to methane resulted in a pyrophoric fuel with good supersonic combustion performance. Reducing the silane concentration below this level, however, yielded a less pyrophoric fuel that exhibited poor supersonic combustion performance.

  1. Surface Nanobubbles Studied by Time-Resolved Fluorescence Microscopy Methods Combined with AFM: The Impact of Surface Treatment on Nanobubble Nucleation.

    PubMed

    Hain, Nicole; Wesner, Daniel; Druzhinin, Sergey I; Schönherr, Holger

    2016-11-01

    The impact of surface treatment and modification on surface nanobubble nucleation in water has been addressed by a new combination of fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM). In this study, rhodamine 6G (Rh6G)-labeled surface nanobubbles nucleated by the ethanol-water exchange were studied on differently cleaned borosilicate glass, silanized glass as well as self-assembled monolayers on transparent gold by combined AFM-FLIM. While the AFM data confirmed earlier reports on surface nanobubble nucleation, size, and apparent contact angles in dependence of the underlying substrate, the colocalization of these elevated features with highly fluorescent features observed in confocal intensity images added new information. By analyzing the characteristic contributions to the excited state lifetime of Rh6G in decay curves obtained from time-correlated single photon counting (TCSPC) experiments, the characteristic short-lived (<600 ps) component of could be associated with an emission at the gas-water interface. Its colocalization with nanobubble-like features in the AFM height images provides evidence for the observation of gas-filled surface nanobubbles. While piranha-cleaned glass supported nanobubbles, milder UV-ozone or oxygen plasma treatment afforded glass-water interfaces, where no nanobubbles were observed by combined AFM-FLIM. Finally, the number density of nanobubbles scaled inversely with increasing surface hydrophobicity.

  2. Diagnostic Efficiency in Digital Pathology: A Comparison of Optical Versus Digital Assessment in 510 Surgical Pathology Cases.

    PubMed

    Mills, Anne M; Gradecki, Sarah E; Horton, Bethany J; Blackwell, Rebecca; Moskaluk, Christopher A; Mandell, James W; Mills, Stacey E; Cathro, Helen P

    2018-01-01

    Prior work has shown that digital images and microscopic slides can be interpreted with comparable diagnostic accuracy. Although accuracy has been well-validated, the interpretative time for digital images has scarcely been studied and concerns about efficiency remain a major barrier to adoption. We investigated the efficiency of digital pathology when compared with glass slide interpretation in the diagnosis of surgical pathology biopsy and resection specimens. Slides were pulled from 510 surgical pathology cases from 5 organ systems (gastrointestinal, gynecologic, liver, bladder, and brain). Original diagnoses were independently confirmed by 2 validating pathologists. Diagnostic slides were scanned using the Philips IntelliSite Pathology Solution. Each case was assessed independently on digital and optical by 3 reading pathologists, with a ≥6 week washout period between modalities. Reading pathologists recorded assessment times for each modality; digital times included time to load the case. Diagnostic accuracy was determined based on whether a rendered diagnosis differed significantly from the original diagnosis. Statistical analysis was performed to assess for differences in interpretative times across modalities. All 3 reading pathologists showed comparable diagnostic accuracy across optical and digital modalities (mean major discordance rates with original diagnosis: 4.8% vs. 4.4%, respectively). Mean assessment times ranged from 1.2 to 9.1 seconds slower on digital versus optical. The slowest reader showed a significant learning effect during the course of the study so that digital assessment times decreased over time and were comparable with optical times by the end of the series. Organ site and specimen type did not significantly influence differences in interpretative times. In summary, digital image reading times compare favorably relative to glass slides across a variety of organ systems and specimen types. Mean increase in assessment time is 4 seconds/case. This time can be minimized with experience and may be further balanced by the improved ease of electronic chart access allowed by digital slide viewing, as well as quantitative assessments which can be expedited on digital images.

  3. Virtual slides in peer reviewed, open access medical publication.

    PubMed

    Kayser, Klaus; Borkenfeld, Stephan; Goldmann, Torsten; Kayser, Gian

    2011-12-19

    Application of virtual slides (VS), the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication. Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM) are a tool to increase the scientific value of microscopic images. The open access journal Diagnostic Pathology http://www.diagnosticpathology.org has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com) for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition) are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier). The first articles that include VS were published in March 2011. Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding article. The acceptance of VS by the reader is high as well as by the authors. Of specific value are the increased confidence to and reputation of authors as well as the presented information to the reader. Additional associated functions such as access to author-owned related image collections, reader-controlled automated image measurements and image transformations are in preparation. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1232133347629819.

  4. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  5. 40 CFR 721.9507 - Polyester silane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for the...

  6. 40 CFR 721.9507 - Polyester silane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for the...

  7. 40 CFR 721.10262 - Oxime, Me vinyl silane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Oxime, Me vinyl silane (generic). 721... Substances § 721.10262 Oxime, Me vinyl silane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as oxime, Me vinyl silane (PMN P...

  8. 40 CFR 721.10262 - Oxime, Me vinyl silane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Oxime, Me vinyl silane (generic). 721... Substances § 721.10262 Oxime, Me vinyl silane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as oxime, Me vinyl silane (PMN P...

  9. Compact, Automated Centrifugal Slide-Staining System

    NASA Technical Reports Server (NTRS)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2004-01-01

    The Directional Acceleration Vector-Driven Displacement of Fluids (DAVD-DOF) system, under development at the time of reporting the information for this article, would be a relatively compact, automated, centrifugally actuated system for staining blood smears and other microbiological samples on glass microscope slides in either a microgravitational or a normal Earth gravitational environment. The DAVD-DOF concept is a successor to the centrifuge-operated slide stainer (COSS) concept, which was reported in Slide-Staining System for Microgravity or Gravity (MSC-22949), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 64. The COSS includes reservoirs and a staining chamber that contains a microscope slide to which a biological sample is affixed. The staining chamber is sequentially filled with and drained of staining and related liquids from the reservoirs by use of a weighted plunger to force liquid from one reservoir to another at a constant level of hypergravity maintained in a standard swing-bucket centrifuge. In the DAVD-DOF system, a staining chamber containing a sample would also be sequentially filled and emptied, but with important differences. Instead of a simple microscope slide, one would use a special microscope slide on which would be fabricated a network of very small reservoirs and narrow channels connected to a staining chamber (see figure). Unlike in the COSS, displacement of liquid would be effected by use of the weight of the liquid itself, rather than the weight of a plunger.

  10. Virtual slides in peer reviewed, open access medical publication

    PubMed Central

    2011-01-01

    Background Application of virtual slides (VS), the digitalization of complete glass slides, is in its infancy to be implemented in routine diagnostic surgical pathology and to issues that are related to tissue-based diagnosis, such as education and scientific publication. Approach Electronic publication in Pathology offers new features of scientific communication in pathology that cannot be obtained by conventional paper based journals. Most of these features are based upon completely open or partly directed interaction between the reader and the system that distributes the article. One of these interactions can be applied to microscopic images allowing the reader to navigate and magnify the presented images. VS and interactive Virtual Microscopy (VM) are a tool to increase the scientific value of microscopic images. Technology and Performance The open access journal Diagnostic Pathology http://www.diagnosticpathology.org has existed for about five years. It is a peer reviewed journal that publishes all types of scientific contributions, including original scientific work, case reports and review articles. In addition to digitized still images the authors of appropriate articles are requested to submit the underlying glass slides to an institution (DiagnomX.eu, and Leica.com) for digitalization and documentation. The images are stored in a separate image data bank which is adequately linked to the article. The normal review process is not involved. Both processes (peer review and VS acquisition) are performed contemporaneously in order to minimize a potential publication delay. VS are not provided with a DOI index (digital object identifier). The first articles that include VS were published in March 2011. Results and Perspectives Several logistic constraints had to be overcome until the first articles including VS could be published. Step by step an automated acquisition and distribution system had to be implemented to the corresponding article. The acceptance of VS by the reader is high as well as by the authors. Of specific value are the increased confidence to and reputation of authors as well as the presented information to the reader. Additional associated functions such as access to author-owned related image collections, reader-controlled automated image measurements and image transformations are in preparation. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1232133347629819. PMID:22182763

  11. 19. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, COUNTER TOP, SINK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF KITCHEN SHOWING UPDATED CABINETS, COUNTER TOP, SINK, AND FAUCET, AND ORIGINAL WOODFRAMED SLIDING GLASS WINDOW IN NORTH WALL AT PHOTO LEFT CENTER OVERLOOKING FRONT PORCH. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  12. 40 CFR 721.10261 - Oxime, di-Me silane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Oxime, di-Me silane (generic). 721... Substances § 721.10261 Oxime, di-Me silane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as oxime, di-Me silane (PMN P-09-589...

  13. 40 CFR 721.10261 - Oxime, di-Me silane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Oxime, di-Me silane (generic). 721... Substances § 721.10261 Oxime, di-Me silane (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as oxime, di-Me silane (PMN P-09-589...

  14. Demonstrating the feasibility of monitoring the molecular-level structures of moving polymer/silane interfaces during silane diffusion using SFG.

    PubMed

    Chen, Chunyan; Wang, Jie; Loch, Cheryl L; Ahn, Dongchan; Chen, Zhan

    2004-02-04

    In this paper, the feasibility of monitoring molecular structures at a moving polymer/liquid interface by sum frequency generation (SFG) vibrational spectroscopy has been demonstrated. N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane (AATM, NH2(CH2)2NH(CH2)3Si(OCH3)3) has been brought into contact with a deuterated poly(methyl methacrylate) (d-PMMA) film, and the interfacial silane structure has been monitored using SFG. Upon initial contact, the SFG spectra can be detected, but as time progresses, the spectral intensity changes and finally disappears. Additional experiments indicate that these silane molecules can diffuse into the polymer film and the detected SFG signals are actually from the moving polymer/silane interface. Our results show that the molecular order of the polymer/silane interface exists during the entire diffusion process and is lost when the silane molecules traverse through the thickness of the d-PMMA film. The loss of the SFG signal is due to the formation of a new disordered substrate/silane interface, which contributes no detectable SFG signal. The kinetics of the diffusion of the silane into the polymer have been deduced from the time-dependent SFG signals detected from the AATM molecules as they diffuse through polymer films of different thickness.

  15. Coupling of HDPE/hydroxyapatite composites by silane-based methodologies.

    PubMed

    Sousa, R A; Reis, R L; Cunha, A M; Bevis, M J

    2003-06-01

    Several coupling treatments based on silane chemicals were investigated for the development of high density (HDPE)/hydroxyapatite (HA) composites. Two HA powders, sintered HA (HAs) and non sintered HA (HAns), were studied in combination with five silanes, namely y-methacryloxy propyltrimethoxy silane (MEMO), 3-(2-aminoethyl)aminopropyltrimethoxy silane (DAMO), vinyltrimethoxy silane (VTMO), 3-aminopropyltriethoxy silane (AMEO) and trimethoxypropyl silane (PTMO). The HA particles were treated by a dipping in method or by spraying with silane solutions. After drying, the treated powders were compounded with HDPE or HDPE with acrylic acid and/or organic peroxide and subsequently compression molded. The tensile test specimens obtained from the molded plates were tensile tested and their fracture surfaces were observed by scanning electron microscopy (SEM). For the sintered HA (HAs) composites, the most effective coupling treatments concerning stiffness are those based on MEMO and AMEO. The low influence of these coupling procedures on strength is believed to be associated to the low volume fraction and the relatively smooth surface of the used HA particles. For the non-sintered HA (HAns) composites, it was possible to improve significantly both the stiffness and the strength. Amino silanes demonstrated to be highly efficient concerning strength enhancement. The higher effectiveness of the coupling treatments for HAns filled composites is attributed to their higher particle surface area, smaller particle size distribution and expected higher chemical reactivity. For both cases, the improvement in mechanical performance after the coupling treatment is consistent with the enhancement in interfacial adhesion observed by SEM.

  16. The Electronic Structure and Field Effects of an Organic-Based Room Temperature Magnetic Semiconductor

    DTIC Science & Technology

    2007-01-01

    used. Other materials used in this study include: microscope slide glass for transistor substrates (Gold Seal), silicon nitride, Si3N4, sputtering...with the top in place. At LBNL the glass tubes were placed in a nitrogen filled glove bag attached to the XAS sample chamber where they were...valences such as vanadium(II) oxide (VO), vanadium(III) oxide (V2O3), vanadium(IV) oxide (VO2), and vanadium(IV) oxide ( V2O5 ). V2O3 in particular is an

  17. Novel Optical Processor for Phased Array Antenna.

    DTIC Science & Technology

    1992-10-20

    parallel glass slide into the signal beam optical loop. The parallel glass acts like a variable phase shifter to the signal beam simulating phase drift...A list of possible designs are given as follows , _ _ Velocity fa (100dB/cm) Lumit Wavelength I M2I1 TeO2 Longi 4.2 /m/ns about 3 GHz 1.4 4m 34 Fast...subject to achievable acoustic frequency, the preferred materials are the slow shear wave in TeO2 , the fast shear wave in TeO2 or the shear waves in

  18. Hydrogen-dominated plasma, due to silane depletion, for microcrystalline silicon deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howling, A. A.; Sobbia, R.; Hollenstein, Ch.

    2010-07-15

    Plasma conditions for microcrystalline silicon deposition generally require a high flux of atomic hydrogen, relative to SiH{sub {alpha}=0{yields}3} radicals, on the growing film. The necessary dominant partial pressure of hydrogen in the plasma is conventionally obtained by hydrogen dilution of silane in the inlet flow. However, a hydrogen-dominated plasma environment can also be obtained due to plasma depletion of the silane in the gas mixture, even up to the limit of pure silane inlet flow, provided that the silane depletion is strong enough. At first sight, it may seem surprising that the composition of a strongly depleted pure silane plasmamore » consists principally of molecular hydrogen, without significant contribution from the partial pressure of silane radicals. The aim here is to bring some physical insight by means of a zero-dimensional, analytical plasma chemistry model. The model is appropriate for uniform large-area showerhead reactors, as shown by comparison with a three-dimensional numerical simulations. The SiH{sub {alpha}} densities remain very low because of their rapid diffusion and surface reactivity, contributing to film growth which is the desired scenario for efficient silane utilization. Significant SiH{sub {alpha}} densities due to poor design of reactor and gas flow, on the other hand, would result in powder formation wasting silane. Conversely, hydrogen atoms are not deposited, but recombine on the film surface and reappear as molecular hydrogen in the plasma. Therefore, in the limit of extremely high silane depletion fraction (>99.9%), the silane density falls below the low SiH{sub {alpha}} densities, but only the H radical can eventually reach significant concentrations in the hydrogen-dominated plasma.« less

  19. Morphology and water resistance of mixed silane films of bis[3-(triethoxysilyl) propyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Guirong; Schaefer, Dale W.; van Ooij, Wim J.

    2010-12-03

    Functional organosilanes are powerful interface-active agents that find applications as adhesion promoters as well as optical, dielectric and protective coatings. Bis-silanes are of particular interest because they are highly crosslinked leading to very robust films. In almost all applications, the water resistance of the films is a critical performance measure. Here we use neutron reflectivity to address the effect of bridging group on the hydrothermal response of bis-silane films prepared using bis[3-(triethoxysilyl) propyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine. Neat and mixed films are examined as-prepared, after exposure to water vapor and then in the re-dried state. The bridging group is the key factormore » that controls the morphology and water resistance of silane films. Although bis-sulfur silane is not as condensed as bis-amino silane, bis-sulfur swells less in water because of the hydrophobic nature of bridging group. The reflectivity of bis-sulfur silane film is reversible after room-temperature water conditioning but not at 80 C, indicating chemical alternation of the film at 80 C. The water resistance of mixed silane is roughly that of both components weighted by their volume fraction. But based on the enhanced shrinkage that occurs following water-vapor conditioning of the mixed film, condensation is accelerated in the mixed silane. Regarding the precursor solution, bis-amino silane may act as a catalyst in the hydrolysis of bis-sulfur silane leading to more silanols in the solution and further condensation in the film. Variation in the structure normal to the substrate is also examined by swelling the film with d-nitrobenzene, a non-reacting swelling agent.« less

  20. Effect of laser heat treatment on Pull-out bond strength of fiber posts treated with different silanes.

    PubMed

    Shafiei, Fereshteh; Saadat, Maryam; Jowkar, Zahra

    2018-05-01

    This study evaluated the effect of three different silanes and post-silanization treatments on the retentive strength of fiber posts luted with an etch-and-rinse resin cement. One hundred intact maxillary central incisors were randomly divided into 10 groups after endodontic treatment and post space preparation (n=10). The fiber posts were etched using 24% hydrogen peroxide. Posts of the control group did not receive silane. In nine experimental groups, each of the three silanes used, Scotchbond Universal adhesive, Bis-Silane and Porcelain Primer, was subjected to three treatments: air-drying at 25°C, warm air-drying and CO2 laser heat treatment. After cementation of the treated posts using One-Step Plus/Duo-Link cement, the specimens were stored for one weak and then subjected to pull-out bond strength (PBS) testing. The data in Newton (N) were analyzed using two-way ANOVA and Tukey tests (α=0.05). PBS was significantly affected by silane type and post-silanization treatment ( p <0.001). The interaction of the two factors was not statistically significant ( p =0.15). The effect of Porcelain Primer on PBS was significantly higher than those of universal adhesive ( p <0.001) and Bis-Silane ( p =0.01), with similar results for the two latter. Warm air-drying and laser treatment significantly increased PBS ( p <0.001). The lowest and highest PBS was obtained in the control (no silane) group (190.9±31) and laser-treated/ Porcelain Primer group (377.1±50), respectively. Warm air-drying and CO2 laser heat treatment had a significantly beneficial effect on retentive strength of fiber posts. Porcelain Primer was significantly more effective than universal adhesive and Bis-Silane. Key words: Laser heat treatment, Pull-out bond strength, fiber post.

  1. Influence of Etching Protocol and Silane Treatment with a Universal Adhesive on Lithium Disilicate Bond Strength.

    PubMed

    Kalavacharla, V K; Lawson, N C; Ramp, L C; Burgess, J O

    2015-01-01

    To measure the effects of hydrofluoric acid (HF) etching and silane prior to the application of a universal adhesive on the bond strength between lithium disilicate and a resin. Sixty blocks of lithium disilicate (e.max CAD, Ivoclar Vivadent) were sectioned into coupons and polished. Specimens were divided into six groups (n=10) based on surface pretreatments, as follows: 1) no treatment (control); 2) 5% HF etch for 20 seconds (5HF); 3) 9.5% HF etch for 60 seconds (9.5HF); 4) silane with no HF (S); 5) 5% HF for 20 seconds + silane (5HFS); and 6) 9.5% HF for 60 seconds + silane (9.5HFS). All etching was followed by rinsing, and all silane was applied in one coat for 20 seconds and then dried. The universal adhesive (Scotchbond Universal, 3M ESPE) was applied onto the pretreated ceramic surface, air thinned, and light cured for 10 seconds. A 1.5-mm-diameter plastic tube filled with Z100 composite (3M ESPE) was applied over the bonded ceramic surface and light cured for 20 seconds on all four sides. The specimens were thermocycled for 10,000 cycles (5°C-50°C/15 s dwell time). Specimens were loaded until failure using a universal testing machine at a crosshead speed of 1 mm/min. The peak failure load was used to calculate the shear bond strength. Scanning electron microscopy images were taken of representative e.max specimens from each group. A two-way analysis of variance (ANOVA) determined that there were significant differences between HF etching, silane treatment, and the interaction between HF and silane treatment (p<0.01). Silane treatment provided higher shear bond strength regardless of the use or concentration of the HF etchant. Individual one-way ANOVA and Tukey post hoc analyses were performed for each silane group. Shear bond strength values for each etch time were significantly different (p<0.01) and could be divided into significantly different groups based on silane treatment: no silane treatment: 0 HF < 5% HF < 9.5% HF; and RelyX silane treatment: 0 HF < 5% HF and 9.5% HF. Both HF and silane treatment significantly improved the bond strength between resin and lithium disilicate when used with a universal adhesive.

  2. [Theoretical foundations of protein chips and their possible use in medical research and diagnostics].

    PubMed

    Spisák, Sándor; Molnár, Béla; Galamb, Orsolya; Sipos, Ferenc; Tulassay, Zsolt

    2007-08-12

    The confirmation of mRNA expression studies by protein chips is of high recent interest due to the widespread application of expression arrays. In this review the advantages, technical limitations, application fields and the first results of the protein arrays is described. The bottlenecks of the increasing protein array applications are the fast decomposition of proteins, the problem with aspecific binding and the lack of amplification techniques. Today glass slide based printed, SELDI (MS) based, electrophoresis based and tissue microarray based technologies are available. The advantage of the glass slide based chips are the simplicity of their application, and relatively low cost. The SELDI based protein chip technique is applicable to minute amounts of starting material (<1 microg) but it is the most expensive one. The electrophoresis based techniques are still under intensive development. The tissue microarrays can be used for the parallel testing of the sensitivity and specificity of single antibodies on a broad range of histological specimens on a single slide. Protein chips were successfully used for serum tumor marker detection, cancer research, cell physiology studies and for the verification of mRNA expression studies. Protein chips are envisioned to be available for routine diagnostic applications if the ongoing technology development will be successful in increase in sensitivity, specificity, costs reduction and for the reduction of the necessary sample volume.

  3. Ribbons of semithin sections: an advanced method with a new type of diamond knife.

    PubMed

    Blumer, Michael J F; Gahleitner, P; Narzt, T; Handl, C; Ruthensteiner, B

    2002-10-15

    Complete series of semithin sections are imperative for 3-D reconstruction, but with traditional microtomy techniques it is difficult and time-consuming to trace stained and labeled structures. In the present study we introduce a method for making and collecting ribbons of semithin sections with a new, commercial available diamond knife (histo-jumbo-diamond knife, Diatome AG, Biel, Switzerland). The special feature of the diamond knife is the large water bath (boat) into which a glass slide can be dipped. The method has distinct advantages and the handling is simple. The resin block is trimmed into a truncated pyramid. Contact glue is applied to the leading face of the pyramid, which makes sections stick together to form a ribbon. Following sectioning, the ribbons are mounted onto glass slides and aligned in parallel. Stretching out and drying the ribbons on a hot plate is the final step of the method. Major advantages of this method are the perfect alignment of sections with identical orientation of structures, the completeness of series, and the significant saving of time. This facilitates tracing of stained and labeled structures, yielding quick 3-D reconstruction. Semithin sections can be cut from 0.5 to 2 micro m and several ribbons can be mounted side by side onto the slide. Two examples are presented to illustrate the advantages of the method.

  4. Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices.

    PubMed

    Xu, Yan; Takai, Madoka; Ishihara, Kazuhiko

    2010-06-01

    This review summarizes recent achievements and progress in the development of various functional 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer biointerfaces for lab-on-a-chip devices and applications. As phospholipid polymers, MPC polymers can form cell-membrane-like surfaces by surface chemistry and physics and thereby provide biointerfaces capable of suppressing protein adsorption and many subsequent biological responses. In order to enable application to microfluidic devices, a number of MPC polymers with diverse functions have been specially designed and synthesized by incorporating functional units such as charge and active ester for generating the microfluidic flow and conjugating biomolecules, respectively. Furthermore, these polymers were incorporated with silane or hydrophobic moiety to construct stable interfaces on various substrate materials such as glass, quartz, poly(methyl methacrylate), and poly(dimethylsiloxane), via a silane-coupling reaction or hydrophobic interactions. The basic interfacial properties of these interfaces have been characterized from multiple aspects of chemistry, physics, and biology, and the suppression of nonspecific bioadsorption and control of microfluidic flow have been successfully achieved using these biointerfaces on a chip. Further, many chip-based biomedical applications such as immunoassays and DNA separation have been accomplished by integrating these biointerfaces on a chip. Therefore, functional phospholipid polymer interfaces are promising and useful for application to lab-on-a-chip devices in biomedicine.

  5. Development of the silane process for the production of low-cost polysilicon

    NASA Technical Reports Server (NTRS)

    Iya, S. K.

    1986-01-01

    It was recognized that the traditional hot rod type deposition process for decomposing silane is energy intensive, and a different approach for converting silane to silicon was chosen. A 1200 metric tons/year capacity commercial plant was constructed in Moses Lake, Washington. A fluidized bed processor was chosen as the most promising technology and several encouraging test runs were conducted. This technology continues to be very promising in producing low cost polysilicon. The Union Carbide silane process and the research development on the fluidized bed silane decomposition are discussed.

  6. Salt exclusion in silane-laced epoxy coatings.

    PubMed

    Wang, Peng; Schaefer, Dale W

    2010-01-05

    The corrosion protection mechanism of a one-step silane-laced epoxy coating system was investigated using neutron reflectivity. Pure epoxy and silane-laced epoxy films were examined at equilibrium with saturated NaCl water solution. The results demonstrate that the addition of silane introduces a salt-exclusion effect to epoxy coating. Specifically, the addition of silane densifies the epoxy network, which leads to exclusion of hydrated salt ions by a size effect. The effect is particularly significant at the metal-coating interface. Exclusion of ions improves the corrosion resistance, particularly for metals susceptible to pitting.

  7. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    PubMed

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  8. Cytotoxicity of silica-glass fiber reinforced composites.

    PubMed

    Meriç, Gökçe; Dahl, Jon E; Ruyter, I Eystein

    2008-09-01

    Silica-glass fiber reinforced polymers can be used for many kinds of dental applications. The fiber reinforcement enhances the mechanical properties of the polymers, and they have good esthetic attributes. There is good initial bonding of glass fibers to polymers via an interface made from silane coupling agents. The aim of this in vitro study was to determine the cytotoxicity of two polymers reinforced with two differently sized silica-glass fibers before and after thermal cycling. Cytotoxicity of the polymers without fibers was also evaluated. Two different resin mixtures (A and B) were prepared from poly(vinyl chloridecovinylacetate) powder and poly(methyl methacrylate) (PMMA) dissolved in methyl methacrylate and mixed with different cross-linking agents. The resin A contained the cross-linking agents ethylene glycol dimethacrylate and 1,4-butanediol dimethacrylate, and for resin B diethylene glycol dimethacrylate was used. Woven silica-glass fibers were used for reinforcement. The fibers were sized with either linear poly(butyl methacrylate)-sizing or cross-linking PMMA-sizing. Cytotoxicity was evaluated by filter diffusion test (ISO 7405:1997) of newly made and thermocycled test specimens. Extracts were prepared according to ISO 10993-12 from newly made and from thermocycled specimens and tested by the MTT assay. The results from the experiments were statistically analyzed by one-way ANOVA and Tukey's test (rho<0.05). The filter diffusion test disclosed no change in staining intensity at the cell-test sample contact area indicating non-cytotoxicity in all experimental groups. Cell viability assessed by MTT assay was more than 90% in all experimental groups. All are non-cytotoxic. It can be concluded that correctly processed heat polymerized silica-glass fiber reinforced polymers induced no cytotoxicity and that thermocycling did not alter this property.

  9. HistoViewer: An Interactive E-learning Platform Facilitating Group and Peer Group Learning

    ERIC Educational Resources Information Center

    Sander, Bjoern; Golas, Mariola Monika

    2013-01-01

    Understanding tissue architecture and the morphological characteristics of cells is a central prerequisite to comprehending the basis of physiological tissue function in healthy individuals and relating this to disease states. Traditionally, medical curricula include courses where students examine glass slides of cytological or tissue samples…

  10. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    ERIC Educational Resources Information Center

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  11. 28. INTERIOR OF BATHROOM SHOWING OPEN DOORWAY TO BEDROOM NO.3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. INTERIOR OF BATHROOM SHOWING OPEN DOORWAY TO BEDROOM NO.3 AT PHOTO RIGHT, ALUMINUM-FRAMED SLIDING-GLASS WINDOW ABOVE BATHTUB AT PHOTO CENTER, AND BUILT-IN CABINETS AT PHOTO LEFT. VIEW TO NORTHWEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  12. A Simple Approach to the Study of Attached Micro-Algae.

    ERIC Educational Resources Information Center

    Bell, Derek; Bell, J. Wendy

    1980-01-01

    Describes a modification in the use of artificial substrates to study attached micro-algae. Apparatus is based on glass microscope slides immersed in natural water environments; biomass and primary productivity are assessed by measurement of alpha-chlorophyll. Describes use in studies of colonization, succession, and populational fluctuation. (CS)

  13. Polysialic acid immobilized on silanized glass surfaces: a test case for its use as a biomaterial for nerve regeneration.

    PubMed

    Steinhaus, Stephanie; Stark, Yvonne; Bruns, Stephanie; Haile, Yohannes; Scheper, Thomas; Grothe, Claudia; Behrens, Peter

    2010-04-01

    The immobilization of polysialic acid (polySia) on glass substrates has been investigated with regard to the applicability of this polysaccharide as a novel, biocompatible and bioresorbable material for tissue engineering, especially with regard to its use in nerve regeneration. PolySia, a homopolymer of alpha-2,8-linked sialic acid, is involved in post-translational modification of the neural cell adhesion molecule (NCAM). The degradation of polySia can be controlled which makes it an interesting material for coating and for scaffold construction in tissue engineering. Here, we describe the immobilization of polySia on glass surfaces via an epoxysilane linker. Whereas glass surfaces will not actually be used in nerve regeneration scaffolds, they provide a simple and efficient means for testing various methods for the investigation of immobilized polySia. The modified surfaces were investigated with contact angle measurements and the quantity of immobilized polySia was examined by the thiobarbituric acid assay and a specific polySia-ELISA. The interactions between the polySia-modified surface and immortalized Schwann cells were evaluated via cell adhesion and cell viability assays. The results show that polySia can be immobilized on glass surfaces via the epoxysilane linker and that surface-bound polySia has no toxic effects on Schwann cells. Therefore, as a key substance in the development of vertebrates and as a favourable substrate for the cultivation of Schwann cells, it offers interesting features for the use in nerve guidance tubes for treatment of peripheral nerve injuries.

  14. Silanes as Fuel for Aerospace Propulsion

    NASA Astrophysics Data System (ADS)

    Simone, Domenico; Bruno, Claudio; Hidding, Bernhard

    In the light of recently revived interest in high energy density fuels for aerospace applications1,2), a new look is being given at unconventional fuels. Among the latter are hydrides, because their hydrogen content and density. Among hydrides silanes are of interest because of their combustion and energetic properties.Silanes are silicon hydrides organized in molecular chains similar to those of hydrocarbons; at STP, lower silanes (SiH4, Si2H6) are gaseous and extremely pyrophoric; with increasing chain length, silanes become liquid from trisilane (Si3H8) on, and therefore easily pumped. Another important feature of silanes is the large amount of hydrogen theoretically available by thermal decomposition: in fact at moderate temperatures (about 500 K) the chains begin to break and at 700 K their decomposition is complete, yielding silicon and gaseous hydrogen, useful for propulsion in combination with air nitrogen and oxygen. This last feature, if confirmed, could identify silanes not only as energy carriers but also components in bi-fuel systems. To assess their theoretical performance, simulations were conducted assuming silanes and/or their thermal decomposition products in combination with various oxidizers and air. Preliminary results are suggestive of their potential for some specialized applications, especially where compactness is at premium.

  15. Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.

    PubMed

    Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G

    2012-07-15

    The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Microcinematographic analysis of tethered Leptospira illini.

    PubMed Central

    Charon, N W; Daughtry, G R; McCuskey, R S; Franz, G N

    1984-01-01

    A model of Leptospira motility was recently proposed. One element of the model states that in translating cells the anterior spiral-shaped end gyrates counterclockwise and the posterior hook-shaped end gyrates clockwise. We tested these predictions by analyzing cells tethered to a glass surface. Leptospira illini was incubated with antibody-coated latex beads (Ab-beads). These beads adhered to the cells, and subsequently some cells became attached to either the slide or the cover glass via the Ab-beads. As previously reported, these cells rapidly moved back and forth across the surface of the beads. In addition, a general trend was observed: cells tethered to the cover glass rotated clockwise around the Ab-bead; cells tethered to the slide rotated counterclockwise around the Ab-bead. A computer-aided microcinematographic analysis of tethered cells indicated that the direction of rotation of cells around the Ab-bead was a function of both the surface of attachment and the shape of the cell ends. The results can best be explained by assuming that the gyrating ends interact with the glass surface to cause rotation around the Ab-beads. The analysis obtained indicates that the hook- and spiral-shaped ends rotate in the directions predicted by the model. In addition, the tethered cell assay permitted detection of rapid, coordinated reversals of the cell ends, e.g., cells rapidly switched from a hook-spiral configuration to a spiral-hook configuration. These results suggest the existance of a mechanism which coordinates the shape of the cell ends of L. illini. Images PMID:6501226

  17. Three-tier rough superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-08-01

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s-1. In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s-1 (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.

  18. Three-tier rough superhydrophobic surfaces.

    PubMed

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-08-07

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s(-1). In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s(-1) (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties.

  19. Applications and challenges of digital pathology and whole slide imaging.

    PubMed

    Higgins, C

    2015-07-01

    Virtual microscopy is a method for digitizing images of tissue on glass slides and using a computer to view, navigate, change magnification, focus and mark areas of interest. Virtual microscope systems (also called digital pathology or whole slide imaging systems) offer several advantages for biological scientists who use slides as part of their general, pharmaceutical, biotechnology or clinical research. The systems usually are based on one of two methodologies: area scanning or line scanning. Virtual microscope systems enable automatic sample detection, virtual-Z acquisition and creation of focal maps. Virtual slides are layered with multiple resolutions at each location, including the highest resolution needed to allow more detailed review of specific regions of interest. Scans may be acquired at 2, 10, 20, 40, 60 and 100 × or a combination of magnifications to highlight important detail. Digital microscopy starts when a slide collection is put into an automated or manual scanning system. The original slides are archived, then a server allows users to review multilayer digital images of the captured slides either by a closed network or by the internet. One challenge for adopting the technology is the lack of a universally accepted file format for virtual slides. Additional challenges include maintaining focus in an uneven sample, detecting specimens accurately, maximizing color fidelity with optimal brightness and contrast, optimizing resolution and keeping the images artifact-free. There are several manufacturers in the field and each has not only its own approach to these issues, but also its own image analysis software, which provides many options for users to enhance the speed, quality and accuracy of their process through virtual microscopy. Virtual microscope systems are widely used and are trusted to provide high quality solutions for teleconsultation, education, quality control, archiving, veterinary medicine, research and other fields.

  20. Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes.

    PubMed

    Guner, Selen N Gurbuz; Dericioglu, Arcan F

    2016-12-05

    Nacre-mimetic epoxy matrix composites reinforced with readily available micron-sized high aspect ratio C-glass flakes were fabricated by a relatively simple, single-step, scalable, time, cost and man-power effective processing strategy: hot-press assisted slip casting (HASC). HASC enables the fabrication of preferentially oriented two-dimensional inorganic reinforcement-polymer matrix bulk lamellar composites with a micro-scale structure resembling the brick-and-mortar architecture of nacre. By applying the micro-scale design guideline found in nacre and optimizing the relative volume fractions of the reinforcement and the matrix as well as by anchoring the brick-and-mortar architecture, and tailoring the interface between reinforcements and the matrix via silane coupling agents, strong, stiff and tough bio-inspired nacre-mimetic bulk composites were fabricated. As a result of high shear stress transfer lengths and effective stress transfer at the interface achieved through surface functionalization of the reinforcements, fabricated bulk composites exhibited enhanced mechanical performance as compared to neat epoxy. Furthermore, governed flake pull-out mode along with a highly torturous crack path, which resulted from extensive deflection and meandering of the advancing crack around well-aligned high aspect ratio C-glass flakes, have led to high work-of-fracture values similar to nacre.

  1. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro

    NASA Astrophysics Data System (ADS)

    Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica

    2013-04-01

    Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.

  2. Exploring virtual reality technology and the Oculus Rift for the examination of digital pathology slides.

    PubMed

    Farahani, Navid; Post, Robert; Duboy, Jon; Ahmed, Ishtiaque; Kolowitz, Brian J; Krinchai, Teppituk; Monaco, Sara E; Fine, Jeffrey L; Hartman, Douglas J; Pantanowitz, Liron

    2016-01-01

    Digital slides obtained from whole slide imaging (WSI) platforms are typically viewed in two dimensions using desktop personal computer monitors or more recently on mobile devices. To the best of our knowledge, we are not aware of any studies viewing digital pathology slides in a virtual reality (VR) environment. VR technology enables users to be artificially immersed in and interact with a computer-simulated world. Oculus Rift is among the world's first consumer-targeted VR headsets, intended primarily for enhanced gaming. Our aim was to explore the use of the Oculus Rift for examining digital pathology slides in a VR environment. An Oculus Rift Development Kit 2 (DK2) was connected to a 64-bit computer running Virtual Desktop software. Glass slides from twenty randomly selected lymph node cases (ten with benign and ten malignant diagnoses) were digitized using a WSI scanner. Three pathologists reviewed these digital slides on a 27-inch 5K display and with the Oculus Rift after a 2-week washout period. Recorded endpoints included concordance of final diagnoses and time required to examine slides. The pathologists also rated their ease of navigation, image quality, and diagnostic confidence for both modalities. There was 90% diagnostic concordance when reviewing WSI using a 5K display and Oculus Rift. The time required to examine digital pathology slides on the 5K display averaged 39 s (range 10-120 s), compared to 62 s with the Oculus Rift (range 15-270 s). All pathologists confirmed that digital pathology slides were easily viewable in a VR environment. The ratings for image quality and diagnostic confidence were higher when using the 5K display. Using the Oculus Rift DK2 to view and navigate pathology whole slide images in a virtual environment is feasible for diagnostic purposes. However, image resolution using the Oculus Rift device was limited. Interactive VR technologies such as the Oculus Rift are novel tools that may be of use in digital pathology.

  3. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    PubMed

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (p<0.05). The highest bond strengths were obtained in GSbCoSil (Ss=13.36/Ls=11.19MPa) and lowest values were obtained in GC (Ss=4.70/Ls=4.62 MPa) for both sinter groups. Sintering time may be effective on the bond strength and 30 μm silica coating (Cojet) with silane coupling application technique increased the bond strength between resin cement and differently sintered zirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. An LED Approach for Measuring the Photocatalytic Breakdown of Crystal Violet Dye

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Underwood, Lauren W.; ONeal, Duane; Pagnutti, Mary; Davis, Bruce A.

    2009-01-01

    A simple technique to assess the reactivity of photocatalytic coatings sprayed onto transmissive glass surfaces was developed. This new method uses ultraviolet (UV) gallium nitride (GaN) light-emitting diodes (LEDs) to drive a photocatalytic reaction (the photocatalytic breakdown of a UV-resistant dye applied to a surface coated with the semiconductor titanium dioxide); and then a combination of a stabilized white light LED and a spectrometer to track the dye degradation as a function of time. Simple, standardized evaluation techniques that assess photocatalytic materials over a variety of environmental conditions, including illumination level, are not generally available and are greatly needed prior to in situ application of photocatalytic technologies. To date, much research pertaining to this aspect of photocatalysis has been limited and has focused primarily on laboratory experiments using mercury lamps. Mercury lamp illumination levels are difficult to control over large ranges and are temporally modulated by line power, limiting their use in helping to understand and predict how photocatalytic materials will behave in natural environmental settings and conditions. The methodology described here, using steady-state LEDs and time series spectroradiometric techniques, is a novel approach to explore the effect of UV light on the photocatalytic degradation of a UV resistant dye (crystal violet). GaN UV LED arrays, centered around 365 nm with an adjustable DC power supply, are used to create a small, spatially uniform light field where the steady state light level can be varied over three to four orders of magnitude. For this study, a set of glass microscope slides was custom coated with a thinly sprayed layer of photocatalytic titanium dioxide. Crystal violet was then applied to these titanium-dioxide coated slides and to uncoated control slides. The slides were then illuminated at various light levels from the dye side of the slide by the UV LED array. To monitor dye degradation on the slides over time, a temperature-stabilized white light LED was used to illuminate the opposite side of the slides. As the dye degraded, the amount of light from the white light LED transmitted through the slide was monitored with a spectrometer and subsequently analyzed to determine and compare the rate of dye degradation for photocatalytically coated versus uncoated slide surfaces. The long-term stability of the spectrometer/white light LED combination, which required only a single reference spectra to be taken for a time series sequence of several hours, enabled accurate measurements of transmitted light over time. Time series transmission curves were generated and results demonstrated that over time the transmission increased much more rapidly on the coated slides than on the control slides. This experimental configuration and methodology for photocatalytic activity measurement minimizes many external variable effects and allows low light level studies to be performed. This study also compares the advantages of this novel LED light source design to traditional mercury lamp systems and non-LED lamp approaches that have conventionally been used. The methodology and experimental design research summarized in this abstract is partly funded by the Department of Homeland Security, Science and Technology Directorate, and by the NASA Stennis Space Center Innovative Partnerships Program.

  5. The frequency response of dynamic friction: Enhanced rate-and-state models

    NASA Astrophysics Data System (ADS)

    Cabboi, A.; Putelat, T.; Woodhouse, J.

    2016-07-01

    The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10-50 N), of sliding speeds (1-10 mm/s) and frequencies (100-2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.

  6. A New Antiwear Additive/Surface Pretreatment for PFPE Liquid Lubricants

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Fusaro, Robert L.; Siebert, Mark; Keith, Theo; Jansen, Ralph; Herrera-Fierro, Pilar

    1995-01-01

    Pin-on-disk tribology experiments were conducted on a perfluoroalkylelher (PFPE) liquid lubricant with and without a new PFPE lubricant antiwear additive material, a silane. It was found that the silane provided moderate improvement in the antiwear performance of the PFPE lubricant when applied to the metallic surface as a surface coating or when added to the PFPE as a dispersion (emulsion). Slightly better results were obtained by using the combination of a surface coating and an emulsion of the silane. The silane emulsions or coatings did not affect the friction properties of the lubricant. Micro-Fourier transformation infrared (muFTIR) spectroscopy analysis was performed to study silane transfer films and the degradation of the PFPE. The silane was found to mitigate degradation of the PFPE which may have been the major reason for the improved antiwear performance observed.

  7. Chitosan-silane sol-gel hybrid thin films with controllable layer thickness and morphology.

    PubMed

    Spirk, Stefan; Findenig, Gerald; Doliska, Ales; Reichel, Victoria E; Swanson, Nicole L; Kargl, Rupert; Ribitsch, Volker; Stana-Kleinschek, Karin

    2013-03-01

    The preparation of thin films of chitosan-silane hybrid materials by combining sol-gel processing and spin coating is reported. A variety of silanes can be used as starting materials for the preparation of such thin films, namely tetraethoxysilane, tri-tert-butoxysilanol, trimethylethoxysilane, p-trifluoromethyltetra-fluorophenyltriethoxysilane, trivinylmethoxysilane, (methoxymethyl)trimethyl-silane, and hexamethoxydisilane. These silanes are subjected to a sol-gel process before they are added to acidic chitosan solutions. The chitosan:silane ratio is kept constant at 6:1 (w/w) and dilutions with ethanol are prepared and spin coated. Depending on the degree of dilution, film thickness can be controlled in a range between 5 and 70 nm. For the determination of additional surface properties, static water contact angle measurements and atomic force microscopy have been employed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Transition of a dental histology course from light to virtual microscopy.

    PubMed

    Weaker, Frank J; Herbert, Damon C

    2009-10-01

    The transition of the dental histology course at the University of Texas Health Science Center at San Antonio Dental School was completed gradually over a five-year period. A pilot project was initially conducted to study the feasibility of integrating virtual microscopy into a traditional light microscopic lecture and laboratory course. Because of the difficulty of procuring quality calcified and decalcified sections of teeth, slides from the student loan collection in the oral histology block of the course were outsourced for conversion to digital images and placed on DVDs along with a slide viewer. The slide viewer mimicked the light microscope, allowing horizontal and vertical movement and changing of magnification, and, in addition, a feature to capture static images. In a survey, students rated the ease of use of the software, quality of the images, maneuverability of the images, and questions regarding use of the software, effective use of laboratory, and faculty time. Because of the positive support from the students, our entire student loan collection of 153 glass slides was subsequently converted to virtual images and distributed on an Apricorn pocket external hard drive. Students were asked to assess the virtual microscope over a four-year period. As a result of the surveys, light microscopes have been totally eliminated, and microscope exams have been replaced with project slide examinations. In the future, we plan to expand our virtual slides and incorporate computer testing.

  9. The impact of hydrofluoric acid etching followed by unfilled resin on the biaxial strength of a glass-ceramic.

    PubMed

    Posritong, Sumana; Borges, Alexandre Luiz Souto; Chu, Tien-Min Gabriel; Eckert, George J; Bottino, Marco A; Bottino, Marco C

    2013-11-01

    To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s+60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α=0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. The interaction (etching time vs. surface treatment) was significant for Ra (p=0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60s group (p<0.005). SEM revealed that etching affected the ceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p=0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (p<0.0001). None of experimental groups failed to show 95% confidence intervals of σ0 and m overlapped. FEA showed lower stress concentration after resin treatment. HF acid etching time did not show a damaging effect on the ceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Automatic identification and location technology of glass insulator self-shattering

    NASA Astrophysics Data System (ADS)

    Huang, Xinbo; Zhang, Huiying; Zhang, Ye

    2017-11-01

    The insulator of transmission lines is one of the most important infrastructures, which is vital to ensure the safe operation of transmission lines under complex and harsh operating conditions. The glass insulator often self-shatters but the available identification methods are inefficient and unreliable. Then, an automatic identification and localization technology of self-shattered glass insulators is proposed, which consists of the cameras installed on the tower video monitoring devices or the unmanned aerial vehicles, the 4G/OPGW network, and the monitoring center, where the identification and localization algorithm is embedded into the expert software. First, the images of insulators are captured by cameras, which are processed to identify the region of insulator string by the presented identification algorithm of insulator string. Second, according to the characteristics of the insulator string image, a mathematical model of the insulator string is established to estimate the direction and the length of the sliding blocks. Third, local binary pattern histograms of the template and the sliding block are extracted, by which the self-shattered insulator can be recognized and located. Finally, a series of experiments is fulfilled to verify the effectiveness of the algorithm. For single insulator images, Ac, Pr, and Rc of the algorithm are 94.5%, 92.38%, and 96.78%, respectively. For double insulator images, Ac, Pr, and Rc are 90.00%, 86.36%, and 93.23%, respectively.

  11. Morphology in the Digital Age: Integrating High Resolution Description of Structural Alterations with Phenotypes and Genotypes

    PubMed Central

    Nast, Cynthia C.; Lemley, Kevin V.; Hodgin, Jeffrey B.; Bagnasco, Serena; Avila-Casado, Carmen; Hewitt, Stephen M; Barisoni, Laura

    2015-01-01

    Conventional light microscopy (CLM) has been used to characterize and classify renal diseases, evaluate histopathology in studies and trials, and educate renal pathologists and nephrologists. The advent of digital pathology, in which a glass slide can be scanned to create whole slide images (WSI) for viewing and manipulating on a computer monitor, provides real and potential advantages over CLM. Software tools such as annotation, morphometry and image analysis can be applied to WSIs for studies or educational purposes, and the digital images are globally available to clinicians, pathologists and investigators. New ways of assessing renal pathology with observational data collection may allow better morphologic correlations and integration with molecular and genetic signatures, refinements of classification schema, and understanding of disease pathogenesis. In multicenter studies, WSI, which require additional quality assurance steps, provide efficiencies by reducing slide shipping and consensus conference costs, and allowing anytime anywhere slide viewing. While validation studies for the routine diagnostic use of digital pathology still are needed, this is a powerful tool currently available for translational research, clinical trials and education in renal pathology. PMID:26215864

  12. Issues in using whole slide imaging for diagnostic pathology: "routine" stains, immunohistochemistry and predictive markers.

    PubMed

    Taylor, C R

    2014-08-01

    The traditional microscope, together with the "routine" hematoxylin and eosin (H & E) stain, remains the "gold standard" for diagnosis of cancer and other diseases; remarkably, it and the majority of associated biological stains are more than 150 years old. Immunohistochemistry has added to the repertoire of "stains" available. Because of the need for specific identification and even measurement of "biomarkers," immunohistochemistry has increased the demand for consistency of performance and interpretation of staining results. Rapid advances in the capabilities of digital imaging hardware and software now offer a realistic route to improved reproducibility, accuracy and quantification by utilizing whole slide digital images for diagnosis, education and research. There also are potential efficiencies in work flow and the promise of powerful new analytical methods; however, there also are challenges with respect to validation of the quality and fidelity of digital images, including the standard H & E stain, so that diagnostic performance by pathologists is not compromised when they rely on whole slide images instead of traditional stained tissues on glass slides.

  13. The virtual case: a new method to completely digitize cytological and histological slides.

    PubMed

    Demichelis, F; Barbareschi, M; Dalla Palma, P; Forti, S

    2002-08-01

    The purpose of this study was to present a new method for handling histological/cytological cases. Thanks to the introduction of information technology in pathology, including the amenities afforded by robotic microscopes and digital imaging, tissue slides can be represented and evaluated using digital techniques in order to construct virtual cases through completely automated procedures. A virtual case (VC) is composed of a collection of digital images representing a histological/cytological slide at all magnification levels together with all relevant clinical data. In the present study, we describe an automated system to manage robotic microscope and image acquisition for the proper construction of VCs. These can then be viewed on a computer by means of an interface ("user-friendly") that allows one to select the more appropriate fields and to examine them at different magnifications, rapidly going from panoramic views to high resolution and vice versa. In comparison with glass slides, VCs have several advantages arising from their digital nature and can be considered a common platform for a wide range of applications such as teleconsultation, education, research, and quality control and proficiency tests.

  14. Influence of silane coupling agent on microstructure and properties of CCTO-P(VDF-CTFE) composites

    NASA Astrophysics Data System (ADS)

    Tong, Yang; Zhang, Lin; Bass, Patrick; Rolin, Terry D.; Cheng, Z.-Y.

    Influence of the coupling agent on microstructure and dielectric properties of ceramic-polymer composites is systematically studied using CaCu3Ti4O12 (CCTO) as the filler, trichloro-(1H,1H,2H,2H-perfluorooctyl)-silane (Cl3-silane) as coupling agent, and P(VDF-CTFE) 88/12mol.% copolymer as the matrix. It is demonstrated that Cl3-silane molecules can be attached onto CCTO surface using a simple process. The experimental results show that coating CCTO with Cl3-silane can improve the microstructure uniformity of the composites due to the good wettability between Cl3-silane and P(VDF-CTFE), which also significantly improves the electric breakdown field of the composites. It is found that the composites using CCTO coated with 1.0wt.% Cl3-silane exhibit a higher dielectric constant with a higher electric breakdown field. For the composites with 15vol.% CCTO that is coated with 1.0wt.% Cl3-silane, an electric breakdown field of more than 240MV/m is obtained with an energy density of more than 4.5J/cm3. It is also experimentally found that the dielectric constant can be used to easily identify the optimized content of coupling agent.

  15. 5. EXTERIOR OF SOUTH END OF HOUSE SHOWING OPEN DOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EXTERIOR OF SOUTH END OF HOUSE SHOWING OPEN DOOR TO BASEMENT BELOW KITCHEN, ORIGINAL PAIRED WOODFRAMED SLIDING-GLASS WINDOWS ON KITCHEN WALL AND 1LIGHT OVER 1-LIGHT DOUBLE-HUNG WINDOW ON STORM PORCH ADDITION. VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  16. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Manufactured Housing, except the exterior and interior pressure tests must be conducted at the design wind... the products, an independent quality assurance agency shall conduct pre-production specimen tests in... meet ANSI Z97.1-1984, “Safety Performance Specifications and Methods of Test for Safety Glazing...

  17. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Manufactured Housing, except the exterior and interior pressure tests must be conducted at the design wind... the products, an independent quality assurance agency shall conduct pre-production specimen tests in... meet ANSI Z97.1-1984, “Safety Performance Specifications and Methods of Test for Safety Glazing...

  18. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Manufactured Housing, except the exterior and interior pressure tests must be conducted at the design wind... the products, an independent quality assurance agency shall conduct pre-production specimen tests in... meet ANSI Z97.1-1984, “Safety Performance Specifications and Methods of Test for Safety Glazing...

  19. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Manufactured Housing, except the exterior and interior pressure tests must be conducted at the design wind... the products, an independent quality assurance agency shall conduct pre-production specimen tests in... meet ANSI Z97.1-1984, “Safety Performance Specifications and Methods of Test for Safety Glazing...

  20. Nuclear behavior during basidiospore germination in Cronartium quercuum f. sp. fusiforme

    Treesearch

    P.C. Spaine; Shigeru Kaneko

    1996-01-01

    Nuclear behavior during basidiospore germination in Cronartiunz quercuum f. sp. fusiforme was examined on glass slides and host seedlings using 4,6-diamidino-2-phenylindolestaining. Mononucleate basidiospores of Cronartium quercuum f. sp. fusiforme normally were produced following meiosis in the teliospore. However, a subsequent mitotic division often occurred within...

  1. Electronic Blending in Virtual Microscopy

    ERIC Educational Resources Information Center

    Maybury, Terrence S.; Farah, Camile S.

    2010-01-01

    Virtual microscopy (VM) is a relatively new technology that transforms the computer into a microscope. In essence, VM allows for the scanning and transfer of glass slides from light microscopy technology to the digital environment of the computer. This transition is also a function of the change from print knowledge to electronic knowledge, or as…

  2. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies

    NASA Astrophysics Data System (ADS)

    Shivatare, Sachin S.; Chang, Shih-Huang; Tsai, Tsung-I.; Tseng, Susan Yu; Shivatare, Vidya S.; Lin, Yih-Shyan; Cheng, Yang-Yu; Ren, Chien-Tai; Lee, Chang-Chun David; Pawar, Sujeet; Tsai, Charng-Sheng; Shih, Hao-Wei; Zeng, Yi-Fang; Liang, Chi-Hui; Kwong, Peter D.; Burton, Dennis R.; Wu, Chung-Yi; Wong, Chi-Huey

    2016-04-01

    A new class of broadly neutralizing antibodies (bNAbs) from HIV donors has been reported to target the glycans on gp120—a glycoprotein found on the surface of the virus envelope—thus renewing hope of developing carbohydrate-based HIV vaccines. However, the version of gp120 used in previous studies was not from human T cells and so the glycosylation pattern could be somewhat different to that found in the native system. Moreover, some antibodies recognized two different glycans simultaneously and this cannot be detected with the commonly used glycan microarrays on glass slides. Here, we have developed a glycan microarray on an aluminium-oxide-coated glass slide containing a diverse set of glycans, including homo- and mixed N-glycans (high-mannose, hybrid and complex types) that were prepared by modular chemo-enzymatic methods to detect the presence of hetero-glycan binding behaviours. This new approach allows rapid screening and identification of optimal glycans recognized by neutralizing antibodies, and could speed up the development of HIV-1 vaccines targeting cell surface glycans.

  3. Rapid detection of cardiac troponin I using antibody-immobilized gate-pulsed AlGaN/GaN high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Yang, Jiancheng; Carey, Patrick; Ren, Fan; Wang, Yu-Lin; Good, Michael L.; Jang, Soohwan; Mastro, Michael A.; Pearton, S. J.

    2017-11-01

    We report a comparison of two different approaches to detecting cardiac troponin I (cTnI) using antibody-functionalized AlGaN/GaN High Electron Mobility Transistors (HEMTs). If the solution containing the biomarker has high ionic strength, there can be difficulty in detection due to charge-screening effects. To overcome this, in the first approach, we used a recently developed method involving pulsed biases applied between a separate functionalized electrode and the gate of the HEMT. The resulting electrical double layer produces charge changes which are correlated with the concentration of the cTnI biomarker. The second approach fabricates the sensing area on a glass slide, and the pulsed gate signal is externally connected to the nitride HEMT. This produces a larger integrated change in charge and can be used over a broader range of concentrations without suffering from charge-screening effects. Both approaches can detect cTnI at levels down to 0.01 ng/ml. The glass slide approach is attractive for inexpensive cartridge-type sensors.

  4. Virtual microscopy in virtual tumor banking.

    PubMed

    Isabelle, M; Teodorovic, I; Oosterhuis, J W; Riegman, P H J; Passioukov, A; Lejeune, S; Therasse, P; Dinjens, W N M; Lam, K H; Oomen, M H A; Spatz, A; Ratcliffe, C; Knox, K; Mager, R; Kerr, D; Pezzella, F; Van Damme, B; Van de Vijver, M; Van Boven, H; Morente, M M; Alonso, S; Kerjaschki, D; Pammer, J; López-Guerrero, J A; Llombart-Bosch, A; Carbone, A; Gloghini, A; Van Veen, E B

    2006-01-01

    Many systems have already been designed and successfully used for sharing histology images over large distances, without transfer of the original glass slides. Rapid evolution was seen when digital images could be transferred over the Internet. Nowadays, sophisticated virtual microscope systems can be acquired, with the capability to quickly scan large batches of glass slides at high magnification and compress and store the large images on disc, which subsequently can be consulted through the Internet. The images are stored on an image server, which can give simple, easy to transfer pictures to the user specifying a certain magnification on any position in the scan. This offers new opportunities in histology review, overcoming the necessity of the dynamic telepathology systems to have compatible software systems and microscopes and in addition, an adequate connection of sufficient bandwidth. Consulting the images now only requires an Internet connection and a computer with a high quality monitor. A system of complete pathology review supporting biorepositories is described, based on the implementation of this technique in the European Human Frozen Tumor Tissue Bank (TuBaFrost).

  5. TuBaFrost 6: virtual microscopy in virtual tumour banking.

    PubMed

    Teodorovic, I; Isabelle, M; Carbone, A; Passioukov, A; Lejeune, S; Jaminé, D; Therasse, P; Gloghini, A; Dinjens, W N M; Lam, K H; Oomen, M H A; Spatz, A; Ratcliffe, C; Knox, K; Mager, R; Kerr, D; Pezzella, F; van Damme, B; van de Vijver, M; van Boven, H; Morente, M M; Alonso, S; Kerjaschki, D; Pammer, J; Lopez-Guerrero, J A; Llombart Bosch, A; van Veen, E-B; Oosterhuis, J W; Riegman, P H J

    2006-12-01

    Many systems have already been designed and successfully used for sharing histology images over large distances, without transfer of the original glass slides. Rapid evolution was seen when digital images could be transferred over the Internet. Nowadays, sophisticated Virtual Microscope systems can be acquired, with the capability to quickly scan large batches of glass slides at high magnification and compress and store the large images on disc, which subsequently can be consulted through the Internet. The images are stored on an image server, which can give simple, easy to transfer pictures to the user specifying a certain magnification on any position in the scan. This offers new opportunities in histology review, overcoming the necessity of the dynamic telepathology systems to have compatible software systems and microscopes and in addition, an adequate connection of sufficient bandwidth. Consulting the images now only requires an Internet connection and a computer with a high quality monitor. A system of complete pathology review supporting bio-repositories is described, based on the implementation of this technique in the European Human Frozen Tumor Tissue Bank (TuBaFrost).

  6. Formation of Organized Protein Thin Films with External Electric Field.

    PubMed

    Ferreira, Cecília Fabiana da G; Camargo, Paulo C; Benelli, Elaine M

    2015-10-01

    The effect of an external electric field on the formation of protein GlnB-Hs films and on its buffer solution on siliconized glass slides has been analyzed by current versus electric field curves and atomic force microscopy (AFM). The Herbaspirillum seropedicae GlnB protein (GlnB-Hs) is a globular, soluble homotrimer (36 kDa) with its 3-D structure previously determined. Concentrations of 10 nM native denatured GlnB-Hs protein were deposited on siliconized glass slides under ambient conditions. Immediately after solution deposition a maximum electric field of 30 kV/m was applied with rates of 3 V/s. The measured currents were surface currents and were analyzed as transport current. Electric current started to flow only after a minimum electric field (critical value) for the systems analyzed. The AFM images showed films with a high degree of directional organization only when the proteins were present in the solution. These results showed that the applied electric field favored directional organization of the protein GlnB-Hs films and may contribute to understand the formation of protein films under applied electric fields.

  7. Chemiluminescence-based pesticide biosensor utilizing the intelligent evolved properties of the enzyme alkaline phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, M.; Kamtekar, S.; Pande, R.

    A methodology is described for immobilizing the enzyme alkaline phosphatase onto a glass surface using a novel biotinylated copolymer, poly(3-undecylthiophene-co-3- methanoithiophene). A streptavidin conjugate of alkaline phosphatase is used in this study. The biotinylated polymer is attached to the silanized glass surface via hydrophobic interactions and the enzyme is interfaced with the polymer through the classical biotin- streptavidin interaction. Alkaline phosphatase catalyzes the dephosphorylation of a macrocyclic compound, chloro-3-(4-methoxy spiro) (1,2 dioxetane-3-2`-tricyclo-) (3.3.1.1 )-(decani-4-yl) phenyl phosphate, to a species which emits energy by chemiluminescence. This chemiluminescence signal can be detected with a photomultiplier tube for enzymatic catalysis with the biocatalystmore » both in solution and immobilized on a glass surface. The signal generation is inhibited by the organophosphorus based insecticides such as paraoxon as well as nerve agents. We demonstrate in this study that a number of organophosphorus based insecticides inhibit the enzyme-mediated generation of chemiluminescence signal. This is true for the enzyme conjugate both free in solution and immobilized on a glass surface. In solution, the inhibition resembles the case of a partially uncompetitive system. By this type of inhibition we are able to detect pesticides down to about 50 ppb for the enzyme in solution. The pesticide detection limit of immobilized enzyme is currently being investigated. The enzyme is capable of a number of measurement cycles without significant loss of signal level.« less

  8. Stoichiometry and possible mechanism of SiH/sub 4/-O/sub 2/ explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J.R.; Famil-Ghiriha, J.; Ring, M.A.

    1987-04-01

    The products of silane-O/sub 2/ mixture explosions vary with mixture composition. For O/sub 2/-rich mixtures (>70% O/sub 2/), the products are H/sub 2/O and SiO/sub 2/. As the mixtures become richer in silane, H/sub 2/ replaces H/sub 2/O as a final product. For very SiH/sub 4/-rich mixtures (>70% SiH/sub 4/), the products are H/sub 2/, SiO/sub x/, and Si. The fact that silane is totally consumed in silane-rich mixtures (70-90% silane) demonstrates that solid particle formation (SiO/sub 2/, SiO, and Si) occurs very rapidly and that the accompanying heat release is essential to drive the reactions to completion. It ismore » also clear that the explosion of a silane-rich mixture is primarily a thermal explosion of silane. Effects due to problems associated with upper pressure limit measurements and mechanistic aspects of the SiH/sub 4/-O/sub 2/ explosion reaction are discussed.« less

  9. AI (artificial intelligence) in histopathology--from image analysis to automated diagnosis.

    PubMed

    Kayser, Klaus; Görtler, Jürgen; Bogovac, Milica; Bogovac, Aleksandar; Goldmann, Torsten; Vollmer, Ekkehard; Kayser, Gian

    2009-01-01

    The technological progress in digitalization of complete histological glass slides has opened a new door in tissue--based diagnosis. The presentation of microscopic images as a whole in a digital matrix is called virtual slide. A virtual slide allows calculation and related presentation of image information that otherwise can only be seen by individual human performance. The digital world permits attachments of several (if not all) fields of view and the contemporary visualization on a screen. The presentation of all microscopic magnifications is possible if the basic pixel resolution is less than 0.25 microns. To introduce digital tissue--based diagnosis into the daily routine work of a surgical pathologist requires a new setup of workflow arrangement and procedures. The quality of digitized images is sufficient for diagnostic purposes; however, the time needed for viewing virtual slides exceeds that of viewing original glass slides by far. The reason lies in a slower and more difficult sampling procedure, which is the selection of information containing fields of view. By application of artificial intelligence, tissue--based diagnosis in routine work can be managed automatically in steps as follows: 1. The individual image quality has to be measured, and corrected, if necessary. 2. A diagnostic algorithm has to be applied. An algorithm has be developed, that includes both object based (object features, structures) and pixel based (texture) measures. 3. These measures serve for diagnosis classification and feedback to order additional information, for example in virtual immunohistochemical slides. 4. The measures can serve for automated image classification and detection of relevant image information by themselves without any labeling. 5. The pathologists' duty will not be released by such a system; to the contrary, it will manage and supervise the system, i.e., just working at a "higher level". Virtual slides are already in use for teaching and continuous education in anatomy and pathology. First attempts to introduce them into routine work have been reported. Application of AI has been established by automated immunohistochemical measurement systems (EAMUS, www.diagnomX.eu). The performance of automated diagnosis has been reported for a broad variety of organs at sensitivity and specificity levels >85%). The implementation of a complete connected AI supported system is in its childhood. Application of AI in digital tissue--based diagnosis will allow the pathologists to work as supervisors and no longer as primary "water carriers". Its accurate use will give them the time needed to concentrating on difficult cases for the benefit of their patients.

  10. Characterization of the reactivity of a silica derived from acid activation of sepiolite with silane by 29Si and 13C solid-state NMR.

    PubMed

    Valentín, J L; López-Manchado, M A; Posadas, P; Rodríguez, A; Marcos-Fernández, A; Ibarra, L

    2006-06-15

    The mechanism of the reaction between a silica sample coming from acid treatment of sepiolite (denominated Silsep) and an organosilane, namely bis(triethoxysilylpropyl)tetrasulfane (TESPT), has been evaluated by solid state NMR spectroscopy, being compared with the silanization reaction of a commercial silica. The effect of the silane concentration and temperature on the course of the reaction was considered. Experimental results indicate that the silanization reaction is more effective in the case of Silsep, favoring both the reaction of silane molecules with the filler surface and the reaction between neighboring silane molecules. This different behavior is attributed to structural factors, moisture, and number of acid centers on silica surface. Environmental scanning electron microscopy (ESEM) was used to deposit micrometric water drops on the surface of these samples and to evaluate the proportion and distribution of the organophylization process.

  11. Analysis of cellular and extracellular DNA in fingerprints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Button, Julie M.

    It has been previously shown that DNA can be recovered from latent fingerprints left on various surfaces [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. However, the source of the DNA, extracellular versus cellular origin, is difficult to determine. If the DNA is cellular, it is believed to belong to skin cells while extracellular DNA is believed to originate from body fluids such as sweat [D. J. Daly et. al, Forensic Sci. Int. Genet. 6, 41-46 (2012); V. V. Vlassov et. al, BioEssays 29, 654-667 (2007)]. The origin of the DNA in fingerprints has implicationsmore » for processing and interpretation of forensic evidence. The determination of the origin of DNA in fingerprints is further complicated by the fact that the DNA in fingerprints tends to be at a very low quantity [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. This study examined fingerprints from five volunteers left on sterilized glass slides and plastic pens. Three fingerprints were left on each glass slide (thumb, index, and middle fingers) while the pens were held as if one was writing with them. The DNA was collected from the objects using the wet swabbing technique (TE buffer). Following collection, the cellular and extracellular components of each sample were separated using centrifugation and an acoustofluidics system. Centrifugation is still the primary separation technique utilized in forensics laboratories, while acoustic focusing uses sound waves to focus large particles (cells) into low pressure nodes, separating them from the rest of the sample matrix. After separation, all samples were quantified using real-time quantitative PCR (qPCR). The overall trend is that there is more DNA in the extracellular fractions than cellular fractions for both centrifugation and acoustofluidic processing. Additionally, more DNA was generally collected from the pen samples than the samples left on glass slides.« less

  12. Replacement of glass particles by multidirectional short glass fibers in experimental composites: Effects on degree of conversion, mechanical properties and polymerization shrinkage.

    PubMed

    Bocalon, Anne C E; Mita, Daniela; Narumyia, Isabela; Shouha, Paul; Xavier, Tathy A; Braga, Roberto Ruggiero

    2016-09-01

    To test the null hypothesis that the replacement of a small fraction of glass particles with random short glass fibers does not affect degree of conversion (DC), flexural strength (FS), fracture toughness (FT) and post-gel polymerization shrinkage (PS) of experimental composites. Four experimental photocurable composites containing 1 BisGMA:1 TEGDMA (by weight) and 60vol% of fillers were prepared. The reinforcing phase was constituted by barium glass particles (2μm) and 0%, 2.5%, 5.0% or 7.5% of silanated glass fibers (1.4mm in length, 7-13μm in diameter). DC (n=4) was obtained using near-FTIR. FS (n=10) was calculated via biaxial flexural test and FT (n=10) used the "single edge notched beam" method. PS at 5min (n=8) was determined using the strain gage method. Data were analyzed by ANOVA/Tukey test (DC, FS, PS) or Kruskal-Wallis/Dunn's test (FT, alpha: 5% for both tests). DC was similar among groups (p>0.05). Only the composite containing 5.0% of fibers presented lower FS than the control (p<0.001). FT increased significantly between the control (1.3±0.17MPam(0.5)) and the composites containing either 5.0% (2.7±0.6MPam(0.5)) or 7.5% of fibers (2.8±0.6MPam(0.5), p<0.001). PS in relation to control was significantly reduced at 2.5% fibers (from 0.81±0.13% to 0.57±0.13%) and further reduced between 5.0% and 7.5% (from 0.42±0.12% to 0.23±0.07%, p<0.001). The replacement of a small fraction of filler particles with glass fibers significantly increased fracture toughness and reduced post-gel shrinkage of experimental composites. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Rubber friction: The contribution from the area of real contact.

    PubMed

    Tiwari, A; Miyashita, N; Espallargas, N; Persson, B N J

    2018-06-14

    There are two contributions to the friction force when a rubber block is sliding on a hard and rough substrate surface, namely, a contribution F ad = τ f A from the area of real contact A and a viscoelastic contribution F visc from the pulsating forces exerted by the substrate asperities on the rubber block. Here we present experimental results obtained at different sliding speeds and temperatures, and we show that the temperature dependency of the shear stress τ f , for temperatures above the rubber glass transition temperature T g , is weaker than that of the bulk viscoelastic modulus. The physical origin of τ f for T > T g is discussed, and we propose that its temperature dependency is determined by the rubber molecule segment mobility at the sliding interface, which is higher than in the bulk because of increased free-volume effect due to the short-wavelength surface roughness. This is consistent with the often observed reduction in the glass transition temperature in nanometer-thick surface layers of glassy polymers. For temperatures T < T g , the shear stress τ f is nearly velocity independent and of similar magnitude as observed for glassy polymers such as PMMA or polyethylene. In this case, the rubber undergoes plastic deformations in the asperity contact regions and the contact area is determined by the rubber penetration hardness. For this case, we propose that the frictional shear stress is due to slip at the interface between the rubber and a transfer film adsorbed on the concrete surface.

  14. Rubber friction: The contribution from the area of real contact

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Miyashita, N.; Espallargas, N.; Persson, B. N. J.

    2018-06-01

    There are two contributions to the friction force when a rubber block is sliding on a hard and rough substrate surface, namely, a contribution Fad = τf A from the area of real contact A and a viscoelastic contribution Fvisc from the pulsating forces exerted by the substrate asperities on the rubber block. Here we present experimental results obtained at different sliding speeds and temperatures, and we show that the temperature dependency of the shear stress τf, for temperatures above the rubber glass transition temperature Tg, is weaker than that of the bulk viscoelastic modulus. The physical origin of τf for T > Tg is discussed, and we propose that its temperature dependency is determined by the rubber molecule segment mobility at the sliding interface, which is higher than in the bulk because of increased free-volume effect due to the short-wavelength surface roughness. This is consistent with the often observed reduction in the glass transition temperature in nanometer-thick surface layers of glassy polymers. For temperatures T < Tg, the shear stress τf is nearly velocity independent and of similar magnitude as observed for glassy polymers such as PMMA or polyethylene. In this case, the rubber undergoes plastic deformations in the asperity contact regions and the contact area is determined by the rubber penetration hardness. For this case, we propose that the frictional shear stress is due to slip at the interface between the rubber and a transfer film adsorbed on the concrete surface.

  15. Synthesis of tris- and tetrakis(pentafluoroethyl)silanes.

    PubMed

    Steinhauer, Simon; Bader, Julia; Stammler, Hans-Georg; Ignat'ev, Nikolai; Hoge, Berthold

    2014-05-12

    The synthesis and complete characterization of functional, highly Lewis acidic tris(pentafluoroethyl)silanes as well as tetrakis(perfluoroalkyl)silanes Si(C2F5)4 and Si(C2F5)3 CF3 by direct fluorination is described. The reaction of SiCl4 with LiC2F5 invariably affords (pentafluoroethyl)fluorosilicates. To avoid silicate formation by fluoride transfer from LiC2F5 the Lewis acidity of the silane has to be decreased by electron-donating substituents, such as dialkylamino groups. The easily accessible Si(C2F5)3 NEt2 is a valuable precursor for a series of tris(pentafluoroethyl)silanes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. How do silanes affect the lubricating properties of cationic double chain surfactant on silica surfaces?

    PubMed

    Beauvais, Muriel; Serreau, Laurence; Heitz, Caroline; Barthel, Etienne

    2009-03-01

    The effect of an aminosilane on the lubricant properties of a C(18) double-chained cationic surfactant has been investigated in the context of glass fiber forming process. The surfactant adsorption was studied on silica by Fourier transform infrared (FT-IR) spectroscopy in the attenuated total reflexion (ATR) mode as a function of the aminosilane concentration in an organic water based formulation (sizing) used to coat the glass fibers during the process. A reciprocating ball-on-plate tribometer was used to compare friction properties of silica in contact with the aminosilane-surfactant mixture and in presence of each component of the sizing. Surface forces were measured between silica and an atomic force microscope (AFM) silicon nitride tip in the sizing and in the pure cationic surfactant solution. The aminosilane on its own has no lubricant property and reduces or even suppresses the cationic surfactant adsorption on silica. However, the silica-silica contact is lubricated even if the infrared spectroscopy does not detect any surfactant adsorption. The repeated contacts and shear due to the friction experiment itself induce accumulation, organization and compactness of surfactant bilayers.

  17. Polydiacetylene nanovesicles as carriers of natural phenylpropanoids for creating antimicrobial food-contact surfaces.

    PubMed

    Dogra, Navneet; Choudhary, Ruplal; Kohli, Punit; Haddock, John D; Makwana, Sanjaysinh; Horev, Batia; Vinokur, Yakov; Droby, Samir; Rodov, Victor

    2015-03-11

    The ultimate goal of this study was developing antimicrobial food-contact materials based on natural phenolic compounds using nanotechnological approaches. Among the methyl-β-cyclodextrin-encapsulated phenolics tested, curcumin showed by far the highest activity toward Escherichia coli with a minimum inhibitory concentration of 0.4 mM. Curcumin was enclosed in liposome-type polydiacetylene/phosholipid nanovesicles supplemented with N-hydroxysuccinimide and glucose. The fluorescence spectrum of the nanovesicles suggested that curcumin was located in their bilayer region. Free-suspended nanovesicles tended to bind to the bacterial surface and demonstrated bactericidal activity toward Gram-negative (E. coli) and vegetative cells of Gram-positive (Bacillus cereus) bacteria reducing their counts from 5 log CFU mL(-1) to an undetectable level within 8 h. The nanovesicles were covalently bound to silanized glass. Incubation of E. coli and B. cereus with nanovesicle-coated glass resulted in a 2.5 log reduction in their counts. After optimization this approach can be used for controlling microbial growth, cross-contamination, and biofilm formation on food-contacting surfaces.

  18. Silane-propane ignitor/burner

    DOEpatents

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  19. Silane-propane ignitor/burner

    DOEpatents

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  20. Effects of sandblasting and silica coating on the bond strength of rebonded mechanically retentive ceramic brackets.

    PubMed

    Toroglu, M Serdar; Yaylali, Sirin

    2008-08-01

    The aim of this study was to determine the bond strength of rebonded mechanically retentive ceramic brackets after treatment with 2 abrasive techniques. In addition to a group of new brackets, 3 groups were treated according to the following conditions of debonded ceramic bracket bases: sandblasting, sandblasting + silane, and silica coating + silane (15 in each group). Treated ceramic brackets were rebonded on premolars. The samples were stored in distilled deionized water for 24 hours at 37 degrees C in an incubator and then thermocycled for 1000 times between 5 degrees C and 55 degrees C. Shear force was applied to the enamel-adhesive interface until debonding. The highest bond strength values were in the silica coating + silane and the new bracket groups (12.7 and 12.0 MPa, respectively), followed by the sandblasting + silane group (10.5 MPa). The sandblasting group had a significantly lower bond strength value (4.5 MPa). No enamel fracture was noted in any sample tested. In the new bracket and the sandblasting + silane groups, 20% of the samples had adhesive remnant index scores of 2, and 80% had scores of 3. In the sandblasting group, all specimens debonded at the bracket-adhesive interface. The silica coating + silane group showed mixed failures. Sandblasting + silane and silica coating + silane applications on debonded ceramic bracket base can produce bond strengths comparable with new brackets.

  1. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  2. In Situ Generation of Two-Dimensional Au–Pt Core–Shell Nanoparticle Assemblies

    PubMed Central

    2010-01-01

    Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI) silane functionalized silicon and indium tin oxide (ITO) coated glass surfaces. Atomic force microscopy (AFM), UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs). PMID:20651923

  3. Image microarrays (IMA): Digital pathology's missing tool

    PubMed Central

    Hipp, Jason; Cheng, Jerome; Pantanowitz, Liron; Hewitt, Stephen; Yagi, Yukako; Monaco, James; Madabhushi, Anant; Rodriguez-canales, Jaime; Hanson, Jeffrey; Roy-Chowdhuri, Sinchita; Filie, Armando C.; Feldman, Michael D.; Tomaszewski, John E.; Shih, Natalie NC.; Brodsky, Victor; Giaccone, Giuseppe; Emmert-Buck, Michael R.; Balis, Ulysses J.

    2011-01-01

    Introduction: The increasing availability of whole slide imaging (WSI) data sets (digital slides) from glass slides offers new opportunities for the development of computer-aided diagnostic (CAD) algorithms. With the all-digital pathology workflow that these data sets will enable in the near future, literally millions of digital slides will be generated and stored. Consequently, the field in general and pathologists, specifically, will need tools to help extract actionable information from this new and vast collective repository. Methods: To address this limitation, we designed and implemented a tool (dCORE) to enable the systematic capture of image tiles with constrained size and resolution that contain desired histopathologic features. Results: In this communication, we describe a user-friendly tool that will enable pathologists to mine digital slides archives to create image microarrays (IMAs). IMAs are to digital slides as tissue microarrays (TMAs) are to cell blocks. Thus, a single digital slide could be transformed into an array of hundreds to thousands of high quality digital images, with each containing key diagnostic morphologies and appropriate controls. Current manual digital image cut-and-paste methods that allow for the creation of a grid of images (such as an IMA) of matching resolutions are tedious. Conclusion: The ability to create IMAs representing hundreds to thousands of vetted morphologic features has numerous applications in education, proficiency testing, consensus case review, and research. Lastly, in a manner analogous to the way conventional TMA technology has significantly accelerated in situ studies of tissue specimens use of IMAs has similar potential to significantly accelerate CAD algorithm development. PMID:22200030

  4. [Spectroscopic study on film formation mechanism and structure of composite silanes-V-Zr passive film].

    PubMed

    Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang

    2015-02-01

    A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.

  5. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Parhizkar, Nafise; Ramezanzadeh, Bahram; Shahrabi, Taghi

    2018-05-01

    This research has focused on the effect of graphene oxide (GO) nano-fillers embedded in the sol-gel based silane coating on the corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by silane coatings. For this purpose, a mixture of Methyltriethoxysilane (MTES) and Tetraethylorthosilicate (TEOS) silane precursors was used for preparation of composite matrix and the GO nanosheets, which are covalently functionalized with 3-(Triethoxysilyl)propyl isocyanate (TEPI, IGO nano-fillers) and 3-aminopropyltriethoxysilane (APTES, AGO nano-fillers), were used as filler. The GO, AGO and IGO nanosheets were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible analysis and field emission-scanning electron microscopy techniques. The performance of the silane/epoxy coatings was investigated by pull-off adhesion, cathodic delamination, salt spray and electrochemical impedance spectroscopy (EIS) tests. Results revealed that AGO and IGO nano-fillers significantly improved the corrosion resistance and adhesion properties of the top epoxy coating due to better compatibility with silane matrix, excellent barrier properties and the formation of covalent bonds with the top epoxy coating.

  6. Microfluidics in the Undergraduate Laboratory: Device Fabrication and an Experiment to Mimic Intravascular Gas Embolism

    ERIC Educational Resources Information Center

    Jablonski, Erin L.; Vogel, Brandon M.; Cavanagh, Daniel P.; Beers, Kathryn L.

    2010-01-01

    A method to fabricate microfluidic devices and an experimental protocol to model intravascular gas embolism for undergraduate laboratories are presented. The fabrication process details how to produce masters on glass slides; these masters serve as molds to pattern channels in an elastomeric polymer that can be adhered to a substrate, resulting in…

  7. Senior Aids for Senior Readers; A Visual Aids Pamphlet for the Elderly.

    ERIC Educational Resources Information Center

    Houston Public Library, TX.

    A pamphlet on special aids for senior library users lists items available from the Houston Public Library. Magnifiers (some illuminated), bedspecs (prism glasses), book holders, large print telephone dials, and games suitable for the visually handicapped or bedridden are described. The library's collections of slides and films, both 8mm and 16mm,…

  8. Using Organic Light-Emitting Electrochemical Thin-Film Devices to Teach Materials Science

    ERIC Educational Resources Information Center

    Sevian, Hannah; Muller, Sean; Rudmann, Hartmut; Rubner, Michael F.

    2004-01-01

    Materials science can be taught by applying organic light-emitting electrochemical thin-film devices and in this method students were allowed to make a light-emitting device by spin coating a thin film containing ruthenium (II) complex ions onto a glass slide. Through this laboratory method students are provided with the opportunity to learn about…

  9. 4. EXTERIOR OF SOUTH END OF BUILDING 104 SHOWING 1LIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. EXTERIOR OF SOUTH END OF BUILDING 104 SHOWING 1-LIGHT SIDE EXIT DOOR AND ORIGINAL WOOD-FRAMED SLIDING GLASS KITCHEN WINDOWS AT PHOTO CENTER, AND TALL RUSTIC STYLE CHIMNEY WITH GABLE FRAME ON BACK WALL OF HOUSE. VIEW TO NORTHEAST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  10. 10. INTERIOR OF LIVING ROOM SHOWING FRONT DOOR FLANKED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INTERIOR OF LIVING ROOM SHOWING FRONT DOOR FLANKED BY SLIDING GLASS WINDOWS AND ELECTRICAL WALL HEATER. ORIGINAL 1-LIGHT OVER 1-LIGHT, DOUBLE-HUNG WINDOW AT PHOTO RIGHT. CEILING VENT TO CHIMNEY AT RIGHT UPPER PHOTO CENTER. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  11. VAPOR PHASE MERCURY SORPTION BY ORGANIC SULFIDE MODIFIED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Novel organic sulfide modified bimetallic iron-copper nanoparticle aggregate sorbent materials have been synthesized for removing elemental mercury from vapor streams at elevated temperatures (120-140 °C). Silane based (disulfide silane and tetrasulfide silane) and alkyl sulfide ...

  12. 40 CFR 721.9501 - Silane, triethoxy[3-oxiranylmethoxy)propyl]-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9501 Silane, triethoxy[3-oxiranylmethoxy)propyl]-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as silane...

  13. Method and apparatus for forming a carbon-silicon bond in a silane

    DOEpatents

    Schattenmann, Florian Johannes

    2002-01-01

    A method for forming at least one product silane, comprising reacting a transition metal hydride with a starting silane in a presence of a catalyst and at a temperature that exceeds a threshold temperature associated with said reacting.

  14. Development of acceptance criteria for batches of silane primer for external tank thermal protection system bonding applications

    NASA Technical Reports Server (NTRS)

    Mikes, F.

    1984-01-01

    Silane primers for use as thermal protection on external tanks were subjected to various analytic techniques to determine the most effective testing method for silane lot evaluation. The analytic methods included high performance liquid chromatography, gas chromatography, thermogravimetry (TGA), and fourier transform infrared spectroscopy (FTIR). It is suggested that FTIR be used as the method for silane lot evaluation. Chromatograms, TGA profiles, bar graphs showing IR absorbances, and FTIR spectra are presented.

  15. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry.

    PubMed

    Batz, Nicholas G; Mellors, J Scott; Alarie, Jean Pierre; Ramsey, J Michael

    2014-04-01

    We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.

  16. Lanthanum tricyanide-catalyzed acyl silane-ketone benzoin additions and kinetic resolution of resultant alpha-silyloxyketones.

    PubMed

    Tarr, James C; Johnson, Jeffrey S

    2010-05-21

    We report the full account of our efforts on the lanthanum tricyanide-catalyzed acyl silane-ketone benzoin reaction. The reaction exhibits a wide scope in both acyl silane (aryl, alkyl) and ketone (aryl-alkyl, alkyl-alkyl, aryl-aryl, alkenyl-alkyl, alkynyl-alkyl) coupling partners. The diastereoselectivity of the reaction has been examined in both cyclic and acyclic systems. Cyclohexanones give products arising from equatorial attack by the acyl silane. The diastereoselectivity of acyl silane addition to acyclic alpha-hydroxy ketones can be controlled by varying the protecting group to obtain either Felkin-Ahn or chelation control. The resultant alpha-silyloxyketone products can be resolved with selectivity factors from 10 to 15 by subjecting racemic ketone benzoin products to CBS reduction.

  17. Review of the current state of whole slide imaging in pathology

    PubMed Central

    Pantanowitz, Liron; Valenstein, Paul N.; Evans, Andrew J.; Kaplan, Keith J.; Pfeifer, John D.; Wilbur, David C.; Collins, Laura C.; Colgan, Terence J.

    2011-01-01

    Whole slide imaging (WSI), or “virtual” microscopy, involves the scanning (digitization) of glass slides to produce “digital slides”. WSI has been advocated for diagnostic, educational and research purposes. When used for remote frozen section diagnosis, WSI requires a thorough implementation period coupled with trained support personnel. Adoption of WSI for rendering pathologic diagnoses on a routine basis has been shown to be successful in only a few “niche” applications. Wider adoption will most likely require full integration with the laboratory information system, continuous automated scanning, high-bandwidth connectivity, massive storage capacity, and more intuitive user interfaces. Nevertheless, WSI has been reported to enhance specific pathology practices, such as scanning slides received in consultation or of legal cases, of slides to be used for patient care conferences, for quality assurance purposes, to retain records of slides to be sent out or destroyed by ancillary testing, and for performing digital image analysis. In addition to technical issues, regulatory and validation requirements related to WSI have yet to be adequately addressed. Although limited validation studies have been published using WSI there are currently no standard guidelines for validating WSI for diagnostic use in the clinical laboratory. This review addresses the current status of WSI in pathology related to regulation and validation, the provision of remote and routine pathologic diagnoses, educational uses, implementation issues, and the cost-benefit analysis of adopting WSI in routine clinical practice. PMID:21886892

  18. Potential of Silanes for Chromate Replacement in Metal Finishing Industries

    DTIC Science & Technology

    2002-09-16

    POTENTIAL OF SILANES FOR CHROMATE REPLACEMENT IN METAL FINISHING INDUSTRIES Wim J. van Ooij*, Danqing Zhu, Vignesh Palanivel, J. Anna Lamar...18 2 POTENTIAL OF SILANES FOR CHROMATE REPLACEMENT IN METAL FINISHING INDUSTRIES Wim J. van Ooij, Danqing Zhu, Vignesh Palanivel, J. Anna Lamar

  19. A fruitful demonstration in sensors based on upconversion luminescence of Yb3+/Er3+codoped Sb2O3-WO3-Li2O (SWL) glass-ceramic

    NASA Astrophysics Data System (ADS)

    Prasad Sukul, Prasenjit; Kumar, Kaushal

    2016-07-01

    In this article, erbium and ytterbium doped lithium tungsten antimonate (Yb3+/Er3+:Sb2O3-WO3-Li2O) glass-ceramics (GC) is synthesized and its novel applications in temperature sensing and detection of latent fingerprints is studied. It is also estimated that this material could be useful as a solar cell concentrator. The upconversion emission studies on Yb3+/Er3+:SWL glass-ceramics have shown intense green emission at 525 nm (2H11/2 → 4I15/2) & 545 nm (4s3/2 → 4I15/2). The variation of UC intensities with external temperature have shown a well-fashioned pattern, which suggests that the 2H11/2 and 4S3/2 levels of Er3+ ion are thermally coupled and can act as a temperature sensor in the 300-500 K temperature range. Dry powder of Yb3+/Er3+:SWL glass-ceramic is used to develop latent fingerprint with high contrast in green color on glass slide.

  20. Growth of ZnO nanorods on glass substrate deposited using dip coating method

    NASA Astrophysics Data System (ADS)

    Rani, Rozina Abdul; Ghafar, Safiah Ab; Zoolfakar, Ahmad Sabirin; Rusop, M.

    2018-05-01

    ZnO unique properties make it attractive for electronics and optoelectronics application. There are varieties synthesis of ZnO nanostructure but one of the best ways is by using dip coating method due to its simplicity, low cost and reliability. This research investigated the effect of precursor concentration on the morphology of ZnO nanorods using dip coating technique. ZnO nanorods is synthesized by using zinc nitrate as precursor and glass slide as substrate. The morphology of ZnO is characterized using Field Emission Scanning Electron Microscope (FESEM). By using different concentration of precursor, each outcome demonstrated diverse morphologies.

  1. Tribological studies of a Zr-based bulk metallic glass with different states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Feng; Qu, Jun; Fan, Guojiang

    The tribological characteristics of a bulk-metallic glass (BMG) Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 (Vit 105) with different states have been studied. Friction and wear tests were conducted using a ball-on-flat reciprocating sliding apparatus against AISI E52100 bearing steel under dry condition. The observed wear resistance in an ascending order is deformed, crept, relaxed, and as-cast. Results suggested that the wear process of BMG alloys involved abrasion, adhesion, and oxidation. The differences in hardness, free volume, and embrittlement at different states significantly affected the friction and wear behaviors of the BMG alloys.

  2. High resolution FTIR imaging provides automated discrimination and detection of single malaria parasite infected erythrocytes on glass.

    PubMed

    Perez-Guaita, David; Andrew, Dean; Heraud, Philip; Beeson, James; Anderson, David; Richards, Jack; Wood, Bayden R

    2016-06-23

    New highly sensitive tools for malaria diagnostics are urgently needed to enable the detection of infection in asymptomatic carriers and patients with low parasitemia. In pursuit of a highly sensitive diagnostic tool that can identify parasite infections at the single cell level, we have been exploring Fourier transform infrared (FTIR) microscopy using a Focal Plane Array (FPA) imaging detector. Here we report for the first time the application of a new optic configuration developed by Agilent that incorporates 25× condenser and objective Cassegrain optics with a high numerical aperture (NA = 0.81) along with additional high magnification optics within the microscope to provide 0.66 micron pixel resolution (total IR system magnification of 61×) to diagnose malaria parasites at the single cell level on a conventional glass microscope slide. The high quality images clearly resolve the parasite's digestive vacuole demonstrating sub-cellular resolution using this approach. Moreover, we have developed an algorithm that first detects the cells in the infrared image, and secondly extracts the average spectrum. The average spectrum is then run through a model based on Partial Least Squares-Discriminant Analysis (PLS-DA), which diagnoses unequivocally the infected from normal cells. The high quality images, and the fact this measurement can be achieved without a synchrotron source on a conventional glass slide, shows promise as a potential gold standard for malaria detection at the single cell level.

  3. Exploring virtual reality technology and the Oculus Rift for the examination of digital pathology slides

    PubMed Central

    Farahani, Navid; Post, Robert; Duboy, Jon; Ahmed, Ishtiaque; Kolowitz, Brian J.; Krinchai, Teppituk; Monaco, Sara E.; Fine, Jeffrey L.; Hartman, Douglas J.; Pantanowitz, Liron

    2016-01-01

    Background: Digital slides obtained from whole slide imaging (WSI) platforms are typically viewed in two dimensions using desktop personal computer monitors or more recently on mobile devices. To the best of our knowledge, we are not aware of any studies viewing digital pathology slides in a virtual reality (VR) environment. VR technology enables users to be artificially immersed in and interact with a computer-simulated world. Oculus Rift is among the world's first consumer-targeted VR headsets, intended primarily for enhanced gaming. Our aim was to explore the use of the Oculus Rift for examining digital pathology slides in a VR environment. Methods: An Oculus Rift Development Kit 2 (DK2) was connected to a 64-bit computer running Virtual Desktop software. Glass slides from twenty randomly selected lymph node cases (ten with benign and ten malignant diagnoses) were digitized using a WSI scanner. Three pathologists reviewed these digital slides on a 27-inch 5K display and with the Oculus Rift after a 2-week washout period. Recorded endpoints included concordance of final diagnoses and time required to examine slides. The pathologists also rated their ease of navigation, image quality, and diagnostic confidence for both modalities. Results: There was 90% diagnostic concordance when reviewing WSI using a 5K display and Oculus Rift. The time required to examine digital pathology slides on the 5K display averaged 39 s (range 10–120 s), compared to 62 s with the Oculus Rift (range 15–270 s). All pathologists confirmed that digital pathology slides were easily viewable in a VR environment. The ratings for image quality and diagnostic confidence were higher when using the 5K display. Conclusion: Using the Oculus Rift DK2 to view and navigate pathology whole slide images in a virtual environment is feasible for diagnostic purposes. However, image resolution using the Oculus Rift device was limited. Interactive VR technologies such as the Oculus Rift are novel tools that may be of use in digital pathology. PMID:27217972

  4. Diagnostic Accuracy of Virtual Pathology vs Traditional Microscopy in a Large Dermatopathology Study.

    PubMed

    Kent, Michael N; Olsen, Thomas G; Feeser, Theresa A; Tesno, Katherine C; Moad, John C; Conroy, Michael P; Kendrick, Mary Jo; Stephenson, Sean R; Murchland, Michael R; Khan, Ayesha U; Peacock, Elizabeth A; Brumfiel, Alexa; Bottomley, Michael A

    2017-12-01

    Digital pathology represents a transformative technology that impacts dermatologists and dermatopathologists from residency to academic and private practice. Two concerns are accuracy of interpretation from whole-slide images (WSI) and effect on workflow. Studies of considerably large series involving single-organ systems are lacking. To evaluate whether diagnosis from WSI on a digital microscope is inferior to diagnosis of glass slides from traditional microscopy (TM) in a large cohort of dermatopathology cases with attention on image resolution, specifically eosinophils in inflammatory cases and mitotic figures in melanomas, and to measure the workflow efficiency of WSI compared with TM. Three dermatopathologists established interobserver ground truth consensus (GTC) diagnosis for 499 previously diagnosed cases proportionally representing the spectrum of diagnoses seen in the laboratory. Cases were distributed to 3 different dermatopathologists who diagnosed by WSI and TM with a minimum 30-day washout between methodologies. Intraobserver WSI/TM diagnoses were compared, followed by interobserver comparison with GTC. Concordance, major discrepancies, and minor discrepancies were calculated and analyzed by paired noninferiority testing. We also measured pathologists' read rates to evaluate workflow efficiency between WSI and TM. This retrospective study was caried out in an independent, national, university-affiliated dermatopathology laboratory. Intraobserver concordance of diagnoses between WSI and TM methods and interobserver variance from GTC, following College of American Pathology guidelines. Mean intraobserver concordance between WSI and TM was 94%. Mean interobserver concordance was 94% for WSI and GTC and 94% for TM and GTC. Mean interobserver concordance between WSI, TM, and GTC was 91%. Diagnoses from WSI were noninferior to those from TM. Whole-slide image read rates were commensurate with WSI experience, achieving parity with TM by the most experienced user. Diagnosis from WSI was found equivalent to diagnosis from glass slides using TM in this statistically powerful study of 499 dermatopathology cases. This study supports the viability of WSI for primary diagnosis in the clinical setting.

  5. Union Carbide Corp. polysilicon status and plans

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1982-01-01

    The status of polysilicon activities is summarized highlighted by moving the silane portion of the experimental process system development unit (EPSDU) to Washougal, Washington. The completion and operation of the silane EPSDU, is discussed along with research on the silane-to-silicon deposition process. Progress on the dichlorosilane process is also reported.

  6. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  7. Review of the potential of silanes as rocket/scramjet fuels

    NASA Astrophysics Data System (ADS)

    Hidding, Bernhard; Pfitzner, Michael; Simone, Domenico; Bruno, Claudio

    2008-07-01

    Experimental use as well as theoretical considerations regarding silanes as fuels for spacecrafts and supersonic flight are reviewed. The historical circumstances leading to the utilization of monosilane as a fuel additive for scramjets are highlighted and milestones in the chemical research on silanes are summarized. Recent developments such as the use of monosilane as an ignition aid in the NASA X-43A scramjet flights as well as general progress in silicon hydride research, including liquid higher silanes and the resulting potential for the propulsion field are discussed.

  8. Enhanced diode characteristics of organic solar cell with silanized fluorine doped tin oxide electrode

    NASA Astrophysics Data System (ADS)

    Sachdeva, Sheenam; Sharma, Sameeksha; Singh, Devinder; Tripathi, S. K.

    2018-05-01

    To investigate the diode characteristics of organic solar cell based on the planar heterojunction of 4,4'- cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) and fullerene (C70), we report the use of silanized fluorine-doped tin oxide (FTO) anode with N1-(3-trimethoxysilylpropyl)diethyltriamine (DETA) forming monolayer. The use of silanized FTO results in the decrease of saturation current density and diode ideality factor of the device. Such silanized FTO anode is found to enhance the material quality and improve the device properties.

  9. Lanthanum Tricyanide-Catalyzed Acyl Silane-Ketone Benzoin Additions and Kinetic Resolution of Resultant α-Silyloxyketones

    PubMed Central

    Tarr, James C.

    2010-01-01

    We report the full account of our efforts on the lanthanum tricyanide-catalyzed acyl silane-ketone benzoin reaction. The reaction exhibits a wide scope in both acyl silane (aryl, alkyl) and ketone (aryl-alkyl, alkyl-alkyl, aryl-aryl, alkenyl-alkyl, alkynyl-alkyl) coupling partners. The diastereoselectivity of the reaction has been examined in both cyclic and acyclic systems. Cyclohexanones give products arising from equatorial attack by the acyl silane. The diastereoselectivity of acyl silane addition to acyclic α-hydroxy ketones can be controlled by varying the protecting group to obtain either Felkin-Ahn or chelation control. The resultant α-silyloxyketone products can be resolved with selectivity factors from 10 to 15 by subjecting racemic ketone benzoin products to CBS reduction. PMID:20392127

  10. Impact Strength and Flexural Properties Enhancement of Methacrylate Silane Treated Oil Palm Mesocarp Fiber Reinforced Biodegradable Hybrid Composites

    PubMed Central

    Ibrahim, Nor Azowa; Ariffin, Hidayah; Yunus, Wan Md. Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites. PMID:25254230

  11. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

    PubMed

    Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.

  12. Rapid detection of food pathogens using RNA aptamers-immobilized slide.

    PubMed

    Maeng, Jin-Soo; Kim, Namsoo; Kim, Chong-Tai; Han, Seung Ryul; Lee, Young Ju; Lee, Seong-Wook; Lee, Myung-Hyun; Cho, Yong-Jin

    2012-07-01

    The purpose of this study was to develop a simple and rapid detection system for foodborne bacteria, which consisted of an optical microscope and its slide chip with artificial antibodies, or RNA aptamers. From an RNA pool, three each RNA aptamers were built by the method of SELEX (systematic evolution of ligands by exponential enrichment) for components of cell wall, LPS (lipopolysaccharide) from E. coli O157:H7, teichoic acid from Staphylococcus aureus and a cell membrane protein of OmpC from Salmonella typhimurium, respectively. These aptamers were hybridized with thiol-conjugated 16 dT-linker molecules in order to be immobilized on silver surface which was, in advance, fabricated on glass slide, using a spin-coating method. To confirm that each aptamers retained its specific binding activities to their antigenic live bacteria, microscopic view of bound cells immobilized on silver film were observed. Furthermore, we observed the fluorescence-emitting bacteria-aptamer complex immobilized on silver film after adding RNA aptamers hybridized with fluorophore, FAM-conjugated 16 dT-linker molecules. As a result, the RNA aptamers-immobilized slide system developed in this study was a useful new tool to rapidly monitor individual food pathogens.

  13. Axial rotation of sliding actin filaments revealed by single-fluorophore imaging

    PubMed Central

    Sase, Ichiro; Miyata, Hidetake; Ishiwata, Shin’ichi; Kinosita, Kazuhiko

    1997-01-01

    In the actomyosin motor, myosin slides along an actin filament that has a helical structure with a pitch of ≈72 nm. Whether myosin precisely follows this helical track is an unanswered question bearing directly on the motor mechanism. Here, axial rotation of actin filaments sliding over myosin molecules fixed on a glass surface was visualized through fluorescence polarization imaging of individual tetramethylrhodamine fluorophores sparsely bound to the filaments. The filaments underwent one revolution per sliding distance of ≈1 μm, which is much greater than the 72 nm pitch. Thus, myosin does not “walk” on the helical array of actin protomers; rather it “runs,” skipping many protomers. Possible mechanisms involving sequential interaction of myosin with successive actin protomers are ruled out at least for the preparation described here in which the actin filaments ran rather slowly compared with other in vitro systems. The result also indicates that each “kick” of myosin is primarily along the axis of the actin filament. The successful, real-time observation of the changes in the orientation of a single fluorophore opens the possibility of detecting a conformational change(s) of a single protein molecule at the moment it functions. PMID:9159126

  14. Fabrication of high quality cDNA microarray using a small amount of cDNA.

    PubMed

    Park, Chan Hee; Jeong, Ha Jin; Jung, Jae Jun; Lee, Gui Yeon; Kim, Sang-Chul; Kim, Tae Soo; Yang, Sang Hwa; Chung, Hyun Cheol; Rha, Sun Young

    2004-05-01

    DNA microarray technology has become an essential part of biological research. It enables the genome-scale analysis of gene expression in various types of model systems. Manufacturing high quality cDNA microarrays of microdeposition type depends on some key factors including a printing device, spotting pins, glass slides, spotting solution, and humidity during spotting. UsingEthe Microgrid II TAS model printing device, this study defined the optimal conditions for producing high density, high quality cDNA microarrays with the least amount of cDNA product. It was observed that aminosilane-modified slides were superior to other types of surface modified-slides. A humidity of 30+/-3% in a closed environment and the overnight drying of the spotted slides gave the best conditions for arraying. In addition, the cDNA dissolved in 30% DMSO gave the optimal conditions for spotting compared to the 1X ArrayIt, 3X SSC and 50% DMSO. Lastly, cDNA in the concentration range of 100-300 ng/ micro l was determined to be best for arraying and post-processing. Currently, the printing system in this study yields reproducible 9000 spots with a spot size 150 mm diameter, and a 200 nm spot spacing.

  15. Axial rotation of sliding actin filaments revealed by single-fluorophore imaging.

    PubMed

    Sase, I; Miyata, H; Ishiwata, S; Kinosita, K

    1997-05-27

    In the actomyosin motor, myosin slides along an actin filament that has a helical structure with a pitch of approximately 72 nm. Whether myosin precisely follows this helical track is an unanswered question bearing directly on the motor mechanism. Here, axial rotation of actin filaments sliding over myosin molecules fixed on a glass surface was visualized through fluorescence polarization imaging of individual tetramethylrhodamine fluorophores sparsely bound to the filaments. The filaments underwent one revolution per sliding distance of approximately 1 microm, which is much greater than the 72 nm pitch. Thus, myosin does not "walk" on the helical array of actin protomers; rather it "runs," skipping many protomers. Possible mechanisms involving sequential interaction of myosin with successive actin protomers are ruled out at least for the preparation described here in which the actin filaments ran rather slowly compared with other in vitro systems. The result also indicates that each "kick" of myosin is primarily along the axis of the actin filament. The successful, real-time observation of the changes in the orientation of a single fluorophore opens the possibility of detecting a conformational change(s) of a single protein molecule at the moment it functions.

  16. Adhesive restorations: comparative evaluation between the adhesion of the glass-ceramics to the composite cement and the adhesion of the ceromer to the composite cement.

    PubMed

    Ceruti, P; Erovigni, F; Casella, F; Lombardo, S

    2005-10-01

    The aim of this work is to compare the adhesion of the glass-ceramic (empress II) to the composite cement and the adhesion of the ceromer to the composite cement. From each of the above materials, 10 little blocks, of 8 x 6 x 2 mm size, have been prepared. All the surface treatments suggested by the manufacturing industry have been performed: sandblasting and acid-etching of the ceramic, ceromer surface roughening with diamond bur and silanization and bonding application on both materials. A homogeneous layer of cement has been placed between couples of blocks of the same material and photopolymerised. Every sample, consisting of 2 bonded blocks, has been submitted to a traction force on a universal test machine connected with a computerized measure system (SINTEC D/10). Samples have been anchored to the machine binding devices by a bicomponent epoxy glue. Data on the breaking charge have been recorded and an analysis of the broken surfaces has been performed in order to classify the breaking modalities. The results ontained showed that the composite-glass-ceramic adhesion force (mean value 64 Mpa) was remarkably higher than the composite-ceromer adhesion (mean value 37.21 Mpa). The analysis of the broken surfaces by SEM showed that a mixed fracture occurred in all samples (both partly adhesive and cohesive).

  17. A laser-engraved glass duplicating the structure, mechanics and performance of natural nacre.

    PubMed

    Valashani, Seyed Mohammad Mirkhalaf; Barthelat, Francois

    2015-03-30

    Highly mineralized biological materials such as nacre (mother of pearl), tooth enamel or conch shell boast unique and attractive combinations of stiffness, strength and toughness. The structures of these biological materials and their associated mechanisms are now inspiring new types of advanced structural materials. However, despite significant efforts, no bottom up fabrication method could so far match biological materials in terms of microstructural organization and mechanical performance. Here we present a new 'top down' strategy to tackling this fabrication problem, which consists in carving weak interfaces within a brittle material using a laser engraving technique. We demonstrate the method by fabricating and testing borosilicate glasses containing nacre-like microstructures infiltrated with polyurethane. When deformed, these materials properly duplicate the mechanisms of natural nacre: combination of controlled sliding of the tablets, accompanied with geometric hardening, strain hardening and strain rate hardening. The nacre-like glass is composed of 93 volume % (vol%) glass, yet 700 times tougher and breaks at strains as high as 20%.

  18. Effect of surface preparation with Nd:YAG and Er,Cr:YSGG lasers on the repair bond strength of lithium disilicate glass ceramic to a silorane-based composite resin.

    PubMed

    Ebrahimi Chaharom, Mohammad Esmaeel; Pournaghi Azar, Fatemeh; Mohammadi, Narmin; Nasiri, Rezvan

    2018-01-01

    Background. This study was undertaken to evaluate the repair bond strength of lithium disilicate glass ceramic to a silorane-based composite resin after surface preparation with Nd:YAG and Er,Cr:YSGG lasers. Methods. A total of 102 lithium disilicate glass ceramic samples (IPS e.max Press), measuring 5 mm in diameter and 4 mm in thickness, were randomly assigned to 6 groups (n=17): group 1, no surface preparation (control); group 2, acid etching with 9.5% hydrofluoric acid (HF); group 3, surface preparation with 4.5-W Nd:YAG laser; group 4, surface preparation with 6-W Nd:YAG laser; group 5, surface preparation with 1.5-W Er,Cr:YSGG laser; and group 6, surface preparation with 6-W Er,Cr:YSGG laser. After preparation of surfaces and application of silane, all the samples were repaired with the use of a silorane-based composite resin, followed by storage in distilled water at a temperature of 37°C for 24 hours and thermocycling. Finally, the samples were subjected to a shearing bond strength test; the fracture modes were determined under a stereomi-croscope. Results. There were significant differences between the HF group and the other groups (P=0.000). Two-by-two comparisons of the other groups revealed no significant differences (P>0.05). Conclusion. Use of HF proved the most effective surface preparation technique to increase the repair bond strength between lithium disilicate glass ceramic and silorane-based composite resin; compared to the control group.

  19. Succession and physiological health of freshwater microalgal fouling in a Tasmanian hydropower canal.

    PubMed

    Perkins, Kathryn J; Andrewartha, Jessica M; McMinn, Andrew; Cook, Suellen S; Hallegraeff, Gustaaf M

    2010-08-01

    Freshwater microalgal biofouling in hydropower canals in Tarraleah, Tasmania, is dominated by a single diatom species, Gomphonema tarraleahae. The microfouling community is under investigation with the aim of reducing its impact on electricity generation. Species succession was investigated using removable glass slides. Fouled slides were examined microscopically and for chlorophyll a biomass. Chl a biomass increased steeply after 8 weeks (0.09-0.87 mg m(-2)), but increased much earlier on slides surrounded by a biofouled inoculum. Succession began with low profile diatoms such as Tabellaria flocculosa, progressing to stalked diatoms such as Gomphonema spp. and Cymbella aspera. Few chlorophytes and no filamentous algae were present. Pulse amplitude modulated fluorometry was used to measure the physiological health of fouling on the canal wall. Maximum quantum yield (F(v)/F(m)) measurements were consistently <0.18, indicating that the fouling mat consisted of dead or dying algae. The succession and physiological health of cells in the fouling community has broad implications for mitigation techniques used.

  20. Development of a low-cost x-ray mask for high-aspect-ratio MEM smart structures

    NASA Astrophysics Data System (ADS)

    Ajmera, Pratul K.; Stadler, Stefan; Abdollahi, Neda

    1998-07-01

    A cost-effective process with short fabrication time for making x-ray masks for research and development purposes is described here for fabricating high-aspect ratio microelectromechanical structures using synchrotron based x- ray lithography. Microscope cover glass slides as membrane material is described. Slides with an initial thickness of 175 micrometers are etched to a thickness in the range of 10 - 25 micrometers using a diluted HF and buffered hydrofluoric acid solutions. The thinned slides are glued on supportive mask frames and sputtered with a chromium/silver sandwich layer which acts as a plating base layer for the deposition of the gold absorber. The judicial choice of glue and mask frame material are significant parameters in a successful fabrication process. Gold absorber structures are electroplated on the membrane. Calculations are done for contrast and dose ratio obtained in the photoresist after synchrotron radiation as a function of the mask design parameters. Exposure experiments are performed to prove the applicability of the fabricated x-ray mask.

  1. Porous Thin Films Based on Photo-Cross-Linked Star-Shaped Poly(D,L-lactide)s

    DTIC Science & Technology

    2007-03-01

    with nitrogen. The Kapton substrate was taped to a glass microscope slide and then positioned in the humidity chamber. A few drops of PDLLA or PDLLA-UM...Yabu, H.; Tanaka, M.; Ijiro, K.; Shimomura, M. Langmuir 2003, 19, 6297-6300. (36) Erdogan , B.; Song, L.; Wilson, J. N.; Park, J. O.; Srinivasarao, M

  2. Properties of Semiconductors: Synthesis of Oriented ZnO for Photoelectrochemistry and Photoremediation

    ERIC Educational Resources Information Center

    Koenig, Emma; Jacobs, Ari; Lisensky, George

    2017-01-01

    Semiconductors are an important class of materials; preparing ZnO nanorods allows semiconducting properties to be easily observed. The week before lab, groups of four students take 15 min to setup two fluorine-doped tin oxide glass (FTO) slides in a zinc nitrate and hexamethylenetetramine solution stored at 90°C until the next lab. Hexagonal ZnO…

  3. Concomitant Alterations of Desmosomes, Adhesiveness, and Diffusion through Gap Junction Channels in a Rat Ovarian Transformation Model System

    DTIC Science & Technology

    1993-01-01

    while using a sterile glass slide, held parallel to the monolayer, as a MATERIALS AND METHODS straight edge. Cultures were photographed using phase...contrastmicrosoyo tonoa~r movng ofi I spheria mi rocr rie bed ntI h CEILL CELIL CONTACT AND DIFFU SION 23 and cytokeratin 8 antibodies (refer to Figs. 4a

  4. A Prospective, Randomized Crossover Study Comparing Direct Inspection by Light Microscopy versus Projected Images for Teaching of Hematopathology to Medical Students

    ERIC Educational Resources Information Center

    Carlson, Aaron M.; McPhail, Ellen D.; Rodriguez, Vilmarie; Schroeder, Georgene; Wolanskyj, Alexandra P.

    2014-01-01

    Instruction in hematopathology at Mayo Medical School has evolved from instructor-guided direct inspection under the light microscope (laboratory method), to photomicrographs of glass slides with classroom projection (projection method). These methods have not been compared directly to date. Forty-one second-year medical students participated in…

  5. 24 CFR 3280.403 - Standard for windows and sliding glass doors used in manufactured homes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pressure tests must be conducted at the design wind loads required for components and cladding specified in... certification must be based on tests conducted at the design wind loads specified in § 3280.305(c)(1). (1) All... agency shall conduct pre-production specimen tests in accordance with AAMA 1701.2-95. Further, such...

  6. An Undergraduate Laboratory Exercise to Study the Effect of Darkness on Plant Gene Expression Using DNA Microarray

    ERIC Educational Resources Information Center

    Chang, Ming-Mei; Briggs, George M.

    2007-01-01

    DNA microarrays are microscopic arrays on a solid surface, typically a glass slide, on which DNA oligonucleotides are deposited or synthesized in a high-density matrix with a predetermined spatial order. Several types of DNA microarrays have been developed and used for various biological studies. Here, we developed an undergraduate laboratory…

  7. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  8. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  9. The super-hydrophobic IR-reflectivity TiO2 coated hollow glass microspheres synthesized by soft-chemistry method

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Wang, Yuanhao; An, Zhenguo; Zhang, Jingjie; Yang, Hongxing

    2016-11-01

    The super-hydrophobic and IR-reflectivity hollow glass microspheres (HGM) was synthesized by being coated with anatase TiO2 and a super-hydrophobic material. The super-hydrophobic self-cleaning property prolong the life time of the IR reflectivity. TBT and PFOTES were firstly applied and hydrolyzed on HGM and then underwent hydrothermal reaction to synthesis anatase TiO2 film. For comparison, the PFOTES/TiO2 mutual-coated HGM (MCHGM), PFOTES single-coated HGM (F-SCHGM) and TiO2 single-coated HGM (Ti-SCHGM) were synthesized as well. The MCHGM had bigger contact angle (153°) but smaller sliding angle (16°) than F-SCHGM (contact angle: 141.2°; sliding angle: 67°). Ti-SCHGM and MCHGM both showed similar IR reflectivity with ca. 5.8% increase compared with original HGM and F-SCHGM. For the thermal conductivity, coefficients of F-SCHGM (0.0479 W/(m K)) was basically equal to that of the original HGM (0.0475 W/(m K)). Negligible difference was found between the thermal conductivity coefficients of MCHGM-coated HGM (0.0543 W/(m K)) and Ti-SCHGM (0.0546 W/(m K)).

  10. Protein adsorption in microengraving immunoassays.

    PubMed

    Song, Qing

    2015-10-16

    Microengraving is a novel immunoassay for characterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales  and  determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when  is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 10⁴-10⁵ single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample.

  11. Protein Adsorption in Microengraving Immunoassays

    PubMed Central

    Song, Qing

    2015-01-01

    Microengraving is a novel immunoassay forcharacterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales τD and τK determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when C0* is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 104–105 single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample. PMID:26501282

  12. Sampling of radical prostatectomy specimens. How much is adequate?

    PubMed

    Cohen, M B; Soloway, M S; Murphy, W M

    1994-03-01

    Prostate glands from 52 patients with clinical stage B carcinoma were examined using two sampling techniques. After fixation and conization of the apical portions, each gland was serially sectioned with sections mounted whole on oversized glass slides and examined for pathologic features of prognostic importance. A second examination was subsequently conducted on the same tissue using only alternate sections. No differences in tumor type, grade, Gleason score, multiplicity, or capsular penetration were detected in 75% of cases. The discrepancies that did occur were most often minor variations in multiplicity and Gleason score. Of the 20 glands with capsular penetration observed with the serial sectioning method, 17 (85%) were detected using alternate sectioning. The surgical margin was involved in two of the three invasive foci that would have been missed. Although the topography is better displayed, the authors' examinations indicated no significant advantage to whole mount sections compared with sections mounted on standard-sized glass slides. Considering the most effective use of resources, as well as the current modalities available for patient monitoring, the results support the use of an alternate sectioning method for pathologic examination of specimens removed for clinically localized prostate cancer.

  13. IMPULSE Highlights for recent experiments at the Advanced Photon Source (2/9-2/18 2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Brian J.

    2014-03-18

    This report is a presentation, with slides noting, Over 40 experiments were completed during this run using X-ray imaging on the IMPULSE system at Sector 32 IDB; Summary of new experiments: Idealized sphere compaction – Capture progression of dynamic densification through an idealized system on 0.500 mm borosilicate glass spheres (Slide 1); Detonator and EBW Imaging Experiments on IMPULSE – First time HE was intentionally detonated at APS (Slide 2); Spall and high strain rate crack nucleation/propagation in PMMA – PCI data is providing new and unique insights for model validation (Slide 3); Fiber composite for armor applications was studiedmore » under ballistic impact of Dyneema (Collaboration with Army Research Laboratory) (Slide 4). Summary of on-going experiments; Crack propagation in vitreous carbon – observed crack motion and caustic; Jet formation experiments on large grain cerium to examine phase dependent strength; Ballistic impact of Comp-B and TNT to examine thermo-mechanical response in-situ with various penetrator geometries to vary shear concentration. Other efforts: IMPULSE system moved and installed in Sector 35 (DCS). This includes the 4-frame X-ray detection system, 4- channel PDV, and other gun diagnostics; New remotely operated mobile IMPULSE structure in fabrication – to be delivered to APS in April; 4 Mini-VISAR Systems and 4-channel PDV installed in DCS instrumentation room with all associated diagnostics.« less

  14. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    NASA Astrophysics Data System (ADS)

    de Jong, M. M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the nanocrystalline silicon (nc-Si) regime. In the nc-Si regime, the crystalline fraction can be further controlled by changing the power input into the plasma. With these layers, a-Si thin film solar cells were fabricated, on glass and PC substrates. The adverse effect of the low temperature growth on the photoactive material is further mitigated by using thinner silicon layers, which can deliver a good current only with an adequate light trapping technique. We have simulated and experimentally tested three light trapping techniques, using embossed structures in PC substrates and random structures on glass: regular pyramid structures larger than the wavelength of light (micropyramids), regular pyramid structures comparable to the wavelength of light (nanopyramids) and random nano-textures (Asahi U-type). The use of nanostructured polycarbonate substrates results in initial conversion efficiencies of 7.4%, compared to 7.6% for cells deposited under identical conditions on Asahi U-type glass. The potential of manufacturing thin film solar cells at processing temperatures lower than 130oC is further illustrated by obtained results on texture-etched aluminium doped zinc-oxide (ZnO:Al) on glass: we achieved 6.9% for nc-Si cells using a very thin absorber layer of only 750 nm, and by combining a-Si and nc-Si cells in tandem solar cells we reached an initial conversion efficiency of 9.5%.

  15. Synthesis, properties and applications of bio-based materials

    NASA Astrophysics Data System (ADS)

    Srinivasan, Madhusudhan

    Bio-based feedstock have become very significant as they offer a value proposition in terms of carbon balance and also in terms of endowing biodegradability where needed. Thus a lot of attention is being given to the modification such feedstock for different applications. Soybean oil is one such feedstock. The oil is a triglyceride ester composed of different fatty acids, which are common to other plant oils. Thus soybean oil serves as a platform for plant oils, as modifications of this oil, can in theory be extended to cover other plant oils. Methyl oleate was used as a model fatty acid ester, to synthesize hydroxyesters with ethylene glycol via a two stage oxidative cleavage of the double bonds. Ozone was chosen as the oxidant due to its many advantages. The first stage involved oxidation of the double bond to aldehydes, ozonides and acetals, which were subsequently converted to hydroxyesters (hydroxy values of 220 - 270) in near quantitative yield by treatment with Oxone. This method could be extended to soybean oil to make "polyols" which could find applications in resin syntheses. Silylation was employed as another platform to functionalize soybean oil and fatty acid methyl esters with a reactive silane (vinyltrimethoxy silane). This simple modification produced materials that are cured by atmospheric moisture and are useful as coatings. The silylation was controlled by varying the grafting time, cure temperature and the concentration of the silane. Products with gel content as high as 90% could be achieved. The coating exhibited good adhesion to metal, glass, concrete and paper. Steel panels coated with these coatings exhibited good stability against corrosion in high humidity conditions and moderate stability against a salt spray. The silylation was also successfully utilized to improve the tensile strength of the blend of biodegradable polyester, poly (butylene adipate-co-terephthalate) with talc. A reactive extrusion process was employed to graft vinyl silanes on the polyester in short reaction times of 5 minutes. This improved the compatibility with the talc filler. This biodegradable polyester product was characterized by high tensile strength and moderate elongation. The modification method is simple is applicable to a variety of aliphatic biodegradable polyesters. Finally a rapid polymerization of 1, 4-dioxan-2-one in very short times was accomplished with titanium alkoxides as initiators. At low [monomer]/ [initiator] ratios (100:1), nearly all the alkoxide groups initiated polymerization. High conversions up to 90% were achieved even at high ratios (2400:1). The activation energy for polymerization for titanium tetraisopropoxide is the lowest reported (33.5 kJ/mol) for this monomer system.

  16. Dynamics of solid lubrication as observed by optical microscopy

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1976-01-01

    A bench metallograph was converted into a micro contact imager by the addition of a tribometer employing a steel ball in sliding contact with a glass disk. The sliding contact was viewed in real time by means of projection microscope optics. The dynamics of abrasive particles and of solid lubricant particles within the contact were observed in detail. The contact was characterized by a constantly changing pattern of elastic strain with the passage of surface discontinuities and solid particles. Abrasive particles fragmented upon entering the contact, embedded in one surface and scratched the other; in contrast, the solid lubricant particles flowed plastically into thin films. The rheological behavior of the lubricating solids gave every appearance of a paste-like consistency within the Hertzian contact.

  17. Printing Proteins as Microarrays for High-Throughput Function Determination

    NASA Astrophysics Data System (ADS)

    MacBeath, Gavin; Schreiber, Stuart L.

    2000-09-01

    Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.

  18. Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.

    2014-05-01

    Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.

  19. High-Throughput Method of Whole-Brain Sectioning, Using the Tape-Transfer Technique.

    PubMed

    Pinskiy, Vadim; Jones, Jamie; Tolpygo, Alexander S; Franciotti, Neil; Weber, Kevin; Mitra, Partha P

    2015-01-01

    Cryostat sectioning is a popular but labor-intensive method for preparing histological brain sections. We have developed a modification of the commercially available CryoJane tape collection method that significantly improves the ease of collection and the final quality of the tissue sections. The key modification involves an array of UVLEDs to achieve uniform polymerization of the glass slide and robust adhesion between the section and slide. This report presents system components and detailed procedural steps, and provides examples of end results; that is, 20 μm mouse brain sections that have been successfully processed for routine Nissl, myelin staining, DAB histochemistry, and fluorescence. The method is also suitable for larger brains, such as rat and monkey.

  20. High-Throughput Method of Whole-Brain Sectioning, Using the Tape-Transfer Technique

    PubMed Central

    Pinskiy, Vadim; Jones, Jamie; Tolpygo, Alexander S.; Franciotti, Neil; Weber, Kevin; Mitra, Partha P.

    2015-01-01

    Cryostat sectioning is a popular but labor-intensive method for preparing histological brain sections. We have developed a modification of the commercially available CryoJane tape collection method that significantly improves the ease of collection and the final quality of the tissue sections. The key modification involves an array of UVLEDs to achieve uniform polymerization of the glass slide and robust adhesion between the section and slide. This report presents system components and detailed procedural steps, and provides examples of end results; that is, 20μm mouse brain sections that have been successfully processed for routine Nissl, myelin staining, DAB histochemistry, and fluorescence. The method is also suitable for larger brains, such as rat and monkey. PMID:26181725

  1. High-pressure synthesis, amorphization, and decomposition of silane.

    PubMed

    Hanfland, Michael; Proctor, John E; Guillaume, Christophe L; Degtyareva, Olga; Gregoryanz, Eugene

    2011-03-04

    By compressing elemental silicon and hydrogen in a diamond anvil cell, we have synthesized polymeric silicon tetrahydride (SiH(4)) at 124 GPa and 300 K. In situ synchrotron x-ray diffraction reveals that the compound forms the insulating I4(1)/a structure previously proposed from ab initio calculations for the high-pressure phase of silane. From a series of high-pressure experiments at room and low temperature on silane itself, we find that its tetrahedral molecules break up, while silane undergoes pressure-induced amorphization at pressures above 60 GPa, recrystallizing at 90 GPa into the polymeric crystal structures.

  2. Trapping of vesicles on patterned surfaces by physisorption for potential biosensing applications.

    PubMed

    Bera, L K; Ong, Kian Soo; Wong, Zheng Zheng; Fu, Zhikang; Nallani, Madhavan; Shea, Sean O'

    2012-01-01

    The pre-defined selective positioning of a controlled number of vesicles on a rigid substrate is crucial in many potential applications such as diagnostics, biosensors, lab-on-a chip, microanalyses and reaction chambers. In this paper, the vesicles made up of block copolymer using Poly [-(2-methyloxazoline) -poly- (dimethylsiloxane)-poly- (2-methyloxazoline)] (ABA) with dimensions of 100-200 nm are trapped by physisorption on hydrophilic surfaces. We discuss the protocols established for vesicle trapping. The optimum conditions obtained for physisorption is 15 minutes incubation followed by one cycle of DI water rinse. Trapping of 1-10 vesicles in lobe shape micro-wells fabricated by photo lithography using photoresist on UltraStick(™) slides was demonstrated. To overcome the issue of amalgamation of emitted light from optically sensitive photoresist and fluorescently tagged vesicles, an alternative approach of Si/SiO(2) microwell array coupled with APTES (3-AminoPropylTriEthoxySilane) treated bottom surfaces was developed.

  3. Silane coupling agent for attaching fusion-bonded epoxy to steel.

    PubMed

    Tchoquessi Diodjo, Madeleine R; Belec, Lénaïk; Aragon, Emmanuel; Joliff, Yoann; Lanarde, Lise; Perrin, François-Xavier

    2013-07-24

    We describe the possibility of using γ-aminopropyltriethoxysilane (γ-APS) to increase the durability of epoxy powder coating/steel joints. The curing temperature of epoxy powder coatings is frequently above 200 °C, which is seen so far as a major limitation for the use of the heat-sensitive aminosilane coupling agent. Despite this limitation, we demonstrate that aminosilane is a competitive alternative to traditional chromate conversion to enhance the durability of epoxy powder coatings/steel joints. Fourier-transform reflection-absorption infrared spectroscopy (FT-RAIRS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) were used to identify the silane deposition conditions that influence the adhesion of epoxy powder coatings on steel. We show that AFM analysis provides highly sensitive measurements of mechanical property development and, as such, the degree of condensation of the silane. The joint durability in water at 60 °C was lower when the pH of the γ-APS solution was controlled at 4.6 using formic acid, rather than that at natural pH (10.6). At the curing temperature of 220 °C, oxidation of the carbon adjacent to the amine headgroup of γ-APS gives amide species by a pseudofirst-order kinetics. However, a few amino functionalities remain to react with oxirane groups of epoxy resin and, thus, strengthen the epoxy/silane interphase. The formation of ammonium formate in the acidic silane inhibits the reaction between silane and epoxy, which consequently decreases the epoxy/silane interphase cohesion. We find that the nanoroughness of silane deposits increases with the cure temperature which is beneficial to the wet stability of the epoxy/steel joints, due to increased mechanical interlocking.

  4. Thermal properties of Bentonite Modified with 3-aminopropyltrimethoxysilane

    NASA Astrophysics Data System (ADS)

    Pramono, E.; Pratiwi, W.; Wahyuningrum, D.; Radiman, C. L.

    2018-03-01

    Chemical modifications of Bentonite (BNT) clay have been carried out by using 3-aminoprophyltrimethoxysilane (APS) in various solvent media. The degradation properties of products (BNTAPS) were characterized by thermogravimetric analysis (TGA). Samples were heated at 30 to 700°C with a heating rate 10 deg/min, and the total silane-grafted amount was determined by calculating the weight loss at 200 – 600°C. The thermogram of TGA showed that there were three main decomposition regions which are attributed to the elimination of physically adsorbed water, decomposition of silane and dehydroxylation of Bentonite. High weight loss attributed to the thermal decomposition of silane was observed between 200 to 550°C. Quantitative analysis of grafted silane results high silane loaded using a solvent with high surface energy, which indicates the type of solvent affected interaction and adsorption of APS in BNT platelets.

  5. Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; He, Xi; Ouyang, Jing; Yang, Huaming

    2013-10-01

    Palladium (Pd) nanoparticles were deposited on the surface of halloysite nanotubes (HNTs) modified with γ-aminopropyltriethoxysilane (APTES) to produce Pd/NH2-HNTs nanocomposites. The results indicated that Pd nanoparticles were densely immobilized onto NH2-HNTs with an average diameter of ~ 3 nm. The Pd distribution on the surface of silanized HNTs showed much more uniform, and the Pd nanoparticle size became smaller compared with those directly deposited onto HNTs without silanization. Systematic characterization demonstrated that APTES were chemically bonded onto HNTs, and further confirmed the bond formation between Pd and -NH2 groups, which could ensure the firm deposit of Pd nanoparticles on the surface of silanized HNTs. The as-synthesized Pd/NH2-HNTs exhibited an excellent catalytic activity in the liquid-phase hydrogenation of styrene to ethylbenzene with full conversion within 30 min. The mechanism of the deposit of Pd nanoparticles on silanized HNTs was also investigated.

  6. Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2 layer

    NASA Astrophysics Data System (ADS)

    Gong, Fubao; Shen, Jun; Gao, Runhua; Xie, Xiong; Luo, Xiong

    2016-03-01

    A novel organic-inorganic Mg(OH)2/silane surface layer has been developed for corrosion protection of AZ31 magnesium alloy. The results of electrochemical impedance spectroscopy (EIS), the immersion tests, Fourier-transform infrared spectroscopy (FTIR) and sellotape tests showed that the Mg(OH)2/silane-based composite surface layer possessed excellent corrosion resistance and very good adhesion due to the formation of Si-O-Mg bond between Mg(OH)2 layer and silane layer. Electrochemical impedance spectroscopy tests results indicated that for the long-term corrosion protection of AZ31 the increase of the curing temperature improved the impedance of the composited layer when the curing temperature was lower than 130 °С. However, the impedance of the composited layer deceased when the curing temperature was more than 130 °С due to the carbonization of the silane layer.

  7. Solid-state acquisition of fingermark topology using dense columnar thin films.

    PubMed

    Lakhtakia, Akhlesh; Shaler, Robert C; Martín-Palma, Raúl J; Motyka, Michael A; Pulsifer, Drew P

    2011-05-01

    Various vacuum techniques are employed to develop fingermarks on evidentiary items. In this work, a vacuum was used to deposit columnar thin films (CTFs) on untreated, cyanoacrylate-fumed or dusted fingermarks on a limited selection of nonporous surfaces (microscope glass slides and evidence tape). CTF deposition was not attempted on fingermarks deposited on porous surfaces. The fingermarks were placed in a vacuum chamber with the fingermark side facing an evaporating source boat containing either chalcogenide glass or MgF(2). Thermal evaporation of chalcogenide glass or MgF(2) under a 1 μTorr vacuum for 30 min formed dense CTFs on fingermark ridges, capturing the topographical features. The results show that it is possible to capture fingermark topology using CTFs on selected untreated, vacuumed cyanoacrylate-fumed or black powder-dusted nonporous surfaces. Additionally, the results suggested this might be a mechanism to help elucidate the sequence of deposition. © 2011 American Academy of Forensic Sciences.

  8. Evaluation of an enclosed ultraviolet-C radiation device for decontamination of mobile handheld devices.

    PubMed

    Mathew, J Itty; Cadnum, Jennifer L; Sankar, Thriveen; Jencson, Annette L; Kundrapu, Sirisha; Donskey, Curtis J

    2016-06-01

    Mobile handheld devices used in health care settings may become contaminated with health care-associated pathogens. We demonstrated that an enclosed ultraviolet-C radiation device was effective in rapidly reducing methicillin-resistant Staphylococcus aureus, and with longer exposure times, Clostridium difficile spores, on glass slides and reducing contamination on in-use mobile handheld devices. Published by Elsevier Inc.

  9. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    DTIC Science & Technology

    2011-01-01

    members of the broader scientific community . Statement of Work...negative for CD34 (1A). Nuclei were stained blue with Dapi. Scale bars, 100 µm. Flow cytometric analysis indicated percentage of cryopreserveded...muscle cells were also cytocentrifuged on glass slides and stained with antibodies to CD56, CD146, UEA-1(2Q, scale bars, 100 µm), and CD56/UEA-1

  10. Paint Deterioration as a Result of the Growth of Aureobasidium pullulans on Wood

    PubMed Central

    Horvath, R. S.; Brent, M. M.; Cropper, D. G.

    1976-01-01

    Growth of Aureobasidium was noted on both painted and unpainted wood surfaces but not on painted glass slides, indicating that the source of carbon and energy for growth was not associated with paint components but was probably supplied by the wood. Several aromatic compounds related to aromatic extractives of wood were shown to support growth of this fungus. PMID:16345176

  11. Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma

    DTIC Science & Technology

    2015-09-01

    Immunoprofiles; Robotic Arrayer 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT: UU 18. NUMBER OF PAGES 19 19a. NAME OF RESPONSIBLE...General Comments: This project involved novel technology in which biochemically synthesized glycans were robotically printed on glass slides...glycans and the platform was known as the PGA-400. (Figure 1) A standard robotic technology for printing a large range of aminefunctionalized

  12. Evaluation of Anti-fouling Materials for Optical Sensors

    DTIC Science & Technology

    1997-09-30

    were made using environmental scanning electron microscopy (ESEM). WORK COMPLETED A Cooperative Research and Development Agreement (CRADA) was...established between NRL and Magellan Co., Inc. (1051 Planter Place, Mt. Pleasant, SC) including a no-cost procurement of test coupons coated with chemical...acid-producing (103–104), facultative (102–103) and aerobic bacteria (>104) per ml sample, in addition to a heavy diatom population. Glass slides

  13. Bubble-driven light-absorbing hydrogel microrobot for the assembly of bio-objects.

    PubMed

    Hu, Wenqi; Fan, Qihui; Tonaki, Wade; Ohta, Aaron T

    2013-01-01

    Microrobots made of light-absorbing hydrogel material were actuated by optically induced thermocapillary flow and move at up to 700 µm/s. The micro-assembly capabilities of the microrobots were demonstrated by assembling polystyrene beads and yeast cells into various patterns on standard glass microscope slides. Two microrobots operating independently in parallel were also used to assemble micro-hydrogel structures.

  14. Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge

    NASA Technical Reports Server (NTRS)

    Donohoe, K.; Wydeven, T.

    1979-01-01

    The polymerization of ethylene in an atmospheric pressure-pulsed discharge has been studied. Partial pressures of ethylene up to 4 kN/sq m were used with helium as a diluent. Deposition rates (on glass slides) were the same throughout the discharge volume over a wide range of operating conditions. These rates were in the 1-2 A/sec range. The films were clear, soft, and showed good adhesion to the glass substrates. Oligomers large enough to visibly scatter 637.8-nm light were observed in the gas phase under all conditions in which film deposition occurred. The experimental results suggest that Brownian diffusion of these oligomers was the rate-limiting step in the film deposition process.

  15. Durability and mechanical properties of silane cross-linked wood thermoplastic composites

    Treesearch

    Magnus Bengtsson; Nicole M. Stark; Kristiina Oksman

    2007-01-01

    In this study, silane cross-linked wood–polyethylene composite profiles were manufactured by reactive extrusion. These composites were evaluated regarding their durability and mechanical properties in comparison with two non-cross-linked wood– polyethylene composites. An addition of only 2% w/w of silane solution during manufacturing was enough to achieve almost 60%...

  16. The effects of different silane crosslinking approaches on composites of polyethylene blends and wood flour

    Treesearch

    Craig M. Clemons; Ronald C. Sabo; Kolby C. Hirth

    2011-01-01

    Though silane chemistry has been used to crosslink unfilled polyethylene for many years, such crosslinking has only been recently applied to wood plastic composites to improve properties such as creep resistance. However, the presence of wood significantly changes the silane chemistry and a greater understanding is necessary for optimal processing and performance. We...

  17. Durable hydrophobic coating composition for metallic surfaces and method for the preparation of the composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiong

    A durable hydrophobic coating composition containing fluorinated silanes for metallic surfaces, such as stainless steel surfaces. The composition includes at least one fluorine-containing silane compound, at least one phosphorus-containing silane compound, and at least one hydrolysable compound. This coating is suitable for condenser tubes, among other applications, to promote dropwise condensation.

  18. Assessment of corrosion resistance of Nd-Fe-B magnets by silanization for orthodontic applications

    NASA Astrophysics Data System (ADS)

    Fabiano, F.; Celegato, F.; Giordano, A.; Borsellino, C.; Bonaccorsi, L.; Calabrese, L.; Tiberto, P.; Cordasco, G.; Matarese, G.; Fabiano, V.; Azzerboni, B.

    2014-02-01

    Nd-Fe-B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd-Fe-B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  19. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration

    DOE PAGES

    Edgington, Robert; Spillane, Katelyn M.; Papageorgiou, George; ...

    2018-01-15

    Here, nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functionalmore » silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.« less

  20. Catalytic Dehydrogenative Coupling of Hydrosilanes with Alcohols for the Production of Hydrogen On-demand: Application of a Silane/Alcohol Pair as a Liquid Organic Hydrogen Carrier.

    PubMed

    Ventura-Espinosa, David; Carretero-Cerdán, Alba; Baya, Miguel; García, Hermenegildo; Mata, Jose A

    2017-08-10

    The compound [Ru(p-cym)(Cl) 2 (NHC)] is an effective catalyst for the room-temperature coupling of silanes and alcohols with the concomitant formation of molecular hydrogen. High catalyst activity is observed for a variety of substrates affording quantitative yields in minutes at room temperature and with a catalyst loading as low as 0.1 mol %. The coupling reaction is thermodynamically and, in the presence of a Ru complex, kinetically favourable and allows rapid molecular hydrogen generation on-demand at room temperature, under air, and without any additive. The pair silane/alcohol is a potential liquid organic hydrogen carrier (LOHC) for energy storage over long periods in a safe and secure way. Silanes and alcohols are non-toxic compounds and do not require special handling precautions such as high pressure or an inert atmosphere. These properties enhance the practical applications of the pair silane/alcohol as a good LOHC in the automotive industry. The variety and availability of silanes and alcohols permits a pair combination that fulfils the requirements for developing an efficient LOHC. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mid-Infrared Interferometry on Spectral Lines. III. Ammonia and Silane around IRC +10216 and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    Using the University of California Berkeley Infrared Spatial Interferometer with a radio frequency (RF) filter bank, the first interferometric observations of mid-infrared molecular absorption features of ammonia (NH3) and silane (SiH4) with very high spectral resolution (λ/Δλ~105) were made. Under the assumptions of spherical symmetry and uniform outflow, these new data permitted the molecular stratification around carbon star IRC +10216 and red supergiant VY CMa to be investigated. For IRC +10216, both ammonia and silane were found to form in the dusty outflow significantly beyond both the dust formation and gas acceleration zones. Specifically, ammonia was found to form before silane in a region of decaying gas turbulence (>~20R*), while the silane is produced in a region of relatively smooth gas flow much farther from the star (>~80R*). The depletion of gas-phase SiS onto grains soon after dust formation may fuel silane-producing reactions on the grain surfaces. For VY CMa, a combination of interferometric and spectral observations suggest that NH3 is forming near the termination of the gas acceleration phase in a region of high gas turbulence (~40R*).

  2. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration.

    PubMed

    Edgington, Robert; Spillane, Katelyn M; Papageorgiou, George; Wray, William; Ishiwata, Hitoshi; Labarca, Mariana; Leal-Ortiz, Sergio; Reid, Gordon; Webb, Martin; Foord, John; Melosh, Nicholas; Schaefer, Andreas T

    2018-01-15

    Nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functional silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutwack, R.

    The goal of the Silicon Material Task, a part of the FSA Project, was to develop and demonstrate the technology for the low-cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. To be compatible with the price goals of the FSA Project, the price of the produced silicon was to be less than $10/kg (in 1975 dollars). Summarized in this document are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and government researchers. The silane-production sectionmore » of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot plant stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. Production of very high-purity silane and silicon was demonstrated. Although it has as yet not achieved commercial application, the development of fluidized-bed technology for the low-cost, high-throughput conversion of silane-to-silicon has been demonstrated in the research laboratory and now is in engineering development.« less

  4. Simple Heat Treatment of Zirconia Ceramic Pre-Treated with Silane Primer to Improve Resin Bonding.

    PubMed

    Ha, Jung-Yun; Son, Jun Sik; Kim, Kyo-Han; Kwon, Tae-Yub

    2015-01-01

    Establishing a strong resin bond to dental zirconia ceramic remains difficult. Previous studies have shown that the conventional application of silane does not work well with zirconia. This paper reports that a silane pre-treatment of dental zirconia ceramic combined with subsequent heat treatment has potential as an adhesive cementation protocol for improving zirconia-resin bonding. Among the various concentrations (0.1 to 16 vol%) of experimental γ-methacryloxypropyltrimethoxysilane (γ-MPTS) primers assessed, the 1% solution was found to be the most effective in terms of the shear bond strength of the resin cement to dental zirconia ceramic. A high shear bond strength (approx. 30 MPa) was obtained when zirconia specimens were pre-treated with this primer and then heat-treated in a furnace for 60 min at 150 degrees C. Heat treatment appeared to remove the hydrophilic constituents from the silane film formed on the zirconia ceramic surface and accelerate the condensation reactions between the silanol groups of the hydrolyzed silane molecules at the zirconia/resin interface, finally making a more desirable surface for bonding with resin. This estimation was supported by Fourier transform infrared spectroscopy of the silanes prepared in this study.

  5. Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgington, Robert; Spillane, Katelyn M.; Papageorgiou, George

    Here, nanodiamonds have many attractive properties that make them suitable for a range of biological applications, but their practical use has been limited because nanodiamond conjugates tend to aggregate in solution during or after functionalisation. Here we demonstrate the production of DNA-detonation nanodiamond (DNA-DND) conjugates with high dispersion and solubility using an ultrasonic, mixed-silanization chemistry protocol based on the in situ Bead-Assisted Sonication Disintegration (BASD) silanization method. We use two silanes to achieve these properties: (1) 3-(trihydroxysilyl)propyl methylphosphonate (THPMP); a negatively charged silane that imparts high zeta potential and solubility in solution; and (2) (3-aminopropyl)triethoxysilane (APTES); a commonly used functionalmore » silane that contributes an amino group for subsequent bioconjugation. We target these amino groups for covalent conjugation to thiolated, single-stranded DNA oligomers using the heterobifunctional crosslinker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Sulfo-SMCC). The resulting DNA-DND conjugates are the smallest reported to date, as determined by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The functionalisation method we describe is versatile and can be used to produce a wide variety of soluble DND-biomolecule conjugates.« less

  6. Three-body-wear resistance of the experimental composites containing filler treated with hydrophobic silane coupling agents.

    PubMed

    Nihei, Tomotaro; Dabanoglu, Alp; Teranaka, Toshio; Kurata, Shigeaki; Ohashi, Katsura; Kondo, Yukishige; Yoshino, Norio; Hickel, Reinhard; Kunzelmann, Karl-Heinz

    2008-06-01

    This paper evaluated the wear resistance of resin composite materials with fillers which were modified with a novel hydrophobic silane coupling agent. The novel silane coupling agent containing hydrophobic phenyl group 3-(3-methoxy-4-methacryloyloxyphenyl)propyltrimethoxysilane (p-MBS) was synthesized. The experimental light-cure hybrid composites containing 85wt% of filler modified with this silane were formulated. Twelve specimens were prepared for the three-body-wear test with the ACTA machine and the collected data were analyzed statistically using a one-way ANOVA and Tukey's multiple comparison test as the post hoc test. The wear of the composites containing fillers treated with p-MBS was significantly lower compared with the composite materials containing fillers pretreated with 3-methacryloyloxypropyltrimethoxysilane or the commercially composites (AP-X and ELS extra low shrinkage) after a wear test for 200,000 cycles (p<0.05). It is suggested that the resin composites containing fillers modified with the novel hydrophobic silane has high wear resistant, because of the coupling layers treated with this silane had an excellent affinity with the base resin and formed a highly hydrophobic layer on the filler surface.

  7. Combining an Optical Resonance Biosensor with Enzyme Activity Kinetics to Understand Protein Adsorption and Denaturation

    PubMed Central

    Wilson, Kerry A.; Finch, Craig A.; Anderson, Phillip; Vollmer, Frank; Hickman, James J.

    2014-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme’s adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. PMID:25453976

  8. Combining an optical resonance biosensor with enzyme activity kinetics to understand protein adsorption and denaturation.

    PubMed

    Wilson, Kerry A; Finch, Craig A; Anderson, Phillip; Vollmer, Frank; Hickman, James J

    2015-01-01

    Understanding protein adsorption and resultant conformation changes on modified and unmodified silicon dioxide surfaces is a subject of keen interest in biosensors, microfluidic systems and for medical diagnostics. However, it has been proven difficult to investigate the kinetics of the adsorption process on these surfaces as well as understand the topic of the denaturation of proteins and its effect on enzyme activity. A highly sensitive optical whispering gallery mode (WGM) resonator was used to study a catalytic enzyme's adsorption processes on different silane modified glass substrates (plain glass control, DETA, 13 F, and SiPEG). The WGM sensor was able to obtain high resolution kinetic data of glucose oxidase (GO) adsorption with sensitivity of adsorption better than that possible with SPR. The kinetic data, in combination with a functional assay of the enzyme activity, was used to test hypotheses on adsorption mechanisms. By fitting numerical models to the WGM sensograms for protein adsorption, and by confirming numerical predictions of enzyme activity in a separate assay, we were able to identify mechanisms for GO adsorption on different alkylsilanes and infer information about the adsorption of protein on nanostructured surfaces. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Accuracy of a remote quantitative image analysis in the whole slide images.

    PubMed

    Słodkowska, Janina; Markiewicz, Tomasz; Grala, Bartłomiej; Kozłowski, Wojciech; Papierz, Wielisław; Pleskacz, Katarzyna; Murawski, Piotr

    2011-03-30

    The rationale for choosing a remote quantitative method supporting a diagnostic decision requires some empirical studies and knowledge on scenarios including valid telepathology standards. The tumours of the central nervous system [CNS] are graded on the base of the morphological features and the Ki-67 labelling Index [Ki-67 LI]. Various methods have been applied for Ki-67 LI estimation. Recently we have introduced the Computerized Analysis of Medical Images [CAMI] software for an automated Ki-67 LI counting in the digital images. Aims of our study was to explore the accuracy and reliability of a remote assessment of Ki-67 LI with CAMI software applied to the whole slide images [WSI]. The WSI representing CNS tumours: 18 meningiomas and 10 oligodendrogliomas were stored on the server of the Warsaw University of Technology. The digital copies of entire glass slides were created automatically by the Aperio ScanScope CS with objective 20x or 40x. Aperio's Image Scope software provided functionality for a remote viewing of WSI. The Ki-67 LI assessment was carried on within 2 out of 20 selected fields of view (objective 40x) representing the highest labelling areas in each WSI. The Ki-67 LI counting was performed by 3 various methods: 1) the manual reading in the light microscope - LM, 2) the automated counting with CAMI software on the digital images - DI , and 3) the remote quantitation on the WSIs - as WSI method. The quality of WSIs and technical efficiency of the on-line system were analysed. The comparative statistical analysis was performed for the results obtained by 3 methods of Ki-67 LI counting. The preliminary analysis showed that in 18% of WSI the results of Ki-67 LI differed from those obtained in other 2 methods of counting when the quality of the glass slides was below the standard range. The results of our investigations indicate that the remote automated Ki-67 LI analysis performed with the CAMI algorithm on the whole slide images of meningiomas and oligodendrogliomas could be successfully used as an alternative method to the manual reading as well as to the digital images quantitation with CAMI software. According to our observation a need of a remote supervision/consultation and training for the effective use of remote quantitative analysis of WSI is necessary.

  10. A novel technique for producing antibody-coated microprobes using a thiol-terminal silane and a heterobifunctional crosslinker.

    PubMed

    Routh, V H; Helke, C J

    1997-02-01

    Antibody-coated microprobes are used to measure neuropeptide release in the central nervous system. Although they are not quantitative, they provide the most precise spatial resolution of the location of in vivo release of any currently available method. Previous methods of coating antibody microprobes are difficult and time-consuming. Moreover, using these methods we were unable to produce evenly coated antibody microprobes. This paper describes a novel method for the production of antibody microprobes using thiol-terminal silanes and the heterobifunctional crosslinker, 4-(4-N-maleimidophenyl)butyric acid hydrazide HCl 1/2 dioxane (MPBH). Following silation, glass micropipettes are incubated with antibody to substance P (SP) that has been conjugated to MPBH. This method results in a dense, even coating of antibody without decreasing the biological activity of the antibody. Additionally, this method takes considerably less time than previously described methods without sacrificing the use of antibody microprobes as micropipettes. The sensitivity of the microprobes for SP is in the picomolar range, and there is a linear correlation between the log of SP concentration (M) and B/B0 (r2 = 0.98). The microprobes are stable for up to 3 weeks when stored in 0.1 M sodium phosphate buffer with 50 mM NaCl (pH 7.4) at 5 degrees C. Finally, insertion into the exposed spinal cord of an anesthetized rat for 15 min produces no damage to the antibody coating.

  11. The Effect of Silane Addition on Chitosan-Fly Ash/CTAB as Electrolyte Membrane

    NASA Astrophysics Data System (ADS)

    Kusumastuti, E.; Isnaeni, D.; Sulistyaningsih, T.; Mahatmanti, F. W.; Jumaeri; Atmaja, L.; Widiastuti, N.

    2017-02-01

    Electrolyte membrane is an important component in fuel cell system, because it may influence fuel cell performance. Many efforts have been done to produce electrolyte membrane to replace comercial membrane. In this research, electrolyte membrane is composed of chitosan as an organic matrix and fly ash modified with CTAB and silane as inorganic filler. Fly ash is modified using silane as coupling agent to improve interfacial morphology between organic matrix and inorganic filler. This research aims to determine the best membrane performance based on its characteristics such as water uptake, mechanical properties, proton conductivity, and methanol permeability. The steps that have been done include silica preparation from fly ash, modification of silica surface with CTAB, silica coupling process with silane, synthesis of membranes with inversion phase method, and membrane characterization. The result shows that membrane C-FA/CTAB-Silane 10% (w/w) has the best performance with proton conductivity 8.00 x 10-4 S.cm-1, methanol permeability 3.37 x 10-7 cm.s-1, and selectivity 2.12 x 103 S.s.cm-3. The result of FTIR analysis on membrane C-FA/CTAB-Silane 10% shows that there is only physical interaction occured between chitosan, fly ash and silane, because there is no peak differences significantly at wave number 1000-1250 cm-1, while morphology analysis on membrane with Scanning Electron Microscopy (SEM) shows good dispersion and there is no agglomeration on chitosan matrix.

  12. Conversion of Wet Glass to Melt at Lower Seismogenic Zone Conditions: Implications for Pseudotachylyte Creep

    NASA Astrophysics Data System (ADS)

    Proctor, B. P.; Lockner, D. A.; Lowenstern, J. B.; Beeler, N. M.

    2017-10-01

    Coseismic frictional melting and the production of quenched glass called pseudotachylyte is a recurring process during earthquakes. To investigate how glassy materials affect the postseismic strength and stability of faults, obsidian gouges were sheared under dry and wet conditions from 200°C to 300°C at 150 MPa effective normal stress. Dry glass exhibited a brittle rheology at all conditions tested, exhibiting friction values and microstructures consistent with siliciclastic materials. Likewise, wet glass at 200°C exhibited a brittle rheology. In contrast, wet gouges at 300°C transitioned from brittle sliding to linear-viscous (Newtonian) flow at strain rates <3 × 10-4 s-1, indicating melt-like behavior. The viscosity ranged from 2 × 1011 to 7.8 × 1011 Pa-s. Microstructures show that viscous gouges were fully welded with rod-shaped microlites rotated into the flow direction. Fourier transform infrared spectroscopy along with electron backscatter imaging demonstrate that hydration of the glass by diffusion of pore water was the dominant process reducing the viscosity and promoting viscous flow. As much as 5 wt % water diffused into the glass. These results may provide insight into postseismic-slip behaviors and challenge some interpretations of fault kinematics based on studies assuming that pseudotachylyte formation and flow is solely coseismic.

  13. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces.

    PubMed

    Pereira, Flávio D E S; Bonatto, Cínthia C; Lopes, Cláudio A P; Pereira, Alex L; Silva, Luciano P

    2015-09-01

    Biofilms are microbial sessile communities attached to surfaces that are known for causing many medical problems. A bacterial biofilm of clinical relevance is formed by the gram-negative bacteria Pseudomonas aeruginosa. During the formation of a biofilm, the initial adhesion of the cells is of crucial importance, and the characteristics of the contact surface have great influence on this step. In the present study, we aimed to use matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling as a new methodology to monitor P. aeruginosa biofilm development. Biofilms were grown within polypropylene tubes containing a glass slide, and were harvested after 3, 5, 7, 9, or 12 days of inoculation. Planktonic cells were obtained separately by centrifugation as control. Two independent MALDI-TOF experiments were performed, one by collecting biofilms from both the glass slide and the polypropylene tube internal surface, and the other by acquiring biofilms from these surfaces separately. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to evaluate the morphological progression of the biofilm. The molecular results showed that MALDI profiling is able not only to distinguish between different biofilm stages, but it is also appropriate to indicate when the biofilm cells are released at the dispersion stage, which occurred first on polypropylene surface. Finally, the present study pointed out that MALDI profiling may emerge as a promising tool for the clinical diagnostic and prognostic workup of biofilms formation and control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Glassy dynamics of polymethylphenylsiloxane in one- and two-dimensional nanometric confinement—A comparison

    NASA Astrophysics Data System (ADS)

    Kipnusu, Wycliffe K.; Elsayed, Mohamed; Krause-Rehberg, Reinhard; Kremer, Friedrich

    2017-05-01

    Glassy dynamics of polymethylphenylsiloxane (PMPS) is studied by broadband dielectric spectroscopy in one-dimensional (1D) and two-dimensional (2D) nanometric confinement; the former is realized in thin polymer layers having thicknesses down to 5 nm, and the latter in unidirectional (thickness 50 μm) nanopores with diameters varying between 4 and 8 nm. Based on the dielectric measurements carried out in a broad spectral range at widely varying temperatures, glassy dynamics is analyzed in detail in 1D and in 2D confinements with the following results: (i) the segmental dynamics (dynamic glass transition) of PMPS in 1D confinement down to thicknesses of 5 nm is identical to the bulk in the mean relaxation rate and the width of the relaxation time distribution function; (ii) additionally a well separated surface induced relaxation is observed, being assigned to adsorption and desorption processes of polymer segments with the solid interface; (iii) in 2D confinement with native inner pore walls, the segmental dynamics shows a confinement effect, i.e., the smaller the pores are, the faster the segmental dynamics; on silanization, this dependence on the pore diameter vanishes, but the mean relaxation rate is still faster than in 1D confinement; (iv) in a 2D confinement, a pronounced surface induced relaxation process is found, the strength of which increases with the decreasing pore diameter; it can be fully removed by silanization of the inner pore walls; (v) the surface induced relaxation depends on its spectral position only negligibly on the pore diameter; (vi) comparing 1D and 2D confinements, the segmental dynamics in the latter is by about two orders of magnitude faster. All these findings can be comprehended by considering the density of the polymer; in 1D it is assumed to be the same as in the bulk, hence the dynamic glass transition is not altered; in 2D it is reduced due to a frustration of packaging resulting in a higher free volume, as proven by ortho-positronium annihilation lifetime spectroscopy.

  15. RecutClub.com: An Open Source, Whole Slide Image-based Pathology Education System

    PubMed Central

    Christensen, Paul A.; Lee, Nathan E.; Thrall, Michael J.; Powell, Suzanne Z.; Chevez-Barrios, Patricia; Long, S. Wesley

    2017-01-01

    Background: Our institution's pathology unknown conferences provide educational cases for our residents. However, the cases have not been previously available digitally, have not been collated for postconference review, and were not accessible to a wider audience. Our objective was to create an inexpensive whole slide image (WSI) education suite to address these limitations and improve the education of pathology trainees. Materials and Methods: We surveyed residents regarding their preference between four unique WSI systems. We then scanned weekly unknown conference cases and study set cases and uploaded them to our custom built WSI viewer located at RecutClub.com. We measured site utilization and conference participation. Results: Residents preferred our OpenLayers WSI implementation to Ventana Virtuoso, Google Maps API, and OpenSlide. Over 16 months, we uploaded 1366 cases from 77 conferences and ten study sets, occupying 793.5 GB of cloud storage. Based on resident evaluations, the interface was easy to use and demonstrated minimal latency. Residents are able to review cases from home and from their mobile devices. Worldwide, 955 unique IP addresses from 52 countries have viewed cases in our site. Conclusions: We implemented a low-cost, publicly available repository of WSI slides for resident education. Our trainees are very satisfied with the freedom to preview either the glass slides or WSI and review the WSI postconference. Both local users and worldwide users actively and repeatedly view cases in our study set. PMID:28382224

  16. Reimagining the microscope in the 21(st) century using the scalable adaptive graphics environment.

    PubMed

    Mateevitsi, Victor; Patel, Tushar; Leigh, Jason; Levy, Bruce

    2015-01-01

    Whole-slide imaging (WSI), while technologically mature, remains in the early adopter phase of the technology adoption lifecycle. One reason for this current situation is that current methods of visualizing and using WSI closely follow long-existing workflows for glass slides. We set out to "reimagine" the digital microscope in the era of cloud computing by combining WSI with the rich collaborative environment of the Scalable Adaptive Graphics Environment (SAGE). SAGE is a cross-platform, open-source visualization and collaboration tool that enables users to access, display and share a variety of data-intensive information, in a variety of resolutions and formats, from multiple sources, on display walls of arbitrary size. A prototype of a WSI viewer app in the SAGE environment was created. While not full featured, it enabled the testing of our hypothesis that these technologies could be blended together to change the essential nature of how microscopic images are utilized for patient care, medical education, and research. Using the newly created WSI viewer app, demonstration scenarios were created in the patient care and medical education scenarios. This included a live demonstration of a pathology consultation at the International Academy of Digital Pathology meeting in Boston in November 2014. SAGE is well suited to display, manipulate and collaborate using WSIs, along with other images and data, for a variety of purposes. It goes beyond how glass slides and current WSI viewers are being used today, changing the nature of digital pathology in the process. A fully developed WSI viewer app within SAGE has the potential to encourage the wider adoption of WSI throughout pathology.

  17. Reimagining the microscope in the 21st century using the scalable adaptive graphics environment

    PubMed Central

    Mateevitsi, Victor; Patel, Tushar; Leigh, Jason; Levy, Bruce

    2015-01-01

    Background: Whole-slide imaging (WSI), while technologically mature, remains in the early adopter phase of the technology adoption lifecycle. One reason for this current situation is that current methods of visualizing and using WSI closely follow long-existing workflows for glass slides. We set out to “reimagine” the digital microscope in the era of cloud computing by combining WSI with the rich collaborative environment of the Scalable Adaptive Graphics Environment (SAGE). SAGE is a cross-platform, open-source visualization and collaboration tool that enables users to access, display and share a variety of data-intensive information, in a variety of resolutions and formats, from multiple sources, on display walls of arbitrary size. Methods: A prototype of a WSI viewer app in the SAGE environment was created. While not full featured, it enabled the testing of our hypothesis that these technologies could be blended together to change the essential nature of how microscopic images are utilized for patient care, medical education, and research. Results: Using the newly created WSI viewer app, demonstration scenarios were created in the patient care and medical education scenarios. This included a live demonstration of a pathology consultation at the International Academy of Digital Pathology meeting in Boston in November 2014. Conclusions: SAGE is well suited to display, manipulate and collaborate using WSIs, along with other images and data, for a variety of purposes. It goes beyond how glass slides and current WSI viewers are being used today, changing the nature of digital pathology in the process. A fully developed WSI viewer app within SAGE has the potential to encourage the wider adoption of WSI throughout pathology. PMID:26110092

  18. Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.

    PubMed

    Meriç, Gökçe; Ruyter, I Eystein

    2007-09-01

    To evaluate the effects of thermal cycling on the flexural properties of composites reinforced with two differently sized fibers. Acid-washed, woven, fused silica-glass fibers, were heat-treated at 500 degrees C, silanized and sized with one of two sizing resins (linear poly(butyl methacrylate)) (PBMA), cross-linked poly(methyl methacrylate) (PMMA). Subsequently the fibers were incorporated into a polymer matrix. Two test groups with fibers and one control group without fibers were prepared. The flexural properties of the composite reinforced with linear PBMA-sized fibers were evaluated by 3-point bend testing before thermal cycling. The specimens from all three groups were thermally cycled in water (12,000 cycles, 5/55 degrees C, dwell time 30 s), and afterwards tested by 3-point bending. SEM micrographs were taken of the fibers and of the fractured fiber reinforced composites (FRC). The reduction of ultimate flexural strength after thermal cycling was less than 20% of that prior to thermal cycling for composites reinforced with linear PBMA-sized silica-glass fibers. The flexural strength of the composite reinforced with cross-linked PMMA-sized fibers was reduced to less than half of the initial value. This study demonstrated that thermal cycling differently influences the flexural properties of composites reinforced with different sized silica-glass fibers. The interfacial linear PBMA-sizing polymer acts as a stress-bearing component for the high interfacial stresses during thermal cycling due to the flexible structure of the linear PBMA above Tg. The cross-linked PMMA-sizing, however, acts as a rigid component and therefore causes adhesive fracture between the fibers and matrix after the fatigue process of thermal cycling and flexural fracture.

  19. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite.

    PubMed

    Abdulmajeed, Aous A; Närhi, Timo O; Vallittu, Pekka K; Lassila, Lippo V

    2011-04-01

    This study was designed to evaluate the effect of an increase of fiber-density on some mechanical properties of higher volume fiber-reinforced composite (FRC). Five groups of FRC with increased fiber-density were fabricated and two additional groups were prepared by adding silanated barium-silicate glass fillers (0.7 μm) to the FRC. The unidirectional E-glass fiber rovings were impregnated with light-polymerizable bisGMA-TEGDMA (50-50%) resin. The fibers were pulled through a cylindrical mold with an opening diameter of 4.2mm, light cured for 40s and post-cured at elevated temperature. The cylindrical specimens (n=12) were conditioned at room temperature for 2 days before testing with the three-point bending test (Lloyd Instruments Ltd.) adapted to ISO 10477. Fiber-density was analyzed by combustion and gravimetric analyzes. ANOVA analysis revealed that by increasing the vol.% fraction of E-glass fibers from 51.7% to 61.7% there was a change of 27% (p<0.05) in the modulus of elasticity, 34% (p<0.05) in the toughness, and 15% (p<0.05) in the load bearing capacity, while there was only 8% (p<0.05) increase in the flexural strength although it was statistically insignificant. The addition of particulate fillers did not improve the mechanical properties. This study showed that the properties of FRC could be improved by increasing fibervolume fraction. Modulus of elasticity, toughness, and load bearing capacity seem to follow the law of ratio of quantity of fibers and volume of the polymer matrix more precisely than flexural strength when high fiber-density is used. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    PubMed

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect. Copyright © 2014 Wiley Periodicals, Inc.

Top