Science.gov

Sample records for silencing transcriptional bias

  1. Reciprocal Silencing, Transcriptional Bias and Functional Divergence of Homeologs in Polyploid Cotton (Gossypium)

    PubMed Central

    Chaudhary, Bhupendra; Flagel, Lex; Stupar, Robert M.; Udall, Joshua A.; Verma, Neetu; Springer, Nathan M.; Wendel, Jonathan F.

    2009-01-01

    Polyploidy is an important force in the evolution of flowering plants. Genomic merger and doubling induce an extensive array of genomic effects, including immediate and long-term alterations in the expression of duplicate genes (“homeologs”). Here we employed a novel high-resolution, genome-specific, mass-spectrometry technology and a well-established phylogenetic framework to investigate relative expression levels of each homeolog for 63 gene pairs in 24 tissues in naturally occurring allopolyploid cotton (Gossypium L.), a synthetic allopolyploid of the same genomic composition, and models of the diploid progenitor species. Results from a total of 2177 successful expression assays permitted us to determine the extent of expression evolution accompanying genomic merger of divergent diploid parents, genome doubling, and genomic coevolution in a common nucleus subsequent to polyploid formation. We demonstrate that 40% of homeologs are transcriptionally biased in at least one stage of cotton development, that genome merger per se has a large effect on relative expression of homeologs, and that the majority of these alterations are caused by cis-regulatory divergence between the diploid progenitors. We describe the scope of transcriptional subfunctionalization and 15 cases of probable neofunctionalization among 8 tissues. To our knowledge, this study represents the first characterization of transcriptional neofunctionalization in an allopolyploid. These results provide a novel temporal perspective on expression evolution of duplicate genomes and add to our understanding of the importance of polyploidy in plants. PMID:19363125

  2. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (gossypium).

    PubMed

    Chaudhary, Bhupendra; Flagel, Lex; Stupar, Robert M; Udall, Joshua A; Verma, Neetu; Springer, Nathan M; Wendel, Jonathan F

    2009-06-01

    Polyploidy is an important force in the evolution of flowering plants. Genomic merger and doubling induce an extensive array of genomic effects, including immediate and long-term alterations in the expression of duplicate genes ("homeologs"). Here we employed a novel high-resolution, genome-specific, mass-spectrometry technology and a well-established phylogenetic framework to investigate relative expression levels of each homeolog for 63 gene pairs in 24 tissues in naturally occurring allopolyploid cotton (Gossypium L.), a synthetic allopolyploid of the same genomic composition, and models of the diploid progenitor species. Results from a total of 2177 successful expression assays permitted us to determine the extent of expression evolution accompanying genomic merger of divergent diploid parents, genome doubling, and genomic coevolution in a common nucleus subsequent to polyploid formation. We demonstrate that 40% of homeologs are transcriptionally biased in at least one stage of cotton development, that genome merger per se has a large effect on relative expression of homeologs, and that the majority of these alterations are caused by cis-regulatory divergence between the diploid progenitors. We describe the scope of transcriptional subfunctionalization and 15 cases of probable neofunctionalization among 8 tissues. To our knowledge, this study represents the first characterization of transcriptional neofunctionalization in an allopolyploid. These results provide a novel temporal perspective on expression evolution of duplicate genomes and add to our understanding of the importance of polyploidy in plants. PMID:19363125

  3. Silencers, silencing, and heritable transcriptional states.

    PubMed Central

    Laurenson, P; Rine, J

    1992-01-01

    Three copies of the mating-type genes, which determine cell type, are found in the budding yeast Saccharomyces cerevisiae. The copy at the MAT locus is transcriptionally active, whereas identical copies of the mating-type genes at the HML and HMR loci are transcriptionally silent. Hence, HML and HMR, also known as the silent mating-type loci, are subject to a position effect. Regulatory sequences flank the silent mating-type loci and mediate repression of HML and HMR. These regulatory sequences are called silencers for their ability to repress the transcription of nearby genes in a distance- and orientation-independent fashion. In addition, a number of proteins, including the four SIR proteins, histone H4, and an alpha-acetyltransferase, are required for the complete repression of HML and HMR. Because alterations in the amino-terminal domain of histone H4 result in the derepression of the silent mating-type loci, the mechanism of repression may involve the assembly of a specific chromatin structure. A number of additional clues permit insight into the nature of repression at HML and HMR. First, an S phase event is required for the establishment of repression. Second, at least one gene appears to play a role in the establishment mechanism yet is not essential for the stable propagation of repression through many rounds of cell division. Third, certain aspects of repression are linked to aspects of replication. The silent mating-type loci share many similarities with heterochromatin. Furthermore, regions of S. cerevisiae chromosomes, such as telomeres, which are known to be heterochromatic in other organisms, require a subset of SIR proteins for repression. Further analysis of the transcriptional repression at the silent mating-type loci may lend insight into heritable repression in other eukaryotes. PMID:1480108

  4. Transcriptional Silencing by Polycomb-Group Proteins

    PubMed Central

    Grossniklaus, Ueli; Paro, Renato

    2014-01-01

    Polycomb-group (PcG) genes encode chromatin proteins involved in stable and heritable transcriptional silencing. PcG proteins participate in distinct multimeric complexes that deposit, or bind to, specific histone modifications (e.g., H3K27me3 and H2AK119ub1) to prevent gene activation and maintain repressed chromatin domains. PcG proteins are evolutionary conserved and play a role in processes ranging from vernalization and seed development in plants, over X-chromosome inactivation in mammals, to the maintenance of stem cell identity. PcG silencing is medically relevant as it is often observed in human disorders, including cancer, and tissue regeneration, which involve the reprogramming of PcG-controlled target genes. PMID:25367972

  5. Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus

    PubMed Central

    Méndez, Catalina; Ahlenstiel, Chantelle L; Kelleher, Anthony D

    2015-01-01

    While human immunodeficiency virus 1 (HIV-1) infection is controlled through continuous, life-long use of a combination of drugs targeting different steps of the virus cycle, HIV-1 is never completely eradicated from the body. Despite decades of research there is still no effective vaccine to prevent HIV-1 infection. Therefore, the possibility of an RNA interference (RNAi)-based cure has become an increasingly explored approach. Endogenous gene expression is controlled at both, transcriptional and post-transcriptional levels by non-coding RNAs, which act through diverse molecular mechanisms including RNAi. RNAi has the potential to control the turning on/off of specific genes through transcriptional gene silencing (TGS), as well as fine-tuning their expression through post-transcriptional gene silencing (PTGS). In this review we will describe in detail the canonical RNAi pathways for PTGS and TGS, the relationship of TGS with other silencing mechanisms and will discuss a variety of approaches developed to suppress HIV-1 via manipulation of RNAi. We will briefly compare RNAi strategies against other approaches developed to target the virus, highlighting their potential to overcome the major obstacle to finding a cure, which is the specific targeting of the HIV-1 reservoir within latently infected cells. PMID:26279984

  6. Rhodopsin targeted transcriptional silencing by DNA-binding

    PubMed Central

    Botta, Salvatore; Marrocco, Elena; de Prisco, Nicola; Curion, Fabiola; Renda, Mario; Sofia, Martina; Lupo, Mariangela; Carissimo, Annamaria; Bacci, Maria Laura; Gesualdo, Carlo; Rossi, Settimio; Simonelli, Francesca; Surace, Enrico Maria

    2016-01-01

    Transcription factors (TFs) operate by the combined activity of their DNA-binding domains (DBDs) and effector domains (EDs) enabling the coordination of gene expression on a genomic scale. Here we show that in vivo delivery of an engineered DNA-binding protein uncoupled from the repressor domain can produce efficient and gene-specific transcriptional silencing. To interfere with RHODOPSIN (RHO) gain-of-function mutations we engineered the ZF6-DNA-binding protein (ZF6-DB) that targets 20 base pairs (bp) of a RHOcis-regulatory element (CRE) and demonstrate Rho specific transcriptional silencing upon adeno-associated viral (AAV) vector-mediated expression in photoreceptors. The data show that the 20 bp-long genomic DNA sequence is necessary for RHO expression and that photoreceptor delivery of the corresponding cognate synthetic trans-acting factor ZF6-DB without the intrinsic transcriptional repression properties of the canonical ED blocks Rho expression with negligible genome-wide transcript perturbations. The data support DNA-binding-mediated silencing as a novel mode to treat gain-of-function mutations. DOI: http://dx.doi.org/10.7554/eLife.12242.001 PMID:26974343

  7. One-hybrid screens at the Saccharomyces cerevisiae HMR locus identify novel transcriptional silencing factors.

    PubMed Central

    Andrulis, Erik D; Zappulla, David C; Alexieva-Botcheva, Krassimira; Evangelista, Carlos; Sternglanz, Rolf

    2004-01-01

    In Saccharomyces cerevisiae, genes located at the telomeres and the HM loci are subject to transcriptional silencing. Here, we report results of screening a Gal4 DNA-binding domain hybrid library for proteins that cause silencing when targeted to a silencer-defective HMR locus. PMID:15020450

  8. Mutational bias of Turnip Yellow Mosaic Virus in the context of host anti-viral gene silencing.

    PubMed

    Ma, Jinmin; Pallett, Denise; Jiang, Hui; Hou, Yong; Wang, Hui

    2015-12-01

    Plant Dicer-like (DCL) enzymes exhibit a GC-preference during anti-viral post-transcriptional gene silencing (PTGS), delivering an evolutionary selection pressure resulting in plant viruses with GC-poor genomes. However, some viruses, e.g. Turnip Yellow Mosaic Virus (TYMV, genus Tymovirus) have GC-rich genomes, raising the question as to whether or not DCL derived selection pressure affects these viruses. In this study we analyzed the virus-derived small interfering RNAs from TYMV-infected leaves of Brassica juncea showed that the TYMV population accumulated a mutational bias with AU replacing GC (GC-AU), demonstrating PTGS pressure. Interestingly, at the highly polymorphic sites the GC-AU bias was no longer observed. This suggests the presence of an unknown mechanism preventing mutational drift of the viral population and maintaining viral genome stability, despite the host PTGS pressure.

  9. Mutational bias of Turnip Yellow Mosaic Virus in the context of host anti-viral gene silencing.

    PubMed

    Ma, Jinmin; Pallett, Denise; Jiang, Hui; Hou, Yong; Wang, Hui

    2015-12-01

    Plant Dicer-like (DCL) enzymes exhibit a GC-preference during anti-viral post-transcriptional gene silencing (PTGS), delivering an evolutionary selection pressure resulting in plant viruses with GC-poor genomes. However, some viruses, e.g. Turnip Yellow Mosaic Virus (TYMV, genus Tymovirus) have GC-rich genomes, raising the question as to whether or not DCL derived selection pressure affects these viruses. In this study we analyzed the virus-derived small interfering RNAs from TYMV-infected leaves of Brassica juncea showed that the TYMV population accumulated a mutational bias with AU replacing GC (GC-AU), demonstrating PTGS pressure. Interestingly, at the highly polymorphic sites the GC-AU bias was no longer observed. This suggests the presence of an unknown mechanism preventing mutational drift of the viral population and maintaining viral genome stability, despite the host PTGS pressure. PMID:26379088

  10. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila.

    PubMed

    Pal-Bhadra, Manika; Bhadra, Utpal; Birchler, James A

    2002-02-01

    Two types of transgene silencing were found for the Alcohol dehydrogenase (Adh) transcription unit. Transcriptional gene silencing (TGS) is Polycomb dependent and occurs when Adh is driven by the white eye color gene promoter. Full-length Adh transgenes are silenced posttranscriptionally at high copy number or by a pulsed increase over a threshold. The posttranscriptional gene silencing (PTGS) exhibits molecular hallmarks typical of RNA interference (RNAi), including the production of 21--25 bp length sense and antisense RNAs homologous to the silenced RNA. Mutations in piwi, which belongs to a gene family with members required for RNAi, block PTGS and one aspect of TGS, indicating a connection between the two types of silencing. PMID:11864605

  11. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization.

    PubMed

    Qüesta, Julia I; Song, Jie; Geraldo, Nuno; An, Hailong; Dean, Caroline

    2016-07-29

    The determinants that specify the genomic targets of Polycomb silencing complexes are still unclear. Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC) accelerates flowering and involves a cold-dependent epigenetic switch. Here we identify a single point mutation at an intragenic nucleation site within FLC that prevents this epigenetic switch from taking place. The mutation blocks nucleation of plant homeodomain-Polycomb repressive complex 2 (PHD-PRC2) and indicates a role for the transcriptional repressor VAL1 in the silencing mechanism. VAL1 localizes to the nucleation region in vivo, promoting histone deacetylation and FLC transcriptional silencing, and interacts with components of the conserved apoptosis- and splicing-associated protein (ASAP) complex. Sequence-specific targeting of transcriptional repressors thus recruits the machinery for PHD-PRC2 nucleation and epigenetic silencing.

  12. Arabidopsis transcriptional repressor VAL1 triggers Polycomb silencing at FLC during vernalization.

    PubMed

    Qüesta, Julia I; Song, Jie; Geraldo, Nuno; An, Hailong; Dean, Caroline

    2016-07-29

    The determinants that specify the genomic targets of Polycomb silencing complexes are still unclear. Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC) accelerates flowering and involves a cold-dependent epigenetic switch. Here we identify a single point mutation at an intragenic nucleation site within FLC that prevents this epigenetic switch from taking place. The mutation blocks nucleation of plant homeodomain-Polycomb repressive complex 2 (PHD-PRC2) and indicates a role for the transcriptional repressor VAL1 in the silencing mechanism. VAL1 localizes to the nucleation region in vivo, promoting histone deacetylation and FLC transcriptional silencing, and interacts with components of the conserved apoptosis- and splicing-associated protein (ASAP) complex. Sequence-specific targeting of transcriptional repressors thus recruits the machinery for PHD-PRC2 nucleation and epigenetic silencing. PMID:27471304

  13. Sequence homology requirements for transcriptional silencing of 35S transgenes and post-transcriptional silencing of nitrite reductase (trans)genes by the tobacco 271 locus.

    PubMed

    Thierry, D; Vaucheret, H

    1996-12-01

    The transgene locus of the tobacco plant 271 (271 locus) is located on a telomere and consists of multiple copies of a plasmid carrying an NptII marker gene driven by the cauliflower mosaic virus (CaMV) 19S promoter and the leaf-specific nitrite reductase Nii1 cDNA cloned in the antisense orientation under the control of the CaMV 35S promoter. Previous analysis of gene expression in leaves has shown that this locus triggers both post-transcriptional silencing of the host leaf-specific Nii genes and transcriptional silencing of transgenes driven by the 19S or 35S promoter irrespective of their coding sequence and of their location in the genome. In this paper we show that silencing of transgenes carrying Nii1 sequences occurs irrespective of the promoter driving their expression and of their location within the genome. This phenomenon occurs in roots as well as in leaves although root Nii genes share only 84% identity with leaf-specific Nii1 sequences carried by the 271 locus. Conversely, transgenes carrying the bean Nii gene (which shares 76% identity with the tobacco Nii1 gene) escape silencing by the 271 locus. We also show that transgenes driven by the figwort mosaic virus 34S promoter (which shares 63% identity with the 35S promoter) also escape silencing by the 271 locus. Taken together, these results indicate that a high degree of sequence similarity is required between the sequences of the silencing locus and of the target (trans)genes for both transcriptional and post-transcriptional silencing.

  14. Trans-Reactivation: A New Epigenetic Phenomenon Underlying Transcriptional Reactivation of Silenced Genes.

    PubMed

    Onorati, Maria Cristina; Arancio, Walter; Cavalieri, Vincenzo; Ingrassia, Antonia M R; Pavesi, Giulio; Corona, Davide F V

    2015-08-01

    In order to study the role played by cellular RNA pools produced by homologous genomic loci in defining the transcriptional state of a silenced gene, we tested the effect of non-functional alleles of the white gene in the presence of a functional copy of white, silenced by heterochromatin. We found that non-functional alleles of white, unable to produce a coding transcript, could reactivate in trans the expression of a wild type copy of the same gene silenced by heterochromatin. This new epigenetic phenomenon of transcriptional trans-reactivation is heritable, relies on the presence of homologous RNA's and is affected by mutations in genes involved in post-transcriptional gene silencing. Our data suggest a general new unexpected level of gene expression control mediated by homologous RNA molecules in the context of heterochromatic genes. PMID:26292210

  15. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  16. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  17. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor

    PubMed Central

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-01

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light–oxygen–voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na+-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na+ currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases. PMID:26699507

  18. Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection.

    PubMed

    Seemanpillai, Mark; Dry, Ian; Randles, John; Rezaian, Ali

    2003-05-01

    Promoters isolated from the Tomato leaf curl virus (TLCV) drive both constitutive and tissue-specific expression in transgenic tobacco. Following systemic TLCV infection of plants stably expressing TLCV promoter:GUS transgenes, transgene expression driven by all six TLCV promoters was silenced. Silencing in the TLCV coat protein promoter:GUS plants (V2:GUSdeltaC) was characterized in more detail. Transgene silencing observed in leaf, stem, and pre-anthesis floral tissue occurred with the continued replication of TLCV in host tissues. Infection of the V2:GUSdeltaC plants with heterologous geminiviruses did not result in transgene silencing, indicating that silencing was specifically associated with TLCV infection. Nuclear run-on assays indicated that silencing was due to the abolition of transcription from the V2:GUSdeltaC transgene. Bisulfite sequencing showed that silencing was associated with cytosine hypermethylation of the TLCV-derived promoter sequences of the V2:GUSdeltaC transgene. Progeny derived from V2:GUSdeltaC plants silenced by TLCV infection were analyzed. Transgene expression was silenced in progeny seedlings but was partially reactivated in the majority of plants by 75 days postgermination. Progeny seedlings treated with the nonmethylatable cytosine analog 5-azacytidine or the histone deacetylase inhibitor sodium butyrate exhibited partial reactivation of expression. This is the first report of the hypermethylation of a virus-derived transgene associated with a DNA virus infection. PMID:12744514

  19. Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptional and product-related functions

    PubMed Central

    Stojic, Lovorka; Niemczyk, Malwina; Orjalo, Arturo; Ito, Yoko; Ruijter, Anna Elisabeth Maria; Uribe-Lewis, Santiago; Joseph, Nimesh; Weston, Stephen; Menon, Suraj; Odom, Duncan T.; Rinn, John; Gergely, Fanni; Murrell, Adele

    2016-01-01

    Long noncoding RNAs (lncRNAs) regulate gene expression via their RNA product or through transcriptional interference, yet a strategy to differentiate these two processes is lacking. To address this, we used multiple small interfering RNAs (siRNAs) to silence GNG12-AS1, a nuclear lncRNA transcribed in an antisense orientation to the tumour-suppressor DIRAS3. Here we show that while most siRNAs silence GNG12-AS1 post-transcriptionally, siRNA complementary to exon 1 of GNG12-AS1 suppresses its transcription by recruiting Argonaute 2 and inhibiting RNA polymerase II binding. Transcriptional, but not post-transcriptional, silencing of GNG12-AS1 causes concomitant upregulation of DIRAS3, indicating a function in transcriptional interference. This change in DIRAS3 expression is sufficient to impair cell cycle progression. In addition, the reduction in GNG12-AS1 transcripts alters MET signalling and cell migration, but these are independent of DIRAS3. Thus, differential siRNA targeting of a lncRNA allows dissection of the functions related to the process and products of its transcription. PMID:26832224

  20. The Xist lncRNA directly interacts with SHARP to silence transcription through HDAC3

    PubMed Central

    McHugh, Colleen A.; Chen, Chun-Kan; Chow, Amy; Surka, Christine F.; Tran, Christina; McDonel, Patrick; Pandya-Jones, Amy; Blanco, Mario; Burghard, Christina; Moradian, Annie; Sweredoski, Michael J.; Shishkin, Alexander A.; Su, Julia; Lander, Eric S.; Hess, Sonja; Plath, Kathrin; Guttman, Mitchell

    2015-01-01

    Many long non-coding RNAs (lncRNAs) affect gene expression1, but the mechanisms by which they act are still largely unknown2. One of the best-studied lncRNAs is Xist, which is required for transcriptional silencing of one X-chromosome during development in female mammals3,4. Despite extensive efforts to define the mechanism of Xist-mediated transcriptional silencing, we still do not know any proteins required for this role3. The main challenge is that there are currently no methods to comprehensively define the proteins that directly interact with a lncRNA in the cell5. Here we develop a method to purify a lncRNA and identify its direct interacting proteins using quantitative mass spectrometry. We identify 10 proteins that specifically associate with Xist, three of these proteins – SHARP, SAF-A, and LBR – are required for Xist-mediated transcriptional silencing. We show that SHARP, which interacts with the SMRT co-repressor6 that activates HDAC37, is not only essential for silencing, but is also required for the exclusion of RNA Polymerase II (PolII) from the inactive X. Both SMRT and HDAC3 are also required for silencing and PolII exclusion. In addition to silencing transcription, SHARP and HDAC3 are required for Xist-mediated recruitment of the polycomb repressive complex 2 (PRC2) across the X-chromosome. Our results suggest that Xist silences transcription by directly interacting with SHARP, recruiting SMRT, activating HDAC3, and deacetylating histones to exclude PolII across the X-chromosome. PMID:25915022

  1. Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization.

    PubMed

    Murton, Heather E; Grady, Patrick J R; Chan, Tsun Ho; Cam, Hugh P; Whitehall, Simon K

    2016-08-01

    Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1(+) (histone H3 lysine 4 methyltransferase) or abp1(+) (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization.

  2. Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization

    PubMed Central

    Murton, Heather E.; Grady, Patrick J. R.; Chan, Tsun Ho; Cam, Hugh P.; Whitehall, Simon K.

    2016-01-01

    Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1+ (histone H3 lysine 4 methyltransferase) or abp1+ (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization. PMID:27343236

  3. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast

    PubMed Central

    Hannan, Abdul; Abraham, Neethu Maria; Goyal, Siddharth; Jamir, Imlitoshi; Priyakumar, U. Deva; Mishra, Krishnaveni

    2015-01-01

    Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD+-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well. PMID:26319015

  4. The splicing machinery promotes RNA-directed DNA methylation and transcriptional silencing in Arabidopsis

    PubMed Central

    Zhang, Cui-Jun; Zhou, Jin-Xing; Liu, Jun; Ma, Ze-Yang; Zhang, Su-Wei; Dou, Kun; Huang, Huan-Wei; Cai, Tao; Liu, Renyi; Zhu, Jian-Kang; He, Xin-Jian

    2013-01-01

    DNA methylation in transposons and other DNA repeats is conserved in plants as well as in animals. In Arabidopsis thaliana, an RNA-directed DNA methylation (RdDM) pathway directs de novo DNA methylation. We performed a forward genetic screen for suppressors of the DNA demethylase mutant ros1 and identified a novel Zinc-finger and OCRE domain-containing Protein 1 (ZOP1) that promotes Pol IV-dependent siRNA accumulation, DNA methylation, and transcriptional silencing. Whole-genome methods disclosed the genome-wide effects of zop1 on Pol IV-dependent siRNA accumulation and DNA methylation, suggesting that ZOP1 has both RdDM-dependent and -independent roles in transcriptional silencing. We demonstrated that ZOP1 is a pre-mRNA splicing factor that associates with several typical components of the splicing machinery as well as with Pol II. Immunofluorescence assay revealed that ZOP1 overlaps with Cajal body and is partially colocalized with NRPE1 and DRM2. Moreover, we found that the other development-defective splicing mutants tested including mac3a3b, mos4, mos12 and mos14 show defects in RdDM and transcriptional silencing. We propose that the splicing machinery rather than specific splicing factors is involved in promoting RdDM and transcriptional silencing. PMID:23524848

  5. Epigenetic Inheritance of Transcriptional Silencing and Switching Competence in Fission Yeast

    PubMed Central

    Thon, G.; Friis, T.

    1997-01-01

    Epigenetic events allow the inheritance of phenotypic changes that are not caused by an alteration in DNA sequence. Here we characterize an epigenetic phenomenon occuring in the mating-type region of fission yeast. Cells of fission yeast switch between the P and M mating-type by interconverting their expressed mating-type cassette between two allelic forms, mat1-P and mat1-M. The switch results from gene conversions of mat1 by two silent cassettes, mat2-P and mat3-M, which are linked to each other and to mat1. GREWAL and KLAR observed that the ability to both switch mat1 and repress transcription near mat2-P and mat3-M was maintained epigenetically in a strain with an 8-kb deletion between mat2 and mat3. Using a strain very similar to theirs, we determined that interconversions between the switching-and silencing-proficient state and the switching and silencing-deficient state occurred less frequently than once per 1000 cell divisions. Although transcriptional silencing was alleviated by the 8-kb deletion, it was not abolished. We performed a mutant search and obtained a class of trans-acting mutations that displayed a strong cumulative effect with the 8-kb deletion. These mutations allow to assess the extent to which silencing is affected by the deletion and provide new insights on the redundancy of the silencing mechanism. PMID:9055078

  6. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire

    PubMed Central

    Senti, Kirsten-André; Jurczak, Daniel; Sachidanandam, Ravi; Brennecke, Julius

    2015-01-01

    PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endonuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the interdependencies between these piRNA biogenesis pathways in developing Drosophila ovaries. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways. PMID:26302790

  7. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire.

    PubMed

    Senti, Kirsten-André; Jurczak, Daniel; Sachidanandam, Ravi; Brennecke, Julius

    2015-08-15

    PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endonuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the interdependencies between these piRNA biogenesis pathways in developing Drosophila ovaries. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways. PMID:26302790

  8. Regulation of RE1 protein silencing transcription factor (REST) expression by HIP1 protein interactor (HIPPI).

    PubMed

    Datta, Moumita; Bhattacharyya, Nitai P

    2011-09-30

    Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease. PMID:21832040

  9. Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae.

    PubMed

    Magnusson, Kalle; Mendes, Antonio M; Windbichler, Nikolai; Papathanos, Philippos-Aris; Nolan, Tony; Dottorini, Tania; Rizzi, Ermanno; Christophides, George K; Crisanti, Andrea

    2011-01-01

    In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio.We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages.The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development.

  10. Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species.

    PubMed

    Johnson, Winslow C; Ordway, Alison J; Watada, Masayoshi; Pruitt, Jonathan N; Williams, Thomas M; Rebeiz, Mark

    2015-06-01

    The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting "enhancer" elements. The highly variable body coloration patterns among Drosophilid insects represents a powerful model system in which the molecular alterations that underlie phenotypic diversity can be defined. In a survey of pigment phenotypes among geographically disparate Japanese populations of Drosophila auraria, we discovered a remarkable degree of variation in male-specific abdominal coloration. In testing the expression patterns of the major pigment-producing enzymes, we found that phenotypes uniquely correlated with differences in the expression of ebony, a gene required for yellow-colored cuticle. Assays of ebony's transcriptional control region indicated that a lightly pigmented strain harbored cis-regulatory mutations that caused correlated changes in its expression. Through a series of chimeric reporter constructs between light and dark strain alleles, we localized function-altering mutations to a conserved silencer that mediates a male-specific pattern of ebony repression. This suggests that the light allele was derived through the loss of this silencer's activity. Furthermore, examination of the ebony gene of D. serrata, a close relative of D. auraria which secondarily lost male-specific pigmentation revealed the parallel loss of this silencer element. These results demonstrate how loss-of-function mutations in a silencer element resulted in increased gene expression. We propose that the mutational inactivation of silencer elements may represent a favored path to evolve gene expression, impacting morphological traits.

  11. Role of RUNX family members in transcriptional repression and gene silencing.

    PubMed

    Durst, Kristie L; Hiebert, Scott W

    2004-05-24

    RUNX family members are DNA-binding transcription factors that regulate the expression of genes involved in cellular differentiation and cell cycle progression. The RUNX family includes three mammalian RUNX proteins (RUNX1, -2, -3) and two homologues in Drosophila. Experiments in Drosophila and mouse indicate that the RUNX proteins are required for gene silencing of engrailed and CD4, respectively. RUNX-mediated repression involves recruitment of corepressors such as mSin3A and Groucho as well as histone deacetylases. Furthermore, RUNX1 and RUNX3 associate with SUV39H1, a histone methyltransferase involved in gene silencing. RUNX1 is frequently targeted in human leukemia by chromosomal translocations that fuse the DNA-binding domain of RUNX1 to other transcription factors and corepressor molecules. The resulting leukemogenic fusion proteins are transcriptional repressors that form stable complexes with corepressors, histone deacetylases and histone methyltransferases. Thus, transcriptional repression and gene silencing through RUNX1 contribute to the mechanisms of leukemogenesis of the fusion proteins. Therapies directed at the associated cofactors may be beneficial for treatment of these leukemias. PMID:15156176

  12. Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy.

    PubMed

    Kendziorra, Emil; Ahlborn, Kerstin; Spitzner, Melanie; Rave-Fränk, Margret; Emons, Georg; Gaedcke, Jochen; Kramer, Frank; Wolff, Hendrik A; Becker, Heinz; Beissbarth, Tim; Ebner, Reinhard; Ghadimi, B Michael; Pukrop, Tobias; Ried, Thomas; Grade, Marian

    2011-12-01

    A considerable percentage of rectal cancers are resistant to standard preoperative chemoradiotherapy. Because patients with a priori-resistant tumors do not benefit from multimodal treatment, understanding and overcoming this resistance remains of utmost clinical importance. We recently reported overexpression of the Wnt transcription factor TCF4, also known as TCF7L2, in rectal cancers that were resistant to 5-fluorouracil-based chemoradiotherapy. Because Wnt signaling has not been associated with treatment response, we aimed to investigate whether TCF4 mediates chemoradioresistance. RNA interference-mediated silencing of TCF4 was employed in three colorectal cancer (CRC) cell lines, and sensitivity to (chemo-) radiotherapy was assessed using a standard colony formation assay. Silencing of TCF4 caused a significant sensitization of CRC cells to clinically relevant doses of X-rays. This effect was restricted to tumor cells with high T cell factor (TCF) reporter activity, presumably in a β-catenin-independent manner. Radiosensitization was the consequence of (i) a transcriptional deregulation of Wnt/TCF4 target genes, (ii) a silencing-induced G(2)/M phase arrest, (iii) an impaired ability to adequately halt cell cycle progression after radiation and (iv) a compromised DNA double strand break repair as assessed by γH2AX staining. Taken together, our results indicate a novel mechanism through which the Wnt transcription factor TCF4 mediates chemoradioresistance. Moreover, they suggest that TCF4 is a promising molecular target to sensitize resistant tumor cells to (chemo-) radiotherapy. PMID:21983179

  13. The Arabidopsis acetylated histone-binding protein BRAT1 forms a complex with BRP1 and prevents transcriptional silencing

    PubMed Central

    Zhang, Cui-Jun; Hou, Xiao-Mei; Tan, Lian-Mei; Shao, Chang-Rong; Huang, Huan-Wei; Li, Yong-Qiang; Li, Lin; Cai, Tao; Chen, She; He, Xin-Jian

    2016-01-01

    Transposable elements and other repetitive DNA sequences are usually subject to DNA methylation and transcriptional silencing. However, anti-silencing mechanisms that promote transcription in these regions are not well understood. Here, we describe an anti-silencing factor, Bromodomain and ATPase domain-containing protein 1 (BRAT1), which we identified by a genetic screen in Arabidopsis thaliana. BRAT1 interacts with an ATPase domain-containing protein, BRP1 (BRAT1 Partner 1), and both prevent transcriptional silencing at methylated genomic regions. Although BRAT1 mediates DNA demethylation at a small set of loci targeted by the 5-methylcytosine DNA glycosylase ROS1, the involvement of BRAT1 in anti-silencing is largely independent of DNA demethylation. We also demonstrate that the bromodomain of BRAT1 binds to acetylated histone, which may facilitate the prevention of transcriptional silencing. Thus, BRAT1 represents a potential link between histone acetylation and transcriptional anti-silencing at methylated genomic regions, which may be conserved in eukaryotes. PMID:27273316

  14. Transcription of the mitochondrial citrate carrier gene: Identification of a silencer and its binding protein ZNF224

    SciTech Connect

    Iacobazzi, Vito; Infantino, Vittoria; Convertini, Paolo; Vozza, Angelo; Agrimi, Gennaro; Palmieri, Ferdinando

    2009-08-14

    In the last few years, we have been functionally characterizing the promoter of the human mitochondrial citrate carrier (CIC). In this study we show that CIC silencer activity extends over 26 bp (-595/-569), which specifically bind a protein present in HepG2 cell nuclear extracts. This transcription factor was purified by DNA affinity and identified as ZNF224. Overexpression of ZNF224 decreases LUC transgene activity in cells transfected with a construct containing the CIC silencer region, whereas ZNF224 silencing activates reporter transcription in cells transfected with the same construct. Moreover, overexpression and silencing of ZNF224 diminishes and enhances, respectively, CIC transcript and protein levels. Finally, ZNF224 is abundantly expressed in fetal tissues contrary to CIC. It is suggested that CIC transcriptional repression by ZNF224 explains, at least in part, the low expression of CIC in fetal tissues in which fatty acid synthesis is low.

  15. Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species

    PubMed Central

    Watada, Masayoshi; Pruitt, Jonathan N.; Williams, Thomas M.; Rebeiz, Mark

    2015-01-01

    The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting “enhancer” elements. The highly variable body coloration patterns among Drosophilid insects represents a powerful model system in which the molecular alterations that underlie phenotypic diversity can be defined. In a survey of pigment phenotypes among geographically disparate Japanese populations of Drosophila auraria, we discovered a remarkable degree of variation in male-specific abdominal coloration. In testing the expression patterns of the major pigment-producing enzymes, we found that phenotypes uniquely correlated with differences in the expression of ebony, a gene required for yellow-colored cuticle. Assays of ebony’s transcriptional control region indicated that a lightly pigmented strain harbored cis-regulatory mutations that caused correlated changes in its expression. Through a series of chimeric reporter constructs between light and dark strain alleles, we localized function-altering mutations to a conserved silencer that mediates a male-specific pattern of ebony repression. This suggests that the light allele was derived through the loss of this silencer’s activity. Furthermore, examination of the ebony gene of D. serrata, a close relative of D. auraria which secondarily lost male-specific pigmentation revealed the parallel loss of this silencer element. These results demonstrate how loss-of-function mutations in a silencer element resulted in increased gene expression. We propose that the mutational inactivation of silencer elements may represent a favored path to evolve gene expression, impacting morphological traits. PMID:26115430

  16. Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9.

    PubMed

    Mutskov, Vesco; Felsenfeld, Gary

    2004-01-14

    Transgenes stably integrated into cells or animals in many cases are silenced rapidly, probably under the influence of surrounding endogenous condensed chromatin. This gene silencing correlates with repressed chromatin structure marked by histone hypoacetylation, loss of methylation at H3 lysine 4, increase of histone H3 lysine 9 methylation as well as CpG DNA methylation at the promoter. However, the order and the timing of these modifications and their impact on transcription inactivation are less well understood. To determine the temporal order of these events, we examined a model system consisting of a transgenic cassette stably integrated in chicken erythroid cells. We found that histone H3 and H4 hypoacetylation and loss of methylation at H3 lysine 4 all occurred during the same window of time as transgene inactivation in both multicopy and low-copy-number lines. These results indicate that these histone modifications were the primary events in gene silencing. We show that the kinetics of silencing exclude histone H3 K9 and promoter DNA methylation as the primary causative events in our transgene system. PMID:14685282

  17. Novel RNA Duplex Locks HIV-1 in a Latent State via Chromatin-mediated Transcriptional Silencing

    PubMed Central

    Ahlenstiel, Chantelle; Mendez, Catalina; Lim, Steven T H; Marks, Katherine; Turville, Stuart; Cooper, David A; Kelleher, Anthony D; Suzuki, Kazuo

    2015-01-01

    Transcriptional gene silencing (TGS) of mammalian genes can be induced by short interfering RNA (siRNA) targeting promoter regions. We previously reported potent TGS of HIV-1 by siRNA (PromA), which targets tandem NF-κB motifs within the viral 5′LTR. In this study, we screened a siRNA panel with the aim of identifying novel 5′LTR targets, to provide multiplexing potential with enhanced viral silencing and application toward developing alternate therapeutic strategies. Systematic examination identified a novel siRNA target, si143, confirmed to induce TGS as the silencing mechanism. TGS was prolonged with virus suppression >12 days, despite a limited ability to induce post- TGS. Epigenetic changes associated with silencing were suggested by partial reversal by histone deacetylase inhibitors and confirmed by chromatin immunoprecipitation analyses, which showed induction of H3K27me3 and H3K9me3, reduction in H3K9Ac, and recruitment of argonaute-1, all characteristic marks of heterochromatin and TGS. Together, these epigenetic changes mimic those associated with HIV-1 latency. Further, robust resistance to reactivation was observed in the J-Lat 9.2 cell latency model, when transduced with shPromA and/or sh143. These data support si/shRNA-mediated TGS approaches to HIV-1 and provide alternate targets to pursue a functional cure, whereby the viral reservoir is locked in latency following antiretroviral therapy cessation. PMID:26506039

  18. Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines.

    PubMed Central

    Ayer, S; Benyajati, C

    1990-01-01

    The distal promoter of Adh is differentially expressed in Drosophila tissue culture cell lines. After transfection with an exogenous Adh gene, there was a specific increase in distal alcohol dehydrogenase (ADH) transcripts in ADH-expressing (ADH+) cells above the levels observed in transfected ADH-nonexpressing (ADH-) cells. We used deletion mutations and a comparative transient-expression assay to identify the cis-acting elements responsible for enhanced Adh distal transcription in ADH+ cells. DNA sequences controlling high levels of distal transcription were localized to a 15-base-pair (bp) region nearly 500 bp upstream of the distal RNA start site. In addition, a 61-bp negative cis-acting element was found upstream from and adjacent to the enhancer. When this silencer element was deleted, distal transcription increased only in the ADH+ cell line. These distant upstream elements must interact with the promoter elements, the Adf-1-binding site and the TATA box, as they only influenced transcription when at least one of these two positive distal promoter elements was present. Internal deletions targeted to the Adf-1-binding site or the TATA box reduced transcription in both cell types but did not affect the transcription initiation site. Distal transcription in transfected ADH- cells appears to be controlled primarily through these promoter elements and does not involve the upstream regulatory elements. Evolutionary conservation in distantly related Drosophila species suggests the importance of these upstream elements in correct developmental and tissue-specific expression of ADH. Images PMID:1694013

  19. Post-transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex.

    PubMed

    Abhary, M K; Anfoka, G H; Nakhla, M K; Maxwell, D P

    2006-12-01

    Tomato yellow leaf curl disease (TYLCD) is caused by a group of geminiviruses that belong to the Tomato yellow leaf curl virus (TYLCV) complex and are transmitted by the whitefly (Bemisia tabaci Genn.). The disease causes great yield losses in many countries throughout the Mediterranean region and the Middle East. In this study, the efficacy of post-transcriptional gene silencing (PTGS) to control the disease caused by TYLCV complex was investigated. Non-coding conserved regions from the genome of TYLCV, Tomato yellow leaf curl virus-mild, tomato yellow leaf curl Sardinia virus, tomato yellow leaf curl Malaga virus, and tomato yellow leaf curl Sardinia virus-Spain [2] were selected and used to design a construct that can trigger broad resistance against different viruses that cause tomato yellow leaf curl disease. The silencing construct was cloned into an Agrobacterium-binary vector in sense and antisense orientation and used in transient assay to infiltrate tomato and Nicotiana benthamiana plants. A high level of resistance was obtained when plants were agro-infiltrated with an infectious clone of the Egyptian isolate of TYLCV (TYLCV-[EG]) or challenge inoculated with TYLCV, TYLCV-Mld, and TYLCSV-ES[2] using whitefly-mediated transmission 16-20 days post infiltration with the silencing construct. Results of the polymerase chain reaction showed that the resistance was effective against all three viruses. Furthermore, dot blot hybridization and PCR failed to detect viral DNA in symptomless, silenced plants. A positive correlation between resistance and the accumulation of TYLCV-specific siRNAs was observed in silenced plants. Together, these data provide compelling evidence that PTGS can be used to engineer geminivirus-resistant plants. PMID:16862387

  20. MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells

    PubMed Central

    Mugat, Bruno; Akkouche, Abdou; Serrano, Vincent; Armenise, Claudia; Li, Blaise; Brun, Christine; Fulga, Tudor A.; Van Vactor, David; Pélisson, Alain; Chambeyron, Séverine

    2015-01-01

    RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression. PMID

  1. MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells.

    PubMed

    Mugat, Bruno; Akkouche, Abdou; Serrano, Vincent; Armenise, Claudia; Li, Blaise; Brun, Christine; Fulga, Tudor A; Van Vactor, David; Pélisson, Alain; Chambeyron, Séverine

    2015-05-01

    RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression. PMID

  2. MicroRNA-Dependent Transcriptional Silencing of Transposable Elements in Drosophila Follicle Cells.

    PubMed

    Mugat, Bruno; Akkouche, Abdou; Serrano, Vincent; Armenise, Claudia; Li, Blaise; Brun, Christine; Fulga, Tudor A; Van Vactor, David; Pélisson, Alain; Chambeyron, Séverine

    2015-05-01

    RNA interference-related silencing mechanisms concern very diverse and distinct biological processes, from gene regulation (via the microRNA pathway) to defense against molecular parasites (through the small interfering RNA and the Piwi-interacting RNA pathways). Small non-coding RNAs serve as specificity factors that guide effector proteins to ribonucleic acid targets via base-pairing interactions, to achieve transcriptional or post-transcriptional regulation. Because of the small sequence complementarity required for microRNA-dependent post-transcriptional regulation, thousands of microRNA (miRNA) putative targets have been annotated in Drosophila. In Drosophila somatic ovarian cells, genomic parasites, such as transposable elements (TEs), are transcriptionally repressed by chromatin changes induced by Piwi-interacting RNAs (piRNAs) that prevent them from invading the germinal genome. Here we show, for the first time, that a functional miRNA pathway is required for the piRNA-mediated transcriptional silencing of TEs in this tissue. Global miRNA depletion, caused by tissue- and stage-specific knock down of drosha (involved in miRNA biogenesis), AGO1 or gawky (both responsible for miRNA activity), resulted in loss of TE-derived piRNAs and chromatin-mediated transcriptional de-silencing of TEs. This specific TE de-repression was also observed upon individual titration (by expression of the complementary miRNA sponge) of two miRNAs (miR-14 and miR-34) as well as in a miR-14 loss-of-function mutant background. Interestingly, the miRNA defects differentially affected TE- and 3' UTR-derived piRNAs. To our knowledge, this is the first indication of possible differences in the biogenesis or stability of TE- and 3' UTR-derived piRNAs. This work is one of the examples of detectable phenotypes caused by loss of individual miRNAs in Drosophila and the first genetic evidence that miRNAs have a role in the maintenance of genome stability via piRNA-mediated TE repression.

  3. Identification of Multiple Proteins Coupling Transcriptional Gene Silencing to Genome Stability in Arabidopsis thaliana

    PubMed Central

    Hale, Christopher J.; Potok, Magdalena E.; Lopez, Jennifer; Do, Truman; Liu, Ao; Michaels, Scott D.; Jacobsen, Steven E.

    2016-01-01

    Eukaryotic genomes are regulated by epigenetic marks that act to modulate transcriptional control as well as to regulate DNA replication and repair. In Arabidopsis thaliana, mutation of the ATXR5 and ATXR6 histone methyltransferases causes reduction in histone H3 lysine 27 monomethylation, transcriptional upregulation of transposons, and a genome instability defect in which there is an accumulation of excess DNA corresponding to pericentromeric heterochromatin. We designed a forward genetic screen to identify suppressors of the atxr5/6 phenotype that uncovered loss-of-function mutations in two components of the TREX-2 complex (AtTHP1, AtSAC3B), a SUMO-interacting E3 ubiquitin ligase (AtSTUbL2) and a methyl-binding domain protein (AtMBD9). Additionally, using a reverse genetic approach, we show that a mutation in a plant homolog of the tumor suppressor gene BRCA1 enhances the atxr5/6 phenotype. Through characterization of these mutations, our results suggest models for the production atxr5 atxr6-induced extra DNA involving conflicts between the replicative and transcriptional processes in the cell, and suggest that the atxr5 atxr6 transcriptional defects may be the cause of the genome instability defects in the mutants. These findings highlight the critical intersection of transcriptional silencing and DNA replication in the maintenance of genome stability of heterochromatin. PMID:27253878

  4. Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer.

    PubMed Central

    Kimmerly, W; Buchman, A; Kornberg, R; Rine, J

    1988-01-01

    The HMR E silencer is required for SIR-dependent transcriptional repression of the silent mating-type locus, HMR. The silencer also behaves as an origin of replication (ARS element) and allows plasmids to replicate autonomously in yeast. The replication and segregation properties of these plasmids are also dependent on the four SIR genes. We have previously characterized two DNA-binding factors in yeast extracts that recognize specific sequences at the HMR E silencer. These proteins, called ABFI (ARS-Binding Factor) and GRFI (General Regulatory Factor), are not encoded by any of the SIR genes. To investigate the biological roles of these factors, single-base-pair mutations were constructed in both binding sites at the HMR E silencer that were no longer recognized by the corresponding proteins in vitro. Our results indicate that the GRFI-binding site is required for the efficient segregation of plasmids replicated by the HMR E silencer. SIR-dependent transcriptional repression requires either an intact ABFI-binding site or GRFI-binding site, although the GRFI-binding site appears to be more important. A double-mutant silencer that binds neither ABFI nor GRFI does not mediate transcriptional repression of HMR. The replacement of HMR E with a chromosomal origin of replication (ARS1) allows partial SIR-dependent transcriptional repression of HMR, indicating a role for replication in silencer function. Together, these results suggest that the SIR proteins influence the properties of the HMR E silencer through interactions with other DNA-binding proteins. Images PMID:3046937

  5. Suppressors of Defective Silencing in Yeast: Effects on Transcriptional Repression at the Hmr Locus, Cell Growth and Telomere Structure

    PubMed Central

    Sussel, L.; Vannier, D.; Shore, D.

    1995-01-01

    To identify factors that affect transcriptional silencing at the HMR mating-type locus in yeast, we characterized a set of extragenic suppressor mutations that restore metastable repression in cells containing both a mutant silencer-binding protein (rap1(s)) and a mutated silencer element (hmrδA). A total of 57 suppressors comprising 21 different complementation groups was identified. This report describes a detailed genetic analysis of these suppressors of defective silencing (sds) mutants. The sds mutants fall into several distinct categories based on secondary phenotypes, such as their ability to suppress the rap1(s) telomere lengthening phenotype, general effects on telomere length, temperature-dependent growth defects, and the ability to bypass the requirement for cis regulatory elements at the HMR-E silencer. One particular mutant, sds4-1, strongly suppresses the rap1(s) silencing defect, restores telomeres to nearly wild-type length, and displays a severe growth defect at all temperatures. SDS4 mutations also suppress the silencing defect caused by mutations in the RAP1-interacting factor RIF1. We cloned the SDS4 gene and show that it is identical to GAL11(SPT13), which encodes a component of a protein complex that mediates transcriptional activation. Possible mechanism(s) of suppression by sds4 and the other sds mutations is discussed. PMID:8582633

  6. Selective repression of gene expression in neuropathic pain by the neuron-restrictive silencing factor/repressor element-1 silencing transcription (NRSF/REST).

    PubMed

    Willis, Dianna E; Wang, Meng; Brown, Elizabeth; Fones, Lilah; Cave, John W

    2016-06-20

    Neuropathic pain often develops following nerve injury as a result of maladaptive changes that occur in the injured nerve and along the nociceptive pathways of the peripheral and central nervous systems. Multiple cellular and molecular mechanisms likely account for these changes; however, the exact nature of these mechanisms remain largely unknown. A growing number of studies suggest that alteration in gene expression is an important step in the progression from acute to chronic pain states and epigenetic regulation has been proposed to drive this change in gene expression. In this review, we discuss recent evidence that the DNA-binding protein neuron-restrictive silencing factor/repressor element-1 silencing transcription factor (NRSF/REST) is an important component in the development and maintenance of neuropathic pain through its role as a transcriptional regulator for a select subset of genes that it normally represses during development. PMID:26679228

  7. The human involucrin gene is transcriptionally repressed through a tissue-specific silencer element recognized by Oct-2.

    PubMed

    Azuara-Liceaga, Elisa; Sandoval, Marisol; Corona, Matilde; Gariglio, Patricio; López-Bayghen, Esther

    2004-05-28

    Involucrin is an important marker of epithelial differentiation which expression is upregulated just after basal cells are pushed into the suprabasal layer in stratified epithelia. Several transcription factors and regulatory elements had been described as responsible for turning on the gene. However, it is evident that in basal cell layer, additional mechanisms are involved in keeping the gene silent before the differentiation process starts. In this work, we located a potential transcriptional silencer in a 52bp sequence whose integrity is necessary for silencing the proximal enhancer promoter element (PEP) in multiplying keratinocytes. Octamer-binding sites were noticed in this fragment and the specific binding of Oct-2 transcription factor was detected. Oct-2 appears to be implicated in an epithelial-specific repression activity recorded only in keratinocytes and C33-A cell line. Overexpression of Oct-2 repressed the involucrin promoter activity in epithelial cells and in the presence of the silencer element.

  8. Consistent transcriptional silencing of 35S-driven transgenes in gentian.

    PubMed

    Mishiba, Kei-ichiro; Nishihara, Masahiro; Nakatsuka, Takashi; Abe, Yoshiko; Hirano, Hiroshi; Yokoi, Takahide; Kikuchi, Akiko; Yamamura, Saburo

    2005-11-01

    In this study, no transgenic gentian (Gentiana triflora x Gentiana scabra) plants produced via Agrobacterium-mediated transformation exhibited transgene (GtMADS, gentian-derived MADS-box genes or sGFP, green fluorescent protein) expression in their leaf tissues, despite the use of constitutive Cauliflower mosaic virus (CaMV) 35S promoter. Strikingly, no expression of the selectable marker gene (bar) used for bialaphos selection was observed. To investigate the possible cause of this drastic transgene silencing, methylation-specific sequences were analysed by bisulfite genomic sequencing using tobacco transformants as a control. Highly methylated cytosine residues of CpG and CpWpG (W contains A or T) sites were distinctively detected in the promoter and 5' coding regions of the transgenes 35S-bar and 35S-GtMADS in all gentian lines analysed. These lines also exhibited various degrees of cytosine methylation in asymmetrical sequences. The methylation frequencies in the other transgene, nopaline synthase (NOS) promoter-driven nptII, and the endogenous GtMADS gene coding region, were much lower and were variable compared with those in the 35S promoter regions. Transgene methylation was observed in the bialaphos-selected transgenic calluses expressing the transgenes, and methylation sequences were distributed preferentially around the as-1 element in the 35S promoter. Calluses derived from leaf tissues of silenced transgenic gentian also exhibited transgene suppression, but expression was recovered by treatment with the methylation inhibitor 5-aza-2'-deoxycytidine (aza-dC). These results indicated that cytosine methylation occurs exclusively in the 35S promoter regions of the expressed transgenes during selection of gentian transformants, causing transcriptional gene silencing. PMID:16262705

  9. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease.

    PubMed

    Zuccato, Chiara; Belyaev, Nikolai; Conforti, Paola; Ooi, Lezanne; Tartari, Marzia; Papadimou, Evangelia; MacDonald, Marcy; Fossale, Elisa; Zeitlin, Scott; Buckley, Noel; Cattaneo, Elena

    2007-06-27

    Huntingtin is a protein that is mutated in Huntington's disease (HD), a dominant inherited neurodegenerative disorder. We previously proposed that, in addition to the gained toxic activity of the mutant protein, selective molecular dysfunctions in HD may represent the consequences of the loss of wild-type protein activity. We first reported that wild-type huntingtin positively affects the transcription of the brain-derived neurotrophic factor (BDNF) gene, a cortically derived survival factor for the striatal neurons that are mainly affected in the disease. Mutation in huntingtin decreases BDNF gene transcription. One mechanism involves the activation of repressor element 1/neuron-restrictive silencer element (RE1/NRSE) located within the BDNF promoter. We now show that increased binding of the RE1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) repressor occurs at multiple genomic RE1/NRSE loci in HD cells, in animal models, and in postmortem brains, resulting in a decrease of RE1/NRSE-mediated gene transcription. The same molecular phenotype is produced in cells and brain tissue depleted of endogenous huntingtin, thereby directly validating the loss-of-function hypothesis of HD. Through a ChIP (chromatin immunoprecipitation)-on-chip approach, we examined occupancy of multiple REST/NRSF target genes in the postmortem HD brain, providing the first example of the application of this technology to neurodegenerative diseases. Finally, we show that attenuation of REST/NRSF binding restores BDNF levels, suggesting that relief of REST/NRSF mediated repression can restore aberrant neuronal gene transcription in HD. PMID:17596446

  10. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing.

    PubMed

    Rodríguez-Negrete, Edgar; Lozano-Durán, Rosa; Piedra-Aguilera, Alvaro; Cruzado, Lucia; Bejarano, Eduardo R; Castillo, Araceli G

    2013-07-01

    Cytosine methylation is an epigenetic mark that promotes gene silencing and plays an important role in genome defence against transposons and invading DNA viruses. Previous data showed that the largest family of single-stranded DNA viruses, Geminiviridae, prevents methylation-mediated transcriptional gene silencing (TGS) by interfering with the proper functioning of the plant methylation cycle. Here, we describe a novel counter-defence strategy used by geminiviruses, which reduces the expression of the plant maintenance DNA methyltransferases, METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE 3 (CMT3), in both locally and systemically infected tissues. We demonstrated that the virus-mediated repression of these two maintenance DNA methyltransferases is widespread among geminivirus species. Additionally, we identified Rep (Replication associated protein) as the geminiviral protein responsible for the repression of MET1 and CMT3, and another viral protein, C4, as an ancillary player in MET1 down-regulation. The presence of Rep suppressed TGS of an Arabidopsis thaliana transgene and of host loci whose expression was strongly controlled by CG methylation. Bisulfite sequencing analyses showed that the expression of Rep caused a substantial reduction in the levels of DNA methylation at CG sites. Our findings suggest that Rep, the only viral protein essential for replication, displays TGS suppressor activity through a mechanism distinct from that thus far described for geminiviruses. PMID:23614786

  11. Changes in methylation during progressive transcriptional silencing in transgenic subterranean clover.

    PubMed

    Hagan, Nicholas D; Spencer, Donald; Moore, Andrew E; Higgins, Thomas J V

    2003-11-01

    A transgenic line of subterranean clover (Trifolium subterraneum) containing a gene for a sulphur-rich sunflower seed albumin (ssa gene) and a gene conferring tolerance to the herbicide phosphinothricin (bar gene) was previously shown to stably express these genes as far as the T3 generation. In subsequent generations there was a progressive decline in the level of expression of both of these genes such that, by the T7 generation, the plants were almost completely susceptible to the herbicide and the mean level of sunflower seed albumin was reduced to 10-30% of the level in the T2 and T3 generations. The decline in SSA protein correlated closely with a decline in the level of ssa RNA. In vitro transcription experiments with nuclei isolated from plants of the early and late generations showed that the reduced mRNA level was associated with a reduced level of transcription of the ssa transgene. Transcription of the bar transgene was also reduced in the late generations. Bisulphite sequencing analysis showed that the decline in expression of the ssa gene between T3 and subsequent generations correlated closely with increased CpG methylation in the promoter, but not in the coding region. Analysis of the bar gene promoter showed that high levels of CpG methylation preceded the first detectable decline in expression of the bar gene by one generation, suggesting that methylation was not the direct cause of transgene silencing in these plants. PMID:17134405

  12. LSD1 cooperates with CTIP2 to promote HIV-1 transcriptional silencing.

    PubMed

    Le Douce, Valentin; Colin, Laurence; Redel, Laetitia; Cherrier, Thomas; Herbein, Georges; Aunis, Dominique; Rohr, Olivier; Van Lint, Carine; Schwartz, Christian

    2012-03-01

    Microglial cells are the main HIV-1 targets in the central nervous system (CNS) and constitute an important reservoir of latently infected cells. Establishment and persistence of these reservoirs rely on the chromatin structure of the integrated proviruses. We have previously demonstrated that the cellular cofactor CTIP2 forces heterochromatin formation and HIV-1 gene silencing by recruiting HDAC and HMT activities at the integrated viral promoter. In the present work, we report that the histone demethylase LSD1 represses HIV-1 transcription and viral expression in a synergistic manner with CTIP2. We show that recruitment of LSD1 at the HIV-1 proximal promoter is associated with both H3K4me3 and H3K9me3 epigenetic marks. Finally, our data suggest that LSD1-induced H3K4 trimethylation is linked to hSET1 recruitment at the integrated provirus. PMID:22067449

  13. Cysteine 397 plays important roles in the folding of the neuron-restricted silencer factor/RE1-silencing transcription factor.

    PubMed

    Zhang, Yan; Hu, Wei; Shen, Jie; Tong, Xiaotian; Yang, Zhongzheng; Shen, Zhangzhou; Lan, Wenxian; Wu, Houming; Cao, Chunyang

    2011-10-22

    The neuron-restrictive silencer factor/RE1-silencing transcription factor (NRSF/REST) is regarded as not only a key transcriptional repressor but also an activator in neuron gene expression by specifically interacting with neuron-restrictive silencer element (NRSE/RE1) dsDNA and small NRSE/RE1 dsRNA, respectively. But its exact mechanism remains unclear. One major problem is that it is hard to obtain its functional multiple zinc finger (ZnF) domains in a large quantity for further structural studies. To address this issue, in this study, we for the first time attained soluble NRSF/REST functional domains named as ZnF5-8, ZnF4-8, ZnF3-8 and ZnF2-8 containing four, five, six and seven ZnF motifs in tandem, respectively, by using Circular Dichroism (CD) spectrum and two-dimensional (2D) nucleic magnetic resonance (NMR) (1)H-(1)H NOESY spectrum to monitor the folding of each single ZnF peptide. The data indicated that the residue cysteine 397 (Cys397) plays important roles in the global folding of NRSF/REST multiple ZnFs domain. PMID:21951847

  14. V2 of tomato yellow leaf curl virus can suppress methylation-mediated transcriptional gene silencing in plants.

    PubMed

    Wang, Bi; Li, Fangfang; Huang, Changjun; Yang, Xiuling; Qian, Yajuan; Xie, Yan; Zhou, Xueping

    2014-01-01

    Tomato yellow leaf curl virus (TYLCV) is a DNA virus belonging to the genus Begomovirus. TYLCV replicates using double-stranded DNA intermediates that can become the target of plant transcriptional gene silencing (TGS). Here, we show that the V2 protein of TYLCV can suppress TGS of a transcriptionally silenced green fluorescent protein (GFP) transgene in Nicotiana benthamiana line 16-TGS. Through bisulfite sequencing and chop-PCR, we demonstrated that the TYLCV V2 can reverse GFP transgene silencing by reducing the methylation levels in the 35S promoter sequence. Both AtSN1 and MEA-ISR loci in Arabidopsis thaliana were previously reported to be strongly methylated, and we show that the methylation status of both loci was significantly reduced in TYLCV V2 transgenic Arabidopsis plants. We conclude that TYLCV can efficiently suppress TGS when it infects plants, and its V2 protein is responsible for the TGS suppression activity. PMID:24187017

  15. Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set.

    PubMed

    Mahajan, Monika; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2011-01-01

    Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS) encoding gene. Silencing of CHS has blocked the synthesis of most of useful flavonoids including flavan-3-ols and flavonols. Also, these studies could not identify whether parthenocarpy/male sterility were due to lack of flavan-3-ols or flavonols or both. Flavonol synthase (FLS) is an important enzyme of flavonoid pathway that catalyzes the formation of flavonols. In this article, we propose a novel strategy towards the generation of seedless or less-seeded fruits by downregulation of flavonol biosynthesis in tobacco (Nicotiana tabacum cv Xanthi) through post-transcriptional gene silencing (PTGS) of FLS encoding mRNA. The FLS silenced lines were observed for 20-80% reduction in FLS encoding gene expression and 25-93% reduction in flavonol (quercetin) content. Interestingly, these FLS silenced tobacco lines also showed reduction in their anthocyanidins content. While the content of flavan-3-ols (catechin, epi-catechin and epi-gallocatechin) was found to be increased in FLS silenced lines. The delayed flowering in FLS silenced lines could be due to decrease in level of indole acetic acid (IAA) at apical region of their shoots. Furthermore, the pollen germination was hampered and pollens were unable to produce functional pollen tube in FLS silenced tobacco lines. Pods of FLS silenced lines contained significantly less number of seeds. The in vitro and in vivo studies where 1 µM quercetin was supplied to germination media, documented the restoration of normal pollen germination and pollen tube growth. This finding identified the role of flavonols particularly quercetin in pollen germination as well as in the regulation of plant fertility. Results also suggest a novel approach towards generation of seedless

  16. Evidence That the Transcriptional Regulators Sin3 and Rpd3, and a Novel Gene (Sds3) with Similar Functions, Are Involved in Transcriptional Silencing in S. Cerevisiae

    PubMed Central

    Vannier, D.; Balderes, D.; Shore, D.

    1996-01-01

    In a screen for extragenic suppressors of a silencing defective rap1(s) hmrΔA strain, recessive mutations in 21 different genes were found that restored repression to HMR. We describe the characterization of three of these SDS (suppressors of defective silencing) genes. SDS16 and SDS6 are known transcriptional modifiers, SIN3(RPD1/UME4/SDI1/GAM2) and RPD3(SDI2), respectively, while the third is a novel gene, SDS3. SDS3 shares the meiotic functions of SIN3 and RPD3 in that it represses IME2 in haploid cells and is necessary for sporulation in diploid cells. However, sds3 mutations differ from sin3 and rpd3 mutations in that they do not derepress TRK2. These sds mutations suppress a variety of cis- and trans-defects, which impair the establishment of silencing at HMR. Any one of the sds mutations slightly increases telomere position effect while a striking synergistic increase in repression is observed in a rap1(s) background. Epistasis studies suggest that SDS3 works in a different pathway from RPD3 and SIN3 to affect silencing at HMR. Together these results show that defects in certain general transcriptional modifiers can have a pronounced influence on position-effect gene silencing in yeast. Mechanisms for this increase in postion effect are discussed. PMID:8978024

  17. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    PubMed

    Rizvi, Noreen F; Weaver, Jessica D; Cram, Erin J; Lee-Parsons, Carolyn W T

    2016-01-01

    The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

  18. A viral satellite DNA vector-induced transcriptional gene silencing via DNA methylation of gene promoter in Nicotiana benthamiana.

    PubMed

    Ju, Zheng; Wang, Lei; Cao, Dongyan; Zuo, Jinhua; Zhu, Hongliang; Fu, Daqi; Luo, Yunbo; Zhu, Benzhong

    2016-09-01

    Virus-induced gene silencing (VIGS) has been widely used for plant functional genomics study at the post-transcriptional level using various DNA or RNA viral vectors. However, while virus-induced transcriptional gene silencing (VITGS) via DNA methylation of gene promoter was achieved using several plant RNA viral vectors, it has not yet been done using a satellite DNA viral vector. In this study, a viral satellite DNA associated with tomato yellow leaf curl China virus (TYLCCNV), which has been modified as a VIGS vector in previous research, was developed as a VITGS vector. Firstly, the viral satellite DNA VIGS vector was further optimized to a more convenient p1.7A+2mβ vector with high silencing efficiency of the phytoene desaturase (PDS) gene in Nicotiana benthamiana plants. Secondly, the constructed VITGS vector (TYLCCNV:35S), which carried a portion of the cauliflower mosaic virus 35S promoter, could successfully induce heritable transcriptional gene silencing (TGS) of the green fluorescent protein (GFP) gene in the 35S-GFP transgenic N. benthamiana line 16c plants. Moreover, bisulfite sequencing results revealed higher methylated cytosine residues at CG, CHG and CHH sites of the 35S promoter sequence in TYLCCNV:35S-inoculated plants than in TYLCCNV-inoculated line 16c plants (control). Overall, these results demonstrated that the viral satellite DNA vector could be used as an effective VITGS vector to study DNA methylation in plant genomes. PMID:27422476

  19. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots

    PubMed Central

    Rizvi, Noreen F.; Weaver, Jessica D.; Cram, Erin J.; Lee-Parsons, Carolyn W. T.

    2016-01-01

    The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis. PMID:27467510

  20. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    PubMed

    Rizvi, Noreen F; Weaver, Jessica D; Cram, Erin J; Lee-Parsons, Carolyn W T

    2016-01-01

    The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis. PMID:27467510

  1. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes

    PubMed Central

    Parent, Jean-Sébastien; Jauvion, Vincent; Bouché, Nicolas; Béclin, Christophe; Hachet, Mélanie; Zytnicki, Matthias; Vaucheret, Hervé

    2015-01-01

    Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3′ maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS. PMID:26209135

  2. Distinctive profiles of small RNA couple inverted repeat-induced post-transcriptional gene silencing with endogenous RNA silencing pathways in Arabidopsis

    PubMed Central

    Matvienko, Marta; Piskurewicz, Urszula; Xu, Huaqin; Martineau, Belinda; Wong, Joan; Govindarajulu, Manjula; Kozik, Alexander; Michelmore, Richard W.

    2014-01-01

    The experimental induction of RNA silencing in plants often involves expression of transgenes encoding inverted repeat (IR) sequences to produce abundant dsRNAs that are processed into small RNAs (sRNAs). These sRNAs are key mediators of post-transcriptional gene silencing (PTGS) and determine its specificity. Despite its application in agriculture and broad utility in plant research, the mechanism of IR-PTGS is incompletely understood. We generated four sets of 60 Arabidopsis plants, each containing IR transgenes expressing different configurations of uidA and CHALCONE SYNTHASE (At-CHS) gene fragments. Levels of PTGS were found to depend on the orientation and position of the fragment in the IR construct. Deep sequencing and mapping of sRNAs to corresponding transgene-derived and endogenous transcripts identified distinctive patterns of differential sRNA accumulation that revealed similarities among sRNAs associated with IR-PTGS and endogenous sRNAs linked to uncapped mRNA decay. Detailed analyses of poly-A cleavage products from At-CHS mRNA confirmed this hypothesis. We also found unexpected associations between sRNA accumulation and the presence of predicted open reading frames in the trigger sequence. In addition, strong IR-PTGS affected the prevalence of endogenous sRNAs, which has implications for the use of PTGS for experimental or applied purposes. PMID:25344399

  3. The gene silencing transcription factor REST represses miR-132 expression in hippocampal neurons destined to die.

    PubMed

    Hwang, Jee-Yeon; Kaneko, Naoki; Noh, Kyung-Min; Pontarelli, Fabrizio; Zukin, R Suzanne

    2014-10-01

    The gene silencing transcription factor REST [repressor element 1 silencing transcription factor]/NRSF (neuron-restrictive silencer factor) actively represses a large array of coding and noncoding neuron-specific genes important to synaptic plasticity including miR-132. miR-132 is a neuron-specific microRNA and plays a pivotal role in synaptogenesis, synaptic plasticity and structural remodeling. However, a role for miR-132 in neuronal death is not, as yet, well-delineated. Here we show that ischemic insults promote REST binding and epigenetic remodeling at the miR-132 promoter and silencing of miR-132 expression in selectively vulnerable hippocampal CA1 neurons. REST occupancy was not altered at the miR-9 or miR-124a promoters despite the presence of repressor element 1 sites, indicating REST target specificity. Ischemia induced a substantial decrease in two marks of active gene transcription, dimethylation of lysine 4 on core histone 3 (H3K4me2) and acetylation of lysine 9 on H3 (H3K9ac) at the miR-132 promoter. RNAi-mediated depletion of REST in vivo blocked ischemia-induced loss of miR-132 in insulted hippocampal neurons, consistent with a causal relation between activation of REST and silencing of miR-132. Overexpression of miR-132 in primary cultures of hippocampal neurons or delivered directly into the CA1 of living rats by means of the lentiviral expression system prior to induction of ischemia afforded robust protection against ischemia-induced neuronal death. These findings document a previously unappreciated role for REST-dependent repression of miR-132 in the neuronal death associated with global ischemia and identify a novel therapeutic target for amelioration of the neurodegeneration and cognitive deficits associated with ischemic stroke. PMID:25108103

  4. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids

    PubMed Central

    Hsieh, Ming-Hsien; Pan, Zhao-Jun; Lai, Pei-Han; Lu, Hsiang-Chia; Yeh, Hsin-Hung; Hsu, Chia-Chi; Wu, Wan-Lin; Chung, Mei-Chu; Wang, Shyh-Shyan; Chen, Wen-Huei; Chen, Hong-Hwa

    2013-01-01

    Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis. PMID:23956416

  5. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors.

    PubMed

    Dulmovits, Brian M; Appiah-Kubi, Abena O; Papoin, Julien; Hale, John; He, Mingzhu; Al-Abed, Yousef; Didier, Sebastien; Gould, Michael; Husain-Krautter, Sehba; Singh, Sharon A; Chan, Kyle W H; Vlachos, Adrianna; Allen, Steven L; Taylor, Naomi; Marambaud, Philippe; An, Xiuli; Gallagher, Patrick G; Mohandas, Narla; Lipton, Jeffrey M; Liu, Johnson M; Blanc, Lionel

    2016-03-17

    Current therapeutic strategies for sickle cell anemia are aimed at reactivating fetal hemoglobin. Pomalidomide, a third-generation immunomodulatory drug, was proposed to induce fetal hemoglobin production by an unknown mechanism. Here, we report that pomalidomide induced a fetal-like erythroid differentiation program, leading to a reversion of γ-globin silencing in adult human erythroblasts. Pomalidomide acted early by transiently delaying erythropoiesis at the burst-forming unit-erythroid/colony-forming unit-erythroid transition, but without affecting terminal differentiation. Further, the transcription networks involved in γ-globin repression were selectively and differentially affected by pomalidomide including BCL11A, SOX6, IKZF1, KLF1, and LSD1. IKAROS (IKZF1), a known target of pomalidomide, was degraded by the proteasome, but was not the key effector of this program, because genetic ablation of IKZF1 did not phenocopy pomalidomide treatment. Notably, the pomalidomide-induced reprogramming was conserved in hematopoietic progenitors from individuals with sickle cell anemia. Moreover, multiple myeloma patients treated with pomalidomide demonstrated increased in vivo γ-globin levels in their erythrocytes. Together, these data reveal the molecular mechanisms by which pomalidomide reactivates fetal hemoglobin, reinforcing its potential as a treatment for patients with β-hemoglobinopathies.

  6. The origin recognition complex links replication, sister chromatid cohesion and transcriptional silencing in Saccharomyces cerevisiae.

    PubMed Central

    Suter, Bernhard; Tong, Amy; Chang, Michael; Yu, Lisa; Brown, Grant W; Boone, Charles; Rine, Jasper

    2004-01-01

    Mutations in genes encoding the origin recognition complex (ORC) of Saccharomyces cerevisiae affect initiation of DNA replication and transcriptional repression at the silent mating-type loci. To explore the function of ORC in more detail, a screen for genetic interactions was undertaken using large-scale synthetic lethal analysis. Combination of orc2-1 and orc5-1 alleles with the complete set of haploid deletion mutants revealed synthetic lethal/sick phenotypes with genes involved in DNA replication, chromatin structure, checkpoints, DNA repair and recombination, and other genes that were unexpected on the basis of previous studies of ORC. Many of these genetic interactions are shared with other genes that are involved in initiation of DNA replication. Strong synthetic interactions were demonstrated with null mutations in genes that contribute to sister chromatid cohesion. A genetic interaction between orc5-1 and the cohesin mutant scc1-73 suggested that ORC function contributes to sister chromatid cohesion. Thus, comprehensive screening for genetic interactions with a replication gene revealed a connection between initiation of DNA replication and sister chromatid cohesion. Further experiments linked sister chromatid cohesion genes to silencing at mating-type loci and telomeres. PMID:15238513

  7. Identification and gene-silencing of a putative odorant receptor transcription factor in Varroa destructor: possible role in olfaction.

    PubMed

    Singh, N K; Eliash, N; Stein, I; Kamer, Y; Ilia, Z; Rafaeli, A; Soroker, V

    2016-04-01

    The ectoparasitic mite Varroa destructor is one of the major threats to apiculture. Using a behavioural choice bioassay, we determined that phoretic mites were more successful in reaching a bee than reproductive mites, suggesting an energy trade-off between reproduction and host selection. We used both chemo-ecological and molecular strategies to identify the regulation of the olfactory machinery of Varroa and its association with reproduction. We focused on transcription regulation. Using primers designed to the conserved DNA binding region of transcription factors, we identified a gene transcript in V. destructor homologous to the pheromone receptor transcription factor (PRTF) gene of Pediculus humanus corporis. Quantitative PCR (qPCR) revealed that this PRTF-like gene transcript is expressed in the forelegs at higher levels than in the body devoid of forelegs. Subsequent comparative qPCR analysis showed that transcript expression was significantly higher in the phoretic as compared to the reproductive stage. Electrophysiological and behavioural studies revealed a reduction in the sensitivity of PRTF RNA interference-silenced mites to bee headspace, consistent with a reduction in the mites' ability to reach a host. In addition, vitellogenin expression was stimulated in PRTF-silenced mites to similar levels as found in reproductive mites. These data shed light upon the regulatory mechanism of host chemosensing in V. destructor. PMID:26801167

  8. Transcriptional Gene Silencing Mediated by a Plastid Inner Envelope Phosphoenolpyruvate/Phosphate Translocator CUE1 in Arabidopsis1[OA

    PubMed Central

    Shen, Jie; Ren, Xiaozhi; Cao, Rui; Liu, Jun; Gong, Zhizhong

    2009-01-01

    Mutations in REPRESSOR OF SILENCING1 (ROS1) lead to the transcriptional gene silencing (TGS) of ProRD29A:LUC (LUCIFERASE) and Pro35S:NPTII (Neomycin Phosphotransferase II) reporter genes. We performed a genetic screen to find suppressors of ros1 that identified two mutant alleles in the Arabidopsis (Arabidopsis thaliana) CHLOROPHYLL A/B BINDING PROTEIN UNDEREXPRESSED1 (CUE1) gene, which encodes a plastid inner envelope phosphoenolpyruvate/phosphate translocator. The cue1 mutations released the TGS of Pro35S:NPTII and the transcriptionally silent endogenous locus TRANSCRIPTIONAL SILENCING INFORMATION in a manner that was independent of DNA methylation but dependent on chromatin modification. The cue1 mutations did not affect the TGS of ProRD29A:LUC in ros1, which was dependent on RNA-directed DNA methylation. It is possible that signals from chloroplasts help to regulate the epigenetic status of a subset of genomic loci in the nucleus. PMID:19515789

  9. Modulation of Moloney leukemia virus long terminal repeat transcriptional activity by the murine CD4 silencer in retroviral vectors.

    PubMed

    Indraccolo, S; Minuzzo, S; Habeler, W; Zamarchi, R; Fregonese, A; Günzburg, W H; Salmons, B; Uckert, W; Chieco-Bianchi, L; Amadori, A

    2000-10-10

    We investigated whether CD4 gene regulatory sequences might be useful for developing transcriptionally targeted Moloney murine leukemia virus (Mo-MLV)-based retroviral vectors for gene expression specifically in CD4(+) cells. We could modulate Mo-MLV long terminal repeat (LTR) activity by inserting a 438-bp-long fragment containing the murine CD4 silencer in the LTR of the vector; both beta-galactosidase and green fluorescent protein reporter gene activities were strongly down-regulated in both murine and human CD8(+) cells, but not in CD4(+) lymphoid cell lines and freshly isolated lymphocytes transduced with this vector, compared with the findings using a control vector carrying wild-type LTRs. Titration experiments on NIH-3T3 cells revealed that inclusion of the CD4 silencer in the LTRs did not reduce the titer of the vectors. These findings indicate that a cellular silencer can be successfully included in retroviral vectors, where it maintains its transcription-regulatory function, thus suggesting a novel approach to transcriptional targeting.

  10. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing.

    PubMed

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  11. Induction and maintenance of DNA methylation in plant promoter sequences by apple latent spherical virus-induced transcriptional gene silencing

    PubMed Central

    Kon, Tatsuya; Yoshikawa, Nobuyuki

    2014-01-01

    Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109

  12. The Code of Silence: Widespread Associations Between Synonymous Codon Biases and Gene Function.

    PubMed

    Supek, Fran

    2016-01-01

    Some mutations in gene coding regions exchange one synonymous codon for another, and thus do not alter the amino acid sequence of the encoded protein. Even though they are often called 'silent,' these mutations may exhibit a plethora of effects on the living cell. Therefore, they are often selected during evolution, causing synonymous codon usage biases in genomes. Comparative analyses of bacterial, archaeal, fungal, and human cancer genomes have found many links between a gene's biological role and the accrual of synonymous mutations during evolution. In particular, highly expressed genes in certain functional categories are enriched with optimal codons, which are decoded by the abundant tRNAs, thus enhancing the speed and accuracy of the translating ribosome. The set of genes exhibiting codon adaptation differs between genomes, and these differences show robust associations to organismal phenotypes. In addition to selection for translation efficiency, other distinct codon bias patterns have been found in: amino acid starvation genes, cyclically expressed genes, tissue-specific genes in animals and plants, oxidative stress response genes, cellular differentiation genes, and oncogenes. In addition, genomes of organisms harboring tRNA modifications exhibit particular codon preferences. The evolutionary trace of codon bias patterns across orthologous genes may be examined to learn about a gene's relevance to various phenotypes, or, more generally, its function in the cell. PMID:26538122

  13. Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions.

    PubMed

    Abrajano, Joseph J; Qureshi, Irfan A; Gokhan, Solen; Molero, Aldrin E; Zheng, Deyou; Bergman, Aviv; Mehler, Mark F

    2010-09-21

    The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) silences neuronal genes in neural stem cells (NSCs) and nonneuronal cells through its role as a dynamic modular platform for recruitment of transcriptional and epigenetic regulatory cofactors to RE1-containing promoters. In embryonic stem cells, the REST regulatory network is highly integrated with the transcriptional circuitry governing self-renewal and pluripotency, although its exact functional role is unclear. The C-terminal cofactor for REST, CoREST, also acts as a modular scaffold, but its cell type-specific roles have not been elucidated. We used chromatin immunoprecipitation-on-chip to examine CoREST and REST binding sites in NSCs and their proximate progenitor species. In NSCs, we identified a larger number of CoREST (1,820) compared with REST (322) target genes. The majority of these CoREST targets do not contain known RE1 motifs. Notably, these CoREST target genes do play important roles in pluripotency networks, in modulating NSC identity and fate decisions and in epigenetic processes previously associated with both REST and CoREST. Moreover, we found that NSC-mediated developmental transitions were associated primarily with liberation of CoREST from promoters with transcriptional repression favored in less lineage-restricted radial glia and transcriptional activation favored in more lineage-restricted neuronal-oligodendrocyte precursors. Clonal NSC REST and CoREST gene manipulation paradigms further revealed that CoREST has largely independent and previously uncharacterized roles in promoting NSC multilineage potential and modulating early neural fate decisions. PMID:20823235

  14. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing

    PubMed Central

    Davuluri, Ganga Rao; van Tuinen, Ageeth; Mustilli, Anna Chiara; Manfredonia, Alessandro; Newman, Robert; Burgess, Diane; Brummell, David A.; King, Stephen R.; Palys, Joe; Uhlig, John; Pennings, Henk M. J.; Bowler, Chris

    2013-01-01

    Summary The tomato HIGH PIGMENT-2 gene encodes an orthologue of the Arabidopsis nuclear protein DE-ETIOLATED 1 (DET1). From genetic analyses it has been proposed that DET1 is a negative regulator of light signal transduction, and recent results indicate that it may control light-regulated gene expression at the level of chromatin remodelling. To gain further understanding about the function of DET1 during plant development, we generated a range of overexpression constructs and introduced them into tomato. Unexpectedly, we only observed phenotypes characteristic of DET1 inactivation, i.e. hyper-responsiveness to light. Molecular analysis indicated in all cases that these phenotypes were a result of suppression of endogenous DET1 expression, due to post-transcriptional gene silencing. DET1 silencing was often lethal when it occurred at relatively early stages of plant development, whereas light hyper-responsive phenotypes were obtained when silencing occurred later on. The appearance of phenotypes correlated with the generation of siRNAs but not DNA hypermethylation, and was most efficient when using constructs with mutations in the DET1 coding sequence or with constructs containing only the 3′-terminal portion of the gene. These results indicate an important function for DET1 throughout plant development and demonstrate that silencing of DET1 in fruits results in increased carotenoids, which may have biotechnological potential. PMID:15469492

  15. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.

    PubMed

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi

    2009-12-01

    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  16. Media coverage of climate change in Russia: governmental bias and climate silence.

    PubMed

    Poberezhskaya, Marianna

    2015-01-01

    This paper explores which actors and factors influence media coverage of climate change in Russia. It does this by analysing the coverage of three events by five Russian national newspapers (Komsomol'skaya pravda, Rossiyskaya gazeta, Izvestiya, Kommersant and Sovetskaya Rossiya). The three events are the Kyoto Conference in 1997, the Copenhagen Conference in 2009 and the Russian heat-wave of 2010. This paper concludes that regardless of the ownership structure of the newspapers or their dependence on advertising, there is little difference in quantity and quality of overall coverage on climate change. With most newspapers relying on Russian officials as information sources, almost none criticise or question Russian climate policy. Furthermore, the article concludes that, in Russia, the omission of climate change issues from discussion in national newspapers becomes a greater problem than biased coverage, as the lack of commentary decidedly prevents these issues from entering the public debate. PMID:24510920

  17. Media coverage of climate change in Russia: governmental bias and climate silence.

    PubMed

    Poberezhskaya, Marianna

    2015-01-01

    This paper explores which actors and factors influence media coverage of climate change in Russia. It does this by analysing the coverage of three events by five Russian national newspapers (Komsomol'skaya pravda, Rossiyskaya gazeta, Izvestiya, Kommersant and Sovetskaya Rossiya). The three events are the Kyoto Conference in 1997, the Copenhagen Conference in 2009 and the Russian heat-wave of 2010. This paper concludes that regardless of the ownership structure of the newspapers or their dependence on advertising, there is little difference in quantity and quality of overall coverage on climate change. With most newspapers relying on Russian officials as information sources, almost none criticise or question Russian climate policy. Furthermore, the article concludes that, in Russia, the omission of climate change issues from discussion in national newspapers becomes a greater problem than biased coverage, as the lack of commentary decidedly prevents these issues from entering the public debate.

  18. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate. PMID:25691247

  19. RE1 silencing transcription factor/neuron-restrictive silencing factor regulates expansion of adult mouse subventricular zone-derived neural stem/progenitor cells in vitro.

    PubMed

    Soldati, Chiara; Caramanica, Pasquale; Burney, Matthew J; Toselli, Camilla; Bithell, Angela; Augusti-Tocco, Gabriella; Stanton, Lawrence W; Biagioni, Stefano; Buckley, Noel J; Cacci, Emanuele

    2015-08-01

    Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate.

  20. Conserved factor Dhp1/Rat1/Xrn2 triggers premature transcription termination and nucleates heterochromatin to promote gene silencing

    PubMed Central

    Chalamcharla, Venkata R.; Folco, H. Diego; Dhakshnamoorthy, Jothy; Grewal, Shiv I. S.

    2015-01-01

    Cotranscriptional RNA processing and surveillance factors mediate heterochromatin formation in diverse eukaryotes. In fission yeast, RNAi machinery and RNA elimination factors including the Mtl1–Red1 core and the exosome are involved in facultative heterochromatin assembly; however, the exact mechanisms remain unclear. Here we show that RNA elimination factors cooperate with the conserved exoribonuclease Dhp1/Rat1/Xrn2, which couples pre-mRNA 3′-end processing to transcription termination, to promote premature termination and facultative heterochromatin formation at meiotic genes. We also find that Dhp1 is critical for RNAi-mediated heterochromatin assembly at retroelements and regulated gene loci and facilitates the formation of constitutive heterochromatin at centromeric and mating-type loci. Remarkably, our results reveal that Dhp1 interacts with the Clr4/Suv39h methyltransferase complex and acts directly to nucleate heterochromatin. Our work uncovers a previously unidentified role for 3′-end processing and transcription termination machinery in gene silencing through premature termination and suggests that noncanonical transcription termination by Dhp1 and RNA elimination factors is linked to heterochromatin assembly. These findings have important implications for understanding silencing mechanisms targeting genes and repeat elements in higher eukaryotes. PMID:26631744

  1. SOX30, a novel epigenetic silenced tumor suppressor, promotes tumor cell apoptosis by transcriptional activating p53 in lung cancer.

    PubMed

    Han, F; Liu, W; Jiang, X; Shi, X; Yin, L; Ao, L; Cui, Z; Li, Y; Huang, C; Cao, J; Liu, J

    2015-08-13

    Although members of SOX family have been well documented for their essential roles in embryonic development, cell proliferation and disease, the functional role and molecular mechanism of SOX30 in cancer are largely unexplored. Here, we first identified SRY-box containing gene 30 (SOX30) as a novel preferentially methylated gene using genome-wide methylation screening. SOX30 hypermethylation was detected in 100% of lung cancer cell lines (9/9) and 70.83% (85/120) of primary lung tumor tissues compared with none (0/20) of normal and 8.0% (2/25) of peri-tumoral lung tissues (P<0.01). SOX30 was expressed in normal and peri-tumoral lung tissues in which SOX30 was unmethylated, but was silenced or downregulated in lung cancer cell lines and primary lung tumor tissues harboring a hypermethylated SOX30. De-methylation experiments further confirmed that silence of SOX30 was regulated by its hypermethylation. Ectopic expression of SOX30 induces cancer cell apoptosis with inhibiting proliferation in vitro and represses tumor formation in vivo, whereas knockdown of SOX30 demonstrates a reversed effect both in vitro and in vivo. At the molecular level, the antitumorigenic effect of SOX30 is mediated by directly binding to CACTTTG (+115 to +121) of p53 promoter region and activating p53 transcription, suggesting that SOX30 is a novel transcriptional activating factor of p53. Indeed, blockade of p53 attenuates the tumor inhibition of SOX30. Overall, these findings demonstrate that SOX30 is a novel epigenetic silenced tumor suppressor acting through direct regulation of p53 transcription and expression. This study provides novel insights on the mechanism of tumorigenesis in lung cancer. PMID:25435374

  2. Rapid, cell-based toxicity screen of potentially therapeutic post-transcriptional gene silencing agents.

    PubMed

    Kolniak, Tiffany A; Sullivan, Jack M

    2011-05-01

    Post-transcriptional gene silencing (PTGS) agents such as antisense, ribozymes and RNA interference (RNAi) have great potential as therapeutics for a variety of eye diseases including retinal and macular degenerations, glaucoma, corneal degenerations, inflammatory and viral conditions. Despite their great potential and over thirty years of academic and corporate research only a single PTGS agent is currently approved for human therapy for a single disease. Substantial challenges exist to achieving both efficacious and safe PTGS agents. Efficacy, as measured in specific target mRNA and protein knockdown, depends upon a number of complex factors including the identification of rare regions of target mRNA accessibility, cellular co-localization of the PTGS agent in sufficient concentration with the target mRNA, and stability of the PTGS agent in the target cells in which it is delivered or expressed. Safety is commonly measured by lack of cytotoxicity or other deleterious cellular responses in cells in which the PTGS agent is delivered or expressed. To relieve major bottlenecks in RNA drug discovery novel, efficient, inexpensive, and rapid tools are needed to facilitate lead identification of the most efficacious PTGS agent, rational optimization of efficacy of the lead agent, and lead agent safety determinations. We have developed a technological platform using cell culture expression systems that permits lead identification and efficacy optimization of PTGS agents against arbitrary disease target mRNAs under relatively high throughput conditions. Here, we extend the technology platform to include PTGS safety determinations in cultured human cells that are expected to represent the common cellular housekeeping microenvironment. We developed a high throughput screening (HTS) cytotoxicity assay in 96-well plate format based around the SYTOX Green dye which is excluded from healthy viable cells and becomes substantially fluorescent only after entering cells and binding

  3. Rapid, cell-based toxicity screen of potentially therapeutic post-transcriptional gene silencing agents.

    PubMed

    Kolniak, Tiffany A; Sullivan, Jack M

    2011-05-01

    Post-transcriptional gene silencing (PTGS) agents such as antisense, ribozymes and RNA interference (RNAi) have great potential as therapeutics for a variety of eye diseases including retinal and macular degenerations, glaucoma, corneal degenerations, inflammatory and viral conditions. Despite their great potential and over thirty years of academic and corporate research only a single PTGS agent is currently approved for human therapy for a single disease. Substantial challenges exist to achieving both efficacious and safe PTGS agents. Efficacy, as measured in specific target mRNA and protein knockdown, depends upon a number of complex factors including the identification of rare regions of target mRNA accessibility, cellular co-localization of the PTGS agent in sufficient concentration with the target mRNA, and stability of the PTGS agent in the target cells in which it is delivered or expressed. Safety is commonly measured by lack of cytotoxicity or other deleterious cellular responses in cells in which the PTGS agent is delivered or expressed. To relieve major bottlenecks in RNA drug discovery novel, efficient, inexpensive, and rapid tools are needed to facilitate lead identification of the most efficacious PTGS agent, rational optimization of efficacy of the lead agent, and lead agent safety determinations. We have developed a technological platform using cell culture expression systems that permits lead identification and efficacy optimization of PTGS agents against arbitrary disease target mRNAs under relatively high throughput conditions. Here, we extend the technology platform to include PTGS safety determinations in cultured human cells that are expected to represent the common cellular housekeeping microenvironment. We developed a high throughput screening (HTS) cytotoxicity assay in 96-well plate format based around the SYTOX Green dye which is excluded from healthy viable cells and becomes substantially fluorescent only after entering cells and binding

  4. Homoeolog-specific transcriptional bias in allopolyploid wheat

    PubMed Central

    2010-01-01

    Background Interaction between parental genomes is accompanied by global changes in gene expression which, eventually, contributes to growth vigor and the broader phenotypic diversity of allopolyploid species. In order to gain a better understanding of the effects of allopolyploidization on the regulation of diverged gene networks, we performed a genome-wide analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat created by the hybridization of a tetraploid derivative of hexaploid wheat with the diploid ancestor of the wheat D genome Ae. tauschii. Results Affymetrix wheat genome arrays were used for both the discovery of divergent homoeolog-specific mutations and analysis of homoeolog-specific gene expression in re-synthesized allohexaploid wheat. More than 34,000 detectable parent-specific features (PSF) distributed across the wheat genome were used to assess AB genome (could not differentiate A and B genome contributions) and D genome parental expression in the allopolyploid transcriptome. In re-synthesized polyploid 81% of PSFs detected mid-parent levels of gene expression, and only 19% of PSFs showed the evidence of non-additive expression. Non-additive expression in both AB and D genomes was strongly biased toward up-regulation of parental type of gene expression with only 6% and 11% of genes, respectively, being down-regulated. Of all the non-additive gene expression, 84% can be explained by differences in the parental genotypes used to make the allopolyploid. Homoeolog-specific co-regulation of several functional gene categories was found, particularly genes involved in photosynthesis and protein biosynthesis in wheat. Conclusions Here, we have demonstrated that the establishment of interactions between the diverged regulatory networks in allopolyploids is accompanied by massive homoeolog-specific up- and down-regulation of gene expression. This study provides insights into interactions between homoeologous genomes and their role

  5. EWS and RE1-Silencing Transcription Factor Inhibit Neuronal Phenotype Development and Oncogenic Transformation in Ewing Sarcoma.

    PubMed

    Sankar, Savita; Gomez, Nicholas C; Bell, Russell; Patel, Mukund; Davis, Ian J; Lessnick, Stephen L; Luo, Wen

    2013-05-01

    The gene encoding EWS (EWSR1) is involved in various chromosomal translocations that cause the production of oncoproteins responsible for multiple cancers including Ewing sarcoma, myxoid liposarcoma, soft tissue clear cell sarcoma, and desmoplastic small round cell sarcoma. It is well known that EWS fuses to FLI to create EWS/FLI, which is the abnormal transcription factor that drives tumor development in Ewing sarcoma. However, the role of wild-type EWS in Ewing sarcoma pathogenesis remains unclear. In the current study, we identified EWS-regulated genes and cellular processes through RNA interference combined with RNA sequencing and functional annotation analyses. Interestingly, we found that EWS and EWS/FLI co-regulate a significant cluster of genes, indicating an interplay between the 2 proteins in regulating cellular functions. We found that among the EWS-down-regulated genes are a subset of neuronal genes that contain binding sites for the RE1-silencing transcription factor (REST or neuron-restrictive silencer factor [NRSF]), neuron-restrictive silencer element (NRSE), suggesting a cooperative interaction between REST and EWS in gene regulation. Co-immunoprecipitation analysis demonstrated that EWS interacts directly with REST. Genome-wide binding analysis showed that EWS binds chromatin at or near NRSE. Furthermore, functional studies revealed that both EWS and REST inhibit neuronal phenotype development and oncogenic transformation in Ewing sarcoma cells. Our data implicate an important role of EWS in the development of Ewing sarcoma phenotype and highlight a potential value in modulating EWS function in the treatment of Ewing sarcoma and other EWS translocation-based cancers. PMID:24069508

  6. Expression and functions of the repressor element 1 (RE-1)-silencing transcription factor (REST) in breast cancer.

    PubMed

    Lv, Hui; Pan, Guoqing; Zheng, Guopei; Wu, Xiaoying; Ren, Hongzheng; Liu, Ying; Wen, Jifang

    2010-07-01

    The repressor element 1 (RE-1)-silencing transcription factor (REST), also known as the neuron-restrictive silencer factor (NRSF) or repressor binding to the X2 box (XBR), REST/NRSF/XBR, is originally discovered as a transcriptional repressor of a large number of primarily terminal neuronal differentiation genes in non-neuronal cells and neural stem cells (NSCs). Recently, the tumor-suppressor function of REST is finally proved. However, the expression profile and function of REST in breast cancer are not very clear. In this study, the expression of REST was detected in breast cancer tissue by immunohistochemistry. The results showed that REST expression was significantly lower in breast cancer samples compared to normal and benign breast samples (P < 0.05). Furthermore, the shRNA approach was used to investigate the function of REST in human breast cancer cells. Knocking down REST expression by shRNA in the human breast cancer MCF-7 cells resulted in an increase in cell proliferation, suppression in apoptosis, and reduced sensitivity to anticancer drug with a concurrent significantly up-regulated expression of Bcl-2. These data implied a significant role of REST in breast cancer. The reduced expression of REST might contribute to the breast cancer pathogenesis. PMID:20564196

  7. Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants.

    PubMed

    Moreno, Ana Beatriz; Martínez de Alba, Angel Emilio; Bardou, Florian; Crespi, Martin D; Vaucheret, Hervé; Maizel, Alexis; Mallory, Allison C

    2013-04-01

    Eukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5'-3' exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates. Here, we show that impairing nonsense-mediated decay, deadenylation or exosome activity enhanced S-PTGS, which requires host RNA-dependent RNA polymerase 6 (RDR6/SGS2/SDE1) and SUPPRESSOR OF GENE SILENCING 3 (SGS3) for the transformation of single-stranded RNA into dsRNA to trigger PTGS. However, these RQC mutations had no effect on inverted-repeat-PTGS, which directly produces hairpin dsRNA through transcription. Moreover, we show that these RQC factors are nuclear and cytoplasmic and are found in two RNA degradation foci in the cytoplasm: siRNA-bodies and processing-bodies. We propose a model of single-stranded RNA tug-of-war between RQC and S-PTGS that ensures the correct partitioning of RNA substrates among these RNA degradation pathways. PMID:23482394

  8. Transcriptional read-through is not sufficient to induce an epigenetic switch in the silencing activity of Polycomb response elements

    PubMed Central

    Erokhin, Maksim; Elizar’ev, Pavel; Parshikov, Aleksander; Schedl, Paul; Georgiev, Pavel; Chetverina, Darya

    2015-01-01

    In Drosophila, Polycomb (PcG) and Trithorax (TrxG) group proteins are assembled on Polycomb response elements (PREs) to maintain tissue and stage-specific patterns of gene expression. Critical to coordinating gene expression with the process of differentiation, the activity of PREs can be switched “on” and “off.” When on, the PRE imposes a silenced state on the genes in the same domain that is stably inherited through multiple rounds of cell division. When the PRE is switched off, the domain is in a state permissive for gene expression that can be stably inherited. Previous studies have suggested that a burst of transcription through a PRE sequence displaces PcG proteins and provides a universal mechanism for inducing a heritable switch in PRE activity from on to off; however, the evidence favoring this model is indirect. Here, we have directly tested the transcriptional read-through mechanism. Contrary to previous suggestions, we show that transcription through the PRE is not sufficient for inducing an epigenetic switch in PRE activity. In fact, even high levels of continuous transcription through a PRE fails to dislodge the PcG proteins, nor does it remove repressive histone marks. Our results indicate that other mechanisms involving adjacent DNA regulatory elements must be implicated in heritable switch of PRE activity. PMID:26504232

  9. Epigenetic silencing of spermatocyte-specific and neuronal genes by SUMO modification of the transcription factor Sp3.

    PubMed

    Stielow, Bastian; Krüger, Imme; Diezko, Rolf; Finkernagel, Florian; Gillemans, Nynke; Kong-a-San, John; Philipsen, Sjaak; Suske, Guntram

    2010-11-01

    SUMO modification of transcription factors is linked to repression of transcription. The physiological significance of SUMO attachment to a particular transcriptional regulator, however, is largely unknown. We have employed the ubiquitously expressed murine transcription factor Sp3 to analyze the role of SUMOylation in vivo. We generated mice and mouse embryonic fibroblasts (MEFs) carrying a subtle point mutation in the SUMO attachment sequence of Sp3 (IKEE(553)D mutation). The E(553)D mutation impedes SUMOylation of Sp3 at K(551)in vivo, without affecting Sp3 protein levels. Expression profiling revealed that spermatocyte-specific genes, such as Dmc1 and Dnahc8, and neuronal genes, including Paqr6, Rims3, and Robo3, are de-repressed in non-testicular and extra-neuronal mouse tissues and in mouse embryonic fibroblasts expressing the SUMOylation-deficient Sp3E(553)D mutant protein. Chromatin immunoprecipitation experiments show that transcriptional de-repression of these genes is accompanied by the loss of repressive heterochromatic marks such as H3K9 and H4K20 tri-methylation and impaired recruitment of repressive chromatin-modifying enzymes. Finally, analysis of the DNA methylation state of the Dmc1, Paqr6, and Rims3 promoters by bisulfite sequencing revealed that these genes are highly methylated in Sp3wt MEFs but are unmethylated in Sp3E(553)D MEFs linking SUMOylation of Sp3 to tissue-specific CpG methylation. Our results establish SUMO conjugation to Sp3 as a molecular beacon for the assembly of repression machineries to maintain tissue-specific transcriptional gene silencing.

  10. Analysis of optimized DNase-seq reveals intrinsic bias in transcription factor footprint identification

    PubMed Central

    Chen, Mei-Wei; Zang, Chongzhi; Liu, Yin; Rao, Prakash K.; Fei, Teng; Xu, Han; Long, Henry; Liu, X. Shirley; Brown, Myles

    2014-01-01

    DNase-seq is a powerful technique for identifying cis-regulatory elements across the genome. We studied the key experimental parameters to optimize the performance of DNase-seq. We found that sequencing short 50-100bp fragments that accumulate in long inter-nucleosome linker regions is more efficient for identifying transcription factor binding sites than using longer fragments. We also assessed the potential of DNase-seq to predict transcription factor occupancy through the generation of nucleotide-resolution transcription factor footprints. In modeling the sequence-specific DNaseI cutting bias we found a surprisingly strong effect that varied over more than two orders of magnitude. This confounds DNaseI footprint analysis to the extent that the nucleotide resolution cleavage patterns at most transcription factor binding sites are derived from intrinsic DNaseI cleavage bias rather than from specific protein-DNA interactions. In contrast, quantitative comparison of DNaseI hypersensitivity between states can predict transcription factor occupancy associated with particular biological perturbations. PMID:24317252

  11. Silencing clusterin gene transcription on effects of multidrug resistance reversing of human hepatoma HepG2/ADM cells.

    PubMed

    Zheng, Wenjie; Sai, Wenli; Yao, Min; Gu, Hongbin; Yao, Yao; Qian, Qi; Yao, Dengfu

    2015-05-01

    Abnormal clusterin (CLU) expression is associated with multidrug resistance (MDR) of hepatocellular carcinoma (HCC). In the present study, the CLU expression was analyzed in human hepatoma cells and chemoresistant counterpart HepG2/ADM cells. Compared with L02 cells, the overexpression of cellular CLU was identified in HepG2, HepG2/ADM, SMMC7721, Hep3B ,and PLC cells and relatively lower expression in Bel-7404, SNU-739, and MHCC97H cells. Specific short hairpin RNAs (shRNAs) to silence CLU gene transcription were designed, and the most effective sequences were screened. After the HepG2/ADM cells transfected with shRNA-1, the inhibition of CLU expression was 73.68 % at messenger RNA (mRNA) level by real-time quantitative RT-PCR with obvious enhancement in cell chemosensitivity, increasing apoptosis induced by doxorubicin using fluorescence kit, and Rh-123 retention qualified with flow cytometry. Knockdown CLU also significantly decreased the drug efflux pump activity through the depression of MDR1/P-glycoprotein (q = 11.739, P < 0.001). Moreover, silencing CLU led to downregulation of β-catenin (q = 13.544, P = 0.001), suggesting that downregulation of CLU might be a key point to reverse multidrug resistance of HepG2/ADM cells. PMID:25600802

  12. RE1-silencing transcription factor (REST) and REST-interacting LIM domain protein (RILP) affect P19CL6 differentiation.

    PubMed

    Shimojo, Masahito

    2011-01-01

    During cardiac development, the heart produces the atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). These peptides are found in high levels in cardiomyocytes and, like a number of other embryonic genes, are up-regulated in both failing and hypertrophied ventricles. At the transcriptional level, BNP and ANP genes are regulated through RE1 regulatory element, which binds RE1-silencing transcription factor (REST). REST/NRSF-interacting LIM domain protein (RILP) is required for the nuclear targeting and function of REST. In this study, the role of RILP and REST in cardiomyocyte development using a model system was studied by analyzing the expression of RILP and REST as well as several cardiac-specific genes during P19CL6 cell differentiation. Effects of RILP overexpression and transcriptional regulation of RILP in differentiating P19CL6 cells were also studied. RILP expression is transiently reduced during P19CL6 cell differentiation; however, REST expression remains unchanged. This transient reduction in RILP expression correlates with de-repression of sarcomeric myosin heavy chain, a marker for cardiomyocyte differentiation. Reporter gene analysis shows that RILP gene is down-regulated through 5'-regulatory elements before cardiac-specific gene expression. These results suggest that RILP expression and function control REST action more so than does REST expression and is an important regulatory role in cardiomyocyte differentiation. PMID:21199191

  13. Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling.

    PubMed

    Bouhouche, Khaled; Gout, Jean-François; Kapusta, Aurélie; Bétermier, Mireille; Meyer, Eric

    2011-05-01

    Proteins of the Argonaute family are small RNA carriers that guide regulatory complexes to their targets. The family comprises two major subclades. Members of the Ago subclade, which are present in most eukaryotic phyla, bind different classes of small RNAs and regulate gene expression at both transcriptional and post-transcriptional levels. Piwi subclade members appear to have been lost in plants and fungi and were mostly studied in metazoa, where they bind piRNAs and have essential roles in sexual reproduction. Their presence in ciliates, unicellular organisms harbouring both germline micronuclei and somatic macronuclei, offers an interesting perspective on the evolution of their functions. Here, we report phylogenetic and functional analyses of the 15 Piwi genes from Paramecium tetraurelia. We show that four constitutively expressed proteins are involved in siRNA pathways that mediate gene silencing throughout the life cycle. Two other proteins, specifically expressed during meiosis, are required for accumulation of scnRNAs during sexual reproduction and for programmed genome rearrangements during development of the somatic macronucleus. Our results indicate that Paramecium Piwi proteins have evolved to perform both vegetative and sexual functions through mechanisms ranging from post-transcriptional mRNA cleavage to epigenetic regulation of genome rearrangements. PMID:21216825

  14. MIDGET Unravels Functions of the Arabidopsis Topoisomerase VI Complex in DNA Endoreduplication, Chromatin Condensation, and Transcriptional Silencing[W

    PubMed Central

    Kirik, Viktor; Schrader, Andrea; Uhrig, Joachim F.; Hulskamp, Martin

    2007-01-01

    The plant homologs of the archaeal DNA topoisomerase VI complex are required for the progression of endoreduplication cycles. Here, we describe the identification of MIDGET (MID) as a novel component of topoisomerase VI. We show that mid mutants show the same phenotype as rhl1, rhl2, and top6B mutants and that MID protein physically interacts with RHL1. The phenotypic analysis revealed new phenotypes, indicating that topoisomerase VI is involved in chromatin organization and transcriptional silencing. In addition, genetic evidence is provided suggesting that the ATR-dependent DNA damage repair checkpoint is activated in mid mutants, and CYCB1;1 is ectopically activated. Finally, we demonstrate that overexpression of CYCB1;2 can rescue the endoreduplication defects in mid mutants, suggesting that in mid mutants, a specific checkpoint is activated preventing further progression of endoreduplication cycles. PMID:17951446

  15. Requirement for flap endonuclease 1 (FEN1) to maintain genomic stability and transcriptional gene silencing in Arabidopsis.

    PubMed

    Zhang, Jixiang; Xie, Shaojun; Zhu, Jian-Kang; Gong, Zhizhong

    2016-09-01

    As a central component in the maturation of Okazaki fragments, flap endonuclease 1 (FEN1) removes the 5'-flap and maintains genomic stability. Here, FEN1 was cloned as a suppressor of transcriptional gene silencing (TGS) from a forward genetic screen. FEN1 is abundant in the root and shoot apical meristems and FEN1-GFP shows a nucleolus-localized signal in tobacco cells. The Arabidopsis fen1-1 mutant is hypersensitive to methyl methanesulfonate and shows reduced telomere length. Interestingly, genome-wide chromatin immunoprecipitation and RNA sequencing results demonstrate that FEN1 mutation leads to a decrease in the level of H3K27me3 and an increase in the expression of a subset of genes marked with H3K27me3. Overall, these results uncover a role for FEN1 in mediating TGS as well as maintaining genome stability in Arabidopsis.

  16. Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea.

    PubMed

    Augustine, Rehna; Mukhopadhyay, Arundhati; Bisht, Naveen C

    2013-09-01

    Brassica juncea (Indian mustard), a globally important oilseed crop, contains relatively high amount of seed glucosinolates ranging from 80 to 120 μmol/g dry weight (DW). One of the major breeding objectives in oilseed Brassicas is to improve the seed-meal quality through the development of low-seed-glucosinolate lines (<30 μmol/g DW), as high amounts of certain seed glucosinolates are known to be anti-nutritional and reduce the meal palatability. Here, we report the development of transgenic B. juncea lines having seed glucosinolates as low as 11.26 μmol/g DW, through RNAi-based targeted suppression of BjMYB28, a R2R3-MYB transcription factor family gene involved in aliphatic glucosinolate biosynthesis. Targeted silencing of BjMYB28 homologs provided significant reduction in the anti-nutritional aliphatic glucosinolates fractions, without altering the desirable nonaliphatic glucosinolate pool, both in leaves and seeds of transgenic plants. Molecular characterization of single-copy, low glucosinolate homozygous lines confirmed significant down-regulation of BjMYB28 homologs vis-à-vis enhanced accumulation of BjMYB28-specific siRNA pool. Consequently, these low glucosinolate lines also showed significant suppression of genes involved in aliphatic glucosinolate biosynthesis. The low glucosinolate trait was stable in subsequent generations of the transgenic lines with no visible off-target effects on plant growth and development. Various seed quality parameters including fatty acid composition, oil content, protein content and seed weight of the low glucosinolate lines also remained unaltered, when tested under containment conditions in the field. Our results indicate that targeted silencing of a key glucosinolate transcriptional regulator MYB28 has huge potential for reducing the glucosinolates content and improving the seed-meal quality of oilseed Brassica crops. PMID:23721233

  17. Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation.

    PubMed

    Buchmann, R Cody; Asad, Shaheen; Wolf, Jamie N; Mohannath, Gireesha; Bisaro, David M

    2009-05-01

    Geminiviruses replicate single-stranded DNA genomes through double-stranded intermediates that associate with cellular histone proteins. Unlike RNA viruses, they are subject to RNA-directed methylation pathways that target viral chromatin and likely lead to transcriptional gene silencing (TGS). Here we present evidence that the related geminivirus proteins AL2 and L2 are able to suppress this aspect of host defense. AL2 and L2 interact with and inactivate adenosine kinase (ADK), which is required for efficient production of S-adenosyl methionine, an essential methyltransferase cofactor. We demonstrate that the viral proteins can reverse TGS of a green fluorescent protein (GFP) transgene in Nicotiana benthamiana when overexpressed from a Potato virus X vector and that reversal of TGS by geminiviruses requires L2 function. We also show that AL2 and L2 cause ectopic expression of endogenous Arabidopsis thaliana loci silenced by methylation in a manner that correlates with ADK inhibition. However, at one exceptional locus, ADK inhibition was insufficient and TGS reversal required the transcriptional activation domain of AL2. Using restriction-sensitive PCR and bisulfite sequencing, we showed that AL2-mediated TGS suppression is accompanied by reduced cytosine methylation. Finally, using a methylation-sensitive single-nucleotide extension assay, we showed that transgenic expression of AL2 or L2 causes global reduction in cytosine methylation. Our results provide further evidence that viral chromatin methylation is an important host defense and allow us to propose that as a countermeasure, geminivirus proteins reverse TGS by nonspecifically inhibiting cellular transmethylation reactions. To our knowledge, this is the first report that viral proteins can inhibit TGS. PMID:19279102

  18. Epigenetic silencing of Bim transcription by Spi-1/PU.1 promotes apoptosis resistance in leukaemia.

    PubMed

    Ridinger-Saison, M; Evanno, E; Gallais, I; Rimmelé, P; Selimoglu-Buet, D; Sapharikas, E; Moreau-Gachelin, F; Guillouf, C

    2013-09-01

    Deregulation of transcriptional networks contributes to haematopoietic malignancies. The transcription factor Spi-1/PU.1 is a master regulator of haematopoiesis and its alteration leads to leukaemia. Spi-1 overexpression inhibits differentiation and promotes resistance to apoptosis in erythroleukaemia. Here, we show that Spi-1 inhibits mitochondrial apoptosis in vitro and in vivo through the transcriptional repression of Bim, a proapoptotic factor. BIM interacts with MCL-1 that behaves as a major player in the survival of the preleukaemic cells. The repression of BIM expression reduces the amount of BIM-MCL-1 complexes, thus increasing the fraction of potentially active antiapoptotic MCL-1. We then demonstrate that Spi-1 represses Bim transcription by binding to the Bim promoter and by promoting the trimethylation of histone 3 on lysine 27 (H3K27me3, a repressive histone mark) on the Bim promoter. The PRC2 repressive complex of Polycomb is directly responsible for the deposit of H3K27me3 mark at the Bim promoter. SUZ12 and the histone methyltransferase EZH2, two PRC2 subunits bind to the Bim promoter at the same location than H3K27me3, distinct of the Spi-1 DNA binding site. As Spi-1 interacts with SUZ12 and EZH2, these results indicate that Spi-1 modulates the activity of PRC2 without directly recruiting the complex to the site of its activity on the chromatin. Our results identify a new mechanism whereby Spi-1 represses transcription and provide mechanistic insights on the antiapoptotic function of a transcription factor mediated by the epigenetic control of gene expression.

  19. Allele-specific silencing of EEC p63 mutant R304W restores p63 transcriptional activity

    PubMed Central

    Novelli, F; Lena, A M; Panatta, E; Nasser, W; Shalom-Feuerstein, R; Candi, E; Melino, G

    2016-01-01

    EEC (ectrodactily-ectodermal dysplasia and cleft lip/palate) syndrome is a rare genetic disease, autosomal dominant inherited. It is part of the ectodermal dysplasia disorders caused by heterozygous mutations in TP63 gene. EEC patients present limb malformations, orofacial clefting, skin and skin's appendages defects, ocular abnormalities. The transcription factor p63, encoded by TP63, is a master gene for the commitment of ectodermal-derived tissues, being expressed in the apical ectodermal ridge is critical for vertebrate limb formation and, at a later stage, for skin and skin's appendages development. The ΔNp63α isoform is predominantly expressed in epithelial cells and it is indispensable for preserving the self-renewal capacity of adult stem cells and to engage specific epithelial differentiation programs. Small interfering RNA (siRNA) offers a potential therapy approach for EEC patients by selectively silencing the mutant allele. Here, using a systemic screening based on a dual-luciferase reported gene assay, we have successfully identified specific siRNAs for repressing the EEC-causing p63 mutant, R304W. Upon siRNA treatment, we were able to restore ΔNp63-WT allele transcriptional function in induced pluripotent stem cells that were derived from EEC patient biopsy. This study demonstrates that siRNAs approach is promising and, may pave the way for curing/delaying major symptoms, such as cornea degeneration and skin erosions in young EEC patients. PMID:27195674

  20. Cbx7 is epigenetically silenced in glioblastoma and inhibits cell migration by targeting YAP/TAZ-dependent transcription

    PubMed Central

    Nawaz, Zahid; Patil, Vikas; Arora, Anjali; Hegde, Alangar S.; Arivazhagan, Arimappamagan; Santosh, Vani; Somasundaram, Kumaravel

    2016-01-01

    Glioblastomas (GBM) are the most malignant form of astrocytomas which are difficult to treat and portend a grave clinical course and poor prognosis. In this study, we identified Chromobox homolog 7 (Cbx7), a member of Polycomb Repressive Complex 1 (PRC1), as a downregulated gene in GBM owing to its promoter hypermethylation. Bisulphite sequencing and methylation inhibitor treatment established the hypermethylation of Cbx7 in GBM. Exogenous overexpression of Cbx7 induced cell death, inhibited cell proliferation, colony formation and migration/invasion of the glioma cells. GSEA of Cbx7 regulated genes identified Cbx7 as a repressor of transcription co-activators YAP/TAZ, the inhibitory targets of the Hippo signalling pathway. In good correlation, the exogenous expression of Cbx7 repressed the YAP/TAZ-dependent transcription and downregulated CTGF, a bonafide YAP/TAZ target. We also observed reduced levels of phospho-JNK in Cbx7 expressing cells. Additionally, CTGF silencing and pharmacological inhibition of JNK also inhibited glioma cell migration. Further, Cbx7 failed to inhibit cell migration significantly in the presence of exogenously overexpressed CTGF or constitutively active JNK. Thus, our study identifies Cbx7 as an inhibitor of glioma cell migration through its inhibitory effect on YAP/TAZ-CTGF-JNK signalling axis and underscores the importance of epigenetic inactivation of Cbx7 in gliomagenesis. PMID:27291091

  1. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription

    PubMed Central

    Tosoni, Elena; Frasson, Ilaria; Scalabrin, Matteo; Perrone, Rosalba; Butovskaya, Elena; Nadai, Matteo; Palù, Giorgio; Fabris, Dan; Richter, Sara N.

    2015-01-01

    Folding of the LTR promoter into dynamic G-quadruplex conformations has been shown to suppress its transcriptional activity in HIV-1. Here we sought to identify the proteins that control the folding of this region of proviral genome by inducing/stabilizing G-quadruplex structures. The implementation of electrophorethic mobility shift assay and pull-down experiments coupled with mass spectrometric analysis revealed that the cellular protein nucleolin is able to specifically recognize G-quadruplex structures present in the LTR promoter. Nucleolin recognized with high affinity and specificity the majority, but not all the possible G-quadruplexes folded by this sequence. In addition, it displayed greater binding preference towards DNA than RNA G-quadruplexes, thus indicating two levels of selectivity based on the sequence and nature of the target. The interaction translated into stabilization of the LTR G-quadruplexes and increased promoter silencing activity; in contrast, disruption of nucleolin binding in cells by both siRNAs and a nucleolin binding aptamer greatly increased LTR promoter activity. These data indicate that nucleolin possesses a specific and regulated activity toward the HIV-1 LTR promoter, which is mediated by G-quadruplexes. These observations provide new essential insights into viral transcription and a possible low mutagenic target for antiretroviral therapy. PMID:26354862

  2. RNAi-directed post transcriptional gene silencing of an Arabidopsis Myb transgene in tobacco

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The AtMyb90 gene encodes the 'production of anthocyanin pigment 2' (PAP2) transcription factor of Arabidopsis thaliana and is able to induce a visible hyper-pigmented phenotype when expressed in tobacco. Based upon this phenotype, we have used the AtMyb90 gene as a reporter gene to examine RNAi-dire...

  3. Lysophosphatidic Acid Mediates Activating Transcription Factor 3 Expression Which Is a Target for Post-Transcriptional Silencing by miR-30c-2-3p

    PubMed Central

    Nguyen, Ha T.; Jia, Wei; Beedle, Aaron M.; Kennedy, Eileen J.; Murph, Mandi M.

    2015-01-01

    Although microRNAs (miRNAs) are small, non-protein-coding entities, they have important roles in post-transcriptional regulation of most of the human genome. These small entities generate fine-tuning adjustments in the expression of mRNA, which can mildly or massively affect the abundance of proteins. Previously, we found that the expression of miR-30c-2-3p is induced by lysophosphatidic acid and has an important role in the regulation of cell proliferation in ovarian cancer cells. The goal here is to confirm that ATF3 mRNA is a target of miR-30c-2-3p silencing, thereby further establishing the functional role of miR-30c-2-3p. Using a combination of bioinformatics, qRT-PCR, immunoblotting and luciferase assays, we uncovered a regulatory pathway between miR-30c-2-3p and the expression of the transcription factor, ATF3. Lysophosphatidic acids triggers the expression of both miR-30c-2-3p and ATF3, which peak at 1 h and are absent 8 h post stimulation in SKOV-3 and OVCAR-3 serous ovarian cancer cells. The 3´-untranslated region (3´-UTR) of ATF3 was a predicted, putative target for miR-30c-2-3p, which we confirmed as a bona-fide interaction using a luciferase reporter assay. Specific mutations introduced into the predicted site of interaction between miR-30c-2-3p and the 3´-UTR of ATF3 alleviated the suppression of the luciferase signal. Furthermore, the presence of anti-miR-30c-2-3p enhanced ATF3 mRNA and protein after lysophosphatidic acid stimulation. Thus, the data suggest that after the expression of ATF3 and miR-30c-2-3p are elicited by lysophosphatidic acid, subsequently miR-30c-2-3p negatively regulates the expression of ATF3 through post-transcriptional silencing, which prevents further ATF3-related outcomes as a consequence of lysophosphatidic acid signaling. PMID:26418018

  4. Alterations in the hepatic transcriptional landscape after RNAi mediated ApoB silencing in cynomolgus monkeys.

    PubMed

    Hamza, M Sabry; Kumar, Chanchal; Chia, Ser Mien; Anandalakshmi, Vidhya; Boo, Nicole; Strapps, Walter; Robinson, Michael; Caguyong, Michelle; Bartz, Steven; Tadin-Strapps, Marija; van Gool, Alain; Shih, Shian-Jiun

    2015-10-01

    The greater genomic conservation between humans and non-human primates (NHP) enables target validation studies for developing of therapeutic strategies for human diseases. Together with predicting activity and potential adverse clinical signs, the inclusion of NHP testing bequeaths to efficacy models for dose titration and pharmacodynamic effects. We have used lipid nanoparticle encapsulated siRNA to silence ApoB in the liver and assessed the phenotypic effects on serum lipids with various levels of hepatic ApoB mRNA knockdown in healthy lean cynomolgus monkeys. ApoB siRNA dosed animals demonstrated significant reductions of hepatic ApoB mRNA and serum APOB protein, with a substantial lowering of plasma lipid levels without obvious signs of toxicity. Microarray based assessment of ApoB siRNA mediated effects revealed a number of differentially expressed genes which mapped onto biological pathways and processes related to lipid and cholesterol metabolism. Furthermore, we identified potential targets and cellular effects that could be studied for therapeutic benchmarking of APOB mediated effects. The network of ApoB regulated genes should be of significance for the understanding and development of novel hypercholesterolemia therapies. PMID:26275376

  5. A chromatin activity based chemoproteomic approach reveals a transcriptional repressome for gene-specific silencing

    PubMed Central

    Liu, Cui; Yu, Yanbao; Liu, Feng; Wei, Xin; Wrobel, John A.; Gunawardena, Harsha P.; Zhou, Li; Jin, Jian; Chen, Xian

    2015-01-01

    Immune cells develop endotoxin tolerance (ET) after prolonged stimulation. ET increases the level of a repression mark H3K9me2 in the transcriptional-silent chromatin specifically associated with pro-inflammatory genes. However, it is not clear what proteins are functionally involved in this process. Here we show that a novel chromatin activity based chemoproteomic (ChaC) approach can dissect the functional chromatin protein complexes that regulate ET-associated inflammation. Using UNC0638 that binds the enzymatically active H3K9-specific methyltransferase G9a/GLP, ChaC reveals that G9a is constitutively active at a G9a-dependent mega-dalton repressome in primary endotoxin-tolerant macrophages. G9a/GLP broadly impacts the ET-specific reprogramming of the histone code landscape, chromatin remodeling, and the activities of select transcription factors. We discover that the G9a-dependent epigenetic environment promotes the transcriptional repression activity of c-Myc for gene-specific co-regulation of chronic inflammation. ChaC may be also applicable to dissect other functional protein complexes in the context of phenotypic chromatin architectures. PMID:25502336

  6. PU.1 Suppresses Th2 Cytokine Expression via Silencing of GATA3 Transcription in Dendritic Cells.

    PubMed

    Yashiro, Takuya; Kubo, Masato; Ogawa, Hideoki; Okumura, Ko; Nishiyama, Chiharu

    2015-01-01

    The transcription factor PU.1 is predominantly expressed in dendritic cells (DCs) and is essential for DC differentiation. Although there are several reports that PU.1 positively regulates the expression of DC-specific genes, whether PU.1 also has a suppressive effect on DCs is largely unknown. Here we demonstrate that PU.1 suppresses the expression of Th2 cytokines including IL-13 and IL-5 in bone marrow-derived DCs (BMDCs), through repression of the expression of GATA3, which is a master regulator of Th2 differentiations. When PU.1 siRNA was introduced into BMDCs, LPS-induced expression of IL-13 and IL-5 was increased along with upregulation of the constitutive expression of GATA2 and GATA3. The additional introduction of GATA3 siRNA but not of GATA2 siRNA abrogated PU.1 siRNA-mediated upregulation of IL-13 and IL-5. A chromatin immunoprecipitation assay showed that PU.1 bound to Gata3 proximal promoter region, which is more dominant than the distal promoter in driving GATA3 transcription in DCs. The degree of histone acetylation at the Gata3 promoter was decreased in PU.1 siRNA-introduced DCs, suggesting the involvement of PU.1 in chromatin modification of the Gata3 promoter. Treatment with a histone deacetylase (HDAC) inhibitor, trichostatin A, increased the degree of histone H3 acetylation at the Gata3 promoter and induced the subsequent expression of GATA3. Experiments using HDAC inhibitors and siRNAs showed that HDAC3 suppressed GATA3 expression. The recruitment of HDAC3 to the Gata3 promoter was decreased by PU.1 knockdown. LPS-induced IL-13 expression was dramatically reduced in BMDCs generated from mice lacking the conserved GATA3 response element, termed CGRE, which is an essential site for the binding of GATA3 on the Il-13 promoter. The degree of H3K4me3 at CGRE was significantly increased in PU.1 siRNA-transfected stimulated DCs. Our results indicate that PU.1 plays pivotal roles in DC development and function, serving not only as a transcriptional

  7. Beyond transcriptional silencing: Is methylcytosine a widely conserved eukaryotic DNA elimination mechanism?

    PubMed Central

    Bracht, John R.

    2014-01-01

    Methylation of cytosine DNA residues is a well-studied epigenetic modification with important roles in formation of heterochromatic regions of the genome, and also in tissue-specific repression of transcription. However, we recently found that the ciliate Oxytricha uses methylcytosine in a novel DNA elimination pathway important for programmed genome restructuring. Remarkably, mounting evidence suggests that methylcytosine can play a dual role in ciliates, repressing gene expression during some life-stages and directing DNA elimination in others. In this essay, I describe these recent advances in the DNA methylation field and discuss whether this unexpected novel role for methylcytosine in DNA elimination might be more widely conserved in eukaryotic biology, particularly in apoptotic pathways. PMID:24519896

  8. ATRX contributes to epigenetic asymmetry and silencing of major satellite transcripts in the maternal genome of the mouse embryo

    PubMed Central

    De La Fuente, Rabindranath; Baumann, Claudia; Viveiros, Maria M.

    2015-01-01

    A striking proportion of human cleavage-stage embryos exhibit chromosome instability (CIN). Notably, until now, no experimental model has been described to determine the origin and mechanisms of complex chromosomal rearrangements. Here, we examined mouse embryos deficient for the chromatin remodeling protein ATRX to determine the cellular mechanisms activated in response to CIN. We demonstrate that ATRX is required for silencing of major satellite transcripts in the maternal genome, where it confers epigenetic asymmetry to pericentric heterochromatin during the transition to the first mitosis. This stage is also characterized by a striking kinetochore size asymmetry established by differences in CENP-C protein between the parental genomes. Loss of ATRX results in increased centromeric mitotic recombination, a high frequency of sister chromatid exchanges and double strand DNA breaks, indicating the formation of mitotic recombination break points. ATRX-deficient embryos exhibit a twofold increase in transcripts for aurora kinase B, the centromeric cohesin ESCO2, DNMT1, the ubiquitin-ligase (DZIP3) and the histone methyl transferase (EHMT1). Thus, loss of ATRX activates a pathway that integrates epigenetic modifications and DNA repair in response to chromosome breaks. These results reveal the cellular response of the cleavage-stage embryo to CIN and uncover a mechanism by which centromeric fission induces the formation of large-scale chromosomal rearrangements. Our results have important implications to determine the epigenetic origins of CIN that lead to congenital birth defects and early pregnancy loss, as well as the mechanisms involved in the oocyte to embryo transition. PMID:25926359

  9. NPM-ALK oncogenic tyrosine kinase controls T-cell identity by transcriptional regulation and epigenetic silencing in lymphoma cells.

    PubMed

    Ambrogio, Chiara; Martinengo, Cinzia; Voena, Claudia; Tondat, Fabrizio; Riera, Ludovica; di Celle, Paola Francia; Inghirami, Giorgio; Chiarle, Roberto

    2009-11-15

    Transformed cells in lymphomas usually maintain the phenotype of the postulated normal lymphocyte from which they arise. By contrast, anaplastic large cell lymphoma (ALCL) is a T-cell lymphoma with aberrant phenotype because of the defective expression of the T-cell receptor and other T-cell-specific molecules for still undetermined mechanisms. The majority of ALCL carries the translocation t(2;5) that encodes for the oncogenic tyrosine kinase NPM-ALK, fundamental for survival, proliferation, and migration of transformed T cells. Here, we show that loss of T-cell-specific molecules in ALCL cases is broader than reported previously and involves most T-cell receptor-related signaling molecules, including CD3epsilon, ZAP70, LAT, and SLP76. We further show that NPM-ALK, but not the kinase-dead NPM-ALK(K210R), downregulated the expression of these molecules by a STAT3-mediated gene transcription regulation and/or epigenetic silencing because this downregulation was reverted by treating ALCL cells with 5-aza-2-deoxycytidine or by knocking down STAT3 through short hairpin RNA. Finally, NPM-ALK increased the methylation of ZAP70 intron 1-exon 2 boundary region, and both NPM-ALK and STAT3 regulated the expression levels of DNA methyltransferase 1 in transformed T cells. Thus, our data reveal that oncogene-deregulated tyrosine kinase activity controls the expression of molecules that determine T-cell identity and signaling.

  10. Silencing of Gonad-Inhibiting Hormone Transcripts in Litopenaeus vannamei Females by use of the RNA Interference Technology.

    PubMed

    Feijó, Rubens G; Braga, André L; Lanes, Carlos F C; Figueiredo, Márcio A; Romano, Luis A; Klosterhoff, Marta C; Nery, Luis E M; Maggioni, Rodrigo; Wasielesky, Wilson; Marins, Luis F

    2016-02-01

    The method usually employed to stimulate gonadal maturation and spawning of captive shrimp involves unilateral eyestalk ablation, which results in the removal of the endocrine complex responsible for gonad-inhibiting hormone (GIH) synthesis and release. In the present study, RNAi technology was used to inhibit transcripts of GIH in Litopenaeus vannamei females. The effect of gene silencing on gonad development was assessed by analyzing the expression of GIH and vitellogenin, respectively, in the eyestalk and ovaries of L. vannamei females, following ablation or injection with dsRNA-GIH, dsRNA-IGSF4D (non-related dsRNA), or saline solution. Histological analyses were performed to determine the stage of gonadal development and to assess the diameter of oocytes throughout the experimental procedure. Only oocytes at pre-vitellogenesis and primary vitellogenesis stages were identified in females injected with dsRNA-GIH, dsRNA-IGSF4D, or saline solution. Oocytes at all developmental stages were observed in eyestalk-ablated females, with predominance of later stages, such as secondary vitellogenesis and mature oocytes. Despite achieving 64, 73, and 71% knockdown of eyestalk GIH mRNA levels by 15, 30, and 37 days post-injection (dpi), respectively, in dsRNA-GIH-injected females, the expected increase in ovary vitellogenin mRNA expression was only observed on the 37th dpi. This is the first report of the use of RNAi technology to develop an alternative method to eyestalk ablation in captive L. vannamei shrimps.

  11. Efficient CRISPR-Mediated Post-Transcriptional Gene Silencing in a Hyperthermophilic Archaeon Using Multiplexed crRNA Expression

    PubMed Central

    Zebec, Ziga; Zink, Isabelle Anna; Kerou, Melina; Schleper, Christa

    2016-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-mediated RNA degradation is catalyzed by a type III system in the hyperthermophilic archaeon Sulfolobus solfataricus. Earlier work demonstrated that the system can be engineered to target specifically mRNA of an endogenous host reporter gene, namely the β-galactosidase in S. solfataricus. Here, we investigated the effect of single and multiple spacers targeting the mRNA of a second reporter gene, α-amylase, at the same, and at different, locations respectively, using a minimal CRISPR (miniCR) locus supplied on a viral shuttle vector. The use of increasing numbers of spacers reduced mRNA levels at progressively higher levels, with three crRNAs (CRISPR RNAs) leading to ∼ 70–80% reduction, and five spacers resulting in an α-amylase gene knockdown of > 90% measured on both mRNA and protein activity levels. Our results indicate that this technology can be used to increase or modulate gene knockdown for efficient post-transcriptional gene silencing in hyperthermophilic archaea, and potentially also in other organisms. PMID:27507792

  12. Loss of epigenetic silencing of the DUX4 transcription factor gene in facioscapulohumeral muscular dystrophy.

    PubMed

    Hewitt, Jane E

    2015-10-15

    Current genetic and molecular evidence best supports an epigenetic mechanism for facioscapulohumeral muscular dystrophy (FSHD), whereby de-repression of the D4Z4 macrosatellite array leads to aberrant expression of the DUX4 transcription factor in skeletal muscle. This de-repression is triggered by either array contraction or (more rarely) by mutation of the SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) gene. Activation of DUX4 targets, including germline genes and several mammalian retrotransposons, then drives pathogenesis. A direct role for DUX4 mRNA in suppression of nonsense-mediated decay pathways has recently been demonstrated and may also contribute to muscle pathology. Loss of D4Z4 repression in FSHD is observed as hypomethylation of the array accompanied by loss of repressive chromatin marks. The molecular mechanisms of D4Z4 repression are poorly understood, but recent data have identified an Argonaute (AGO)-dependent siRNA pathway. Targeting this pathway by exogenous siRNAs could be a therapeutic strategy for FSHD. PMID:26113644

  13. Rational Re-engineering of a Transcriptional Silencing PreQ1 Riboswitch.

    PubMed

    Wu, Ming-Cheng; Lowe, Phillip T; Robinson, Christopher J; Vincent, Helen A; Dixon, Neil; Leigh, James; Micklefield, Jason

    2015-07-22

    Re-engineered riboswitches that no longer respond to cellular metabolites, but that instead can be controlled by synthetic molecules, are potentially useful gene regulatory tools for use in synthetic biology and biotechnology fields. Previously, extensive genetic selection and screening approaches were employed to re-engineer a natural adenine riboswitch to create orthogonal ON-switches, enabling translational control of target gene expression in response to synthetic ligands. Here, we describe how a rational targeted approach was used to re-engineer the PreQ1 riboswitch from Bacillus subtilis into an orthogonal OFF-switch. In this case, the evaluation of just six synthetic compounds with seven riboswitch mutants led to the identification of an orthogonal riboswitch-ligand pairing that effectively repressed the transcription of selected genes in B. subtilis. The streamlining of the re-engineering approach, and its extension to a second class of riboswitches, provides a methodological platform for the creation of new orthogonal regulatory components for biotechnological applications including gene functional analysis and antimicrobial target validation and screening. PMID:26106809

  14. Specification of skeletal muscle differentiation by repressor element-1 silencing transcription factor (REST)-regulated Kv7.4 potassium channels

    PubMed Central

    Iannotti, Fabio Arturo; Barrese, Vincenzo; Formisano, Luigi; Miceli, Francesco; Taglialatela, Maurizio

    2013-01-01

    Changes in the expression of potassium (K+) channels is a pivotal event during skeletal muscle differentiation. In mouse C2C12 cells, similarly to human skeletal muscle cells, myotube formation increased the expression of Kv7.1, Kv7.3, and Kv7.4, the last showing the highest degree of regulation. In C2C12 cells, Kv7.4 silencing by RNA interference reduced the expression levels of differentiation markers (myogenin, myosin heavy chain, troponinT-1, and Pax3) and impaired myotube formation and multinucleation. In Kv7.4-silenced cells, the differentiation-promoting effect of the Kv7 activator N-(2-amino-4-(4-fluorobenzylamino)-phenyl)-carbamic acid ethyl ester (retigabine) was abrogated. Expression levels for the repressor element-1 silencing transcription factor (REST) declined during myotube formation. Transcript levels for Kv7.4, as well as for myogenin, troponinT-1, and Pax3, were reduced by REST overexpression and enhanced upon REST suppression by RNA interference. Four regions containing potential REST-binding sites in the 5′ untranslated region and in the first intron of the Kv7.4 gene were identified by bioinformatic analysis. Chromatin immunoprecipitation assays showed that REST binds to these regions, exhibiting a higher efficiency in myoblasts than in myotubes. These data suggest that Kv7.4 plays a permissive role in skeletal muscle differentiation and highlight REST as a crucial transcriptional regulator for this K+ channel subunit. PMID:23242999

  15. Loss of sense transgene-induced post-transcriptional gene silencing by sequential introduction of the same transgene sequences in tobacco.

    PubMed

    Hirai, Sayaka; Takahashi, Kouta; Abiko, Tomomi; Kodama, Hiroaki

    2010-04-01

    RNA silencing is an epigenetic inhibition of gene expression and is guided by small interfering RNAs. Sense transgene-induced post-transcriptional gene silencing (S-PTGS) occurs in a portion of a transgenic plant population. When a sense transgene encoding a tobacco endoplasmic reticulum omega-3 fatty acid desaturase (NtFAD3) was introduced into tobacco plants, an S-PTGS line, S44, was obtained. Introduction of another copy of the NtFAD3 transgene into S44 plants caused a phenotypic change from S-PTGS to overexpression. Because this change was associated with the methylation of the promoter sequences of the transgene, reduced transcriptional activity may abolish S-PTGS and residual transcription of the sense transgene may account for the overexpression. To clarify whether RNA-directed DNA methylation (RdDM) can repress the transcriptional activity of the S44 transgene locus, we introduced several RdDM constructs targeting the transgene promoter. An RdDM construct harboring a 200-bp-long fragment of promoter sequences efficiently abrogated the generation of NtFAD3 small interfering RNAs in S44 plants. Transcription of the transgene was partially repressed, but the resulting NtFAD3 mRNAs successfully accumulated and an overexpressed phenotype was established. Our results indicate an example in which overexpression of the transgene is established by complex epigenetic interactions among the transgenic loci. PMID:20180844

  16. Expression Profiles and RNAi Silencing of Inhibitor of Apoptosis Transcripts in Aedes, Anopheles, and Culex Mosquitoes (Diptera: Culicidae).

    PubMed

    Puglise, Jason M; Estep, Alden S; Becnel, James J

    2016-03-01

    Effective mosquito control is vital to curtail the devastating health effects of many vectored diseases. RNA interference (RNAi)-mediated control of mosquitoes is an attractive alternative to conventional chemical pesticides. Previous studies have suggested that transcripts for inhibitors of apoptosis (IAPs) may be good RNAi targets. To revisit and extend previous reports, we examined the expression of Aedes aegypti (L.) IAPs (AaeIAPs) 1, 2, 5, 6, 9, and a viral IAP-associated factor (vIAF) as well as Anopheles quadrimaculatus Say and Culex quinquefasciatus Say IAP1 homologs (AquIAP1 and CquIAP1) in adult females. Expression profiles of IAPs suggested that some older female mosquitoes had significantly higher IAP mRNA levels when compared to the youngest ones. Minor differences in expression of AaeIAPs were observed in mosquitoes that imbibed a bloodmeal, but the majority of the time points (up to 48 h) were not significantly different. Although in vitro experiments with the Ae. aegypti Aag-2 cell line demonstrated that the various AaeIAPs could be effectively knocked down within one day after dsRNA treatment, only Aag-2 cells treated with dsIAP1 displayed apoptotic morphology. Gene silencing and mortality were also evaluated after topical application and microinjection of the same dsRNAs into female Ae. aegypti. In contrast to previous reports, topical administration of dsRNA against AaeIAP1 did not yield a significant reduction in gene expression or increased mortality. Knockdown of IAP1 and other IAPs by microinjection did not result in significant mortality. In toto, our findings suggest that IAPs may not be suitable RNAi targets for controlling adult mosquito populations. PMID:26659858

  17. Expression Profiles and RNAi Silencing of Inhibitor of Apoptosis Transcripts in Aedes, Anopheles, and Culex Mosquitoes (Diptera: Culicidae).

    PubMed

    Puglise, Jason M; Estep, Alden S; Becnel, James J

    2016-03-01

    Effective mosquito control is vital to curtail the devastating health effects of many vectored diseases. RNA interference (RNAi)-mediated control of mosquitoes is an attractive alternative to conventional chemical pesticides. Previous studies have suggested that transcripts for inhibitors of apoptosis (IAPs) may be good RNAi targets. To revisit and extend previous reports, we examined the expression of Aedes aegypti (L.) IAPs (AaeIAPs) 1, 2, 5, 6, 9, and a viral IAP-associated factor (vIAF) as well as Anopheles quadrimaculatus Say and Culex quinquefasciatus Say IAP1 homologs (AquIAP1 and CquIAP1) in adult females. Expression profiles of IAPs suggested that some older female mosquitoes had significantly higher IAP mRNA levels when compared to the youngest ones. Minor differences in expression of AaeIAPs were observed in mosquitoes that imbibed a bloodmeal, but the majority of the time points (up to 48 h) were not significantly different. Although in vitro experiments with the Ae. aegypti Aag-2 cell line demonstrated that the various AaeIAPs could be effectively knocked down within one day after dsRNA treatment, only Aag-2 cells treated with dsIAP1 displayed apoptotic morphology. Gene silencing and mortality were also evaluated after topical application and microinjection of the same dsRNAs into female Ae. aegypti. In contrast to previous reports, topical administration of dsRNA against AaeIAP1 did not yield a significant reduction in gene expression or increased mortality. Knockdown of IAP1 and other IAPs by microinjection did not result in significant mortality. In toto, our findings suggest that IAPs may not be suitable RNAi targets for controlling adult mosquito populations.

  18. Identification of a class of human cancer germline genes with transcriptional silencing refractory to the hypomethylating drug 5-aza-2′-deoxycytidine.

    PubMed Central

    Almatrafi, Ahmed; Feichtinger, Julia; Vernon, Ellen G.; Escobar, Natalia Gomez; Wakeman, Jane A.; Larcombe, Lee D.; McFarlane, Ramsay J.

    2014-01-01

    Bona fide germline genes have expression restricted to the germ cells of the gonads. Testis-specific germline development-associated genes can become activated in cancer cells and can potentially drive the oncogenic process and serve as therapeutic/biomarker targets; such germline genes are referred to as cancer/testis genes. Many cancer/testis genes are silenced via hypermethylation of CpG islands in their associated transcriptional control regions and become activated upon treatment with DNA hypomethylating agents; such hypomethylation-induced activation of cancer/testis genes provides a potential combination approach to augment immunotherapeutics. Thus, understanding cancer/testis gene regulation is of increasing clinical importance. Previously studied cancer/testis gene activation has focused on X chromosome encoded cancer/testis genes. Here we find that a sub-set of non-X encoded cancer/testis genes are silenced in non-germline cells via a mechanism that is refractory to epigenetic dysregulation, including treatment with the hypomethylating agent 5-aza-2′-deoxycytidine and the histone deacetylase inhibitor tricostatin A. These findings formally indicate that there is a sub-group of the clinically important cancer/testis genes that are unlikely to be activated in clinical therapeutic approaches using hypomethylating agents and it indicates a unique transcriptional silencing mechanism for germline genes in non-germline cells that might provide a target mechanism for new clinical therapies. PMID:25594001

  19. Signal Transducer and Activator of Transcription 1 (STAT1) is Essential for Chromium Silencing of Gene Induction in Human Airway Epithelial Cells

    PubMed Central

    Nemec, Antonia A.; Barchowsky, Aaron

    2009-01-01

    Hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms that may involve the silencing of inducible protective genes. The current study investigated the hypothesis that Cr(VI) actively signals through a signal transducer and activator of transcription 1 (STAT1)–dependent pathway to silence nickel (Ni)–induced expression of vascular endothelial cell growth factor A (VEGFA), an important mediator of lung injury and repair. In human bronchial airway epithelial (BEAS-2B) cells, Ni-induced VEGFA transcription by stimulating an extracellular regulated kinase (ERK) signaling cascade that involved Src kinase–activated Sp1 transactivation, as well as increased hypoxia-inducible factor-1α (HIF-1α) stabilization and DNA binding. Ni-stimulated ERK, Src, and HIF-1α activities, as well as Ni-induced VEGFA transcript levels were inhibited in Cr(VI)-exposed cells. We previously demonstrated that Cr(VI) stimulates STAT1 to suppress VEGFA expression. In BEAS-2B cells stably expressing STAT1 short hairpin RNA, Cr(VI) increased VEGFA transcript levels and Sp1 transactivation. Moreover, in the absence of STAT1, Cr(VI), and Ni coexposures positively interacted to further increase VEGFA transcripts. This study demonstrates that metal-stimulated signaling cascades interact to regulate transcription and induction of adaptive or repair responses in airway cells. In addition, the data implicate STAT1 as a rate limiting mediator of Cr(VI)-stimulated gene regulation and suggest that cells lacking STAT1, such as many tumor cell lines, have opposite responses to Cr(VI) relative to normal cells. PMID:19403854

  20. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat.

    PubMed

    Liu, Guoyu; Wu, Yufang; Xu, Mengjun; Gao, Tian; Wang, Pengfei; Wang, Lina; Guo, Tiancai; Kang, Guozhang

    2016-01-01

    The function of a wheat starch regulator 1 (TaRSR1) in regulating the synthesis of grain storage starch was determined using the barley stripe mosaic virus-virus induced gene-silencing (BSMV-VIGS) method in field experiments. Chlorotic stripes appeared on the wheat spikes infected with barley stripe mosaic virus-virus induced gene-silencing- wheat starch regulator 1 (BSMV-VIGS-TaRSR1) at 15 days after anthesis, at which time the transcription levels of the TaRSR1 gene significantly decreased. Quantitative real-time PCR was also used to measure the transcription levels of 26 starch synthesis-related enzyme genes in the grains of BSMV-VIGS-TaRSR1-silenced wheat plants at 20, 27, and 31 days after anthesis. The results showed that the transcription levels of some starch synthesis-related enzyme genes were markedly induced at different sampling time points: TaSSI, TaSSIV, TaBEIII, TaISA1, TaISA3, TaPHOL, and TaDPE1 genes were induced at each of the three sampling time points and TaAGPS1-b, TaAGPL1, TaAGPL2, TaSSIIb, TaSSIIc, TaSSIIIb, TaBEI, TaBEIIa, TaBEIIb, TaISA2, TaPHOH, and TaDPE2 genes were induced at one sampling time point. Moreover, both the grain starch contents, one thousand kernel weights, grain length and width of BSMV-VIGS-TaRSR1-infected wheat plants significantly increased. These results suggest that TaRSR1 acts as a negative regulator and plays an important role in starch synthesis in wheat grains by temporally regulating the expression of specific starch synthesis-related enzyme genes. PMID:27669224

  1. Virus-Induced Gene Silencing Identifies an Important Role of the TaRSR1 Transcription Factor in Starch Synthesis in Bread Wheat

    PubMed Central

    Liu, Guoyu; Wu, Yufang; Xu, Mengjun; Gao, Tian; Wang, Pengfei; Wang, Lina; Guo, Tiancai; Kang, Guozhang

    2016-01-01

    The function of a wheat starch regulator 1 (TaRSR1) in regulating the synthesis of grain storage starch was determined using the barley stripe mosaic virus—virus induced gene-silencing (BSMV-VIGS) method in field experiments. Chlorotic stripes appeared on the wheat spikes infected with barley stripe mosaic virus-virus induced gene-silencing- wheat starch regulator 1 (BSMV-VIGS-TaRSR1) at 15 days after anthesis, at which time the transcription levels of the TaRSR1 gene significantly decreased. Quantitative real-time PCR was also used to measure the transcription levels of 26 starch synthesis-related enzyme genes in the grains of BSMV-VIGS-TaRSR1-silenced wheat plants at 20, 27, and 31 days after anthesis. The results showed that the transcription levels of some starch synthesis-related enzyme genes were markedly induced at different sampling time points: TaSSI, TaSSIV, TaBEIII, TaISA1, TaISA3, TaPHOL, and TaDPE1 genes were induced at each of the three sampling time points and TaAGPS1-b, TaAGPL1, TaAGPL2, TaSSIIb, TaSSIIc, TaSSIIIb, TaBEI, TaBEIIa, TaBEIIb, TaISA2, TaPHOH, and TaDPE2 genes were induced at one sampling time point. Moreover, both the grain starch contents, one thousand kernel weights, grain length and width of BSMV-VIGS-TaRSR1-infected wheat plants significantly increased. These results suggest that TaRSR1 acts as a negative regulator and plays an important role in starch synthesis in wheat grains by temporally regulating the expression of specific starch synthesis-related enzyme genes. PMID:27669224

  2. Nontelomeric splice variant of telomere repeat-binding factor 2 maintains neuronal traits by sequestering repressor element 1-silencing transcription factor.

    PubMed

    Zhang, Peisu; Casaday-Potts, Rebecca; Precht, Patricia; Jiang, Haiyang; Liu, Yie; Pazin, Michael J; Mattson, Mark P

    2011-09-27

    Telomere repeat-binding factor 2 (TRF2) is critical for telomere integrity in dividing stem and somatic cells, but its role in postmitotic neurons is unknown. Apart from protecting telomeres, nuclear TRF2 interacts with the master neuronal gene-silencer repressor element 1-silencing transcription factor (REST), and disruption of this interaction induces neuronal differentiation. Here we report a developmental switch from the expression of TRF2 in proliferating neural progenitor cells to expression of a unique short nontelomeric isoform of TRF2 (TRF2-S) as neurons establish a fully differentiated state. Unlike nuclear TRF2, which enhances REST-mediated gene repression, TRF2-S is located in the cytoplasm where it sequesters REST, thereby maintaining the expression of neuronal genes, including those encoding glutamate receptors, cell adhesion, and neurofilament proteins. In neurons, TRF2-S-mediated antagonism of REST nuclear activity is greatly attenuated by either overexpression of TRF2 or administration of the excitatory amino acid kainic acid. Overexpression of TRF2-S rescues kainic acid-induced REST nuclear accumulation and its gene-silencing effects. Thus, TRF2-S acts as part of a unique developmentally regulated molecular switch that plays critical roles in the maintenance and plasticity of neurons.

  3. Nontelomeric splice variant of telomere repeat-binding factor 2 maintains neuronal traits by sequestering repressor element 1-silencing transcription factor

    PubMed Central

    Zhang, Peisu; Casaday-Potts, Rebecca; Precht, Patricia; Jiang, Haiyang; Liu, Yie; Pazin, Michael J.; Mattson, Mark P.

    2011-01-01

    Telomere repeat-binding factor 2 (TRF2) is critical for telomere integrity in dividing stem and somatic cells, but its role in postmitotic neurons is unknown. Apart from protecting telomeres, nuclear TRF2 interacts with the master neuronal gene-silencer repressor element 1-silencing transcription factor (REST), and disruption of this interaction induces neuronal differentiation. Here we report a developmental switch from the expression of TRF2 in proliferating neural progenitor cells to expression of a unique short nontelomeric isoform of TRF2 (TRF2-S) as neurons establish a fully differentiated state. Unlike nuclear TRF2, which enhances REST-mediated gene repression, TRF2-S is located in the cytoplasm where it sequesters REST, thereby maintaining the expression of neuronal genes, including those encoding glutamate receptors, cell adhesion, and neurofilament proteins. In neurons, TRF2-S–mediated antagonism of REST nuclear activity is greatly attenuated by either overexpression of TRF2 or administration of the excitatory amino acid kainic acid. Overexpression of TRF2-S rescues kainic acid-induced REST nuclear accumulation and its gene-silencing effects. Thus, TRF2-S acts as part of a unique developmentally regulated molecular switch that plays critical roles in the maintenance and plasticity of neurons. PMID:21903926

  4. The efficiency of silencing expression of the gene coding STAT3 transcriptional factor and susceptibility of bladder cancer cells to apoptosis

    PubMed Central

    Bednarek, Ilona; Sypniewski, Daniel; Gawlik, Natalia; Goraus, Karol

    2012-01-01

    Aim of the study Abnormalities in signaling as well as altered gene expression have been identified in numerous diseases, including cancer. The biological functions of signal transducer and activator of transcription 3 (STAT3) are very broad. It is thought that STAT3 can also contribute to oncogenesis. RNA interference (RNAi) is one of the most efficient tools for silencing gene expression within cells. The main goal of the study was to verify the effectiveness of STAT3 gene silencing and its influence on cell proliferation and activation of apoptosis in bladder cancer cells. Material and methods The study was conducted on cellular material, which was the stable human bladder cancer cell line T24. The synthesis of shRNA (short hairpin RNA) interfering with the STAT3 gene was based on pSUPER. neo expression vector. The gene expression at the mRNA level was determined by the real-time PCR method. The influence of STAT3 gene silencing on apoptosis induced in cells with modulated STAT3 expression was evaluated using parallel quantification of mono- and oligonucleosomal DNA degradation of genomic DNA. Results In transfected T24 cells, the STAT3 mRNA expression decreased to the level of 68.3% compared to the scrambled (SCR) control. Silencing the STAT3 gene induced changes in the phenotype of T24 cells. Statistically significant differences in cell proliferation (p = 0.0318) and apoptosis induction (p = 0.0376) were observed. Conclusions Application of the designed shRNA for the STAT3 gene contributed to a decrease of expression of the examined gene. It also decreased the proliferation and increased the susceptibility to apoptosis in T24 bladder cancer cells. PMID:23788901

  5. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages

    SciTech Connect

    Lv, Peng; Xue, Peng; Dong, Jian; Peng, Hui; Clewell, Rebecca; Wang, Aiping; Wang, Yue; Peng, Shuangqing; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-11-01

    Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2 activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.

  6. Silencing of the transcription factor STAT3 sensitizes lung cancer cells to DNA damaging drugs, but not to TNFα- and NK cytotoxicity

    SciTech Connect

    Kulesza, Dorota W.; Carré, Thibault; Chouaib, Salem; Kaminska, Bozena

    2013-02-15

    Transcription factor STAT3 (Signal Transducers and Activators of Transcription 3) is persistently active in human tumors and may contribute to tumor progression. Inhibition of STAT3 expression/activity could be a good strategy to modulate tumor cell survival and responses to cancer chemotherapeutics or immune cytotoxicity. We silenced STAT3 expression in human A549 lung cancer cells to elucidate its role in cell survival and resistance to chemotherapeutics, TNFα and natural killer (NK)-mediated cytotoxicity. We demonstrate that STAT3 is not essential for basal survival and proliferation of A549 cancer cells. Stable silencing of STAT3 expression sensitized A549 cells to DNA damaging chemotherapeutics doxorubicin and cisplatin in a p53-independent manner. Sensitization to DNA damage-inducing chemotherapeutics could be due to down-regulation of the Bcl-xL expression in STAT3 depleted cells. In contrast, knockdown of STAT3 in cancer cells did not modulate responses to TNFα and NK-mediated cytotoxicity. We found that STAT3 depletion increased the NFκB activity likely providing the compensatory, pro-survival signal. The treatment with TNFα, but not doxorubicin, enhanced this effect. We conclude that STAT3 is not crucial for the control of basal cell proliferation and survival of lung carcinoma cells but modulates susceptibility to DNA damaging chemotherapeutics by regulation of intrinsic pro-survival pathways. - Highlights: ► STAT3 silencing is negligent for basal lung cancer cell viability and proliferation. ► STAT3 depletion sensitizes lung cancer cells to DNA damaging chemotherapeutics. ► STAT3 depletion has no effect on susceptibility to extrinsic apoptosis inducers. ► Increased pro-survival NFκB activity may compensate for STAT3 depletion.

  7. The Cytosolic Iron-Sulfur Cluster Assembly Protein MMS19 Regulates Transcriptional Gene Silencing, DNA Repair, and Flowering Time in Arabidopsis.

    PubMed

    Han, Yong-Feng; Huang, Huan-Wei; Li, Lin; Cai, Tao; Chen, She; He, Xin-Jian

    2015-01-01

    MMS19 is an essential component of the cytoplasmic iron-sulfur (Fe-S) cluster assembly complex in fungi and mammals; the mms19 null mutant alleles are lethal. Our study demonstrates that MMS19/MET18 in Arabidopsis thaliana interacts with the cytoplasmic Fe-S cluster assembly complex but is not an essential component of the complex. We find that MMS19 also interacts with the catalytic subunits of DNA polymerases, which have been demonstrated to be involved in transcriptional gene silencing (TGS), DNA repair, and flowering time regulation. Our results indicate that MMS19 has a similar biological function, suggesting a functional link between MMS19 and DNA polymerases. In the mms19 null mutant, the assembly of Fe-S clusters on the catalytic subunit of DNA polymerase α is reduced but not blocked, which is consistent with the viability of the mutant. Our study suggests that MMS19 assists the assembly of Fe-S clusters on DNA polymerases in the cytosol, thereby facilitating transcriptional gene silencing, DNA repair, and flowering time control.

  8. Male-Biased Aganglionic Megacolon in the TashT Mouse Line Due to Perturbation of Silencer Elements in a Large Gene Desert of Chromosome 10

    PubMed Central

    Touré, Aboubacrine M.; Béland, Mélanie; Raiwet, Diana L.; Silversides, David W.; Pilon, Nicolas

    2015-01-01

    Neural crest cells (NCC) are a transient migratory cell population that generates diverse cell types such as neurons and glia of the enteric nervous system (ENS). Via an insertional mutation screen for loci affecting NCC development in mice, we identified one line—named TashT—that displays a partially penetrant aganglionic megacolon phenotype in a strong male-biased manner. Interestingly, this phenotype is highly reminiscent of human Hirschsprung’s disease, a neurocristopathy with a still unexplained male sex bias. In contrast to the megacolon phenotype, colonic aganglionosis is almost fully penetrant in homozygous TashT animals. The sex bias in megacolon expressivity can be explained by the fact that the male ENS ends, on average, around a “tipping point” of minimal colonic ganglionosis while the female ENS ends, on average, just beyond it. Detailed analysis of embryonic intestines revealed that aganglionosis in homozygous TashT animals is due to slower migration of enteric NCC. The TashT insertional mutation is localized in a gene desert containing multiple highly conserved elements that exhibit repressive activity in reporter assays. RNAseq analyses and 3C assays revealed that the TashT insertion results, at least in part, in NCC-specific relief of repression of the uncharacterized gene Fam162b; an outcome independently confirmed via transient transgenesis. The transcriptional signature of enteric NCC from homozygous TashT embryos is also characterized by the deregulation of genes encoding members of the most important signaling pathways for ENS formation—Gdnf/Ret and Edn3/Ednrb—and, intriguingly, the downregulation of specific subsets of X-linked genes. In conclusion, this study not only allowed the identification of Fam162b coding and regulatory sequences as novel candidate loci for Hirschsprung’s disease but also provides important new insights into its male sex bias. PMID:25786024

  9. Transcription of AAT•ATT Triplet Repeats in Escherichia coli Is Silenced by H-NS and IS1E Transposition

    PubMed Central

    Pan, Xuefeng; Liao, Lingni; Yang, Li; Li, Hongquan

    2010-01-01

    Background The trinucleotide repeats AAT•ATT are simple DNA sequences that potentially form different types of non-B DNA secondary structures and cause genomic instabilities in vivo. Methodology and Principal Findings The molecular mechanism underlying the maintenance of a 24-triplet AAT•ATT repeat was examined in E.coli by cloning the repeats into the EcoRI site in plasmid pUC18 and into the attB site on the E.coli genome. Either the AAT or the ATT strand acted as lagging strand template in a replication fork. Propagations of the repeats in either orientation on plasmids did not affect colony morphology when triplet repeat transcription using the lacZ promoter was repressed either by supplementing LacIQ in trans or by adding glucose into the medium. In contrast, transparent colonies were formed by inducing transcription of the repeats, suggesting that transcription of AAT•ATT repeats was toxic to cell growth. Meanwhile, significant IS1E transposition events were observed both into the triplet repeats region proximal to the promoter side, the promoter region of the lacZ gene, and into the AAT•ATT region itself. Transposition reversed the transparent colony phenotype back into healthy, convex colonies. In contrast, transcription of an 8-triplet AAT•ATT repeat in either orientation on plasmids did not produce significant changes in cell morphology and did not promote IS1E transposition events. We further found that a role of IS1E transposition into plasmids was to inhibit transcription through the repeats, which was influenced by the presence of the H-NS protein, but not of its paralogue StpA. Conclusions and Significance Our findings thus suggest that the longer AAT•ATT triplet repeats in E.coli become vulnerable after transcription. H-NS and its facilitated IS1E transposition can silence long triplet repeats transcription and preserve cell growth and survival. PMID:21151567

  10. Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia.

    PubMed

    Ohno, Sho; Hosokawa, Munetaka; Kojima, Misa; Kitamura, Yoshikuni; Hoshino, Atsushi; Tatsuzawa, Fumi; Doi, Motoaki; Yazawa, Susumu

    2011-11-01

    Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this experiment was to elucidate the mechanism by which the pure white color is expressed in the petals of some bicolor cultivars. A pigment analysis showed that no flavonoid derivatives were detected in the white areas of petals in a star-type cultivar 'Yuino' and the two seedling cultivars 'OriW1' and 'OriW2' borne from a red-white bicolor cultivar, 'Orihime', indicating that their white areas are pure white. Semi-quantitative RT-PCR showed that in the pure white areas, transcripts of two chalcone synthases (CHS), DvCHS1 and DvCHS2 which share 69% nucleotide similarity with each other, were barely detected. Premature mRNA of DvCHS1 and DvCHS2 were detected, indicating that these two CHS genes are silenced post-transcriptionally. RNA gel blot analysis revealed that small interfering RNAs (siRNAs) derived from CHSs were produced in these pure white areas. By high-throughput sequence analysis of small RNAs in the pure white areas with no mismatch acceptance, small RNAs were mapped to two alleles of DvCHS1 and two alleles of DvCHS2 expressed in 'Yuino' petals. Therefore, we concluded that simultaneous siRNA-mediated post-transcriptional gene silencing of redundant CHS genes results in the appearance of pure white color in dahlias.

  11. Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia.

    PubMed

    Ohno, Sho; Hosokawa, Munetaka; Kojima, Misa; Kitamura, Yoshikuni; Hoshino, Atsushi; Tatsuzawa, Fumi; Doi, Motoaki; Yazawa, Susumu

    2011-11-01

    Garden dahlias (Dahlia variabilis) are autoallooctoploids with redundant genes producing wide color variations in flowers. There are no pure white dahlia cultivars, despite its long breeding history. However, the white areas of bicolor flower petals appear to be pure white. The objective of this experiment was to elucidate the mechanism by which the pure white color is expressed in the petals of some bicolor cultivars. A pigment analysis showed that no flavonoid derivatives were detected in the white areas of petals in a star-type cultivar 'Yuino' and the two seedling cultivars 'OriW1' and 'OriW2' borne from a red-white bicolor cultivar, 'Orihime', indicating that their white areas are pure white. Semi-quantitative RT-PCR showed that in the pure white areas, transcripts of two chalcone synthases (CHS), DvCHS1 and DvCHS2 which share 69% nucleotide similarity with each other, were barely detected. Premature mRNA of DvCHS1 and DvCHS2 were detected, indicating that these two CHS genes are silenced post-transcriptionally. RNA gel blot analysis revealed that small interfering RNAs (siRNAs) derived from CHSs were produced in these pure white areas. By high-throughput sequence analysis of small RNAs in the pure white areas with no mismatch acceptance, small RNAs were mapped to two alleles of DvCHS1 and two alleles of DvCHS2 expressed in 'Yuino' petals. Therefore, we concluded that simultaneous siRNA-mediated post-transcriptional gene silencing of redundant CHS genes results in the appearance of pure white color in dahlias. PMID:21688014

  12. A Temperature Sensitive Variant of p53 Drives p53-Dependent MicroRNA Expression without Evidence of Widespread Post-Transcriptional Gene Silencing.

    PubMed

    Cabrita, Miguel A; Vanzyl, Erin J; Hamill, Jeff D; Pan, Elysia; Marcellus, Kristen A; Tolls, Victoria J; Alonzi, Rhea C; Pastic, Alyssa; Rambo, Teeghan M E; Sayed, Hadil; McKay, Bruce C

    2016-01-01

    The p53 tumour suppressor is a transcription factor that can regulate the expression of numerous genes including many encoding proteins and microRNAs (miRNAs). The predominant outcomes of a typical p53 response are the initiation of apoptotic cascades and the activation of cell cycle checkpoints. HT29-tsp53 cells express a temperature sensitive variant of p53 and in the absence of exogenous DNA damage, these cells preferentially undergo G1 phase cell cycle arrest at the permissive temperature that correlates with increased expression of the cyclin-dependent kinase inhibitor p21WAF1. Recent evidence also suggests that a variety of miRNAs can induce G1 arrest by inhibiting the expression of proteins like CDK4 and CDK6. Here we used oligonucleotide microarrays to identify p53-regulated miRNAs that are induced in these cells undergoing G1 arrest. At the permissive temperature, the expression of several miRNAs was increased through a combination of either transcriptional or post-transcriptional regulation. In particular, miR-34a-5p, miR-143-3p and miR-145-5p were strongly induced and they reached levels comparable to that of reference miRNAs (miR-191 and miR-103). Importantly, miR-34a-5p and miR-145-5p are known to silence the Cdk4 and/or Cdk6 G1 cyclin-dependent kinases (cdks). Surprisingly, there was no p53-dependent decrease in the expression of either of these G1 cdks. To search for other potential targets of p53-regulated miRNAs, p53-downregulated mRNAs were identified through parallel microarray analysis of mRNA expression. Once again, there was no clear effect of p53 on the repression of mRNAs under these conditions despite a remarkable increase in p53-induced mRNA expression. Therefore, despite a strong p53 transcriptional response, there was no clear evidence that p53-responsive miRNA contributed to gene silencing. Taken together, the changes in cell cycle distribution in this cell line at the permissive temperature is likely attributable to transcriptional

  13. The histone deacetylase inhibitor sodium valproate causes limited transcriptional change in mouse embryonic stem cells but selectively overrides Polycomb-mediated Hoxb silencing

    PubMed Central

    2013-01-01

    Background Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation and H3K4 hypermethylation in various cell types. They find clinical application as anti-epileptics and chemotherapeutic agents, but the pathways through which they operate remain unclear. Surprisingly, changes in gene expression caused by HDACi are often limited in extent and can be positive or negative. Here we have explored the ability of the clinically important HDACi valproic acid (VPA) to alter histone modification and gene expression, both globally and at specific genes, in mouse embryonic stem (ES) cells. Results Microarray expression analysis of ES cells exposed to VPA (1 mM, 8 h), showed that only 2.4% of genes showed a significant, >1.5-fold transcriptional change. Of these, 33% were down-regulated. There was no correlation between gene expression and VPA-induced changes in histone acetylation or H3K4 methylation at gene promoters, which were usually minimal. In contrast, all Hoxb genes showed increased levels of H3K9ac after exposure to VPA, but much less change in other modifications showing bulk increases. VPA-induced changes were lost within 24 h of inhibitor removal. VPA significantly increased the low transcription of Hoxb4 and Hoxb7, but not other Hoxb genes. Expression of Hoxb genes increased in ES cells lacking functional Polycomb silencing complexes PRC1 and PRC2. Surprisingly, VPA caused no further increase in Hoxb transcription in these cells, except for Hoxb1, whose expression increased several fold. Retinoic acid (RA) increased transcription of all Hoxb genes in differentiating ES cells within 24 h, but thereafter transcription remained the same, increased progressively or fell progressively in a locus-specific manner. Conclusions Hoxb genes in ES cells are unusual in being sensitive to VPA, with effects on both cluster-wide and locus-specific processes. VPA increases H3K9ac at all Hoxb loci but significantly overrides PRC-mediated silencing only at Hoxb4 and

  14. A Temperature Sensitive Variant of p53 Drives p53-Dependent MicroRNA Expression without Evidence of Widespread Post-Transcriptional Gene Silencing

    PubMed Central

    Cabrita, Miguel A.; Vanzyl, Erin J.; Hamill, Jeff D.; Pan, Elysia; Marcellus, Kristen A.; Tolls, Victoria J.; Alonzi, Rhea C.; Pastic, Alyssa; Rambo, Teeghan M. E.; Sayed, Hadil; McKay, Bruce C.

    2016-01-01

    The p53 tumour suppressor is a transcription factor that can regulate the expression of numerous genes including many encoding proteins and microRNAs (miRNAs). The predominant outcomes of a typical p53 response are the initiation of apoptotic cascades and the activation of cell cycle checkpoints. HT29-tsp53 cells express a temperature sensitive variant of p53 and in the absence of exogenous DNA damage, these cells preferentially undergo G1 phase cell cycle arrest at the permissive temperature that correlates with increased expression of the cyclin-dependent kinase inhibitor p21WAF1. Recent evidence also suggests that a variety of miRNAs can induce G1 arrest by inhibiting the expression of proteins like CDK4 and CDK6. Here we used oligonucleotide microarrays to identify p53-regulated miRNAs that are induced in these cells undergoing G1 arrest. At the permissive temperature, the expression of several miRNAs was increased through a combination of either transcriptional or post-transcriptional regulation. In particular, miR-34a-5p, miR-143-3p and miR-145-5p were strongly induced and they reached levels comparable to that of reference miRNAs (miR-191 and miR-103). Importantly, miR-34a-5p and miR-145-5p are known to silence the Cdk4 and/or Cdk6 G1 cyclin-dependent kinases (cdks). Surprisingly, there was no p53-dependent decrease in the expression of either of these G1 cdks. To search for other potential targets of p53-regulated miRNAs, p53-downregulated mRNAs were identified through parallel microarray analysis of mRNA expression. Once again, there was no clear effect of p53 on the repression of mRNAs under these conditions despite a remarkable increase in p53-induced mRNA expression. Therefore, despite a strong p53 transcriptional response, there was no clear evidence that p53-responsive miRNA contributed to gene silencing. Taken together, the changes in cell cycle distribution in this cell line at the permissive temperature is likely attributable to transcriptional

  15. Post-transcriptional silencing of the SGE1 gene induced by a dsRNA hairpin in Fusarium oxysporum f. sp cubense, the causal agent of Panama disease.

    PubMed

    Fernandes, J S; Angelo, P C S; Cruz, J C; Santos, J M M; Sousa, N R; Silva, G F

    2016-01-01

    Fusarium oxysporum f. sp cubense (Foc), the causal agent of Panama disease, is responsible for economic losses in banana crops worldwide. The identification of genes that effectively act on pathogenicity and/or virulence may contribute to the development of different strategies for disease control and the production of resistant plants. The objective of the current study was to analyze the importance of SGE1 gene expression in Foc virulence through post-transcriptional silencing using a double-stranded RNA hairpin. Thirteen transformants were selected based on different morphological characteristics, and sporulation in these transformants was significantly reduced by approximately 95% (P < 0.05) compared to that of the wild-type strain. The relative SGE1 expression levels in the transformant strains were reduced by 27 to 47% compared to those in the wild-type strain. A pathogenicity analysis revealed that the transformants were able to reach the rhizomes and pseudostems of the inoculated banana plants. However, the transformants induced initial disease symptoms in the banana plants approximately 10 days later than that by the wild-type Foc, and initial disease symptoms persisted even at 45 days after inoculation. These results indicate that the SGE1 gene is directly involved in the virulence of Foc. Therefore, SGE1 may be a potential candidate for host-induced gene silencing in banana plants. PMID:27173186

  16. [Sop proteins can cause transcriptional silencing of genes located close to the centromere sites of linear plasmid N15].

    PubMed

    Mardanov, A V; Lane, D; Ravin, N V

    2010-01-01

    Stable inheritance of bacterial chromosomes and low copy number plasmids is ensured by accurate partitioning of replicated molecules between the daughter cells at division. Partitioning of the prophage of the temperate bacteriophage N15, which exists as a linear plasmid molecule with covalently closed ends, depends on the sop locus, comprising genes sopA and sopB, as well as four centromere sites located in different regions of the N15 genome essential for replication and the control of lysogeny. We found that binding of SopB to the centromere can silence centromere-proximal promoters, presumably due to subsequent polymerizing of SopB along the DNA. Close to the IR4 centromere site we identified a promoter, P59, able to drive expression of phage late genes encoding the structural proteins of virion. We found that following binding to IR4 the N15 Sop proteins can cause repression of this promoter. The repression depends on SopB and became stronger in the presence of SopA. Sop-dependent silencing of centromere-proximal promoters control gene expression in phage N15, particularly preventing undesired expression of late genes in the N15 prophage. Thus, the phage N15 sop system not only ensures plasmid partitioning but is also involved in the genetic network controlling prophage replication and the maintenance of lysogeny.

  17. Synergy between the RE-1 silencer of transcription and NFkappaB in the repression of the neurotransmitter gene TAC1 in human mesenchymal stem cells.

    PubMed

    Greco, Steven J; Smirnov, Sergey V; Murthy, Raghav G; Rameshwar, Pranela

    2007-10-12

    The RE-1 silencer of transcription (REST) is a transcriptional regulator that represses neuron-specific genes in non-neuronal tissues by remodeling chromatin structure. We have utilized human mesenchymal stem cells (MSCs) as a research tool to understand the molecular mechanisms that regulate a neurogenic program of differentiation in non-neuronal tissue. MSCs are mesoderm-derived cells that generate specialized cells such as stroma, fat, bone, and cartilage. We have reported previously the transdifferentiation of MSCs into functional neuronal cells (Cho, K. J., Trzaska, K. A., Greco, S. J., McArdle, J., Wang, F. S., Ye, J.-H., and Rameshwar, P. (2005) Stem Cells 23, 383-391). Expression of the neurotransmitter gene TAC1 was detected only in neuronal cells and thus served as a model to study transcriptional regulation of neuron-specific genes in undifferentiated MSCs. Bone marrow stromal cells are known to transiently express TAC1 following stimulation with the microenvironmental factor interleukin-1alpha. We thus compared the effects of interleukin-1alpha stimulation and neuronal induction of MSCs on TAC1 regulation. Transcription factor mapping of the 5'-flanking region of the TAC1 promoter predicted two REST-binding sites adjacent to one NFkappaB site within exon 1. Chromatin immunoprecipitation, mutagenesis, and loss-of-function studies showed that both transcription factors synergistically mediated repression of TAC1 in the neurogenic and microenvironmental models. Together, the results support the novel finding of synergism between REST and NFkappaB in the suppression of TAC1 in non-neuronal cells.

  18. Silencing of molt-regulating transcription factor gene, CiHR3, affects growth and development of sugarcane stem borer, Chilo infuscatellus.

    PubMed

    Zhang, Yu-liang; Zhang, Shu-zhen; Kulye, Mahesh; Wu, Su-ran; Yu, Nai-tong; Wang, Jian-hua; Zeng, Hong-mei; Liu, Zhi-xin

    2012-01-01

    RNA interference (RNAi) is a technology for conducting functional genomic studies and a potential tool for crop protection against insect pests. Development of reliable methods for production and delivery of double-stranded RNA (dsRNA) is the major challenge for efficient pest control. In this study, Chilo infuscatellus Snellen (Crambidae: Lepidoptera) was fed with CiHR3 dsRNA expressed in bacteria or synthesized in vitro. The dsRNA ingested by C. infuscatellus successfully triggered silencing of the molt-regulating transcription factor CiHR3, an important gene for insect growth and development, and caused significant abnormalities and weight loss in insects within seven days of treatment. This study is an ideal example of feeding-based RNAi mediated by dsRNA expressed in bacteria or synthesized in vitro. The results also suggested that feeding-based RNA interference is a potential method for the management of C. infuscatellus. PMID:23427912

  19. Delayed translational silencing of ceruloplasmin transcript in gamma interferon-activated U937 monocytic cells: role of the 3' untranslated region

    NASA Technical Reports Server (NTRS)

    Mazumder, B.; Fox, P. L.

    1999-01-01

    Ceruloplasmin (Cp) is an acute-phase protein with ferroxidase, amine oxidase, and pro- and antioxidant activities. The primary site of Cp synthesis in human adults is the liver, but it is also synthesized by cells of monocytic origin. We have shown that gamma interferon (IFN-gamma) induces the synthesis of Cp mRNA and protein in monocytic cells. We now report that the induced synthesis of Cp is terminated by a mechanism involving transcript-specific translational repression. Cp protein synthesis in U937 cells ceased after 16 h even in the presence of abundant Cp mRNA. RNA isolated from cells treated with IFN-gamma for 24 h exhibited a high in vitro translation rate, suggesting that the transcript was not defective. Ribosomal association of Cp mRNA was examined by sucrose centrifugation. When Cp synthesis was high, i.e., after 8 h of IFN-gamma treatment, Cp mRNA was primarily associated with polyribosomes. However, after 24 h, when Cp synthesis was low, Cp mRNA was primarily in the nonpolyribosomal fraction. Cytosolic extracts from cells treated with IFN-gamma for 24 h, but not for 8 h, contained a factor which blocked in vitro Cp translation. Inhibitor expression was cell type specific and present in extracts of human cells of myeloid origin, but not in several nonmyeloid cells. The inhibitory factor bound to the 3' untranslated region (3'-UTR) of Cp mRNA, as shown by restoration of in vitro translation by synthetic 3'-UTR added as a "decoy" and detection of a binding complex by RNA gel shift analysis. Deletion mapping of the Cp 3'-UTR indicated an internal 100-nucleotide region of the Cp 3'-UTR that was required for complex formation as well as for silencing of translation. Although transcript-specific translational control is common during development and differentiation and global translational control occurs during responses to cytokines and stress, to our knowledge, this is the first report of translational silencing of a specific transcript following cytokine

  20. Neuron-restrictive silencer factor (NRSF) represses cocaine- and amphetamine-regulated transcript (CART) transcription and antagonizes cAMP-response element-binding protein signaling through a dual NRSE mechanism.

    PubMed

    Zhang, Jing; Wang, Sihan; Yuan, Lin; Yang, Yinxiang; Zhang, Bowen; Liu, Qingbin; Chen, Lin; Yue, Wen; Li, Yanhua; Pei, Xuetao

    2012-12-14

    Cocaine- and amphetamine-regulated transcript (CART) peptide plays a pivotal role in neuroprotection against stroke-related brain injury. However, the regulatory mechanism on CART transcription, especially the repression mechanism, is not fully understood. Here, we show that the transcriptional repressor neuron-restrictive silencer elements (NRSF, also known as REST) represses CART expression through direct binding to two NRSF-binding elements (NRSEs) in the CART promoter and intron 1 (named pNRSE and iNRSE, respectively). EMSA show that NRSF binds to pNRSE and iNRSE directly in vitro. ChIP assays show that NRSF recruits differential co-repressor complexes including CoREST and HDAC1 to these NRSEs. The presence of both NRSEs is required for efficient repression of CART transcription as indicated by reporter gene assays. NRSF overexpression antagonizes forskolin-mediated up-regulation of CART mRNA and protein. Ischemia insult triggered by oxygen-glucose deprivation (OGD) enhances NRSF mRNA levels and then NRSF antagonizes the CREB signaling on CART activation, leading to augmented cell death. Depletion of NRSF in combination with forskolin treatment increases neuronal survival after ischemic insult. These findings reveal a novel dual NRSE mechanism by which NRSF represses CART expression and suggest that NRSF may serve as a therapeutic target for stroke treatment. PMID:23086924

  1. Neuron-restrictive Silencer Factor (NRSF) Represses Cocaine- and Amphetamine-regulated Transcript (CART) Transcription and Antagonizes cAMP-response Element-binding Protein Signaling through a Dual NRSE Mechanism*

    PubMed Central

    Zhang, Jing; Wang, Sihan; Yuan, Lin; Yang, Yinxiang; Zhang, Bowen; Liu, Qingbin; Chen, Lin; Yue, Wen; Li, Yanhua; Pei, Xuetao

    2012-01-01

    Cocaine- and amphetamine-regulated transcript (CART) peptide plays a pivotal role in neuroprotection against stroke-related brain injury. However, the regulatory mechanism on CART transcription, especially the repression mechanism, is not fully understood. Here, we show that the transcriptional repressor neuron-restrictive silencer elements (NRSF, also known as REST) represses CART expression through direct binding to two NRSF-binding elements (NRSEs) in the CART promoter and intron 1 (named pNRSE and iNRSE, respectively). EMSA show that NRSF binds to pNRSE and iNRSE directly in vitro. ChIP assays show that NRSF recruits differential co-repressor complexes including CoREST and HDAC1 to these NRSEs. The presence of both NRSEs is required for efficient repression of CART transcription as indicated by reporter gene assays. NRSF overexpression antagonizes forskolin-mediated up-regulation of CART mRNA and protein. Ischemia insult triggered by oxygen-glucose deprivation (OGD) enhances NRSF mRNA levels and then NRSF antagonizes the CREB signaling on CART activation, leading to augmented cell death. Depletion of NRSF in combination with forskolin treatment increases neuronal survival after ischemic insult. These findings reveal a novel dual NRSE mechanism by which NRSF represses CART expression and suggest that NRSF may serve as a therapeutic target for stroke treatment. PMID:23086924

  2. RE-1–silencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells

    PubMed Central

    Reddy, Bobby Y.; Greco, Steven J.; Patel, Prem S.; Trzaska, Katarzyna A.; Rameshwar, Pranela

    2009-01-01

    Breast cancer remains the most prevalent cancer among women in the United States. Substance P, a peptide derived from the TAC1 gene, mediates oncogenic properties in breast and other cancers. TAC1 expression facilitates the entry of breast cancer cells into bone marrow. The transcriptional repressor element 1–silencing transcription factor (REST) has been implicated in both oncogenic and tumor-suppressor functions. REST binds to the 5′ untranslated region of the TAC1 promoter and suppresses its expression. This study investigated a role for REST in TAC1 induction in breast cancer. Western blots and real-time PCR indicated that REST expression in breast cancer cells was inversely proportional to the cells' aggressiveness, for both cell lines and primary breast cancer cells. REST knockdown in low-metastatic T47D cells and nontumorigenic MCF12A cells resulted in increases in TAC1 induction, proliferation, and migration. These parameters were negatively affected by ectopic expression of REST in highly aggressive MDA-MB-231 cells. Together, these findings show a central role for REST in the oncogenic function of TAC1 and suggest a tumor-suppressor role for REST in breast cancer. PMID:19246391

  3. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana.

    PubMed

    Ghag, Siddhesh B; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2014-06-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive diseases of banana (Musa spp.). Because no credible control measures are available, development of resistant cultivars through genetic engineering is the only option. We investigated whether intron hairpin RNA (ihpRNA)-mediated expression of small interfering RNAs (siRNAs) targeted against vital fungal genes (velvet and Fusarium transcription factor 1) in transgenic banana could achieve effective resistance against Foc. Partial sequences of these two genes were assembled as ihpRNAs in suitable binary vectors (ihpRNA-VEL and ihpRNA-FTF1) and transformed into embryogenic cell suspensions of banana cv. Rasthali by Agrobacterium-mediated genetic transformation. Eleven transformed lines derived from ihpRNA-VEL and twelve lines derived from ihpRNA-FTF1 were found to be free of external and internal symptoms of Foc after 6-week-long greenhouse bioassays. The five selected transgenic lines for each construct continued to resist Foc at 8 months postinoculation. Presence of specific siRNAs derived from the two ihpRNAs in transgenic banana plants was confirmed by Northern blotting and Illumina sequencing of small RNAs derived from the transgenic banana plants. The present study represents an important effort in proving that host-induced post-transcriptional ihpRNA-mediated gene silencing of vital fungal genes can confer efficient resistance against debilitating pathogens in crop plants.

  4. Transcriptional silencing of ETS-1 abrogates epithelial-mesenchymal transition resulting in reduced motility of pancreatic cancer cells.

    PubMed

    Li, Chunyan; Wang, Zhonghan; Chen, Yan; Zhou, Min; Zhang, Haijun; Chen, Rong; Shi, Fangfang; Wang, Cailian; Rui, Zongdao

    2015-02-01

    v-ets erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays crucial roles in a spectrum of malignancies. ETS-1 has gained attention in cancer research for its importance in cell migration, invasion and proliferation. In the present study, we focused on the effect of ETS-1 on epithelial-mesenchymal transition (EMT), which is characterized by reduced E-cadherin expression and increased N-cadherin expression. We found that ETS-1 mRNA expression was positively correlated with N-cadherin and negatively correlated with E-cadherin mRNA expression in five pancreatic cancer cell lines. To elucidate the functionality of ETS-1 on EMT in pancreatic cancer cells, we constructed a green fluorescent protein (GFP)-expressing plasmid carrying ETS-1 short hairpin RNA (shRNA), and transfected Panc-1 cells with the plasmid. We detected reduced N-cadherin and vascular endothelial growth factor yet higher E-cadherin expression in the ETS-1-silenced cells compared with the control group. In addition, we observed reduced cell migration and increased adhesion in these cells. Our data showed that ETS-1 actively functioned as a regulator of EMT in Panc-1 cells, and provide additional evidence supporting a fundamental role for ETS-1 in metastatic pancreatic cancer cells. These results suggest that analysis of ETS-1 expression levels may provide an avenue for evaluating prognosis in pancreatic cancer.

  5. Epigenetic silencing of JMJD5 promotes the proliferation of hepatocellular carcinoma cells by down-regulating the transcription of CDKN1A

    PubMed Central

    Fang, Jia-Zhu; Wu, Chong-Chao; Huang, Li-Yu; Wang, Lan; Han, Ze-Guang

    2016-01-01

    Proteins that contain jumonji C (JmjC) domains have recently been identified as major contributors to various malignant human cancers through epigenetic remodeling. However, the roles of these family members in the pathogenesis of hepatocellular carcinoma (HCC) are obscure. By mining public databases, we found that the HCC patients with lower JmjC domain-containing protein 5 (JMJD5) expression exhibited shorter survival time. We then confirmed that JMJD5 expression was indeed decreased in HCC specimens, which was caused by the altered epigenetic histone modifications, the decreased H3K9ac, H3K27ac and H3K4me2/3 together with the increased trimethylation of H3K27 and H3K9 on the JMJD5 promoter. Functional experiments revealed that JMJD5 knockdown promoted HCC cell proliferation and in vivo tumorigenicity by accelerating the G1/S transition of the cell cycle; in contrast, ectopic JMJD5 expression had the opposite effects. At molecular mechanism, we found that, in HCC cell lines including TP53-null Hep3B, JMJD5 knockdown led to the down-regulation of CDKN1A and ectopic expression of JMJD5 not only increased but also rescued CDKN1A transcription. Moreover, CDKN1A knockdown could abrogate the effect of JMJD5 knockdown or overexpression on cell proliferation, suggesting that JMJD5 inhibits HCC cell proliferation mainly by activating CDKN1A expression. We further revealed that JMJD5 directly enhances CDKN1A transcription by binding to CDKN1A's promoter independent of H3K36me2 demethylase activity. In short, we first prove that JMJD5 is a tumor suppressor gene in HCC pathogenesis, and the epigenetic silencing of JMJD5 promotes HCC cell proliferation by directly down-regulating CDKN1A transcription. PMID:26760772

  6. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance.

    PubMed

    Chen, Z J; Pikaard, C S

    1997-08-15

    Nucleolar dominance is an epigenetic phenomenon that describes nucleolus formation around rRNA genes inherited from only one progenitor of an interspecific hybrid or allopolyploid. The phenomenon is widespread, occurring in plants, insects, amphibians, and mammals, yet its molecular basis remains unclear. We have demonstrated nucleolar dominance in three allotetraploids of the plant genus Brassica. In Brassica napus, accurately initiated pre-rRNA transcripts from one progenitor, Brassica rapa are detected readily, whereas transcripts from the approximately 3000 rRNA genes inherited from the other progenitor, Brassica oleracea, are undetectable. Nuclear run-on confirmed that dominance is controlled at the level of transcription. Growth of B. napus seedlings on 5-aza-2'-deoxycytidine to inhibit cytosine methylation caused the normally silent, under-dominant B. oleracea rRNA genes to become expressed to high levels. The histone deacetylase inhibitors sodium butyrate and trichostatin A also derepressed silent rRNA genes. These results reveal an enforcement mechanism for nucleolar dominance in which DNA methylation and histone modifications combine to regulate rRNA gene loci spanning tens of megabase pairs of DNA.

  7. Inhibiting cell migration and cell invasion by silencing the transcription factor ETS-1 in human bladder cancer

    PubMed Central

    Chen, Mingwei; Wu, Hanwei; Lin, Muqi; Zhan, Yonghao; Zhuang, Chengle; Lin, Junhao; Li, Jianfa; Xu, Wen; Fu, Xing; Zhang, Qiaoxia; Sun, Xiaojuan; Zhao, Guoping; Huang, Weiren

    2016-01-01

    As one of the members of the ETS gene family, the transcription factor v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays key role in the regulation of physiological processes in normal cells and tumors. In this study, we aimed to investigate the relationship between the transcription factor ETS-1 and malignant phenotypes of bladder cancer. We demonstrated that ETS-1 was up-regulated in human bladder cancer tissue compared to paired normal bladder tissue. In order to evaluate the functional role of ETS-1 in human bladder cancer, vectors expressing ETS-1 shRNA and ETS-1 protein were constructed in vitro and transfected into the human bladder cancer T24 and 5637 cells. Our results showed that the transcription factor ETS-1 could promote cell migration and cell invasion in human bladder cancer, without affecting cell proliferation and apoptosis. In conclusion, ETS-1 plays oncogenic roles through inducing cell migration and invasion in human bladder cancer, and it can be used as a therapeutic target for treating human bladder cancer. PMID:27036016

  8. Inhibiting cell migration and cell invasion by silencing the transcription factor ETS-1 in human bladder cancer.

    PubMed

    Liu, Li; Liu, Yuchen; Zhang, Xintao; Chen, Mingwei; Wu, Hanwei; Lin, Muqi; Zhan, Yonghao; Zhuang, Chengle; Lin, Junhao; Li, Jianfa; Xu, Wen; Fu, Xing; Zhang, Qiaoxia; Sun, Xiaojuan; Zhao, Guoping; Huang, Weiren

    2016-05-01

    As one of the members of the ETS gene family, the transcription factor v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays key role in the regulation of physiological processes in normal cells and tumors. In this study, we aimed to investigate the relationship between the transcription factor ETS-1 and malignant phenotypes of bladder cancer. We demonstrated that ETS-1 was up-regulated in human bladder cancer tissue compared to paired normal bladder tissue. In order to evaluate the functional role of ETS-1 in human bladder cancer, vectors expressing ETS-1 shRNA and ETS-1 protein were constructed in vitro and transfected into the human bladder cancer T24 and 5637 cells. Our results showed that the transcription factor ETS-1 could promote cell migration and cell invasion in human bladder cancer, without affecting cell proliferation and apoptosis. In conclusion, ETS-1 plays oncogenic roles through inducing cell migration and invasion in human bladder cancer, and it can be used as a therapeutic target for treating human bladder cancer.

  9. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance

    PubMed Central

    Chen, Z. Jeffrey; Pikaard, Craig S.

    1997-01-01

    Nucleolar dominance is an epigenetic phenomenon that describes nucleolus formation around rRNA genes inherited from only one progenitor of an interspecific hybrid or allopolyploid. The phenomenon is widespread, occurring in plants, insects, amphibians, and mammals, yet its molecular basis remains unclear. We have demonstrated nucleolar dominance in three allotetraploids of the plant genus Brassica. In Brassica napus, accurately initiated pre-rRNA transcripts from one progenitor, Brassica rapa are detected readily, whereas transcripts from the ∼3000 rRNA genes inherited from the other progenitor, Brassica oleracea, are undetectable. Nuclear run-on confirmed that dominance is controlled at the level of transcription. Growth of B. napus seedlings on 5-aza-2′-deoxycytidine to inhibit cytosine methylation caused the normally silent, under-dominant B. oleracea rRNA genes to become expressed to high levels. The histone deacetylase inhibitors sodium butyrate and trichostatin A also de-epressed silent rRNA genes. These results reveal an enforcement mechanism for nucleolar dominance in which DNA methylation and histone modifications combine to regulate rRNA gene loci spanning tens of megabase pairs of DNA. PMID:9284051

  10. Deconstructing Phonetic Transcription: Covert Contrast, Perceptual Bias, and an Extraterrestrial View of "Vox Humana"

    ERIC Educational Resources Information Center

    Munson, Benjamin; Edwards, Jan; Schellinger, Sarah K.; Beckman, Mary E.; Meyer, Marie K.

    2010-01-01

    This article honours Adele Miccio's life work by reflecting on the utility of phonetic transcription. The first section reviews the literature on cases where children whose speech appears to neutralize a contrast in the adult language are found on closer examination to produce a contrast ("covert contrast"). This study presents evidence from a new…

  11. HDAC inhibition by SNDX-275 (Entinostat) restores expression of silenced leukemia-associated transcription factors Nur77 and Nor1 and of key pro-apoptotic proteins in AML.

    PubMed

    Zhou, L; Ruvolo, V R; McQueen, T; Chen, W; Samudio, I J; Conneely, O; Konopleva, M; Andreeff, M

    2013-06-01

    Nur77 and Nor1 are highly conserved orphan nuclear receptors. We have recently reported that nur77(-/-)nor1(-/-) mice rapidly develop acute myeloid leukemia (AML) and that Nur77 and Nor1 transcripts were universally downregulated in human AML blasts. These findings indicate that Nur77 and Nor1 function as leukemia suppressors. We further demonstrated silencing of Nur77 and Nor1 in leukemia stem cells (LSCs). We here report that inhibition of histone deacetylase (HDAC) using the specific class I HDAC inhibitor SNDX-275 restored the expression of Nur77/Nor1 and induced expression of activator protein 1 transcription factors c-Jun and JunB, and of death receptor TRAIL, in AML cells and in CD34(+)/38(-) AML LSCs. Importantly, SNDX-275 induced extensive apoptosis in AML cells, which could be suppressed by silencing nur77 and nor1. In addition, pro-apoptotic proteins Bim and Noxa were transcriptionally upregulated by SNDX-275 in AML cells and in LSCs. Our present work is the first report of a novel mechanism of HDAC inhibitor-induced apoptosis in AML that involves restoration of the silenced nuclear receptors Nur77 and Nor1, activation of activator protein 1 transcription factors, a death receptor and pro-apoptotic proteins. PMID:23247046

  12. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA. PMID:27131397

  13. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA.

  14. Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing.

    PubMed

    Schludi, Martin H; May, Stephanie; Grässer, Friedrich A; Rentzsch, Kristin; Kremmer, Elisabeth; Küpper, Clemens; Klopstock, Thomas; Arzberger, Thomas; Edbauer, Dieter

    2015-10-01

    A massive expansion of a GGGGCC repeat upstream of the C9orf72 coding region is the most common known cause of amyotrophic lateral sclerosis and frontotemporal dementia. Despite its intronic localization and lack of a canonical start codon, both strands are translated into aggregating dipeptide repeat (DPR) proteins: poly-GA, poly-GP, poly-GR, poly-PR and poly-PA. To address conflicting findings on the predominant toxicity of the different DPR species in model systems, we compared the expression pattern of the DPR proteins in rat primary neurons and postmortem brain and spinal cord of C9orf72 mutation patients. Only poly-GA overexpression closely mimicked the p62-positive neuronal cytoplasmic inclusions commonly observed for all DPR proteins in patients. In contrast, overexpressed poly-GR and poly-PR formed nucleolar p62-negative inclusions. In patients, most of the less common neuronal intranuclear DPR inclusions were para-nucleolar and p62 positive. Neuronal nucleoli in C9orf72 cases showed normal size and morphology regardless of the presence of poly-GR and poly-PR inclusions arguing against widespread nucleolar stress, reported in cellular models. Colocalization of para-nucleolar DPR inclusions with heterochromatin and a marker of transcriptional repression (H3K9me2) indicates a link to gene transcription. In contrast, we detected numerous intranuclear DPR inclusions not associated with nucleolar structures in ependymal and subependymal cells. In patients, neuronal inclusions of poly-GR, poly-GP and the poly-GA interacting protein Unc119 were less abundant than poly-GA inclusions, but showed similar regional and subcellular distribution. Regardless of neurodegeneration, all inclusions were most abundant in neocortex, hippocampus and thalamus, with few inclusions in brain stem and spinal cord. In the granular cell layer of the cerebellum, poly-GA and Unc119 inclusions were significantly more abundant in cases with FTLD than in cases with MND and FTLD/MND. Poly

  15. Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes.

    PubMed

    Toppino, Laura; Kooiker, Maarten; Lindner, Matias; Dreni, Ludovico; Rotino, Giuseppe L; Kater, Martin M

    2011-08-01

    Since decades, plant male sterility is considered a powerful tool for biological containment to minimize unwanted self-pollination for hybrid seed production. Furthermore, prevention of pollen dispersal also answers to concerns regarding transgene flow via pollen from Genetically Modified (GM) crops to traditional crop fields or wild relatives. We induced male sterility by suppressing endogenous general transcription factor genes, TAFs, using anther-specific promoters combined with artificial microRNA (amiRNA) technology (Schwab et al., 2006). The system was made reversible by the ethanol inducible expression of an amiRNA-insensitive form of the target gene. We provide proof of concept in eggplant, a cultivated crop belonging to the Solanaceae family that includes many important food crops. The transgenic eggplants that we generated are completely male sterile and fertility can be fully restored by short treatments with ethanol, confirming the efficiency but also the reliability of the system in view of open field cultivation. By combining this system with induced parthenocarpy (Rotino et al., 1997), we provide a novel example of complete transgene containment in eggplant, which enables biological mitigation measures for the benefit of coexistence or biosafety purposes for GM crop cultivation. PMID:20955179

  16. Reversible male sterility in eggplant (Solanum melongena L.) by artificial microRNA-mediated silencing of general transcription factor genes.

    PubMed

    Toppino, Laura; Kooiker, Maarten; Lindner, Matias; Dreni, Ludovico; Rotino, Giuseppe L; Kater, Martin M

    2011-08-01

    Since decades, plant male sterility is considered a powerful tool for biological containment to minimize unwanted self-pollination for hybrid seed production. Furthermore, prevention of pollen dispersal also answers to concerns regarding transgene flow via pollen from Genetically Modified (GM) crops to traditional crop fields or wild relatives. We induced male sterility by suppressing endogenous general transcription factor genes, TAFs, using anther-specific promoters combined with artificial microRNA (amiRNA) technology (Schwab et al., 2006). The system was made reversible by the ethanol inducible expression of an amiRNA-insensitive form of the target gene. We provide proof of concept in eggplant, a cultivated crop belonging to the Solanaceae family that includes many important food crops. The transgenic eggplants that we generated are completely male sterile and fertility can be fully restored by short treatments with ethanol, confirming the efficiency but also the reliability of the system in view of open field cultivation. By combining this system with induced parthenocarpy (Rotino et al., 1997), we provide a novel example of complete transgene containment in eggplant, which enables biological mitigation measures for the benefit of coexistence or biosafety purposes for GM crop cultivation.

  17. Endogenous post-transcriptional gene silencing of flavone synthase resulting in high accumulation of anthocyanins in black dahlia cultivars.

    PubMed

    Deguchi, Ayumi; Ohno, Sho; Hosokawa, Munetaka; Tatsuzawa, Fumi; Doi, Motoaki

    2013-05-01

    Black color in flowers is a highly attractive trait in the floricultural industry, but its underlying mechanisms are largely unknown. This study was performed to identify the bases of the high accumulation of anthocyanidins in black cultivars and to determine whether the high accumulation of total anthocyanidins alone leads to the black appearance. Our approach was to compare black dahlia (Dahlia variabilis) cultivars with purple cultivars and a purple flowering mutant of a black cultivar, using pigment and molecular analyses. Black cultivars characteristically exhibited low lightness, high petal accumulation of cyanidin and total anthocyanidins without flavones, and marked suppression of flavone synthase (DvFNS) expression. A comparative study using black and purple cultivars revealed that neither the absence of flavones nor high accumulation of total anthocyanidins is solely sufficient for black appearance, but that cyanidin content in petals is also an important factor in the phenotype. A study comparing the black cultivar 'Kokucho' and its purple mutant showed that suppression of DvFNS abolishes the competition between anthocyanidin and flavone synthesis and leads to accumulation of cyanidin and total anthocyanidins that produce a black appearance. Surprisingly, in black cultivars the suppression of DvFNS occurred in a post-transcriptional manner, as determined by small RNA mapping. PMID:23389674

  18. Cell-Specific mRNA Profiling of the Caenorhabditis elegans Somatic Gonadal Precursor Cells Identifies Suites of Sex-Biased and Gonad-Enriched Transcripts

    PubMed Central

    Kroetz, Mary B.; Zarkower, David

    2015-01-01

    The Caenorhabditis elegans somatic gonad differs greatly between the two sexes in its pattern of cell divisions, migration, and differentiation. Despite decades of study, the genetic pathways directing early gonadal development and establishing sexual dimorphism in the gonad remain largely unknown. To help define the genetic networks that regulate gonadal development, we employed cell-specific RNA-seq. We identified transcripts present in the somatic gonadal precursor cells and their daughter cells of each sex at the onset of sexual differentiation. We identified several hundred gonad-enriched transcripts, including the majority of known regulators of early gonadal development, and transgenic reporter analysis confirmed the effectiveness of this approach. Before the division of the somatic gonad precursors, few sex-biased gonadal transcripts were detectable; less than 6 hr later, after their division, we identified more than 250 sex-biased transcripts, of which about a third were enriched in the somatic gonad compared to the whole animal. This indicates that a robust sex-biased developmental program, some of it gonad-specific, initiates in the somatic gonadal precursor cells around the time of their first division. About 10% of male-biased transcripts had orthologs with male-biased expression in the early mouse gonad, suggesting possible conservation of gonad sex differentiation. Cell-specific analysis also identified approximately 70 previously unannotated mRNA isoforms that are enriched in the somatic gonad. Our data illustrate the power of cell-specific transcriptome analysis and suggest that early sex differentiation in the gonad is controlled by a relatively small suite of differentially expressed genes, even after dimorphism has become apparent. PMID:26497144

  19. In vitro transcription activities of Pol IV, Pol V and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing

    SciTech Connect

    Haag, Jeremy R.; Ream, Thomas S.; Marasco, Michelle; Nicora, Carrie D.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Pikaard, Craig S.

    2012-12-14

    In Arabidopsis, RNA-dependent DNA methylation and transcriptional silencing involves three nuclear RNA polymerases that are biochemically undefined: the presumptive DNA-dependent RNA polymerases, Pol IV and Pol V and the putative RNA-dependent RNA polymerase, RDR2. Here, we demonstrate their RNA polymerase activities in vitro. Unlike Pol II, Pols IV and V require an RNA primer, are insensitive to alpha-amanitin and differ in their ability to displace non-template DNA during transcription. Biogenesis of 24 nt small interfering RNAs (siRNAs) requires both Pol IV and RDR2, which physically associate in vivo. Pol IV does not require RDR2 for activity, but RDR2 is nonfunctional in the absence of associated Pol IV, suggesting that their coupling explains the channeling of Pol IV transcripts into double-stranded RNAs that are then diced into 24 nt siRNAs.

  20. Hypoxia, reoxygenation and cytosolic manganese superoxide dismutase (cMnSOD) silencing in Litopenaeus vannamei: effects on cMnSOD transcripts, superoxide dismutase activity and superoxide anion production capacity.

    PubMed

    García-Triana, Antonio; Zenteno-Savín, Tania; Peregrino-Uriarte, Alma Beatriz; Yepiz-Plascencia, Gloria

    2010-11-01

    The effects of silencing the mRNA of cytosolic manganese superoxide dismutase (cMnSOD), an enzyme involved in the antioxidant defense, were analyzed in Whiteleg shrimp, Litopenaeus vannamei adults. Shrimp were intramuscularly injected with long dsRNAs corresponding to the N-terminal portion of the cMnSOD and held under normoxic conditions for 24h. Another group of shrimp was exposed to hypoxia for 6h followed by reoxygenation for 1h. Shrimp injected with long dsRNAs had lower cMnSOD transcripts in gills and hepatopancreas. In the cMnSOD silenced shrimp, superoxide dismutase (SOD) activity decreased in gills but not in hepatopancreas. Shrimp subjected to hypoxia had lower cMnSOD transcripts and SOD activity in gills and hepatopancreas; the production of superoxide anion (O2*-) by hemocytes was also lower in this group. Reoxygenation reverted the effect of hypoxia increasing the levels of cMnSOD transcripts, SOD activity and the production of O2*-. These results suggest that cMnSOD contributes significantly to the SOD activity in gills and hepatopancreas and indicate its importance in the redox system regulation for L. vannamei.

  1. Gene-Silencing-Induced Changes in Carbohydrate Conformation in Relation to Bioenergy Value and Carbohydrate Subfractions in Modeled Plant (Medicago sativa) with Down-Regulation of HB12 and TT8 Transcription Factors

    PubMed Central

    Li, Xinxin; Hannoufa, Abdelali; Zhang, Yonggen; Yu, Peiqiang

    2016-01-01

    Gene silencing with RNA interference (RNAi) technology may be capable of modifying internal structure at a molecular level. This structural modification could affect biofunctions in terms of biodegradation, biochemical metabolism, and bioactive compound availability. The objectives of this study were to (1) Detect gene silencing-induced changes in carbohydrate molecular structure in an alfalfa forage (Medicago sativa spp. sativa: alfalfa) with down-regulation of genes that encode transcription factors TT8 and HB12; (2) Determine gene silencing-induced changes in nutrient bioutilization and bioavailability in the alfalfa forage (Medicago sativa); and (3) Quantify the correlation between gene silencing-induced molecular structure changes and the nutrient bioutilization and bioavailability in animals of ruminants. The experimental treatments included: T1 = Non-transgenic and no-gene silenced alfalfa forage (code “NT”); T2 = HB12-RNAi forage with HB12 gene down regulation (code “HB12”); T3 = TT8-RNAi forage with TT8 gene down regulation (code “TT8”). The HB12 and TT8 gene silencing-induced molecular structure changes were determined by non-invasive and non-destructive advanced molecular spectroscopy in a middle infrared radiation region that focused on structural, non-structural and total carbohydrate compounds. The nutrient bioutilization and bioavailability of the modified forage were determined using NRC-2001 system in terms of total digestive nutrient (TDN), truly digestible fiber (tdNDF), non-fiber carbohydrate (tdNDF), fatty acid (tdFA), crude protein (tdCP) and bioenergy profiles (digestible energy, metabolizable energy, net energy) for ruminants. The carbohydrate subfractions were evaluated using the updated CNCPS 6.0 system. The results showed that gene silencing significantly affected tdNFC (42.3 (NT) vs. 38.7 (HB12) vs. 37.4% Dry Matter (TT8); p = 0.016) and tdCP (20.8 (NT) vs. 19.4 (HB12) vs. 22.3% DM (TT8); p = 0.009). The gene-silencing also

  2. Gene-Silencing-Induced Changes in Carbohydrate Conformation in Relation to Bioenergy Value and Carbohydrate Subfractions in Modeled Plant (Medicago sativa) with Down-Regulation of HB12 and TT8 Transcription Factors.

    PubMed

    Li, Xinxin; Hannoufa, Abdelali; Zhang, Yonggen; Yu, Peiqiang

    2016-05-13

    Gene silencing with RNA interference (RNAi) technology may be capable of modifying internal structure at a molecular level. This structural modification could affect biofunctions in terms of biodegradation, biochemical metabolism, and bioactive compound availability. The objectives of this study were to (1) Detect gene silencing-induced changes in carbohydrate molecular structure in an alfalfa forage (Medicago sativa spp. sativa: alfalfa) with down-regulation of genes that encode transcription factors TT8 and HB12; (2) Determine gene silencing-induced changes in nutrient bioutilization and bioavailability in the alfalfa forage (Medicago sativa); and (3) Quantify the correlation between gene silencing-induced molecular structure changes and the nutrient bioutilization and bioavailability in animals of ruminants. The experimental treatments included: T1 = Non-transgenic and no-gene silenced alfalfa forage (code "NT"); T2 = HB12-RNAi forage with HB12 gene down regulation (code "HB12"); T3 = TT8-RNAi forage with TT8 gene down regulation (code "TT8"). The HB12 and TT8 gene silencing-induced molecular structure changes were determined by non-invasive and non-destructive advanced molecular spectroscopy in a middle infrared radiation region that focused on structural, non-structural and total carbohydrate compounds. The nutrient bioutilization and bioavailability of the modified forage were determined using NRC-2001 system in terms of total digestive nutrient (TDN), truly digestible fiber (tdNDF), non-fiber carbohydrate (tdNDF), fatty acid (tdFA), crude protein (tdCP) and bioenergy profiles (digestible energy, metabolizable energy, net energy) for ruminants. The carbohydrate subfractions were evaluated using the updated CNCPS 6.0 system. The results showed that gene silencing significantly affected tdNFC (42.3 (NT) vs. 38.7 (HB12) vs. 37.4% Dry Matter (TT8); p = 0.016) and tdCP (20.8 (NT) vs. 19.4 (HB12) vs. 22.3% DM (TT8); p = 0.009). The gene-silencing also affected

  3. Gene-Silencing-Induced Changes in Carbohydrate Conformation in Relation to Bioenergy Value and Carbohydrate Subfractions in Modeled Plant (Medicago sativa) with Down-Regulation of HB12 and TT8 Transcription Factors.

    PubMed

    Li, Xinxin; Hannoufa, Abdelali; Zhang, Yonggen; Yu, Peiqiang

    2016-01-01

    Gene silencing with RNA interference (RNAi) technology may be capable of modifying internal structure at a molecular level. This structural modification could affect biofunctions in terms of biodegradation, biochemical metabolism, and bioactive compound availability. The objectives of this study were to (1) Detect gene silencing-induced changes in carbohydrate molecular structure in an alfalfa forage (Medicago sativa spp. sativa: alfalfa) with down-regulation of genes that encode transcription factors TT8 and HB12; (2) Determine gene silencing-induced changes in nutrient bioutilization and bioavailability in the alfalfa forage (Medicago sativa); and (3) Quantify the correlation between gene silencing-induced molecular structure changes and the nutrient bioutilization and bioavailability in animals of ruminants. The experimental treatments included: T1 = Non-transgenic and no-gene silenced alfalfa forage (code "NT"); T2 = HB12-RNAi forage with HB12 gene down regulation (code "HB12"); T3 = TT8-RNAi forage with TT8 gene down regulation (code "TT8"). The HB12 and TT8 gene silencing-induced molecular structure changes were determined by non-invasive and non-destructive advanced molecular spectroscopy in a middle infrared radiation region that focused on structural, non-structural and total carbohydrate compounds. The nutrient bioutilization and bioavailability of the modified forage were determined using NRC-2001 system in terms of total digestive nutrient (TDN), truly digestible fiber (tdNDF), non-fiber carbohydrate (tdNDF), fatty acid (tdFA), crude protein (tdCP) and bioenergy profiles (digestible energy, metabolizable energy, net energy) for ruminants. The carbohydrate subfractions were evaluated using the updated CNCPS 6.0 system. The results showed that gene silencing significantly affected tdNFC (42.3 (NT) vs. 38.7 (HB12) vs. 37.4% Dry Matter (TT8); p = 0.016) and tdCP (20.8 (NT) vs. 19.4 (HB12) vs. 22.3% DM (TT8); p = 0.009). The gene-silencing also affected

  4. High-Stearic and High-Oleic Cottonseed Oils Produced by Hairpin RNA-Mediated Post-Transcriptional Gene Silencing1

    PubMed Central

    Liu, Qing; Singh, Surinder P.; Green, Allan G.

    2002-01-01

    We have genetically modified the fatty acid composition of cottonseed oil using the recently developed technique of hairpin RNA-mediated gene silencing to down-regulate the seed expression of two key fatty acid desaturase genes, ghSAD-1-encoding stearoyl-acyl-carrier protein Δ9-desaturase and ghFAD2-1-encoding oleoyl-phosphatidylcholine ω6-desaturase. Hairpin RNA-encoding gene constructs (HP) targeted against either ghSAD-1 or ghFAD2-1 were transformed into cotton (Gossypium hirsutum cv Coker 315). The resulting down-regulation of the ghSAD-1 gene substantially increased stearic acid from the normal levels of 2% to 3% up to as high as 40%, and silencing of the ghFAD2-1 gene resulted in greatly elevated oleic acid content, up to 77% compared with about 15% in seeds of untransformed plants. In addition, palmitic acid was significantly lowered in both high-stearic and high-oleic lines. Similar fatty acid composition phenotypes were also achieved by transformation with conventional antisense constructs targeted against the same genes, but at much lower frequencies than were achieved with the HP constructs. By intercrossing the high-stearic and high-oleic genotypes, it was possible to simultaneously down-regulate both ghSAD-1 and ghFAD2-1 to the same degree as observed in the individually silenced parental lines, demonstrating for the first time, to our knowledge, that duplex RNA-induced posttranslational gene silencing in independent genes can be stacked without any diminution in the degree of silencing. The silencing of ghSAD-1 and/or ghFAD2-1 to various degrees enables the development of cottonseed oils having novel combinations of palmitic, stearic, oleic, and linoleic contents that can be used in margarines and deep frying without hydrogenation and also potentially in high-value confectionery applications. PMID:12177486

  5. Advances in plant gene silencing methods.

    PubMed

    Pandey, Prachi; Senthil-Kumar, Muthappa; Mysore, Kirankumar S

    2015-01-01

    Understanding molecular mechanisms of transcriptional and posttranscriptional gene silencing pathways in plants over the past decades has led to development of tools and methods for silencing a target gene in various plant species. In this review chapter, both the recent understanding of molecular basis of gene silencing pathways and advances in various widely used gene silencing methods are compiled. We also discuss the salient features of the different methods like RNA interference (RNAi) and virus-induced gene silencing (VIGS) and highlight their advantages and disadvantages. Gene silencing technology is constantly progressing as reflected by rapidly emerging new methods. A succinct discussion on the recently developed methods like microRNA-mediated virus-induced gene silencing (MIR-VIGS) and microRNA-induced gene silencing (MIGS) is also provided. One major bottleneck in gene silencing approaches has been the associated off-target silencing. The other hurdle has been the lack of a universal approach that can be applied to all plants. For example, we face hurdles like incompatibility of VIGS vectors with the host and inability to use MIGS for plant species which are not easily transformable. However, the overwhelming research in this direction reflects the scope for overcoming the short comings of gene silencing technology.

  6. Stochastic and nonstochastic post-transcriptional silencing of chitinase and beta-1,3-glucanase genes involves increased RNA turnover-possible role for ribosome-independent RNA degradation.

    PubMed Central

    Holtorf, H; Schöb, H; Kunz, C; Waldvogel, R; Meins, F

    1999-01-01

    Stochastic and nonstochastic post-transcriptional gene silencing (PTGS) in Nicotiana sylvestris plants carrying tobacco class I chitinase (CHN) and beta-1,3-glucanase transgenes differs in incidence, stability, and pattern of expression. Measurements with inhibitors of RNA synthesis (cordycepin, actinomycin D, and alpha-amanitin) showed that both forms of PTGS are associated with increased sequence-specific degradation of transcripts, suggesting that increased RNA turnover may be a general feature of PTGS. The protein synthesis inhibitors cycloheximide and verrucarin A did not inhibit degradation of CHN RNA targeted for PTGS, confirming that PTGS-related RNA degradation does not depend on ongoing protein synthesis. Because verrucarin A, unlike cycloheximide, dissociates mRNA from ribosomes, our results also suggest that ribosome-associated RNA degradation pathways may not be involved in CHN PTGS. PMID:10072405

  7. ANTI-SILENCING FUNCTION1 Proteins Are Involved in Ultraviolet-Induced DNA Damage Repair and Are Cell Cycle Regulated by E2F Transcription Factors in Arabidopsis1[C][W][OA

    PubMed Central

    Lario, Luciana D.; Ramirez-Parra, Elena; Gutierrez, Crisanto; Spampinato, Claudia P.; Casati, Paula

    2013-01-01

    ANTI-SILENCING FUNCTION1 (ASF1) is a key histone H3/H4 chaperone that participates in a variety of DNA- and chromatin-related processes, including DNA repair, where chromatin assembly and disassembly are of primary relevance. Information concerning the role of ASF1 proteins in the post-ultraviolet (UV) response in higher plants is currently limited. In Arabidopsis (Arabidopsis thaliana), an initial analysis of in vivo localization of ASF1A and ASF1B indicates that both proteins are mainly expressed in proliferative tissues. In silico promoter analysis identified ASF1A and ASF1B as potential targets of Elongation Factor2 (E2F) transcription factors. These observations were experimentally validated, both in vitro, by electrophoretic mobility shift assays, and in vivo, by chromatin immunoprecipitation assays and expression analysis using transgenic plants with altered levels of different E2F transcription factors. These data suggest that ASF1A and ASF1B are regulated during cell cycle progression through E2F transcription factors. In addition, we found that ASF1A and ASF1B are associated with the UV-B-induced DNA damage response in Arabidopsis. Transcript levels of ASF1A and ASF1B were increased following UV-B treatment. Consistent with a potential role in UV-B response, RNA interference-silenced plants of both genes showed increased sensitivity to UV-B compared with wild-type plants. Finally, by coimmunoprecipitation analysis, we found that ASF1 physically interacts with amino-terminal acetylated histones H3 and H4 and with acetyltransferases of the Histone Acetyl Transferase subfamily, which are known to be involved in cell cycle control and DNA repair, among other functions. Together, we provide evidence that ASF1A and ASF1B are regulated by cell cycle progression and are involved in DNA repair after UV-B irradiation. PMID:23596192

  8. Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleolus in response to heat stress.

    PubMed

    Wang, Lian-Chin; Wu, Jia-Rong; Hsu, Yi-Ju; Wu, Shaw-Jye

    2015-01-01

    Arabidopsis HIT4 is known to mediate heat-induced decondensation of chromocenters and release from transcriptional gene silencing (TGS) with no change in the level of DNA methylation. It is unclear whether HIT4 and MOM1, a well-known DNA methylation-independent transcriptional silencer, have overlapping regulatory functions. A hit4-1/mom1 double mutant strain was generated. Its nuclear morphology and TGS state were compared with those of wild-type, hit4-1, and mom1 plants. Fluorescent protein tagging was employed to track the fates of HIT4, hit4-1 and MOM1 in vivo under heat stress. HIT4- and MOM1-mediated TGS were distinguishable. Both HIT4 and MOM1 were localized normally to chromocenters. Under heat stress, HIT4 relocated to the nucleolus, whereas MOM1 dispersed with the chromocenters. hit4-1 was able to relocate to the nucleolus under heat stress, but its relocation was insufficient to trigger the decompaction of chromocenters. The hypersensitivity to heat associated with the impaired reactivation of TGS in hit4-1 was not alleviated by mom1-induced release from TGS. HIT4 delineates a novel and MOM1-independent TGS regulation pathway. The involvement of a currently unidentified component that links HIT4 relocation and the large-scale reorganization of chromatin, and which is essential for heat tolerance in plants is hypothesized.

  9. Arabidopsis HIT4, a regulator involved in heat-triggered reorganization of chromatin and release of transcriptional gene silencing, relocates from chromocenters to the nucleolus in response to heat stress.

    PubMed

    Wang, Lian-Chin; Wu, Jia-Rong; Hsu, Yi-Ju; Wu, Shaw-Jye

    2015-01-01

    Arabidopsis HIT4 is known to mediate heat-induced decondensation of chromocenters and release from transcriptional gene silencing (TGS) with no change in the level of DNA methylation. It is unclear whether HIT4 and MOM1, a well-known DNA methylation-independent transcriptional silencer, have overlapping regulatory functions. A hit4-1/mom1 double mutant strain was generated. Its nuclear morphology and TGS state were compared with those of wild-type, hit4-1, and mom1 plants. Fluorescent protein tagging was employed to track the fates of HIT4, hit4-1 and MOM1 in vivo under heat stress. HIT4- and MOM1-mediated TGS were distinguishable. Both HIT4 and MOM1 were localized normally to chromocenters. Under heat stress, HIT4 relocated to the nucleolus, whereas MOM1 dispersed with the chromocenters. hit4-1 was able to relocate to the nucleolus under heat stress, but its relocation was insufficient to trigger the decompaction of chromocenters. The hypersensitivity to heat associated with the impaired reactivation of TGS in hit4-1 was not alleviated by mom1-induced release from TGS. HIT4 delineates a novel and MOM1-independent TGS regulation pathway. The involvement of a currently unidentified component that links HIT4 relocation and the large-scale reorganization of chromatin, and which is essential for heat tolerance in plants is hypothesized. PMID:25329561

  10. Specificity protein 1 (Sp1)-dependent activation of the synapsin I gene (SYN1) is modulated by RE1-silencing transcription factor (REST) and 5'-cytosine-phosphoguanine (CpG) methylation.

    PubMed

    Paonessa, Francesco; Latifi, Shahrzad; Scarongella, Helena; Cesca, Fabrizia; Benfenati, Fabio

    2013-02-01

    The development and function of the nervous system are directly dependent on a well defined pattern of gene expression. Indeed, perturbation of transcriptional activity or epigenetic modifications of chromatin can dramatically influence neuronal phenotypes. The phosphoprotein synapsin I (Syn I) plays a crucial role during axonogenesis and synaptogenesis as well as in synaptic transmission and plasticity of mature neurons. Abnormalities in SYN1 gene expression have been linked to important neuropsychiatric disorders, such as epilepsy and autism. SYN1 gene transcription is suppressed in non-neural tissues by the RE1-silencing transcription factor (REST); however, the molecular mechanisms that allow the constitutive expression of this genetic region in neurons have not been clarified yet. Herein we demonstrate that a conserved region of human and mouse SYN1 promoters contains cis-sites for the transcriptional activator Sp1 in close proximity to REST binding motifs. Through a series of functional assays, we demonstrate a physical interaction of Sp1 on the SYN1 promoter and show that REST directly inhibits Sp1-mediated transcription, resulting in SYN1 down-regulation. Upon differentiation of neuroblastoma Neuro2a cells, we observe a decrease in endogenous REST and a higher stability of Sp1 on target GC boxes, resulting in an increase of SYN1 transcription. Moreover, methylation of Sp1 cis-sites in the SYN1 promoter region could provide an additional level of transcriptional regulation. Our results introduce Sp1 as a fundamental activator of basal SYN1 gene expression, whose activity is modulated by the neural master regulator REST and CpG methylation.

  11. Metalloregulator CueR biases RNA polymerase's kinetic sampling of dead-end or open complex to repress or activate transcription.

    PubMed

    Martell, Danya J; Joshi, Chandra P; Gaballa, Ahmed; Santiago, Ace George; Chen, Tai-Yen; Jung, Won; Helmann, John D; Chen, Peng

    2015-11-01

    Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ(70)-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator-DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation. Using single-molecule FRET, we study how the copper efflux regulator (CueR)--a Cu(+)-responsive MerR-family metalloregulator--modulates RNAP interactions with CueR's cognate suboptimal promoter PcopA, and how RNAP affects CueR-PcopA interactions. We find that RNAP can form two noninterconverting complexes at PcopA in the absence of nucleotides: a dead-end complex and an open complex, constituting a branched interaction pathway that is distinct from the linear pathway prevalent for transcription initiation at optimal promoters. Capitalizing on this branched pathway, CueR operates via a "biased sampling" instead of "dynamic equilibrium shifting" mechanism in regulating transcription initiation; it modulates RNAP's binding-unbinding kinetics, without allowing interconversions between the dead-end and open complexes. Instead, the apo-repressor form reinforces the dominance of the dead-end complex to repress transcription, and the holo-activator form shifts the interactions toward the open complex to activate transcription. RNAP, in turn, locks CueR binding at PcopA into its specific binding mode, likely helping amplify the differences between apo- and holo-CueR in imposing DNA structural changes. Therefore, RNAP and CueR work synergistically in regulating transcription.

  12. Metalloregulator CueR biases RNA polymerase's kinetic sampling of dead-end or open complex to repress or activate transcription.

    PubMed

    Martell, Danya J; Joshi, Chandra P; Gaballa, Ahmed; Santiago, Ace George; Chen, Tai-Yen; Jung, Won; Helmann, John D; Chen, Peng

    2015-11-01

    Metalloregulators respond to metal ions to regulate transcription of metal homeostasis genes. MerR-family metalloregulators act on σ(70)-dependent suboptimal promoters and operate via a unique DNA distortion mechanism in which both the apo and holo forms of the regulators bind tightly to their operator sequence, distorting DNA structure and leading to transcription repression or activation, respectively. It remains unclear how these metalloregulator-DNA interactions are coupled dynamically to RNA polymerase (RNAP) interactions with DNA for transcription regulation. Using single-molecule FRET, we study how the copper efflux regulator (CueR)--a Cu(+)-responsive MerR-family metalloregulator--modulates RNAP interactions with CueR's cognate suboptimal promoter PcopA, and how RNAP affects CueR-PcopA interactions. We find that RNAP can form two noninterconverting complexes at PcopA in the absence of nucleotides: a dead-end complex and an open complex, constituting a branched interaction pathway that is distinct from the linear pathway prevalent for transcription initiation at optimal promoters. Capitalizing on this branched pathway, CueR operates via a "biased sampling" instead of "dynamic equilibrium shifting" mechanism in regulating transcription initiation; it modulates RNAP's binding-unbinding kinetics, without allowing interconversions between the dead-end and open complexes. Instead, the apo-repressor form reinforces the dominance of the dead-end complex to repress transcription, and the holo-activator form shifts the interactions toward the open complex to activate transcription. RNAP, in turn, locks CueR binding at PcopA into its specific binding mode, likely helping amplify the differences between apo- and holo-CueR in imposing DNA structural changes. Therefore, RNAP and CueR work synergistically in regulating transcription. PMID:26483469

  13. Genetic differentiation of hypothalamus parentally biased transcripts in populations of the house mouse implicate the Prader-Willi syndrome imprinted region as a possible source of behavioral divergence.

    PubMed

    Lorenc, Anna; Linnenbrink, Miriam; Montero, Inka; Schilhabel, Markus B; Tautz, Diethard

    2014-12-01

    Parentally biased expression of transcripts (genomic imprinting) in adult tissues, including the brain, can influence and possibly drive the evolution of behavioral traits. We have previously found that paternally determined cues are involved in population-specific mate choice decisions between two populations of the Western house mouse (Mus musculus domesticus). Here, we ask whether this could be mediated by genomically imprinted transcripts that are subject to fast differentiation between these populations. We focus on three organs that are of special relevance for mate choice and behavior: The vomeronasal organ (VNO), the hypothalamus, and the liver. To first identify candidate transcripts at a genome-wide scale, we used reciprocal crosses between M. m. domesticus and M. m. musculus inbred strains and RNA sequencing of the respective tissues. Using a false discovery cutoff derived from mock reciprocal cross comparisons, we find a total of 66 imprinted transcripts, 13 of which have previously not been described as imprinted. The largest number of imprinted transcripts were found in the hypothalamus; fewer were found in the VNO, and the least were found in the liver. To assess molecular differentiation and imprinting in the wild-derived M. m. domesticus populations, we sequenced the RNA of the hypothalamus from individuals of these populations. This confirmed the presence of the above identified transcripts also in wild populations and allowed us to search for those that show a high genetic differentiation between these populations. Our results identify the Ube3a-Snrpn imprinted region on chromosome 7 as a region that encompasses the largest number of previously not described transcripts with paternal expression bias, several of which are at the same time highly differentiated. For four of these, we confirmed their imprinting status via single nucleotide polymorphism-specific pyrosequencing assays with RNA from reciprocal crosses. In addition, we find the

  14. Transcriptional changes in epigenetic modifiers associated with gene silencing in the intestine of the sea cucumber, Apostichopus japonicus (Selenka), during aestivation

    NASA Astrophysics Data System (ADS)

    Wang, Tianming; Yang, Hongsheng; Zhao, Huan; Chen, Muyan; Wang, Bing

    2011-11-01

    The sea cucumber, Apostichopus japonicus, undergoes aestivation to improve survival during periods of high-temperature. During aestivation, the metabolic rate is depressed to reduce the consumption of reserved energy. We evaluated the role of epigenetic modification on global gene silencing during metabolic rate depression in the sea cucumber. We compared the expression of epigenetic modifiers in active and aestivating sea cucumbers. The expression of three genes involved in DNA methylation and chromatin remodeling (DNA (cytosine-5)-methyltransferase 1, Methyl-CpG-binding domain protein 2), and Chromodomain-helicase-DNA-binding protein 5) was significantly higher during aestivation (Days 20 and 40). Similarly, we observed an increase in the expression of genes involved in histone acetylation (Histone deacetylase 3) and Histone-binding protein RBBP4) during the early (Days 5 and 10) and late phases (Days 20 and 40) of aestivation. There was no change in the expression of KAT2B, a histone acetyltransferase. However, the expression of histone methylation associated modifiers (Histone-arginine methyltransferase CARMER and Histone-lysine N-methyltransferase MLL5) was significantly higher after 5 d in the aestivating group. The results suggest that the expression of epigenetic modifiers involved in DNA methylation, chromatin remodeling, histone acetylation, and histone methylation is upregulated during aestivation. We hypothesize that these changes regulate global gene silencing during aestivation in A. japonicus.

  15. miRNA-Mediated KHSRP Silencing Rewires Distinct Post-transcriptional Programs during TGF-β-Induced Epithelial-to-Mesenchymal Transition.

    PubMed

    Puppo, Margherita; Bucci, Gabriele; Rossi, Martina; Giovarelli, Matteo; Bordo, Domenico; Moshiri, Arfa; Gorlero, Franco; Gherzi, Roberto; Briata, Paola

    2016-07-26

    Epithelial-to-mesenchymal transition (EMT) confers several traits to cancer cells that are required for malignant progression. Here, we report that miR-27b-3p-mediated silencing of the single-strand RNA binding protein KHSRP is required for transforming growth factor β (TGF-β)-induced EMT in mammary gland cells. Sustained KHSRP expression limits TGF-β-dependent induction of EMT factors and cell migration, whereas its knockdown in untreated cells mimics TGF-β-induced EMT. Genome-wide sequencing analyses revealed that KHSRP controls (1) levels of mature miR-192-5p, a microRNA that targets a group of EMT factors, and (2) alternative splicing of a cohort of pre-mRNAs related to cell adhesion and motility including Cd44 and Fgfr2. KHSRP belongs to a ribonucleoprotein complex that includes hnRNPA1, and the two proteins cooperate in promoting epithelial-type exon usage of select pre-mRNAs. Thus, TGF-β-induced KHSRP silencing is central in a pathway leading to gene-expression changes that contribute to the cellular changes linked to EMT. PMID:27396342

  16. On the Mechanism of Gene Silencing in Saccharomyces cerevisiae.

    PubMed

    Steakley, David Lee; Rine, Jasper

    2015-06-16

    Multiple mechanisms have been proposed for gene silencing in Saccharomyces cerevisiae, ranging from steric occlusion of DNA binding proteins from their recognition sequences in silenced chromatin to a specific block in the formation of the preinitiation complex to a block in transcriptional elongation. This study provided strong support for the steric occlusion mechanism by the discovery that RNA polymerase of bacteriophage T7 could be substantially blocked from transcribing from its cognate promoter when embedded in silenced chromatin. Moreover, unlike previous suggestions, we found no evidence for stalled RNA polymerase II within silenced chromatin. The effectiveness of the Sir protein-based silencing mechanism to block transcription activated by Gal4 at promoters in the domain of silenced chromatin was marginal, yet it improved when tested against mutant forms of the Gal4 protein, highlighting a role for specific activators in their sensitivity to gene silencing.

  17. Practising Silence in Teaching

    ERIC Educational Resources Information Center

    Forrest, Michelle

    2013-01-01

    The concept "silence" has diametrically opposed meanings; it connotes peace and contemplation as well as death and oblivion. Silence can also be considered a practice. There is keeping the rule of silence to still the mind and find inner truth, as well as forcibly silencing in the sense of subjugating another to one's own purposes.…

  18. Yeast linker histone Hho1p is required for efficient RNA polymerase I processivity and transcriptional silencing at the ribosomal DNA.

    PubMed

    Levy, Anat; Eyal, Miri; Hershkovits, Gitit; Salmon-Divon, Mali; Klutstein, Michael; Katcoff, Don Jay

    2008-08-19

    Nucleosome core particles in eukaryotes are linked by a stretch of DNA that is usually associated with a linker histone. Here, we show in yeast, that the presence of yeast linker histone Hho1p represses expression of a pol II transcribed gene (MET15) embedded in the rDNA. In vivo deletions of Hho1p sequences showed that the second globular domain is sufficient for that repression, whereas the presence of the N terminus is required for its derepression. In contrast, a run-on assay confirmed by a ChIP experiment showed that Hho1p is required for maximal pol I processivity during rDNA transcription. Psoralen accessibility experiments indicated that Hho1p is necessary for normal rDNA compaction. DNA array expression analysis comparing RNA transcripts in wild-type and hho1 strains before and after a heat-shock showed that Hho1p is necessary to achieve wild-type mRNA levels of transcripts that encode ribosomal components. Taken together, our results suggest that Hho1p is involved in rDNA compaction, and like core histones, is required for efficient rDNA transcription by pol I. PMID:18687885

  19. Production of siRNA targeted against TYLCV coat protein transcripts leads to silencing of its expression and resistance to the virus.

    PubMed

    Zrachya, Avi; Kumar, Pravin P; Ramakrishnan, Usha; Levy, Yael; Loyter, Abraham; Arazi, Tzahi; Lapidot, Moshe; Gafni, Yedidya

    2007-06-01

    The coat protein (CP) of Tomato yellow leaf curl virus (TYLCV), encoded by the v1 gene, is the only known component of the viral capsid. In addition, the CP plays a role in the virus transport into the host cell nucleus where viral genes are replicated and transcribed. In this study, we analyzed the effect of small interfering double-stranded RNAs (siRNAs), derived from an intron-hairpin RNA (ihpRNA) construct and targeting the v1 gene product, on CP accumulation. Transient assays involving agroinfiltration of the CP-silencing construct followed by infiltration of a fused GFP-CP (green fluorescent protein-coat protein) gene showed down-regulation of GFP expression in Nicotiana benthamiana. Some of the transgenic tomato plants (cv. Micro-Tom), expressing the siRNA targeted against the TYLCV CP gene, did not show disease symptoms 7 weeks post-inoculation with the virus, while non-transgenic control plants were infected within 2 weeks post inoculation. The present study demonstrates, for the first time, that siRNA targeted against the CP of TYLCV can confer resistance to the virus in transgenic tomato plants, thereby enabling flowering and fruit production. PMID:17103242

  20. The ADAMTS12 metalloprotease gene is epigenetically silenced in tumor cells and transcriptionally activated in the stroma during progression of colon cancer.

    PubMed

    Moncada-Pazos, Angela; Obaya, Alvaro J; Fraga, Mario F; Viloria, Cristina G; Capellá, Gabriel; Gausachs, Mireia; Esteller, Manel; López-Otín, Carlos; Cal, Santiago

    2009-08-15

    Proteases have long been associated with tumor progression, given their ability to degrade extracellular matrix components and facilitate invasion and metastasis. However, recent findings indicate that different proteases can also act as tumor-suppressor enzymes. We have recently reported that lung carcinoma cells expressing the ADAMTS-12 metalloprotease show a remarkable impairment of growth in immunodeficient mice as compared with parental cells. Here, we show that ADAMTS12 promoter is hypermethylated in cancer cell lines and tumor tissues. Interestingly, ADAMTS12 expression in the stromal cells surrounding epithelial malignant cells is higher than in the paired normal tissues. Moreover, the expression of this metalloprotease in colon fibroblasts co-cultured with colon cancer cell lines is higher than in those cultured alone. Furthermore, the expression of ADAMTS-12 by these fibroblasts is linked with an anti-proliferative effect on tumor cells. Based on these findings, we hypothesize that ADAMTS-12 is a novel anti-tumor protease that can reduce the proliferative properties of tumor cells. This function is lost by epigenetic silencing in tumor cells, but concurrently induced in stromal cells, probably as part of a response of the normal tissue aimed at controlling the progression of cancer.

  1. RNA Target Sequences Promote Spreading of RNA Silencing1

    PubMed Central

    Van Houdt, Helena; Bleys, Annick; Depicker, Anna

    2003-01-01

    It is generally recognized that a silencing-inducing locus can efficiently reduce the expression of genes that give rise to transcripts partially homologous to those produced by the silencing-inducing locus (primary targets). Interestingly, the expression of genes that produce transcripts without homology to the silencing-inducing locus (secondary targets) can also be decreased dramatically via transitive RNA silencing. This phenomenon requires primary target RNAs that contain sequences homologous to secondary target RNAs. Sequences upstream from the region homologous to the silencing inducer in the primary target transcripts give rise to approximately 22-nucleotide small RNAs, coinciding with the region homologous to the secondary target. The presence of these small RNAs corresponds with reduced expression of the secondary target whose transcripts are not homologous to the silencing inducer. The data suggest that in transgenic plants, targets of RNA silencing are involved in the expansion of the pool of functional small interfering RNAs. Furthermore, methylation of target genes in sequences without homology to the initial silencing inducer indicates not only that RNA silencing can expand across target RNAs but also that methylation can spread along target genes. PMID:12529532

  2. Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: optimizing analysis by masking biased probes

    PubMed Central

    2010-01-01

    Background The GeneChip® Medicago Genome Array, developed for Medicago truncatula, is a suitable platform for transcript profiling in tetraploid alfalfa [Medicago sativa (L.) subsp. sativa]. However, previous research involving cross-species hybridization (CSH) has shown that sequence variation between two species can bias transcript profiling by decreasing sensitivity (number of expressed genes detected) and the accuracy of measuring fold-differences in gene expression. Results Transcript profiling using the Medicago GeneChip® was conducted with elongating stem (ES) and post-elongation stem (PES) internodes from alfalfa genotypes 252 and 1283 that differ in stem cell wall concentrations of cellulose and lignin. A protocol was developed that masked probes targeting inter-species variable (ISV) regions of alfalfa transcripts. A probe signal intensity threshold was selected that optimized both sensitivity and accuracy. After masking for both ISV regions and previously identified single-feature polymorphisms (SFPs), the number of differentially expressed genes between the two genotypes in both ES and PES internodes was approximately 2-fold greater than the number detected prior to masking. Regulatory genes, including transcription factor and receptor kinase genes that may play a role in development of secondary xylem, were significantly over-represented among genes up-regulated in 252 PES internodes compared to 1283 PES internodes. Several cell wall-related genes were also up-regulated in genotype 252 PES internodes. Real-time quantitative RT-PCR of differentially expressed regulatory and cell wall-related genes demonstrated increased sensitivity and accuracy after masking for both ISV regions and SFPs. Over 1,000 genes that were differentially expressed in ES and PES internodes of genotypes 252 and 1283 were mapped onto putative orthologous loci on M. truncatula chromosomes. Clustering simulation analysis of the differentially expressed genes suggested co

  3. New Construct Approaches for Efficient Gene Silencing in Plants

    PubMed Central

    Yan, Hua; Chretien, Robert; Ye, Jingsong; Rommens, Caius M.

    2006-01-01

    An important component of conventional sense, antisense, and double-strand RNA-based gene silencing constructs is the transcriptional terminator. Here, we show that this regulatory element becomes obsolete when gene fragments are positioned between two oppositely oriented and functionally active promoters. The resulting convergent transcription triggers gene silencing that is at least as effective as unidirectional promoter-to-terminator transcription. In addition to short, variably sized, and nonpolyadenylated RNAs, terminator-free cassette produced rare, longer transcripts that reach into the flanking promoter. These read-through products did not influence the efficacy and expression levels of the neighboring hygromycin phosphotransferase gene. Replacement of gene fragments by promoter-derived sequences further increased the extent of gene silencing. This finding indicates that genomic DNA may be a more efficient target for gene silencing than gene transcripts. PMID:16766670

  4. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation.

    PubMed

    Royo, Hélène; Seitz, Hervé; ElInati, Elias; Peters, Antoine H F M; Stadler, Michael B; Turner, James M A

    2015-10-01

    During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions.

  5. Dramaturgy and Silence.

    ERIC Educational Resources Information Center

    Proehl, Geoffrey S.

    2003-01-01

    Notes that in rehearsals and performances, a jumble of silences are encountered. Discusses silence in the following situations: as frustration; as imposition; as invisibility; as power; as pleasure; as safety; as humility; as necessity; and as potential. Contends that when dramaturgs enter into conversation and break silence, they must carefully…

  6. Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids.

    PubMed

    Chen, Z J; Comai, L; Pikaard, C S

    1998-12-01

    Nucleolar dominance is an epigenetic phenomenon in which one parental set of ribosomal RNA (rRNA) genes is silenced in an interspecific hybrid. In natural Arabidopsis suecica, an allotetraploid (amphidiploid) hybrid of Arabidopsis thaliana and Cardaminopsis arenosa, the A. thaliana rRNA genes are repressed. Interestingly, A. thaliana rRNA gene silencing is variable in synthetic Arabidopsis suecica F1 hybrids. Two generations are needed for A. thaliana rRNA genes to be silenced in all lines, revealing a species-biased direction but stochastic onset to nucleolar dominance. Backcrossing synthetic A. suecica to tetraploid A. thaliana yielded progeny with active A. thaliana rRNA genes and, in some cases, silenced C. arenosa rRNA genes, showing that the direction of dominance can be switched. The hypothesis that naturally dominant rRNA genes have a superior binding affinity for a limiting transcription factor is inconsistent with dominance switching. Inactivation of a species-specific transcription factor is argued against by showing that A. thaliana and C. arenosa rRNA genes can be expressed transiently in the other species. Transfected A. thaliana genes are also active in A. suecica protoplasts in which chromosomal A. thaliana genes are repressed. Collectively, these data suggest that nucleolar dominance is a chromosomal phenomenon that results in coordinate or cooperative silencing of rRNA genes.

  7. Personalized gene silencing therapeutics for Huntington disease.

    PubMed

    Kay, C; Skotte, N H; Southwell, A L; Hayden, M R

    2014-07-01

    Gene silencing offers a novel therapeutic strategy for dominant genetic disorders. In specific diseases, selective silencing of only one copy of a gene may be advantageous over non-selective silencing of both copies. Huntington disease (HD) is an autosomal dominant disorder caused by an expanded CAG trinucleotide repeat in the Huntingtin gene (HTT). Silencing both expanded and normal copies of HTT may be therapeutically beneficial, but preservation of normal HTT expression is preferred. Allele-specific methods can selectively silence the mutant HTT transcript by targeting either the expanded CAG repeat or single nucleotide polymorphisms (SNPs) in linkage disequilibrium with the expansion. Both approaches require personalized treatment strategies based on patient genotypes. We compare the prospect of safe treatment of HD by CAG- and SNP-specific silencing approaches and review HD population genetics used to guide target identification in the patient population. Clinical implementation of allele-specific HTT silencing faces challenges common to personalized genetic medicine, requiring novel solutions from clinical scientists and regulatory authorities.

  8. Genome-wide analysis of the H-NS and Sfh regulatory networks in Salmonella Typhimurium identifies a plasmid-encoded transcription silencing mechanism.

    PubMed

    Dillon, Shane C; Cameron, Andrew D S; Hokamp, Karsten; Lucchini, Sacha; Hinton, Jay C D; Dorman, Charles J

    2010-06-01

    The conjugative IncHI1 plasmid pSfR27 from Shigella flexneri 2a strain 2457T encodes the Sfh protein, a paralogue of the global transcriptional repressor H-NS. Sfh allows pSfR27 to be transmitted to new bacterial hosts with minimal impact on host fitness, providing a 'stealth' function whose molecular mechanism has yet to be determined. The impact of the Sfh protein on the Salmonella enterica serovar Typhimurium transcriptome was assessed and binding sites for Sfh in the Salmonella Typhimurium genome were identified by chromatin immunoprecipitation. Sfh did not bind uniquely to any sites. Instead, it bound to a subset of the larger H-NS regulatory network. Analysis of Sfh binding in the absence of H-NS revealed a greatly expanded population of Sfh binding sites that included the majority of H-NS target genes. Furthermore, the presence of plasmid pSfR27 caused a decrease in H-NS interactions with the S. Typhimurium chromosome, suggesting that the A + T-rich DNA of this large plasmid acts to titrate H-NS, removing it from chromosomal locations. It is proposed that Sfh acts as a molecular backup for H-NS and that it provides its 'stealth' function by replacing H-NS on the chromosome, thus minimizing disturbances to the H-NS-DNA binding pattern in cells that acquire pSfR27.

  9. Isolation and Identification of Post-Transcriptional Gene Silencing-Related Micro-RNAs by Functionalized Silicon Nanowire Field-effect Transistor

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-I.; Pan, Chien-Yuan; Li, Keng-Hui; Huang, Ying-Chih; Lu, Chia-Wei; Tang, Chuan-Yi; Su, Ya-Wen; Tseng, Ling-Wei; Tseng, Kun-Chang; Lin, Chi-Yun; Chen, Chii-Dong; Lin, Shih-Shun; Chen, Yit-Tsong

    2015-11-01

    Many transcribed RNAs are non-coding RNAs, including microRNAs (miRNAs), which bind to complementary sequences on messenger RNAs to regulate the translation efficacy. Therefore, identifying the miRNAs expressed in cells/organisms aids in understanding genetic control in cells/organisms. In this report, we determined the binding of oligonucleotides to a receptor-modified silicon nanowire field-effect transistor (SiNW-FET) by monitoring the changes in conductance of the SiNW-FET. We first modified a SiNW-FET with a DNA probe to directly and selectively detect the complementary miRNA in cell lysates. This SiNW-FET device has 7-fold higher sensitivity than reverse transcription-quantitative polymerase chain reaction in detecting the corresponding miRNA. Next, we anchored viral p19 proteins, which bind the double-strand small RNAs (ds-sRNAs), on the SiNW-FET. By perfusing the device with synthesized ds-sRNAs of different pairing statuses, the dissociation constants revealed that the nucleotides at the 3‧-overhangs and pairings at the terminus are important for the interactions. After perfusing the total RNA mixture extracted from Nicotiana benthamiana across the device, this device could enrich the ds-sRNAs for sequence analysis. Finally, this bionanoelectronic SiNW-FET, which is able to isolate and identify the interacting protein-RNA, adds an additional tool in genomic technology for the future study of direct biomolecular interactions.

  10. Isolation and Identification of Post-Transcriptional Gene Silencing-Related Micro-RNAs by Functionalized Silicon Nanowire Field-effect Transistor.

    PubMed

    Chen, Kuan-I; Pan, Chien-Yuan; Li, Keng-Hui; Huang, Ying-Chih; Lu, Chia-Wei; Tang, Chuan-Yi; Su, Ya-Wen; Tseng, Ling-Wei; Tseng, Kun-Chang; Lin, Chi-Yun; Chen, Chii-Dong; Lin, Shih-Shun; Chen, Yit-Tsong

    2015-01-01

    Many transcribed RNAs are non-coding RNAs, including microRNAs (miRNAs), which bind to complementary sequences on messenger RNAs to regulate the translation efficacy. Therefore, identifying the miRNAs expressed in cells/organisms aids in understanding genetic control in cells/organisms. In this report, we determined the binding of oligonucleotides to a receptor-modified silicon nanowire field-effect transistor (SiNW-FET) by monitoring the changes in conductance of the SiNW-FET. We first modified a SiNW-FET with a DNA probe to directly and selectively detect the complementary miRNA in cell lysates. This SiNW-FET device has 7-fold higher sensitivity than reverse transcription-quantitative polymerase chain reaction in detecting the corresponding miRNA. Next, we anchored viral p19 proteins, which bind the double-strand small RNAs (ds-sRNAs), on the SiNW-FET. By perfusing the device with synthesized ds-sRNAs of different pairing statuses, the dissociation constants revealed that the nucleotides at the 3'-overhangs and pairings at the terminus are important for the interactions. After perfusing the total RNA mixture extracted from Nicotiana benthamiana across the device, this device could enrich the ds-sRNAs for sequence analysis. Finally, this bionanoelectronic SiNW-FET, which is able to isolate and identify the interacting protein-RNA, adds an additional tool in genomic technology for the future study of direct biomolecular interactions. PMID:26616332

  11. Isolation and Identification of Post-Transcriptional Gene Silencing-Related Micro-RNAs by Functionalized Silicon Nanowire Field-effect Transistor

    PubMed Central

    Chen, Kuan-I; Pan, Chien-Yuan; Li, Keng-Hui; Huang, Ying-Chih; Lu, Chia-Wei; Tang, Chuan-Yi; Su, Ya-Wen; Tseng, Ling-Wei; Tseng, Kun-Chang; Lin, Chi-Yun; Chen, Chii-Dong; Lin, Shih-Shun; Chen, Yit-Tsong

    2015-01-01

    Many transcribed RNAs are non-coding RNAs, including microRNAs (miRNAs), which bind to complementary sequences on messenger RNAs to regulate the translation efficacy. Therefore, identifying the miRNAs expressed in cells/organisms aids in understanding genetic control in cells/organisms. In this report, we determined the binding of oligonucleotides to a receptor-modified silicon nanowire field-effect transistor (SiNW-FET) by monitoring the changes in conductance of the SiNW-FET. We first modified a SiNW-FET with a DNA probe to directly and selectively detect the complementary miRNA in cell lysates. This SiNW-FET device has 7-fold higher sensitivity than reverse transcription-quantitative polymerase chain reaction in detecting the corresponding miRNA. Next, we anchored viral p19 proteins, which bind the double-strand small RNAs (ds-sRNAs), on the SiNW-FET. By perfusing the device with synthesized ds-sRNAs of different pairing statuses, the dissociation constants revealed that the nucleotides at the 3′-overhangs and pairings at the terminus are important for the interactions. After perfusing the total RNA mixture extracted from Nicotiana benthamiana across the device, this device could enrich the ds-sRNAs for sequence analysis. Finally, this bionanoelectronic SiNW-FET, which is able to isolate and identify the interacting protein-RNA, adds an additional tool in genomic technology for the future study of direct biomolecular interactions. PMID:26616332

  12. Gene silencing by DNA interference in fern gametophytes.

    PubMed

    Wada, Masamitsu; Tsuboi, Hidenori

    2015-01-01

    RNA interference is commonly used for posttranscriptional silencing of target gene transcripts. In fern gametophytes, however, sequence-specific gene silencing is possible by introducing double-stranded DNA fragments into gametophyte cells by particle bombardment. Silencing could be transmitted all over the gametophyte through live cells. Further, inheritance of the gene silencing to the progeny is depending on the gene used. Here we describe how to introduce the DNA fragments into the gametophyte cells and how to screen the DNA-transferred cells.

  13. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes.

    PubMed

    Lunyak, Victoria V; Burgess, Robert; Prefontaine, Gratien G; Nelson, Charles; Sze, Sing-Hoi; Chenoweth, Josh; Schwartz, Phillip; Pevzner, Pavel A; Glass, Christopher; Mandel, Gail; Rosenfeld, Michael G

    2002-11-29

    The molecular mechanisms by which central nervous system-specific genes are expressed only in the nervous system and repressed in other tissues remain a central issue in developmental and regulatory biology. Here, we report that the zinc-finger gene-specific repressor element RE-1 silencing transcription factor/neuronal restricted silencing factor (REST/NRSF) can mediate extraneuronal restriction by imposing either active repression via histone deacetylase recruitment or long-term gene silencing using a distinct functional complex. Silencing of neuronal-specific genes requires the recruitment of an associated corepressor, CoREST, that serves as a functional molecular beacon for the recruitment of molecular machinery that imposes silencing across a chromosomal interval, including transcriptional units that do not themselves contain REST/NRSF response elements.

  14. Optimal viral strategies for bypassing RNA silencing

    PubMed Central

    Rodrigo, Guillermo; Carrera, Javier; Jaramillo, Alfonso; Elena, Santiago F.

    2011-01-01

    The RNA silencing pathway constitutes a defence mechanism highly conserved in eukaryotes, especially in plants, where the underlying working principle relies on the repressive action triggered by the intracellular presence of double-stranded RNAs. This immune system performs a post-transcriptional suppression of aberrant mRNAs or viral RNAs by small interfering RNAs (siRNAs) that are directed towards their target in a sequence-specific manner. However, viruses have evolved strategies to escape from silencing surveillance while promoting their own replication. Several viruses encode suppressor proteins that interact with different elements of the RNA silencing pathway and block it. The different suppressors are not phylogenetically nor structurally related and also differ in their mechanism of action. Here, we adopt a model-driven forward-engineering approach to understand the evolution of suppressor proteins and, in particular, why viral suppressors preferentially target some components of the silencing pathway. We analysed three strategies characterized by different design principles: replication in the absence of a suppressor, suppressors targeting the first protein component of the pathway and suppressors targeting the siRNAs. Our results shed light on the question of whether a virus must opt for devoting more time into transcription or into translation and on which would be the optimal step of the silencing pathway to be targeted by suppressors. In addition, we discussed the evolutionary implications of such designing principles. PMID:20573628

  15. Extracellular signal-related kinase 2/specificity protein 1/specificity protein 3/repressor element-1 silencing transcription factor pathway is involved in Aroclor 1254-induced toxicity in SH-SY5Y neuronal cells.

    PubMed

    Formisano, Luigi; Guida, Natascia; Laudati, Giusy; Boscia, Francesca; Esposito, Alba; Secondo, Agnese; Di Renzo, Gianfranco; Canzoniero, Lorella Maria Teresa

    2015-01-01

    Polychlorinated biphenyls (PCBs) cause a wide spectrum of toxic effects in the brain through undefined mechanisms. Exposure to the PCB mixture Aroclor-1254 (A1254) increases the repressor element-1 silencing transcription factor (REST) expression, leading to neuronal death. This study sought to understand the sequence of some molecular mechanisms to determine whether A1254 could increase REST expression and the cytoprotective effect of the phorbol ester tetradecanoylphorbol acetate (TPA) on A1254-induced toxicity in SH-SY5Y cells. As shown by Western blot analysis, A1254 (10 µg/ml) downregulates extracellular signal-related kinase 2 (ERK2) phosphorylation in a time-dependent manner, thereby triggering the binding of specificity protein 1 (Sp1) and Sp3 to the REST gene promoter as revealed by chromatin immunoprecipitation analysis. This chain of events results in an increase in REST mRNA and cell death, as assessed by quantitative real-time polymerase chain reaction and dimethylthiazolyl-2-5-diphenyltetrazolium-bromide assay, respectively. Accordingly, TPA prevented both the A1254-induced decrease in ERK2 phosphorylation and the A1254-induced increase in Sp1, Sp3, and REST protein expression. After 48 hr, TPA prevented A1254-induced cell death. ERK2 overexpression counteracted the A1254-induced increase in Sp1 and Sp3 protein expression and prevented A1254-induced Sp1 and Sp3 binding to the REST gene promoter, thus counteracting the increase in REST mRNA expression induced by the toxicant. In neuroblastoma SH-SY5Y cells, ERK2/Sp1/SP3/REST is a new pathway underlying the neurotoxic effect of PCB. The ERK2/Sp1/Sp3/REST pathway, which underlies A1254-induced neuronal death, might represent a new drug signaling cascade in PCB-induced neuronal toxicity. PMID:25093670

  16. Silencing the Menkes Copper-Transporting ATPase (Atp7a) Gene in Rat Intestinal Epithelial (IEC-6) Cells Increases Iron Flux via Transcriptional Induction of Ferroportin 1 (Fpn1)123

    PubMed Central

    Gulec, Sukru; Collins, James F.

    2014-01-01

    The Menkes copper-transporting ATPase (Atp7a) gene is induced in rat duodenum during iron deficiency, consistent with copper accumulation in the intestinal mucosa and liver. To test the hypothesis that ATP7A influences intestinal iron metabolism, the Atp7a gene was silenced in rat intestinal epithelial (IEC-6) cells using short hairpin RNA (shRNA) technology. Perturbations in intracellular copper homeostasis were noted in knockdown cells, consistent with the dual roles of ATP7A in pumping copper into the trans-Golgi (for cuproenzyme synthesis) and exporting copper from cells. Intracellular iron concentrations were unaffected by Atp7a knockdown. Unexpectedly, however, vectorial iron (59Fe) transport increased (∼33%) in knockdown cells grown in bicameral inserts and increased further (∼70%) by iron deprivation (compared with negative control shRNA-transfected cells). Additional experiments were designed to elucidate the molecular mechanism of increased transepithelial iron flux. Enhanced iron uptake by knockdown cells was associated with increased expression of a ferrireductase (duodenal cytochrome b) and activity of a cell-surface ferrireductase. Increased iron efflux from knockdown cells was likely mediated via transcriptional activation of the ferroportin 1 gene (by an unknown mechanism). Moreover, Atp7a knockdown significantly attenuated expression of an iron oxidase [hephaestin (HEPH); by ∼80%] and membrane ferroxidase activity (by ∼50%). Cytosolic ferroxidase activity, however, was retained in knockdown cells (75% of control cells), perhaps compensating for diminished HEPH activity. This investigation has thus documented alterations in iron homeostasis associated with Atp7a knockdown in enterocyte-like cells. Alterations in copper transport, trafficking, or distribution may underlie the increase in transepithelial iron flux noted when ATP7A activity is diminished. PMID:24174620

  17. A new virus-induced gene silencing vector based on Euphorbia mosaic virus-Yucatan peninsula for NPR1 silencing in Nicotiana benthamiana and Capsicum annuum var. Anaheim.

    PubMed

    Villanueva-Alonzo, Hernan J; Us-Camas, Rosa Y; López-Ochoa, Luisa A; Robertson, Dominique; Guerra-Peraza, Orlene; Minero-García, Yereni; Moreno-Valenzuela, Oscar A

    2013-05-01

    Virus-induced gene silencing is based on the sequence-specific degradation of RNA. Here, a gene silencing vector derived from EuMV-YP, named pEuMV-YP:ΔAV1, was used to silence ChlI and NPR1 genes in Nicotiana benthamiana. The silencing of the ChlI transcripts was efficient in the stems, petioles and leaves as reflected in tissue bleaching and reduced transcript levels. The silencing was stable, reaching the flowers and fruits, and was observed throughout the life cycle of the plants. Additionally, the silencing of the NPR1 gene was efficient in both N. benthamiana and Capsicum annuum. After silencing, the plants' viral symptoms increased to levels similar to those seen in wild-type plants. These results suggest that NPR1 plays a role in the compatible interactions of EuMV-YP N. benthamiana and EuMV-C. annum var. anaheim.

  18. Silence and Symbolic Expression.

    ERIC Educational Resources Information Center

    Ehrenhaus, Peter

    1988-01-01

    Develops a phenomenological perspective of silence and illustrates its principles through a study of the Vietnam Veterans Memorial, discussing the memorial as an architectural instance of object-silence. Suggests that the meanings individuals find at the memorial can be distinguished in terms of various public signs of understanding that…

  19. Fine-tuning silencing.

    PubMed

    Panning, Barbara

    2010-01-01

    Polycomb Repressive Complex 2 (PRC2) modifies chromatin to silence many embryonic patterning genes, restricting their expression to the appropriate cell populations. Two reports in Cell by Peng et al. (2009) and Shen et al. (2009) identify Jarid2/Jumonji, a new component of PRC2, which inhibits PRC2 enzymatic activity to fine-tune silencing.

  20. Silencing of Unpaired Chromatin and Histone H2A Ubiquitination in Mammalian Meiosis

    PubMed Central

    Baarends, Willy M.; Wassenaar, Evelyne; van der Laan, Roald; Hoogerbrugge, Jos; Sleddens-Linkels, Esther; Hoeijmakers, Jan H. J.; de Boer, Peter; Grootegoed, J. Anton

    2005-01-01

    During meiotic prophase in male mammals, the X and Y chromosomes are incorporated in the XY body. This heterochromatic body is transcriptionally silenced and marked by increased ubiquitination of histone H2A. This led us to investigate the relationship between histone H2A ubiquitination and chromatin silencing in more detail. First, we found that ubiquitinated H2A also marks the silenced X chromosome of the Barr body in female somatic cells. Next, we studied a possible relationship between H2A ubiquitination, chromatin silencing, and unpaired chromatin in meiotic prophase. The mouse models used carry an unpaired autosomal region in male meiosis or unpaired X and Y chromosomes in female meiosis. We show that ubiquitinated histone H2A is associated with transcriptional silencing of large chromatin regions. This silencing in mammalian meiotic prophase cells concerns unpaired chromatin regions and resembles a phenomenon described for the fungus Neurospora crassa and named meiotic silencing by unpaired DNA. PMID:15657431

  1. [Transgene complete silencing may associate with rearrangement of retroviral vector].

    PubMed

    Wang, Dan; Xiao, Lejia; Ma, Qingxin; Zhai, Fen; Ren, Sichong; Li, Changlong

    2011-04-01

    Transgene silencing is one of two major obstacles in both basic biomedical research for transgene and clinical practice of gene therapy. Based on the model of HT1080 cell clones, which transduced single copy of retroviral vector MGPN2, the mechanism of transgene silencing was explored in this investigation by a serial molecular techniques. In the HT1080 cell clone that absence of GFP protein synthesized, no significant aberration of epigenetic modification was detected, but the transcript size and the sequence changed that resulted in the reading frame shift. In addition to chromosomal position effect leading to transgene silencing, the transcript reading frame shift associated with retroviral vector rearrangements could induce complete silencing of transgene.

  2. Multitasking of the piRNA Silencing Machinery: Targeting Transposable Elements and Foreign Genes in the Bdelloid Rotifer Adineta vaga.

    PubMed

    Rodriguez, Fernando; Arkhipova, Irina R

    2016-05-01

    RNA-mediated silencing processes play a key role in silencing of transposable elements, especially in the germ line, where piwi-interacting RNAs (piRNAs) are responsible for suppressing transposon mobility and maintaining genome integrity. We previously reported that the genome of Adineta vaga, the first sequenced representative of the phylum Rotifera (class Bdelloidea), is characterized by massive levels of horizontal gene transfer, by unusually low transposon content, and by highly diversified RNA-mediated silencing machinery. Here, we investigate genome-wide distribution of pi-like small RNAs, which in A. vaga are 25-31 nucleotides in length and have a strong 5'-uridine bias, while lacking ping-pong amplification signatures. In agreement with expectations, 71% of mapped reads corresponded to annotated transposons, with 93% of these reads being in the antisense orientation. Unexpectedly, a significant fraction of piRNAs originate from predicted coding regions corresponding to genes of putatively foreign origin. The distribution of piRNAs across foreign genes is not biased toward 3'-UTRs, instead resembling transposons in uniform distribution pattern throughout the gene body, and in predominantly antisense orientation. We also find that genes with small RNA coverage, including a number of genes of metazoan origin, are characterized by higher occurrence of telomeric repeats in the surrounding genomic regions, and by higher density of transposons in the vicinity, which have the potential to promote antisense transcription. Our findings highlight the complex interplay between RNA-based silencing processes and acquisition of genes at the genome periphery, which can result either in their loss or eventual domestication and integration into the host genome.

  3. Multitasking of the piRNA Silencing Machinery: Targeting Transposable Elements and Foreign Genes in the Bdelloid Rotifer Adineta vaga.

    PubMed

    Rodriguez, Fernando; Arkhipova, Irina R

    2016-05-01

    RNA-mediated silencing processes play a key role in silencing of transposable elements, especially in the germ line, where piwi-interacting RNAs (piRNAs) are responsible for suppressing transposon mobility and maintaining genome integrity. We previously reported that the genome of Adineta vaga, the first sequenced representative of the phylum Rotifera (class Bdelloidea), is characterized by massive levels of horizontal gene transfer, by unusually low transposon content, and by highly diversified RNA-mediated silencing machinery. Here, we investigate genome-wide distribution of pi-like small RNAs, which in A. vaga are 25-31 nucleotides in length and have a strong 5'-uridine bias, while lacking ping-pong amplification signatures. In agreement with expectations, 71% of mapped reads corresponded to annotated transposons, with 93% of these reads being in the antisense orientation. Unexpectedly, a significant fraction of piRNAs originate from predicted coding regions corresponding to genes of putatively foreign origin. The distribution of piRNAs across foreign genes is not biased toward 3'-UTRs, instead resembling transposons in uniform distribution pattern throughout the gene body, and in predominantly antisense orientation. We also find that genes with small RNA coverage, including a number of genes of metazoan origin, are characterized by higher occurrence of telomeric repeats in the surrounding genomic regions, and by higher density of transposons in the vicinity, which have the potential to promote antisense transcription. Our findings highlight the complex interplay between RNA-based silencing processes and acquisition of genes at the genome periphery, which can result either in their loss or eventual domestication and integration into the host genome. PMID:27017627

  4. Mariner Transposons Contain a Silencer: Possible Role of the Polycomb Repressive Complex 2

    PubMed Central

    Beauclair, Linda; Moiré, Nathalie; Arensbuger, Peter; Bigot, Yves

    2016-01-01

    Transposable elements are driving forces for establishing genetic innovations such as transcriptional regulatory networks in eukaryotic genomes. Here, we describe a silencer situated in the last 300 bp of the Mos1 transposase open reading frame (ORF) which functions in vertebrate and arthropod cells. Functional silencers are also found at similar locations within three other animal mariner elements, i.e. IS630-Tc1-mariner (ITm) DD34D elements, Himar1, Hsmar1 and Mcmar1. These silencers are able to impact eukaryotic promoters monitoring strong, moderate or low expression as well as those of mariner elements located upstream of the transposase ORF. We report that the silencing involves at least two transcription factors (TFs) that are conserved within animal species, NFAT-5 and Alx1. These cooperatively act with YY1 to trigger the silencing activity. Four other housekeeping transcription factors (TFs), neuron restrictive silencer factor (NRSF), GAGA factor (GAF) and GTGT factor (GTF), were also found to have binding sites within mariner silencers but their impact in modulating the silencer activity remains to be further specified. Interestingly, an NRSF binding site was found to overlap a 30 bp motif coding a highly conserved PHxxYSPDLAPxD peptide in mariner transposases. We also present experimental evidence that silencing is mainly achieved by co-opting the host Polycomb Repressive Complex 2 pathway. However, we observe that when PRC2 is impaired another host silencing pathway potentially takes over to maintain weak silencer activity. Mariner silencers harbour features of Polycomb Response Elements, which are probably a way for mariner elements to self-repress their transcription and mobility in somatic and germinal cells when the required TFs are expressed. At the evolutionary scale, mariner elements, through their exaptation, might have been a source of silencers playing a role in the chromatin configuration in eukaryotic genomes. PMID:26939020

  5. Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing.

    PubMed Central

    Dehio, C; Schell, J

    1994-01-01

    Numerous reports describe phenomena of transgene silencing in plants, yet the underlying genetic and molecular mechanisms are poorly understood. We observed that regeneration of Arabidopsis thaliana plants transgenic for the rolB gene of Agrobacterium rhizogenes results in a selection for transgene silencing. Transgene silencing could be monitored in this system by reversion of the visible RolB phenotype. We report a phenotypic, molecular, and genetic characterization of a meiotically reversible transgene silencing phenomenon observed in a rolB transgenic line. In this line, the rolB gene is expressed strongly and uniformly in seedlings, but in the course of further development, the rolB gene is silenced erratically at a frequency that depends on the dosage of rolB. The silenced state is mitotically stable, while complete resetting of rolB gene expression occurs in seedlings of the following generation. The silencing of rolB correlates with a dramatic reduction of steady-state rolB transcripts, while rolB nuclear run-off transcripts are only moderately reduced. Therefore, rolB gene silencing seems to act predominantly at the posttranscriptional level. The process of rolB gene silencing was found to be affected by two extragenic modifier loci that influence both the frequency and the timing of rolB gene silencing during plant development. These genetic data demonstrate a direct involvement of defined plant genes in this form of gene silencing. Images PMID:8202523

  6. The Gift of Silence

    ERIC Educational Resources Information Center

    Haskins, Cathleen

    2011-01-01

    Slowing down, quieting the mind and body, and experiencing silence nourishes the spirit. Montessori educators are mandated to cultivate not just the intellect but the whole child. They recognize that nurturing the spirit of the child is part of what makes this form of education work so well. This article discusses the benefits of stillness and…

  7. Multiple roles for Piwi in silencing Drosophila transposons.

    PubMed

    Rozhkov, Nikolay V; Hammell, Molly; Hannon, Gregory J

    2013-02-15

    Silencing of transposons in the Drosophila ovary relies on three Piwi family proteins--Piwi, Aubergine (Aub), and Ago3--acting in concert with their small RNA guides, the Piwi-interacting RNAs (piRNAs). Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell type-specific knockdowns with measurements of steady-state transposon mRNA levels, nascent RNA synthesis, chromatin state, and small RNA abundance. In somatic cells, Piwi loss led to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady-state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on local chromatin states and transcription but also participating in germ cell piRNA biogenesis.

  8. Multiple roles for Piwi in silencing Drosophila transposons

    PubMed Central

    Rozhkov, Nikolay V.; Hammell, Molly; Hannon, Gregory J.

    2013-01-01

    Silencing of transposons in the Drosophila ovary relies on three Piwi family proteins—Piwi, Aubergine (Aub), and Ago3—acting in concert with their small RNA guides, the Piwi-interacting RNAs (piRNAs). Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell type-specific knockdowns with measurements of steady-state transposon mRNA levels, nascent RNA synthesis, chromatin state, and small RNA abundance. In somatic cells, Piwi loss led to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady-state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on local chromatin states and transcription but also participating in germ cell piRNA biogenesis. PMID:23392609

  9. Meiotic silencing by unpaired DNA: properties, regulation and suppression.

    PubMed

    Shiu, Patrick K T; Metzenberg, Robert L

    2002-08-01

    In Neurospora, a gene not paired with a homolog in prophase I of meiosis generates a signal that transiently silences all sequences homologous to it by a process called meiotic silencing by unpaired DNA (MSUD). Thus a deletion mutation in a heterozygous cross is formally "ascus-dominant" because its unpaired wild-type partner silences itself. We describe in detail the isolation of a mutation, Sad-1(UV), that suppresses the dominance of various ascus-dominant mutations. Additional dominant, semidominant, and recessive Sad-1 alleles have been generated by RIP; the DNA of the dominant RIP alleles becomes methylated, but dim-2-dependent methylation is not necessary for silencing. The barrenness of homozygous Sad-1 crosses is not due to the failure to silence unpaired mating-type mat A-2 mat A-3 genes. Transcripts of sad-1(+) can be detected during the sexual phase in a homozygous wild-type cross, indicating that the gene is expressed even if all DNA can pair normally. Meiotic silencing is confined to the ascus in which DNA is unpaired, and silencing does not spread to neighboring asci in a fruiting body of mixed genetic constitution.

  10. Discovering Host Genes Involved in the Infection by the Tomato Yellow Leaf Curl Virus Complex and in the Establishment of Resistance to the Virus Using Tobacco Rattle Virus-based Post Transcriptional Gene Silencing

    PubMed Central

    Czosnek, Henryk; Eybishtz, Assaf; Sade, Dagan; Gorovits, Rena; Sobol, Iris; Bejarano, Eduardo; Rosas-Díaz, Tábata; Lozano-Durán, Rosa

    2013-01-01

    The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV) complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the molecular

  11. Discovering host genes involved in the infection by the Tomato Yellow Leaf Curl Virus complex and in the establishment of resistance to the virus using Tobacco Rattle Virus-based post transcriptional gene silencing.

    PubMed

    Czosnek, Henryk; Eybishtz, Assaf; Sade, Dagan; Gorovits, Rena; Sobol, Iris; Bejarano, Eduardo; Rosas-Díaz, Tábata; Lozano-Durán, Rosa

    2013-03-01

    The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV) complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS) to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R), the other susceptible (S) to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the molecular

  12. Analysis of hairpin RNA transgene-induced gene silencing in Fusarium oxysporum

    PubMed Central

    2013-01-01

    Background Hairpin RNA (hpRNA) transgenes can be effective at inducing RNA silencing and have been exploited as a powerful tool for gene function analysis in many organisms. However, in fungi, expression of hairpin RNA transcripts can induce post-transcriptional gene silencing, but in some species can also lead to transcriptional gene silencing, suggesting a more complex interplay of the two pathways at least in some fungi. Because many fungal species are important pathogens, RNA silencing is a powerful technique to understand gene function, particularly when gene knockouts are difficult to obtain. We investigated whether the plant pathogenic fungus Fusarium oxysporum possesses a functional gene silencing machinery and whether hairpin RNA transcripts can be employed to effectively induce gene silencing. Results Here we show that, in the phytopathogenic fungus F. oxysporum, hpRNA transgenes targeting either a β-glucuronidase (Gus) reporter transgene (hpGus) or the endogenous gene Frp1 (hpFrp) did not induce significant silencing of the target genes. Expression analysis suggested that the hpRNA transgenes are prone to transcriptional inactivation, resulting in low levels of hpRNA and siRNA production. However, the hpGus RNA can be efficiently transcribed by promoters acquired either by recombination with a pre-existing, actively transcribed Gus transgene or by fortuitous integration near an endogenous gene promoter allowing siRNA production. These siRNAs effectively induced silencing of a target Gus transgene, which in turn appeared to also induce secondary siRNA production. Furthermore, our results suggested that hpRNA transcripts without poly(A) tails are efficiently processed into siRNAs to induce gene silencing. A convergent promoter transgene, designed to express poly(A)-minus sense and antisense Gus RNAs, without an inverted-repeat DNA structure, induced consistent Gus silencing in F. oxysporum. Conclusions These results indicate that F. oxysporum possesses

  13. Bidirectional Transcription Directs Both Transcriptional Gene Activation and Suppression in Human Cells

    PubMed Central

    Morris, Kevin V.; Santoso, Sharon; Turner, Anne-Marie; Pastori, Chiara; Hawkins, Peter G.

    2008-01-01

    Small RNAs targeted to gene promoters in human cells have been shown to modulate both transcriptional gene suppression and activation. However, the mechanism involved in transcriptional activation has remained poorly defined, and an endogenous RNA trigger for transcriptional gene silencing has yet to be identified. Described here is an explanation for siRNA-directed transcriptional gene activation, as well as a role for non-coding antisense RNAs as effector molecules driving transcriptional gene silencing. Transcriptional activation of p21 gene expression was determined to be the result of Argonaute 2–dependent, post-transcriptional silencing of a p21-specific antisense transcript, which functions in Argonaute 1–mediated transcriptional control of p21 mRNA expression. The data presented here suggest that in human cells, bidirectional transcription is an endogenous gene regulatory mechanism whereby an antisense RNA directs epigenetic regulatory complexes to a sense promoter, resulting in RNA-directed epigenetic gene regulation. The observations presented here support the notion that epigenetic silencing of tumor suppressor genes, such as p21, may be the result of an imbalance in bidirectional transcription levels. This imbalance allows the unchecked antisense RNA to direct silent state epigenetic marks to the sense promoter, resulting in stable transcriptional gene silencing. PMID:19008947

  14. Rethinking the Day of Silence

    ERIC Educational Resources Information Center

    Murphy, Adriana

    2013-01-01

    Back in 2006, 7th and 8th graders at Green Acres, the K-8 independent school where the author taught in suburban Maryland, participated in the Day of Silence. The Day of Silence is a national event: Students across the country take a one-day pledge of silence to show that they want to make schools safe for all students, regardless of their sexual…

  15. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    PubMed

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-01-01

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process. PMID:27323202

  16. Antiviral RNA silencing suppression activity of Tomato spotted wilt virus NSs protein.

    PubMed

    Ocampo Ocampo, T; Gabriel Peralta, S M; Bacheller, N; Uiterwaal, S; Knapp, A; Hennen, A; Ochoa-Martinez, D L; Garcia-Ruiz, H

    2016-06-17

    In addition to regulating gene expression, RNA silencing is an essential antiviral defense system in plants. Triggered by double-stranded RNA, silencing results in degradation or translational repression of target transcripts. Viruses are inducers and targets of RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressors that interfere with this process, such as the Tomato spotted wilt virus (TSWV) NSs protein. The mechanism by which NSs suppresses RNA silencing and its role in viral infection and movement remain to be determined. We cloned NSs from the Hawaii isolate of TSWV and using two independent assays show for the first time that this protein restored pathogenicity and supported the formation of local infection foci by suppressor-deficient Turnip mosaic virus and Turnip crinkle virus. Demonstrating the suppression of RNA silencing directed against heterologous viruses establishes the foundation to determine the means used by NSs to block this antiviral process.

  17. Yeast heterochromatin is a dynamic structure that requires silencers continuously

    PubMed Central

    Cheng, Tzu-Hao; Gartenberg, Marc R.

    2000-01-01

    Transcriptional silencing of the HM loci in yeast requires cis-acting elements, termed silencers, that function during S-phase passage to establish the silent state. To study the role of the regulatory elements in maintenance of repression, site-specific recombination was used to uncouple preassembled silent chromatin fragments from silencers. DNA rings excised from HMR were initially silent but ultimately reactivated, even in G1- or G2/M-arrested cells. In contrast, DNA rings bearing HML-derived sequence were stably repressed due to the presence of a protosilencing element. These data show that silencers (or protosilencers) are required continuously for maintenance of silent chromatin. Reactivation of unstably repressed rings was blocked by overexpression of silencing proteins Sir3p and Sir4p, and chromatin immunoprecipitation studies showed that overexpressed Sir3p was incorporated into silent chromatin. Importantly, the protein was incorporated even when expressed outside of S phase, during G1 arrest. That silencing factors can associate with and stabilize preassembled silent chromatin in non-S-phase cells demonstrates that heterochromatin in yeast is dynamic. PMID:10691737

  18. "Listening Silence" and Its Discursive Effects

    ERIC Educational Resources Information Center

    Applebaum, Barbara

    2016-01-01

    While researchers have studied how white silence protects white innocence and white ignorance, in this essay Barbara Applebaum explores a form of white silence that she refers to as "listening silence" in which silence protects white innocence but does not necessarily promote resistance to learning. White listening silence can appear to…

  19. Edwin Hubble's Silence

    NASA Astrophysics Data System (ADS)

    Lago, D.

    2013-04-01

    In late 1928 Edwin Hubble was right in the middle of using V. M. Slipher's redshift data to prove that the universe is expanding, when Hubble's boss, George Hale, directed him to drop everything and rush to the Grand Canyon and test it as a possible site for Hale's planned 200-inch telescope. On his way, Hubble stopped at Lowell Observatory and met with V. M. Slipher. The letters both men wrote about this visit suggest that Hubble never said a word about his being in the middle of using Slipher's research to transform the universe. At the least, this silence is symbolic of the silence with which astronomical history has often treated Slipher's work. A survey of the historical literature suggests several reasons for this. Theorists and observers in astronomy (and other sciences) have long had different perspectives about how science works, and those who place more importance on theory have tended to credit the idea of the expanding universe to the theorists. Also, many sources indicate that Edwin Hubble was not a modest man or generous about sharing credit.

  20. GENE SILENCING. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells.

    PubMed

    Tchasovnikarova, Iva A; Timms, Richard T; Matheson, Nicholas J; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A; Lehner, Paul J

    2015-06-26

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A nonlethal forward genetic screen in near-haploid KBM7 cells identified the HUSH (human silencing hub) complex, comprising three poorly characterized proteins, TASOR, MPP8, and periphilin; this complex is absent from Drosophila but is conserved from fish to humans. Loss of HUSH components resulted in decreased H3K9me3 both at endogenous genomic loci and at retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing.

  1. Gene silencing by nuclear orphan receptors.

    PubMed

    Zhang, Ying; Dufau, Maria L

    2004-01-01

    Nuclear orphan receptors represent a large and diverse subgroup in the nuclear receptor superfamily. Although putative ligands for these orphan members remain to be identified, some of these receptors possess intrinsic activating, inhibitory, or dual regulatory functions in development, differentiation, homeostasis, and reproduction. In particular, gene-silencing events elicited by chicken ovalbumin upstream promoter-transcription factors (COUP-TFs); dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX-1); germ cell nuclear factor (GCNF); short heterodimer partner (SHP); and testicular receptors 2 and 4 (TR2 and TR4) are among the best characterized. These orphan receptors are critical in controlling basal activities or hormonal responsiveness of numerous target genes. They employ multiple and distinct mechanisms to mediate target gene repression. Complex cross-talk exists between these orphan receptors at their cognate DNA binding elements and an array of steroid?nonsteroid hormone receptors, other transcriptional activators, coactivators and corepressors, histone modification enzyme complexes, and components of basal transcriptional components. Therefore, perturbation induced by these orphan receptors at multiple levels, including DNA binding activities, receptor homo- or heterodimerization, recruitment of cofactor proteins, communication with general transcriptional machinery, and changes at histone acetylation status and chromatin structures, may contribute to silencing of target gene expression in a specific promoter or cell-type context. Moreover, the findings derived from gene-targeting studies have demonstrated the significance of these orphan receptors' function in physiologic settings. Thus, COUP-TFs, DAX-1, GCNF, SHP, and TR2 and 4 are known to be required for multiple physiologic and biologic functions, including neurogenesis and development of the heart and vascular system steroidogenesis and sex

  2. The Search for Strategic Silence.

    ERIC Educational Resources Information Center

    Lentz, Richard

    Media content analysts seldom observe the principle that editorial omissions are as telling as what is published or broadcast; hence, the purpose of this paper is to explore, and thus stimulate debate about, editorial omissions or "strategic silence." It is observed that as a concept, strategic silence embraces both tact and strategy--the former…

  3. Organizational Silence in Sports Employees

    ERIC Educational Resources Information Center

    Bastug, Gulsum; Pala, Adem; Yilmaz, Taner; Duyan, Mehdi; Gunel, Ilker

    2016-01-01

    Organizational silence can be defined as a way of behaviour belonging to men and women employees in the organization exhibited without reflecting their feelings, ideas, concerns and suggestions related with their workplaces, works for which they are responsible or other activities of the organization. In the period of organizational silence,…

  4. Silence Amenity Engineering

    NASA Astrophysics Data System (ADS)

    Fujita, Hajime

    Engineering civilization brought convenient and comfortable life to us. However, some environmental problems such as various pollutions have also been developed with it. Acoustical noise is one of the major problems in modern life. Noise is generated from a noise source and propagates through transmitting medium such as the air and eventually reaches a receiver, usually a human being. The noise problem can be avoided, therefore, if one of those three elements in the noise problem is removed completely. In actual case, engineers are looking for most efficient way combining the controls for these three elements. In this article, basic characteristics of noise is reviewed briefly at first, then sound field analysis to predict sound transmission is discussed Aerodynamic noise is one of the major problems in silence amenity engineering today. Basic concept of the aerodynamic noise generation mechanism is discussed in detail with applications to turbo-machinery and high speed train noise control technology.

  5. Gene Silencing in Crustaceans: From Basic Research to Biotechnologies

    PubMed Central

    Sagi, Amir; Manor, Rivka; Ventura, Tomer

    2013-01-01

    Gene silencing through RNA interference (RNAi) is gaining momentum for crustaceans, both in basic research and for commercial development. RNAi has proven instrumental in a growing number of crustacean species, revealing the functionality of novel crustacean genes essential among others to development, growth, metabolism and reproduction. Extensive studies have also been done on silencing of viral transcripts in crustaceans, contributing to the understanding of the defense mechanisms of crustaceans and strategies employed by viruses to overcome these. The first practical use of gene silencing in aquaculture industry has been recently achieved, through manipulation of a crustacean insulin-like androgenic gland hormone. This review summarizes the advancements in the use of RNAi in crustaceans, and assesses the advantages of this method, as well as the current hurdles that hinder its large-scale practice. PMID:24705266

  6. MORC Family ATPases Required for Heterochromatin Condensation and Gene Silencing#

    PubMed Central

    Moissiard, Guillaume; Cokus, Shawn J.; Cary, Joshua; Feng, Suhua; Billi, Allison C.; Stroud, Hume; Husmann, Dylan; Zhan, Ye; Lajoie, Bryan R.; McCord, Rachel Patton; Hale, Christopher J.; Feng, Wei; Michaels, Scott D.; Frand, Alison R.; Pellegrini, Matteo; Dekker, Job; Kim, John K.; Jacobsen, Steve

    2012-01-01

    Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1 and AtMORC6, which cause de-repression of DNA-methylated genes and TEs, but no losses of DNA or histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC) adenosine triphosphatase (ATPase) family, predicted to catalyze alterations in chromosome superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes. PMID:22555433

  7. Induction of stable epigenetic gene silencing in plants using a virus vector.

    PubMed

    Kanazawa, Akira; Kasai, Megumi

    2015-01-01

    Gene silencing through transcriptional repression can be induced by double-stranded RNA targeted to a gene promoter, a process known as RNA-mediated transcriptional gene silencing (TGS). This phenomenon is associated with epigenetic changes involving cytosine methylation of the promoter. Plant virus vectors have been used to induce RNA-mediated TGS. Here, we describe methods relevant to the induction of epigenetic changes and RNA-mediated TGS in plants using a virus vector, which include inoculation of recombinant virus, detection of short interfering RNAs, bisulfite sequencing analysis, and nuclear run-on transcription assay. PMID:25740361

  8. Phenotypic diversification by gene silencing in Phytophthora plant pathogens

    PubMed Central

    Vetukuri, Ramesh R; Åsman, Anna KM; Jahan, Sultana N; Avrova, Anna O; Whisson, Stephen C; Dixelius, Christina

    2013-01-01

    Advances in genome sequencing technologies have enabled generation of unprecedented information on genome content and organization. Eukaryote genomes in particular may contain large populations of transposable elements (TEs) and other repeated sequences. Active TEs can result in insertional mutations, altered transcription levels and ectopic recombination of DNA. The genome of the oomycete plant pathogen, Phytophthora infestans, contains vast numbers of TE sequences. There are also hundreds of predicted disease-promoting effector proteins, predominantly located in TE-rich genomic regions. Expansion of effector gene families is also a genomic signature of related oomycetes such as P. sojae. Deep sequencing of small RNAs (sRNAs) from P. infestans has identified sRNAs derived from all families of transposons, highlighting the importance of RNA silencing for maintaining these genomic invaders in an inactive form. Small RNAs were also identified from specific effector encoding genes, possibly leading to RNA silencing of these genes and variation in pathogenicity and virulence toward plant resistance genes. Similar findings have also recently been made for the distantly related species, P. sojae. Small RNA “hotspots” originating from arrays of amplified gene sequences, or from genes displaying overlapping antisense transcription, were also identified in P. infestans. These findings suggest a major role for RNA silencing processes in the adaptability and diversification of these economically important plant pathogens. Here we review the latest progress and understanding of gene silencing in oomycetes with emphasis on transposable elements and sRNA-associated events. PMID:24563702

  9. Characteristics of RNA silencing in plants: similarities and differences across kingdoms.

    PubMed

    Susi, P; Hohkuri, M; Wahlroos, T; Kilby, N J

    2004-01-01

    RNA silencing is a collective term that encompasses the sequence of events that leads to the targeted degradation of cellular mRNA and thus to the silencing of corresponding gene expression. RNA silencing is initiated after introduction into the host genome of a gene that is homologous to an endogenous gene. Transcription of the introduced gene results in the formation of double-stranded RNA (dsRNA) that is cut into smaller dsRNA species termed small interfering RNAs (siRNAs) by an RNaseIII-like enzyme called 'Dicer'. siRNAs associate with a protein complex termed the 'RNA-induced silencing complex' (RISC), which mediates the binding of one strand of siRNAs with mRNAs transcribed from the native 'target' gene. The binding of siRNAs with native gene mRNAs earmarks native gene mRNAs for destruction, resulting in gene silencing. In plants, RNA silencing appears to serve as a defence mechanism against viral pathogens and also to suppress the activity of virus-like mobile genetic elements. In an apparent response to RNA silencing, some plant viruses express suppressors of RNA silencing. RNA silencing also is directly implicated in the regulation of the function(s) of microRNAs, which are the key determinants in an additional cellular mechanism related to the translational repression of genes, the effect of which ultimately impinges on development. The high degree of sequence similarity that exists between genes involved in RNA silencing in widely different organisms underscores the conserved nature of many aspects of the RNA silencing mechanism. However, depending (for example) on the precise nature of the target gene involved, there also are significant differences in the silencing pathways that are engaged by various organisms.

  10. Technical advances in trigger-induced RNA interference gene silencing in the parasite Entamoeba histolytica.

    PubMed

    Khalil, Mohamed I; Foda, Bardees M; Suresh, Susmitha; Singh, Upinder

    2016-03-01

    Entamoeba histolytica has a robust endogenous RNA interference (RNAi) pathway. There are abundant 27 nucleotide (nt) anti-sense small RNAs (AS sRNAs) that target genes for silencing and the genome encodes many genes involved in the RNAi pathway such as Argonaute proteins. Importantly, an E. histolytica gene with numerous AS sRNAs can function as a "trigger" to induce silencing of a gene that is fused to the trigger. Thus, the amebic RNAi pathway regulates gene expression relevant to amebic biology and has additionally been harnessed as a tool for genetic manipulation. In this study we have further improved the trigger-induced gene silencing method. We demonstrate that rather than using the full-length gene, a short portion of the coding region fused to a trigger is sufficient to induce silencing; the first 537 bp of the E. histolytica rhomboid gene (EhROM1) fused in-frame to the trigger was sufficient to silence EhROM1. We also demonstrated that the trigger method could silence two amebic genes concomitantly; fusion of the coding regions of EhROM1 and transcription factor, EhMyb, in-frame to a trigger gene resulted in both genes being silenced. Alternatively, two genes can be silenced sequentially: EhROM1-silenced parasites with no drug selection plasmid were transfected with trigger-EhMyb, resulting in parasites with both EhROM1 and EhMyb silenced. With all approaches tested, the trigger-mediated silencing was substantive and silencing was maintained despite loss of the G418 selectable marker. All gene silencing was associated with generation of AS sRNAs to the silenced gene. We tested the reversibility of the trigger system using inhibitors of histone modifications but found that the silencing was highly stable. This work represents a technical advance in the trigger gene silencing method in E. histolytica. Approaches that readily silence multiple genes add significantly to the genetic toolkit available to the ameba research community. PMID:26747561

  11. Silence and the Notion of the Commons.

    ERIC Educational Resources Information Center

    Franklin, Ursula

    1994-01-01

    Stresses the value of silence, the right to have silence, and how technology has manipulated the sound environment and therefore taken silence out of common availability. Discusses noise pollution and the manipulative use of sound for private gain. Suggests taking action to restore the right to silence. (LP)

  12. Inheritable Silencing of Endogenous Genes by Hit-and-Run Targeted Epigenetic Editing.

    PubMed

    Amabile, Angelo; Migliara, Alessandro; Capasso, Paola; Biffi, Mauro; Cittaro, Davide; Naldini, Luigi; Lombardo, Angelo

    2016-09-22

    Gene silencing is instrumental to interrogate gene function and holds promise for therapeutic applications. Here, we repurpose the endogenous retroviruses' silencing machinery of embryonic stem cells to stably silence three highly expressed genes in somatic cells by epigenetics. This was achieved by transiently expressing combinations of engineered transcriptional repressors that bind to and synergize at the target locus to instruct repressive histone marks and de novo DNA methylation, thus ensuring long-term memory of the repressive epigenetic state. Silencing was highly specific, as shown by genome-wide analyses, sharply confined to the targeted locus without spreading to nearby genes, resistant to activation induced by cytokine stimulation, and relieved only by targeted DNA demethylation. We demonstrate the portability of this technology by multiplex gene silencing, adopting different DNA binding platforms and interrogating thousands of genomic loci in different cell types, including primary T lymphocytes. Targeted epigenome editing might have broad application in research and medicine. PMID:27662090

  13. MLH1-Silenced and Non-Silenced Subgroups of Hypermutated Colorectal Carcinomas Have Distinct Mutational Landscapes

    PubMed Central

    Donehower, Lawrence A.; Creighton, Chad J.; Schultz, Nikolaus; Shinbrot, Eve; Chang, Kyle; Gunaratne, Preethi H.; Muzny, Donna; Sander, Chris; Hamilton, Stanley R.; Gibbs, Richard A.; Wheeler, David

    2014-01-01

    Approximately 15% of colorectal carcinomas (CRC) exhibit a hypermutated genotype accompanied by high levels of microsatellite instability (MSI-H) and defects in DNA mismatch repair. These tumors, unlike the majority of colorectal carcinomas, are often diploid, exhibit frequent epigenetic silencing of the MLH1 DNA mismatch repair gene, and have a better clinical prognosis. As an adjunct study to The Cancer Genome Atlas consortium that recently analyzed 224 colorectal cancers by whole exome sequencing, we compared the 35 CRC (15.6%) with a hypermutated genotype to those with a non-hypermutated genotype. We found that 22 (63%) of hypermutated CRC exhibited transcriptional silencing of the MLH1 gene, a high frequency of BRAF V600E gene mutations and infrequent APC and KRAS mutations, a mutational pattern significantly different from their non-hypermutated counterparts. However, the remaining 13 (37%) hypermutated CRC lacked MLH1 silencing, contained tumors with the highest mutation rates (“ultramutated” CRC), and exhibited higher incidences of APC and KRAS mutations, but infrequent BRAF mutations. These patterns were confirmed in an independent validation set of 250 exome-sequenced CRC. Analysis of mRNA and microRNA expression signatures revealed that hypermutated CRC with MLH1 silencing had greatly reduced levels of WNT signaling and increased BRAF signaling relative non-hypermutated CRC. Our findings suggest that hypermutated CRC include one subgroup with fundamentally different pathways to malignancy than the majority of CRC. Examination of MLH1 expression status and frequencies of APC, KRAS, and BRAF mutation in CRC may provide a useful diagnostic tool that could supplement the standard microsatellite instability assays and influence therapeutic decisions. PMID:22899370

  14. Characterization of Arabidopsis Genes Involved in Gene Silencing. Final Progress Report

    SciTech Connect

    Grant, S. R.

    1999-02-05

    Enhancer of gene silencing 1 (egs1) is an Arabidopsis mutant that enhances post-transcriptional gene silencing of the rolB gene introduced by genetic engineering (transgene). The goal of our proposal was cloning EGS1 based on its map position. Although we screened more than 2000 chromosomes for recombination, we were unable to get closer than 2 cM to the gene. We experienced an unexpected tendency of the post-transcriptionally silenced transgene to switch to a more stable silenced state. This made it impossible to select egs1 homozygotes for map based cloning. This forced us to reconsider our cloning strategy. One possibility would have been to use a different transgene as the target of gene silencing. We tested two other transgenes. Both encoded proteins unrelated to the first but they were all expressed from the same type of promoter and they all had a similar tendency to become post-transcriptionally silenced. After screening over 80 F2 segregants from each cross between our egs1 mutant and Arabidopsis of the same ecotype homozygous for the new transgene, we were disappointed to find that the egs1 mutation did not enhance post-transcription silencing of the two new genes. In 80 plants we expected to have between 4 and 6 plants that were homozygous for the transgene and for the mutant egs1 allele. If egs1 mutations could enhance gene silencing of the new transgene, these plants would not express it. However all the double homozygotes still expressed the transgene. Therefore, we could not change the target transgene for mapping. This was the state of the cloning at the time for renewal of the grant in 1999. Because the selection of new meaningful recombinant plants had become extremely inefficient using the original rolB transgene, we abandoned the attempt at map based cloning and did not apply for further funding.

  15. The capacity of target silencing by Drosophila PIWI and piRNAs

    PubMed Central

    Post, Christina; Clark, Josef P.; Sytnikova, Yuliya A.; Chirn, Gung-Wei

    2014-01-01

    Although Piwi proteins and Piwi-interacting RNAs (piRNAs) genetically repress transposable elements (TEs), it is unclear how the highly diverse piRNA populations direct Piwi proteins to silence TE targets without silencing the entire transcriptome. To determine the capacity of piRNA-mediated silencing, we introduced reporter genes into Drosophila OSS cells, which express microRNAs (miRNAs) and piRNAs, and compared the Piwi pathway to the Argonaute pathway in gene regulation. Reporter constructs containing several target sites that were robustly silenced by miRNAs were not silenced to the same degrees by piRNAs. However, another set of reporters we designed to enable a large number of both TE-directed and genic piRNAs to bind were robustly silenced by the PIWI/piRNA complex in OSS cells. These reporters show that a bulk of piRNAs are required to pair to the reporter's transcripts and not the reporter's DNA sequence to engage PIWI-mediated silencing. Following our genome-wide study of PIWI-regulated targets in OSS cells, we assessed candidate gene elements with our reporter platform. These results suggest TE sequences are the most direct of PIWI regulatory targets while coding genes are less directly affected by PIWI targeting. Finally, our study suggests that the PIWI transcriptional silencing mechanism triggers robust chromatin changes on targets with sufficient piRNA binding, and preferentially regulates TE transcripts because protein-coding transcripts lack a threshold of targeting by piRNA populations. This reporter platform will facilitate future dissections of the PIWI-targeting mechanism. PMID:25336588

  16. Gene silencing triggered by non-LTR retrotransposons in the female germline of Drosophila melanogaster.

    PubMed Central

    Robin, Stéphanie; Chambeyron, Séverine; Bucheton, Alain; Busseau, Isabelle

    2003-01-01

    Several studies have recently shown that the activity of some eukaryotic transposable elements is sensitive to the presence of homologous transgenes, suggesting the involvement of homology-dependent gene-silencing mechanisms in their regulation. Here we provide data indicating that two non-LTR retrotransposons of Drosophila melanogaster are themselves natural triggers of homology-dependent gene silencing. We show that, in the female germline of D. melanogaster, fragments from the R1 or from the I retrotransposons can mediate silencing of chimeric transcription units into which they are inserted. This silencing is probably mediated by sequence identity with endogenous copies of the retrotransposons because it does not occur with a fragment from the divergent R1 elements of Bombyx mori, and, when a fragment of I is used, it occurs only in females containing functional copies of the I element. This silencing is not accompanied by cosuppression of the endogenous gene homologous to the chimeric transcription unit, which contrasts to some other silencing mechanisms in Drosophila. These observations suggest that in the female germline of D. melanogaster the R1 and I retrotransposons may self-regulate their own activity and their copy number by triggering homology-dependent gene silencing. PMID:12807773

  17. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential.

    PubMed

    Kazanets, Anna; Shorstova, Tatiana; Hilmi, Khalid; Marques, Maud; Witcher, Michael

    2016-04-01

    Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes.

  18. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential.

    PubMed

    Kazanets, Anna; Shorstova, Tatiana; Hilmi, Khalid; Marques, Maud; Witcher, Michael

    2016-04-01

    Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes. PMID:27085853

  19. Robust gene silencing mediated by antisense small RNAs in the pathogenic protist Entamoeba histolytica

    PubMed Central

    Morf, Laura; Pearson, Richard J.; Wang, Angelia S.; Singh, Upinder

    2013-01-01

    RNA interference uses small RNAs (sRNA), which target genes for sequence-specific silencing. The parasite Entamoeba histolytica contains an abundant repertoire of 27 nt antisense (AS) sRNA with 5′-polyphosphate termini, but their roles in regulating gene expression have not been well established. We demonstrate that a gene-coding region to which large numbers of AS sRNAs map can serve as a ‘trigger’ and silence the gene fused to it. Silencing is mediated by generation of AS sRNAs with 5′-polyphosphate termini that have sequence specificity to the fused gene. The mechanism of silencing is independent of the placement of the trigger relative to the silenced gene but is dependent on the sRNA concentration to the trigger. Silencing requires transcription of the trigger-gene fusion and is maintained despite loss of the trigger plasmid. We used this approach to silence multiple amebic genes, including an E. histolytica Myb gene, which is upregulated during oxidative stress response. Silencing of the EhMyb gene decreased parasite viability under oxidative stress conditions. Thus, we have developed a new tool for genetic manipulation in E. histolytica with many advantages over currently available technologies. Additionally, these data shed mechanistic insights into a eukaryotic RNA interference pathway with many novel aspects. PMID:23935116

  20. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila.

    PubMed

    Cernilogar, Filippo M; Onorati, Maria Cristina; Kothe, Greg O; Burroughs, A Maxwell; Parsi, Krishna Mohan; Breiling, Achim; Lo Sardo, Federica; Saxena, Alka; Miyoshi, Keita; Siomi, Haruhiko; Siomi, Mikiko C; Carninci, Piero; Gilmour, David S; Corona, Davide F V; Orlando, Valerio

    2011-11-06

    RNA interference (RNAi) pathways have evolved as important modulators of gene expression that operate in the cytoplasm by degrading RNA target molecules through the activity of short (21-30 nucleotide) RNAs. RNAi components have been reported to have a role in the nucleus, as they are involved in epigenetic regulation and heterochromatin formation. However, although RNAi-mediated post-transcriptional gene silencing is well documented, the mechanisms of RNAi-mediated transcriptional gene silencing and, in particular, the role of RNAi components in chromatin dynamics, especially in animal multicellular organisms, are elusive. Here we show that the key RNAi components Dicer 2 (DCR2) and Argonaute 2 (AGO2) associate with chromatin (with a strong preference for euchromatic, transcriptionally active, loci) and interact with the core transcription machinery. Notably, loss of function of DCR2 or AGO2 showed that transcriptional defects are accompanied by the perturbation of RNA polymerase II positioning on promoters. Furthermore, after heat shock, both Dcr2 and Ago2 null mutations, as well as missense mutations that compromise the RNAi activity, impaired the global dynamics of RNA polymerase II. Finally, the deep sequencing of the AGO2-associated small RNAs (AGO2 RIP-seq) revealed that AGO2 is strongly enriched in small RNAs that encompass the promoter regions and other regions of heat-shock and other genetic loci on both the sense and antisense DNA strands, but with a strong bias for the antisense strand, particularly after heat shock. Taken together, our results show that DCR2 and AGO2 are globally associated with transcriptionally active loci and may have a pivotal role in shaping the transcriptome by controlling the processivity of RNA polymerase II.

  1. Common BRAF(V600E)-directed pathway mediates widespread epigenetic silencing in colorectal cancer and melanoma

    PubMed Central

    Fang, Minggang; Hutchinson, Lloyd; Deng, April

    2016-01-01

    During cancer development, it is well established that many genes, including tumor suppressor genes, are hypermethylated and transcriptionally repressed, a phenomenon referred to as epigenetic silencing. In general, the factors involved in, and the mechanistic basis of, epigenetic silencing during cancer development are not well understood. We have recently described an epigenetic silencing pathway, directed by the oncogenic B-Raf proto-oncogene (BRAF) variant BRAF(V600E), that mediates widespread epigenetic silencing in colorectal cancer (CRC). Notably, the BRAF(V600E) mutation is also present in 50–70% of melanomas. Here, we show that the same pathway we identified in CRC also directs epigenetic silencing of a similar set of genes in BRAF-positive melanoma. In both CRC and melanoma, BRAF(V600E) promotes epigenetic silencing through up-regulation of v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog G (MAFG), a transcriptional repressor with sequence-specific DNA-binding activity. The elevated concentration of MAFG drives DNA binding on the promoter. Promoter-bound MAFG recruits a set of corepressors that includes its heterodimeric partner BTB and CNC homology 1, basic leucine zipper transcription factor 1 (BACH1), the chromatin remodeling factor chromodomain helicase DNA-binding protein 8 (CHD8), and the DNA methyltransferase DNMT3B, resulting in hypermethylation and transcriptional silencing. Our results reveal a common BRAF(V600E)-directed transcriptional regulatory pathway that mediates epigenetic silencing in unrelated solid tumors and provide strong support for an instructive model of oncoprotein-directed epigenetic silencing. PMID:26787892

  2. Conifers have a unique small RNA silencing signature

    PubMed Central

    Dolgosheina, Elena V.; Morin, Ryan D.; Aksay, Gozde; Sahinalp, S. Cenk; Magrini, Vincent; Mardis, Elaine R.; Mattsson, Jim; Unrau, Peter J.

    2008-01-01

    Plants produce small RNAs to negatively regulate genes, viral nucleic acids, and repetitive elements at either the transcriptional or post-transcriptional level in a process that is referred to as RNA silencing. While RNA silencing has been extensively studied across the different phyla of the animal kingdom (e.g., mouse, fly, worm), similar studies in the plant kingdom have focused primarily on angiosperms, thus limiting evolutionary studies of RNA silencing in plants. Here we report on an unexpected phylogenetic difference in the size distribution of small RNAs among the vascular plants. By extracting total RNA from freshly growing shoot tissue, we conducted a survey of small RNAs in 24 vascular plant species. We find that conifers, which radiated from the other seed-bearing plants ∼260 million years ago, fail to produce significant amounts of 24-nucleotide (nt) RNAs that are known to guide DNA methylation and heterochromatin formation in angiosperms. Instead, they synthesize a diverse population of small RNAs that are exactly 21-nt long. This finding was confirmed by high-throughput sequencing of the small RNA sequences from a conifer, Pinus contorta. A conifer EST search revealed the presence of a novel Dicer-like (DCL) family, which may be responsible for the observed change in small RNA expression. No evidence for DCL3, an enzyme that matures 24-nt RNAs in angiosperms, was found. We hypothesize that the diverse class of 21-nt RNAs found in conifers may help to maintain organization of their unusually large genomes. PMID:18566193

  3. Venturis as silencers -- Case history

    SciTech Connect

    Kelsall, T.; Gerritsen, T. ); Landon, T.S. . Steubenville Plant)

    1994-09-01

    Wheeling-Pittsburgh Steel replaced a BOF scrubber stack and started to receive complaints about a tonal noise. The replacement stack was identical to the original, except that the original stack contained splitters and a venturi used to measure flow. Hatch Associates investigated and determined that removal of the venturi had caused an increase in sound level. After review of silencing options, it was decided to install a venturi similar to the original because of its inherent advantages over conventional silences. When the venturi was replaced, the sound level of the tone measured in the community dropped on the order of 10 to 15 decibels. Investigation of the physical mechanism causing this reduction has led to development of a new type of fan silencer. Based on the venturi shape, Modal Silencers (patent pending) can be designed to substantially reduce sound levels from stacks. They have low pressure drop and the absence of internal baffles or chambers means that they do not clog in dirty or wet environments.

  4. Chromatin, gene silencing and HIV latency

    PubMed Central

    Mok, Hoi-Ping; Lever, Andrew ML

    2007-01-01

    One of the cellular defenses against virus infection is the silencing of viral gene expression. There is evidence that at least two gene-silencing mechanisms are used against the human immuno-deficiency virus (HIV). Paradoxically, this cellular defense mechanism contributes to viral latency and persistence, and we review here the relationship of viral latency to gene-silencing mechanisms. PMID:18036274

  5. Two Components of the RNA-Directed DNA Methylation Pathway Associate with MORC6 and Silence Loci Targeted by MORC6 in Arabidopsis.

    PubMed

    Liu, Zhang-Wei; Zhou, Jin-Xing; Huang, Huan-Wei; Li, Yong-Qiang; Shao, Chang-Rong; Li, Lin; Cai, Tao; Chen, She; He, Xin-Jian

    2016-05-01

    The SU(VAR)3-9 homolog SUVH9 and the double-stranded RNA-binding protein IDN2 were thought to be components of an RNA-directed DNA methylation (RdDM) pathway in Arabidopsis. We previously found that SUVH9 interacts with MORC6 but how the interaction contributes to transcriptional silencing remains elusive. Here, our genetic analysis indicates that SUVH2 and SUVH9 can either act in the same pathway as MORC6 or act synergistically with MORC6 to mediate transcriptional silencing. Moreover, we demonstrate that IDN2 interacts with MORC6 and mediates the silencing of a subset of MORC6 target loci. Like SUVH2, SUVH9, and IDN2, other RdDM components including Pol IV, Pol V, RDR2, and DRM2 are also required for transcriptional silencing at a subset of MORC6 target loci. MORC6 was previously shown to mediate transcriptional silencing through heterochromatin condensation. We demonstrate that the SWI/SNF chromatin-remodeling complex components SWI3B, SWI3C, and SWI3D interact with MORC6 as well as with SUVH9 and then mediate transcriptional silencing. These results suggest that the RdDM components are involved not only in DNA methylation but also in MORC6-mediated heterochromatin condensation. This study illustrates how DNA methylation is linked to heterochromatin condensation and thereby enhances transcriptional silencing at methylated genomic regions. PMID:27171427

  6. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes

    PubMed Central

    Nicolás, Francisco E.; Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M.

    2003-01-01

    Transformation of Mucor circinelloides with self-replicative plasmids containing a wild-type copy of the carotenogenic gene carB causes silencing of the carB function in 3% of transformants. Genomic analyses revealed a relationship between silenced phenotype and number of copies of plasmids. This phenotype results from a reduction of the steady-state levels of carB mRNA, a reduction that is not due to differences in the level of transcription, indicating that silencing is post-transcriptional. Small sense and antisense RNAs have been found to be associated with gene silencing in M.circinelloides. Two size classes of small antisense RNAs, differentially accumulated during the vegetative growth of silenced transformants, have been detected: a long 25-nucleotide RNA and a short 21-nucleotide RNA. Secondary sense and antisense RNAs corresponding to sequences of the endogenous gene downstream of the initial triggering molecule have also been detected, revealing the existence of spreading of RNA targeting in fungi. These findings, together with the self-replicative nature of the triggering molecules, make M.circinelloides a suitable organism for investigating some unresolved questions in RNA silencing. PMID:12881432

  7. Is silence killing your company?

    PubMed

    Perlow, Leslie; Williams, Stephanie

    2003-05-01

    Many times, often with the best of intentions, people at work decide it's more productive to remain silent about their differences than to air them. There's no time, they think, or no point in going against what the boss says. But as new research by the authors shows, silencing doesn't smooth things over or make people more productive. It merely pushes differences beneath the surface and can set in motion powerfully destructive forces. When people stay silent about important disagreements, they can begin to fill with anxiety, anger, and resentment. As long as the conflict is unresolved, their repressed feelings remain potent, making them increasingly distrustful, self-protective, and all the more fearful that if they speak up they will be embarrassed or rejected. Their sense of insecurity grows, leading to further acts of silence, more defensiveness, and more distrust, thereby setting into motion a destructive "spiral of silence." Sooner or later, they mentally opt out--sometimes merely doing what they're told but contributing nothing of their own, sometimes spreading discontent and frustration throughout the workplace that can lead them, and others, to leave without thinking it through. These vicious spirals of silence can be replaced with virtuous spirals of communication, but that requires individuals to find the courage to act differently and executives to create the conditions in which people will value the expression of differences. All too often, behind failed products, broken processes, and mistaken career decisions are people who chose to hold their tongues. Breaking the silence can bring an outpouring of fresh ideas from all levels of an organization--ideas that might just raise the organization's performance to a whole new level. PMID:12747162

  8. Loss of huntingtin function complemented by small molecules acting as repressor element 1/neuron restrictive silencer element silencer modulators.

    PubMed

    Rigamonti, Dorotea; Bolognini, Daniele; Mutti, Cesare; Zuccato, Chiara; Tartari, Marzia; Sola, Francesco; Valenza, Marta; Kazantsev, Aleksey G; Cattaneo, Elena

    2007-08-24

    Increased levels of the repressor element 1/neuron restrictive silencer element (RE1/NRSE) silencing activity promoter, and a consequent reduction in the transcription of many RE1/NRSE-bearing neuronal genes, including brain-derived neurotrophic factor (BDNF), have been demonstrated in Huntington disease (HD) and represent one possible effector of its selective neuronal vulnerability. Restoring the expression levels of neuronal genes in diseased neurons therefore seems to be an attractive therapeutic approach. To this end, we have developed a cell-based reporter assay for monitoring RE1/NRSE silencing activity and validated it by genetically inactivating the RE1/NRSE or pharmacologically stimulating global transcription. In a pilot compound screen, we identified three closely related structural analogues that up-regulate reporter expression at low nanomolar concentrations, and follow-up studies have shown that they efficaciously increase endogenous BDNF levels in HD cells. Moreover, one of the compounds increases the viability of HD cells. Our findings suggest a new avenue for the development of drugs for HD and other neurodegenerative disorders based on the pharmacological up-regulation of the production of the neuronal survival factor BDNF and of other RE1/NRSE-regulated neuronal genes. PMID:17565993

  9. Biased Allostery.

    PubMed

    Edelstein, Stuart J; Changeux, Jean-Pierre

    2016-09-01

    G-protein-coupled receptors (GPCRs) constitute a large group of integral membrane proteins that transduce extracellular signals from a wide range of agonists into targeted intracellular responses. Although the responses can vary depending on the category of G-proteins activated by a particular receptor, responses were also found to be triggered by interactions of the receptor with β-arrestins. It was subsequently discovered that for the same receptor molecule (e.g., the β-adrenergic receptor), some agonists have a propensity to specifically favor responses by G-proteins, others by β-arrestins, as has now been extensively studied. This feature of the GPCR system is known as biased agonism and is subject to various interpretations, including agonist-induced conformational change versus selective stabilization of preexisting active conformations. Here, we explore a complete allosteric framework for biased agonism based on alternative preexisting conformations that bind more strongly, but nonexclusively, either G-proteins or β-arrestins. The framework incorporates reciprocal effects among all interacting molecules. As a result, G-proteins and β-arrestins are in steric competition for binding to the cytoplasmic surface of either the G-protein-favoring or β-arrestin-favoring GPCR conformation. Moreover, through linkage relations, the strength of the interactions of G-proteins or β-arrestins with the corresponding active conformation potentiates the apparent affinity for the agonist, effectively equating these two proteins to allosteric modulators. The balance between response alternatives can also be influenced by the physiological concentrations of either G-proteins or β-arrestins, as well as by phosphorylation or interactions with positive or negative allosteric modulators. The nature of the interactions in the simulations presented suggests novel experimental tests to distinguish more fully among alternative mechanisms. PMID:27602718

  10. Contribution of transcription to animal early development.

    PubMed

    Wang, Jianbin; Davis, Richard E

    2014-01-01

    In mature gametes and during the oocyte-to-embryo transition, transcription is generally silenced and gene expression is post-transcriptionally regulated. However, we recently discovered that major transcription can occur immediately after fertilization, prior to pronuclear fusion, and in the first cell division of the oocyte-to-embryo transition in the nematode Ascaris suum. We postulate that the balance between transcriptional and post-transcriptional regulation during the oocyte-to-embryo transition may largely be determined by cell cycle length and thus the time available for the genome to be transcribed.

  11. Trans-specific gene silencing between host and parasitic plants.

    PubMed

    Tomilov, Alexey A; Tomilova, Natalia B; Wroblewski, Tadeusz; Michelmore, Richard; Yoder, John I

    2008-11-01

    Species of Orobanchaceae parasitize the roots of nearby host plants to rob them of water and other nutrients. Parasitism can be debilitating to the host plant, and some of the world's most pernicious agricultural pests are parasitic weeds. We demonstrate here that interfering hairpin constructs transformed into host plants can silence expression of the targeted genes in the parasite. Transgenic roots of the hemi-parasitic plant Triphysaria versicolor expressing the GUS reporter gene were allowed to parasitize transgenic lettuce roots expressing a hairpin RNA containing a fragment of the GUS gene (hpGUS). When stained for GUS activity, Triphysaria roots attached to non-transgenic lettuce showed full GUS activity, but those parasitizing transgenic hpGUS lettuce lacked activity in root tissues distal to the haustorium. Transcript quantification indicated a reduction in the steady-state level of GUS mRNA in Triphysaria when they were attached to hpGUS lettuce. These results demonstrate that the GUS silencing signal generated by the host roots was translocated across the haustorium interface and was functional in the parasite. Movement across the haustorium was bi-directional, as demonstrated in double-junction experiments in which non-transgenic Triphysaria concomitantly parasitized two hosts, one transgenic for hpGUS and the other transgenic for a functional GUS gene. Observation of GUS silencing in the second host demonstrated that the silencing trigger could be moved from one host to another using the parasite as a physiological bridge. Silencing of parasite genes by generating siRNAs in the host provides a novel strategy for controlling parasitic weeds. PMID:18643992

  12. Light intensity and temperature affect systemic spread of silencing signal in transient agroinfiltration studies.

    PubMed

    Patil, Basavaprabhu L; Fauquet, Claude M

    2015-06-01

    RNA silencing is a sequence-specific post-transcriptional gene inactivation mechanism that operates in diverse organisms and that can extend beyond its site of initiation, owing to the movement of the silencing signal, called non-autonomous gene silencing. Previous studies have shown that several factors manifest the movement of the silencing signal, such as the size (21 or 24 nucleotides) of the secondary small interfering RNA (siRNA) produced, the steady-state concentration of siRNAs and their cognate messenger RNA (mRNA) or a change in the sink-source status of plant parts affecting phloem translocation. Our study shows that both light intensity and temperature have a significant impact on the systemic movement of the silencing signal in transient agroinfiltration studies in Nicotiana benthamiana. At higher light intensities (≥ 450 μE/m(2)/s) and higher temperatures (≥ 30 °C), gene silencing was localized to leaf tissue that was infiltrated, without any systemic spread. Interestingly, in these light and temperature conditions (≥ 450 μE/m(2) /s and ≥ 30 °C), the N. benthamiana plants showed recovery from the viral symptoms. However, the reduced systemic silencing and reduced viral symptom severity at higher light intensities were caused by a change in the sink-source status of the plant, ultimately affecting the phloem translocation of small RNAs or the viral genome. In contrast, at lower light intensities (<300 μE/m(2)/s) with a constant temperature of 25 °C, there was strong systemic movement of the silencing signal in the N. benthamiana plants and reduced recovery from virus infections. The accumulation of gene-specific siRNAs was reduced at higher temperature as a result of a reduction in the accumulation of transcript on transient agroinfiltration of RNA interference (RNAi) constructs, mostly because of poor T-DNA transfer activity of Agrobacterium, possibly also accompanied by reduced phloem translocation.

  13. Different patterns of gene silencing in position-effect variegation.

    PubMed

    Lloyd, Vett K; Dyment, David; Sinclair, Donald A R; Grigliatti, Thomas A

    2003-12-01

    Position-effect variegation (PEV) results when a fully functional gene is moved from its normal position to a position near to a broken heterochromatic-euchromatic boundary. In this new position, the gene, while remaining unaltered at the DNA level, is transcriptionally silenced in some cells but active in others, producing a diagnostic mosaic phenotype. Many variegating stocks show phenotypic instability, in that the level of variegation is dramatically different in different isolates or when out crossed. To test if this phenotypic instability was due to segregation of spontaneously accumulated mutations that suppress variegation, four different and well-characterized strains showing PEV for the white+ gene (wm4, wmMc, wm51b, and wmJ) and representing both large and small spot variegators were repeatedly out crossed to a strain free of modifiers, and the phenotypes of these variegators were monitored for 30 generations. Once free of modifiers, these variegating strains were then allowed to reaccumulate modifiers. The spontaneous suppressors of variegation were found to include both dominant and recessive, autosomal and X-linked alleles selected to reduce the detrimental effects of silencing white+ and adjacent genes. The time of peak sensitivity to temperature during development was also determined for these four variegators. Although large and small spot variegators have previously been attributed to early and late silencing events, respectively, the variegators we examined all shared a common early period of peak sensitivity to temperature. Once free of their variegation suppressors, the different variegating strains showed considerable differences in the frequency of inactivation at a cellular level (the number of cells showing silencing of a given gene) and the extent of variegation within the cell (the number of silenced genes). These results suggest that large and small spot variegation may be a superficial consequence of spontaneous variegation suppressors

  14. Nickel and epigenetic gene silencing.

    PubMed

    Sun, Hong; Shamy, Magdy; Costa, Max

    2013-01-01

    Insoluble nickel compounds are well-established human carcinogens. Occupational exposure to these compounds leads to increased incidence of lung and nasal cancer in nickel refinery workers. Apart from its weak mutagenic activity and hypoxia mimicking effect there is mounting experimental evidence indicating that epigenetic alteration plays an important role in nickel-induced carcinogenesis. Multiple epigenetic mechanisms have been identified to mediate nickel-induced gene silencing. Nickel ion is able to induce heterochromatinization by binding to DNA-histone complexes and initiating chromatin condensation. The enzymes required for establishing or removing epigenetic marks can be targeted by nickel, leading to altered DNA methylation and histone modification landscapes. The current review will focus on the epigenetic changes that contribute to nickel-induced gene silencing. PMID:24705264

  15. Epigenetic silencing mechanisms in budding yeast and fruit fly: different paths, same destinations.

    PubMed

    Pirrotta, Vincenzo; Gross, David S

    2005-05-13

    Transcriptional silencing in budding yeast and fruit fly is mediated by fundamentally unrelated proteins that assemble very different chromatin structures. Surprisingly, the repressive mechanisms evolved from these very different materials have similar features, including an epigenetic mode of inheritance and a block to transcription based on interference with the assembly or function of the promoter complex rather than with the binding of gene-specific activators. PMID:15893722

  16. Epigenetic silencing mechanisms in budding yeast and fruit fly: different paths, same destinations.

    PubMed

    Pirrotta, Vincenzo; Gross, David S

    2005-05-13

    Transcriptional silencing in budding yeast and fruit fly is mediated by fundamentally unrelated proteins that assemble very different chromatin structures. Surprisingly, the repressive mechanisms evolved from these very different materials have similar features, including an epigenetic mode of inheritance and a block to transcription based on interference with the assembly or function of the promoter complex rather than with the binding of gene-specific activators.

  17. Mechanism of the piRNA-mediated silencing of Drosophila telomeric retrotransposons

    PubMed Central

    Shpiz, Sergey; Olovnikov, Ivan; Sergeeva, Anna; Lavrov, Sergey; Abramov, Yuri; Savitsky, Mikhail; Kalmykova, Alla

    2011-01-01

    In the Drosophila germline, retrotransposons are silenced by the PIWI-interacting RNA (piRNA) pathway. Telomeric retroelements HeT-A, TART and TAHRE, which are involved in telomere maintenance in Drosophila, are also the targets of piRNA-mediated silencing. We have demonstrated that expression of reporter genes driven by the HeT-A promoter is under the control of the piRNA silencing pathway independent of the transgene location. In order to test directly whether piRNAs affect the transcriptional state of retrotransposons we performed a nuclear run-on (NRO) assay and revealed increased density of the active RNA polymerase complexes at the sequences of endogenous HeT-A and TART telomeric retroelements as well as HeT-A-containing constructs in the ovaries of spn-E mutants and in flies with piwi knockdown. This strongly correlates with enrichment of two histone H3 modifications (dimethylation of lysine 79 and dimethylation of lysine 4), which mark transcriptionally active chromatin, on the same sequences in the piRNA pathway mutants. spn-E mutation and piwi knockdown results in transcriptional activation of some other non-telomeric retrotransposons in the ovaries, such as I-element and HMS Beagle. Therefore piRNA-mediated transcriptional mode of silencing is involved in the control of retrotransposon expression in the Drosophila germline. PMID:21764773

  18. Silence of the strands: RNA interference in eukaryotic pathogens.

    PubMed

    Cottrell, Tricia R; Doering, Tamara L

    2003-01-01

    Double-stranded (ds) RNA interference (RNAi) is a recent technological advance that enables researchers to reduce gene expression at the post-transcriptional level. This form of RNA silencing is initiated by dsRNA, expressed in or introduced into a cell of interest, which triggers homology-dependent degradation of the corresponding mRNA. This versatile technique has remarkable promise as a tool for the study of eukaryotic pathogens. Protozoan parasites and pathogenic fungi often resist manipulation using standard molecular genetic approaches. Researchers studying these organisms need flexible molecular tools, particularly to exploit newly sequenced genomes; this review offers a practical guide to establishing RNAi in pathogenic eukaryotes.

  19. RNAi Pathway Genes Are Resistant to Small RNA Mediated Gene Silencing in the Protozoan Parasite Entamoeba histolytica

    PubMed Central

    Pompey, Justine M.; Morf, Laura; Singh, Upinder

    2014-01-01

    The RNA interference pathway in the protist Entamoeba histolytica plays important roles in permanent gene silencing as well as in the regulation of virulence determinants. Recently, a novel RNA interference (RNAi)-based silencing technique was developed in this parasite that uses a gene endogenously silenced by small RNAs as a “trigger” to induce silencing of other genes that are fused to it. Fusion to a trigger gene induces the production of gene-specific antisense small RNAs, resulting in robust and permanent silencing of the cognate gene. This approach has silenced multiple genes including those involved in virulence and transcriptional regulation. We now demonstrate that all tested genes of the amebic RNAi pathway are unable to be silenced using the trigger approach, including Argonaute genes (Ago2-1, Ago2-2, and Ago2-3), RNaseIII, and RNA-dependent RNA polymerase (RdRP). In all situations (except for RdRP), fusion to a trigger successfully induces production of gene-specific antisense small RNAs to the cognate gene. These small RNAs are capable of silencing a target gene in trans, indicating that they are functional; despite this, however, they cannot silence the RNAi pathway genes. Interestingly, when a trigger is fused to RdRP, small RNA induction to RdRP does not occur, a unique phenotype hinting that either RdRP is highly resistant to being a target of small RNAs or that small RNA generation may be controlled by RdRP. The inability of the small RNA pathway to silence RNAi genes in E. histolytica, despite the generation of functional small RNAs to these loci suggest that epigenetic factors may protect certain genomic loci and thus determine susceptibility to small RNA mediated silencing. PMID:25198343

  20. RNAi pathway genes are resistant to small RNA mediated gene silencing in the protozoan parasite Entamoeba histolytica.

    PubMed

    Pompey, Justine M; Morf, Laura; Singh, Upinder

    2014-01-01

    The RNA interference pathway in the protist Entamoeba histolytica plays important roles in permanent gene silencing as well as in the regulation of virulence determinants. Recently, a novel RNA interference (RNAi)-based silencing technique was developed in this parasite that uses a gene endogenously silenced by small RNAs as a "trigger" to induce silencing of other genes that are fused to it. Fusion to a trigger gene induces the production of gene-specific antisense small RNAs, resulting in robust and permanent silencing of the cognate gene. This approach has silenced multiple genes including those involved in virulence and transcriptional regulation. We now demonstrate that all tested genes of the amebic RNAi pathway are unable to be silenced using the trigger approach, including Argonaute genes (Ago2-1, Ago2-2, and Ago2-3), RNaseIII, and RNA-dependent RNA polymerase (RdRP). In all situations (except for RdRP), fusion to a trigger successfully induces production of gene-specific antisense small RNAs to the cognate gene. These small RNAs are capable of silencing a target gene in trans, indicating that they are functional; despite this, however, they cannot silence the RNAi pathway genes. Interestingly, when a trigger is fused to RdRP, small RNA induction to RdRP does not occur, a unique phenotype hinting that either RdRP is highly resistant to being a target of small RNAs or that small RNA generation may be controlled by RdRP. The inability of the small RNA pathway to silence RNAi genes in E. histolytica, despite the generation of functional small RNAs to these loci suggest that epigenetic factors may protect certain genomic loci and thus determine susceptibility to small RNA mediated silencing.

  1. [E. M. Jellinek's silenced and silencing transgenerational story].

    PubMed

    Kelemen, Gábor; Márk, Mónika

    2013-01-01

    Jellinek is a kind of archetypal character for future generations in the field of addiction studies. His implosion in the arena of alcoholism around the age of 50 was an unexpected challenge to medical science. We know very little about his own role models giving an intellectual and moral compass to his pragmatic creativity. More than 30 years has passed since Jellinek's death when an American sociologist Ron Roizen started unearthing his silent story. Roizen discerned that there are a lot of unsaid and muted issues in his personal Hungarian past. Our paper, based on the authors' research in Hungarian archives and other sources reveals that not just Jellinek's personal but his transgenerational narrative has been not-yet-said. This silenced and silencing history appears an unfinished business of acculturation of the family, which started prior to four generations. Authors have been concluding that the issue of religious conversion is a critical point in the process of acculturation. They examine the counter move of loyalty to family values and driving force of assimilation making their story unspeakable.

  2. Silencing the Morphogenesis of Rotavirus

    PubMed Central

    López, Tomas; Camacho, Minerva; Zayas, Margarita; Nájera, Rebeca; Sánchez, Rosana; Arias, Carlos F.; López, Susana

    2005-01-01

    The morphogenesis of rotaviruses follows a unique pathway in which immature double-layered particles (DLPs) assembled in the cytoplasm bud across the membrane of the endoplasmic reticulum (ER), acquiring during this process a transient lipid membrane which is modified with the ER resident viral glycoproteins NSP4 and VP7; these enveloped particles also contain VP4. As the particles move towards the interior of the ER cisternae, the transient lipid membrane and the nonstructural protein NSP4 are lost, while the virus surface proteins VP4 and VP7 rearrange to form the outermost virus protein layer, yielding mature infectious triple-layered particles (TLPs). In this work, we have characterized the role of NSP4 and VP7 in rotavirus morphogenesis by silencing the expression of both glycoproteins through RNA interference. Silencing the expression of either NSP4 or VP7 reduced the yield of viral progeny by 75 to 80%, although the underlying mechanism of this reduction was different in each case. Blocking the synthesis of NSP4 affected the intracellular accumulation and the cellular distribution of several viral proteins, and little or no virus particles (neither DLPs nor TLPs) were assembled. VP7 silencing, in contrast, did not affect the expression or distribution of other viral proteins, but in its absence, enveloped particles accumulated within the lumen of the ER, and no mature infectious virus was produced. Altogether, these results indicate that during a viral infection, NSP4 serves as a receptor for DLPs on the ER membrane and drives the budding of these particles into the ER lumen, while VP7 is required for removing the lipid envelope during the final step of virus morphogenesis. PMID:15596814

  3. Multiple silencer elements are involved in regulating the chicken vimentin gene.

    PubMed Central

    Garzon, R J; Zehner, Z E

    1994-01-01

    Vimentin, a member of the intermediate filament protein family, exhibits tissue- as well as development-specific expression. Transcription factors that are involved in expression of the chicken vimentin gene have been described and include a cis-acting silencer element (SE3) that is involved in the down-regulation of this gene (F. X. Farrell, C. M. Sax, and Z. E. Zehner, Mol. Cell. Biol. 10:2349-2358, 1990). In this study, we report the identification of two additional silencer elements (SE1 and SE2). We show by transfection analysis that all three silencer elements are functionally active and that optimal silencing occurs when multiple (at least two) silencer elements are present. In addition, the previously identified SE3 can be divided into three subregions, each of which is moderately active alone. By gel mobility shift assays, all three silencer elements plus SE3 subregions bind a protein which by Southwestern (DNA-protein) blot analysis is identical in molecular mass (approximately 95 kDa). DNase I footprinting experiments indicate that this protein binds to purine-rich sites. Therefore, multiple elements appear to be involved in the negative regulation of the chicken vimentin gene, which may be important in the regulation of other genes as well. Images PMID:8289833

  4. Silence Is Consent, or Curse Ye Meroz!

    ERIC Educational Resources Information Center

    Levin, Richard

    1997-01-01

    Examines assumptions of "oppositional" literary criticism, namely the assumption that older-style "objective" literary criticism must, in its political silence, be supportive of dominant ideologies. (TB)

  5. Silence

    NASA Astrophysics Data System (ADS)

    Cogswell, J.

    2011-06-01

    On the occasion of the International Year of Astronomy, I was commissioned to create a mural for the University of Michigan Department of Astronomy, responding to an array of scientific images based on astronomical research, with special focus on the work of University of Michigan astronomers carried out within the building. My paper illustrates the development of this and several subsequent projects, explaining the implications for my artistic practice of entering into this conversation with astronomers and their work.

  6. The 2b protein of Asparagus virus 2 functions as an RNA silencing suppressor against systemic silencing to prove functional synteny with related cucumoviruses.

    PubMed

    Shimura, Hanako; Masuta, Chikara; Yoshida, Naoto; Sueda, Kae; Suzuki, Masahiko

    2013-08-01

    Asparagus virus 2 (AV-2) is a member of the genus Ilarvirus in the family Bromoviridae. We cloned the coat protein (CP) and the 2b protein (2b) genes of AV-2 isolates from asparagus plants from various regions and found that the sequence for CP and for 2b was highly conserved among the isolates, suggesting that AV-2 from around the world is almost identical. We then made an AV-2 infectious clone by simultaneous inoculation with in vitro transcripts of RNAs 1-3 of AV-2 and in vitro-synthesized CP, which is necessary for initial infection. Because 2b of cucumoviruses in Bromoviridae can suppress systemic silencing as well as local silencing, we analyzed whether there is functional synteny of 2b between AV-2 and cucumovirus. Using the AV-2 infectious clone, we here provided first evidence that Ilarvirus 2b functions as an RNA silencing suppressor; AV-2 2b has suppressor activity against systemic silencing but not local silencing.

  7. Interobserver Agreement on First-Stage Conversation Analytic Transcription

    ERIC Educational Resources Information Center

    Roberts, Felicia; Robinson, Jeffrey D.

    2004-01-01

    This investigation assesses interobserver agreement on conversation analytic (CA) transcription. Four professional CA transcribers spent a maximum of 3 hours transcribing 2.5 minutes of a previously unknown, naturally occurring, mundane telephone call. Researchers unitized transcripts into words, sounds, silences, inbreaths, outbreaths, and laugh…

  8. Epigenetic silencing of AKAP12 in juvenile myelomonocytic leukemia.

    PubMed

    Wilhelm, Thomas; Lipka, Daniel B; Witte, Tania; Wierzbinska, Justyna A; Fluhr, Silvia; Helf, Monika; Mücke, Oliver; Claus, Rainer; Konermann, Carolin; Nöllke, Peter; Niemeyer, Charlotte M; Flotho, Christian; Plass, Christoph

    2016-01-01

    A-kinase anchor protein 12 (AKAP12) is a regulator of protein kinase A and protein kinase C signaling, acting downstream of RAS. Epigenetic silencing of AKAP12 has been demonstrated in different cancer entities and this has been linked to the process of tumorigenesis. Here, we used quantitative high-resolution DNA methylation measurement by MassARRAY to investigate epigenetic regulation of all three AKAP12 promoters (i.e., α, β, and γ) within a large cohort of juvenile myelomonocytic leukemia (JMML) patient samples. The AKAP12α promoter shows DNA hypermethylation in JMML samples, which is associated with decreased AKAP12α expression. Promoter methylation of AKAP12α correlates with older age at diagnosis, elevated levels of fetal hemoglobin and poor prognosis. In silico screening for transcription factor binding motifs around the sites of most pronounced methylation changes in the AKAP12α promoter revealed highly significant scores for GATA-2/-1 sequence motifs. Both transcription factors are known to be involved in the haematopoietic differentiation process. Methylation of a reporter construct containing this region resulted in strong suppression of AKAP12 promoter activity, suggesting that DNA methylation might be involved in the aberrant silencing of the AKAP12 promoter in JMML. Exposure to DNMT- and HDAC-inhibitors reactivates AKAP12α expression in vitro, which could potentially be a mechanism underlying clinical treatment responses upon demethylating therapy. Together, these data provide evidence for epigenetic silencing of AKAP12α in JMML and further emphasize the importance of dysregulated RAS signaling in JMML pathogenesis.

  9. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing

    PubMed Central

    Sun, Daoyang; Nandety, Raja Sekhar; Zhang, Yanlong; Reid, Michael S.; Niu, Lixin; Jiang, Cai-Zhong

    2016-01-01

    Virus-induced RNA silencing is involved in plant antiviral defense and requires key enzyme components, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonaute proteins (AGOs). However, the transcriptional regulation of these critical components is largely unknown. In petunia (Petunia hybrida), an ethylene-responsive element binding factor, PhERF2, is induced by Tobacco rattle virus (TRV) infection. Inclusion of a PhERF2 fragment in a TRV silencing construct containing reporter fragments of phytoene desaturase (PDS) or chalcone synthase (CHS) substantially impaired silencing efficiency of both the PDS and CHS reporters. Silencing was also impaired in PhERF2- RNAi lines, where TRV-PhPDS infection did not show the expected silencing phenotype (photobleaching). In contrast, photobleaching in response to infiltration with the TRV-PhPDS construct was enhanced in plants overexpressing PhERF2. Transcript abundance of the RNA silencing-related genes RDR2, RDR6, DCL2, and AGO2 was lower in PhERF2-silenced plants but higher in PhERF2-overexpressing plants. Moreover, PhERF2-silenced lines showed higher susceptibility to Cucumber mosaic virus (CMV) than wild-type (WT) plants, while plants overexpressing PhERF2 exhibited increased resistance. Interestingly, growth and development of PhERF2-RNAi lines were substantially slower, whereas the overexpressing lines were more vigorous than the controls. Taken together, our results indicate that PhERF2 functions as a positive regulator in antiviral RNA silencing. PMID:27099376

  10. A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing.

    PubMed

    Sun, Daoyang; Nandety, Raja Sekhar; Zhang, Yanlong; Reid, Michael S; Niu, Lixin; Jiang, Cai-Zhong

    2016-05-01

    Virus-induced RNA silencing is involved in plant antiviral defense and requires key enzyme components, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonaute proteins (AGOs). However, the transcriptional regulation of these critical components is largely unknown. In petunia (Petunia hybrida), an ethylene-responsive element binding factor, PhERF2, is induced by Tobacco rattle virus (TRV) infection. Inclusion of a PhERF2 fragment in a TRV silencing construct containing reporter fragments of phytoene desaturase (PDS) or chalcone synthase (CHS) substantially impaired silencing efficiency of both the PDS and CHS reporters. Silencing was also impaired in PhERF2- RNAi lines, where TRV-PhPDS infection did not show the expected silencing phenotype (photobleaching). In contrast, photobleaching in response to infiltration with the TRV-PhPDS construct was enhanced in plants overexpressing PhERF2 Transcript abundance of the RNA silencing-related genes RDR2, RDR6, DCL2, and AGO2 was lower in PhERF2-silenced plants but higher in PhERF2-overexpressing plants. Moreover, PhERF2-silenced lines showed higher susceptibility to Cucumber mosaic virus (CMV) than wild-type (WT) plants, while plants overexpressing PhERF2 exhibited increased resistance. Interestingly, growth and development of PhERF2-RNAi lines were substantially slower, whereas the overexpressing lines were more vigorous than the controls. Taken together, our results indicate that PhERF2 functions as a positive regulator in antiviral RNA silencing. PMID:27099376

  11. Extreme-longevity mutations orchestrate silencing of multiple signaling pathways.

    PubMed

    Shmookler Reis, Robert J; Bharill, Puneet; Tazearslan, Cagdas; Ayyadevara, Srinivas

    2009-10-01

    Long-lived mutants provide unique insights into the genetic factors that limit lifespan in wild-type animals. Most mutants and RNA interference targets found to extend life, typically by 1.5- to 2.5-fold, were discovered in C. elegans. Several longevity-assurance pathways are conserved across widely divergent taxa, indicating that mechanisms of lifespan regulation evolved several hundred million years ago. Strong mutations to the C. elegans gene encoding AGE-1/PI3KCS achieve unprecedented longevity by orchestrating the modulation (predominantly silencing) of multiple signaling pathways. This is evident in a profound attenuation of total kinase activity, leading to reduced phosphoprotein content. Mutations to the gene encoding the catalytic subunit of PI3K (phosphatidylinositol 3-kinase) have the potential to modulate all enzymes that depend on its product, PIP3, for membrane tethering or activation by other kinases. Remarkably, strong mutants inactivating PI3K also silence multiple signaling pathways at the transcript level, partially but not entirely mediated by the DAF-16/FOXO transcription factor. Mammals have a relatively large proportion of somatic cells, and survival depends on their replication, whereas somatic cell divisions in nematodes are limited to development and reproductive tissues. Thus, translation of longevity gains from nematodes to mammals requires disentangling the downstream consequences of signaling mutations, to avoid their deleterious consequences.

  12. Silence/Listening and Intercultural Differences.

    ERIC Educational Resources Information Center

    Franks, Parthenia H.

    This paper explores the different ways in which Chinese American, Japanese American, Korean American, African American, and European American cultures value and use silence during conversation--the term "silence" is used broadly to denote limited oral speech verbal messages or the usage of fewer words to express feelings, ideas, and thoughts.…

  13. Venturis as silencers in a BOF stack

    SciTech Connect

    Kelsall, T.; Gerritsen, T.; Landon, T.

    1995-06-01

    Installation of a venture in a BOF stack reduced the sound level in a local community by 10 to 15 db. This application resulted in the development of a new type of fan silencer, called the modal silencer, having the inherent advantages of low pressure drop and less maintenance compared with conventional types.

  14. A Novel Epigenetic Silencing Pathway Involving the Highly Conserved 5'-3' Exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe.

    PubMed

    Tucker, James Franklin; Ohle, Corina; Schermann, Géza; Bendrin, Katja; Zhang, Wei; Fischer, Tamás; Zhang, Ke

    2016-02-01

    Epigenetic gene silencing plays a critical role in regulating gene expression and contributes to organismal development and cell fate acquisition in eukaryotes. In fission yeast, Schizosaccharomyces pombe, heterochromatin-associated gene silencing is known to be mediated by RNA processing pathways including RNA interference (RNAi) and a 3'-5' exoribonuclease complex, the exosome. Here, we report a new RNA-processing pathway that contributes to epigenetic gene silencing and assembly of heterochromatin mediated by 5'-3' exoribonuclease Dhp1/Rat1/Xrn2. Dhp1 mutation causes defective gene silencing both at peri-centromeric regions and at the silent mating type locus. Intriguingly, mutation in either of the two well-characterized Dhp1-interacting proteins, the Din1 pyrophosphohydrolase or the Rhn1 transcription termination factor, does not result in silencing defects at the main heterochromatic regions. We demonstrate that Dhp1 interacts with heterochromatic factors and is essential in the sequential steps of establishing silencing in a manner independent of both RNAi and the exosome. Genomic and genetic analyses suggest that Dhp1 is involved in post-transcriptional silencing of repetitive regions through its RNA processing activity. The results describe the unexpected role of Dhp1/Rat1/Xrn2 in chromatin-based silencing and elucidate how various RNA-processing pathways, acting together or independently, contribute to epigenetic regulation of the eukaryotic genome.

  15. A Novel Epigenetic Silencing Pathway Involving the Highly Conserved 5’-3’ Exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe

    PubMed Central

    Tucker, James Franklin; Ohle, Corina; Schermann, Géza; Bendrin, Katja; Zhang, Wei; Fischer, Tamás; Zhang, Ke

    2016-01-01

    Epigenetic gene silencing plays a critical role in regulating gene expression and contributes to organismal development and cell fate acquisition in eukaryotes. In fission yeast, Schizosaccharomyces pombe, heterochromatin-associated gene silencing is known to be mediated by RNA processing pathways including RNA interference (RNAi) and a 3’-5’ exoribonuclease complex, the exosome. Here, we report a new RNA-processing pathway that contributes to epigenetic gene silencing and assembly of heterochromatin mediated by 5’-3’ exoribonuclease Dhp1/Rat1/Xrn2. Dhp1 mutation causes defective gene silencing both at peri-centromeric regions and at the silent mating type locus. Intriguingly, mutation in either of the two well-characterized Dhp1-interacting proteins, the Din1 pyrophosphohydrolase or the Rhn1 transcription termination factor, does not result in silencing defects at the main heterochromatic regions. We demonstrate that Dhp1 interacts with heterochromatic factors and is essential in the sequential steps of establishing silencing in a manner independent of both RNAi and the exosome. Genomic and genetic analyses suggest that Dhp1 is involved in post-transcriptional silencing of repetitive regions through its RNA processing activity. The results describe the unexpected role of Dhp1/Rat1/Xrn2 in chromatin-based silencing and elucidate how various RNA-processing pathways, acting together or independently, contribute to epigenetic regulation of the eukaryotic genome. PMID:26889830

  16. Rapid reversal of translational silencing: Emerging role of microRNA degradation pathways in neuronal plasticity.

    PubMed

    Fu, Xiuping; Shah, Aparna; Baraban, Jay M

    2016-09-01

    As microRNAs silence translation, rapid reversal of this process has emerged as an attractive mechanism for driving de novo protein synthesis mediating neuronal plasticity. Herein, we summarize recent studies identifying neuronal stimuli that trigger rapid decreases in microRNA levels and reverse translational silencing of plasticity transcripts. Although these findings indicate that neuronal stimulation elicits rapid degradation of selected microRNAs, we are only beginning to decipher the molecular pathways involved. Accordingly, we present an overview of several molecular pathways implicated in mediating microRNA degradation: Lin-28, translin/trax, and MCPIP1. As these degradation pathways target distinct subsets of microRNAs, they enable neurons to reverse silencing rapidly, yet selectively. PMID:27107971

  17. RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella

    PubMed Central

    Fabrick, Jeffrey A.; Kanost, Michael R.; Baker, James E.

    2004-01-01

    Gene silencing through the introduction of double-stranded RNA (RNA interference, RNAi) provides a powerful tool for the elucidation of gene function in many systems, including those where genomics and proteomics are incomplete. The use of RNAi technology for gene silencing in Lepidoptera has lacked significant attention compared to other systems. To demonstrate that RNAi can be utilized in the lepidopteran, Plodia interpunctella, we cloned a cDNA for tryptophan oxygenase, and showed that silencing of tryptophan oxygenase through RNAi during embryonic development resulted in loss of eye-color pigmentation. The complete amino acid sequence of Plodia tryptophan oxygenase can be accessed through NCBI Protein Database under NCBI Accession # AY427951. Abbreviation RNAi RNA interference PCR polymerase chain reaction RT-PCR reverse transcription-PCR PMID:15861231

  18. Silencing of host genes directed by virus-derived short interfering RNAs in Caenorhabditis elegans.

    PubMed

    Guo, Xunyang; Li, Wan-Xiang; Lu, Rui

    2012-11-01

    Small interfering RNAs (siRNAs) processed from viral replication intermediates by RNase III-like enzyme Dicer guide sequence-specific antiviral silencing in fungi, plants, and invertebrates. In plants, virus-derived siRNAs (viRNAs) can target and silence cellular transcripts and, in some cases, are responsible for the induction of plant diseases. Currently it remains unclear whether viRNAs are also capable of modulating the expression of cellular genes in the animal kingdom, although animal virus-encoded microRNAs (miRNAs) are known to guide efficient silencing of host genes, thereby facilitating virus replication. In this report, we showed that viRNAs derived from a modified nodavirus triggered potent silencing of homologous cellular transcripts produced by the endogenous gene or transgene in the nematode worm Caenorhabditis elegans. Like that found in plants, virus-induced gene silencing (VIGS) in C. elegans also involves RRF-1, a worm RNA-dependent RNA polymerase (RdRP) that is known to produce single-stranded secondary siRNAs in a Dicer-independent manner. We further demonstrated that VIGS in C. elegans is inheritable, suggesting that VIGS has the potential to generate profound epigenetic consequences in future generations. Altogether, these findings, for the first time, confirmed that viRNAs have the potential to modulate host gene expression in the animal kingdom. Most importantly, the success in uncoupling the trigger and the target of the antiviral silencing would allow for the exploration of novel features of virus-host interactions mediated by viRNAs in the animal kingdom. PMID:22896621

  19. Patterning of virus-infected Glycine max seed coat is associated with suppression of endogenous silencing of chalcone synthase genes.

    PubMed

    Senda, Mineo; Masuta, Chikara; Ohnishi, Shizen; Goto, Kazunori; Kasai, Atsushi; Sano, Teruo; Hong, Jin-Sung; MacFarlane, Stuart

    2004-04-01

    Most commercial Glycine max (soybean) varieties have yellow seeds because of loss of pigmentation in the seed coat. It has been suggested that inhibition of seed coat pigmentation in yellow G. max may be controlled by homology-dependent silencing of chalcone synthase (CHS) genes. Our analysis of CHS mRNA and short-interfering RNAs provide clear evidence that the inhibition of seed coat pigmentation in yellow G. max results from posttranscriptional rather than transcriptional silencing of the CHS genes. Furthermore, we show that mottling symptoms present on the seed coat of G. max plants infected with some viruses can be caused by suppression of CHS posttranscriptional gene silencing (PTGS) by a viral silencing suppressor protein. These results demonstrate that naturally occurring PTGS plays a key role in expression of a distinctive phenotype in plants and present a simple clear example of the elucidation of the molecular mechanism for viral symptom induction. PMID:15037735

  20. Divertor bias experiments

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.

    1994-06-01

    Electrical biasing of the divertor target plates has recently been implemented on several tokamaks. The results of these experiments to date will be reviewed in this paper. The bias electrode configuration is unique in each experiment. The effects of biasing on the scrape-off layer (SOL) plasma also differ. By comparing results between machines, and using theoretical models, an understanding of the basic physics of biasing begins to emerge. Divertor biasing has been demonstrated to have a strong influence on the particle and energy transport within the SOL. The ability to externally control the SOL plasma with biasing has promising applications to future tokamak reactors.

  1. The gifts of silence and solitude.

    PubMed

    Schmidt Bunkers, Sandra

    2008-01-01

    In this column the author describes the importance of finding silence and solitude amid the noise and technology present today in the teaching-learning academy. Three gifts of silence and solitude are identified: the gift of comforting aloneness, the gift of vision for new horizons, and the gift of a sense of freedom. A humanbecoming perspective is used to explore the implications of these gifts. This column introduces a column by Diana Vander Woude describing her teaching-learning experience in leadership focusing on silence and solitude. PMID:18096981

  2. Matrix attachment regions and regulated transcription increase and stabilize transgene expression.

    PubMed

    Abranches, Rita; Shultz, Randall W; Thompson, William F; Allen, George C

    2005-09-01

    Transgene silencing has been shown to be associated with strong promoters, but it is not known whether the propensity for silencing is caused by the level of transcription, or some other property of the promoter. If transcriptional activity fosters silencing, then transgenes with inducible promoters may be less susceptible to silencing. To test this idea, a doxycycline-inducible luciferase transgene was transformed into an NT1 tobacco suspension culture cell line that constitutively expressed the tetracycline repressor. The inducible luciferase gene was flanked by tobacco Rb7 matrix attachment regions (MAR) or spacer control sequences in order to test the effects of MARs in conjunction with regulated transcription. Transformed lines were grown under continuous doxycycline (CI), or delayed doxycycline induction (DI) conditions. Delayed induction resulted in higher luciferase expression initially, but continued growth in the presence of doxycycline resulted in a reduction of expression to levels similar to those found in continuously induced lines. In both DI and CI treatments, the Rb7 MAR significantly reduced the percentage of silenced lines and increased transgene expression levels. These data demonstrate that active transcription increases silencing, especially in the absence of the Rb7 MAR. Importantly, the Rb7 MAR lines showed higher expression levels under both CI and DI conditions and avoided silencing that may occur in the absence of active transcription such as what would be expected as a result of condensed chromatin spreading. PMID:17173639

  3. Applications and advantages of virus-induced gene silencing for gene function studies in plants.

    PubMed

    Burch-Smith, Tessa M; Anderson, Jeffrey C; Martin, Gregory B; Dinesh-Kumar, S P

    2004-09-01

    Virus-induced gene silencing (VIGS) is a recently developed gene transcript suppression technique for characterizing the function of plant genes. The approach involves cloning a short sequence of a targeted plant gene into a viral delivery vector. The vector is used to infect a young plant, and in a few weeks natural defense mechanisms of the plant directed at suppressing virus replication also result in specific degradation of mRNAs from the endogenous plant gene that is targeted for silencing. VIGS is rapid (3-4 weeks from infection to silencing), does not require development of stable transformants, allows characterization of phenotypes that might be lethal in stable lines, and offers the potential to silence either individual or multiple members of a gene family. Here we briefly review the discoveries that led to the development of VIGS and what is known about the experimental requirements for effective silencing. We describe the methodology of VIGS and how it can be optimized and used for both forward and reverse genetics studies. Advantages and disadvantages of VIGS compared with other loss-of-function approaches available for plants are discussed, along with how the limitations of VIGS might be overcome. Examples are reviewed where VIGS has been used to provide important new insights into the roles of specific genes in plant development and plant defense responses. Finally, we examine the future prospects for VIGS as a powerful tool for assessing and characterizing the function of plant genes. PMID:15315635

  4. Polycomb PRC2 complex mediates epigenetic silencing of a critical osteogenic master regulator in the hippocampus.

    PubMed

    Aguilar, Rodrigo; Bustos, Fernando J; Saez, Mauricio; Rojas, Adriana; Allende, Miguel L; van Wijnen, Andre J; van Zundert, Brigitte; Montecino, Martin

    2016-08-01

    During hippocampal neuron differentiation, the expression of critical inducers of non-neuronal cell lineages must be efficiently silenced. Runx2 transcription factor is the master regulator of mesenchymal cells responsible for intramembranous osteoblast differentiation and formation of the craniofacial bone tissue that surrounds and protects the central nervous system (CNS) in mammalian embryos. The molecular mechanisms that mediate silencing of the Runx2 gene and its downstream target osteogenic-related genes in neuronal cells have not been explored. Here, we assess the epigenetic mechanisms that mediate silencing of osteoblast-specific genes in CNS neurons. In particular, we address the contribution of histone epigenetic marks and histone modifiers on the silencing of the Runx2/p57 bone-related isoform in rat hippocampal tissues at embryonic to adult stages. Our results indicate enrichment of repressive chromatin histone marks and of the Polycomb PRC2 complex at the Runx2/p57 promoter region. Knockdown of PRC2 H3K27-methyltransferases Ezh2 and Ezh1, or forced expression of the Trithorax/COMPASS subunit Wdr5 activates Runx2/p57 mRNA expression in both immature and mature hippocampal cells. Together these results indicate that complementary epigenetic mechanisms progressively and efficiently silence critical osteoblastic genes during hippocampal neuron differentiation. PMID:27216774

  5. A silencer inhibitor confers specific expression of intestinal trefoil factor in gobletlike cell lines.

    PubMed

    Iwakiri, D; Podolsky, D K

    2001-06-01

    Intestinal trefoil factor (ITF) is selectively expressed in intestinal goblet cells. Previous studies identified cis-regulatory elements in the proximal promoter of ITF, but these were insufficient to recapitulate the exquisite tissue- and cell-specific expression of native ITF in vivo. Preliminary studies suggested that goblet cell-specific expression of murine ITF requires elements far upstream that include a silencer element that effectively prevents ITF expression in non-goblet cells. Transient transfection studies using native or mutant ITF 5'-flanking sequences identified a region that restores expression in goblet cells. This element, designated goblet cell silencer inhibitor (GCSI) element, enables human and murine goblet cell-like cell lines to override the silencing effect of more proximal elements. The GCSI has no intrinsic enhancer activity and regulates expression only when the silencer element is present. Ligation of GCSI and silencer elements to sucrase-isomaltase conferred goblet cell-specific expression. Goblet cells but not non-goblet cells possess a nuclear protein that binds to the GCSI regulatory element (GCSI binding protein; GCSI-BP). Both transient transfection and gel mobility shift assay studies localize the GCSI and GCSI-BP to -2216 to -2204. We conclude that goblet cell-specific transcription of ITF in vivo depends on a regulatory element designated GCSI.

  6. Analysis and application of viroid-specific small RNAs generated by viroid-inducing RNA silencing.

    PubMed

    Adkar-Purushothama, Charith Raj; Zhang, Zhixiang; Li, Shifang; Sano, Teruo

    2015-01-01

    Viroids are noncoding RNA pathogens inducing severe to mild disease symptoms on agriculturally important crop plants. Viroid replication is entirely dependent on host transcription machinery, and their replication/accumulation in the infected cells can activate RNA silencing-a host defense mechanism that targets the viroid itself. RNA silencing produces in the cell large amounts of viroid-specific small RNAs of 21-24-nucleotides by cleaving (or "dicing") entire molecules of viroid RNA. However, viroid replication is resistant to the effects of RNA silencing and disrupts the normal regulation of host gene expression, finally resulting in the development of disease symptoms on infected plant. The molecular mechanisms of biological processes involving RNA silencing and underlying various aspects of viroid-host interaction, such as symptom expression, are of special interests to both basic and applied areas of viroid research. Here we present a method to create infectious viroid cDNA clones and RNA transcripts, the starting material for such analyses, using Hop stunt viroid as an example. Next we describe methods for the preparation and analysis of viroid-specific small RNAs by deep sequencing using tomato plants infected with Potato spindle tuber viroid as an example. Finally we introduce bioinformatics tools and methods necessary to process, analyze, and characterize these viroid-specific small RNAs. These bioinformatic methods provide a powerful new tool for the detection and discovery of both known and new viroid species. PMID:25287502

  7. Demonstrating the Correspondence Bias

    ERIC Educational Resources Information Center

    Howell, Jennifer L.; Shepperd, James A.

    2011-01-01

    Among the best-known and most robust biases in person perception is the correspondence bias--the tendency for people to make dispositional, rather than situational, attributions for an actor's behavior. The correspondence bias appears in virtually every social psychology textbook and in many introductory psychology textbooks, yet the authors'…

  8. Bias in Grading

    ERIC Educational Resources Information Center

    Malouff, John

    2008-01-01

    Bias in grading can be conscious or unconscious. The author describes different types of bias, such as those based on student attractiveness or performance in prior courses, and a variety of methods of reducing bias, including keeping students anonymous during grading and using detailed criteria for subjective grading.

  9. Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells.

    PubMed

    De La Fuente, Rabindranath; Baumann, Claudia; Fan, Tao; Schmidtmann, Anja; Dobrinski, Ina; Muegge, Kathrin

    2006-12-01

    Lymphoid specific helicase (Lsh) is a major epigenetic regulator that is essential for DNA methylation and transcriptional silencing of parasitic elements in the mammalian genome. However, whether Lsh is involved in the regulation of chromatin-mediated processes during meiosis is not known. Here, we show that Lsh is essential for the completion of meiosis and transcriptional repression of repetitive elements in the female gonad. Oocytes from Lsh knockout mice exhibit demethylation of transposable elements and tandem repeats at pericentric heterochromatin, as well as incomplete chromosome synapsis associated with persistent RAD51 foci and gammaH2AX phosphorylation. Failure to load crossover-associated foci results in the generation of non-exchange chromosomes. The severe oocyte loss observed and lack of ovarian follicle formation, together with the patterns of Lsh nuclear compartmentalization in the germ line, demonstrate that Lsh has a critical and previously unidentified role in epigenetic gene silencing and maintenance of genomic stability during female meiosis. PMID:17115026

  10. Noise suppression by flexible fan silencers

    SciTech Connect

    Partyka, J.; Kelly, T.R.J.

    1995-12-31

    This paper presents the results on noise testing of a fan only, as well as the results of a steel silencer and of flexible silencers that were connected directly to a fan. On-site facilities and free-field method set by the British Standards Institution were used to measure and then compare the fan only and different practical silencer configuration setups. In order to determine the fan-silencer combination that would give the maximum noise attenuation, total noise intensity, noise contributed to by the fan motor only, as well as aerodynamical noise created through air interacting with the fan parts were considered to obtain decibel readings for the octave bands. Subsequently, the optimal configuration found was the setup with flexible silencers on the fan inlet and the fan outlet. If only one silencer is used, it should be installed on the fan inlet. The aerodynamic noise affects the low frequencies. The flow noise is then overtaken at 1 kHz by the mechanical noise.

  11. Male-biased genes are overrepresented among novel Drosophila pseudoobscura sex-biased genes

    PubMed Central

    2008-01-01

    Background The origin of functional innovation is among the key questions in biology. Recently, it has been shown that new genes could arise from non-coding DNA and that such novel genes are often involved in male reproduction. Results With the aim of identifying novel genes, we used the technique "generation of longer cDNA fragments from serial analysis of gene expression (SAGE) tags for gene identification (GLGI)" to extend 84 sex-biased 3'end SAGE tags that previously could not be mapped to the D. pseudoobscura transcriptome. Eleven male-biased and 33 female-biased GLGI fragments were obtained, of which 5 male-biased and 3 female-biased tags corresponded to putatively novel genes. This excess of novel genes with a male-biased gene expression pattern is consistent with previous results, which found novel genes to be primarily expressed in male reproductive tissues. 5' RACE analysis indicated that these novel transcripts are very short in length and could contain introns. Interspecies comparisons revealed that most novel transcripts show evidence for purifying selection. Conclusion Overall, our data indicate that among sex-biased genes a considerable number of novel genes (~2–4%) exist in D. pseudoobscura, which could not be predicted based on D. melanogaster gene models. PMID:18577217

  12. Virus-Induced Silencing of a Plant Cellulose Synthase Gene

    PubMed Central

    Burton, Rachel A.; Gibeaut, David M.; Bacic, Antony; Findlay, Kim; Roberts, Keith; Hamilton, Andrew; Baulcombe, David C.; Fincher, Geoffrey B.

    2000-01-01

    Specific cDNA fragments corresponding to putative cellulose synthase genes (CesA) were inserted into potato virus X vectors for functional analysis in Nicotiana benthamiana by using virus-induced gene silencing. Plants infected with one group of cDNAs had much shorter internode lengths, small leaves, and a “dwarf” phenotype. Consistent with a loss of cell wall cellulose, abnormally large and in many cases spherical cells ballooned from the undersurfaces of leaves, particularly in regions adjacent to vascular tissues. Linkage analyses of wall polysaccharides prepared from infected leaves revealed a 25% decrease in cellulose content. Transcript levels for at least one member of the CesA cellulose synthase gene family were lower in infected plants. The decrease in cellulose content in cell walls was offset by an increase in homogalacturonan, in which the degree of esterification of carboxyl groups decreased from ∼50 to ∼33%. The results suggest that feedback loops interconnect the cellular machinery controlling cellulose and pectin biosynthesis. On the basis of the phenotypic features of the infected plants, changes in wall composition, and the reduced abundance of CesA mRNA, we concluded that the cDNA fragments silenced one or more cellulose synthase genes. PMID:10810144

  13. ABCE1 Is a Highly Conserved RNA Silencing Suppressor

    PubMed Central

    Kärblane, Kairi; Gerassimenko, Jelena; Nigul, Lenne; Piirsoo, Alla; Smialowska, Agata; Vinkel, Kadri; Kylsten, Per; Ekwall, Karl; Swoboda, Peter; Truve, Erkki; Sarmiento, Cecilia

    2015-01-01

    ATP-binding cassette sub-family E member 1 (ABCE1) is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference. PMID:25659154

  14. Distribution of putative xenogeneic silencers in prokaryote genomes.

    PubMed

    Perez-Rueda, Ernesto; Ibarra, J Antonio

    2015-10-01

    Gene silencing is an important function as it keeps newly acquired foreign DNA repressed, thereby avoiding possible deleterious effects in the host organism. Known transcriptional regulators associated with this process are called xenogeneic silencers (XS) and belong to either the H-NS, Lsr2, MvaT or Rok families. In the work described here we looked for XS-like regulators and their distribution in prokaryotic organisms was evaluated. Our analysis showed that putative XS regulators similar to H-NS, Lsr2, MvaT or Rok are present only in bacteria (31.7%). This does not exclude the existence of alternative XS in the rest of the organisms analyzed. Additionally, of the four XS groups evaluated in this work, those from the H-NS family have diversified more than the other groups. In order to compare the distribution of these putative XS regulators we also searched for other nucleoid-associated proteins (NAPs) not included in this group such as Fis, EbfC/YbaB, HU/IHF and Alba. Results showed that NAPs from the Fis, EbfC/YbaB, HU/IHF and Alba families are widely (94%) distributed among prokaryotes. These NAPs were found in multiple combinations with or without XS-like proteins. In regard with XS regulators, results showed that only XS proteins from one family were found in those organisms containing them. This suggests specificity for this type of regulators and their corresponding genomes.

  15. Queries for Bias Testing

    NASA Technical Reports Server (NTRS)

    Gordon, Diana F.

    1992-01-01

    Selecting a good bias prior to concept learning can be difficult. Therefore, dynamic bias adjustment is becoming increasingly popular. Current dynamic bias adjustment systems, however, are limited in their ability to identify erroneous assumptions about the relationship between the bias and the target concept. Without proper diagnosis, it is difficult to identify and then remedy faulty assumptions. We have developed an approach that makes these assumptions explicit, actively tests them with queries to an oracle, and adjusts the bias based on the test results.

  16. Arabidopsis HDA6 Regulates Locus-Directed Heterochromatin Silencing in Cooperation with MET1

    PubMed Central

    Matsui, Akihiro; Kurihara, Yukio; Morosawa, Taeko; Ishida, Junko; Tanaka, Maho; Endo, Takaho; Kakutani, Tetsuji; Toyoda, Tetsuro; Kimura, Hiroshi; Yokoyama, Shigeyuki; Shinozaki, Kazuo; Seki, Motoaki

    2011-01-01

    Heterochromatin silencing is pivotal for genome stability in eukaryotes. In Arabidopsis, a plant-specific mechanism called RNA–directed DNA methylation (RdDM) is involved in heterochromatin silencing. Histone deacetylase HDA6 has been identified as a component of such machineries; however, its endogenous targets and the silencing mechanisms have not been analyzed globally. In this study, we investigated the silencing mechanism mediated by HDA6. Genome-wide transcript profiling revealed that the loci silenced by HDA6 carried sequences corresponding to the RDR2-dependent 24-nt siRNAs, however their transcript levels were mostly unaffected in the rdr2 mutant. Strikingly, we observed significant overlap of genes silenced by HDA6 to those by the CG DNA methyltransferase MET1. Furthermore, regardless of dependence on RdDM pathway, HDA6 deficiency resulted in loss of heterochromatic epigenetic marks and aberrant enrichment for euchromatic marks at HDA6 direct targets, along with ectopic expression of these loci. Acetylation levels increased significantly in the hda6 mutant at all of the lysine residues in the H3 and H4 N-tails, except H4K16. Interestingly, we observed two different CG methylation statuses in the hda6 mutant. CG methylation was sustained in the hda6 mutant at some HDA6 target loci that were surrounded by flanking DNA–methylated regions. In contrast, complete loss of CG methylation occurred in the hda6 mutant at the HDA6 target loci that were isolated from flanking DNA methylation. Regardless of CG methylation status, CHG and CHH methylation were lost and transcriptional derepression occurred in the hda6 mutant. Furthermore, we show that HDA6 binds only to its target loci, not the flanking methylated DNA, indicating the profound target specificity of HDA6. We propose that HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1, possibly recruiting MET1 to specific loci, thus forming the foundation of silent chromatin structure

  17. Epigenetic Silencing Mediates Mitochondria Stress-induced Longevity

    PubMed Central

    Schroeder, Elizabeth A.; Raimundo, Nuno; Shadel, Gerald S.

    2013-01-01

    SUMMARY Reactive oxygen species (ROS) play complex roles in aging, having both damaging effects and signaling functions. Transiently elevating mitochondrial stress, including mitochondrial ROS (mtROS), elicits beneficial responses that extend lifespan. However, these adaptive, longevity-signaling pathways remain poorly understood. We show here that Tel1p and Rad53p, homologs of the mammalian DNA-damage-response kinases ATM and Chk2, mediate a hormetic mtROS longevity signal that extends yeast chronological lifespan. This pathway senses mtROS in a manner distinct from the nuclear DNA-damage response and ultimately imparts longevity by inactivating the histone demethylase Rph1p specifically at subtelomeric heterochromatin, enhancing binding of the silencing protein Sir3p, and repressing subtelomeric transcription. These results demonstrate the existence of conserved mitochondria-to-nucleus stress-signaling pathways that regulate aging through epigenetic modulation of nuclear gene expression. PMID:23747251

  18. Global effects on gene expression in fission yeast by silencing and RNA interference machineries.

    PubMed

    Hansen, Klavs R; Burns, Gavin; Mata, Juan; Volpe, Thomas A; Martienssen, Robert A; Bähler, Jürg; Thon, Geneviève

    2005-01-01

    Histone modifications influence gene expression in complex ways. The RNA interference (RNAi) machinery can repress transcription by recruiting histone-modifying enzymes to chromatin, although it is not clear whether this is a general mechanism for gene silencing or whether it requires repeated sequences such as long terminal repeats (LTRs). We analyzed the global effects of the Clr3 and Clr6 histone deacetylases, the Clr4 methyltransferase, the zinc finger protein Clr1, and the RNAi proteins Dicer, RdRP, and Argonaute on the transcriptome of Schizosaccharomyces pombe (fission yeast). The clr mutants derepressed similar subsets of genes, many of which also became transcriptionally activated in cells that were exposed to environmental stresses such as nitrogen starvation. Many genes that were repressed by the Clr proteins clustered in extended regions close to the telomeres. Surprisingly few genes were repressed by both the silencing and RNAi machineries, with transcripts from centromeric repeats and Tf2 retrotransposons being notable exceptions. We found no correlation between repression by RNAi and proximity to LTRs, and the wtf family of repeated sequences seems to be repressed by histone deacetylation independent of RNAi. Our data indicate that the RNAi and Clr proteins show only a limited functional overlap and that the Clr proteins play more global roles in gene silencing. PMID:15632061

  19. Environmental stress and transposon transcription in the mammalian brain

    PubMed Central

    Hunter, Richard G.; McEwen, Bruce S.; Pfaff, Donald W.

    2013-01-01

    We recently reported that acute stress causes a substantial upregulation of the epigenetic mark, Histone H3 Lysine 9 Trimethyl (H3K9me3) in the rat hippocampus within an hour of acute stress exposure. To determine the function of this change we used ChIP-sequencing to determine where this silencing mark was being localized. We found that it showed a strong bias toward localization at more active classes of retrotransposable elements and away from genes. Further, we showed that the change was functional in that it reduced transcription of some of these elements (notably the endogenous retrovirus IAP and the B2 SINE). In this commentary we examine these results, which appear to describe a selective genomic stress response and relate it to human health and disease, particularly stress related maladies such as Post-traumatic Stress Disorder, which have recently been shown to have both epigenetic elements in their causation as well as differences in epigenetic marking of retrotransposons in human patients. PMID:23914311

  20. Systematic knockdown of morphine pathway enzymes in opium poppy using virus-induced gene silencing.

    PubMed

    Wijekoon, Champa P; Facchini, Peter J

    2012-03-01

    Opium poppy (Papaver somniferum) remains the sole commercial source for several pharmaceutical alkaloids including the narcotic analgesics codeine and morphine, and the semi-synthetic drugs oxycodone, buprenorphine and naltrexone. Although most of the biosynthetic genes have been identified, the post-transcriptional regulation of the morphinan alkaloid pathway has not been determined. We have used virus-induced gene silencing (VIGS) as a functional genomics tool to investigate the regulation of morphine biosynthesis via a systematic reduction in enzyme levels responsible for the final six steps in the pathway. Specific gene silencing was confirmed at the transcript level by real-time quantitative PCR (polymerase chain reaction), and at the protein level by immunoblot analysis using antibodies raised against salutaridine synthase (SalSyn), salutaridine reductase (SalR), salutaridine 7-O-acetyltransferase (SalAT), thebaine 6-O-demethylase (T6ODM), codeinone reductase (COR), and codeine O-demethylase (CODM). In some cases, silencing a specific biosynthetic gene resulted in a predictable accumulation of the substrate for the corresponding enzyme. Reduced SalSyn, SalR, T6ODM and CODM protein levels correlated with lower morphine levels and a substantial increase in the accumulation of reticuline, salutaridine, thebaine and codeine, respectively. In contrast, the silencing of genes encoding SalAT and COR resulted in the accumulation of salutaridine and reticuline, respectively, which are not the corresponding enzymatic substrates. The silencing of alkaloid biosynthetic genes using VIGS confirms the physiological function of enzymes previously characterized in vitro, provides insight into the biochemical regulation of morphine biosynthesis, and demonstrates the immense potential for metabolic engineering in opium poppy.

  1. A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang).

    PubMed

    Chung, Eunsook; Seong, Eunsoo; Kim, Yeoung-Cheol; Chung, Eun Joo; Oh, Sang-Keun; Lee, Sanghyeob; Park, Jeong Mee; Joung, Young Hee; Choi, Doil

    2004-04-30

    Using a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system, expression of phytogene desaturase (PDS) and ribulose-1,5-bisphosphate carboxylase small-subuit (rbcS) genes was suppressed in Nicotiana benthamiana and pepper plants (Capsicum annuum L. cv. Bukang). The silenced phenotypes of pale yellow (rbcS), and photobleached leaves (PDS), were invariably obvious 2 weeks after inoculation with the TRV-based vector. In a parallel experiment, the same set of genes was silenced in N. benthamiana and yielded identical phenotypes to pepper 1 week after inoculation. Northern blot analyses showed that the endogenous levels of CarbcS and CaPDS transcripts were dramatically reduced in the silenced leaf tissues. These observations confirm that the silenced phenotype is closely correlated with the pattern of tissue expression. To our knowledge, this is the first high frequency VIGS method in pepper plants. It should provide a tool for large-scale gene silencing studies in pepper functional genomics.

  2. Dietary and genetic effects on age-related loss of gene silencing reveal epigenetic plasticity of chromatin repression during aging.

    PubMed

    Jiang, Nan; Du, Guyu; Tobias, Ethan; Wood, Jason G; Whitaker, Rachel; Neretti, Nicola; Helfand, Stephen L

    2013-11-01

    During aging, changes in chromatin state that alter gene transcription have been postulated to result in expression of genes that are normally silenced, leading to deleterious age-related effects on cellular physiology. Despite the prevalence of this hypothesis, it is primarily in yeast that loss of gene silencing with age has been well documented. We use a novel position effect variegation (PEV) reporter in Drosophila melanogaster to show that age-related loss of repressive heterochromatin is associated with loss of gene silencing in metazoans and is affected by Sir2, as it is in yeast. The life span-extending intervention, calorie restriction (CR), delays the age-related loss of gene silencing, indicating that loss of gene silencing is a component of normal aging. Diet switch experiments show that such flies undergo a rapid change in their level of gene silencing, demonstrating the epigenetic plasticity of chromatin during aging and highlighting the potential role of diet and metabolism in chromatin maintenance, Thus, diet and related interventions may be of therapeutic importance for age-related diseases, such as cancer.

  3. Silencing of E2F3 suppresses tumor growth of Her2+ breast cancer cells by restricting mitosis.

    PubMed

    Lee, Miyoung; Oprea-Ilies, Gabriela; Saavedra, Harold I

    2015-11-10

    The E2F transcriptional activators E2F1, E2F2 and E2F3a regulate many important cellular processes, including DNA replication, apoptosis and centrosome duplication. Previously, we demonstrated that silencing E2F1 or E2F3 suppresses centrosome amplification (CA) and chromosome instability (CIN) in Her2+ breast cancer cells without markedly altering proliferation. However, it is unknown whether and how silencing a single E2F activator, E2F3, affects malignancy of human breast cancer cells. Thus, we injected HCC1954 Her2+ breast cancer cells silenced for E2F3 into mammary fat pads of immunodeficient mice and demonstrated that loss of E2F3 retards tumor growth. Surprisingly, silencing of E2F3 led to significant reductions in mitotic indices relative to vector controls, while the percentage of cells undergoing S phase were not affected. Nek2 is a mitotic kinase commonly upregulated in breast cancers and a critical regulator of Cdk4- or E2F-mediated CA. In this report, we found that Nek2 overexpression rescued back the CA caused by silencing of shE2F3. However, the effects of Nek2 overexpression in affecting tumor growth rates of shE2F3 and shE2F3; GFP cells were inconclusive. Taken together, our results indicate that E2F3 silencing decreases mammary tumor growth by reducing percentage of cells undergoing mitosis.

  4. Silencing of FRAT1 by siRNA inhibits the proliferation of SGC7901 human gastric adenocarcinoma cells

    PubMed Central

    YU, QINGGONG; SHANG, LU; YU, HONGBO; YANG, ZIRONG; XU, DEKUI

    2016-01-01

    Frequently rearranged in advanced T cell lymphomas-1 (FRAT1) positively regulates the Wnt/β-catenin signaling pathway by inhibiting glycogen synthase kinase-3 mediated phosphorylation of β-catenin. FRAT1 is a proto-oncogene, implicated in tumorigenesis. The present study aimed to investigate the effects of FRAT1 silencing on the proliferation and apoptosis of SGC7901 cells. FRAT1 in SGC7901 cells was silenced by RNA interference. Reverse transcription-quantitative polymerase chain reaction was used for the analysis of FRAT1 mRNA and western blotting was used to evaluate FRAT1 and β-catenin protein levels. Cell proliferation was analyzed by the MTT assay. Cell cycle distribution and apoptosis were analyzed by flow cytometry. The expression of FRAT1 mRNA, FRAT1 and β-catenin protein in FRAT1-silenced SGC7901 cells were reduced significantly compared to untreated cells. The proliferation of FRAT1 silenced SGC7901 cells decreased significantly The FRAT1 silenced SGC7901 cells were arrested at G0/G1 stage to a greater degree, and apoptosis was increased. In summary, silencing of FRAT1 inhibits SGC7901 cell proliferation and induces apoptosis, possible through a reduction in β-catenin expression. FRAT1 may serve as a prognostic biomarker and therapeutic target for gastric cancer. PMID:26893843

  5. Epigenetic chromatin silencing: bistability and front propagation

    NASA Astrophysics Data System (ADS)

    Sedighi, Mohammad; Sengupta, Anirvan M.

    2007-12-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

  6. Epigenetic chromatin silencing: bistability and front propagation

    PubMed Central

    Sedighi, Mohammad; Sengupta, Anirvan M

    2008-01-01

    The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally. PMID:17991991

  7. Interpretation biases in paranoia.

    PubMed

    Savulich, George; Freeman, Daniel; Shergill, Sukhi; Yiend, Jenny

    2015-01-01

    Information in the environment is frequently ambiguous in meaning. Emotional ambiguity, such as the stare of a stranger, or the scream of a child, encompasses possible good or bad emotional consequences. Those with elevated vulnerability to affective disorders tend to interpret such material more negatively than those without, a phenomenon known as "negative interpretation bias." In this study we examined the relationship between vulnerability to psychosis, measured by trait paranoia, and interpretation bias. One set of material permitted broadly positive/negative (valenced) interpretations, while another allowed more or less paranoid interpretations, allowing us to also investigate the content specificity of interpretation biases associated with paranoia. Regression analyses (n=70) revealed that trait paranoia, trait anxiety, and cognitive inflexibility predicted paranoid interpretation bias, whereas trait anxiety and cognitive inflexibility predicted negative interpretation bias. In a group comparison those with high levels of trait paranoia were negatively biased in their interpretations of ambiguous information relative to those with low trait paranoia, and this effect was most pronounced for material directly related to paranoid concerns. Together these data suggest that a negative interpretation bias occurs in those with elevated vulnerability to paranoia, and that this bias may be strongest for material matching paranoid beliefs. We conclude that content-specific biases may be important in the cause and maintenance of paranoid symptoms.

  8. Silencing the ap65 gene reduces adherence to vaginal epithelial cells by Trichomonas vaginalis.

    PubMed

    Mundodi, V; Kucknoor, A S; Klumpp, D J; Chang, T-H; Alderete, J F

    2004-08-01

    Host parasitism by Trichomonas vaginalis is complex and in part mediated by adherence to vaginal epithelial cells (VECs). Four trichomonad surface proteins bind VECs as adhesins, and AP65 is a major adhesin with sequence identity to an enzyme of the hydrogenosome organelle that is involved in energy generation. In order to perform genetic analysis and assess the role of AP65 in T. vaginalis adherence, we silenced expression of ap65 using antisense RNA. The gene for ap65 was inserted into the vector pBS-neo in sense and antisense orientations to generate plasmids pBS-neoS (S) and pBS-neoAS (AS), respectively. Trichomonads were then transfected with S and AS plasmids for selection of stable transfectants using Geneticin, and the presence of plasmid in transfectants was confirmed by polymerase chain reaction of the neo gene. Reverse transcription polymerase chain reaction and Northern blot analysis showed decreased amounts of ap65 transcript in AS transfected parasites. Growth kinetics of the antisense-transfected and wild type organisms were similar, suggesting that silencing AP65 did not affect overall energy generation for growth. Immunoblot analysis using monoclonal antibody (mAb) to AP65 of AS transfectants showed decreased amounts of AP65 when compared to wild type or S transfectants. Not unexpectedly, this corresponded to decreased amounts of AP65 bound to VECs in a functional ligand assay. Reduction in parasite surface expression of AP65 was related to lower levels of adherence to VECs by AS-transfectants compared to control organisms. Antisense silencing of ap65 was not alleviated by growth of trichomonads in high iron, which up-regulates transcription of ap65. Our work reaffirms the role for AP65 as an adhesin, and in addition, we demonstrate antisense RNA gene silencing in T. vaginalis to study the contribution of specific genes in pathogenesis. PMID:15306014

  9. Silencing the ap65 gene reduces adherence to vaginal epithelial cells by Trichomonas vaginalis

    PubMed Central

    Mundodi, V.; Kucknoor, A. S.; Klumpp, D. J.; Chang, T.-H.; Alderete, J. F.

    2007-01-01

    Summary Host parasitism by Trichomonas vaginalis is complex and in part mediated by adherence to vaginal epithelial cells (VECs). Four trichomonad surface proteins bind VECs as adhesins, and AP65 is a major adhesin with sequence identity to an enzyme of the hydrogenosome organelle that is involved in energy generation. In order to perform genetic analysis and assess the role of AP65 in T. vaginalis adherence, we silenced expression of ap65 using antisense RNA. The gene for ap65 was inserted into the vector pBS-neo in sense and antisense orientations to generate plasmids pBS-neoS (S) and pBS-neoAS (AS), respectively. Trichomonads were then transfected with S and AS plasmids for selection of stable transfectants using Geneticin, and the presence of plasmid in transfectants was confirmed by polymerase chain reaction of the neo gene. Reverse transcription polymerase chain reaction and Northern blot analysis showed decreased amounts of ap65 transcript in AS transfected parasites. Growth kinetics of the antisense-transfected and wild type organisms were similar, suggesting that silencing AP65 did not affect overall energy generation for growth. Immunoblot analysis using monoclonal antibody (mAb) to AP65 of AS transfectants showed decreased amounts of AP65 when compared to wild type or S transfectants. Not unexpectedly, this corresponded to decreased amounts of AP65 bound to VECs in a functional ligand assay. Reduction in parasite surface expression of AP65 was related to lower levels of adherence to VECs by AS-transfectants compared to control organisms. Antisense silencing of ap65 was not alleviated by growth of trichomonads in high iron, which up-regulates transcription of ap65. Our work reaffirms the role for AP65 as an adhesin, and in addition, we demonstrate antisense RNA gene silencing in T. vaginalis to study the contribution of specific genes in pathogenesis. PMID:15306014

  10. White privilege and the "silenced dialogue".

    PubMed

    Kendall, F E

    1996-08-01

    The impact of White privilege in the HIV-related counseling and educational environment is explored. The most negative consequence of this phenomenon may be silencing people of other cultures for whom the White frame of reference is not the norm. White counselors often silence others without awareness or intention. White counselors should examine how their culture affects perceptions and experiences, make a contract with co-workers to give honest feedback about communication style, design intentional and ongoing opportunities to examine institutional racism, inquire and listen, and remember that recognizing and counteracting White privilege is a life-long process.

  11. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway*

    PubMed Central

    Foda, Bardees M.; Singh, Upinder

    2015-01-01

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683

  12. Dimethylated H3K27 Is a Repressive Epigenetic Histone Mark in the Protist Entamoeba histolytica and Is Significantly Enriched in Genes Silenced via the RNAi Pathway.

    PubMed

    Foda, Bardees M; Singh, Upinder

    2015-08-21

    RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5'-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica.

  13. Political bias is tenacious.

    PubMed

    Ditto, Peter H; Wojcik, Sean P; Chen, Eric Evan; Grady, Rebecca Hofstein; Ringel, Megan M

    2015-01-01

    Duarte et al. are right to worry about political bias in social psychology but they underestimate the ease of correcting it. Both liberals and conservatives show partisan bias that often worsens with cognitive sophistication. More non-liberals in social psychology is unlikely to speed our convergence upon the truth, although it may broaden the questions we ask and the data we collect.

  14. Investigating Test Bias.

    ERIC Educational Resources Information Center

    Hoepfner, Ralph; Strickland, Guy P.

    This study investigates the question of test bias to develop an index of the appropriateness of a test to a particular socioeconomic or racial-ethnic group. Bias is defined as an item by race interaction in an analysis-of-variance design. The sample of 172 third graders at two integrated schools in a large California school district, included 26…

  15. Sampler bias -- Phase 1

    SciTech Connect

    Blanchard, R.J.

    1995-03-07

    This documents Phase 1 determinations on sampler induced bias for four sampler types used in tank characterization. Each sampler, grab sampler or bottle-on-a-string, auger sampler, sludge sampler and universal sampler, is briefly discussed and their physical limits noted. Phase 2 of this document will define additional testing and analysis to further define Sampler Bias.

  16. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    PubMed

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  17. Embracing Silence and the Emptiness between Unspoken Words

    ERIC Educational Resources Information Center

    VanSlyke-Briggs, Kjersti

    2014-01-01

    This article examines the use of silence as a constructive teaching tool in the classroom rather than as a punitive measure. The author offers suggestions for the inclusion of silence to benefit students specifically in a literature high school classroom.

  18. Systematic identification of cis-silenced genes by trans complementation

    PubMed Central

    Lee, Jae Hyun; Bugarija, Branimir; Millan, Enrique J.; Walton, Noah M.; Gaetz, Jedidiah; Fernandes, Croydon J.; Yu, Wei-Hua; Mekel-Bobrov, Nitzan; Vallender, Tammy W.; Snyder, Gregory E.; Xiang, Andy Peng; Lahn, Bruce T.

    2009-01-01

    A gene’s transcriptional output is the combined product of two inputs: diffusible factors in the cellular milieu acting in trans, and chromatin state acting in cis. Here, we describe a strategy for dissecting the relative contribution of cis versus trans mechanisms to gene regulation. Referred to as trans complementation, it entails fusing two disparate cell types and searching for genes differentially expressed between the two genomes of fused cells. Any differential expression can be causally attributed to cis mechanisms because the two genomes of fused cells share a single homogenized milieu in trans. This assay uncovered a state of transcriptional competency that we termed ‘occluded’ whereby affected genes are silenced by cis-acting mechanisms in a manner that blocks them from responding to the trans-acting milieu of the cell. Importantly, occluded genes in a given cell type tend to include master triggers of alternative cell fates. Furthermore, the occluded state is maintained during cell division and is extraordinarily stable under a wide range of physiological conditions. These results support the model that the occlusion of lineage-inappropriate genes is a key mechanism of cell fate restriction. The identification of occluded genes by our assay provides a hitherto unavailable functional readout of chromatin state that is distinct from and complementary to gene expression status. PMID:19050040

  19. Chromatin insulation by a transcriptional activator

    PubMed Central

    Sutter, Nathan B.; Scalzo, David; Fiering, Steven; Groudine, Mark; Martin, David I. K.

    2003-01-01

    In eukaryotic genomes, transcriptionally active regions are interspersed with silent chromatin that may repress genes in its vicinity. Chromatin insulators are elements that can shield a locus from repressive effects of flanking chromatin. Few such elements have been characterized in higher eukaryotes, but transcriptional activating elements are an invariant feature of active loci and have been shown to suppress transgene silencing. Hence, we have assessed the ability of a transcriptional activator to cause chromatin insulation, i.e., to relieve position effects at transgene integration sites in cultured cells. The transgene contained a series of binding sites for the metal-inducible transcriptional activator MTF, linked to a GFP reporter. Clones carrying single integrated transgenes were derived without selection for expression, and in most clones the transgene was silent. Induction of MTF resulted in transition of the transgene from the silent to the active state, prolongation of the active state, and a marked narrowing of the range of expression levels at different genomic sites. At one genomic site, prolonged induction of MTF resulted in suppression of transgene silencing that persisted after withdrawal of the induction stimulus. These results are consistent with MTF acting as a chromatin insulator and imply that transcriptional activating elements can insulate active loci against chromatin repression. PMID:12547916

  20. Sum1-1: A Suppressor of Silencing Defects in Saccharomyces Cerevisiae

    PubMed Central

    Laurenson, P.; Rine, J.

    1991-01-01

    The repression of transcription of the silent mating-type locus HMRa in the yeast Saccharomyces cerevisiae requires the four SIR proteins, histone H4 and a flanking site designated HMR-E. The SUM1-1 mutation alleviated the need for many of these components in transcriptional repression. In the absence of each of the SIR proteins, SUM1-1 restored repression in MATα strains; thus, SUM1-1 appeared to bypass the need for the SIR genes in repression of HMRa. Repression was not specific to the genes normally present at HMR, since the TRP1 gene placed at HMR was repressed by SUM1-1 in a sir3 strain. Therefore, like the mechanism of silencing normally used at HMR, silencing by SUM1-1 was gene-nonspecific. SUM1-1 suppressed point mutations in histone H4, but failed to suppress strongly a deletion mutation in histone H4. Similarly, SUM1-1 suppressed mutations in the three known elements of HMR-E, but was unable to suppress a deletion of HMR-E. These epistasis analyses implied that the functions required for repression at HMR can be ordered, with the SIR genes and silencer elements acting upstream of SUM1-1. SUM1-1 itself may function at the level of chromatin in the assembly of inactive DNA at the silent mating-type loci. PMID:1752414

  1. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing.

    PubMed

    Cooper, Bret; Campbell, Kimberly B; McMahon, Michael B; Luster, Douglas G

    2013-01-01

    Phakopsora pachyrhizi, a fungus that causes rust disease on soybean, has potential to impart significant yield loss and disrupt food security and animal feed production. Rpp1 is a soybean gene that confers immunity to soybean rust, and it is important to understand how it regulates the soybean defense system and to use this knowledge to protect commercial crops. It was previously discovered that some soybean proteins resembling transcription factors accumulate in the nucleus of Rpp1 soybeans. To determine if they contribute to immunity, Bean pod mottle virus was used to attenuate or silence the expression of their genes. Rpp1 plants subjected to virus-induced gene silencing exhibited reduced amounts of RNA for 5 of the tested genes, and the plants developed rust-like symptoms after subsequent inoculation with fungal spores. Symptoms were associated with the accumulation of rust fungal RNA and protein. Silenced plants also had reduced amounts of RNA for the soybean Myb84 transcription factor and soybean isoflavone O-methyltransferase, both of which are important to phenylpropanoid biosynthesis and lignin formation, crucial components of rust resistance. These results help resolve some of the genes that contribute to Rpp1-mediated immunity and improve upon the knowledge of the soybean defense system. It is possible that these genes could be manipulated to enhance rust resistance in otherwise susceptible soybean cultivars.

  2. A versatile assay for the identification of RNA silencing suppressors based on complementation of viral movement.

    PubMed

    Powers, Jason G; Sit, Tim L; Qu, Feng; Morris, T Jack; Kim, Kook-Hyung; Lommel, Steven A

    2008-07-01

    The cell-to-cell movement of Turnip crinkle virus (TCV) in Nicotiana benthamiana requires the presence of its coat protein (CP), a known suppressor of RNA silencing. RNA transcripts of a TCV construct containing a reporter gene (green fluorescent protein) (TCV-sGFP) in place of the CP open reading frame generated foci of three to five cells. TCV CP delivered in trans by Agrobacterium tumefaciens infiltration potentiated movement of TCV-sGFP and increased foci diameter, on average, by a factor of four. Deletion of the TCV movement proteins in TCV-sGFP (construct TCVDelta92-sGFP) abolished the movement complementation ability of TCV CP. Other known suppressors of RNA silencing from a wide spectrum of viruses also complemented the movement of TCV-sGFP when delivered in trans by Agrobacterium tumefaciens. These include suppressors from nonplant viruses with no known plant movement function, demonstrating that this assay is based solely on RNA silencing suppression. While the TCV-sGFP construct is primarily used as an infectious RNA transcript, it was also subcloned for direct expression from Agrobacterium tumefaciens for simple quantification of suppressor activity based on fluorescence levels in whole leaves. Thus, this system provides the flexibility to assay for suppressor activity in either the cytoplasm or nucleus, depending on the construct employed. PMID:18533829

  3. A versatile assay for the identification of RNA silencing suppressors based on complementation of viral movement.

    PubMed

    Powers, Jason G; Sit, Tim L; Qu, Feng; Morris, T Jack; Kim, Kook-Hyung; Lommel, Steven A

    2008-07-01

    The cell-to-cell movement of Turnip crinkle virus (TCV) in Nicotiana benthamiana requires the presence of its coat protein (CP), a known suppressor of RNA silencing. RNA transcripts of a TCV construct containing a reporter gene (green fluorescent protein) (TCV-sGFP) in place of the CP open reading frame generated foci of three to five cells. TCV CP delivered in trans by Agrobacterium tumefaciens infiltration potentiated movement of TCV-sGFP and increased foci diameter, on average, by a factor of four. Deletion of the TCV movement proteins in TCV-sGFP (construct TCVDelta92-sGFP) abolished the movement complementation ability of TCV CP. Other known suppressors of RNA silencing from a wide spectrum of viruses also complemented the movement of TCV-sGFP when delivered in trans by Agrobacterium tumefaciens. These include suppressors from nonplant viruses with no known plant movement function, demonstrating that this assay is based solely on RNA silencing suppression. While the TCV-sGFP construct is primarily used as an infectious RNA transcript, it was also subcloned for direct expression from Agrobacterium tumefaciens for simple quantification of suppressor activity based on fluorescence levels in whole leaves. Thus, this system provides the flexibility to assay for suppressor activity in either the cytoplasm or nucleus, depending on the construct employed.

  4. Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing.

    PubMed

    Del Olmo, Iván; López, Juan A; Vázquez, Jesús; Raynaud, Cécile; Piñeiro, Manuel; Jarillo, José A

    2016-07-01

    Arabidopsis ESD7 locus encodes the catalytic subunit of the DNA Pol ϵ involved in the synthesis of the DNA leading strand and is essential for embryo viability. The hypomorphic allele esd7-1 is viable but displays a number of pleiotropic phenotypic alterations including an acceleration of flowering time. Furthermore, Pol ϵ is involved in the epigenetic silencing of the floral integrator genes FT and SOC1, but the molecular nature of the transcriptional gene silencing mechanisms involved remains elusive. Here we reveal that ESD7 interacts with components of the PRC2 such as CLF, EMF2 and MSI1, and that mutations in ESD7 cause a decrease in the levels of the H3K27me3 mark present in the chromatin of FT and SOC1 We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin. We unveil the existence of interplay between the DNA replication machinery and the PcG complexes in epigenetic transcriptional silencing. These observations provide an insight into the mechanisms ensuring that the epigenetic code at pivotal loci in developmental control is faithfully transmitted to the progeny of eukaryotic cells.

  5. Arabidopsis DNA polymerase ϵ recruits components of Polycomb repressor complex to mediate epigenetic gene silencing

    PubMed Central

    del Olmo, Iván; López, Juan A.; Vázquez, Jesús; Raynaud, Cécile; Piñeiro, Manuel; Jarillo, José A.

    2016-01-01

    Arabidopsis ESD7 locus encodes the catalytic subunit of the DNA Pol ϵ involved in the synthesis of the DNA leading strand and is essential for embryo viability. The hypomorphic allele esd7-1 is viable but displays a number of pleiotropic phenotypic alterations including an acceleration of flowering time. Furthermore, Pol ϵ is involved in the epigenetic silencing of the floral integrator genes FT and SOC1, but the molecular nature of the transcriptional gene silencing mechanisms involved remains elusive. Here we reveal that ESD7 interacts with components of the PRC2 such as CLF, EMF2 and MSI1, and that mutations in ESD7 cause a decrease in the levels of the H3K27me3 mark present in the chromatin of FT and SOC1. We also demonstrate that a domain of the C-terminal region of ESD7 mediates the binding to the different PRC2 components and this interaction is necessary for the proper recruitment of PRC2 to FT and SOC1 chromatin. We unveil the existence of interplay between the DNA replication machinery and the PcG complexes in epigenetic transcriptional silencing. These observations provide an insight into the mechanisms ensuring that the epigenetic code at pivotal loci in developmental control is faithfully transmitted to the progeny of eukaryotic cells. PMID:26980282

  6. RASSF10 is epigenetically silenced and functions as a tumor suppressor in gastric cancer

    SciTech Connect

    Wei, Ziran; Chen, Xia; Chen, Ji; Wang, Weimin; Xu, Xudong; Cai, Qingping

    2013-03-22

    Highlights: ► Epigenetic silencing of RASSF10 gene expression in GC cells. ► RASSF10 overexpression inhibits cell growth in vitro and in vivo. ► RASSF10 induces apoptosis in GC cells. ► RASSF10 inhibits Wnt/β-catenin signaling pathway. -- Abstract: Ras association domain family (RASSF) proteins are encoded by several tumor suppressor genes that are frequently silenced in human cancers. In this study, we investigated RASSF10 as a target of epigenetic inactivation and examined its functions as a tumor suppressor in gastric cancer. RASSF10 was silenced in six out of eight gastric cancer cell lines. Loss or downregulation of RASSF10 expression was associated with promoter hypermethylation, and could be restored by a demethylating agent. Overexpression of RASSF10 in gastric cancer cell lines (JRST, BGC823) suppressed cell growth and colony formation, and induced apoptosis, whereas RASSF10 depletion promoted cell growth. In xenograft animal experiments, RASSF10 overexpression effectively repressed tumor growth. Mechanistic investigations revealed that RASSF10 inhibited tumor growth by blocking activation of β-catenin and its downstream targets including c-Myc, cyclinD1, cyclinE1, peroxisome proliferator-activated receptor δ, transcription factor 4, transcription factor 1 and CD44. In conclusion, the results of this study provide insight into the role of RASSF10 as a novel functional tumor suppressor in gastric cancer through inhibition of the Wnt/β-catenin signaling pathway.

  7. Effect of flow on the drumlike silencer

    NASA Astrophysics Data System (ADS)

    Choy, Y. S.; Huang, Lixi

    2005-11-01

    This study examines the effects of a mean flow and turbulent flow excitation on the performance of the recently conceived device which was tested under the no-flow condition [J. Acoust. Soc. Am. 112, 2014-2035 (2002)]. The silencer consists of two cavity-backed membranes lining part of the duct walls. When a certain optimal tension is applied, the silencer gives a broad stopband in the low-frequency regime. Similar performance is predicted for the condition with a mean flow, and tests conducted for flow speeds from 5 to 15 m/s validated these predictions. The spectrum of transmission loss without flow features three resonance peaks, and the mean flow is found to smooth out all peaks and shift two of them through cross-modal coupling. The silencer was tested in a wind tunnel, and no flow induced flexural instability was found on the membrane in the range of flow speeds tested. Insertion loss measurement was also conducted in a natural ventilation condition where a turbulence intensity of 3% was recorded, and the results were close to those without flow. It is concluded that no noticeable extra sound is produced by the turbulent excitation of the membrane under the optimal tension required by the silencer.

  8. Parenting a Precocious Preschooler: Breaking the Silence

    ERIC Educational Resources Information Center

    Fish, Leigh Ann

    2016-01-01

    Precocity in the very young should be a valid topic of discussion in parental and educational circles, yet too frequently those conversations are slow to occur or are absent altogether. Many parents and educators remain silent about raising and nurturing precocious preschoolers, and author Leigh Ann Fish believe that the silence is due to a lack…

  9. MIGS: miRNA-induced gene silencing.

    PubMed

    Felippes, Felipe Fenselau de; Wang, Jia-wei; Weigel, Detlef

    2012-05-01

    Gene silencing is an important tool in the study of gene function. Virus-induced gene silencing (VIGS) and hairpin RNA interference (hpRNAi), both of which rely on small interfering RNAs, together with artificial microRNAs (amiRNA), are amongst the most popular methods for reduction of gene activity in plants. However, all three approaches have limitations. Here, we introduce miRNA-induced gene silencing (MIGS). This method exploits a special 22-nucleotide miRNA of Arabidopsis thaliana, miR173, which can trigger production of another class of small RNAs called trans-acting small interfering RNAs (tasiRNAs). We show that fusion of gene fragments to an upstream miR173 target site is sufficient for effective silencing of the corresponding endogenous gene. MIGS can be reliably used for the knockdown of a single gene or of multiple unrelated genes. In addition, we show that MIGS can be applied to other species by co-expression of miR173.

  10. Behold: Silence and Attention in Education

    ERIC Educational Resources Information Center

    Lewin, David

    2014-01-01

    Educators continually ask about the best means to engage students and how best to capture attention. These concerns often make the problematic assumption that students can directly govern their own attention. In order to address the role and limits of attention in education, some theorists have sought to recover the significance of silence or…

  11. RNAi Dynamics in Juvenile Fasciola spp. Liver Flukes Reveals the Persistence of Gene Silencing In Vitro

    PubMed Central

    McVeigh, Paul; McCammick, Erin M.; McCusker, Paul; Morphew, Russell M.; Mousley, Angela; Abidi, Abbas; Saifullah, Khalid M.; Muthusamy, Raman; Gopalakrishnan, Ravikumar; Spithill, Terry W.; Dalton, John P.; Brophy, Peter M.; Marks, Nikki J.; Maule, Aaron G.

    2014-01-01

    Background Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi) has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (ds)RNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain), validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL) and B (FheCatB) cysteine proteases, and a σ-class glutathione transferase (FheσGST). Methodology/Principal Findings Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200–320 nt) dsRNAs or 27 nt short interfering (si)RNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent) and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively. Conclusions/Significance In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the

  12. Unpacking the Unspoken: Silence in Collective Memory and Forgetting

    ERIC Educational Resources Information Center

    Vinitzky-Seroussi, Vered; Teeger, Chana

    2010-01-01

    Collective memory quite naturally brings to mind notions of mnemonic speech and representation. In this article, however, we propose that collective silences be thought of as a rich and promising arena through which to understand how groups deal with their collective pasts. In so doing, we explore two types of silence: overt silence and covert…

  13. Calculation method for active silencers with a variable section

    NASA Technical Reports Server (NTRS)

    Marinescu, V.

    1974-01-01

    By introducing variable section silencers in divergent and convergent sections or elbows of ventilation plants, the length of classical silencers can be reduced. Presented is an original calculation method for active noise silencers with a continuously variable section, as well as calculation relations worked out by this method for eight common practical cases.

  14. The Sound of Silence: The Case of Virtual Team Organising

    ERIC Educational Resources Information Center

    Panteli, N.; Fineman, S.

    2005-01-01

    In this paper we discuss the role of silence within a virtual organising context. The paper raises issues related to the construction of silence in the virtual team context and the implications it has on team interactions. By drawing upon existing studies on virtual teams, we argue that members' silence may not always have negative effects on team…

  15. After the Blackbird Whistles: Listening to Silence in Classrooms

    ERIC Educational Resources Information Center

    Schultz, Katherine

    2010-01-01

    Background/Context: Students spend a large part of their time in schools in silence. However, teachers tend to spend most of their time attending to student talk. Anthropological and linguistic research has contributed to an understanding of silence in particular communities, offering explanations for students' silence in school. This research…

  16. Silenced Voices and Extraordinary Conversations... Re-Imagining Schools.

    ERIC Educational Resources Information Center

    Fine, Michelle; Weis, Lois

    This collection of papers examines the crisis in public education, focusing on poor and minority children. There are seven chapters in two parts. After "Introduction: Silenced Voices and Extraordinary Conversations" (Michelle Fine and Lois Weis), Part 1, "Scenes of Silencing," includes: (1) "Silencing and Nurturing Voice in an Improbable Context:…

  17. Mutuality, Self-Silencing, and Disordered Eating in College Women

    ERIC Educational Resources Information Center

    Wechsler, Lisa S.; Riggs, Shelley A.; Stabb, Sally D.; Marshall, David M.

    2006-01-01

    The current study examined patterns of association among mutuality, self-silencing, and disordered eating in an ethnically diverse sample of college women (N = 149). Partner mutuality and overall self-silencing were negatively correlated and together were associated with six disordered eating indices. All four self-silencing subscales were…

  18. Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast

    PubMed Central

    Suzuki, Shota; Kato, Hiroaki; Suzuki, Yutaka; Chikashige, Yuji; Hiraoka, Yasushi; Kimura, Hiroshi; Nagao, Koji; Obuse, Chikashi; Takahata, Shinya; Murakami, Yota

    2016-01-01

    In budding yeast, Set2 catalyzes di- and trimethylation of H3K36 (H3K36me2 and H3K36me3) via an interaction between its Set2–Rpb1 interaction (SRI) domain and C-terminal repeats of RNA polymerase II (Pol2) phosphorylated at Ser2 and Ser5 (CTD-S2,5-P). H3K36me2 is sufficient for recruitment of the Rpd3S histone deacetylase complex to repress cryptic transcription from transcribed regions. In fission yeast, Set2 is also responsible for H3K36 methylation, which represses a subset of RNAs including heterochromatic and subtelomeric RNAs, at least in part via recruitment of Clr6 complex II, a homolog of Rpd3S. Here, we show that CTD-S2P-dependent interaction of fission yeast Set2 with Pol2 via the SRI domain is required for formation of H3K36me3, but not H3K36me2. H3K36me3 silenced heterochromatic and subtelomeric transcripts mainly through post-transcriptional and transcriptional mechanisms, respectively, whereas H3K36me2 was not enough for silencing. Clr6 complex II appeared not to be responsible for heterochromatic silencing by H3K36me3. Our results demonstrate that H3K36 methylation has multiple outputs in fission yeast; these findings provide insights into the distinct roles of H3K36 methylation in metazoans, which have different enzymes for synthesis of H3K36me1/2 and H3K36me3. PMID:26792892

  19. Biased predecision processing.

    PubMed

    Brownstein, Aaron L

    2003-07-01

    Decision makers conduct biased predecision processing when they restructure their mental representation of the decision environment to favor one alternative before making their choice. The question of whether biased predecision processing occurs has been controversial since L. Festinger (1957) maintained that it does not occur. The author reviews relevant research in sections on theories of cognitive dissonance, decision conflict, choice certainty, action control, action phases, dominance structuring, differentiation and consolidation, constructive processing, motivated reasoning, and groupthink. Some studies did not find evidence of biased predecision processing, but many did. In the Discussion section, the moderators are summarized and used to assess the theories. PMID:12848220

  20. Epigenetic silencing by the HUSH complex mediates position-effect variegation in human cells*

    PubMed Central

    Matheson, Nicholas J.; Wals, Kim; Antrobus, Robin; Göttgens, Berthold; Dougan, Gordon; Dawson, Mark A.; Lehner, Paul J.

    2015-01-01

    Forward genetic screens in Drosophila melanogaster for modifiers of position-effect variegation have revealed the basis of much of our understanding of heterochromatin. We took an analogous approach to identify genes required for epigenetic repression in human cells. A non-lethal forward genetic screen in near-haploid KBM7 cells identified the Human Silencing Hub (HUSH), a complex of three poorly-characterised proteins, TASOR, MPP8, and periphilin, which is absent from Drosophila but conserved from fish to humans. Loss of HUSH subunits resulted in decreased H3K9me3 at both endogenous genomic loci and retroviruses integrated into heterochromatin. Our results suggest that the HUSH complex is recruited to genomic loci rich in H3K9me3, where subsequent recruitment of the methyltransferase SETDB1 is required for further H3K9me3 deposition to maintain transcriptional silencing. PMID:26022416

  1. A point mutation in a silencer module reduces the promoter activity for the human mercaptopyruvate sulfurtransferase.

    PubMed

    Nagahara, Noriyuki; Sreeja, V G; Li, Qing; Shimizu, Takako; Tsuchiya, Terumasa; Fujii-Kuriyama, Yoshiaki

    2004-11-01

    A promoter region of human mercaptopyruvate sulfurtransferase (MST) [EC 2.8.1.2] is G+C-rich and TATA-less, showing features of a house-keeping gene. In the core promoter, a GC box (-284:GGGGCGTGGC:-275) and an initiator (-219:TTATATG:-225) are found. A cap site hunting analysis for human liver cDNA revealed four possible transcriptional start sites, nucleotides -223, -159, -35 and -25. Point mutagenesis and deletion studies suggest that a module of the silencer element is -394:GCTG:-391. A replacement of -391G to C lost the silencer function; on the other hand, a replacement of -394G to T or C, -393C to T or -392T to G markedly reduced the promoter activity. PMID:15507321

  2. The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing

    PubMed Central

    Jacinto, Filipe V.; Benner, Chris; Hetzer, Martin W.

    2015-01-01

    Nucleoporins (Nups) are a family of proteins best known as the constituent building blocks of nuclear pore complexes (NPCs), membrane-embedded channels that mediate nuclear transport across the nuclear envelope. Recent evidence suggests that several Nups have additional roles in controlling the activation and silencing of developmental genes; however, the mechanistic details of these functions remain poorly understood. Here, we show that depletion of Nup153 in mouse embryonic stem cells (mESCs) causes the derepression of developmental genes and induction of early differentiation. This loss of stem cell identity is not associated with defects in the nuclear import of key pluripotency factors. Rather, Nup153 binds around the transcriptional start site (TSS) of developmental genes and mediates the recruitment of the polycomb-repressive complex 1 (PRC1) to a subset of its target loci. Our results demonstrate a chromatin-associated role of Nup153 in maintaining stem cell pluripotency by functioning in mammalian epigenetic gene silencing. PMID:26080816

  3. Elaboration, Diversification and Regulation of the Sir1 Family of Silencing Proteins in Saccharomyces

    PubMed Central

    Gallagher, Jennifer E. G.; Babiarz, Joshua E.; Teytelman, Leonid; Wolfe, Kenneth H.; Rine, Jasper

    2009-01-01

    Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. Saccharomyces cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, of heterochromatic silencing at the HMR and HML loci. In several Saccharomyces species, we discovered multiple paralogs of Sir1, called Kos1–Kos4 (Kin of Sir1). The Kos and Sir1 proteins contributed partially overlapping functions to silencing of both cryptic mating loci in S. bayanus. Mutants of these paralogs reduced silencing at HML more than at HMR. Most genes of the SIR1 family were located near telomeres, and at least one paralog was regulated by telomere position effect. In S. cerevisiae, Sir1 is recruited to the silencers at HML and HMR via its ORC interacting region (OIR), which binds the bromo adjacent homology (BAH) domain of Orc1. Zygosaccharomyces rouxii, which diverged from Saccharomyces after the appearance of the silent mating cassettes, but before the whole-genome duplication, contained an ortholog of Kos3 that was apparently the archetypal member of the family, with only one OIR. In contrast, a duplication of this domain was present in all orthologs of Sir1, Kos1, Kos2, and Kos4. We propose that the functional specialization of Sir3, itself a paralog of Orc1, as a silencing protein was facilitated by the tandem duplication of the OIR domain in the Sir1 family, allowing distinct Sir1–Sir3 and Sir1–Orc1 interactions through OIR–BAH domain interactions. PMID:19171939

  4. Diagnosing and prioritizing uncertainties according to their relevance for policy: the case of transgene silencing.

    PubMed

    Krayer von Krauss, Martin Paul; Kaiser, Matthias; Almaas, Vibeke; van der Sluijs, Jeroen; Kloprogge, Penny

    2008-02-01

    Uncertainty often becomes problematic when science is used to support decision making in the policy process. Scientists can contribute to a more constructive approach to uncertainty by making their uncertainties transparent. In this article, an approach to systematic uncertainty diagnosis is demonstrated on the case study of transgene silencing and GMO risk assessment. Detailed interviews were conducted with five experts on transgene silencing to obtain quantitative and qualitative information on their perceptions of the uncertainty characterising our knowledge of the phenomena. The results indicate that there are competing interpretations of the cause-effect relationships leading to gene silencing (model structure uncertainty). In particular, the roles of post-transcriptional gene silencing, position effects, DNA-DNA interactions, direct-repeat DNA structures, recognition factors and dsRNA and aberrant zRNA are debated. The study highlights several sources of uncertainty beyond the statistical uncertainty commonly reported in risk assessment. The results also reveal a discrepancy between the way in which uncertainties would be prioritized on the basis of the uncertainty analysis conducted, and the way in which they would be prioritized on the basis of expert willingness to pay to eliminate uncertainty. The results also reveal a diversity of expert opinions on the uncertainty characterizing transgene silencing. Because the methodology used to diagnose uncertainties was successful in revealing a broad spectrum of uncertainties as well as a diversity of expert opinion, it is concluded that the methodology used could contribute to increasing transparency and fostering a critical discussion on uncertainty in the decision making process. PMID:17988720

  5. Modification of Seed Oil Composition in Arabidopsis by Artificial microRNA-Mediated Gene Silencing

    PubMed Central

    Belide, Srinivas; Petrie, James Robertson; Shrestha, Pushkar; Singh, Surinder Pal

    2012-01-01

    Various post transcriptional gene silencing strategies have been developed and exploited to study gene function or engineer disease resistance. The recently developed artificial microRNA strategy is an alternative method of effectively silencing target genes. The Δ12-desaturase (FAD2), Fatty acid elongase (FAE1), and Fatty acyl-ACP thioesterase B (FATB) were targeted with amiR159b-based constructs in Arabidopsis thaliana to evaluate changes in oil composition when expressed with the seed-specific Brassica napus truncated napin (FP1) promoter. Fatty acid profiles from transgenic homozygous seeds reveal that the targeted genes were silenced. The down-regulation of the AtFAD-2 gene substantially increased oleic acid from the normal levels of ∼15% to as high as 63.3 and reduced total PUFA content (18:2Δ9,12 + 18:3Δ9,12,15 + 20:2Δ11,14 + 20:3Δ11,14,17) from 46.8 to 4.8%. Δ12-desaturase activity was reduced to levels as low as those in the null fad-2-1 and fad-2-2 mutants. Silencing of the FAE1 gene resulted in the reduction of eicosenoic acid (20:1Δ11) to 1.9 from 15.4% and silencing of FATB resulted in the reduction of palmitic acid (16:0) to 4.4% from 8.0%. Reduction in FATB activity is comparable with a FATB knock-out mutant. These results demonstrate for the first time amiR159b constructs targeted against three endogenous seed-expressed genes are clearly able to down-regulate and generate genotypic changes that are inherited stably over three generations. PMID:22866055

  6. Separation of stem cell maintenance and transposon silencing functions of Piwi protein

    PubMed Central

    Klenov, Mikhail S.; Sokolova, Olesya A.; Yakushev, Evgeny Y.; Stolyarenko, Anastasia D.; Mikhaleva, Elena A.; Lavrov, Sergey A.; Gvozdev, Vladimir A.

    2011-01-01

    Piwi-interacting RNAs (piRNAs) and Piwi proteins have the evolutionarily conserved function of silencing of repetitive genetic elements in germ lines. The founder of the Piwi subfamily, Drosophila nuclear Piwi protein, was also shown to be required for the maintenance of germ-line stem cells (GSCs). Hence, null mutant piwi females exhibit two types of abnormalities, overexpression of transposons and severely underdeveloped ovaries. It remained unknown whether the failure of GSC maintenance is related to transposon derepression or if GSC self-renewal and piRNA silencing are two distinct functions of the Piwi protein. We have revealed a mutation, piwiNt, removing the nuclear localization signal of the Piwi protein. piwiNt females retain the ability of GSC self-renewal and a near-normal number of egg chambers in the ovarioles but display a drastic transposable element derepression and nuclear accumulation of their transcripts in the germ line. piwiNt mutants are sterile most likely because of the disturbance of piRNA-mediated transposon silencing. Analysis of chromatin modifications in the piwiNt ovaries indicated that Piwi causes chromatin silencing only of certain types of transposons, whereas others are repressed in the nuclei without their chromatin modification. Thus, Piwi nuclear localization that is required for its silencing function is not essential for the maintenance of GSCs. We suggest that the Piwi function in GSC self-renewal is independent of transposon repression and is normally realized in the cytoplasm of GSC niche cells. PMID:22065765

  7. Separation of stem cell maintenance and transposon silencing functions of Piwi protein.

    PubMed

    Klenov, Mikhail S; Sokolova, Olesya A; Yakushev, Evgeny Y; Stolyarenko, Anastasia D; Mikhaleva, Elena A; Lavrov, Sergey A; Gvozdev, Vladimir A

    2011-11-15

    Piwi-interacting RNAs (piRNAs) and Piwi proteins have the evolutionarily conserved function of silencing of repetitive genetic elements in germ lines. The founder of the Piwi subfamily, Drosophila nuclear Piwi protein, was also shown to be required for the maintenance of germ-line stem cells (GSCs). Hence, null mutant piwi females exhibit two types of abnormalities, overexpression of transposons and severely underdeveloped ovaries. It remained unknown whether the failure of GSC maintenance is related to transposon derepression or if GSC self-renewal and piRNA silencing are two distinct functions of the Piwi protein. We have revealed a mutation, piwi(Nt), removing the nuclear localization signal of the Piwi protein. piwi(Nt) females retain the ability of GSC self-renewal and a near-normal number of egg chambers in the ovarioles but display a drastic transposable element derepression and nuclear accumulation of their transcripts in the germ line. piwi(Nt) mutants are sterile most likely because of the disturbance of piRNA-mediated transposon silencing. Analysis of chromatin modifications in the piwi(Nt) ovaries indicated that Piwi causes chromatin silencing only of certain types of transposons, whereas others are repressed in the nuclei without their chromatin modification. Thus, Piwi nuclear localization that is required for its silencing function is not essential for the maintenance of GSCs. We suggest that the Piwi function in GSC self-renewal is independent of transposon repression and is normally realized in the cytoplasm of GSC niche cells. PMID:22065765

  8. Diagnosing and prioritizing uncertainties according to their relevance for policy: the case of transgene silencing.

    PubMed

    Krayer von Krauss, Martin Paul; Kaiser, Matthias; Almaas, Vibeke; van der Sluijs, Jeroen; Kloprogge, Penny

    2008-02-01

    Uncertainty often becomes problematic when science is used to support decision making in the policy process. Scientists can contribute to a more constructive approach to uncertainty by making their uncertainties transparent. In this article, an approach to systematic uncertainty diagnosis is demonstrated on the case study of transgene silencing and GMO risk assessment. Detailed interviews were conducted with five experts on transgene silencing to obtain quantitative and qualitative information on their perceptions of the uncertainty characterising our knowledge of the phenomena. The results indicate that there are competing interpretations of the cause-effect relationships leading to gene silencing (model structure uncertainty). In particular, the roles of post-transcriptional gene silencing, position effects, DNA-DNA interactions, direct-repeat DNA structures, recognition factors and dsRNA and aberrant zRNA are debated. The study highlights several sources of uncertainty beyond the statistical uncertainty commonly reported in risk assessment. The results also reveal a discrepancy between the way in which uncertainties would be prioritized on the basis of the uncertainty analysis conducted, and the way in which they would be prioritized on the basis of expert willingness to pay to eliminate uncertainty. The results also reveal a diversity of expert opinions on the uncertainty characterizing transgene silencing. Because the methodology used to diagnose uncertainties was successful in revealing a broad spectrum of uncertainties as well as a diversity of expert opinion, it is concluded that the methodology used could contribute to increasing transparency and fostering a critical discussion on uncertainty in the decision making process.

  9. Introduction to Unconscious Bias

    NASA Astrophysics Data System (ADS)

    Schmelz, Joan T.

    2010-05-01

    We all have biases, and we are (for the most part) unaware of them. In general, men and women BOTH unconsciously devalue the contributions of women. This can have a detrimental effect on grant proposals, job applications, and performance reviews. Sociology is way ahead of astronomy in these studies. When evaluating identical application packages, male and female University psychology professors preferred 2:1 to hire "Brian” over "Karen” as an assistant professor. When evaluating a more experienced record (at the point of promotion to tenure), reservations were expressed four times more often when the name was female. This unconscious bias has a repeated negative effect on Karen's career. This talk will introduce the concept of unconscious bias and also give recommendations on how to address it using an example for a faculty search committee. The process of eliminating unconscious bias begins with awareness, then moves to policy and practice, and ends with accountability.

  10. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  11. Virus-induced gene silencing using begomovirus satellite molecules.

    PubMed

    Zhou, Xueping; Huang, Changjun

    2012-01-01

    Virus-induced gene silencing (VIGS) has emerged as a powerful method for studying gene function. VIGS is induced by infecting a plant with a plant virus that has had its genome modified to include a sequence from the host gene to be silenced. DNAβ and DNA1 are satellite and single-stranded DNA molecules associated with begomoviruses (family Geminiviridae). We converted DNAβ and DNA1 into gene-silencing vectors. The VIGS vectors can induce silencing efficiently in many solanaceous plants. Here, we describe procedures for the use of these two gene-silencing vectors for VIGS in different hosts. PMID:22678572

  12. Political bias is tenacious.

    PubMed

    Ditto, Peter H; Wojcik, Sean P; Chen, Eric Evan; Grady, Rebecca Hofstein; Ringel, Megan M

    2015-01-01

    Duarte et al. are right to worry about political bias in social psychology but they underestimate the ease of correcting it. Both liberals and conservatives show partisan bias that often worsens with cognitive sophistication. More non-liberals in social psychology is unlikely to speed our convergence upon the truth, although it may broaden the questions we ask and the data we collect. PMID:26786070

  13. Sde2: A novel nuclear protein essential for telomeric silencing and genomic stability in Schizosaccharomyces pombe

    SciTech Connect

    Sugioka-Sugiyama, Rie; Sugiyama, Tomoyasu

    2011-03-18

    Research highlights: {yields} Sde2 is essential for telomere silencing. {yields} Sde2 is involved in the maintenance of genomic stability. {yields} Sde2 promotes the recruitment of SHREC, a histone deacetylase complex, to telomeres. -- Abstract: Telomeres, specialized domains assembled at the ends of linear chromosomes, are essential for genomic stability in eukaryotes. The formation and maintenance of telomeres are governed by numerous factors such as telomeric repeats, telomere-binding proteins, heterochromatin proteins, and telomerase. Here, we report Sde2, a novel nuclear protein essential for telomeric silencing and genomic stability in the fission yeast Schizosaccharomyces pombe. A deficiency in sde2 results in the derepression of the ura4{sup +} gene inserted near telomeric repeats, and the noncoding transcripts from telomeric regions accumulate in sde2{Delta} cells. The loss of Sde2 function compromises transcriptional silencing at telomeres, and this silencing defect is accompanied by increased levels of acetylated histone H3K14 and RNA polymerase II occupancy at telomeres as well as reduced recruitment of the SNF2 ATPase/histone deacetylase-containing complex SHREC to telomeres. Deletion of sde2 also leads to a higher frequency of mitotic minichromosome loss, and sde2{Delta} cells often form asci that contain spores in abnormal numbers, shapes, or both. In addition, sde2{Delta} cells are highly sensitive to several stresses, including high/low temperatures, bleomycin, which induces DNA damage, and thiabendazole, a microtubule-destabilizing agent. Furthermore, Sde2 genetically interacts with the telomere regulators Taz1, Pof3, and Ccq1. These findings demonstrate that Sde2 cooperates with other telomere regulators to maintain functional telomeres, thereby preventing genomic instability.

  14. Development of Agrobacterium-Mediated Virus-Induced Gene Silencing and Performance Evaluation of Four Marker Genes in Gossypium barbadense

    PubMed Central

    Pang, Jinhuan; Zhu, Yue; Li, Qing; Liu, Jinzhi; Tian, Yingchuan; Liu, Yule; Wu, Jiahe

    2013-01-01

    Gossypiumbarbadense is a cultivated cotton species and possesses many desirable traits, including high fiber quality and resistance to pathogens, especially Verticilliumdahliae (a devastating pathogen of Gossypium hirsutum, the main cultivated species). These elite traits are difficult to be introduced into G. hirsutum through classical breeding methods. In addition, genetic transformation of G. barbadense has not been successfully performed. It is therefore important to develop methods for evaluating the function and molecular mechanism of genes in G. barbadense. In this study, we had successfully introduced a virus-induced gene silencing (VIGS) system into three cultivars of G. barbadense by inserting marker genes into the tobacco rattle virus (TRV) vector. After we optimized the VIGS conditions, including light intensity, photoperiod, seedling age and Agrobacterium strain, 100% of plants agroinfiltrated with the GaPDS silencing vector showed white colored leaves. Three other marker genes, GaCLA1, GaANS and GaANR, were employed to further test this VIGS system in G. barbadense. The transcript levels of the endogenous genes in the silenced plants were reduced by more than 99% compared to control plants; these plants presented phenotypic symptoms 2 weeks after inoculation. We introduced a fusing sequence fragment of GaPDS and GaANR gene silencing vectors into a single plant, which resulted in both photobleaching and brownish coloration. The extent of silencing in plants agroinfiltrated with fusing two-gene-silencing vector was consistent with plants harboring a single gene silencing vector. The development of this VIGS system should promote analysis of gene function in G. barbadense, and help to contribute desirable traits for breeding of G. barbadense and G. hirsutum. PMID:24023833

  15. The RNA surveillance complex Pelo-Hbs1 is required for transposon silencing in the Drosophila germline

    PubMed Central

    Yang, Fu; Zhao, Rui; Fang, Xiaofeng; Huang, Huanwei; Xuan, Yang; Ma, Yanting; Chen, Hongyan; Cai, Tao; Qi, Yijun; Xi, Rongwen

    2015-01-01

    Silencing of transposable elements (TEs) in the metazoan germline is critical for genome integrity and is primarily dependent on Piwi proteins and associated RNAs, which exert their function through both transcriptional and posttranscriptional mechanisms. Here, we report that the evolutionarily conserved Pelo (Dom34)-Hbs1 mRNA surveillance complex is required for transposon silencing in the Drosophila germline. In pelo mutant gonads, mRNAs and proteins of some selective TEs are up-regulated. Pelo is not required for piRNA biogenesis, and our studies suggest that Pelo may function at the translational level to silence TEs: This function requires interaction with Hbs1, and overexpression of RpS30a partially reverts TE-silencing defects in pelo mutants. Interestingly, TE silencing and spermatogenesis defects in pelo mutants can also effectively be rescued by expressing the mammalian ortholog of Pelo. We propose that the Pelo-Hbs1 surveillance complex provides another level of defense against the expression of TEs in the germline of Drosophila and possibly all metazoa. PMID:26124316

  16. IVT-seq reveals extreme bias in RNA sequencing

    PubMed Central

    2014-01-01

    Background RNA-seq is a powerful technique for identifying and quantifying transcription and splicing events, both known and novel. However, given its recent development and the proliferation of library construction methods, understanding the bias it introduces is incomplete but critical to realizing its value. Results We present a method, in vitro transcription sequencing (IVT-seq), for identifying and assessing the technical biases in RNA-seq library generation and sequencing at scale. We created a pool of over 1,000 in vitro transcribed RNAs from a full-length human cDNA library and sequenced them with polyA and total RNA-seq, the most common protocols. Because each cDNA is full length, and we show in vitro transcription is incredibly processive, each base in each transcript should be equivalently represented. However, with common RNA-seq applications and platforms, we find 50% of transcripts have more than two-fold and 10% have more than 10-fold differences in within-transcript sequence coverage. We also find greater than 6% of transcripts have regions of dramatically unpredictable sequencing coverage between samples, confounding accurate determination of their expression. We use a combination of experimental and computational approaches to show rRNA depletion is responsible for the most significant variability in coverage, and several sequence determinants also strongly influence representation. Conclusions These results show the utility of IVT-seq for promoting better understanding of bias introduced by RNA-seq. We find rRNA depletion is responsible for substantial, unappreciated biases in coverage introduced during library preparation. These biases suggest exon-level expression analysis may be inadvisable, and we recommend caution when interpreting RNA-seq results. PMID:24981968

  17. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation.

    PubMed

    Talbot, Sébastien; Abdulnour, Raja-Elie E; Burkett, Patrick R; Lee, Seungkyu; Cronin, Shane J F; Pascal, Maud A; Laedermann, Cedric; Foster, Simmie L; Tran, Johnathan V; Lai, Nicole; Chiu, Isaac M; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M; Kuchroo, Vijay K; Bean, Bruce P; Levy, Bruce D; Woolf, Clifford J

    2015-07-15

    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  18. Silencing nociceptor neurons reduces allergic airway inflammation

    PubMed Central

    Talbot, Sébastien; Abdulnour, Raja-Elie E.; Burkett, Patrick R.; Lee, Seungkyu; Cronin, Shane J.F.; Pascal, Maud A.; Laedermann, Cedric; Foster, Simmie L.; Tran, Johnathan V.; Lai, Nicole; Chiu, Isaac M.; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M.; Kuchroo, Vijay K.; Bean, Bruce P.; Levy, Bruce D.; Woolf, Clifford J.

    2015-01-01

    Summary Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8+ sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large pore ion channels to specifically block nociceptors, substantially reduced ovalbumin or house dust mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4+ and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  19. Homology-dependent Gene Silencing in Paramecium

    PubMed Central

    Ruiz, Françoise; Vayssié, Laurence; Klotz, Catherine; Sperling, Linda; Madeddu, Luisa

    1998-01-01

    Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant. PMID:9529389

  20. Measurement of insertion loss of ducted silencers

    NASA Astrophysics Data System (ADS)

    Iho, L.; Jonasson, H.

    1980-05-01

    Measurements were carried out with different sound sources, with and without terminating transmission element, with and without vibration isolation, with different duct lengths and with different transition elements at different positions. Testing was done in the 1/3 octave band in a reverberation room. The Based on the conclusions, a revised method for measuring the transmission loss of ducted silencers without air flow is proposed.

  1. Experimental studies of a drumlike silencer.

    PubMed

    Choy, Y S; Huang, Lixi

    2002-11-01

    The theoretical finding of the broadband performance of a reactive silencer is validated experimentally. The silencer consists of two highly stretched membranes lining part of the duct and backed by two long and shallow cavities. The test rig was built with a small square duct of 5 cm in dimension, and each cavity is 5 cm deep and 25 cm long. Two types of metal foils, stainless steel and copper, were used, and the lowest membrane-to-air mass ratio was 1.3. A transmission loss in excess of 10 dB was achieved over more than one octave band. For one configuration close to the optimal parameters, the predicted ratio of the frequency band limits is 2.47, while the experiment gave 2.35. Three spectral peaks were found in the stopband, as predicted, but the peaks were broader than prediction, indicating the presence of significant sound energy dissipation mechanisms. Comparison with theoretical simulation shows that the cavity damping dominates over membrane friction. Tests using heavier membranes and membrane with different levels of tension also agree with predictions. Issues of practical implementation of the concept as a flow-through silencer are also addressed.

  2. Experimental studies of a drumlike silencer

    NASA Astrophysics Data System (ADS)

    Choy, Y. S.; Huang, Lixi

    2002-11-01

    The theoretical finding of the broadband performance of a reactive silencer is validated experimentally. The silencer consists of two highly stretched membranes lining part of the duct and backed by two long and shallow cavities. The test rig was built with a small square duct of 5 cm in dimension, and each cavity is 5 cm deep and 25 cm long. Two types of metal foils, stainless steel and copper, were used, and the lowest membrane-to-air mass ratio was 1.3. A transmission loss in excess of 10 dB was achieved over more than one octave band. For one configuration close to the optimal parameters, the predicted ratio of the frequency band limits is 2.47, while the experiment gave 2.35. Three spectral peaks were found in the stopband, as predicted, but the peaks were broader than prediction, indicating the presence of significant sound energy dissipation mechanisms. Comparison with theoretical simulation shows that the cavity damping dominates over membrane friction. Tests using heavier membranes and membrane with different levels of tension also agree with predictions. Issues of practical implementation of the concept as a flow-through silencer are also addressed. copyright 2002 Acoustical Society of America.

  3. Analysis and design of pod silencers

    NASA Astrophysics Data System (ADS)

    Munjal, M. L.

    2003-05-01

    Parallel baffle mufflers or split silencers are used extensively in heating, ventilation and air conditioning systems for increased attenuation of noise within a short or given length. Acoustic analysis of rectangular parallel baffle mufflers runs on the same lines as that of a rectangular duct lined on two sides. This simplification would not hold for circular configurations. Often, a cylindrical pod is inserted into a circular lined duct to increase its attenuation (or transmission loss), thereby making the flow passage annular and providing an additional absorptive layer on the inner side of this annular passage. This configuration, called a pod silencer, is analyzed here for the four-pole parameters as well as transmission loss, making use of the bulk reaction model. The effect of thin protective film or a highly perforated metallic plate is duly incorporated by means of a grazing-flow impedance. Use of appropriate boundary conditions leads to a set of linear homogeneous equations which in turn lead to a transcendental frequency equation in the unknown complex axial wave number. This is solved by means of the Newton-Raphson method, and the axial wave number is then used in the expressions for transmission loss as well as the transfer matrix parameters. Finally, results of a parametric study are reported to help the designer in optimization of a pod silencer configuration within a given overall size for minimal cost.

  4. RNA Interference of Soybean Isoflavone Synthase Genes Leads to Silencing in Tissues Distal to the Transformation Site and to Enhanced Susceptibility to Phytophthora sojae1

    PubMed Central

    Subramanian, Senthil; Graham, Madge Y.; Yu, Oliver; Graham, Terrence L.

    2005-01-01

    Isoflavones are thought to play diverse roles in plant-microbe interactions and are also potentially important to human nutrition and medicine. Isoflavone synthase (IFS) is a key enzyme for the formation of the isoflavones. Here, we examined the consequences of RNAi silencing of genes for this enzyme in soybean (Glycine max). Soybean cotyledon tissues were transformed with Agrobacterium rhizogenes carrying an RNAi silencing construct designed to silence expression of both copies of IFS genes. Approximately 50% of emerging roots were transformed with the RNAi construct, and most transformed roots exhibited >95% silencing of isoflavone accumulation. Silencing of IFS was also demonstrated throughout the entire cotyledon (in tissues distal to the transformation site) both by high-performance liquid chromatography analysis of isoflavones and by real-time reverse transcription-PCR. This distal silencing led to a nearly complete suppression of mRNA accumulation for both the IFS1 and IFS2 genes and of isoflavone accumulations induced by wounding or treatment with the cell wall glucan elicitor from Phytophthora sojae. Preformed isoflavone conjugates were not reduced in distal tissues, suggesting little turnover of these stored isoflavone pools. Distal silencing was established within just 5 d of transformation and was highly efficient for a 3- to 4-d period, after which it was no longer apparent in most experiments. Silencing of IFS was effective in at least two genotypes and led to enhanced susceptibility to P. sojae, disrupting both R gene-mediated resistance in roots and nonrace-specific resistance in cotyledon tissues. The soybean cotyledon system, already a model system for defense signal-response and cell-to-cell signaling, may provide a convenient and effective system for functional analysis of plant genes through gene silencing. PMID:15778457

  5. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells

    PubMed Central

    Reinhard, Tobias; Popp, Anna; Schäffer, Isabell; Raulefs, Susanne; Kong, Bo; Esposito, Irene

    2016-01-01

    Acinar-to-ductal metaplasia (ADM) occurring in cerulein-mediated pancreatitis or in oncogenic Kras-driven pancreatic cancer development is accompanied by extensive changes in the transcriptional program. In this process, acinar cells shut down the expression of acinar specific differentiation genes and re-express genes usually found in embryonic pancreatic progenitor cells. Previous studies have demonstrated that a loss of acinar-specific transcription factors sensitizes the cells towards oncogenic transformation, ultimately resulting in cancer development. However, the mechanism behind the transcriptional silencing of acinar cell fate genes in ADM and pancreatic cancer is largely unknown. Here, we analyzed whether elevated levels of the polycomb repressor complex 1 (PRC1) components Bmi1 and Ring1b and their catalyzed histone modification H2AK119ub in ADMs and tumor cells, are responsible for the mediation of acinar gene silencing. Therefore, we performed chromatin-immunoprecipitation in in vitro generated ADMs and isolated murine tumor cells against the repressive histone modifications H3K27me3 and H2AK119ub. We established that the acinar transcription factor complex Ptf1-L is epigenetically silenced in ADMs as well as in pancreatic tumor cells. For the first time, this work presents a possible mechanism of acinar gene silencing, which is an important prerequisite in the initiation and maintenance of a dedifferentiated cell state in ADMs and tumor cells. PMID:26716510

  6. Runaway transcription

    PubMed Central

    2013-01-01

    A newly demonstrated defect in RNA polymerase II termination caused by 7SK snRNA knockdown may have revealed a novel mechanism uncoupling RNA processing from transcription. Please see related Research article, http://genomebiology.com/2013/14/9/R98 PMID:24079702

  7. The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.

    PubMed

    Gartenberg, Marc R; Smith, Jeffrey S

    2016-08-01

    Transcriptional silencing in Saccharomyces cerevisiae occurs at several genomic sites including the silent mating-type loci, telomeres, and the ribosomal DNA (rDNA) tandem array. Epigenetic silencing at each of these domains is characterized by the absence of nearly all histone modifications, including most prominently the lack of histone H4 lysine 16 acetylation. In all cases, silencing requires Sir2, a highly-conserved NAD(+)-dependent histone deacetylase. At locations other than the rDNA, silencing also requires additional Sir proteins, Sir1, Sir3, and Sir4 that together form a repressive heterochromatin-like structure termed silent chromatin. The mechanisms of silent chromatin establishment, maintenance, and inheritance have been investigated extensively over the last 25 years, and these studies have revealed numerous paradigms for transcriptional repression, chromatin organization, and epigenetic gene regulation. Studies of Sir2-dependent silencing at the rDNA have also contributed to understanding the mechanisms for maintaining the stability of repetitive DNA and regulating replicative cell aging. The goal of this comprehensive review is to distill a wide array of biochemical, molecular genetic, cell biological, and genomics studies down to the "nuts and bolts" of silent chromatin and the processes that yield transcriptional silencing. PMID:27516616

  8. Halo velocity bias

    NASA Astrophysics Data System (ADS)

    Biagetti, Matteo; Desjacques, Vincent; Kehagias, Alex; Riotto, Antonio

    2014-11-01

    It has been recently shown that any halo velocity bias present in the initial conditions does not decay to unity, in agreement with predictions from peak theory. However, this is at odds with the standard formalism based on the coupled-fluids approximation for the coevolution of dark matter and halos. Starting from conservation laws in phase space, we discuss why the fluid momentum conservation equation for the biased tracers needs to be modified in accordance with the change advocated in Baldauf et al. Our findings indicate that a correct description of the halo properties should properly take into account peak constraints when starting from the Vlasov-Boltzmann equation.

  9. Characterization of transcriptional regulatory domains of ankyrin repeat cofactor-1

    SciTech Connect

    Zhang, Aihua; Li, Chia-Wei; Chen, J. Don . E-mail: chenjd@umdnj.edu

    2007-07-13

    The ankyrin repeats cofactor-1 (ANCO-1) was recently identified as a p160 coactivator-interacting protein that may inhibit transcriptional activity of nuclear receptors. Here, we have characterized the transcriptional regulatory domains of ANCO-1. Two intrinsic repression domains (RD) were identified: an N-terminal RD1 at residues 318-611 and a C-terminal RD2 at 2369-2663. ANCO-1 also contains an activation domain (AD) capable of stimulating transcription in both mammalian and yeast cells. The minimal AD was delimited to a 70-amino acid region at residues 2076-2145. Overall, full-length ANCO-1 exhibited transcriptional repressor activity, suggesting that RD domains may suppress the AD activity. We further demonstrated that ANCO-1 silencing by siRNA enhanced progesterone receptor-mediated transcription. Together, these results indicate that the transcriptional potential of ANCO-1 may be modulated by a combination of repression and activation signals.

  10. Battles and hijacks: noncoding transcription in plants.

    PubMed

    Ariel, Federico; Romero-Barrios, Natali; Jégu, Teddy; Benhamed, Moussa; Crespi, Martin

    2015-06-01

    Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription.

  11. The horizontally-acquired response regulator SsrB drives a Salmonella lifestyle switch by relieving biofilm silencing

    PubMed Central

    Desai, Stuti K; Winardhi, Ricksen S; Periasamy, Saravanan; Dykas, Michal M; Jie, Yan; Kenney, Linda J

    2016-01-01

    A common strategy by which bacterial pathogens reside in humans is by shifting from a virulent lifestyle, (systemic infection), to a dormant carrier state. Two major serovars of Salmonella enterica, Typhi and Typhimurium, have evolved a two-component regulatory system to exist inside Salmonella-containing vacuoles in the macrophage, as well as to persist as asymptomatic biofilms in the gallbladder. Here we present evidence that SsrB, a transcriptional regulator encoded on the SPI-2 pathogenicity-island, determines the switch between these two lifestyles by controlling ancestral and horizontally-acquired genes. In the acidic macrophage vacuole, the kinase SsrA phosphorylates SsrB, and SsrB~P relieves silencing of virulence genes and activates their transcription. In the absence of SsrA, unphosphorylated SsrB directs transcription of factors required for biofilm formation specifically by activating csgD (agfD), the master biofilm regulator by disrupting the silenced, H-NS-bound promoter. Anti-silencing mechanisms thus control the switch between opposing lifestyles. DOI: http://dx.doi.org/10.7554/eLife.10747.001 PMID:26880544

  12. The MUT9p kinase phosphorylates histone H3 threonine 3 and is necessary for heritable epigenetic silencing in Chlamydomonas.

    PubMed

    Casas-Mollano, J Armando; Jeong, Byeong-Ryool; Xu, Jianping; Moriyama, Hideaki; Cerutti, Heriberto

    2008-04-29

    Changes in chromatin organization are emerging as key regulators in nearly every aspect of DNA-templated metabolism in eukaryotes. Histones undergo many, largely reversible, posttranslational modifications that affect chromatin structure. Some modifications, such as trimethylation of histone H3 on Lys 4 (H3K4me3), correlate with transcriptional activation, whereas others, such as methylation of histone H3 on Lys 27 (H3K27me), are associated with silent chromatin. Posttranslational histone modifications may also be involved in the inheritance of chromatin states. Histone phosphorylation has been implicated in a variety of cellular processes but, because of the dynamic nature of this modification, its potential role in long-term gene silencing has remained relatively unexplored. We report here that a Chlamydomonas reinhardtii mutant defective in a Ser/Thr protein kinase (MUT9p), which phosphorylates histones H3 and H2A, shows deficiencies in the heritable repression of transgenes and transposons. Moreover, based on chromatin immunoprecipitation analyses, phosphorylated H3T3 (H3T3ph) and monomethylated H3K4 (H3K4me1) are inversely correlated with di/trimethylated H3K4 and associate preferentially with silenced transcription units. Conversely, the loss of those marks in mutant strains correlates with the transcriptional reactivation of transgenes and transposons. Our results suggest that H3T3ph and H3K4me1 function as reinforcing epigenetic marks for the silencing of euchromatic loci in Chlamydomonas. PMID:18420823

  13. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    PubMed Central

    2011-01-01

    Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs). These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA) mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter) the helper component-proteinase (HC-Pro) derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent). Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1) were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S-adenosyl-L-methionine (SAM) were

  14. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    PubMed

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  15. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling

    PubMed Central

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  16. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing

    PubMed Central

    Nishina, Kazutaka; Piao, Wenying; Yoshida-Tanaka, Kie; Sujino, Yumiko; Nishina, Tomoko; Yamamoto, Tsuyoshi; Nitta, Keiko; Yoshioka, Kotaro; Kuwahara, Hiroya; Yasuhara, Hidenori; Baba, Takeshi; Ono, Fumiko; Miyata, Kanjiro; Miyake, Koichi; Seth, Punit P.; Low, Audrey; Yoshida, Masayuki; Bennett, C. Frank; Kataoka, Kazunori; Mizusawa, Hidehiro; Obika, Satoshi; Yokota, Takanori

    2015-01-01

    Antisense oligonucleotides (ASOs) are recognized therapeutic agents for the modulation of specific genes at the post-transcriptional level. Similar to any medical drugs, there are opportunities to improve their efficacy and safety. Here we develop a short DNA/RNA heteroduplex oligonucleotide (HDO) with a structure different from double-stranded RNA used for short interfering RNA and single-stranded DNA used for ASO. A DNA/locked nucleotide acid gapmer duplex with an α-tocopherol-conjugated complementary RNA (Toc-HDO) is significantly more potent at reducing the expression of the targeted mRNA in liver compared with the parent single-stranded gapmer ASO. Toc-HDO also improves the phenotype in disease models more effectively. In addition, the high potency of Toc-HDO results in a reduction of liver dysfunction observed in the parent ASO at a similar silencing effect. HDO technology offers a novel concept of therapeutic oligonucleotides, and the development of this molecular design opens a new therapeutic field. PMID:26258894

  17. Silencing of unsynapsed meiotic chromosomes in the mouse.

    PubMed

    Turner, James M A; Mahadevaiah, Shantha K; Fernandez-Capetillo, Oscar; Nussenzweig, André; Xu, Xiaoling; Deng, Chu-Xia; Burgoyne, Paul S

    2005-01-01

    In Neurospora, DNA unpaired in meiosis both is silenced and induces silencing of all DNA homologous to it. This process, called meiotic silencing by unpaired DNA, is thought to protect the host genome from invasion by transposable elements. We now show that silencing of unpaired (unsynapsed) chromosome regions also takes place in the mouse during both male and female meiosis. The tumor suppressor protein BRCA1 is implicated in this silencing, mirroring its role in the meiotic silencing of the X and Y chromosomes in normal male meiosis. These findings impact on the interpretation of the relationship between synaptic errors and sterility in mammals and extend our understanding of the biology of Brca1.

  18. Efficiency of gene silencing in Arabidopsis: direct inverted repeats vs. transitive RNAi vectors.

    SciTech Connect

    Filichkin, Sergei A; DiFazio, Steven P; Brunner, Amy M; Davis, John M; Yang, Zamin Koo; Kalluri, Udaya C; Arias, Renee S; Etherington, Elizabeth; Tuskan, Gerald A; Strauss, S

    2007-01-01

    We investigated the efficiency of RNA interference (RNAi) in Arabidopsis using transitive and homologous inverted repeat (hIR) vectors. hIR constructs carry self-complementary intron-spliced fragments of the target gene whereas transitive vectors have the target sequence fragment adjacent to an intron-spliced, inverted repeat of heterologous origin. Both transitive and hIR constructs facilitated specific and heritable silencing in the three genes studied (AP1, ETTIN and TTG1). Both types of vectors produced a phenotypic series that phenocopied reduction of function mutants for the respective target gene. The hIR yielded up to fourfold higher proportions of events with strongly manifested reduction of function phenotypes compared to transitive RNAi. We further investigated the efficiency and potential off-target effects of AP1 silencing by both types of vectors using genome-scale microarrays and quantitative RT-PCR. The depletion of AP1 transcripts coincided with reduction of function phenotypic changes among both hIR and transitive lines and also showed similar expression patterns among differentially regulated genes. We did not detect significant silencing directed against homologous potential off-target genes when constructs were designed with minimal sequence similarity. Both hIR and transitive methods are useful tools in plant biotechnology and genomics. The choice of vector will depend on specific objectives such as cloning throughput, number of events and degree of suppression required.

  19. Host-induced silencing of Fusarium culmorum genes protects wheat from infection.

    PubMed

    Chen, Wanxin; Kastner, Christine; Nowara, Daniela; Oliveira-Garcia, Ely; Rutten, Twan; Zhao, Yusheng; Deising, Holger B; Kumlehn, Jochen; Schweizer, Patrick

    2016-09-01

    Plants producing antisense or double-stranded RNA molecules that target specific genes of eukaryotic pests or pathogens can become protected from their attack. This beneficial effect was also reported for plant-fungus interactions and is believed to reflect uptake of the RNAs by the fungus via an as yet unknown mechanism, followed by target gene silencing. Here we report that wheat plants pre-infected with Barley stripe mosaic virus (BSMV) strains containing antisense sequences against target genes of the Fusarium head blight (FHB) fungus F. culmorum caused a reduction of corresponding transcript levels in the pathogen and reduced disease symptoms. Stable transgenic wheat plants carrying an RNAi hairpin construct against the β-1, 3-glucan synthase gene FcGls1 of F. culmorum or a triple combination of FcGls1 with two additional, pre-tested target genes also showed enhanced FHB resistance in leaf and spike inoculation assays under greenhouse and near-field conditions, respectively. Microscopic evaluation of F. culmorum development in plants transiently or stably expressing FcGls1 silencing constructs revealed aberrant, swollen fungal hyphae, indicating severe hyphal cell wall defects. The results lead us to propose host-induced gene silencing (HIGS) as a plant protection approach that may also be applicable to highly FHB-susceptible wheat genotypes. PMID:27540093

  20. Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing

    NASA Astrophysics Data System (ADS)

    Mok, Hyejung; Lee, Soo Hyeon; Park, Ji Won; Park, Tae Gwan

    2010-03-01

    Small interfering RNA (siRNA) with 19-21 base pairs has been recently recognized as a new therapeutic agent for effectively silencing a specific gene on a post-transcription level. For siRNA therapeutics, safe and efficient delivery issues are significant hurdles to clinical applications. Here we present a new class of biologically active siRNA structure based on chemically self-crosslinked and multimerized siRNA through cleavable disulphide linkages. The multimerized siRNA can produce more stable and compact polyelectrolyte complexes with less cytotoxic cationic carriers than naked siRNA because of substantially increased charge densities and the presence of flexible chemical linkers in the backbone. The cleavable and multimerized siRNA shows greatly enhanced gene-silencing efficiencies in vitro and in vivo through a target-messenger-RNA-specific RNA interference processing without significantly eliciting immune induction. This study demonstrates that the multimerized siRNA structure complexed with selected cationic condensing agents can serve as potential gene-silencing therapeutics for treating various diseases.

  1. Host-induced silencing of Fusarium culmorum genes protects wheat from infection

    PubMed Central

    Chen, Wanxin; Kastner, Christine; Nowara, Daniela; Oliveira-Garcia, Ely; Rutten, Twan; Zhao, Yusheng; Deising, Holger B.; Kumlehn, Jochen; Schweizer, Patrick

    2016-01-01

    Plants producing antisense or double-stranded RNA molecules that target specific genes of eukaryotic pests or pathogens can become protected from their attack. This beneficial effect was also reported for plant–fungus interactions and is believed to reflect uptake of the RNAs by the fungus via an as yet unknown mechanism, followed by target gene silencing. Here we report that wheat plants pre-infected with Barley stripe mosaic virus (BSMV) strains containing antisense sequences against target genes of the Fusarium head blight (FHB) fungus F. culmorum caused a reduction of corresponding transcript levels in the pathogen and reduced disease symptoms. Stable transgenic wheat plants carrying an RNAi hairpin construct against the β-1, 3-glucan synthase gene FcGls1 of F. culmorum or a triple combination of FcGls1 with two additional, pre-tested target genes also showed enhanced FHB resistance in leaf and spike inoculation assays under greenhouse and near-field conditions, respectively. Microscopic evaluation of F. culmorum development in plants transiently or stably expressing FcGls1 silencing constructs revealed aberrant, swollen fungal hyphae, indicating severe hyphal cell wall defects. The results lead us to propose host-induced gene silencing (HIGS) as a plant protection approach that may also be applicable to highly FHB-susceptible wheat genotypes. PMID:27540093

  2. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes.

    PubMed

    Isidor, Marie S; Winther, Sally; Basse, Astrid L; Petersen, M Christine H; Cannon, Barbara; Nedergaard, Jan; Hansen, Jacob B

    2016-01-01

    Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo "browning." In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells. PMID:27386153

  3. Own Variety Bias

    PubMed Central

    García, Andrea Ariza

    2015-01-01

    In a language identification task, native Belgian French and native Swiss French speakers identified French from France as their own variety. However, Canadian French was not subject to this bias. Canadian and French listeners didn’t claim a different variety as their own.

  4. Biased to Learn Language

    ERIC Educational Resources Information Center

    Sebastian-Galles, Nuria

    2007-01-01

    Some recent publications that explore the foundations of early language development are reviewed in this article. The review adopts the pivotal idea that infants' advancements are helped by the existence of different types of biases. The infant's discovery of the phonological properties of the language of the environment, as well as their learning…

  5. Optically biased laser gyro

    SciTech Connect

    Anderson, D.Z.; Chow, W.W.; Scully, M.O.; Sanders, V.E.

    1980-10-01

    We describe a four-mode ring laser that exhibits none of the mode-locking characteristics that plague laser gyros. This laser is characterized by a bias that changes sign with a change in the direction of rotation and prevents the counterpropagating modes from locking. A theoretical analysis explaining the experimental results is outlined.

  6. Own Variety Bias.

    PubMed

    Sloos, Marjoleine; García, Andrea Ariza

    2015-10-01

    In a language identification task, native Belgian French and native Swiss French speakers identified French from France as their own variety. However, Canadian French was not subject to this bias. Canadian and French listeners didn't claim a different variety as their own. PMID:27648211

  7. Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression.

    PubMed

    Zhang, Xiujun; Zhu, Yingying; Bao, Longfei; Gao, Liwei; Yao, Guangshan; Li, Yanan; Yang, Zhifeng; Li, Zhonghai; Zhong, Yaohua; Li, Fuli; Yin, Heng; Qu, Yinbo; Qin, Yuqi

    2016-09-01

    The morphological development of fungi is a complex process and is often coupled with secondary metabolite production. In this study, we assessed the function of putative methyltransferase LaeA and transcription factor CreA in controlling asexual development and secondary metabolic gene cluster expression in Penicillium oxalicum. The deletion of laeA (ΔlaeA) impaired the conidiation in P. oxalicum, with a downregulated expression of brlA. Overexpression of P. oxalicum brlA in ΔlaeA could upregulate brlA and abaA remarkably, but could not rescue the conidiation defect; therefore, brlA and abaA expression were necessary but not sufficient for conidiation. Deletion of creA in ΔlaeA background (ΔlaeAΔcreA) blocked conidiation with a white fluffy phenotype. Nutrient-rich medium could not rescue developmental defects in ΔlaeAΔcreA mutant but could rescue defects in ΔlaeA. Expression of 10 genes, namely, albA/wA, abrB/yA, arpA, aygA, arpA-like, arpB, arpB-like, rodA, rodA-like, and rodB, for pigmentation and spore wall protein genes was silenced in ΔlaeAΔcreA, whereas only six of them were downregulated in ΔlaeA. Among the 28 secondary metabolism gene clusters in P. oxalicum, four secondary metabolism gene clusters were silenced in ΔlaeA and two were also silenced in ΔbrlA mutant. A total of 10 physically linked and coregulated genes were distributed over five chromosomes in ΔlaeA. Six of these genes were located in subtelomeric regions, thus demonstrating a positional bias for LaeA-regulated clusters toward subtelomeric regions. All of silenced clusters located in subtelomeric regions were derepressed in ΔlaeAΔcreA, hence showing that lack of CreA could remediate the repression of gene clusters in ΔlaeA background. Results show that both putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression. PMID:27387217

  8. Development of an Efficient Virus Induced Gene Silencing Strategy in the Non-Model Wild Ginger-Zingiber zerumbet and Investigation of Associated Proteome Changes

    PubMed Central

    Mahadevan, Chidambareswaren; Jaleel, Abdul; Deb, Lokesh; Thomas, George; Sakuntala, Manjula

    2015-01-01

    Zingiber zerumbet (Zingiberaceae) is a wild, tropical medicinal herb that shows a high degree of resistance to diseases affecting cultivated ginger. Barley stripe mosaic virus (BSMV) silencing vectors containing an endogenous phytoene desaturase (PDS) gene fragment were agroinfiltrated into young leaves of Z. zerumbet under controlled growth conditions to effect virus-induced gene silencing (VIGS). Infiltrated leaves as well as newly emerged leaves and tillers showed visual signs of PDS silencing after 30 days. Replication and systemic movement of the viral vectors in silenced plants were confirmed by RT-PCR. Real-time quantitative PCR analysis verified significant down-regulation of PDS transcripts in the silenced tissues. Label-free proteomic analysis was conducted in leaves with established PDS transcript down regulation and buffer-infiltrated (mock) leaves. A total of 474 proteins were obtained, which were up-regulated, down-regulated or modulated de novo during VIGS. Most of these proteins were localized to the chloroplast, as revealed by UniprotKB analysis, and among the up-regulated proteins there were abiotic stress responsive, photosynthetic, metabolic and membrane proteins. Moreover, the demonstration of viral proteins together with host proteins proved successful viral infection. We report for the first time the establishment of a high-throughput gene functional analysis platform using BSMV-mediated VIGS in Z. zerumbet, as well as proteomic changes associated with VIGS. PMID:25918840

  9. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals

    PubMed Central

    Zielezinski, Andrzej; Karlowski, Wojciech M

    2015-01-01

    The GW182 proteins are a key component of the miRNA-dependent post-transcriptional silencing pathway in animals. They function as scaffold proteins to mediate the interaction of Argonaute (AGO)-containing complexes with cytoplasmic poly(A)-binding proteins (PABP) and PAN2-PAN3 and CCR4-NOT deadenylases. The AGO-GW182 complexes mediate silencing of the target mRNA through induction of translational repression and/or mRNA degradation. Although the GW182 proteins are a subject of extensive experimental research in the recent years, very little is known about their origin and evolution. Here, based on complex functional annotation and phylogenetic analyses, we reveal 448 members of the GW182 protein family from the earliest animals to humans. Our results indicate that a single-copy GW182/TNRC6C progenitor gene arose with the emergence of multicellularity and it multiplied in the last common ancestor of vertebrates in 2 rounds of whole genome duplication (WGD) resulting in 3 genes. Before the divergence of vertebrates, both the AGO- and CCR4-NOT-binding regions of GW182s showed significant acceleration in the accumulation of amino acid changes, suggesting functional adaptation toward higher specificity to the molecules of the silencing complex. We conclude that the silencing ability of the GW182 proteins improves with higher position in the taxonomic classification and increasing complexity of the organism. The first reconstruction of the molecular journey of GW182 proteins from the ancestral metazoan protein to the current mammalian configuration provides new insight into development of the miRNA-dependent post-transcriptional silencing pathway in animals. PMID:26106978

  10. Oocyte heterogeneity with respect to the meiotic silencing of unsynapsed X chromosomes in the XY female mouse.

    PubMed

    Taketo, Teruko; Naumova, Anna K

    2013-10-01

    In the XY pachytene spermatocyte, the sex chromosomes do not synapse except for the pseudoautosomal region and become transcriptionally silenced. It has been suggested that the meiotic silencing of unsynapsed chromatin (MSUC) also occurs in oocytes. In the XY sex-reversed female mouse, the sex chromosomes fail to pair in the majority of oocytes and a greater number of oocytes are eliminated during the meiotic prophase compared to the XX female. Yet, many XY oocytes survive to reach the second meiotic metaphase. The goal of our current study was to determine whether the single X chromosome shows the characteristics of asynapsis and meiotic silencing in a proportion of XY oocytes, which can explain the survival of the remaining oocytes. We first examined the accumulation of markers associated with asynapsis or transcriptional silencing, i.e., BRCA1, γH2AX, H3K9me3, and H3K27me3, at the single X chromosome in the XY oocyte. We found that γH2AX and BRCA1 were enriched on the single X chromosome whereas H3K9me3 was not, and H3K27me3 was enriched at all chromosomes in the majority of XY oocytes. We next examined the meiotic silencing of the single X chromosome using enrichment of the X-encoded ATRX protein. On average, ATRX enrichment was lower in XY oocytes than in XX oocytes as expected from its half gene dosage. However, the intensity of ATRX staining in XY oocytes harboring γH2AX domains showed a remarkable heterogeneity. We conclude that MSUC occurs with varying consequences, resulting in a heterogeneous population of oocytes with respect to protein enrichment in the XY female mouse. PMID:23760560

  11. The p22 RNA silencing suppressor of the crinivirus Tomato chlorosis virus preferentially binds long dsRNAs preventing them from cleavage.

    PubMed

    Landeo-Ríos, Yazmín; Navas-Castillo, Jesús; Moriones, Enrique; Cañizares, M Carmen

    2016-01-15

    Viruses encode silencing suppressor proteins to counteract RNA silencing. Because dsRNA plays a key role in silencing, a general silencing suppressor strategy is dsRNA binding. The p22 suppressor of the plant virus Tomato chlorosis virus (ToCV; genus Crinivirus, family Closteroviridae) has been described as having one of the longest lasting local suppressor activities. However, the mechanism of action of p22 has not been characterized. Here, we show that ToCV p22 binds long dsRNAs in vitro, thus interfering with their processing into small RNAs (sRNAs) by an RNase III-type Dicer homolog enzyme. Additionally, we have studied whether a putative zinc finger motif found in p22 has a role in dsRNA binding and suppressor function. The efficient ability of p22 to suppress RNA silencing, triggered by hairpin transcripts transiently expressed in planta, supports the relationship between its ability to bind dsRNA in vitro and its ability to inhibit RNA silencing in vivo. PMID:26629953

  12. A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells

    PubMed Central

    Müller-Kuller, Uta; Ackermann, Mania; Kolodziej, Stephan; Brendel, Christian; Fritsch, Jessica; Lachmann, Nico; Kunkel, Hana; Lausen, Jörn; Schambach, Axel; Moritz, Thomas; Grez, Manuel

    2015-01-01

    Epigenetic silencing of transgene expression represents a major obstacle for the efficient genetic modification of multipotent and pluripotent stem cells. We and others have demonstrated that a 1.5 kb methylation-free CpG island from the human HNRPA2B1-CBX3 housekeeping genes (A2UCOE) effectively prevents transgene silencing and variegation in cell lines, multipotent and pluripotent stem cells, and their differentiated progeny. However, the bidirectional promoter activity of this element may disturb expression of neighboring genes. Furthermore, the epigenetic basis underlying the anti-silencing effect of the UCOE on juxtaposed promoters has been only partially explored. In this study we removed the HNRPA2B1 moiety from the A2UCOE and demonstrate efficient anti-silencing properties also for a minimal 0.7 kb element containing merely the CBX3 promoter. This DNA element largely prevents silencing of viral and tissue-specific promoters in multipotent and pluripotent stem cells. The protective activity of CBX3 was associated with reduced promoter CpG-methylation, decreased levels of repressive and increased levels of active histone marks. Moreover, the anti-silencing effect of CBX3 was locally restricted and when linked to tissue-specific promoters did not activate transcription in off target cells. Thus, CBX3 is a highly attractive element for sustained, tissue-specific and copy-number dependent transgene expression in vitro and in vivo. PMID:25605798

  13. Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila.

    PubMed

    Wu, Ying; Cao, Guan; Nitabach, Michael N

    2008-04-01

    Drosophila clock neurons exhibit self-sustaining cellular oscillations that rely in part on rhythmic transcriptional feedback loops. We have previously determined that electrical silencing of the pigment dispersing factor (PDF)-expressing lateral-ventral (LN(V)) pacemaker subset of fly clock neurons via expression of an inward-rectifier K(+) channel (Kir2.1) severely disrupts free-running rhythms of locomotor activity-most flies are arrhythmic and those that are not exhibit weak short-period rhythms-and abolishes LN(V) molecular oscillation in constant darkness. PDF is known to be an important LN(V) output signal. Here we examine the effects of electrical silencing of the LN(V) pacemakers on molecular rhythms in other, nonsilenced, subsets of clock neurons. In contrast to previously described cell-autonomous abolition of free-running molecular rhythms, we find that electrical silencing of the LN(V) pacemakers via Kir2.1 expression does not impair molecular rhythms in LN(D), DN1, and DN2 subsets of clock neurons. However, free-running molecular rhythms in these non-LN(V) clock neurons occur with advanced phase. Electrical silencing of LN(V)s phenocopies PDF null mutation (pdf (01) ) at both behavioral and molecular levels except for the complete abolition of free-running cellular oscillation in the LN(V)s themselves. LN(V) electrically silenced or pdf 01 flies exhibit weak free-running behavioral rhythms with short period, and the molecular oscillation in non-LN(V) neurons phase advances in constant darkness. That LN( V) electrical silencing leads to the same behavioral and non-LN( V) molecular phenotypes as pdf 01 suggests that persistence of LN(V) molecular oscillation in pdf 01 flies has no functional effect, either on behavioral rhythms or on non-LN(V) molecular rhythms. We thus conclude that functionally relevant signals from LN(V)s to non-LN(V) clock neurons and other downstream targets rely both on PDF signaling and LN(V) electrical activity, and that LN( V

  14. Translin and Trax differentially regulate telomere-associated transcript homeostasis

    PubMed Central

    Alshehri, Zafer; Thallinger, Gerhard G.; Wakeman, Jane A.; McFarlane, Ramsay J.

    2016-01-01

    Translin and Trax proteins are highly conserved nucleic acid binding proteins that have been implicated in RNA regulation in a range of biological processes including tRNA processing, RNA interference, microRNA degradation during oncogenesis, spermatogenesis and neuronal regulation. Here, we explore the function of this paralogue pair of proteins in the fission yeast. Using transcript analysis we demonstrate a reciprocal mechanism for control of telomere-associated transcripts. Mutation of tfx1+ (Trax) elevates transcript levels from silenced sub-telomeric regions of the genome, but not other silenced regions, such as the peri-centromeric heterochromatin. In the case of some sub-telomeric transcripts, but not all, this elevation is dependent on the Trax paralogue, Tsn1 (Translin). In a reciprocal fashion, Tsn1 (Translin) serves to repress levels of transcripts (TERRAs) from the telomeric repeats, whereas Tfx1 serves to maintain these elevated levels. This reveals a novel mechanism for the regulation of telomeric transcripts. We extend this to demonstrate that human Translin and Trax also control telomere-associated transcript levels in human cells in a telomere-specific fashion. PMID:27183912

  15. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation

    SciTech Connect

    Fusaro, Adriana F.; Correa, Regis L.; Nakasugi, Kenlee; Jackson, Craig; Kawchuk, Lawrence; Vaslin, Maite F.S.; Waterhouse, Peter M.

    2012-05-10

    The P0 protein of poleroviruses and P1 protein of sobemoviruses suppress the plant's RNA silencing machinery. Here we identified a silencing suppressor protein (SSP), P0{sup PE}, in the Enamovirus Pea enation mosaic virus-1 (PEMV-1) and showed that it and the P0s of poleroviruses Potato leaf roll virus and Cereal yellow dwarf virus have strong local and systemic SSP activity, while the P1 of Sobemovirus Southern bean mosaic virus supresses systemic silencing. The nuclear localized P0{sup PE} has no discernable sequence conservation with known SSPs, but proved to be a strong suppressor of local silencing and a moderate suppressor of systemic silencing. Like the P0s from poleroviruses, P0{sup PE} destabilizes AGO1 and this action is mediated by an F-box-like domain. Therefore, despite the lack of any sequence similarity, the poleroviral and enamoviral SSPs have a conserved mode of action upon the RNA silencing machinery.

  16. Gender Differences in Self-Silencing and Psychological Distress in Informal Cancer Carers

    ERIC Educational Resources Information Center

    Ussher, Jane M.; Perz, Janette

    2010-01-01

    This study examined gender differences in self-silencing, the relationship between self-silencing and psychological distress, and reasons for self-silencing in informal cancer carers (329 women, 155 men), using a mixed-method design. Men reported greater self-silencing than women on the Silencing the Self Scale; however, women reported higher…

  17. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco.

    PubMed

    Alamillo, Josefa M; Saénz, Pilar; García, Juan Antonio

    2006-10-01

    Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA). Replication and accumulation of PPV is higher in the locally infected leaves of plants deficient in SA or expressing TEV P1/HC-Pro silencing suppressor. Accumulation of viral derived small RNAs was reduced in the NahG transgenic plants, suggesting that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco. Besides, expression of SA-mediated defense transcripts, such as those of pathogenesis-related (PR) proteins PR-1 and PR-2 or alternative oxidase-1, as well as that of the putative RNA-dependent RNA polymerase NtRDR1, is induced in response to PPV infection, and the expression patterns of these defense transcripts are altered in the TEV P1/HC-Pro transgenic plants. Long-distance movement of PPV is highly enhanced in NahG x P1/HC-Pro double-transgenic plants and systemic symptoms in these plants reveal that the expression of an RNA-silencing suppressor and the lack of SA produce additive but distinct effects. Our results suggest that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco, and that silencing suppressors, such as P1/HC-Pro, also alter the SA-mediated defense. Both an RNA-silencing and an SA-mediated defense mechanism could act together to limit PPV infection.

  18. Small silencing RNAs: an expanding universe.

    PubMed

    Ghildiyal, Megha; Zamore, Phillip D

    2009-02-01

    Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.

  19. Report on Sex Bias in the Public Schools. Third Edition.

    ERIC Educational Resources Information Center

    National Organization for Women, New York, NY. New York City Chapter.

    Sex bias in the public schools is reported in three major areas: administration, curriculum, and attitudes. Letters, newspaper and magazine articles, court transcripts, and congressional testimony are utilized to present an overview of the status of sex discrimination in public schools and a review of recent changes in educational policy and…

  20. Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway.

    PubMed

    Llave, C; Kasschau, K D; Carrington, J C

    2000-11-21

    Certain plant viruses encode suppressors of posttranscriptional gene silencing (PTGS), an adaptive antiviral defense response that limits virus replication and spread. The tobacco etch potyvirus protein, helper component-proteinase (HC-Pro), suppresses PTGS of silenced transgenes. The effect of HC-Pro on different steps of the silencing pathway was analyzed by using both transient Agrobacterium tumefaciens-based delivery and transgenic systems. HC-Pro inactivated PTGS in plants containing a preexisting silenced beta-glucuronidase (GUS) transgene. PTGS in this system was associated with both small RNA molecules (21-26 nt) corresponding to the 3' proximal region of the transcribed GUS sequence and cytosine methylation of specific sites near the 3' end of the GUS transgene. Introduction of HC-Pro into these plants resulted in loss of PTGS, loss of small RNAs, and partial loss of methylation. These results suggest that HC-Pro targets a PTGS maintenance (as opposed to an initiation or signaling) component at a point that affects accumulation of small RNAs and methylation of genomic DNA. PMID:11078509

  1. Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum

    PubMed Central

    Chen, Yun; Gao, Qixun; Huang, Mengmeng; Liu, Ye; Liu, Zunyong; Liu, Xin; Ma, Zhonghua

    2015-01-01

    The RNA interference (RNAi) plays a critical role in gene regulation in a variety of eukaryotic organisms. However, the role of RNAi remains largely unclear in plant pathogenic fungi. In this study, we explored the roles of core components of the RNAi pathway in Fusarium graminearum, the major causal agent of wheat head blight. Our results demonstrated that the hairpin RNA (hpRNA) can efficiently silence the expression level of target gene, and the argonaute protein FgAgo1 and dicer protein FgDicer2 are important in this silencing process. RNAi machinery was not involved in growth, abiotic stress and pathogenesis in F. graminearum under tested conditions. We firstly applied high-throughput sequencing technology to elucidate small RNA (17–40 nucleotides) (sRNA) transcriptome in F. graminearum, and found that a total of forty-nine micro-like-RNA (milRNA) candidates were identified in the wild-type and ∆FgDICER2, and twenty-four of them were FgDicer2-dependent. Fg-milRNA-4 negatively regulated expression of its target gene. Taken together, our results indicated that the hpRNA-induced gene silencing was a valuable genetic tool for exploring gene function in F. graminearum. FgAgo1 and FgDicer2 proteins played a critical role in the hpRNA mediated gene silencing process. In addition, FgDicer2 was involved in sRNA transcription and milRNA generation in this fungus. PMID:26212591

  2. Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells.

    PubMed

    Gibellini, Lara; Pinti, Marcello; Boraldi, Federica; Giorgio, Valentina; Bernardi, Paolo; Bartolomeo, Regina; Nasi, Milena; De Biasi, Sara; Missiroli, Sonia; Carnevale, Gianluca; Losi, Lorena; Tesei, Anna; Pinton, Paolo; Quaglino, Daniela; Cossarizza, Andrea

    2014-12-01

    Lon is a nuclear-encoded, mitochondrial protease that assists protein folding, degrades oxidized/damaged proteins, and participates in maintaining mtDNA levels. Here we show that Lon is up-regulated in several human cancers and that its silencing in RKO colon cancer cells causes profound alterations of mitochondrial proteome and function, and cell death. We silenced Lon in RKO cells by constitutive or inducible expression of Lon shRNA. Lon-silenced cells displayed altered levels of 39 mitochondrial proteins (26% related to stress response, 14.8% to ribosome assembly, 12.7% to oxidative phosphorylation, 8.5% to Krebs cycle, 6.3% to β-oxidation, and 14.7% to crista integrity, ketone body catabolism, and mtDNA maintenance), low levels of mtDNA transcripts, and reduced levels of oxidative phosphorylation complexes (with >90% reduction of complex I). Oxygen consumption rate decreased 7.5-fold in basal conditions, and ATP synthesis dropped from 0.25 ± 0.04 to 0.03 ± 0.001 nmol/mg proteins, in the presence of 2-deoxy-d-glucose. Hydrogen peroxide and mitochondrial superoxide anion levels increased by 3- and 1.3-fold, respectively. Mitochondria appeared fragmented, heterogeneous in size and shape, with dilated cristae, vacuoles, and electrondense inclusions. The triterpenoid 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic acid, a Lon inhibitor, partially mimics Lon silencing. In summary, Lon is essential for maintaining mitochondrial shape and function, and for survival of RKO cells.

  3. Structure And Gene Silencing Activities of Monovalent And Pentavalent Cationic Lipid Vectors Complexed With Sirna

    SciTech Connect

    Bouxsein, N.F.; McAllister, C.S.; Ewert, K.K.; Samuel, C.E.; Safinya, C.R.; /UC, Santa Barbara

    2007-07-03

    Small interfering RNAs (siRNAs) of 19-25 bp mediate the cleavage of complementary mRNA, leading to post-transcriptional gene silencing. We examined cationic lipid (CL)-mediated delivery of siRNA into mammalian cells and made comparisons to CL-based DNA delivery. The effect of lipid composition and headgroup charge on the biophysical and biological properties of CL-siRNA vectors was determined. X-ray diffraction revealed that CL-siRNA complexes exhibited lamellar and inverted hexagonal phases, qualitatively similar to CL-DNA complexes, but also formed other nonlamellar structures. Surprisingly, optimally formulated inverted hexagonal 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) CL-siRNA complexes exhibited high toxicity and much lower target-specific gene silencing than lamellar CL-siRNA complexes even though optimally formulated, inverted hexagonal CL-DNA complexes show high transfection efficiency in cell culture. We further found that efficient silencing required cationic lipid/nucleic acid molar charge ratios (chg) nearly an order of magnitude larger than those yielding efficiently transfecting CL-DNA complexes. This second unexpected finding has implications for cell toxicity. Multivalent lipids (MVLs) require a smaller number of cationic lipids at a given chg of the complex. Consistent with this observation, the pentavalent lipid MVL5 exhibited lower toxicity and superior silencing efficiency over a large range in both the lipid composition and chg when compared to monovalent DOTAP. Most importantly, MVL5 achieved much higher total knockdown of the target gene in CL-siRNA complex regimes where toxicity was low. This property of CL-siRNA complexes contrasts to CL-DNA complexes, where the optimized transfection efficiencies of multivalent and monovalent lipids are comparable.

  4. Synthetic versions of firefly luciferase and Renilla luciferase reporter genes that resist transgene silencing in sugarcane

    PubMed Central

    2014-01-01

    Background Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene. Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. Results The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences. Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures. Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes. In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. Conclusions We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred

  5. An efficient virus-induced gene silencing vector for maize functional genomics research.

    PubMed

    Wang, Rong; Yang, Xinxin; Wang, Nian; Liu, Xuedong; Nelson, Richard S; Li, Weimin; Fan, Zaifeng; Zhou, Tao

    2016-04-01

    Maize is a major crop whose rich genetic diversity provides an advanced resource for genetic research. However, a tool for rapid transient gene function analysis in maize that may be utilized in most maize cultivars has been lacking, resulting in reliance on time-consuming stable transformation and mutation studies to obtain answers. We developed an efficient virus-induced gene silencing (VIGS) vector for maize based on a naturally maize-infecting cucumber mosaic virus (CMV) strain, ZMBJ-CMV. An infectious clone of ZMBJ-CMV was constructed, and a vascular puncture inoculation method utilizing Agrobacterium was optimized to improve its utility for CMV infection of maize. ZMBJ-CMV was then modified to function as a VIGS vector. The ZMBJ-CMV vector induced mild to moderate symptoms in many maize lines, making it useful for gene function studies in critically important maize cultivars, such as the sequenced reference inbred line B73. Using this CMV VIGS system, expression of two endogenous genes, ZmPDS and ZmIspH, was found to be decreased by 75% and 78%, respectively, compared with non-silenced tissue. Inserts with lengths of 100-300 bp produced the most complete transcriptional and visual silencing phenotypes. Moreover, genes related to autophagy, ZmATG3 and ZmATG8a, were also silenced, and it was found that they function in leaf starch degradation. These results indicate that our ZMBJ-CMV VIGS vector provides a tool for rapid and efficient gene function studies in maize. PMID:26921244

  6. RNA polymerase I transcription in a Brassica interspecific hybrid and its progenitors: Tests of transcription factor involvement in nucleolar dominance.

    PubMed

    Frieman, M; Chen, Z J; Saez-Vasquez, J; Shen, L A; Pikaard, C S

    1999-05-01

    In interspecific hybrids or allopolyploids, often one parental set of ribosomal RNA genes is transcribed and the other is silent, an epigenetic phenomenon known as nucleolar dominance. Silencing is enforced by cytosine methylation and histone deacetylation, but the initial discrimination mechanism is unknown. One hypothesis is that a species-specific transcription factor is inactivated, thereby silencing one set of rRNA genes. Another is that dominant rRNA genes have higher binding affinities for limiting transcription factors. A third suggests that selective methylation of underdominant rRNA genes blocks transcription factor binding. We tested these hypotheses using Brassica napus (canola), an allotetraploid derived from B. rapa and B. oleracea in which only B. rapa rRNA genes are transcribed. B. oleracea and B. rapa rRNA genes were active when transfected into protoplasts of the other species, which argues against the species-specific transcription factor model. B. oleracea and B. rapa rRNA genes also competed equally for the pol I transcription machinery in vitro and in vivo. Cytosine methylation had no effect on rRNA gene transcription in vitro, which suggests that transcription factor binding was unimpaired. These data are inconsistent with the prevailing models and point to discrimination mechanisms that are likely to act at a chromosomal level.

  7. An Essential Viral Transcription Activator Modulates Chromatin Dynamics

    PubMed Central

    Gibeault, Rebecca L.; Bildersheim, Michael D.

    2016-01-01

    Although ICP4 is the only essential transcription activator of herpes simplex virus 1 (HSV-1), its mechanisms of action are still only partially understood. We and others propose a model in which HSV-1 genomes are chromatinized as a cellular defense to inhibit HSV-1 transcription. To counteract silencing, HSV-1 would have evolved proteins that prevent or destabilize chromatinization to activate transcription. These proteins should act as HSV-1 transcription activators. We have shown that HSV-1 genomes are organized in highly dynamic nucleosomes and that histone dynamics increase in cells infected with wild type HSV-1. We now show that whereas HSV-1 mutants encoding no functional ICP0 or VP16 partially enhanced histone dynamics, mutants encoding no functional ICP4 did so only minimally. Transient expression of ICP4 was sufficient to enhance histone dynamics in the absence of other HSV-1 proteins or HSV-1 DNA. The dynamics of H3.1 were increased in cells expressing ICP4 to a greater extent than those of H3.3. The dynamics of H2B were increased in cells expressing ICP4, whereas those of canonical H2A were not. ICP4 preferentially targets silencing H3.1 and may also target the silencing H2A variants. In infected cells, histone dynamics were increased in the viral replication compartments, where ICP4 localizes. These results suggest a mechanism whereby ICP4 activates transcription by disrupting, or preventing the formation of, stable silencing nucleosomes on HSV-1 genomes. PMID:27575707

  8. Silencing defense pathways in Arabidopsis by heterologous gene sequences from Brassica oleracea enhances the performance of a specialist and a generalist herbivorous insect.

    PubMed

    Zheng, Si-Jun; Zhang, Peng-Jun; van Loon, Joop J A; Dicke, Marcel

    2011-08-01

    The jasmonic acid (JA) signaling pathway and defensive secondary metabolites such as glucosinolates are generally considered to play central roles in the defense of brassicaceous plants against herbivorous insects. To determine the function of specific plant genes in plant-insect interactions, signaling or biosynthetic mutants are needed. However, mutants are not yet available for brassicaceous plants other than Arabidopsis thaliana, e.g., cabbage (Brassica oleracea). We employed virus-induced gene silencing (VIGS) by using tobacco rattle virus (TRV) to knock down the endogenous expression of lipoxygenase (LOX), an upstream enzyme of the JA pathway and thioglucoside glucohydrolase: myrosinase (TGG1/TGG2), a hydrolytic enzyme that catalyzes the release of defensive volatile products originating from glucosinolates, in Arabidopsis thaliana. This was done by using the heterologous gene sequences from B. oleracea. Silencing these genes in A. thaliana plants is efficient and specific. Only 18 nucleotides with 100% identity between the trigger (BoMYR) and the target (AtTGG1/2) sequence are sufficient to achieve gene silencing. LOX-silenced plants showed significantly reduced AtLOX2 transcript accumulation after Pieris rapae larval feeding. TGG-silenced plants exhibited significantly lower TGG1/TGG2 transcript levels only after shorter larval feeding. The inhibition of TGG1/TGG2 transcript accumulation via gene silencing may be overruled by longer larval feeding. Specialist P. rapae larvae developed significantly better on both types of silenced plants than on empty vector (EV) control plants, while generalist Mamestra brassicae larvae developed significantly better on the TGG1/TGG2 silenced plants than on EV control plants. This shows that not only the generalist herbivore but also the Brassicaceae-specialist P. rapae is negatively affected by the ability of brassicaceous plants to produce their specific secondary metabolites, i.e., glucosinolates. Our results

  9. Heterochromatin-mediated gene silencing facilitates the diversification of olfactory neurons

    PubMed Central

    Lyons, David B.; Magklara, Angeliki; Goh, Tracie; Sampath, Srihari; Schaefer, Anne; Schotta, Gunnar; Lomvardas, Stavros

    2014-01-01

    SUMMARY An astounding property of the nervous system is its cellular diversity. This diversity, which was initially realized by morphological and electrophysiological differences, is ultimately produced by variations in gene expression programs. In most cases these variations are determined by external cues. However, a growing number of neuronal types have been identified in which inductive signals cannot explain the few but decisive transcriptional differences that cause cell diversification. Here, we show that heterochromatic silencing, which we find is governed by histone methyltransferases G9a (KMT1C) and GLP (KMT1D), is essential for stochastic and singular OR expression. Deletion of G9a and GLP dramatically reduces the complexity of the OR transcriptome, resulting in transcriptional domination by a few ORs and loss of singularity in OR expression. Thus, in addition to its previously known functions, our data suggest that heterochromatin creates an epigenetic platform that affords stochastic, mutually exclusive gene choices and promotes cellular diversity. PMID:25437545

  10. Ikaros mediates gene silencing in T cells through Polycomb repressive complex 2

    PubMed Central

    Oravecz, Attila; Apostolov, Apostol; Polak, Katarzyna; Jost, Bernard; Le Gras, Stéphanie; Chan, Susan; Kastner, Philippe

    2015-01-01

    T-cell development is accompanied by epigenetic changes that ensure the silencing of stem cell-related genes and the activation of lymphocyte-specific programmes. How transcription factors influence these changes remains unclear. We show that the Ikaros transcription factor forms a complex with Polycomb repressive complex 2 (PRC2) in CD4−CD8− thymocytes and allows its binding to more than 500 developmentally regulated loci, including those normally activated in haematopoietic stem cells and others induced by the Notch pathway. Loss of Ikaros in CD4−CD8− cells leads to reduced histone H3 lysine 27 trimethylation and ectopic gene expression. Furthermore, Ikaros binding triggers PRC2 recruitment and Ikaros interacts with PRC2 independently of the nucleosome remodelling and deacetylation complex. Our results identify Ikaros as a fundamental regulator of PRC2 function in developing T cells. PMID:26549758

  11. Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing.

    PubMed

    Li, Li; Lyu, Xiaowen; Hou, Chunhui; Takenaka, Naomi; Nguyen, Huy Q; Ong, Chin-Tong; Cubeñas-Potts, Caelin; Hu, Ming; Lei, Elissa P; Bosco, Giovanni; Qin, Zhaohui S; Corces, Victor G

    2015-04-16

    Chromosomes of metazoan organisms are partitioned in the interphase nucleus into discrete topologically associating domains (TADs). Borders between TADs are formed in regions containing active genes and clusters of architectural protein binding sites. The transcription of most genes is repressed after temperature stress in Drosophila. Here we show that temperature stress induces relocalization of architectural proteins from TAD borders to inside TADs, and this is accompanied by a dramatic rearrangement in the 3D organization of the nucleus. TAD border strength declines, allowing for an increase in long-distance inter-TAD interactions. Similar but quantitatively weaker effects are observed upon inhibition of transcription or depletion of individual architectural proteins. Heat shock-induced inter-TAD interactions result in increased contacts among enhancers and promoters of silenced genes, which recruit Pc and form Pc bodies in the nucleolus. These results suggest that the TAD organization of metazoan genomes is plastic and can be reconfigured quickly. PMID:25818644

  12. Temperature trend biases

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Lindau, Ralf

    2016-04-01

    In an accompanying talk we show that well-homogenized national dataset warm more than temperatures from global collections averaged over the region of common coverage. In this poster we want to present auxiliary work about possible biases in the raw observations and on how well relative statistical homogenization can remove trend biases. There are several possible causes of cooling biases, which have not been studied much. Siting could be an important factor. Urban stations tend to move away from the centre to better locations. Many stations started inside of urban areas and are nowadays more outside. Even for villages the temperature difference between the centre and edge can be 0.5°C. When a city station moves to an airport, which often happened around WWII, this takes the station (largely) out of the urban heat island. During the 20th century the Stevenson screen was established as the dominant thermometer screen. This screen protected the thermometer much better against radiation than earlier designs. Deficits of earlier measurement methods have artificially warmed the temperatures in the 19th century. Newer studies suggest we may have underestimated the size of this bias. Currently we are in a transition to Automatic Weather Stations. The net global effect of this transition is not clear at this moment. Irrigation on average decreases the 2m-temperature by about 1 degree centigrade. At the same time, irrigation has increased significantly during the last century. People preferentially live in irrigated areas and weather stations serve agriculture. Thus it is possible that there is a higher likelihood that weather stations are erected in irrigated areas than elsewhere. In this case irrigation could lead to a spurious cooling trend. In the Parallel Observations Science Team of the International Surface Temperature Initiative (ISTI-POST) we are studying influence of the introduction of Stevenson screens and Automatic Weather Stations using parallel measurements

  13. Gene silencing below the immune radar.

    PubMed

    Hartmann, Gunther

    2009-03-01

    In vertebrates, the detection of viral nucleic acids is the first step toward innate and subsequent adaptive antiviral immune responses. A sophisticated,protein receptor-based sensor system has evolved to recognize viral nucleic acids and to trigger a variety of antiviral defense mechanisms. The more we learn about this elaborate sensor system, the more it becomes evident how difficult it is to introduce exogenous nucleic acids such as siRNA into cells without triggering antiviral immunoreceptors. In this issue of the JCI, Judge and colleagues provide evidence that siRNA can be designed and delivered in a way that allows specific and successful silencing of target genes in tumor cells in vivo, leading to tumor cell death and prolonged survival of tumor-bearing mice in the absence of immune activation. This study represents a major technological advance, setting new standards for well-controlled siRNA applications in vivo, and has the potential to guide clinical development toward siRNA therapeutics with well-defined and selective gene-silencing activities.

  14. Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression

    PubMed Central

    Rosa, Stefanie; Duncan, Susan; Dean, Caroline

    2016-01-01

    Antisense transcription through genic regions is pervasive in most genomes; however, its functional significance is still unclear. We are studying the role of antisense transcripts (COOLAIR) in the cold-induced, epigenetic silencing of Arabidopsis FLOWERING LOCUS C (FLC), a regulator of the transition to reproduction. Here we use single-molecule RNA FISH to address the mechanistic relationship of FLC and COOLAIR transcription at the cellular level. We demonstrate that while sense and antisense transcripts can co-occur in the same cell they are mutually exclusive at individual loci. Cold strongly upregulates COOLAIR transcription in an increased number of cells and through the mutually exclusive relationship facilitates shutdown of sense FLC transcription in cis. COOLAIR transcripts form dense clouds at each locus, acting to influence FLC transcription through changed H3K36me3 dynamics. These results may have general implications for other loci showing both sense and antisense transcription. PMID:27713408

  15. Plant-mediated gene silencing restricts growth of the potato late blight pathogen Phytophthora infestans

    PubMed Central

    Jahan, Sultana N.; Åsman, Anna K. M.; Corcoran, Pádraic; Fogelqvist, Johan; Vetukuri, Ramesh R.; Dixelius, Christina

    2015-01-01

    Phytophthora infestans is an oomycete that causes severe damage to potato, and is well known for its ability to evolve rapidly in order to overcome resistant potato varieties. An RNA silencing strategy was evaluated here to clarify if small interfering RNA homologous to selected genes in P. infestans could be targeted from the plant host to reduce the magnitude of the infection. As a proof-of-concept, a hairpin RNA (hp-RNA) construct using the GFP marker gene was designed and introduced in potato. At 72 hpi, a 55-fold reduction of the signal intensity of a corresponding GFP expressing P. infestans strain on leaf samples of transgenic plants, compared with wild-type potato, was detected. This suggests that an RNA interference construct in the potato host could be processed and target a transcript of the pathogen. Three genes important in the infection process of P. infestans, PiGPB1, PiCESA2, and PiPEC, together with PiGAPDH taking part in basic cell maintenance were subsequently tested using an analogous transgenic strategy. Out of these gene candidates, the hp-PiGPB1 targeting the G protein β-subunit (PiGPB1) important for pathogenicity resulted in most restricted disease progress. Further, Illumina sequencing of inoculated transgenic potato leaves revealed sRNAs of 24/25 nt size homologous to the PiGPB1 gene in the transgenic plants indicating post-transcriptional silencing of the target gene. The work demonstrates that a host-induced gene-silencing approach is functional against P. infestans but is highly dependent on target gene for a successful outcome. This finding broadens the arsenal of control strategies to this important plant disease. PMID:25788734

  16. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors.

    PubMed

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies.

  17. Silencing Status Epilepticus-Induced BDNF Expression with Herpes Simplex Virus Type-1 Based Amplicon Vectors

    PubMed Central

    Falcicchia, Chiara; Trempat, Pascal; Binaschi, Anna; Perrier-Biollay, Coline; Roncon, Paolo; Soukupova, Marie; Berthommé, Hervé; Simonato, Michele

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) has been found to produce pro- but also anti-epileptic effects. Thus, its validity as a therapeutic target must be verified using advanced tools designed to block or to enhance its signal. The aim of this study was to develop tools to silence the BDNF signal. We generated Herpes simplex virus type 1 (HSV-1) derived amplicon vectors, i.e. viral particles containing a genome of 152 kb constituted of concatameric repetitions of an expression cassette, enabling the expression of the gene of interest in multiple copies. HSV-1 based amplicon vectors are non-pathogenic and have been successfully employed in the past for gene delivery into the brain of living animals. Therefore, amplicon vectors should represent a logical choice for expressing a silencing cassette, which, in multiple copies, is expected to lead to an efficient knock-down of the target gene expression. Here, we employed two amplicon-based BDNF silencing strategies. The first, antisense, has been chosen to target and degrade the cytoplasmic mRNA pool of BDNF, whereas the second, based on the convergent transcription technology, has been chosen to repress transcription at the BDNF gene. Both these amplicon vectors proved to be effective in down-regulating BDNF expression in vitro, in BDNF-expressing mesoangioblast cells. However, only the antisense strategy was effective in vivo, after inoculation in the hippocampus in a model of status epilepticus in which BDNF mRNA levels are strongly increased. Interestingly, the knocking down of BDNF levels induced with BDNF-antisense was sufficient to produce significant behavioral effects, in spite of the fact that it was produced only in a part of a single hippocampus. In conclusion, this study demonstrates a reliable effect of amplicon vectors in knocking down gene expression in vitro and in vivo. Therefore, this approach may find broad applications in neurobiological studies. PMID:26954758

  18. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes

    PubMed Central

    2010-01-01

    Background High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS) in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa) were silenced using the RNA interference (RNAi) technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium). Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR). Conclusion We have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable. PMID:20626919

  19. S1 domain-containing STF modulates plastid transcription and chloroplast biogenesis in Nicotiana benthamiana.

    PubMed

    Jeon, Young; Jung, Hyun Ju; Kang, Hunseung; Park, Youn-Il; Lee, Soon Hee; Pai, Hyun-Sook

    2012-01-01

    • In this study, we examined the biochemical and physiological functions of Nicotiana benthamiana S1 domain-containing Transcription-Stimulating Factor (STF) using virus-induced gene silencing (VIGS), cosuppression, and overexpression strategies. • STF : green fluorescent protein (GFP) fusion protein colocalized with sulfite reductase (SiR), a chloroplast nucleoid-associated protein also present in the stroma. Full-length STF and its S1 domain preferentially bound to RNA, probably in a sequence-nonspecific manner. • STF silencing by VIGS or cosuppression resulted in severe leaf yellowing caused by disrupted chloroplast development. STF deficiency significantly perturbed plastid-encoded multimeric RNA polymerase (PEP)-dependent transcript accumulation. Chloroplast transcription run-on assays revealed that the transcription rate of PEP-dependent plastid genes was reduced in the STF-silenced leaves. Conversely, the exogenously added recombinant STF protein increased the transcription rate, suggesting a direct role of STF in plastid transcription. Etiolated seedlings of STF cosuppression lines showed defects in the light-triggered transition from etioplasts to chloroplasts, accompanied by reduced light-induced expression of plastid-encoded genes. • These results suggest that STF plays a critical role as an auxiliary factor of the PEP transcription complex in the regulation of plastid transcription and chloroplast biogenesis in higher plants. PMID:22050604

  20. UAP56 Couples piRNA Clusters to the Perinuclear Transposon Silencing Machinery

    PubMed Central

    Zhang, Fan; Wang, Jie; Xu, Jia; Zhang, Zhao; Koppetsch, Birgit S.; Schultz, Nadine; Vreven, Thom; Meignin, Carine; Davis, Ilan; Zamore, Phillip D.; Weng, Zhiping; Theurkauf, William E.

    2012-01-01

    Summary piRNAs silence transposons during germline development. In Drosophila, transcripts from heterochromatic clusters are processed into primary piRNAs in the perinuclear nuage. The nuclear DEAD box protein UAP56 has been previously implicated in mRNA splicing and export, while the DEAD box protein Vasa has an established role in piRNA production and localizes to nuage with the piRNA binding PIWI proteins Ago3 and Aub. We show that UAP56 co-localizes with the cluster-associated HP1 variant Rhino, that nuage granules containing Vasa localize directly across the nuclear envelope from cluster foci containing UAP56 and Rhino, and that cluster transcripts immunoprecipitate with both Vasa and UAP56. Significantly, a charge-substitution mutation that alters a conserved surface residue in UAP56 disrupts co-localization with Rhino, germline piRNA production, transposon silencing, and perinuclear localization of Vasa. We therefore propose that UAP56 and Vasa function in a piRNA-processing compartment that spans the nuclear envelope. PMID:23141543

  1. DNA interference: DNA-induced gene silencing in the appendicularian Oikopleura dioica.

    PubMed

    Omotezako, Tatsuya; Onuma, Takeshi A; Nishida, Hiroki

    2015-05-22

    RNA interference is widely employed as a gene-silencing system in eukaryotes for host defence against invading nucleic acids. In response to invading double-stranded RNA (dsRNA), mRNA is degraded in sequence-specific manner. So far, however, DNA interference (DNAi) has been reported only in plants, ciliates and archaea, and has not been explored in Metazoa. Here, we demonstrate that linear double-stranded DNA promotes both sequence-specific transcription blocking and mRNA degradation in developing embryos of the appendicularian Oikopleura dioica. Introduced polymerase chain reaction (PCR) products or linearized plasmids encoding Brachyury induced tail malformation and mRNA degradation. This malformation was also promoted by DNA fragments of the putative 5'-flanking region and intron without the coding region. PCR products encoding Zic-like1 and acetylcholine esterase also induced loss of sensory organ and muscle acetylcholinesterase activity, respectively. Co-injection of mRNA encoding EGFP and mCherry, and PCR products encoding these fluorescent proteins, induced sequence-specific decrease in the green or red fluorescence, respectively. These results suggest that O. dioica possesses a defence system against exogenous DNA and RNA, and that DNA fragment-induced gene silencing would be mediated through transcription blocking as well as mRNA degradation. This is the first report of DNAi in Metazoa.

  2. Structural Basis for RNA-Silencing Suppression by Tomato Aspermy Virus Protein 2b

    SciTech Connect

    Chen,H.; Yang, J.; Lin, C.; Yuan, Y.

    2008-01-01

    The 2b proteins encoded by cucumovirus act as post-transcriptional gene silencing suppressors to counter host defence during infection. Here we report the crystal structure of Tomato aspermy virus 2b (TAV2b) protein bound to a 19 bp small interfering RNA (siRNA) duplex. TAV2b adopts an all {alpha}-helix structure and forms a homodimer to measure siRNA duplex in a length-preference mode. TAV2b has a pair of hook-like structures to recognize simultaneously two {alpha}-helical turns of A-form RNA duplex by fitting its {alpha}-helix backbone into two adjacent major grooves of siRNA duplex. The conserved {pi}-stackings between tryptophan and the 5'-terminal base of siRNA duplex from both ends enhance the recognition. TAV2b further oligomerizes to form a dimer of dimers through the conserved leucine-zipper-like motif at its amino-terminal {alpha}-helix. Biochemical experiments suggest that TAV2b might interfere with the post-transcriptional gene silencing pathway by directly binding to siRNA duplex.

  3. DNA interference: DNA-induced gene silencing in the appendicularian Oikopleura dioica

    PubMed Central

    Omotezako, Tatsuya; Onuma, Takeshi A.; Nishida, Hiroki

    2015-01-01

    RNA interference is widely employed as a gene-silencing system in eukaryotes for host defence against invading nucleic acids. In response to invading double-stranded RNA (dsRNA), mRNA is degraded in sequence-specific manner. So far, however, DNA interference (DNAi) has been reported only in plants, ciliates and archaea, and has not been explored in Metazoa. Here, we demonstrate that linear double-stranded DNA promotes both sequence-specific transcription blocking and mRNA degradation in developing embryos of the appendicularian Oikopleura dioica. Introduced polymerase chain reaction (PCR) products or linearized plasmids encoding Brachyury induced tail malformation and mRNA degradation. This malformation was also promoted by DNA fragments of the putative 5′-flanking region and intron without the coding region. PCR products encoding Zic-like1 and acetylcholine esterase also induced loss of sensory organ and muscle acetylcholinesterase activity, respectively. Co-injection of mRNA encoding EGFP and mCherry, and PCR products encoding these fluorescent proteins, induced sequence-specific decrease in the green or red fluorescence, respectively. These results suggest that O. dioica possesses a defence system against exogenous DNA and RNA, and that DNA fragment-induced gene silencing would be mediated through transcription blocking as well as mRNA degradation. This is the first report of DNAi in Metazoa. PMID:25904672

  4. On the origin and functions of RNA-mediated silencing: from protists to man.

    PubMed

    Cerutti, Heriberto; Casas-Mollano, J Armando

    2006-08-01

    Double-stranded RNA has been shown to induce gene silencing in diverse eukaryotes and by a variety of pathways. We have examined the taxonomic distribution and the phylogenetic relationship of key components of the RNA interference (RNAi) machinery in members of five eukaryotic supergroups. On the basis of the parsimony principle, our analyses suggest that a relatively complex RNAi machinery was already present in the last common ancestor of eukaryotes and consisted, at a minimum, of one Argonaute-like polypeptide, one Piwi-like protein, one Dicer, and one RNA-dependent RNA polymerase. As proposed before, the ancestral (but non-essential) role of these components may have been in defense responses against genomic parasites such as transposable elements and viruses. From a mechanistic perspective, the RNAi machinery in the eukaryotic ancestor may have been capable of both small-RNA-guided transcript degradation as well as transcriptional repression, most likely through histone modifications. Both roles appear to be widespread among living eukaryotes and this diversification of function could account for the evolutionary conservation of duplicated Argonaute-Piwi proteins. In contrast, additional RNAi-mediated pathways such as RNA-directed DNA methylation, programmed genome rearrangements, meiotic silencing by unpaired DNA, and miRNA-mediated gene regulation may have evolved independently in specific lineages.

  5. DNA interference: DNA-induced gene silencing in the appendicularian Oikopleura dioica.

    PubMed

    Omotezako, Tatsuya; Onuma, Takeshi A; Nishida, Hiroki

    2015-05-22

    RNA interference is widely employed as a gene-silencing system in eukaryotes for host defence against invading nucleic acids. In response to invading double-stranded RNA (dsRNA), mRNA is degraded in sequence-specific manner. So far, however, DNA interference (DNAi) has been reported only in plants, ciliates and archaea, and has not been explored in Metazoa. Here, we demonstrate that linear double-stranded DNA promotes both sequence-specific transcription blocking and mRNA degradation in developing embryos of the appendicularian Oikopleura dioica. Introduced polymerase chain reaction (PCR) products or linearized plasmids encoding Brachyury induced tail malformation and mRNA degradation. This malformation was also promoted by DNA fragments of the putative 5'-flanking region and intron without the coding region. PCR products encoding Zic-like1 and acetylcholine esterase also induced loss of sensory organ and muscle acetylcholinesterase activity, respectively. Co-injection of mRNA encoding EGFP and mCherry, and PCR products encoding these fluorescent proteins, induced sequence-specific decrease in the green or red fluorescence, respectively. These results suggest that O. dioica possesses a defence system against exogenous DNA and RNA, and that DNA fragment-induced gene silencing would be mediated through transcription blocking as well as mRNA degradation. This is the first report of DNAi in Metazoa. PMID:25904672

  6. Construction of effective inverted repeat silencing constructs using sodium bisulfite treatment coupled with strand-specific PCR.

    PubMed

    Taylor, Sarah H; Harmse, Johan; Arbuthnot, Patrick; Van Den Berg, Fiona; Weinberg, Marco S; Rey, Marie E C

    2012-04-01

    RNA silencing has been exploited to produce transgenic plants with resistance to viral pathogens via posttranscriptional gene silencing (PTGS). In some cases, this technology is difficult to apply due to the instability of inverted repeat (IR) constructs during cloning and plant transformation. Although such constructs have been shown to be stabilized with introns and efficiently induce RNA silencing, we found that the Pdk intron did not stabilize South African cassava mosaic virus (SACMV) silencing constructs. Therefore, we developed a method for producing long SACMV IR constructs through bisulfite-induced base pair mismatches on the sense arm prior to IR assembly. Expression of SACMV BC1 mismatched IR constructs in the model test plant Nicotiana benthamiana resulted in a reduction in viral BC1 transcript levels, hence viral replication, upon SACMV infection. Mismatched SACMV AC1 IR constructs induced PTGS more efficiently in a N. benthamiana callus system than nonmismatched IR constructs. Our novel method for IR construct generation should be applicable to many sequences where the generation of these constructs has proven difficult in the past.

  7. Construction of effective inverted repeat silencing constructs using sodium bisulfite treatment coupled with strand-specific PCR.

    PubMed

    Taylor, Sarah H; Harmse, Johan; Arbuthnot, Patrick; Van Den Berg, Fiona; Weinberg, Marco S; Rey, Marie E C

    2012-04-01

    RNA silencing has been exploited to produce transgenic plants with resistance to viral pathogens via posttranscriptional gene silencing (PTGS). In some cases, this technology is difficult to apply due to the instability of inverted repeat (IR) constructs during cloning and plant transformation. Although such constructs have been shown to be stabilized with introns and efficiently induce RNA silencing, we found that the Pdk intron did not stabilize South African cassava mosaic virus (SACMV) silencing constructs. Therefore, we developed a method for producing long SACMV IR constructs through bisulfite-induced base pair mismatches on the sense arm prior to IR assembly. Expression of SACMV BC1 mismatched IR constructs in the model test plant Nicotiana benthamiana resulted in a reduction in viral BC1 transcript levels, hence viral replication, upon SACMV infection. Mismatched SACMV AC1 IR constructs induced PTGS more efficiently in a N. benthamiana callus system than nonmismatched IR constructs. Our novel method for IR construct generation should be applicable to many sequences where the generation of these constructs has proven difficult in the past. PMID:22482441

  8. RNA silencing of hydrogenase(-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii.

    PubMed

    Godman, James E; Molnár, Attila; Baulcombe, David C; Balk, Janneke

    2010-11-01

    The genome of the green alga Chlamydomonas reinhardtii encodes two [FeFe]-hydrogenases, HydA1 and HydA2, and the hydrogenase-like protein HYD3. The unique combination of these proteins in one eukaryotic cell allows for direct comparison of their in vivo functions, which have not been established for HydA2 and HYD3. Using an artificial microRNA silencing method developed recently, the expression of HydA1, HydA2 and HYD3 was specifically down-regulated. Silencing of HydA1 resulted in 4-fold lower hydrogenase protein and activity under anaerobic conditions. In contrast, silencing of HydA2 or HYD3 did not affect hydrogen production. Cell lines with strongly (>90%) decreased HYD3 transcript levels grew more slowly than wild-type. The activity of aldehyde oxidase, a cytosolic Fe-S enzyme, was decreased in HYD3-knockdown lines, whereas Fe-S dependent activities in the chloroplast and mitochondria were unaffected. In addition, the HYD3-knockdown lines grew poorly on hypoxanthine, indicating impaired function of xanthine dehydrogenase, another cytosolic Fe-S enzyme. The expression levels of selected genes in response to hypoxia were unaltered upon HYD3 silencing. Together, our results clearly distinguish the cellular roles of HydA1 and HYD3, and indicate that HYD3, like its yeast and human homologues, has an evolutionary conserved role in the biogenesis or maintenance of cytosolic Fe-S proteins.

  9. Selective silencing of gene target expression by siRNA expression plasmids in human cervical cancer cells.

    PubMed

    Peralta-Zaragoza, Oscar; De-la-O-Gómez, Faustino; Deas, Jessica; Fernández-Tilapa, Gloria; Fierros-Zárate, Geny Del Socorro; Gómez-Cerón, Claudia; Burguete-García, Ana; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Madrid-Marina, Vicente

    2015-01-01

    RNA interference is a natural mechanism to silence post-transcriptional gene expression in eukaryotic cells in which microRNAs act to cleave or halt the translation of target mRNAs at specific target sequences. Mature microRNAs, 19-25 nucleotides in length, mediate their effect at the mRNA level by inhibiting translation, or inducing cleavage of the mRNA target. This process is directed by the degree of complementary nucleotides between the microRNAs and the target mRNA; perfect complementary base pairing induces cleavage of mRNA, whereas several mismatches lead to translational arrest. Biological effects of microRNAs can be manipulated through the use of small interference RNAs (siRNAs) generated by chemical synthesis, or by cloning in molecular vectors. The cloning of a DNA insert in a molecular vector that will be transcribed into the corresponding siRNAs is an approach that has been developed using siRNA expression plasmids. These vectors contain DNA inserts designed with software to generate highly efficient siRNAs which will assemble into RNA-induced silencing complexes (RISC), and silence the target mRNA. In addition, the DNA inserts may be contained in cloning cassettes, and introduced in other molecular vectors. In this chapter we describe an attractive technology platform to silence cellular gene expression using specific siRNA expression plasmids, and evaluate its biological effect on target gene expression in human cervical cancer cells. PMID:25348304

  10. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products.

    PubMed

    Zhu, Xiaobiao; Gong, Huiling; He, Qunyan; Zeng, Zixian; Busse, James S; Jin, Weiwei; Bethke, Paul C; Jiang, Jiming

    2016-02-01

    Acrylamide is produced in a wide variety of carbohydrate-rich foods during high-temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to the average daily intake of acrylamide, especially in developed countries. One way to mitigate health concerns related to acrylamide is to develop potato cultivars that have reduced contents of the acrylamide precursors asparagine, glucose and fructose in tubers. We generated a large number of silencing lines of potato cultivar Russet Burbank by targeting the vacuolar invertase gene VInv and the asparagine synthetase genes StAS1 and StAS2 with a single RNA interference construct. The transcription levels of these three genes were correlated with reducing sugar (glucose and fructose) and asparagine content in tubers. Fried potato products from the best VInv/StAS1/StAS2-triple silencing lines contained only one-fifteenth of the acrylamide content of the controls. Interestingly, the extent of acrylamide reduction of the best triple silencing lines was similar to that of the best VInv-single silencing lines developed previously from the same potato cultivar Russet Burbank. These results show that an acrylamide mitigation strategy focused on developing potato cultivars with low reducing sugars is likely to be an effective and sufficient approach for minimizing the acrylamide-forming potential of French fry processing potatoes. PMID:26079224

  11. Silencing of vacuolar invertase and asparagine synthetase genes and its impact on acrylamide formation of fried potato products.

    PubMed

    Zhu, Xiaobiao; Gong, Huiling; He, Qunyan; Zeng, Zixian; Busse, James S; Jin, Weiwei; Bethke, Paul C; Jiang, Jiming

    2016-02-01

    Acrylamide is produced in a wide variety of carbohydrate-rich foods during high-temperature cooking. Dietary acrylamide is a suspected human carcinogen, and health concerns related to dietary acrylamide have been raised worldwide. French fries and potato chips contribute a significant proportion to the average daily intake of acrylamide, especially in developed countries. One way to mitigate health concerns related to acrylamide is to develop potato cultivars that have reduced contents of the acrylamide precursors asparagine, glucose and fructose in tubers. We generated a large number of silencing lines of potato cultivar Russet Burbank by targeting the vacuolar invertase gene VInv and the asparagine synthetase genes StAS1 and StAS2 with a single RNA interference construct. The transcription levels of these three genes were correlated with reducing sugar (glucose and fructose) and asparagine content in tubers. Fried potato products from the best VInv/StAS1/StAS2-triple silencing lines contained only one-fifteenth of the acrylamide content of the controls. Interestingly, the extent of acrylamide reduction of the best triple silencing lines was similar to that of the best VInv-single silencing lines developed previously from the same potato cultivar Russet Burbank. These results show that an acrylamide mitigation strategy focused on developing potato cultivars with low reducing sugars is likely to be an effective and sufficient approach for minimizing the acrylamide-forming potential of French fry processing potatoes.

  12. Transcriptional regulation by CHIP/LDB complexes.

    PubMed

    Bronstein, Revital; Levkovitz, Liron; Yosef, Nir; Yanku, Michaela; Ruppin, Eytan; Sharan, Roded; Westphal, Heiner; Oliver, Brian; Segal, Daniel

    2010-08-12

    It is increasingly clear that transcription factors play versatile roles in turning genes "on" or "off" depending on cellular context via the various transcription complexes they form. This poses a major challenge in unraveling combinatorial transcription complex codes. Here we use the powerful genetics of Drosophila combined with microarray and bioinformatics analyses to tackle this challenge. The nuclear adaptor CHIP/LDB is a major developmental regulator capable of forming tissue-specific transcription complexes with various types of transcription factors and cofactors, making it a valuable model to study the intricacies of gene regulation. To date only few CHIP/LDB complexes target genes have been identified, and possible tissue-dependent crosstalk between these complexes has not been rigorously explored. SSDP proteins protect CHIP/LDB complexes from proteasome dependent degradation and are rate-limiting cofactors for these complexes. By using mutations in SSDP, we identified 189 down-stream targets of CHIP/LDB and show that these genes are enriched for the binding sites of APTEROUS (AP) and PANNIER (PNR), two well studied transcription factors associated with CHIP/LDB complexes. We performed extensive genetic screens and identified target genes that genetically interact with components of CHIP/LDB complexes in directing the development of the wings (28 genes) and thoracic bristles (23 genes). Moreover, by in vivo RNAi silencing we uncovered novel roles for two of the target genes, xbp1 and Gs-alpha, in early development of these structures. Taken together, our results suggest that loss of SSDP disrupts the normal balance between the CHIP-AP and the CHIP-PNR transcription complexes, resulting in down-regulation of CHIP-AP target genes and the concomitant up-regulation of CHIP-PNR target genes. Understanding the combinatorial nature of transcription complexes as presented here is crucial to the study of transcription regulation of gene batteries required for

  13. In a Silent Way: Student Perceptions of Silence in Community

    ERIC Educational Resources Information Center

    Wood, Margaret; Tribe, Robert

    2016-01-01

    This paper explores young people's perceptions of the role and value of shared "gathered" silence in the corporate life of a school community. It draws on a small-scale qualitative investigation in a Quaker school setting. There may be particular things to learn about the practice of stillness and silence inherent in the ethos of a…

  14. Listening for Silence in Text-Based, Online Encounters

    ERIC Educational Resources Information Center

    Zembylas, Michalinos; Vrasidas, Charalambos

    2007-01-01

    This article addresses the ways in which learners' silence plays out within asynchronous and synchronous text-based, online communication. Our study takes an ethnographic perspective in examining how learners and instructors in two online courses use and interpret silence. The ways in which those learners and instructors eventually integrated…

  15. Reflections on the Silencing the Self Scale and Its Origins

    ERIC Educational Resources Information Center

    Jack, Dana Crowley

    2011-01-01

    In this article, the author reflects on the Silencing the Self Scale (STSS) and blends her personal and professional thoughts about self-silencing, gender, and depression. For her, the despair of depression deeply involves questions of value and meaning, culture and freedom. The STSS grew from listening to depressed women's voices. From them, the…

  16. Deriving Silence through Dependent Reference: Focus on Pronouns

    ERIC Educational Resources Information Center

    Livitz, Inna G.

    2014-01-01

    The starting point of this dissertation is the observation that pronouns that are obligatorily dependent on a sufficiently local antecedent are persistently silent. The classical hypothesis has been that silence is a lexical property of such elements. The central claim of this dissertation is that silence is instead a product of syntax--of the way…

  17. Hearing the Silence: Acknowledging the Voice of My Latina Sisters

    ERIC Educational Resources Information Center

    Martinez-Vogt, Emily

    2015-01-01

    Latina community college students experience a number of challenges during their transition to college. Findings from a larger study indicated that Latina community college students experienced racism and stereotyping on campus responding with silence. Silence occurred in two ways: (1) Latinas were forced to be silent, and/or (2) Latinas chose to…

  18. The Role of Silence in Teaching and Learning

    ERIC Educational Resources Information Center

    Schultz, Katherine

    2013-01-01

    The author's first teaching position was as a 4th and 5th grade teacher at a school in Philadelphia. There, she learned the Quaker value of adding silence and periods of reflection to her teaching to provide a wider range of students with the opportunity to participate in classroom discussions. Later, a focus on silence as a teaching strategy led…

  19. The Question of Silence: Techniques to Ensure Full Class Participation.

    ERIC Educational Resources Information Center

    Wildman, Stephanie M.

    1988-01-01

    Law school professors have a responsibility to monitor student participation and silence in the classroom, to consider why some students are silent, and to examine their role in contributing to that silence. A variety of techniques are available to encourage participation. (MSE)

  20. 47 CFR 80.304 - Watch requirement during silence periods.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Watch requirement during silence periods. 80... RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.304 Watch requirement during silence periods. Each ship station operating...

  1. 47 CFR 80.304 - Watch requirement during silence periods.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Watch requirement during silence periods. 80... RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.304 Watch requirement during silence periods. Each ship station operating...

  2. 47 CFR 80.304 - Watch requirement during silence periods.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Watch requirement during silence periods. 80... RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.304 Watch requirement during silence periods. Each ship station operating...

  3. 47 CFR 80.304 - Watch requirement during silence periods.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Watch requirement during silence periods. 80... RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.304 Watch requirement during silence periods. Each ship station operating...

  4. 47 CFR 80.304 - Watch requirement during silence periods.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Watch requirement during silence periods. 80... RADIO SERVICES STATIONS IN THE MARITIME SERVICES Safety Watch Requirements and Procedures Ship Station Safety Watches § 80.304 Watch requirement during silence periods. Each ship station operating...

  5. A Time for Silence: Booker T. Washington in Atlanta.

    ERIC Educational Resources Information Center

    Heath, Robert L.

    1978-01-01

    Discusses the rhetoric of silence as an alternative to participation in a discussion of social issues, particularly when participation confirms the efforts of those who seek social control. Concludes that Booker T. Washington should have employed the strategy of silence when invited to address an exposition in Atlanta in 1895. (JMF)

  6. Silence: A Rhetorical Art for Resisting Discipline(s).

    ERIC Educational Resources Information Center

    Glenn, Cheryl

    2002-01-01

    Argues that silence can be a specifically feminist rhetorical art, often one of resistance. Draws on two key rhetorical movements: the Anita Hill-Clarence Thomas hearings and the never-heard hearing of Lani Guinier. Explores the rhetorical dimensions of silence as a feminist position that can resist disciplinary pigeon-holing, embrace political…

  7. Silenced by Sex: Hard Truths & Taboos in Teaching Literature.

    ERIC Educational Resources Information Center

    Wolf, Shelby A.; Maniotes, Leslie K.

    2002-01-01

    Focuses on the silencing of young voices, both on and off the page, because of sexual trauma and even sexual curiosity. Considers the novel, "Speak," in which the protagonist's silence stems from the fact that she was raped. Explores two other literary texts that center on sexual issues for young teens. (SG)

  8. Silence in the Second Language Classrooms of Japanese Universities

    ERIC Educational Resources Information Center

    King, Jim

    2013-01-01

    Japanese language learners' proclivity for silence has been alluded to by various writers (e.g. Anderson 1993; Korst 1997; Greer 2000) and is supported by plenty of anecdotal evidence, but large-scale, empirical studies aimed at measuring the extent of macro-level silence within Japanese university L2 classrooms are notably lacking. This article…

  9. Echoes of Silence: Empathy and Making Connections through Writing Process

    ERIC Educational Resources Information Center

    Freedman, Joel M.

    2009-01-01

    On April 25, 2008, students on college and public school campuses collectively committed to a vow of silence commemorating an event known as the National Day of Silence. This student-generated, nationwide action theatrically "speaks out" in solidarity with lesbian, gay, bisexual, and transgender (LGBT) people who for one reason or another fear…

  10. Dentin Sialophosphoprotein (DSPP) Gene-Silencing Inhibits Key Tumorigenic Activities in Human Oral Cancer Cell Line, OSC2

    PubMed Central

    Joshi, Rajeshree; Tawfik, Amany; Edeh, Nneka; McCloud, Veronica; Looney, Stephen; Lewis, Jill; Hsu, Stephen; Ogbureke, Kalu U. E.

    2010-01-01

    Background We determined recently that dentin sialophosphoprotein (DSPP), a member of the SIBLING (Small integrin-binding ligand N-linked glycoproteins) family of phosphoglycoproteins, is highly upregulated in human oral squamous cell carcinomas (OSCCs) where upregulation is associated with tumor aggressiveness. To investigate the effects of DSPP-silencing on the tumorigenic profiles of the oral cancer cell line, OSC2, short-hairpin RNA (shRNA) interference was employed to silence DSPP in OSC2 cells. Methodology/Principal Findings Multiple regions of DSPP transcript were targeted for shRNA interference using hDSP-shRNA lentiviral particles designed to silence DSPP gene expression. Control shRNA plasmid encoding a scrambled sequence incapable of degrading any known cellular mRNA was used for negative control. Following puromycin selection of stable lines of DSSP-silenced OSC2 cells, phenotypic hallmarks of oral carcinogenesis were assayed by western blot and RT-PCR analyses, MTT (cell-viability), colony-formation, modified Boyden-Chamber (migration and invasion), and flow cytometry (cell-cycle and apoptosis) analyses. DSPP-silenced OSC2 cells showed altered cell morphology, reduced viability, decreased colony-formation ability, decreased migration and invasion, G0/G1 cell-cycle arrest, and increased tumor cell sensitivity to cisplatin-induced apoptosis. Furthermore, MMP-2, MMP-3, MMP-9, VEGF, Ki-67, p53, and EGFR were down-regulated. There was a direct correlation between the degree of DSPP-silencing and MMP suppression, as indicated by least squares regression: MMP-2 {(y = 0.850x, p<0.001) (y = 1.156x, p<0.001)}, MMP-3 {(y = 0.994x, p<0.001) (y = 1.324x, p = 0.004)}, and MMP-9 {(y = 1.248x, p = 0.005, y = 0.809, p = 0.013)}. Conclusions/Significance DSPP-silencing in OSC2 cell decreased salient hallmarks of oral tumorigenesis and provides the first functional evidence of a potential key role for DSPP in oral cancer biology. The

  11. Assessing Bias in Search Engines.

    ERIC Educational Resources Information Center

    Mowshowitz, Abbe; Kawaguchi, Akira

    2002-01-01

    Addresses the measurement of bias in search engines on the Web, defining bias as the balance and representation of items in a collection retrieved from a database for a set of queries. Assesses bias by measuring the deviation from the ideal of the distribution produced by a particular search engine. (Author/LRW)

  12. Negativity bias and basic values.

    PubMed

    Schwartz, Shalom H

    2014-06-01

    Basic values explain more variance in political attitudes and preferences than other personality and sociodemographic variables. The values most relevant to the political domain are those likely to reflect the degree of negativity bias. Value conflicts that represent negativity bias clarify differences between what worries conservatives and liberals and suggest that relations between ideology and negativity bias are linear. PMID:24970450

  13. Targeting alpha-synuclein with a microRNA-embedded silencing vector in the rat substantia nigra: positive and negative effects

    PubMed Central

    Khodr, Christina E.; Becerra, Amanda; Han, Ye; Bohn, Martha C.

    2014-01-01

    Background Alpha-synuclein (SNCA) downregulation shows therapeutic potential for synucleinopathies, including Parkinson’s disease (PD). Previously we showed that human (h)SNCA gene silencing using a short hairpin (sh)RNA in rat substantia nigra (SN) protects against a hSNCA-induced forelimb deficit, but not dopamine (DA) neuron loss. Further, the mir-embedded hSNCA gene silencing shRNA increases cell death in vitro, but the same target sequence embedded in a microRNA30 transcript (mir30-hSNCA) does not. Objective Examine hSNCA gene silencing using mir30-hSNCA in vivo. Methods Rats were stereotaxically injected into one SN with adeno-associated virus serotype 2/8 (AAV)-hSNCA, AAV-hSNCA plus AAV-mir30-SNCA or AAV-hSNCA plus a control non-silencing mir30-embedded siRNA and DA neuron markers and associated behavior were examined. Results AAV2/8-mediated SN hSNCA expression induces a forelimb deficit and tyrosine hydroxylase-immunoreactive (TH-IR) neuron loss. hSNCA gene silencing using mir30-hSNCA protects against this forelimb deficit at 2m and ameliorates TH-IR neuron loss. Striatal (ST) TH-IR fiber density and DA markers, assessed by western blot, are unaffected by AAV-hSNCA alone. Co-expression of either silencing vector reduces ST TH-IR fibers, panTH in SN and Ser40 phosphorylated TH in SN and ST, but does not affect vesicular monoamine transporter-2. However, hSNCA gene silencing promotes partial TH-IR fiber recovery by 2m. Co-expression of either silencing vector also induces SN inflammation, although some recovery was observed by 2m in hSNCA-silenced SN. Conclusion hSNCA gene silencing with AAV-mir30-hSNCA has positive effects on forelimb behavior and SN DA neurons, which are compromised by inflammation and reduced TH expression, suggesting that AAV2/8-mir30-hSNCA-mediated gene silencing, although promising in vitro, is not a candidate for therapeutic translation for PD. PMID:24463035

  14. Screening and identification of virus-encoded RNA silencing suppressors.

    PubMed

    Karjee, Sumona; Islam, Mohammad Nurul; Mukherjee, Sunil K

    2008-01-01

    RNA silencing, including RNA interference, is a novel method of gene regulation and one of the potent host-defense mechanisms against the viruses. In the course of evolution, the viruses have encoded proteins with the potential to suppress the host RNA silencing mechanism as a counterdefense strategy. The virus-encoded RNA silencing suppressors (RSSs) can serve as important biological tools to dissect the detailed RNA silencing pathways and also to evolve the antiviral strategies. Screening and identification of the RSSs are indeed of utmost significance in the field of plant biotechnology. We describe two Green Fluorescent Protein (GFP) reporter-based plant assay systems that rely on two different principles, namely reversal of silencing and enhancement of rolling circle replication (RCR) of geminiviral replicon. These proof-of-concept examples and assay systems could be used to screen various plant, animal, and insect viral ORFs for identification of the RSS activities.

  15. An electronically tunable duct silencer using dielectric elastomer actuators.

    PubMed

    Lu, Zhenbo; Godaba, Hareesh; Cui, Yongdong; Foo, Choon Chiang; Debiasi, Marco; Zhu, Jian

    2015-09-01

    A duct silencer with tunable acoustic characteristics is presented in this paper. Dielectric elastomer, a smart material with lightweight, high elastic energy density and large deformation under high direct current/alternating current voltages, was used to fabricate this duct silencer. The acoustic performances and tunable mechanisms of this duct silencer were experimentally investigated. It was found that all the resonance peaks of this duct silencer could be adjusted using external control signals without any additional mechanical part. The physics of the tunable mechanism is further discussed based on the electro-mechanical interactions using finite element analysis. The present promising results also provide insight into the appropriateness of the duct silencer for possible use as next generation acoustic treatment device to replace the traditional acoustic treatment. PMID:26428819

  16. An electronically tunable duct silencer using dielectric elastomer actuators.

    PubMed

    Lu, Zhenbo; Godaba, Hareesh; Cui, Yongdong; Foo, Choon Chiang; Debiasi, Marco; Zhu, Jian

    2015-09-01

    A duct silencer with tunable acoustic characteristics is presented in this paper. Dielectric elastomer, a smart material with lightweight, high elastic energy density and large deformation under high direct current/alternating current voltages, was used to fabricate this duct silencer. The acoustic performances and tunable mechanisms of this duct silencer were experimentally investigated. It was found that all the resonance peaks of this duct silencer could be adjusted using external control signals without any additional mechanical part. The physics of the tunable mechanism is further discussed based on the electro-mechanical interactions using finite element analysis. The present promising results also provide insight into the appropriateness of the duct silencer for possible use as next generation acoustic treatment device to replace the traditional acoustic treatment.

  17. Virus-induced gene silencing in diverse maize lines using the Brome Mosaic virus-based silencing vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) is a widely used tool for gene function studies in many plant species, though its use in monocots has been limited. Using a Brome mosaic virus (BMV) vector designed to silence the maize phytoene desaturase gene, a genetically diverse set of maize inbred lines was ...

  18. HDA6 Directly Interacts with DNA Methyltransferase MET1 and Maintains Transposable Element Silencing in Arabidopsis1[W][OA

    PubMed Central

    Liu, Xuncheng; Yu, Chun-Wei; Duan, Jun; Luo, Ming; Wang, Koching; Tian, Gang; Cui, Yuhai; Wu, Keqiang

    2012-01-01

    The molecular mechanism of how the histone deacetylase HDA6 participates in maintaining transposable element (TE) silencing in Arabidopsis (Arabidopsis thaliana) is not yet defined. In this study, we show that a subset of TEs was transcriptionally reactivated and that TE reactivation was associated with elevated histone H3 and H4 acetylation as well as increased H3K4Me3 and H3K4Me2 in hda6 mutants. Decreased DNA methylation of the TEs was also detected in hda6 mutants, suggesting that HDA6 silences the TEs by regulating histone acetylation and methylation as well as the DNA methylation status of the TEs. Similarly, transcripts of some of these TEs were also increased in the methyltransferase1 (met1) mutant, with decreased DNA methylation. Furthermore, H4 acetylation, H3K4Me3, H3K4Me2, and H3K36Me2 were enriched at the coregulated TEs in the met1 and hda6 met1 mutants. Protein-protein interaction analysis indicated that HDA6 physically interacts with MET1 in vitro and in vivo, and further deletion analysis demonstrated that the carboxyl-terminal region of HDA6 and the bromo-adjacent homology domain of MET1 were responsible for the interaction. These results suggested that HDA6 and MET1 interact directly and act together to silence TEs by modulating DNA methylation, histone acetylation, and histone methylation status. PMID:21994348

  19. Functional Analysis of Cotton Leaf Curl Kokhran Virus/Cotton Leaf Curl Multan Betasatellite RNA Silencing Suppressors

    PubMed Central

    Saeed, Muhammad; Briddon, Rob W.; Dalakouras, Athanasios; Krczal, Gabi; Wassenegger, Michael

    2015-01-01

    In South Asia, Cotton leaf curl disease (CLCuD) is caused by a complex of phylogenetically-related begomovirus species and a specific betasatellite, Cotton leaf curl Multan betasatellite (CLCuMuB). The post-transcriptional gene silencing (PTGS) suppression activities of the transcriptional activator protein (TrAP), C4, V2 and βC1 proteins encoded by Cotton leaf curl Kokhran virus (CLCuKoV)/CLCuMuB were assessed in Nicotiana benthamiana. A variable degree of local silencing suppression was observed for each viral protein tested, with V2 protein exhibiting the strongest suppression activity and only the C4 protein preventing the spread of systemic silencing. The CLCuKoV-encoded TrAP, C4, V2 and CLCuMuB-encoded βC1 proteins were expressed in Escherichia coli and purified. TrAP was shown to bind various small and long nucleic acids including single-stranded (ss) and double-stranded (ds) RNA and DNA molecules. C4, V2, and βC1 bound ssDNA and dsDNA with varying affinities. Transgenic expression of C4 under the constitutive 35S Cauliflower mosaic virus promoter and βC1 under a dexamethasone inducible promoter induced severe developmental abnormalities in N. benthamiana. The results indicate that homologous proteins from even quite closely related begomoviruses may differ in their suppressor activity and mechanism of action. The significance of these findings is discussed. PMID:26512705

  20. Position-dependent silencing of germline Vß segments on TCRß alleles containing preassembled VßDJßCß1 genes.

    PubMed

    Brady, Brenna L; Oropallo, Michael A; Yang-Iott, Katherine S; Serwold, Thomas; Hochedlinger, Konrad; Jaenisch, Rudolf; Weissman, Irving L; Bassing, Craig H

    2010-09-15

    The genomic organization of TCRbeta loci enables Vbeta-to-DJbeta2 rearrangements on alleles with assembled VbetaDJbetaCbeta1 genes, which could have deleterious physiologic consequences. To determine whether such Vbeta rearrangements occur and, if so, how they might be regulated, we analyzed mice with TCRbeta alleles containing preassembled functional VbetaDJbetaCbeta1 genes. Vbeta10 segments were transcribed, rearranged, and expressed in thymocytes when located immediately upstream of a Vbeta1DJbetaCbeta1 gene, but not on alleles with a Vbeta14DJbetaCbeta1 gene. Germline Vbeta10 transcription was silenced in mature alphabeta T cells. This allele-dependent and developmental stage-specific silencing of Vbeta10 correlated with increased CpG methylation and decreased histone acetylation over the Vbeta10 promoter and coding region. Transcription, rearrangement, and expression of the Vbeta4 and Vbeta16 segments located upstream of Vbeta10 were silenced on alleles containing either VbetaDJbetaCbeta1 gene; sequences within Vbeta4, Vbeta16, and the Vbeta4/Vbeta16-Vbeta10 intergenic region exhibited constitutive high CpG methylation and low histone acetylation. Collectively, our data indicate that the position of Vbeta segments relative to assembled VbetaDJbetaCbeta1 genes influences their rearrangement and suggest that DNA sequences between Vbeta segments may form boundaries between active and inactive Vbeta chromatin domains upstream of VbetaDJbetaCbeta genes.

  1. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis.

    PubMed

    Bilichak, Andriy; Yao, Youli; Kovalchuk, Igor

    2014-06-01

    Agrobacterium tumefaciens is a plant pathogen that is widely used in plant transformation. As the process of transgenesis includes the delivery of single-stranded T-DNA molecule, we hypothesized that transformation rate may negatively correlate with the efficiency of the RNA-silencing machinery. Using mutants compromised in either the transcriptional or post-transcriptional gene-silencing pathways, two inhibitors of stable transformation were revealed-AGO2 and NRPD1a. Furthermore, an immunoprecipitation experiment has shown that NRPD1, a subunit of Pol IV, directly interacts with Agrobacterium T-DNA in planta. Using the Tobacco rattle virus (TRV)--based virus-induced gene silencing (VIGS) technique, we demonstrated that the transient down-regulation of the expression of either AGO2 or NRPD1a genes in reproductive organs of Arabidopsis, leads to an increase in transformation rate. We observed a 6.0- and 3.5-fold increase in transformation rate upon transient downregulation of either AGO2 or NRPD1a genes, respectively. This is the first report demonstrating the increase in the plant transformation rate via VIGS-mediated transient down-regulation of the components of epigenetic machinery in reproductive tissue.

  2. Mutational analysis of a histone deacetylase in Drosophila melanogaster: missense mutations suppress gene silencing associated with position effect variegation.

    PubMed Central

    Mottus, R; Sobel, R E; Grigliatti, T A

    2000-01-01

    For many years it has been noted that there is a correlation between acetylation of histones and an increase in transcriptional activity. One prediction, based on this correlation, is that hypomorphic or null mutations in histone deacetylase genes should lead to increased levels of histone acetylation and result in increased levels of transcription. It was therefore surprising when it was reported, in both yeast and fruit flies, that mutations that reduced or eliminated a histone deacetylase resulted in transcriptional silencing of genes subject to telomeric and heterochromatic position effect variegation (PEV). Here we report the first mutational analysis of a histone deacetylase in a multicellular eukaryote by examining six new mutations in HDAC1 of Drosophila melanogaster. We observed a suite of phenotypes accompanying the mutations consistent with the notion that HDAC1 acts as a global transcriptional regulator. However, in contrast to recent findings, here we report that specific missense mutations in the structural gene of HDAC1 suppress the silencing of genes subject to PEV. We propose that the missense mutations reported here are acting as antimorphic mutations that "poison" the deacetylase complex and propose a model that accounts for the various phenotypes associated with lesions in the deacetylase locus. PMID:10655219

  3. Antisense Gene Silencing: Therapy for Neurodegenerative Disorders?

    PubMed Central

    Nielsen, Troels T.; Nielsen, Jørgen E.

    2013-01-01

    Since the first reports that double-stranded RNAs can efficiently silence gene expression in C. elegans, the technology of RNA interference (RNAi) has been intensively exploited as an experimental tool to study gene function. With the subsequent discovery that RNAi could also be applied to mammalian cells, the technology of RNAi expanded from being a valuable experimental tool to being an applicable method for gene-specific therapeutic regulation, and much effort has been put into further refinement of the technique. This review will focus on how RNAi has developed over the years and how the technique is exploited in a pre-clinical and clinical perspective in relation to neurodegenerative disorders. PMID:24705213

  4. Biases in small RNA deep sequencing data

    PubMed Central

    Raabe, Carsten A.; Tang, Thean-Hock; Brosius, Juergen; Rozhdestvensky, Timofey S.

    2014-01-01

    High-throughput RNA sequencing (RNA-seq) is considered a powerful tool for novel gene discovery and fine-tuned transcriptional profiling. The digital nature of RNA-seq is also believed to simplify meta-analysis and to reduce background noise associated with hybridization-based approaches. The development of multiplex sequencing enables efficient and economic parallel analysis of gene expression. In addition, RNA-seq is of particular value when low RNA expression or modest changes between samples are monitored. However, recent data uncovered severe bias in the sequencing of small non-protein coding RNA (small RNA-seq or sRNA-seq), such that the expression levels of some RNAs appeared to be artificially enhanced and others diminished or even undetectable. The use of different adapters and barcodes during ligation as well as complex RNA structures and modifications drastically influence cDNA synthesis efficacies and exemplify sources of bias in deep sequencing. In addition, variable specific RNA G/C-content is associated with unequal polymerase chain reaction amplification efficiencies. Given the central importance of RNA-seq to molecular biology and personalized medicine, we review recent findings that challenge small non-protein coding RNA-seq data and suggest approaches and precautions to overcome or minimize bias. PMID:24198247

  5. Activation of silenced cytokine gene promoters by the synergistic effect of TBP-TALE and VP64-TALE activators.

    PubMed

    Anthony, Kim; More, Abhijit; Zhang, Xiaoliu

    2014-01-01

    Recent work has shown that the combinatorial use of multiple TALE activators can selectively activate certain cellular genes in inaccessible chromatin regions. In this study, we aimed to interrogate the activation potential of TALEs upon transcriptionally silenced immune genes in the context of non-immune cells. We designed a unique strategy, in which a single TALE fused to the TATA-box binding protein (TBP-TALE) is coupled with multiple VP64-TALE activators. We found that our strategy is significantly more potent than multiple TALE activators alone in activating expression of IL-2 and GM-CSF in diverse cell origins in which both genes are otherwise completely silenced. Chromatin analysis revealed that the gene activation was due in part to displacement of a distinctly positioned nucleosome. These studies provide a novel epigenetic mechanism for artificial gene induction and have important implications for targeted cancer immunotherapy, DNA vaccine development, as well as rational design of TALE activators.

  6. Evaluation of two gene-silencing constructs for resistance to tomato yellow leaf curl viruses in Nicotiana benthamiana plants.

    PubMed

    Gharsallah Chouchane, S; Gorsane, F; Nakhla, M K; Salus, M; Martin, C T; Maxwell, D P; Marrakchi, M; Fakhfakh, H

    2008-01-01

    Infiltration of Agrobacterium tumefaciens into intact plant leaves of N. benthamiana was used to test the efficiency of two virus-based silencing constructs conferring resistance to the closely related begomoviruses. The constructs contained the most conserved sequences of the coat protein (CP) gene and replication-associated protein (Rep) gene of Tomato yellow leaf curl Sardinia virus (Sicily strain) (TYLCSV-[Sic]). Both constructs formed a hairpin structure that enhanced the post-transcriptional gene-silencing mechanism. When agro-infiltrated plants were challenged separately with infectious viruses TYLCSV-[Sic] and Tomato yellow leaf curl virus (TYLCV), the plants showed resistance to TYLCSV-[Sic], but not to the related TYLCV. PMID:18999888

  7. Demethylation and re-expression of epigenetically silenced tumor suppressor genes: sensitization of cancer cells by combination therapy.

    PubMed

    Sarkar, Sibaji; Goldgar, Sarah; Byler, Shannon; Rosenthal, Shoshana; Heerboth, Sarah

    2013-02-01

    Epigenetic regulation in eukaryotic and mammalian systems is a complex and emerging field of study. While histone modifications create an open chromatin conformation allowing for gene transcription, CpG methylation adds a further dimension to the expression of specific genes in developmental pathways and carcinogenesis. In this review, we will highlight DNA methylation as one of the distinct mechanisms for gene silencing and try to provide insight into the role of epigenetics in cancer progenitor cell formation and carcinogenesis. We will also introduce the concept of a dynamic methylation-demethylation system and the potential for the existence of a demethylating enzyme in this process. Finally, we will explain how re-expression of epigenetically silenced tumor suppressor genes could be exploited to develop effective drug therapies. In particular, we will consider how a combination therapy that includes epigenetic drugs could possibly kill cancer progenitor cells and reduce the chance of relapse following chemotherapy. PMID:23414323

  8. The effect of eccentricity and spatiotemporal energy on motion silencing.

    PubMed

    Choi, Lark Kwon; Bovik, Alan C; Cormack, Lawrence K

    2016-01-01

    The now well-known motion-silencing illusion has shown that salient changes among a group of objects' luminances, colors, shapes, or sizes may appear to cease when objects move rapidly (Suchow & Alvarez, 2011). It has been proposed that silencing derives from dot spacing that causes crowding, coherent changes in object color or size, and flicker frequencies combined with dot spacing (Choi, Bovik, & Cormack, 2014; Peirce, 2013; Turi & Burr, 2013). Motion silencing is a peripheral effect that does not occur near the point of fixation. To better understand the effect of eccentricity on motion silencing, we measured the amount of motion silencing as a function of eccentricity in human observers using traditional psychophysics. Fifteen observers reported whether dots in any of four concentric rings changed in luminance over a series of rotational velocities. The results in the human experiments showed that the threshold velocity for motion silencing almost linearly decreases as a function of log eccentricity. Further, we modeled the response of a population of simulated V1 neurons to our stimuli. We found strong matches between the threshold velocities on motion silencing observed in the human experiment and those seen in the energy model of Adelson and Bergen (1985). We suggest the plausible explanation that as eccentricity increases, the combined motion-flicker signal falls outside the narrow spatiotemporal frequency response regions of the modeled receptive fields, thereby reducing flicker visibility.

  9. Suppressors of RNA silencing encoded by tomato leaf curl betasatellites.

    PubMed

    Shukla, Richa; Dalal, Sunita; Malathi, V G

    2013-03-01

    Virus encoded RNA-silencing suppressors (RSSs) are the key components evolved by the viruses to counter RNA-silencing defense of plants. Whitefly-transmitted begomoviruses infecting tomato crop code for five different proteins, ORF AC4, ORF AC2 and ORF AV2 in DNA-A component, ORF BV1 in DNA-B and ORF beta C1 in satellite DNA beta which are predicted to function as silencing suppressors. In the present study suppressor function of ORF beta C1 of three betasatellites Tomato leaf curl Bangalore betasatellite ToLCBB-[IN:Hess:08], Cotton leaf curl Multan betasatellite CLCuMB-[IN:Sri:02] and Luffa leaf distortion betasatellite LuLDB-[IN:Lu:04] were examined. Agroinfiltration of GFP-silenced Nicotiana tabaccum cv. Xanthi with the cells expressing betaC1 protein resulted in reversal of silenced GFP expression. GFP-siRNA level was more than 50-fold lower compared to silenced plants in plants infiltrated with betaC1 gene from ToLCBB. However, in the case of 35S-beta C1 CLCuMB and 35S- beta C1 LuLDB construct, although GFP was expressed, siRNA level was not reduced, indicating that the step at which beta C1 interfere in RNA-silencing pathway is different. PMID:23385812

  10. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors

    PubMed Central

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-01-01

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  11. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    PubMed

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  12. Retroviral vector silencing during iPS cell induction: an epigenetic beacon that signals distinct pluripotent states.

    PubMed

    Hotta, Akitsu; Ellis, James

    2008-11-01

    Retroviral vectors are transcriptionally silent in pluripotent stem cells. This feature has been potently applied in studies that reprogram somatic cells into induced pluripotent stem (iPS) cells. By delivering the four Yamanaka factors in retroviral vectors, high expression is obtained in fibroblasts to induce the pluripotent state. Partial reprogramming generates Class I iPS cells that express the viral transgenes and endogenous pluripotency genes. Full-reprogramming in Class II iPS cells silences the vectors as the endogenous genes maintain the pluripotent state. Thus, retroviral vector silencing serves as a beacon marking the fully reprogrammed pluripotent state. Here we review known silencer elements, and the histone modifying and DNA methylation pathways, that silence retroviral and lentiviral vectors in pluripotent stem cells. Both retroviral and lentiviral vectors are influenced by position effects and often exhibit variegated expression. The best vector designs facilitate full-reprogramming and subsequent retroviral silencing, which is required for directed-differentiation. Current retroviral reprogramming methods can be immediately applied to create patient-specific iPS cell models of human disease, however, future clinical applications will require novel chemical or other reprogramming methods that reduce or eliminate the integrated vector copy number load. Nevertheless, retroviral vectors will continue to play an important role in genetically correcting patient iPS cell models. We anticipate that novel pluripotent-specific reporter vectors will select for isolation of high quality human iPS cell lines, and select against undifferentiated pluripotent cells during regenerative medicine to prevent teratoma formation after transplantation.

  13. Targeting of cohesin by transcriptionally silent chromatin.

    PubMed

    Chang, Chuang-Rung; Wu, Ching-Shyi; Hom, Yolanda; Gartenberg, Marc R

    2005-12-15

    Eukaryotic DNA replication produces sister chromatids that are linked together until anaphase by cohesin, a ring-shaped protein complex that is thought to act by embracing both chromatids. Cohesin is enriched at centromeres, as well as discrete sites along chromosome arms where transcription positions the complex between convergent gene pairs. A relationship between cohesin and Sir-mediated transcriptional silencing has also begun to emerge. Here we used fluorescence microscopy and site-specific recombination to characterize interactions between newly replicated copies of the silent HMR mating-type locus. HMR was tagged with lac-GFP and flanked by binding sites for an inducible site-specific recombinase. Excision of the locus in cells with sister chromatids produced two chromatin circles that remained associated with one another. Pairing of the circles required silent chromatin, cohesin, and the RSC chromatin-remodeling complex. Chromatin immunoprecipitation showed that targeting of cohesin to the locus is Sir-dependent, and functional tests showed that silent chromatin acts in a continuous fashion to maintain cohesion. Remarkably, loss of silencing led to loss of cohesin from linear chromosomal templates but not from excised chromatin circles. The results are consistent with a model in which cohesin binds silent chromatin via topological linkage to individual chromatids. PMID:16319193

  14. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts.

    PubMed

    Ding, Xin Shun; Schneider, William L; Chaluvadi, Srinivasa Rao; Mian, M A Rouf; Nelson, Richard S

    2006-11-01

    Virus-induced gene silencing (VIGS) is used to analyze gene function in dicotyledonous plants but less so in monocotyledonous plants (particularly rice and corn), partially due to the limited number of virus expression vectors available. Here, we report the cloning and modification for VIGS of a virus from Festuca arundinacea Schreb. (tall fescue) that caused systemic mosaic symptoms on barley, rice, and a specific cultivar of maize (Va35) under greenhouse conditions. Through sequencing, the virus was determined to be a strain of Brome mosaic virus (BMV). The virus was named F-BMV (F for Festuca), and genetic determinants that controlled the systemic infection of rice were mapped to RNAs 1 and 2 of the tripartite genome. cDNA from RNA 3 of the Russian strain of BMV (R-BMV) was modified to accept inserts from foreign genes. Coinoculation of RNAs 1 and 2 from F-BMV and RNA 3 from R-BMV expressing a portion of a plant gene to leaves of barley, rice, and maize plants resulted in visual silencing-like phenotypes. The visual phenotypes were correlated with decreased target host transcript levels in the corresponding leaves. The VIGS visual phenotype varied from maintained during silencing of actin 1 transcript expression to transient with incomplete penetration through affected tissue during silencing of phytoene desaturase expression. F-BMV RNA 3 was modified to allow greater accumulation of virus while minimizing virus pathogenicity. The modified vector C-BMV(A/G) (C for chimeric) was shown to be useful for VIGS. These BMV vectors will be useful for analysis of gene function in rice and maize for which no VIGS system is reported.

  15. The Impact of cHS4 Insulators on DNA Transposon Vector Mobilization and Silencing in Retinal Pigment Epithelium Cells

    PubMed Central

    Sharma, Nynne; Hollensen, Anne Kruse; Bak, Rasmus O.; Staunstrup, Nicklas Heine; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2012-01-01

    DNA transposons have become important vectors for efficient non-viral integration of transgenes into genomic DNA. The Sleeping Beauty (SB), piggyBac (PB), and Tol2 transposable elements have distinct biological properties and currently represent the most promising transposon systems for animal transgenesis and gene therapy. A potential obstacle, however, for persistent function of integrating vectors is transcriptional repression of the element and its genetic cargo. In this study we analyze the insulating effect of the 1.2-kb 5′-HS4 chicken β-globin (cHS4) insulator element in the context of SB, PB, and Tol2 transposon vectors. By examining transgene expression from genomically inserted transposon vectors encoding a marker gene driven by a silencing-prone promoter, we detect variable levels of transcriptional silencing for the three transposon systems in retinal pigment epithelium cells. Notably, the PB system seems less vulnerable to silencing. Incorporation of cHS4 insulator sequences into the transposon vectors results in 2.2-fold and 1.5-fold increased transgene expression levels for insulated SB and PB vectors, respectively, but an improved persistency of expression was not obtained for insulated transgenes. Colony formation assays and quantitative excision assays unveil enhanced SB transposition efficiencies by the inclusion of the cHS4 element, resulting in a significant increase in the stable transfection rate for insulated SB transposon vectors in human cell lines. Our findings reveal a positive impact of cHS4 insulator inclusion for SB and PB vectors in terms of increased transgene expression levels and improved SB stable transfection rates, but also the lack of a long-term protective effect of the cHS4 insulator against progressive transgene silencing in retinal pigment epithelium cells. PMID:23110238

  16. Double Strand Breaks Can Initiate Gene Silencing and SIRT1-Dependent Onset of DNA Methylation in an Exogenous Promoter CpG Island

    PubMed Central

    O'Hagan, Heather M.; Mohammad, Helai P.; Baylin, Stephen B.

    2008-01-01

    Chronic exposure to inducers of DNA base oxidation and single and double strand breaks contribute to tumorigenesis. In addition to the genetic changes caused by this DNA damage, such tumors often contain epigenetically silenced genes with aberrant promoter region CpG island DNA hypermethylation. We herein explore the relationships between such DNA damage and epigenetic gene silencing using an experimental model in which we induce a defined double strand break in an exogenous promoter construct of the E-cadherin CpG island, which is frequently aberrantly DNA hypermethylated in epithelial cancers. Following the onset of repair of the break, we observe recruitment to the site of damage of key proteins involved in establishing and maintaining transcriptional repression, namely SIRT1, EZH2, DNMT1, and DNMT3B, and the appearance of the silencing histone modifications, hypoacetyl H4K16, H3K9me2 and me3, and H3K27me3. Although in most cells selected after the break, DNA repair occurs faithfully with preservation of activity of the promoter, a small percentage of the plated cells demonstrate induction of heritable silencing. The chromatin around the break site in such a silent clone is enriched for most of the above silent chromatin proteins and histone marks, and the region harbors the appearance of increasing DNA methylation in the CpG island of the promoter. During the acute break, SIRT1 appears to be required for the transient recruitment of DNMT3B and subsequent methylation of the promoter in the silent clones. Taken together, our data suggest that normal repair of a DNA break can occasionally cause heritable silencing of a CpG island–containing promoter by recruitment of proteins involved in silencing. Furthermore, with contribution of the stress-related protein SIRT1, the break can lead to the onset of aberrant CpG island DNA methylation, which is frequently associated with tight gene silencing in cancer. PMID:18704159

  17. Replication fork arrest and rDNA silencing are two independent and separable functions of the replication terminator protein Fob1 of Saccharomyces cerevisiae.

    PubMed

    Bairwa, Narendra K; Zzaman, Shamsu; Mohanty, Bidyut K; Bastia, Deepak

    2010-04-23

    The replication terminator protein Fob1 of Saccharomyces cerevisiae is multifunctional, and it not only promotes polar replication fork arrest at the tandem Ter sites located in the intergenic spacer region of rDNA but also loads the NAD-dependent histone deacetylase Sir2 at Ter sites via a protein complex called RENT (regulator of nucleolar silencing and telophase exit). Sir2 is a component of the RENT complex, and its loading not only silences intrachromatid recombination in rDNA but also RNA polymerase II-catalyzed transcription. Here, we present three lines of evidence showing that the two aforementioned activities of Fob1 are independent of each other as well as functionally separable. First, a Fob1 ortholog of Saccharomyces bayanus expressed in a fob1Delta strain of S. cerevisiae restored polar fork arrest at Ter but not rDNA silencing. Second, a mutant form (I407T) of S. cerevisiae Fob1 retained normal fork arresting activity but was partially defective in rDNA silencing. We further show that the silencing defect of S. bayanus Fob1 and the Iota407Tau mutant of S. cerevisiae Fob1 were caused by the failure of the proteins to interact with two members of the S. cerevisiae RENT complex, namely S. cerevisiae Sir2 and S. cerevisiae Net1. Third, deletions of the intra-S phase checkpoint proteins Tof1 and Csm3 abolished fork arrest by Fob1 at Ter without causing loss of silencing. Taken together, the data support the conclusion that unlike some other functions of Fob1, rDNA silencing at Ter is independent of fork arrest.

  18. Methods for effective real-time RT-PCR analysis of virus-induced gene silencing.

    PubMed

    Rotenberg, Dorith; Thompson, Thea S; German, Thomas L; Willis, David K

    2006-12-01

    We applied real-time RT-PCR to the analysis of Tobacco rattle virus (TRV)-mediated virus-induced gene silencing (VIGS) of the phytoene desaturase (PDS) gene in Nicotiana benthamiana and tomato. Using a combination of direct measurement and mathematical assessment, we evaluated three plant genes, ubiquitin (ubi3), elongation factor-1 alpha (EF-1), and actin, for use as internal reference transcripts and found that EF-1 and ubi3 were least variable under our experimental conditions. Primer sets designed to amplify the 5' or 3' regions of endogenous PDS transcripts in tomato yielded similar reductions in transcript levels indicating a uniform VIGS-mediated degradation of target RNA. By measuring the ratio of the abundance of the PDS insert transcript to the TRV coat protein RNA, we established that the PDS insert within TRV was stable in both hosts. VIGS in N. benthamiana resulted in complete photo-bleaching of all foliar tissue compared to chimeric bleaching in tomato. PDS transcript levels were decreased eleven- and seven-fold in photobleached leaves of N. benthamiana and tomato, respectively, while sampling tomato leaflets on the basis of age rather than visible bleaching resulted in only a 17% reduction in PDS coupled with a large leaf-to-leaf variation. There was a significant inverse relationship (r2=76%, P=0.01) between the relative abundance of CP RNA and the amount of PDS transcript in rTRV::tPDS-infected tomato suggesting that virus spread and accumulation are required precursors for successful VIGS in this host. PMID:16959330

  19. The Silenced Language of Abandoned Brazilian Children.

    ERIC Educational Resources Information Center

    Kramer, Edelyn Schweidson

    1995-01-01

    This article reports on research carried out with homeless children in Rio de Janeiro, Brazil, which sought to engage the fantasies of these children by telling them fairy tales that reflected their ordeal and by asking them to make up stories to tell puppets in distressing situations. The article contains a lengthy appendix with transcripts of…

  20. The intentionality bias and schizotypy.

    PubMed

    Moore, J W; Pope, A

    2014-01-01

    The "intentionality bias" refers to our automatic tendency to judge other people's actions to be intentional. In this experiment we extended research on this effect in two key ways. First, we developed a novel nonlinguistic task for assessing the intentionality bias. This task used video stimuli of ambiguous movements. Second, we investigated the relationship between the strength of this bias and schizotypy (schizophrenia-like symptoms in healthy individuals). Our results showed that the intentionality bias was replicated for the video stimuli and also that this bias is stronger in those individuals scoring higher on the schizotypy rating scales. Overall these findings lend further support for the existence of the intentionality bias. We also discuss the possible relevance of these findings for our understanding of certain symptoms of schizophrenic illness.

  1. Silencing SlELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence, and produces dark-green fruit.

    PubMed

    Zhu, Mingku; Li, Yali; Chen, Guoping; Ren, Lijun; Xie, Qiaoli; Zhao, Zhiping; Hu, Zongli

    2015-01-09

    The multi-subunit complex Elongator interacts with elongating RNA polymerase II (RNAPII) and is thought to facilitate transcription through histone acetylation. Elongator is highly conserved in eukaryotes, yet has multiple kingdom-specific functions in diverse organisms. Recent genetic studies performed in Arabidopsis have demonstrated that Elongator functions in plant growth and development, and in response to biotic and abiotic stress. However, little is known about its roles in other plant species. Here, we study the function of an Elongator complex protein 2-like gene in tomato, here designated as SlELP2L, through RNAi-mediated gene silencing. Silencing SlELP2L in tomato inhibits leaf growth, accelerates leaf and sepal senescence, and produces dark-green fruit with reduced GA and IAA contents in leaves, and increased chlorophyll accumulation in pericarps. Gene expression analysis indicated that SlELP2L-silenced plants had reduced transcript levels of ethylene- and ripening-related genes during fruit ripening with slightly decreased carotenoid content in fruits, while the expression of DNA methyltransferase genes was up-regulated, indicating that SlELP2L may modulate DNA methylation in tomato. Besides, silencing SlELP2L increases ABA sensitivity in inhibiting seedling growth. These results suggest that SlELP2L plays important roles in regulating plant growth and development, as well as in response to ABA in tomato.

  2. The Effects of Vocational High School Teachers' Perceived Trust on Organizational Silence

    ERIC Educational Resources Information Center

    Saglam, Aycan Çiçek

    2016-01-01

    The objective of this research is to reveal the effects of vocational school teachers' perceived organizational trust on organizational silence. For this purpose, at first teachers' perception on sub-dimensions of organizational silence and organizational trust, which are respectively "acquiescent silence," "defensive silence,"…

  3. Transcriptional regulation of mammalian miRNA genes

    PubMed Central

    Schanen, Brian C.; Li, Xiaoman

    2010-01-01

    MicroRNAs (miRNAs) are members of a growing family of non-coding transcripts, 21-23 nucleotides long, which regulate a diverse collection of biological processes and various diseases by RNA-mediated gene-silencing mechanisms. While currently many studies focus on defining the regulatory functions of miRNAs, few are directed towards how miRNA genes are themselves transcriptionally regulated. Recent studies of miRNA transcription have elucidated RNA polymerase II as the major polymerase of miRNAs, however, little is known of the structural features of miRNA promoters, especially those of mammalian miRNAs. Here, we review the current literature regarding features conserved among miRNA promoters useful for their detection and the current novel methodologies available to enable researchers to advance our understanding of the transcriptional regulation of miRNA genes. PMID:20977933

  4. HnRNP-like proteins as post-transcriptional regulators.

    PubMed

    Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling

    2014-10-01

    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses.

  5. HnRNP-like proteins as post-transcriptional regulators.

    PubMed

    Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling

    2014-10-01

    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. PMID:25219311

  6. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae

    SciTech Connect

    Hayashi, Naoyuki Kobayashi, Masahiko; Shimizu, Hiroko; Yamamoto, Ken-ichi; Murakami, Seishi; Nishimoto, Takeharu

    2007-11-23

    The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system's involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-{delta}2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a high dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.

  7. Rotavirus gene silencing by small interfering RNAs

    PubMed Central

    Déctor, Miguel Angel; Romero, Pedro; López, Susana; Arias, Carlos F.

    2002-01-01

    RNA interference is an evolutionarily conserved double-stranded RNA-triggered mechanism for suppressing gene expression. Rotaviruses, the leading cause of severe diarrhea in young children, are formed by three concentric layers of protein, from which the spike protein VP4 projects. Here, we show that a small interfering RNA corresponding to the VP4 gene efficiently inhibits the synthesis of this protein in virus-infected cells. A large proportion of infected cells had no detectable VP4 and the yield of viral progeny was reduced. Most of the virus particles purified from these cells were triple-layered, but lacked VP4, and were poorly infectious. We also show that VP4 might not be required for the last step of virus morphogenesis. The VP4 gene silencing was specific, since the synthesis of VP4 from rotavirus strains that differ in the target sequence was not affected. These findings offer the possibility of carrying out reverse genetics in rotaviruses. PMID:12446562

  8. Engineering nanoparticles to silence bacterial communication

    PubMed Central