Silica based hybrid materials for drug delivery and bioimaging.
Bagheri, Elnaz; Ansari, Legha; Abnous, Khalil; Taghdisi, Seyed Mohammad; Charbgoo, Fahimeh; Ramezani, Mohammad; Alibolandi, Mona
2018-05-10
Silica hybrid materials play an important role in improvement of novel progressive functional nanomaterials. Study in silica hybrid functional materials is supported by growing interest in providing intelligent materials that combine best of the inorganic silica structure along with organic or biological realms. Hybrid silica materials do not only provide fantastic opportunities for the design of novel materials for research but their represented unique properties open versatile applications specifically in nanomedicine since it was recognized by US FDA as a safe material for human trials. By combining various materials with different characteristics along with silica NPs as building blocks, silica-based hybrid vehicles were developed. In this regard, silica-based hybrid materials have shown great capabilities as unique carriers for bioimaging and/or drug delivery purposes. In the aforementioned hybrid systems, silica was preferred as a main building block of the hybrid structure, which is easily functionalized with different materials, bio-molecules and targeting ligands while providing biocompatibility for the system. This review will cover a full description of different hybrids of silica nanoparticles including silica-polymer, silica-protein, silica-peptide, silica-nucleic acid, silica-gold, silica-quantum dot, and silica-magnetic nanoparticles and their applications as therapeutic or imaging systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Pozzolanic activity and durability of nano silica, micro silica and silica gel contained concrete
NASA Astrophysics Data System (ADS)
Al Ghabban, Ahmed; Al Zubaidi, Aseel B.; Fakhri, Zahraa
2018-05-01
This paper aims to investigate the influence of replacement of cement with nano silica, micro silica and silica gel admixtures on pozzolanic activity, the replacement ratio was10% for all admixture, silica gel used in two forms (beads and crushed powder). Also, the water absorption test was investigated for obtaining the durability properties of concrete, in specimens for this test admixtures were added in four different dosages 1%, 2%, 3% and 4% by weight of the cementitious material into the concrete mixture. Experimental investigations of modified concrete were conducted after 28 days of water curing. Results showed that mixes of nano silica and crushed silica gel showed a higher pozzolanic activity index. For the water absorption test, all mixes incorporating nano silica, micro silica and silica gel showed lower absorption than control mixes best result were noticed with crushed silica gel and nano silica mixes. DTA analysis confirms the results for both poisonous activity and water absorption.
Radnoff, Diane L; Kutz, Michelle K
2014-01-01
Exposure to respirable crystalline silica is a hazard common to many industries in Alberta but particularly so in abrasive blasting. Alberta occupational health and safety legislation requires the consideration of silica substitutes when conducting abrasive blasting, where reasonably practicable. In this study, exposure to crystalline silica during abrasive blasting was evaluated when both silica and non-silica products were used. The crystalline silica content of non-silica abrasives was also measured. The facilities evaluated were preparing metal products for the application of coatings, so the substrate should not have had a significant contribution to worker exposure to crystalline silica. The occupational sampling results indicate that two-thirds of the workers assessed were potentially over-exposed to respirable crystalline silica. About one-third of the measurements over the exposure limit were at the work sites using silica substitutes at the time of the assessment. The use of the silica substitute, by itself, did not appear to have a large effect on the mean airborne exposure levels. There are a number of factors that may contribute to over-exposures, including the isolation of the blasting area, housekeeping, and inappropriate use of respiratory protective equipment. However, the non-silica abrasives themselves also contain silica. Bulk analysis results for non-silica abrasives commercially available in Alberta indicate that many contain crystalline silica above the legislated disclosure limit of 0.1% weight of silica per weight of product (w/w) and this information may not be accurately disclosed on the material safety data sheet for the product. The employer may still have to evaluate the potential for exposure to crystalline silica at their work site, even when silica substitutes are used. Limited tests on recycled non-silica abrasive indicated that the silica content had increased. Further study is required to evaluate the impact of product recycling on crystalline silica content for non-silica abrasives. Measurement of blaster exposure was challenging in this study as the blasters evaluated conducted this task intermittently throughout the work shift, frequently removing their blasting helmets. In spite of the challenges in accurately measuring blaster exposure, the measurements were still, for the most part, over the 8-h OEL. Further work is required to develop more effective sampling strategies to evaluate blaster exposure over the full work shift when task-based monitoring is not practical.
Silica extraction from geothermal water
Bourcier, William L; Bruton, Carol J
2014-09-23
A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.
Examining the role of shrub expansion and fire in Arctic plant silica cycling
NASA Astrophysics Data System (ADS)
Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.
2017-12-01
All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates and timing of silica delivery to coastal receiving waters in the Arctic.
Kwon, Young-Nam; Kim, In-Chul
2013-11-01
Hydrothermal stability of a porous nickel-supported silica membrane was successfully improved by deposition of titania multilayers on colloidal silica particles embedded in the porous nickel fiber support. Porous nickel-supported silica membranes were prepared by means of a dipping-freezing-fast drying (DFF) method. The titania layers were deposited on colloidal silica particles by repeating hydrolysis and condensation reactions of titanium isopropoxide on the silica particle surfaces. The deposition of thin titania layers on the nickel-supported silica membrane was verified by various analytical tools. The water flux and the solute rejection of the porous Ni fiber-supported silica membranes did not change after titania layer deposition, indicating that thickness of titania layers deposited on silica surface is enough thin not to affect the membrane performance. Moreover, improvement of the hydrothermal stability in the titania-deposited silica membranes was confirmed by stability tests, indicating that thin titania layers deposited on silica surface played an important role as a diffusion barrier against 90 degrees C water into silica particles.
Conversion of geothermal waste to commercial products including silica
Premuzic, Eugene T.; Lin, Mow S.
2003-01-01
A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.
Effects of sandblasting and silica-coating procedures on pure titanium.
Kern, M; Thompson, V P
1994-10-01
Silica coating titanium improves chemomechanical bonding. Sandblasting is recommended as a pretreatment to thermal silica coating (Silicoater MD) or as part of a tribochemical silica coating process (Rocatec). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology and composition changes in pure titanium. Volume loss of titanium was similar to values reported for base alloys and does not seem to be critical for the clinical fit of restorations. Embedded alumina particles were found in the titanium after sandblasting and the alumina content increased to a range of 27.5-39.3 wt% as measured by EDS. Following tribochemical silica coating, a layer of small silica particles remained on the surface, increasing the silica content to a range of 17.9-19.5 wt%. Ultrasonic cleaning removed loose alumina or silica particles from the surface, resulting in only slight decreases in alumina or silica contents, suggesting firm attachment of most of the alumina and silica to the titanium surface. Silica content following thermal silica coating treatment increased only slightly from the sandblasted specimen to 1.4 wt%. The silica layer employed by these silica coating methods differs widely in both morphology and thickness. These results provide a basis for explanation of adhesive failure modes in bond strength tests and for developing methods to optimize resin bonding. Clinically, ultrasonic cleaning of sandblasted and tribochemically silica coated titanium should improve resin bonding as loose surface particles are removed without relevant changes in composition.
Protein-directed assembly of arbitrary three-dimensional nanoporous silica architectures.
Khripin, Constantine Y; Pristinski, Denis; Dunphy, Darren R; Brinker, C Jeffrey; Kaehr, Bryan
2011-02-22
Through precise control of nanoscale building blocks, such as proteins and polyamines, silica condensing microorganisms are able to create intricate mineral structures displaying hierarchical features from nano- to millimeter-length scales. The creation of artificial structures of similar characteristics is facilitated through biomimetic approaches, for instance, by first creating a bioscaffold comprised of silica condensing moieties which, in turn, govern silica deposition into three-dimensional (3D) structures. In this work, we demonstrate a protein-directed approach to template silica into true arbitrary 3D architectures by employing cross-linked protein hydrogels to controllably direct silica condensation. Protein hydrogels are fabricated using multiphoton lithography, which enables user-defined control over template features in three dimensions. Silica deposition, under acidic conditions, proceeds throughout protein hydrogel templates via flocculation of silica nanoparticles by protein molecules, as indicated by dynamic light scattering (DLS) and time-dependent measurements of elastic modulus. Following silica deposition, the protein template can be removed using mild thermal processing yielding high surface area (625 m(2)/g) porous silica replicas that do not undergo significant volume change compared to the starting template. We demonstrate the capabilities of this approach to create bioinspired silica microstructures displaying hierarchical features over broad length scales and the infiltration/functionalization capabilities of the nanoporous silica matrix by laser printing a 3D gold image within a 3D silica matrix. This work provides a foundation to potentially understand and mimic biogenic silica condensation under the constraints of user-defined biotemplates and further should enable a wide range of complex inorganic architectures to be explored using silica transformational chemistries, for instance silica to silicon, as demonstrated herein.
Johnston, Robert K.; Harper, Jason C.; Tartis, Michaelann S.
2017-07-13
Over the past 20 years, many strategies utilizing sol–gel chemistry to integrate biological cells into silica-based materials have been reported. One such strategy, Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition, shows promise as an efficient encapsulation technique due to the ability to vary the silica encapsulation morphology obtained by this process through variation of SG-CViL reaction conditions. In this report, we develop SG-CViL as a tunable, multi-purpose silica encapsulation strategy by investigating the mechanisms governing both silica particle generation and subsequent interaction with phospholipid assemblies (liposomes and living cells). Using Dynamic Light Scattering (DLS) measurements, linear and exponential silica particlemore » growth dynamics were observed which were dependent on deposition buffer ion constituents and ion concentration. Silica particle growth followed a cluster–cluster growth mechanism at acidic pH, and a monomer-cluster growth mechanism at neutral to basic pH. Increasing silica sol aging temperature resulted in higher rates of particle growth and larger particles. DLS measurements employing PEG-coated liposomes and cationic liposomes, serving as model phospholipid assemblies, revealed that electrostatic interactions promote more stable liposome–silica interactions than hydrogen bonding and facilitate silica coating on suspension cells. However, continued silica reactivity leads to aggregation of silica-coated suspension cells, revealing the need for cell isolation to tune deposited silica thickness. As a result, utilizing these mechanistic study insights, silica was deposited onto adherent HeLa cells under biocompatible conditions with micrometer-scale control over silica thickness, minimal cell manipulation steps, and retained cell viability over several days.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Robert K.; Harper, Jason C.; Tartis, Michaelann S.
Over the past 20 years, many strategies utilizing sol–gel chemistry to integrate biological cells into silica-based materials have been reported. One such strategy, Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition, shows promise as an efficient encapsulation technique due to the ability to vary the silica encapsulation morphology obtained by this process through variation of SG-CViL reaction conditions. In this report, we develop SG-CViL as a tunable, multi-purpose silica encapsulation strategy by investigating the mechanisms governing both silica particle generation and subsequent interaction with phospholipid assemblies (liposomes and living cells). Using Dynamic Light Scattering (DLS) measurements, linear and exponential silica particlemore » growth dynamics were observed which were dependent on deposition buffer ion constituents and ion concentration. Silica particle growth followed a cluster–cluster growth mechanism at acidic pH, and a monomer-cluster growth mechanism at neutral to basic pH. Increasing silica sol aging temperature resulted in higher rates of particle growth and larger particles. DLS measurements employing PEG-coated liposomes and cationic liposomes, serving as model phospholipid assemblies, revealed that electrostatic interactions promote more stable liposome–silica interactions than hydrogen bonding and facilitate silica coating on suspension cells. However, continued silica reactivity leads to aggregation of silica-coated suspension cells, revealing the need for cell isolation to tune deposited silica thickness. As a result, utilizing these mechanistic study insights, silica was deposited onto adherent HeLa cells under biocompatible conditions with micrometer-scale control over silica thickness, minimal cell manipulation steps, and retained cell viability over several days.« less
Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties.
Tong, Tiezheng; Zhao, Song; Boo, Chanhee; Hashmi, Sara M; Elimelech, Menachem
2017-04-18
We investigated the relationship between membrane surface properties and silica scaling in reverse osmosis (RO). The effects of membrane hydrophilicity, free energy for heterogeneous nucleation, and surface charge on silica scaling were examined by comparing thin-film composite polyamide membranes grafted with a variety of polymers. Results show that the rate of silica scaling was independent of both membrane hydrophilicity and free energy for heterogeneous nucleation. In contrast, membrane surface charge demonstrated a strong correlation with the extent of silica scaling (R 2 > 0.95, p < 0.001). Positively charged membranes significantly facilitated silica scaling, whereas a more negative membrane surface charge led to reduced scaling. This observation suggests that deposition of negatively charged silica species on the membrane surface plays a critical role in silica scale formation. Our findings provide fundamental insights into the mechanisms governing silica scaling in reverse osmosis and highlight the potential of membrane surface modification as a strategy to reduce silica scaling.
Processing pathway dependence of amorphous silica nanoparticle toxicity - colloidal versus pyrolytic
Zhang, Haiyuan; Dunphy, Darren R.; Jiang, Xingmao; Meng, Huan; Sun, Bingbing; Tarn, Derrick; Xue, Min; Wang, Xiang; Lin, Sijie; Ji, Zhaoxia; Li, Ruibin; Garcia, Fred L.; Yang, Jing; Kirk, Martin L.; Xia, Tian; Zink, Jeffrey I; Nel, Andre; Brinker, C. Jeffrey
2012-01-01
We have developed structure/toxicity relationships for amorphous silica nanoparticles (NPs) synthesized through low temperature, colloidal (e.g. Stöber silica) or high temperature pyrolysis (e.g. fumed silica) routes. Through combined spectroscopic and physical analyses, we have determined the state of aggregation, hydroxyl concentration, relative proportion of strained and unstrained siloxane rings, and potential to generate hydroxyl radicals for Stöber and fumed silica NPs with comparable primary particle sizes (16-nm in diameter). Based on erythrocyte hemolytic assays and assessment of the viability and ATP levels in epithelial and macrophage cells, we discovered for fumed silica an important toxicity relationship to post-synthesis thermal annealing or environmental exposure, whereas colloidal silicas were essentially non-toxic under identical treatment conditions. Specifically, we find for fumed silica a positive correlation of toxicity with hydroxyl concentration and its potential to generate reactive oxygen species (ROS) and cause red blood cell hemolysis. We propose fumed silica toxicity stems from its intrinsic population of strained three-membered rings (3MRs) along with its chain-like aggregation and hydroxyl content. Hydrogen-bonding and electrostatic interactions of the silanol surfaces of fumed silica aggregates with the extracellular plasma membrane cause membrane perturbations sensed by the Nalp3 inflammasome, whose subsequent activation leads to secretion of the cytokine IL-1β. Hydroxyl radicals generated by the strained 3MRs in fumed silica but largely absent in colloidal silicas may contribute to the inflammasome activation. Formation of colloidal silica into aggregates mimicking those of fumed silica had no effect on cell viability or hemolysis. This study emphasizes that not all amorphous silica is created equal and that the unusual toxicity of fumed silica compared to colloidal silica derives from its framework and surface chemistry along with its fused chain-like morphology established by high temperature synthesis (>1300°C) and rapid thermal quenching. PMID:22924492
Precipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column Reactor
NASA Astrophysics Data System (ADS)
Dewati, R.; Suprihatin, S.; Sumada, K.; Muljani, S.; Familya, M.; Ariani, S.
2018-01-01
Precipitated silica from silica and carbon dioxide gas has been studied successfully. The source of silica was obtained from pumice stone while precipitation process was carried out with carbon dioxide gas (CO2). The sodium silicate solution was obtained by extracting the silica from pumice stone with sodium hydroxide (NaOH) solution and heated to 100 °C for 1 h. The carbon dioxide gas is injected into the aqueous solution of sodium silicate in a bubble column reactor to form precipitated silica. m2/g. The results indicate that the products obtained are precipitate silica have surface area in the range of 100 - 227 m2/g, silica concentration more than 80%, white in appearance, and silica concentration reached 90% at pH 7.
Stimuli-responsive polyaniline coated silica microspheres and their electrorheology
NASA Astrophysics Data System (ADS)
Park, Dae Eun; Choi, Hyoung Jin; Vu, Cuong Manh
2016-05-01
Silica/polyaniline (PANI) core-shell structured microspheres were synthesized by coating the surface of silica micro-beads with PANI and applied as a candidate inorganic/polymer composite electrorheological (ER) material. The silica micro-beads were initially modified using N-[(3-trimethoxysilyl)-propyl] aniline to activate an aniline functional group on the silica surface for a better PANI coating. The morphology of the PANI coating on the silica surface was examined by scanning electron microscopy and the silica/PANI core-shell structure was confirmed by transmission electron microscopy. The chemical structure of the particles was confirmed by Fourier transform infrared spectroscopy. Rotational rheometry was performed to confirm the difference in the ER properties between pure silica and silica/PANI microsphere-based ER fluids when dispersed in silicone oil.
Min, Kyungmin; Choi, Woosung; Choi, Minkee
2017-06-09
Poly(ethyleneimine) (PEI)/silica has been widely studied as a solid adsorbent for post-combustion CO 2 capture. In this work, a highly macroporous silica (MacS), synthesized by secondary sintering of fumed silica, is compared with various mesoporous silicas with different pore structures as a support for PEI. The silicas with large pore diameter and volume enabled high CO 2 adsorption kinetics and capacity, because pore occlusion by the supported PEI was minimized. The steam stability of the silica structures increased with the silica wall thickness owing to suppressed framework ripening. The silicas with low steam stability showed rapid leaching of PEI, which indicated that the PEI squeezed out of the collapsed silica pores leached more readily. Consequently, MacS that had an extra-large pore volume (1.80 cm 3 g -1 ) and pore diameter (56.0 nm), and a thick wall (>10 nm), showed the most promising CO 2 adsorption kinetics and capacity as well as steam stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rathnasekara, Renuka; El Rassi, Ziad
2017-07-28
Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.
DEVELOPMENT OF AN AFFINITY SILICA MONOLITH CONTAINING HUMAN SERUM ALBUMIN FOR CHIRAL SEPARATIONS
Mallik, Rangan; Hage, David S.
2008-01-01
An affinity monolith based on silica and containing immobilized human serum albumin (HSA) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or a monolith based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of HSA in the silica monolith was similar to values obtained with silica particles and a GMA/EDMA monolith. However, the higher surface area of the silica monolith gave a material that contained 1.3- to 2.2-times more immobilized HSA per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the HSA silica monolith were evaluated using two chiral analytes: D/L-tryptophan and R/S-warfarin. The separation of R- and S-ibuprofen was also considered. The HSA silica monolith gave higher retention and higher or comparable resolution and efficiency when compared with HSA columns that contained silica particles or a GMA/EDMA monolith. The silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with immobilized HSA as a chiral stationary phase. PMID:17475436
Characterization of the adsorption of water vapor and chlorine on microcrystalline silica
NASA Technical Reports Server (NTRS)
Skiles, J. A.; Wightman, J. P.
1979-01-01
The characterization of water adsorption on silica is necessary to an understanding of how hydrogen chloride interacts with silica. The adsorption as a function of outgas temperatures of silica and as a function of the isotherm temperature was studied. Characterization of the silica structure by infrared analysis, X-ray diffraction and differential scanning calorimetry, surface area determinations, characterization of the sample surface by electron spectroscopy for chemical analysis (ESCA), and determinations of the heat of immersion in water of silica were investigated. The silica with a scanning electron microscope was examined.
NASA Astrophysics Data System (ADS)
Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sidney
2016-03-01
Silica nanoparticles have proven to be useful in many bioanalytical and medical applications and have been used in numerous applications during the last decade. Combining the properties of silica nanoparticles and fluorescent dyes that may be used as chemical probes or labels can be relatively easy by simply soaking porous silica nanoparticles in a solution of the dye of interest. Under proper conditions the entrapped dye can stay inside the silica nanoparticle for several hours resulting in a useful probe. In spite of the relative durability of these probes, leaching can still occur. A much better approach is to synthesize silica nanoparticles that have the fluorescent dye covalently attached to the backbone structure of the silica nanoparticle. This can be achieved by using appropriately modified tetraethyl orthosilicate (TEOS) analogues during the silica nanoparticle synthesis. The molar ratio of TEOS and modified TEOS will determine the fluorescent dye load in the silica nanoparticle. Dependent on the chemical stability of the reporting dye either reverse micellar (RM) or Stöber method can be used for silica nanoparticle synthesis. If dye stability allows RM procedure is preferred as it results in a much easier control of the silica nanoparticle reaction itself. Also controlling the size and uniformity of the silica nanoparticles are much easier using RM method. Dependent on the functional groups present in the reporting dye used in preparation of the modified TEOS, the silica nanoparticles can be utilized in many applications such as pH sensor, metal ion sensors, labels, etc. In addition surface activated silica nanoparticles with reactive moieties are also excellent reporters or they can be used as bright fluorescent labels. Many different fluorescent dyes can be used to synthesize silica nanoparticles including visible and NIR dyes. Several bioanalytical applications are discussed including studying amoeba phagocytosis.
Kern, M; Thompson, V P
1993-05-01
Silica-coating alloys improves chemo-mechanical bonding. Sandblasting is recommended as pretreatment to thermal silica-coating or as part of a tribochemical silica-coating process. This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology and compositional changes in noble (AuAgCu) and base alloys (NiCr and CoCr). Volume loss was statistically significantly higher in the noble as compared to the base alloys but does not seem to be critical for the clinical fit of restorations. Embedded alumina particles were found in all alloys after sandblasting and the alumina content increased to a range of 14 to 37 wt% as measured by EDS. Following tribochemical silica-coating, a layer of small silica particles remained on the surface, increasing the silica content to between 12 and 20 wt%. Ultrasonic cleaning removed loose alumina or silica particles from the surface, resulting in only slight decreases in alumina or silica contents, thus suggesting firm attachment of the major part of alumina and silica to the alloy surface. Clinically, ultrasonic cleaning of sandblasted and tribochemically silica-coated alloys might improve resin bonding as loose surface particles are removed without relevant changes in composition. Silica content following thermal silica-coating treatment increased only slightly from the sandblasted specimen. The silica layer employed by these silica-coating methods differs widely in both morphology and thickness. These results provide a basis for explanation of adhesive failure modes in bond strength tests which will possibly optimize resin bonding. Further research is needed to characterize the outermost surface layers after these treatments and the exact location of adhesive failures.
NASA Astrophysics Data System (ADS)
Aini, S.; Nizar, U. K.; NST, A. Amelia; Efendi, J.
2018-04-01
This research is on identification and purification of silica sand from Nyalo River. It will be used as a raw material for synthesis of sodium silicate. Silica sand was separated from clay by washing it with water, and then the existing alumina and iron oxide were removed by soaking the silica sand with 1 M HNO3 solution. Qualitative and quantitative analysis of the silica sand with X-ray diffraction and X-ray fluorescence revealed that, silica sand existed in quartz form and contained a small amount of impurity oxide such as Al2O3, K2O, MgO, CaO, Fe2O3 with percentage below the minimum threshold. The percentages of silica were 80.59% before purification. After three purificationsteps the silica percentage become 98.38%. It exceedsthe minimum threshold of silica percentage for industry.So, the silica sand from Nyalo River has high potency as a raw material for sodium silicate synthesizing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroefl, Ch.; Gruber, M.; Plank, J., E-mail: sekretariat@bauchemie.ch.tum.de
2012-11-15
UHPC is fluidized particularly well when a blend of MPEG- and APEG-type PCEs is applied. Here, the mechanism for this behavior was investigated. Testing individual cement and micro silica pastes revealed that the MPEG-PCE disperses cement better than silica whereas the APEG-PCE fluidizes silica particularly well. This behavior is explained by preferential adsorption of APEG-PCE on silica while MPEG-PCEs exhibit a more balanced affinity to both cement and silica. Adsorption data obtained from individual cement and micro silica pastes were compared with those found for the fully formulated UHPC containing a cement/silica blend. In the UHPC formulation, both PCEs stillmore » exhibit preferential and selective adsorption similar as was observed for individual cement and silica pastes. Preferential adsorption of PCEs is explained by their different stereochemistry whereby the carboxylate groups have to match with the steric position of calcium ions/atoms situated at the surfaces of cement hydrates or silica.« less
Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.
Borges, Endler M
2015-04-01
Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability. For these reasons, we began this review describing new silica and hybrid silica stationary phases, which have reduced and/or shielded silanols. At present, in liquid chromatography for the majority of analyses, reversed-phase liquid chromatography is the separation mode of choice. However, the needs for increased selectivity and increased retention of hydrophilic bases have substantially increased the interest in hydrophilic interaction chromatography (HILIC). Therefore, stationary phases and this mode of separation are discussed. Then, non-silica stationary phases (i.e., zirconium oxide, titanium oxide, alumina and porous graphitized carbon), which afford increased thermal and chemical stability and also selectivity different from those obtained with silica and hybrid silica, are discussed. In addition, the use of these materials in HILIC is also reviewed. © Crown copyright 2014.
Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan
2010-07-01
The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.
Health hazards due to the inhalation of amorphous silica.
Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T
2002-01-01
Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study that allows the classification of amorphous silica with regard to its carcinogenicity in humans. Further work is necessary in order to define the effects of amorphous silica on morbidity and mortality of workers with exposure to these substances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Javed; Ahamed, Maqusood, E-mail: maqusood@gmail.com; Akhtar, Mohd Javed
Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion ofmore » glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.« less
The Phagocytosis and Toxicity of Amorphous Silica
Costantini, Lindsey M.; Gilberti, Renée M.; Knecht, David A.
2011-01-01
Background Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Methodology/Principal Findings Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37°C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Conclusions/Significance Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both cases. However, the result suggests a mechanistic difference between FcγRIIA receptor-mediated and non-opsonized silica particle phagocytosis. PMID:21311600
The phagocytosis and toxicity of amorphous silica.
Costantini, Lindsey M; Gilberti, Renée M; Knecht, David A
2011-02-02
Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37 °C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both cases. However, the result suggests a mechanistic difference between FcγRIIA receptor-mediated and non-opsonized silica particle phagocytosis.
21 CFR 182.1711 - Silica aerogel.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having...
21 CFR 182.1711 - Silica aerogel.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having...
Thermally stable silica-coated hydrophobic gold nanoparticles.
Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu
2009-01-01
We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.
Silica nanoparticle stability in biological media revisited.
Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua
2018-01-09
The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.
Ishizaki, Toshitaka; Nakano, Hideyuki; Tajima, Shin; Takahashi, Naoko
2016-01-01
A thin, insulating layer with high electrical resistivity is vital to achieving high performance of powder magnetic cores. Using layer-by-layer deposition of silica nanosheets or colloidal silica over insulating layers composed of strontium phosphate and boron oxide, we succeeded in fabricating insulating layers with high electrical resistivity on iron powder particles, which were subsequently used to prepare toroidal cores. The compact density of these cores decreased after coating with colloidal silica due to the substantial increase in the volume, causing the magnetic flux density to deteriorate. Coating with silica nanosheets, on the other hand, resulted in a higher electrical resistivity and a good balance between high magnetic flux density and low iron loss due to the thinner silica layers. Transmission electron microscopy images showed that the thickness of the colloidal silica coating was about 700 nm, while that of the silica nanosheet coating was 30 nm. There was one drawback to using silica nanosheets, namely a deterioration in the core mechanical strength. Nevertheless, the silica nanosheet coating resulted in nanoscale-thick silica layers that are favorable for enhancing the electrical resistivity. PMID:28336835
Organically Modified Silicas on Metal Nanowires
2010-01-01
Organically modified silica coatings were prepared on metal nanowires using a variety of silicon alkoxides with different functional groups (i.e., carboxyl groups, polyethylene oxide, cyano, dihydroimidazole, and hexyl linkers). Organically modified silicas were deposited onto the surface of 6-μm-long, ∼300-nm-wide, cylindrical metal nanowires in suspension by the hydrolysis and polycondensation of silicon alkoxides. Syntheses were performed at several ratios of tetraethoxysilane to an organically modified silicon alkoxide to incorporate desired functional groups into thin organosilica shells on the nanowires. These coatings were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. All of the organically modified silicas prepared here were sufficiently porous to allow the removal of the metal nanowire cores by acid etching to form organically modified silica nanotubes. Additional functionality provided to the modified silicas as compared to unmodified silica prepared using only tetraethoxysilane precursors was demonstrated by chromate adsorption on imidazole-containing silicas and resistance to protein adsorption on polyethyleneoxide-containing silicas. Organically modified silica coatings on nanowires and other nano- and microparticles have potential application in fields such as biosensing or nanoscale therapeutics due to the enhanced properties of the silica coatings, for example, the prevention of biofouling. PMID:20715881
Production and Application of Olivine Nano-Silica in Concrete
NASA Astrophysics Data System (ADS)
Mardiana, Oesman; Haryadi
2017-05-01
The aim of this research was to produce nano silica by synthesis of nano silica through extraction and dissolution of ground olivine rock, and applied the nano silica in the design concrete mix. The producing process of amorphous silica used sulfuric acid as the dissolution reagent. The separation of ground olivine rock occurred when the rock was heated in a batch reactor containing sulfuric acid. The results showed that the optimum mole ratio of olivine- acid was 1: 8 wherein the weight ratio of the highest nano silica generated. The heating temperature and acid concentration influenced the mass of silica produced, that was at temperature of 90 °C and 3 M acid giving the highest yield of 44.90%. Characterization using Fourier Transform Infrared (FTIR ) concluded that amorphous silica at a wavenumber of 1089 cm-1 indicated the presence of siloxane, Si-O-Si, stretching bond. Characterization using Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) showed the surface and the size of the silica particles. The average size of silica particles was between 1-10 μm due to the rapid aggregation of the growing particles of nano silica into microparticles, caused of the pH control was not fully achieved.
Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust
Chubb, Lauren G.; Cauda, Emanuele G.
2017-01-01
Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139
Impact of Colloidal Silica on Silicone Oil-Silica Mixed Antifoams
NASA Astrophysics Data System (ADS)
Yuan, Zheng
Antifoams are utilized as an industrial additive to control undesired foam during processing. This study focuses on the impact of silica on the antifoam stability. Antifoam stability refers to the ability to maintain efficiency in foam destruction after prolonged shelf storage. Common antifoams are a mixture of hydrophobic silica particles and silicone oil. Based on the general mechanisms of antifoam action discussed in Chapter 1, silica particles play a significant role in foam destruction. Silica particles contribute to foam control by facilitating the entry and the penetration depth of oil-silica globules into surfactant-water films (foam bubble walls). The size, morphology and hydrophobicity of silica can be manipulated to generate optimal antifoam globules. For example, the two silicas with good shelf life performance (8375 and 9512) had the largest silica particles and both showed a tendency to aggregate in toluene solution. We conclude that improved shelf life is related to the propensity of PDMS oil to adsorb on silica, which leads to aggregation and particle size increase. We measured the time-evolution of dynamic light scattering (DLS) from 3-vol% antifoam dissolved in toluene (Chapter 2). For the sample with the largest hydrodynamic radius (9512) the scattered intensity decreased significantly after applying ultrasonic dispersion. Decreasing intensity also occurred for 8375 albeit at later times. The decrease of intensity is attributed to the growth and precipitation of oil-silica globules. The concentration dependence of light scattering confirmed the growth-precipitation hypothesis. FT-IR (Chapter 3) was consistent with precipitation due to oil adsorption, but the data were not definitive. Chapter 4 examines the time-evolution of silica structures by static light scattering and X-ray scattering. The combined data are consistent with a hierarchical structure for silica. Agglomeration occurred fastest for 9512, which is consistent with DLS observations above. The last chapter concludes that PDMS-silica adhesion controls antifoam stability. The decline in performance with shelf-life aging is attributed to loss of hydrophobicity of silica, which could be due to adsorption of surfactants or some chemical alteration of the hydrophobic silica surface.
2017-01-01
Silica-loaded poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles are prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). As the concentration of silica nanoparticles present during the PISA synthesis is increased up to 35% w/w, higher degrees of encapsulation of this component within the vesicles can be achieved. After centrifugal purification to remove excess non-encapsulated silica nanoparticles, SAXS, DCP, and TGA analysis indicates encapsulation of up to hundreds of silica nanoparticles per vesicle. In the present study, the thermally triggered release of these encapsulated silica nanoparticles is examined by cooling to 0 °C for 30 min, which causes in situ vesicle dissociation. Transmission electron microscopy studies confirm the change in diblock copolymer morphology and also enable direct visualization of the released silica nanoparticles. Time-resolved small-angle X-ray scattering is used to quantify the extent of silica release over time. For an initial silica concentration of 5% w/w, cooling induces a vesicle-to-sphere transition with subsequent nanoparticle release. For higher silica concentrations (20 or 30% w/w) cooling only leads to perforation of the vesicle membranes, but silica nanoparticles are nevertheless released through the pores. For vesicles prepared in the presence of 30% w/w silica, the purified silica-loaded vesicles were cooled to 0 °C for 30 min, and SAXS patterns were collected every 15 s. A new SAXS model has been developed to determine both the mean volume fraction of encapsulated silica within the vesicles and the scattering length density. Satisfactory data fits to the experimental SAXS patterns were obtained using this model. PMID:28626247
The Management of Silica in Los Alamos National Laboratory Tap Water - A Study of Silica Solubility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlberg, C.; Worland, V.P.; Kozubal, M.A.
1999-07-01
Well water at Los Alamos National Laboratory (LANL) has a silica (SiO{sub 2}) content of 60 to 100 mg/L, with 4 mg/L of magnesium, 13 mg/L calcium and lesser concentrations of other ions. On evaporation in cooling towers, when the silica concentration reaches 150 to 220 mg/L, silica deposits on heat transfer surfaces. When the high silica well water is used in the reprocessing of plutonium, silica remains in solution at the end of the process and creates a problem of removal from the effluent prior to discharge or evaporation. The work described in this Report is divided into twomore » major parts. The first part describes the behavior of silica when the water is evaporated at various conditions of pH and in the presence of different classes of anions: inorganic and organic. In the second part of this work it was found that precipitation (floccing) of silica was a function of solution pH and mole ratio of metal to silica.« less
Heterogeneous Nucleation of Dicalcium Phosphate Dihydrate on Modified Silica Surfaces
Miller, Carrie; Komunjer, Ljepša; Hlady, Vladimir
2012-01-01
Heterogeneous nucleation of dicalcium phosphate dihydrate, CaHPO4•2H2O (DCPD) was studied on untreated planar fused silica and on three modified silica surfaces: octadecylsilyl (OTS) modified silica, human serum albumin treated OTS silica, and UV-oxidized 3-mercaptopropyltriethoxysilyl (MTS) modified silica. The supersaturation ratio of calcium and phosphate solution with respect to DCPD was kept below ~10. The nucleated crystals were observed 24 hours and one week after initial contact between supersaturated solutions and substrate surfaces using bright field and reflectance interference contrast microscopy. No DCPD crystals nucleated on albumin-treated OTS-silica. Majority of the DCDP crystals formed on the other modified silica surfaces appeared to be morphologically similar irrespective of the nature of nucleating substrate. Reflectance interference contrast microscopy provided a proof that the majority of the crystals on these substrates do not develop an extended contact with the substrate surface. The images showed that the most extended contact planes were between the DCPD crystals and MTS modified silica surface. The crystals nucleated on OTS-treated and untreated silica surfaces showed only few or none well-developed contact planes. PMID:25264399
Wang, Ying; Zhao, Qinfu; Hu, Yanchen; Sun, Lizhang; Bai, Ling; Jiang, Tongying; Wang, Siling
2013-01-01
The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM) silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm) and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15) with well-ordered two dimensional (2D) cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC) via the solvent deposition method. Scanning electron microscopy (SEM), N2 adsorption, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41) has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Cell Counting Kit (CCK)-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous silica, especially for 3DOM silica and SBA-15. The present work encourages further study of the drug release properties and stability of drug entrapped in different pore architecture of silica in order to realize their potential in oral drug delivery. PMID:24174875
Serpentinization processes: Influence of silica
NASA Astrophysics Data System (ADS)
Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.
2016-12-01
Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were <5% at 17 days during olivine serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.
Determination of silica coating efficiency on metal particles using multiple digestion methods.
Wang, Jun; Topham, Nathan; Wu, Chang-Yu
2011-10-15
Nano-sized metal particles, including both elemental and oxidized metals, have received significant interest due to their biotoxicity and presence in a wide range of industrial systems. A novel silica technology has been recently explored to minimize the biotoxicity of metal particles by encapsulating them with an amorphous silica shell. In this study, a method to determine silica coating efficiency on metal particles was developed. Metal particles with silica coating were generated using gas metal arc welding (GMAW) process with a silica precursor tetramethylsilane (TMS) added to the shielding gas. Microwave digestion and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) were employed to solubilize the metal content in the particles and analyze the concentration, respectively. Three acid mixtures were tested to acquire the appropriate digestion method targeting at metals and silica coating. Metal recovery efficiencies of different digestion methods were compared through analysis of spiked samples. HNO(3)/HF mixture was found to be a more aggressive digestion method for metal particles with silica coating. Aqua regia was able to effectively dissolve metal particles not trapped in the silica shell. Silica coating efficiencies were thus calculated based on the measured concentrations following digestion by HNO(3)/HF mixture and aqua regia. The results showed 14-39% of welding fume particles were encapsulated in silica coating under various conditions. This newly developed method could also be used to examine the silica coverage on particles of silica shell/metal core structure in other nanotechnology areas. Copyright © 2011 Elsevier B.V. All rights reserved.
Process for Preparing Epoxy-Reinforced Silica Aerogels
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B (Inventor)
2016-01-01
One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.
Miyoshi, Hirokazu; Hiroura, Mitsunori; Tsujimoto, Kazunori; Irikura, Namiko; Otani, Tamaki; Shinohara, Yasuo
2017-05-01
A new scintillation imaging material [scintillator-silica fine powder (FP)] was prepared using silica FPs and scintillator-encapsulating silica nanoparticles (NPs) (scintillator-silica NPs). The wt% values of scintillator-silica NPs on the scintillator-silica FPs were 38, 43, 36 and 44%. Scintillation images of 3H, 63Ni, 35S, 33P, 204Tl, 89Sr and 32P dropped on the scintillator-silica FPs were obtained at about 37 kBq per 0.1-10 µl with a charge-coupled device (CCD) imager for a 5 min exposure. In particular, high-intensity CCD images of 35S were selectively obtained using the 2.25, 4.77 and 10 µm silica FPs with scintillator-silica NPs owing to the residual S of dimethyl sulfoxide in the preparation. Scintillation images of 3H at 1670 ± 9 Bq/0.5 µl and 347 ± 6 Bq/0.5 µl dropped in a 2 mm hole on the scintillator-silica FPs (6.78 and 10 µm) were also obtained using the CCD imager for a 2 h exposure. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mesoporous silica formulation strategies for drug dissolution enhancement: a review.
McCarthy, Carol A; Ahern, Robert J; Dontireddy, Rakesh; Ryan, Katie B; Crean, Abina M
2016-01-01
Silica materials, in particular mesoporous silicas, have demonstrated excellent properties to enhance the oral bioavailability of poorly water-soluble drugs. Current research in this area is focused on investigating the kinetic profile of drug release from these carriers and manufacturing approaches to scale-up production for commercial manufacture. This review provides an overview of different methods utilized to load drugs onto mesoporous silica carriers. The influence of silica properties and silica pore architecture on drug loading and release are discussed. The kinetics of drug release from mesoporous silica systems is examined and the manufacturability and stability of these formulations are reviewed. Finally, the future prospects of mesoporous silica drug delivery systems are considered. Substantial progress has been made in the characterization and development of mesoporous drug delivery systems for drug dissolution enhancement. However, more research is required to fully understand the drug release kinetic profile from mesoporous silica materials. Incomplete drug release from the carrier and the possibility of drug re-adsorption onto the silica surface need to be investigated. Issues to be addressed include the manufacturability and regulation status of formulation approaches employing mesoporous silica to enhance drug dissolution. While more research is needed to support the move of this technology from the bench to a commercial medicinal product, it is a realistic prospect for the near future.
Hsu, Yao-Wen; Wu, Chia-Ching; Wu, Song-Mao
2017-01-01
A novel nanoarchitecture-reinforced poly(lactic acid) (PLA) nanocomposite was prepared using multi-walled carbon nanotube (MWCNT)-grafted silica nanohybrids as reinforcements. MWCNT-grafted silica nanohybrids were synthesized by the generation of silica nanoparticles on the MWCNT surface through the sol-gel technique. This synthetic method involves organo-modified MWCNTs that are dispersed in tetrahydrofuran, which incorporates tetraethoxysilane that undergoes an ultrasonic sol-gel process. Gelation yielded highly dispersed silica on the organo-modified MWCNTs. The structure and properties of the nanohybrids were established using 29Si nuclear magnetic resonance, Raman spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis, and transmission electron microscopy. The resulting MWCNT nanoarchitectures were covalently assembled into silica nanoparticles, which exhibited specific and controllable morphologies and were used to reinforce biodegradable PLA. The tensile strength and the heat deflection temperature (HDT) of the PLA/MWCNT-grafted silica nanocomposites increased when the MWCNT-grafted silica was applied to the PLA matrix; by contrast, the surface resistivity of the PLA/MWCNT-grafted silica nanocomposites appeared to decline as the amount of MWCNT-grafted silica in the PLA matrix increased. Overall, the reinforcement of PLA using MWCNT-grafted silica nanoarchitectures was efficient and improved its mechanical properties, heat resistance, and electrical resistivity. PMID:28773187
Plackett-Burman experimental design for bacterial cellulose-silica composites synthesis.
Guzun, Anicuta Stoica; Stroescu, Marta; Jinga, Sorin Ion; Voicu, Georgeta; Grumezescu, Alexandru Mihai; Holban, Alina Maria
2014-09-01
Bacterial cellulose-silica hybrid composites were prepared starting from wet bacterial cellulose (BC) membranes using Stöber reaction. The structure and surface morphology of hybrid composites were examined by FTIR and SEM. The SEM pictures revealed that the silica particles are attached to BC fibrils and are well dispersed in the BC matrix. The influence of silica particles upon BC crystallinity was studied using XRD analysis. Thermogravimetric (TG) analysis showed that the composites are stable up to 300°C. A Plackett-Burman design was applied in order to investigate the influence of process parameters upon silica particle sizes and silica content of BC-silica composites. The statistical model predicted that it is possible for silica particles size to vary the synthesis parameters in order to obtain silica particles deposed on BC membranes in the range from 34.5 to 500 nm, the significant parameters being ammonia concentration, reaction time and temperature. The silica content also varies depending on process parameters, the statistical model predicting that the most influential parameters are water-tetraethoxysilane (TEOS) ratio and reaction temperature. The antimicrobial behavior on Staphylococcus aureus of BC-silica composites functionalized with usnic acid (UA) was also studied, in order to create improved surfaces with antiadherence and anti-biofilm properties. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ying; Li, Cuiying; Weng, Dong
Silica exposure can cause lung inflammation and fibrosis, known as silicosis. Interleukin-17A (IL-17A) and Th17 cells play a pivotal role in controlling inflammatory diseases. However, the roles of IL-17A and Th17 cells in the progress of silica-induced inflammation and fibrosis are poorly understood. This study explored the effects of IL-17A on silica-induced inflammation and fibrosis. We used an anti-mouse IL-17A antibody to establish an IL-17A-neutralized mice model, and mice were exposed to silica to establish an experimental silicosis model. We showed that IL-17A neutralization delayed neutrophil accumulation and progression of silica-induced lung inflammation and fibrosis. IL-17A neutralization reduced the percentagemore » of Th17 in CD4 + T cells, decreased IL-6 and IL-1β expression, and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A delayed silica-induced Th1/Th2 immune and autoimmune responses. These results suggest that IL-17A neutralization alleviates early stage silica-induced lung inflammation and delays progression of silica-induced lung inflammation and fibrosis. Neutralization of IL-17A suppressed Th17 cell development by decreasing IL-6 and/or IL-1β and increased Tregs at an early phase of silica-induced inflammation. Neutralization of IL-17A also delayed the Th1/Th2 immune response during silica-induced lung inflammation and fibrosis. IL-17A may play a pivotal role in the early phase of silica-induced inflammation and may mediate the Th immune response to influence silica-induced lung inflammation and fibrosis in mice. - Highlights: • Neutralization of IL-17A alleviated silica-induced lung inflammation of early stage. • Neutralization of IL-17A decreased Th17 cells and increased Tregs. • IL-17A mediated the reciprocal relationship of Th17/Tregs by IL-6 and/or IL-1β. • Neutralization of IL-17A delayed silica-induced Th1/Th2 immune response. • Neutralization of IL-17A delayed silica-induced lung inflammation and fibrosis.« less
NASA Astrophysics Data System (ADS)
Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.
2013-09-01
Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.
Asymmetric orientation of toluene molecules at oil-silica interfaces
NASA Astrophysics Data System (ADS)
Ledyastuti, Mia; Liang, Yunfeng; Kunieda, Makoto; Matsuoka, Toshifumi
2012-08-01
The interfacial structure of heptane and toluene at oil-silica interfaces has previously been studied by sum frequency generation [Z. Yang et al., J. Phys. Chem. C. 113, 20355 (2009)], 10.1021/jp9043122. It was found that the toluene molecule is almost perpendicular to the silica surface with a tilt angle of about 25°. Here, we have investigated the structural properties of toluene and heptane at oil-silica interfaces using molecular dynamics simulations for two different surfaces: the oxygen-bridging (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces of quartz (silica). Based on the density profile, it was found that both heptane and toluene oscillate on silica surfaces, with heptane showing more oscillation peaks. Furthermore, the toluene molecules of the first layer were found to have an asymmetric distribution of orientations, with more CH3 groups pointed away from the silica surface than towards the silica surface. These findings are generally consistent with previous experiments, and reveal enhanced molecular structures of liquids at oil-silica interfaces.
Asymmetric orientation of toluene molecules at oil-silica interfaces.
Ledyastuti, Mia; Liang, Yunfeng; Kunieda, Makoto; Matsuoka, Toshifumi
2012-08-14
The interfacial structure of heptane and toluene at oil-silica interfaces has previously been studied by sum frequency generation [Z. Yang et al., J. Phys. Chem. C. 113, 20355 (2009)]. It was found that the toluene molecule is almost perpendicular to the silica surface with a tilt angle of about 25°. Here, we have investigated the structural properties of toluene and heptane at oil-silica interfaces using molecular dynamics simulations for two different surfaces: the oxygen-bridging (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces of quartz (silica). Based on the density profile, it was found that both heptane and toluene oscillate on silica surfaces, with heptane showing more oscillation peaks. Furthermore, the toluene molecules of the first layer were found to have an asymmetric distribution of orientations, with more CH(3) groups pointed away from the silica surface than towards the silica surface. These findings are generally consistent with previous experiments, and reveal enhanced molecular structures of liquids at oil-silica interfaces.
NASA Astrophysics Data System (ADS)
Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng
2015-02-01
The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.
Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M
2014-01-01
A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode.
Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation
Lechner, Carolin C.; Becker, Christian F. W.
2015-01-01
Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed. PMID:26295401
Evaluation of silica nanoparticle toxicity after topical exposure for 90 days
Ryu, Hwa Jung; Seong, Nak-won; So, Byoung Joon; Seo, Heung-sik; Kim, Jun-ho; Hong, Jeong-Sup; Park, Myeong-kyu; Kim, Min-Seok; Kim, Yu-Ri; Cho, Kyu-Bong; Seo, Mu Yeb; Kim, Meyoung-Kon; Maeng, Eun Ho; Son, Sang Wook
2014-01-01
Silica is a very common material that can be found in both crystalline and amorphous forms. Well-known toxicities of the lung can occur after exposure to the crystalline form of silica. However, the toxicities of the amorphous form of silica have not been thoroughly studied. The majority of in vivo studies of amorphous silica nanoparticles (NPs) were performed using an inhalation exposure method. Since silica NPs can be commonly administered through the skin, a study of dermal silica toxicity was necessary to determine any harmful effects from dermal exposures. The present study focused on the results of systemic toxicity after applying 20 nm colloidal silica NPs on rat skin for 90 days, in accordance with the Organization for Economic Cooperation and Development test guideline 411 with a good laboratory practice system. Unlike the inhalation route or gastrointestinal route, the contact of silica NPs through skin did not result in any toxicity or any change in internal organs up to a dose of 2,000 mg/kg in rats. PMID:25565831
Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio
2010-03-16
Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.
NASA Astrophysics Data System (ADS)
Abutalib, Nader Turki
This dissertation investigates the practical feasibility of functionalizing silica fume particles with the amine groups in Bio-binder and pure APTES chemical to disperse silica fume in asphalt binder matrix to produce silica-fume-modified binder (SFMB). Dispersed silica fume was then introduced to asphalt to reduce oxidative aging. It has been widely reported that asphalt binder oxidation is one of the phenomena that reduces the service life of asphalt pavement by negatively affecting its rheological properties. This in turn can lead to a more brittle pavement, which is more prone to cracks due to thermal stress and traffic loading. It has been shown that the introduction of 4% silica fume to asphalt can reduce asphalt oxidative aging. However, the challenge with a higher percentage of silica fume was found to be the agglomeration of nano- particles to form micro-size clusters, which can reduce the effectiveness of silica fume while making asphalt binder more susceptible to shear. Therefore, this dissertation studies the effectiveness of functionalizing the SFMB to reduce asphalt oxidative aging while alleviating the agglomeration effect. To do so, various percentages of bio-binder (BB) and bio-char (BC) were introduced to SFMB, and the rheological properties and high-temperature performance of each specimen were evaluated by measuring the rotational viscosity and complex shear modulus before and after oxidative aging. It is hypothesized that fine-graded BC and BB with nano- to micro-level particles can be used to reduce asphalt oxidation and create a new generation of low- agglomeration SFMB with higher resistance to oxidative aging. To further study the effects of functionalization on dispersion of silica fume, silica fume particles were produced with different functional groups: amine (APTES) groups and phosphonate (THPMP) groups. Agglomeration studies using a scanning electron microscope and zeta potential analysis indicate that modifying asphalt binder with amine-modified silica fume particles can reduce the agglomeration of the silica fume particles. The performance characteristics of functionalized silica fume particles and non-functionalized silica fume particles are compared with those of base asphalt. The following research hypotheses were investigated: 1) Functionalized and well-dispersed silica fume will enhance asphalt's aging resistance. 2) The amine groups in functionalizing agent interact with silica fume particles and promote their dispersion. To test these hypotheses, a rotational viscometer was used to study the effect of functionalized-silica-fume-modified binder on the high-temperature properties of the asphalt binder. Fourier transform infrared spectroscopy analysis was used to determine the chemical compounds of the amine-group silica-fume- modified binder matrix. Scanning electron microscopy was used to observe the surface morphology and analyze the microstructure characteristics of materials. The positive effect of amine groups on the rheological properties of SFMB could be attributed to the high surface area of the silica fume and its granular particles with high polarity, factors that could improve the blending properties of the bio-modified silica fume and result in a uniformly distributed silica- fume-modified matrix with enhanced oxidative aging resistance. Surface adsorption of amines on silica fume particles helps promote repulsive forces between them to enhance dispersion.
Cellular membrane trafficking of mesoporous silica nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, I-Ju
This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulfmore » some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine the specific organelle that mesoporous silica nanoparticles could approach via the identification of harvested proteins from exocytosis process. Based on the study of endo- and exocytosis behavior of mesoporous silica nanoparticle materials, we can design smarter drug delivery vehicles for cancer therapy that can be effectively controlled. The destination, uptake efficiency and the cellular distribution of mesoporous silica nanoparticle materials can be programmable. As a result, release mechanism and release rate of drug delivery systems can be a well-controlled process. The deep investigation of an endo- and exocytosis study of mesoporous silica nanoparticle materials promotes the development of drug delivery applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuo; Zhong, Lirong; Li, Guanghe
Colloidal silica (fumed silica) suspensions are being tested as carriers for remedial amendment delivery in subsurface remediation and as media for underground contamination containment. The knowledge of the rheological behavior of the silica suspensions is lack in the literature while it is essential for the preparation and field injection of the suspensions. This contribution is focused on the rheological characteristics of colloidal silica suspensions under various environmental conditions relevant to amendment delivery for subsurface remediation. We investigated the influence of silica particle concentration, water source, ionic strength, pH, aging, amendment type and concentration, and subsurface sediment on the rheological behaviormore » of the suspensions. All tested suspension formulations exhibited shear thinning before gelation. Higher silica particle concentration and salinity (Na+ and K+) increased suspensions’ viscosity and the degree of shear thinning. The viscosity of suspensions increased with aging. The suspensions at natural pH exhibited the highest viscosity compared to the acidic and alkaline suspensions with the same silica concentration. Addition of KMnO4 amendment to aqueous silica suspensions increased viscosity, while addition of alcohol amendment decreased suspensions’ viscosity. The presence of amendment did not reduce shear thinning. The gelation rate of silica suspensions was increased with silica concentration and with the addition of sediments. The rheological characteristics of shear thinning aqueous fumed silica suspensions were compared to that of shear thinning solutions formed with organic polymer xanthan gum, which was applied for amendment delivery in subsurface remediation.« less
NASA Astrophysics Data System (ADS)
Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong
2015-07-01
Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a
Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan
2016-02-01
This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used.
Structural and Acidic Properties of Niobia-Silica and Niobia-Alumina Aerogels
1991-05-06
some weak Bronsted acidity. The silica aerogel supported niobia samples also had strong Lewis acidity as well as strong iv Bronsted acidity which was...NS25w or the silica aerogel supported niobia because of the formation of a distorted octahedral niobia-rigid silica interface. Isomerization of 1...67 2.1.2 Silica Aerogel .......................................................... 70 2.1.3 Alumina
NASA Astrophysics Data System (ADS)
Rahman, NA; Widiyastuti, W.; Sigit, D.; Ajiza, M.; Sujana, W.
2018-01-01
Bagasse ash is solid waste of cane sugar industry which contain of silica more than 51%. Some previous study of silica gel from bagasse ash have been conducted often and been applied. This study concerns about the effect of various acid used in the process of gelation to the characteristic of silica gel produced. Then, this silica gel will be used as adsorbent. As that, the silica gel must fulfill the requirements of adsorbent, as have good pores characteristics, fit in mesoporous size so that adsorbent diffusion process is not disturbed. A fitted pores size of silica gel can be prepared by managing acid concentration used. The effect of acid, organic acid (tartaric acid) and inorganic acid (hydrochloric acid), is investigated in detail. The acid is added into sodium silicate solution in that the gel is formed, the pores structures can be investigated with BET, the crystal form is analyzed with XRD and the pore structure is analyzed visually with SEM. By managing the acid concentration added, it gets the effect of acid to the pore structure of silica gel. The bigger concentration is, the bigger the pore’s size of silica gel produced.
NASA Astrophysics Data System (ADS)
Park, Y. J.; Lee, M. H.; Pyo, H. Y.; Kim, H. A.; Sohn, S. C.; Jee, K. Y.; Kim, W. H.
2005-06-01
Uranium-adsorbed silica particles were prepared as a reference material for the fission track analysis (FTA) of swipe samples. A modified instrumental setup for particle generation, based on a commercial vibrating orifice aerosol generator to produce various sizes of droplets from a SiO 2 solution, is described. The droplets were transferred into a weak acidic solution bath to produce spherical solid silica particles. The classification of the silica particles in the range from 5 to 20 μm was carried out by the gravitational sedimentation method. The size distribution and morphology of the classified silica particles were investigated by scanning electron microscopy. The physicochemical properties of the classified silica particles such as the surface area, pore size and pore volume were measured. After an adsorption of 5% 235U on the silica particles in a solution adjusted to pH 4.5, the uranium-adsorbed silica particles were calcined up to 950 °C in a furnace to fix the uranium strongly onto the silica particles. The various sizes of uranium-adsorbed silica particles were applied to the FTA for use as a reference material.
Castellano, Maila; Conzatti, Lucia; Turturro, Antonio; Costa, Giovanna; Busca, Guido
2007-05-03
A good dispersion of silica into elastomers, typically used in tire tread production, is obtained by grafting of the silica with multifunctional organosilanes. In this study, the influence of the chemical structure of a triethoxysilane (TES), octadecyltriethoxysilane (ODTES), and ODTES/bistriethoxysilylpropyltetrasulfane (TESPT) mixture was investigated by inverse gas chromatography (IGC) at infinite dilution. Thermodynamic results indicate a higher polarity of the silica surface modified with TES as compared to that of the unmodified silica due to new OH groups deriving from the hydrolysis of ethoxy groups of the silane; the long hydrocarbon substituent of the ODTES lies on the surface of silica and reduces the dispersive component of the silica surface tension. A comparison with silica modified with TESPT is discussed. An accurate morphological investigation by transmission electron microscopy (TEM) and automated image analysis (AIA) was carried out on aggregates of silica dispersed into a SBR compound loaded with 35 phr (per hundred rubber) of untreated and TESPT-treated silica. Morphological descriptors such as the projected area/perimeter ratio (A/P) and roundness (P2/4piA) provided direct and quantitative indications about the distribution of the filler into the rubber matrix.
Niu, Mengna; Ma, Hongyan; Hu, Fei; Wang, Shige; Liu, Lu; Chang, Haizhou; Huang, Mingxian
2017-06-08
Large-pore silica microspheres were synthesized by utilizing weak cation exchange polymer beads as templates, N -trimethoxysilylpropyl- N,N,N -trimethylammonium chloride (TMSPTMA) as a structure-directing agent, tetraethoxysilane (TEOS) as a silica precursor, and triethanolamine as a weak base catalyst. The hydrolysis and condensation of the silica precursors occurred inside the templating polymer beads yielded polymer/silica composite microspheres. After the organic polymer templates were removed in the calcination step, large-pore silica microspheres were produced. The effects of different reaction conditions on the morphology, structure and dispersibility of the formed silica microspheres were investigated. It has been shown that when the volume ratio of TMSPTMA, TEOS and triethanolamine was 1:2:2, silica microspheres with pore size range of 50-150 nm and particle size around 2 μm were obtained. The as-prepared silica microspheres were then bonded with chlorodimethyloctadecylsilane (C18), packed into a 50 mm×4.6 mm column, and evaluated for the separations of some common standard proteins and soybean isolation proteins. The results showed that the large-pore silica spheres from this work have potentials for protein separation in HPLC.
Fujita, Yosuke; Kobayashi, Motoyoshi
2016-07-01
We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wei, Qinghua; Wang, Yanen; Wang, Shuzhi; Zhang, Yingfeng; Chen, Xiongbiao
2017-11-01
The nano-silica can be incorporated into polymers for improved mechanical properties. Notably, the interaction between nano-silica and polymer is of a microscopic phenomenon and thus, hard to observe and study by using experimental methods. Based on molecular dynamics, this paper presents a study on the properties and the interaction mechanism of nano-silica in the polyvinyl alcohol (PVA)/polyacrylamide (PAM) blends at an atomic level. Specifically, six blends of PVA/PAM with varying concentrations of nano-silica (0-13wt%) and two interfacial interaction models of polymers on the silica surface were designed and analyzed at an atomic level in terms of concentration profile, mechanical properties, fractional free volume (FFV), dynamic properties of polymers and X-ray diffraction patterns. The concentration profile results and micromorphologies of equilibrium models suggest PAM molecular chains are easier to be adsorbed on the silica surface than PVA molecular chains in blends. The incorporation of nano-silica into the PVA/PAM blends can increase the blend mechanical properties, densities, and semicrystalline character. Meanwhile, the FFV and the mobility of polymer chain decrease with the silica concentration, which agrees with the results of mechanical properties, densities, and semicrystalline character. Our results also illustrate that an analysis of binding energies and pair correlation functions (PCF) allows for the discovery of the interaction mechanism of nano-silica in PVA/PAM blends; and that hydrogen bond interactions between polar functional groups of polymer molecular chains and the hydroxyl groups of the silica surface are involved in adsorption of the polymers on the silica surface, thus affecting the interaction mechanism of nano-silica in PVA/PAM blend systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ultrasound assisted deposition of silica coatings on titanium
NASA Astrophysics Data System (ADS)
Kaş, Recep; Ertaş, Fatma Sinem; Birer, Özgür
2012-10-01
We present a novel ultrasound assisted method for silica coating of titanium surfaces. The coatings are formed by “smashing” silica nanoparticles onto activated titanium surface in solution using intense ultrasonic field. Homogeneous silica coatings are formed by deposition of dense multiple layers of silica nanoparticles. Since the nanoparticles also grow during the reaction, the layers of the coatings have smaller particles on the substrate and larger particles towards the surface. The thickness of the coatings can be controlled with several experimental parameters. Silica layers with thickness over 200 nm are readily obtained.
Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.
Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L
2015-03-01
In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides
Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.
2014-01-01
In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851
NASA Astrophysics Data System (ADS)
Purwanto, Agung; Yusmaniar, Ferdiani, Fatmawati; Damayanti, Rachma
2017-03-01
Silica gel modified APTS was synthesized from silica gel which was obtained from corn cobs via sol-gel process. Silica gel was synthesized from corn cobs and then chemically modified with silane coupling agent which has an amine group (NH2). This process resulting modified silica gel 3-aminopropyltriethoxysilane (APTS). Characterization of silica gel modified APTS by SEM-EDX showed that the size of the particles of silica gel modified APTS was 20µm with mass percentage of individual elements were nitrogen (N) 15.56%, silicon (Si) 50.69% and oxygen (O) 33.75%. In addition, silica gel modified APTS also showed absorption bands of functional groups silanol (Si-OH), siloxane (Si-O-Si), and an aliphatic chain (-CH2-), as well as amine (NH2) from FTIR spectra. Based on the characterization of XRD, silica gel 2θ of 21.094° and 21.32° respectively. It indicated that both material were amorphous. Determination of optimum pH and contact time on adsorption of silica gel 3-aminopropyltriethoxysilane (APTS) against Cu(II). The optimum pH and contact time was measured by using AAS. Optimum pH of adsorption silica gel modified APTS against metal Cu(II) could be obtained at pH 6 while optimum contact time was at 30 minutes, with the process of adsorption metal Cu(II) occured based on the model Freundlich isotherm.
Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius
2015-01-01
A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542
Silica sol as grouting material: a physio-chemical analysis.
Sögaard, Christian; Funehag, Johan; Abbas, Zareen
2018-01-01
At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.
NASA Astrophysics Data System (ADS)
Solihin; Mursito, Anggoro Tri; Dida, Eki N.; Erlangga, Bagus D.; Widodo
2017-07-01
Silica mineral, which comes along with geothermal fluid in Dieng, is a product of erosion, decomposition and dissolution of silicon oxide based mineral, which is followed by precipitation to form silica mineral. This silica cell structure is non crystalline, and it contains 85,60 % silicon oxide, 6.49 volatile elements, and also other oxide elements. Among the direct potential application of this silica is as raw material in slow release fertilizer. Silica in compacted slow release fertilizer is able control the release rate of fertilizer elements. Two type of slow release fertilizer has been made by using silica as the matrix in these slow release fertilizer. The first type is the mixing of ordinary solid fertilizer with Dieng silica, whereas the second one is the mixing of disposal leach water with Dieng silica. The release test shows that both of these modified fertilizers have slow release fertilizer characteristic. The release rate of fertilizer elements (magnesium, potassium, ammonium, and phosphate) can be significantly reduced. The addition of kaolin in the first type of slow release fertilizer makes the release rate of fertilizer elements can be more slowed down. Meanwhile in the second type of slow release fertilizer, the release rate is determined by ratio of silica/hydrogel. The lowest release rate is achieved by sample that has highest ratio of silica/hydrogel.
Size effect of optical silica microsphere pressure sensors
NASA Astrophysics Data System (ADS)
Jiao, Xinbing; Hao, Ruirui; Pan, Qian; Zhao, Xinwei; Bai, Xue
2018-07-01
Two types of optical pressure sensors with silica microspheres are proposed. The size effect of optical silica microsphere pressure sensors is studied by using a single-wavelength laser beam and polarimeters. The silica microspheres with diameters of 1.0 μm, 1.5 μm and 2.0 μm are prepared on garnet substrates by a self-assembly method. The pressure and the optical properties of the silica microspheres are measured by a resistance strain sensor and Thorlabs Stokes polarimeters as a function of the external direct current (DC) voltage. The optical silica microsphere sensor in transmission mode is suitable for pressure measuring. The results show that the pressure increases, while the diameter of the silica microspheres decreases. The maximum internal pressure can reach up to 7.3 × 107 Pa when the diameter of the silica microspheres is 1.0 μm.
Silica substrate or portion formed from oxidation of monocrystalline silicon
Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.
2003-07-15
A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.
Khlebtsov, Boris N; Khanadeev, Vitaly A; Khlebtsov, Nikolai G
2008-08-19
The size and concentration of silica cores determine the size and concentration of silica/gold nanoshells in final preparations. Until now, the concentration of silica/gold nanoshells with Stober's silica core has been evaluated through the material balance assumption. Here, we describe a method for simultaneous determination of the average size and concentration of silica nanospheres from turbidity spectra measured within the 400-600 nm spectral band. As the refractive index of silica nanoparticles is the key input parameter for optical determination of their concentration, we propose an optical method and provide experimental data on a direct determination of the refractive index of silica particles n = 1.475 +/- 0.005. Finally, we exemplify our method by determining the particle size and concentration for 10 samples and compare the results with transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering data.
Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars
Frydenvang, Jens; Gasda, Patrick J.; Hurowitz, Joel A.; Grotzinger, John P.; Wiens, Roger C.; Newsom, Horton E.; Edgett, Ken S.; Watkins, Jessica; Bridges, John C.; Maurice, Sylvestre; Fisk, Martin R.; Johnson, Jeffrey R.; Rapin, William; Stein, Nathan; Clegg, Sam M.; Schwenzer, S. P.; Bedford, C.; Edwards, P.; Mangold, Nicolas; Cousin, Agnes; Anderson, Ryan; Payre, Valerie; Vaniman, David; Blake, David; Lanza, Nina L.; Gupta, Sanjeev; Van Beek, Jason; Sautter, Violaine; Meslin, Pierre-Yves; Rice, Melissa; Milliken, Ralf; Gellert, Ralf; Thompson, Lucy; Clark, Ben C.; Sumner, Dawn Y.; Fraeman, Abigail A.; Kinch, Kjartan M; Madsen, Morten B.; Mitofranov, Igor; Jun, Insoo; Calef, Fred J.; Vasavada, Ashwin R.
2017-01-01
Diagenetic silica enrichment in fracture-associated halos that crosscut lacustrine and unconformably overlying aeolian sedimentary bedrock is observed on the lower north slope of Aeolis Mons in Gale crater, Mars. The diagenetic silica enrichment is colocated with detrital silica enrichment observed in the lacustrine bedrock yet extends into a considerably younger, unconformably draping aeolian sandstone, implying that diagenetic silica enrichment postdates the detrital silica enrichment. A causal connection between the detrital and diagenetic silica enrichment implies that water was present in the subsurface of Gale crater long after deposition of the lacustrine sediments and that it mobilized detrital amorphous silica and precipitated it along fractures in the overlying bedrock. Although absolute timing is uncertain, the observed diagenesis likely represents some of the most recent groundwater activity in Gale crater and suggests that the timescale of potential habitability extended considerably beyond the time that the lacustrine sediments of Aeolis Mons were deposited.
Tailoring mechanical properties of aerogels for aerospace applications.
Randall, Jason P; Meador, Mary Ann B; Jana, Sadhan C
2011-03-01
Silica aerogels are highly porous solid materials consisting of three-dimensional networks of silica particles and are typically obtained by removing the liquid in silica gels under supercritical conditions. Several unique attributes such as extremely low thermal conductivity and low density make silica aerogels excellent candidates in the quest for thermal insulation materials used in space missions. However, native silica aerogels are fragile at relatively low stresses. More durable aerogels with higher strength and stiffness are obtained by proper selection of silane precursors and by reinforcement with polymers. This paper first presents a brief review of the literature on methods of silica aerogel reinforcement and then discusses our recent activities in improving not only the strength but also the elastic response of polymer-reinforced silica aerogels. Several alkyl-linked bis-silanes were used in promoting flexibility of the silica networks in conjunction with polymer reinforcement by epoxy.
Water Vapor Effects on Silica-Forming Ceramics
NASA Technical Reports Server (NTRS)
Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)
2000-01-01
Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.
Fabrication and characterization of Aerogel-Polydimethyl siloxane (PDMS) Insulation Film
NASA Astrophysics Data System (ADS)
Noh, Yeoung ah; Song, Sinae; Taik Kim, Hee
2018-03-01
The building has a large impact on the space heating demand and the indoor environment is affected by climate or daylight. Hence, silica aerogel has generally used as a film to reduce the coefficient of the window in the building. Silica aerogel is a suitable material to apply for insulation material with lower thermal conductivity than that of air to save interior energy. However expensive precursor and drying process were the main issue of the silica aerogel synthesis and practical usage. We attempt to fabricate aerogel insulation film for energy saving through the economic process under ambient pressure. Silica aerogel was synthesized from rice husk ash, which was an agricultural waste to be able to recycle. Taguchi design was used to optimize the parameters (amount of rice husk ash, pH, aging time) controlling the surface area of silica aerogel. The silica aerogel is prepared by sol-gel processing through acidic treatment and aging. The silica aerogel was obtained by modification of silica hydrogel surface and dry at ambient pressure. Finally, aerogel film was respectively fabricated by the different content of aerogel in polydimethylsiloxane (PDMS). Silica aerogel obtained 21 – 24nm average particle size was analyzed by SEM and silica aerogel with high surface area (832.26 m2/g), pore size ( 3.30nm ) was characterized by BET. Then silica Aerogel – PDMS insulation film with thermal conductivity (0.002 W/mK) was analyzed by thermal wave system. The study demonstrates an eco-friendly and low-cost route toward silica – PDMS insulation film with low thermal conductivity (0.002 W/mK).
Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru
2013-09-15
A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption processmore » of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.« less
Anti-listeria effects of chitosan-coated nisin-silica liposome on Cheddar cheese.
Cui, H Y; Wu, J; Li, C Z; Lin, L
2016-11-01
Listeria monocytogenes poses an increasing challenge to cheese production. To minimize the risk of bacterial contamination, a chitosan-coated nisin-silica liposome was engineered for the present study. We investigated the characteristics of nisin-silica liposomes and the anti-listeria effects of a chitosan-coated nisin-silica liposome on Cheddar cheese. The encapsulation efficiency of nisin in a liposome was sharply increased after it was adsorbed on a silica particle surface. Chitosan-coated nisin-silica liposomes displayed sustained antibacterial activity against L. monocytogenes, without affecting the sensory properties of the cheese. Chitosan-coated nisin-silica liposomes could be a promising active antimicrobial for cheese preservation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L.
2015-05-01
A new approach to dope a silica glass with gold nanoparticles (GNPs) is presented. It consisted in embedding zirconia-coated GNPs in a silica sol to form a doped silica gel. Then, the sol-doped nanoporous silica xerogel is densified leading to the formation of a glass monolith. The spectral position and shape of the surface plasmon resonance (SPR) reported around 520 nm remain compatible with small spherical GNPs in a silica matrix. The saturable absorption behavior of this gold/zirconia-doped silica glass has been evidenced by Z-scan technique. A second-order nonlinear absorption coefficient β of about -13.7 cm GW-1 has been obtained at a wavelength near the SPR of the GNPs.
Synthesis and surface functionalization of silica nanoparticles for nanomedicine
Liberman, Alexander; Mendez, Natalie; Trogler, William C.; Kummel, Andrew C.
2014-01-01
There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications. PMID:25364083
[Amorphous silica. Types, health effects of exposure, NDS].
Woźniak, H; Wiecek, E
1995-01-01
Maximum allowable concentration (MAC) values for amorphous silica dust have not been identified in the Polish legal regulations up-to-date. In this work the authors review values of allowable (recommended) amorphous silica dust concentrations in other countries. Data on other types of amorphous silica (natural and synthetic) used in industry as well as data on health effects of exposure to these types of dust are presented. The work encompasses 42 entries in the references and one Table which includes the following proposed MAC values: Non-calcinate diatomaceous earth (diatomite) and synthetic silica: Total dust--10 mg/m3 Respirable dust--2 mg/m3 Calcinate diatomaceous earth (diatomite) and fused silica (vitreous silica): Total dust--2 mg/m3 Respirable dust--1 mg/m3.
Preparation and Characterization of Hydroxyapatite-Silica Composite Nanopowders
NASA Astrophysics Data System (ADS)
Latifi, S. M.; Fathi, M. H.; Golozar, M. A.
One of the most important objectives in the field of biomaterials science and engineering is development of new materials as bone substitutes. Silica (SiO2) has an important role in the biomineralization and biological responses. The aim of this research was to prepare and characterize hydroxyapatite-silica (HA-SiO2) composite nanopowder with different content of silica. Hydroxyapatite-silica composite nanopowders with 20 and 40 wt% silica were prepared using a sol-gel method at 600°C with phosphoric pentoxide and calcium nitrate tetrahydrate as a source of hydroxyapatite; also, tetraethylorthosilicate and methyltriethoxisilane as a source of silica. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used for characterization and evaluation of the products. The results indicated the presence of nanocrystalline hydroxyapatite phase beside amorphous silica phase in prepared composite nanopowders. Moreover, by increasing the content of silica in composite nanopowders, the crystallinity will be decreased,and the ability of the product as a bone substitute material might be controlled by changing the content of the ingredients and subsequently its structure.
High reactive sulphide chemically supported on silica surface to prepare functional nanoparticle
NASA Astrophysics Data System (ADS)
Chen, Lijuan; Guo, Xiaohui; Jia, Zhixin; Tang, Yuhan; Wu, Lianghui; Luo, Yuanfang; Jia, Demin
2018-06-01
A solid-phase preparation method was applied to obtain a novel, green and effective functional nanoparticle, silica-supported sulfur monochloride (silica-s-S2Cl2), by the chemical reaction between chlorine atom and silicon hydroxyl on the silica surface. Through this chemical reaction, silica surface supported with high content of sulfur, and the functional nanoparticles can not only vulcanize the rubber instead of sulfur or other vulcanizing agent with high performance, but also improve the filler-rubber interaction as a modifier due to the improved modification effect. 29Si NMR, Raman spectroscopy, Element analysis and TGA confirm that the sulfur monochloride is chemically bonded on the silica surface. Cure properties measurement, morphology of filler dispersion, mechanical properties measurement, immobilized polymer layer and oxidation induction time increment together show that the novel vulcanizing agent silica-s-S2Cl2 instead of sulfur in rubber vulcanization gives rise to significant improvement in the crosslinking density and the interfacial adhesion between silica particles and the rubber matrix, which is on account of the promoted vulcanizing on the functional silica nanoparticles surface with the supported sulfur.
Liu, Ying-Ling; Hsu, Chih-Yuan; Su, Yu-Huei; Lai, Juin-Yih
2005-01-01
Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.
Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer
Ryan, J.N.; Elimelech, M.; Ard, R.A.; Harvey, R.W.; Johnson, P.R.
1999-01-01
Bacteriophage PRD1 and silica colloids were co-injected into sewage- contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.Bacteriophage PRD1 and silica colloids were co-injected into sewage-contaminated and uncontaminated zones of an iron oxide-coated sand aquifer on Cape Cod, MA, and their transport was monitored over distances up to 6 m in three arrays. After deposition, the attached PRD1 and silica colloids were mobilized by three different chemical perturbations (elevated pH, anionic surfactant, and reductant). PRD1 and silica colloids experienced less attenuation in the contaminated zone where adsorbed organic matter and phosphate may be hindering attachment of PRD1 and silica colloids to the iron oxide coatings. The PRD1 collision efficiencies agree well with collision efficiencies predicted by assuming favorable PRD1 deposition on iron oxide coatings for which the surface area coverage was measured by microprobe analysis of sediment thin sections. ?? potentials of the PRD1, silica colloids, and aquifer grains corroborated the transport results, indicating that electrostatic forces dominated the attachment of PRD1 and silica colloids. Elevated pH was the chemical perturbation most effective at mobilizing the attached PRD1 and silica colloids. Elevated surfactant concentration mobilized the attached PRD1 and silica colloids more effectively in the contaminated zone than in the uncontaminated zone.
Four hundred million years of silica biomineralization in land plants.
Trembath-Reichert, Elizabeth; Wilson, Jonathan Paul; McGlynn, Shawn E; Fischer, Woodward W
2015-04-28
Biomineralization plays a fundamental role in the global silicon cycle. Grasses are known to mobilize significant quantities of Si in the form of silica biominerals and dominate the terrestrial realm today, but they have relatively recent origins and only rose to taxonomic and ecological prominence within the Cenozoic Era. This raises questions regarding when and how the biological silica cycle evolved. To address these questions, we examined silica abundances of extant members of early-diverging land plant clades, which show that silica biomineralization is widespread across terrestrial plant linages. Particularly high silica abundances are observed in lycophytes and early-diverging ferns. However, silica biomineralization is rare within later-evolving gymnosperms, implying a complex evolutionary history within the seed plants. Electron microscopy and X-ray spectroscopy show that the most common silica-mineralized tissues include the vascular system, epidermal cells, and stomata, which is consistent with the hypothesis that biomineralization in plants is frequently coupled to transpiration. Furthermore, sequence, phylogenetic, and structural analysis of nodulin 26-like intrinsic proteins from diverse plant genomes points to a plastic and ancient capacity for silica accumulation within terrestrial plants. The integration of these two comparative biology approaches demonstrates that silica biomineralization has been an important process for land plants over the course of their >400 My evolutionary history.
Four hundred million years of silica biomineralization in land plants
Trembath-Reichert, Elizabeth; Wilson, Jonathan Paul; McGlynn, Shawn E.; Fischer, Woodward W.
2015-01-01
Biomineralization plays a fundamental role in the global silicon cycle. Grasses are known to mobilize significant quantities of Si in the form of silica biominerals and dominate the terrestrial realm today, but they have relatively recent origins and only rose to taxonomic and ecological prominence within the Cenozoic Era. This raises questions regarding when and how the biological silica cycle evolved. To address these questions, we examined silica abundances of extant members of early-diverging land plant clades, which show that silica biomineralization is widespread across terrestrial plant linages. Particularly high silica abundances are observed in lycophytes and early-diverging ferns. However, silica biomineralization is rare within later-evolving gymnosperms, implying a complex evolutionary history within the seed plants. Electron microscopy and X-ray spectroscopy show that the most common silica-mineralized tissues include the vascular system, epidermal cells, and stomata, which is consistent with the hypothesis that biomineralization in plants is frequently coupled to transpiration. Furthermore, sequence, phylogenetic, and structural analysis of nodulin 26-like intrinsic proteins from diverse plant genomes points to a plastic and ancient capacity for silica accumulation within terrestrial plants. The integration of these two comparative biology approaches demonstrates that silica biomineralization has been an important process for land plants over the course of their >400 My evolutionary history. PMID:25825729
Silica particles cause NADPH oxidase–independent ROS generation and transient phagolysosomal leakage
Joshi, Gaurav N.; Goetjen, Alexandra M.; Knecht, David A.
2015-01-01
Chronic inhalation of silica particles causes lung fibrosis and silicosis. Silica taken up by alveolar macrophages causes phagolysosomal membrane damage and leakage of lysosomal material into the cytoplasm to initiate apoptosis. We investigated the role of reactive oxygen species (ROS) in this membrane damage by studying the spatiotemporal generation of ROS. In macrophages, ROS generated by NADPH oxidase 2 (NOX2) was detected in phagolysosomes containing either silica particles or nontoxic latex particles. ROS was only detected in the cytoplasm of cells treated with silica and appeared in parallel with an increase in phagosomal ROS, as well as several hours later associated with mitochondrial production of ROS late in apoptosis. Pharmacological inhibition of NOX activity did not prevent silica-induced phagolysosomal leakage but delayed it. In Cos7 cells, which do not express NOX2, ROS was detected in silica-containing phagolysosomes that leaked. ROS was not detected in phagolysosomes containing latex particles. Leakage of silica-containing phagolysosomes in both cell types was transient, and after resealing of the membrane, endolysosomal fusion continued. These results demonstrate that silica particles can generate phagosomal ROS independent of NOX activity, and we propose that this silica-generated ROS can cause phagolysosomal leakage to initiate apoptosis. PMID:26202463
Prevention and management of silica scaling in membrane distillation using pH adjustment
Bush, John A.; Vanneste, Johan; Gustafson, Emily M.; ...
2018-02-27
Membrane scaling by silica is a major challenge in desalination, particularly for inland desalination of brackish groundwater or geothermal resources, which often contain high concentrations of silica and dissolved solids. Adjustment of feed pH may reduce silica scaling risk, which is important for inland facilities that operate at high water recoveries to reduce brine disposal costs. However, water recovery of reverse osmosis is also limited due to increased osmotic pressure with feed water concentration. Membrane distillation (MD) is a thermally driven membrane desalination technique that is not limited by increased osmotic pressure of the feed. In this investigation, pH adjustmentmore » was tested as a strategy to reduce silica scaling risk in the MD process. With feed water pH less than 5 or higher than 10, scaling impacts were negligible at silica concentrations up to 600 mg/L. Scaling rates were highest at neutral pH between 6 and 8. Cleaning strategies were also explored to remove silica scale from membranes. Cleaning using NaOH solutions at pH higher than 11 to induce dissolution of silica scale was effective at temporarily restoring performance; however, some silica remained on membrane surfaces and scaling upon re-exposure to supersaturated silica concentrations occurred faster than with new membranes.« less
Characterization of silica particles modified with γ-methacryloxypropyltrimethoxysilane
NASA Astrophysics Data System (ADS)
Jiang, Jun; Wang, Wang; Shen, Haiying; Wang, Jiamin; Cao, Jinzhen
2017-03-01
The surface of hydrophilic silica particles was modified with different concentrations (2, 4, 6, 8 and 10%) of γ-methacryloxypropyltrimethoxysilane (MPTS). The hydrophobicity and hygroscopicity of unmodified and modified silica were investigated through water contact angle (WCA) tests and dynamic vapor sorption (DVS) method, respectively. The results showed that the surface properties of silica were closely related with the MPTS concentration. Within the range of MPTS concentration applied, 8% MPTS modified silica showed the least aggregation. With the increasing MPTS concentration, the WCAs on modified silica film increased correspondingly, and finally exceeded 90° at 6% and 8% concentrations. The equilibrium moisture contents (EMCs) of modified silica also decreased with the increasing MPTS concentration. The improvement on hydrophobicity can be correlated with the reduction of residual hydroxyl groups (-OH) on modified silica. The self-condensation of MPTS began to occur at concentrations higher than 4%, especially at 8%. Owing to this effect, the modified silica with 8% MPTS showed a slightly higher EMC than 6% MPTS within low relative humidity (RH) range up to 40%. At a higher RH ranging from 40 to 90%, 8% group showed the lowest EMCs because of its highest hydrophobicity and low specific surface area. A mechanism concerning the MPTS modification of silica was also proposed in this study based on the research results.
Prevention and management of silica scaling in membrane distillation using pH adjustment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bush, John A.; Vanneste, Johan; Gustafson, Emily M.
Membrane scaling by silica is a major challenge in desalination, particularly for inland desalination of brackish groundwater or geothermal resources, which often contain high concentrations of silica and dissolved solids. Adjustment of feed pH may reduce silica scaling risk, which is important for inland facilities that operate at high water recoveries to reduce brine disposal costs. However, water recovery of reverse osmosis is also limited due to increased osmotic pressure with feed water concentration. Membrane distillation (MD) is a thermally driven membrane desalination technique that is not limited by increased osmotic pressure of the feed. In this investigation, pH adjustmentmore » was tested as a strategy to reduce silica scaling risk in the MD process. With feed water pH less than 5 or higher than 10, scaling impacts were negligible at silica concentrations up to 600 mg/L. Scaling rates were highest at neutral pH between 6 and 8. Cleaning strategies were also explored to remove silica scale from membranes. Cleaning using NaOH solutions at pH higher than 11 to induce dissolution of silica scale was effective at temporarily restoring performance; however, some silica remained on membrane surfaces and scaling upon re-exposure to supersaturated silica concentrations occurred faster than with new membranes.« less
Gouda, Noha; Miyata, Kanjiro; Christie, R James; Suma, Tomoya; Kishimura, Akihiro; Fukushima, Shigeto; Nomoto, Takahiro; Liu, Xueying; Nishiyama, Nobuhiro; Kataoka, Kazunori
2013-01-01
In this study, poly(ethylene glycol) (PEG)-block-polycation/siRNA complexes (PEGylated polyplexes) were wrapped with a hydrated silica, termed "silica nanogelling", in order to enhance their stability and functionality. Silica nanogelling was achieved by polycondensation of soluble silicates onto the surface of PEGylated polyplexes comprising a disulfide cross-linked core. Formation of silica nanogel layer on the PEGylated cross-linked polyplexes was confirmed by particle size increase, surface charge reduction, and elemental analysis of transmission electron micrographs. Silica nanogelling substantially improved polyplex stability against counter polyanion-induced dissociation under non-reductive condition, without compromising the reductive environment-responsive siRNA release triggered by disulfide cleavage. Silica nanogelling significantly enhanced the sequence-specific gene silencing activity of the polyplexes in HeLa cells without associated cytotoxicity, probably due lower endosomal entrapment (or lysosomal degradation) of delivered siRNA. The lower endosomal entrapment of the silica nanogel system could be explained by an accelerated endosomal escape triggered by deprotonated silanol groups in the silica (the proton sponge hypothesis) and/or a modulated intracellular trafficking, possibly via macropinocytosis, as evidenced by the cellular uptake inhibition assay. Henceforth, silica nanogelling of PEGylated siRNA polyplexes is a promising strategy for preparation of stable and functional siRNA delivery vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Santagata, A.; Guarnaccio, A.; Pietrangeli, D.; Szegedi, Á.; Valyon, J.; De Stefanis, A.; De Bonis, A.; Teghil, R.; Sansone, M.; Mollica, D.; Parisi, G. P.
2015-05-01
Ultra-short pulsed laser ablation of materials in liquid has been demonstrated to be a versatile technique for nanoparticles production. In a previous paper, it has been described, for the first time, how by laser ablation in a liquid system, silver nanoparticles can be loaded onto SBA-15 and MCM-41 supports which show promising catalytic properties for the oxidation of Volatile Organic Compounds (VOCs). The aim of the present research is to demonstrate the formation of stable silver-silica core-shell nanoparticles by direct laser ablation (Ti:Sa; 800 nm pulse duration: 120 fs repetition rate: 1 kHz, pulse energy: 3.6 mJ, fluence: 9 J cm - 2) of a Ag target submerged in a static colloidal solution of MCM-41 or SBA-15 silica nanoporous materials. In previous studies, it was discovered that a side and negligible product of the laser ablation process of silver performed in water-silica systems, could be related to the formation of silver-silica core-shell nanoparticles. In order to emphasize this side process some modifications to the laser ablation experimental set-up were performed. Among these, the most important one, in order to favor the production of the core-shell systems, was to keep the liquid silica suspension firm. The laser generated nanomaterials were then analyzed using TEM morphologic characterization. By UV-vis absorption spectra the observed features have been related to components of the colloidal solution as well as to the number of the incident laser pulses. In this manner characterizations on both the process and the resulting suspension have been performed. Significant amount of small sized silver-silica core-shell nanoparticles have been detected in the studied systems. The size distribution, polydispersivity, UV-vis plasmonic bands and stability of the produced silver-silica core-shell nanocomposites have been related to the extent of damage induced in the nanoporous silica structure during the ablation procedure adopted here. In presence of SBA-15 the silver-silica core-shell nanoparticles observed by TEM are smaller and more homogeneously dispersed if compared with the core-shell system obtained when the MCM-41 mesoporous silica was used. The outcomes show that the choice of the mesoporous silica material can affect the silica shell thickness in addition to the Ag NPs size distribution. With this regard, TEM images evidence that in MCM-41 the silver-silica core-shell nanostructures display a silica layer thickness between 1-10 nm conversely, for SBA-15, the silver-silica core-shell nanoparticles are finely dispersed and the silica shell shows, when present, an average thickness of about 5 nm.
Porous Silica-Supported Solid Lipid Particles for Enhanced Solubilization of Poorly Soluble Drugs.
Yasmin, Rokhsana; Rao, Shasha; Bremmell, Kristen E; Prestidge, Clive A
2016-07-01
Low dissolution of drugs in the intestinal fluid can limit their effectiveness in oral therapies. Here, a novel porous silica-supported solid lipid system was developed to optimize the oral delivery of drugs with limited aqueous solubility. Using lovastatin (LOV) as the model poorly water-soluble drug, two porous silica-supported solid lipid systems (SSL-A and SSL-S) were fabricated from solid lipid (glyceryl monostearate, GMS) and nanoporous silica particles Aerosil 380 (silica-A) and Syloid 244FP (silica-S) via immersion/solvent evaporation. SSL particles demonstrated significantly higher rate and extent of lipolysis in comparison with the pure solid lipid, depending on the lipid loading levels and the morphology. The highest lipid digestion was observed when silica-S was loaded with 34% (w/w) solid lipid, and differential scanning calorimeter (DSC) analysis confirmed the encapsulation of up to 2% (w/w) non-crystalline LOV in this optimal SSL-S formulation. Drug dissolution under non-digesting intestinal conditions revealed a three- to sixfold increase in dissolution efficiencies when compared to the unformulated drug and a LOV-lipid suspension. Furthermore, the SSL-S provided superior drug solubilization under simulated intestinal digesting condition in comparison with the drug-lipid suspension and drug-loaded silica. Therefore, solid lipid and nanoporous silica provides a synergistic effect on optimizing the solubilization of poorly water-soluble compound and the solid lipid-based porous carrier system provides a promising delivery approach to overcome the oral delivery challenges of poorly water-soluble drugs.
NASA Astrophysics Data System (ADS)
Koralay, Tamer; Kadıoğlu, Yusuf Kağan
2015-02-01
The studied area is located in Western Anatolia and situated on the NE-SW directed Uşak-Güre cross-graben that developed under a crustal extensional regime during the Late Miocene-Pliocene. Silica occurrences have been mostly found as mushroom-shaped big caps. They also show sedimentary structures such as stratification. Silica occurrences are milky white, yellowish white, yellow to chocolate brown and rarely pale blue, bluish gray in color and have no crystal forms in hand specimen. Some of the silica samples show conchoidal fracture. Silica minerals are mostly chalcedony, low-quartz (α-quartz) and sporadically opal-CT in spectras, according to confocal Raman spectrometry. The silica samples have enrichment of Fe (1000-24,600 ppm), Ca (100-10,200 ppm), P (4-3950 ppm) and Mn (8-3020 ppm). Other striking elements in fewer amounts are Ba (0.9-609.6 ppm), Ni (15.7-182.3 ppm) and Co (18.6-343.1 ppm). In chondrite-normalized spider diagram, silica samples display partial enrichment in LIL elements (Rb, Ba, Th). The δ18O (‰ V-SMOW) values for silica samples vary from 18.4‰ to 22.8‰ and are similar to low temperature hydrothermal silica. Confocal Raman spectrometry and oxygen isotope indicate that the silica minerals may precipitate from host fluid which is relatively has low temperatures hydrothermal solutions derived from the residual melt of basaltic magma.
Purification of Tronoh Silica Sand via preliminary process of mechanical milling
NASA Astrophysics Data System (ADS)
H, Nazratulhuda; M, Othman
2016-02-01
The purification of Tronoh silica sand is an important step in expanding technical applications of this silica sand. However no research on purifying of Tronoh silica sand has been reported. This study is focused on ball milling technique as a preliminary technique for Tronoh silica sand purification. The objectives are to study the effect of ball milling to the purification of the silica sand and to analyze its characteristics after the ball milling process. The samples before and after milling process were analyzed by using XRF, XRD, SEM and TEM. Results showed that the purity of SiO2 was increased, the size of the particles has been reduced and the surface area has increased. The crystalline phases for the silica before and after 4 hour milling time were remained constant.
In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.
Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian
2017-06-07
Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.
Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.
Kapusuz, Derya; Durucan, Caner
2017-07-01
The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, 29 Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.
Tailoring Advanced Nanoscale Materials Through Synthesis of Composite Aerogel Architectures
2000-01-01
silica aerogel nanocomposites retain the characteristic yellow-green photoluminescence of ZnO nanocrystals (also illustrated by Deng, et al., for ZnO...aerogel relative to the mechanical durability of pure silica aerogel , even without thermally densifying[16b] the com- posite. 3. Chemical and...mediate to the values for the silica and guest particulate. Pure silica aerogel (~1 % dense) has a pore volume of ~4.4 cm3/g; silica-based composite
Removal of dissolved and colloidal silica
Midkiff, William S.
2002-01-01
Small amorphous silica particles are used to provide a relatively large surface area upon which silica will preferentially adsorb, thereby preventing or substantially reducing scaling caused by deposition of silica on evaporative cooling tower components, especially heat exchange surfaces. The silica spheres are contacted by the cooling tower water in a sidestream reactor, then separated using gravity separation, microfiltration, vacuum filtration, or other suitable separation technology. Cooling tower modifications for implementing the invention process have been designed.
Grenoble, Zlata; Baldelli, Steven
2013-08-29
The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface further indicate that the surface charge and potential influence the surfactant diffusion and kinetic rates of adsorption at the silica-water interface.
In vivo penetration of bare and lipid-coated silica nanoparticles across the human stratum corneum.
Iannuccelli, Valentina; Bertelli, Davide; Romagnoli, Marcello; Scalia, Santo; Maretti, Eleonora; Sacchetti, Francesca; Leo, Eliana
2014-10-01
Skin penetration of silica nanoparticles (NP) currently used in pharmaceutical and cosmetic products is a topic of interest not only to evaluate their possible toxicity, but also to understand their behaviour upon contact with the skin and to exploit their potential positive effects in drug or cosmetic delivery field. Therefore, the present work aimed to elucidate the in vivo mechanism by which amorphous hydrophilic silica NP enter human stratum corneum (SC) through the evaluation of the role played by the nanoparticle surface polarity and the human hair follicle density. Two silica samples, bare hydrophilic silica (B-silica, 162±51nm in size) and hydrophobic lipid-coated silica (LC-silica, 363±74nm in size) were applied on both the volar and dorsal side of volunteer forearms. Twelve repetitive stripped tapes were removed from the human skin and evaluated for elemental composition by Energy Dispersive X-ray (EDX) analysis and for silicon content by Inductively Coupled Plasma quadrupole Mass Spectrometry (ICP-MS). All the stripped tapes revealed nanosized structures generally located in the broad spaces between corneocytes and characterized by the same elemental composition (relative weight percentage of silicon and silicon to oxygen weight ratio) than that of the applied samples. However, only about 10% B-silica permeated until the deepest SC layers considered in the study indicating a silica retention in the upper layers of SC, regardless of the hair follicle density. Otherwise, the exposure to LC-silica led to a greater silica skin penetration extent into the deeper SC layers (about 42% and 18% silica following volar and dorsal forearm application, respectively) indicating that the NP surface polarity played a predominant role on that of their size in determining the route and the extent of penetration. Copyright © 2014 Elsevier B.V. All rights reserved.
Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G
2015-11-11
Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.
Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae
2015-01-01
Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800
Preparation and Characterization of Silica Aerogel Microspheres
Chen, Qifeng; Wang, Hui; Sun, Luyi
2017-01-01
Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4–20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112–0.287 g/cm3 and 207.5–660.6 m2/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery. PMID:28772795
NASA Astrophysics Data System (ADS)
Maguire, Timothy J.; Templer, Pamela H.; Battles, John J.; Fulweiler, Robinson W.
2017-03-01
Winter temperatures are projected to increase over the next century, leading to reductions in winter snowpack and increased frequency of soil freezing in many northern forest ecosystems. Here we examine biogenic silica (BSi) concentrations in sugar maple (Acer saccharum) fine roots collected from a snow manipulation experiment at Hubbard Brook Experimental Forest (New Hampshire, USA). Increased soil freezing significantly lowered the BSi content of sugar maple fine roots potentially decreasing their capacity to take up water and dissolved nutrients. The reduced silica uptake (8 ± 1 kmol silica km-2) by sugar maple fine roots is comparable to silica export from temperate forest watersheds. We estimate that fine roots account for 29% of sugar maple BSi, despite accounting for only 4% of their biomass. These results suggest that increased frequency of soil freezing will reduce silica uptake by temperate tree roots, thereby changing silica availability in downstream receiving waters.
Perumal, Sathiamurthi; Ramadass, Satiesh Kumar; Gopinath, Arun; Madhan, Balaraman; Shanmugam, Ganesh; Rajadas, Jayakumar; Mandal, Asit Baran
2015-12-01
The success of a tissue engineering scaffold depends on a fine balance being achieved between the physicochemical and biological properties. This study attempts to understand the influence of silica concentration on the functional properties of collagen-silica (CS) composite scaffolds for soft tissue engineering applications. Increasing the ratio of silica to collagen (0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0 w/w) gave a marked advantage in terms of improving the water uptake and compressive modulus of the CS scaffolds, while also enhancing the biological stability and the turnover time. With increase in silica concentration the water uptake and compressive modulus increased concurrently, whereas it was not so for surface porous architecture and biocompatibility which are crucial for cell adhesion and infiltration. Silica:collagen ratio of ≤1 exhibits favourable surface biocompatibility, and any further increase in silica concentration has a detrimental effect. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bershtein, V.; Fainleib, A.; Kirilenko, D.; Yakushev, P.; Gusakova, K.; Lavrenyuk, N.; Ryzhov, V.
2016-05-01
A series of Cyanate Ester Resins (CER)-based composites containing 0.01-10 wt. % silica, introduced by sol-gel method, was synthesized using tetraethoxysilane (TEOS) and γ-aminopropyltrimethoxysilane (APTMS), and their nanostructure and properties were characterized by means of STEM/EDXS, Far-IR spectroscopy, DMA and DSC methods. It was revealed that the most substantial positive impact on CER dynamics, thermal and mechanical properties is attained at ultra-low silica contents, e.g., at 0.1 wt. % silica where Tg and modulus increase, respectively, by 50° and 60%. In this case, silica nanoclusters are absent in the composite, and only chemically incorporated silica junctions of subnanometric size in the densely-crosslinked CER network could be implied. These composites can be designated as "polymer subnanocomposites". Contrarily, formation of silica nanoclusters and especially their aggregates of hundreds nanometers in size at silica contents of 2-10 wt. % led to the distinct negative impact on the matrix properties.
Preparation and Characterization of Silica Aerogel Microspheres.
Chen, Qifeng; Wang, Hui; Sun, Luyi
2017-04-20
Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4-20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112-0.287 g/cm³ and 207.5-660.6 m²/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery.
Cerkauskaite, Ausra; Drevinskas, Rokas; Rybaltovskii, Alexey O; Kazansky, Peter G
2017-04-03
We compare a femtosecond laser induced modification in silica matrices with three different degrees of porosity. In single pulse regime, the decrease of substrate density from fused silica to high-silica porous glass and to silica aerogel glass results in tenfold increase of laser affected region with the formation of a symmetric cavity surrounded by the compressed silica shell with pearl like structures. In multi-pulse regime, if the cavity produced by the first pulse is relatively large, the subsequent pulses do not cause further modifications. If not, the transition from void to the anisotropic structure with the optical axis oriented parallel to the incident polarization is observed. The maximum retardance value achieved in porous glass is twofold higher than in fused silica, and tenfold greater than in aerogel. The polarization sensitive structuring in porous glass by two pulses of ultrafast laser irradiation is demonstrated, as well as no observable stress is generated at any conditions.
NASA Astrophysics Data System (ADS)
Lin, Jing; Zhong, Bangchao; Jia, Zhixin; Hu, Dechao; Ding, Yong; Luo, Yuanfang; Jia, Demin
2017-06-01
Silica nanoparticles was in-situ grown on the surface of halloysite nanotubes (HNTs) by a facile one-step approach to prepare a unique nano-structured hybrid (HNTs-g-Silica). The structure, morphology and composition of HNTs-g-Silica were investigated. It was confirmed that silica nanoparticles with the diameter of 10-20 nm were chemically grafted through Sisbnd O bonds and uniformly dispersed onto the surface of HNTs, leading to the formation of nano-protrusions on the nanotube surface. Due to the significantly improved interface strength between HNTs-g-Silica and polymer matrix, HNTs-g-Silica effectively toughened unsaturated polyester resin (UPE) and endowed UPE with superior thermal stability compared to HNTs. Based on the unique hybrid architecture and the improved properties of UPE nanocomposites, it is envisioned that HNTs-g-Silica may be a promising filler for more high performance and functional polymers composites and the fabrication method may have implications in the synthesis of nano hybrid materials.
Modified silica sol coatings for surface enhancement of leather.
Mahltig, Boris; Vossebein, Lutz; Ehrmann, Andrea; Cheval, Nicolas; Fahmi, Amir
2012-06-01
The presented study reports on differently modified silica sols for coating applications on leather. Silica sols are prepared by acidic hydrolysis of tetraethoxysilane and modified by silane compounds with fluorinated and non-fluorinated alkylgroups. In contrast to many earlier investigations regarding sol-gel applications on leather, no acrylic resin is used together with the silica sols when applying on leather. The modified silica particles are supposed to aggregate after application, forming thus a modified silica coating on the leather substrate. Scanning electron microscopy investigation shows that the applied silica coatings do not fill up or close the pores of the leather substrate. However, even if the pores of the leather are not sealed by this sol-gel coating, an improvement of the water repellent and oil repellent properties of the leather substrates are observed. These improved properties of leather by application of modified silica sols can provide the opportunity to develop sol-gel products for leather materials present in daily life.
Li, Guangjian; Huang, Yunchao; Liu, Yongjun; Guo, Lv; Zhou, Yongchun; Yang, Kun; Chen, Ying; Zhao, Guangqiang; Lei, Yujie
2012-10-01
China's Xuan Wei County in Yunnan Province have the world's highest incidence of lung cancer in nonsmoking women-20 times higher than the rest of China. Previous studies showed, this high lung cancer incidence may be associated with the silica particles embedded in the production combustion from the C1 coal. The aim of this study is to separate the silica particles from production combustion from the C1 bituminous coal in Xuan Wei County of Yunnan Province, and study in vitro toxicity of naturally occurring silica particles on BEAS-2B. ①Separating the silica particles from combustion products of C1 bituminous coal by physical method, observing the morphology by Scanning Electron Microscope, analysis elements by SEM-EDX, observed the single particle morphology by Transmission Electron Microscope, analyed its particle size distribution by Laser particle size analyzer, the surface area of silica particles were determined by BET nitrogen adsorption analysis; ②Cell viability of the experimental group (silica; naturally occurring), control group (silica; industrial produced and crystalline silica) was detected by assay used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, and the reactive oxygen species (ROS), lactate dehydrogenase (LDH) were determined after 24 h-72 h exposed to these particles. ①The physical method can separate silica particles from production combustion from the C1 bituminous coal, which have different size, and from 30 nm to 120 nm particles accounted for 86.8%, different morphology, irregular surface area and containing trace of aluminum, calcium and iron and other elements; ②Under the same concentration, the experiment group have higher toxicity on BEAS-2B than control groups. Physical method can separate silica particles from production combustion from the C1 bituminous coal and not change the original morphology and containing trace; ②Naturally occurring silica nanoparticles have irregular morphology, surface area, and containing complex trace elements may has greater toxicity than the silica nanoparticle of industrial produced and crystalline silica.
NASA Astrophysics Data System (ADS)
El Majdoub, Lotfia; Shi, Yasai; Yuan, Yuan; Zhou, Annan; Abutartour, Abubaker; Xu, Qinghong
2015-10-01
Zirconocene catalyst supported on silica gel was prepared for olefin polymerization by surface modification of calcined silica with SiCl4, and the reaction between the modified silica and cyclopentadienyl sodium and ZrCl4. The catalyst was characterized by using Fourier-transform infrared (FT-IR) spectrometer, thermogravimetric (TG), and differential scanning calorimetric (DSC) analytic spectrometer. It was found that the metallocene structure could be formed and connected on silica surface by chemical bond. Initial catalytic tests showed that the supported metallocene was catalytically active (methylaluminoxane as a cocatalyst), producing polymer with higher molecular weight than the metallocene just immobilized on the surface of silica gel.
Sample Desorption/Onization From Mesoporous Silica
Iyer, Srinivas; Dattelbaum, Andrew M.
2005-10-25
Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.
Lu, Weijie; Steigerwalt, Eve S; Moore, Joshua T; Sullivan, Lisa M; Collins, W Eugene; Lukehart, C M
2004-09-01
Carbon nanofiber/silica aerogel composites are prepared by sol-gel processing of surface-enhanced herringbone graphitic carbon nanofibers (GCNF) and Si(OMe)4, followed by supercritical CO2 drying. Heating the resulting GCNF/silica aerogel composites to 1650 degrees C under a partial pressure of Ar gas initiates carbothermal reaction between the silica aerogel matrix and the carbon nanofiber component to form SiC/silica nanocomposites. The SiC phase is present as nearly spherical nanoparticles, having an average diameter of ca. 8 nm. Formation of SiC is confirmed by powder XRD and by Raman spectroscopy.
Reactive silica fractions in coastal lagoon sediments from the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Krause, Jeffrey W.; Darrow, Elizabeth S.; Pickering, Rebecca A.; Carmichael, Ruth H.; Larson, Ashley M.; Basaldua, Jose L.
2017-12-01
Continental-margin sediments account for 50% of the oceanic biogenic silica burial despite covering < 10% of its area. In Mississippi Sound, a coastal lagoon in the northern Gulf of Mexico (nGoM), we measured sediment biogenic silica at sites removed from major freshwater discharge sources using the traditional method and a method that has been modified for deltaic systems to quantify other reactive silica pools, specifically those involved in the process of reverse weathering. The magnitude of authigenically-altered biogenic silica during our study was significant and represented, on average, 33% of the total sediment biogenic silica among core depths and sites. Additionally, there was a significant relationship between the degree to which the biogenic silica pool was authigenically altered and the source of the sediment organic matter, with lower modification in sediments corresponding with higher terrestrial organic matter. We observed no positive correlation between the magnitude of authigenic modification and sediment clay content. Thus, our findings suggest that these processes may occur within a variety of sediment compositions and add to a growing body of evidence suggesting that reverse weathering of silica in coastal systems is a significant pathway in the global silica budget.
Developing improved silica materials and devices for integrated optics applications
NASA Astrophysics Data System (ADS)
Maker, Ashley Julia
Due to their favorable optical and material properties, silica-based materials and devices have found many important applications throughout science and engineering, especially in sensing, communications, lasers, and integrated optics. Often, silica's properties ultimately limit the performance of these applications. To address this limitation, this thesis investigates the development of improved silica materials and optical devices, including silica films, coatings, waveguides, resonators, lasers, and sensors. Using sol-gel chemistry and microfabrication procedures, custom silica materials and devices are developed to benefit many applications. In this thesis, it is first demonstrated how the low optical loss of silica enables fabrication of low loss integrated waveguides and toroidal resonators with ultra-high quality factors. Then, by adding various rare earth and metal dopants to sol-gel silica, hybrid silica materials and devices are made with custom properties such as high refractive index and lasing capabilities. Finally, several applications are demonstrated, including the use of high refractive index coatings to control the behavior of light, development of Raman and ultra-low threshold rare earth microlasers, and a heterodyned microlaser sensor with significantly improved sensing performance. Future applications and directions of this research are also discussed.
NASA Astrophysics Data System (ADS)
Xu, Tiwen; Jia, Zhixin; Wu, Lianghui; Chen, Yongjun; Luo, Yuanfang; Jia, Demin; Peng, Zheng
2017-11-01
It is well known that the coupling reagents as the additional modifiers were often used to improve the reinforcement effect of silica filled natural rubber. Actually, the commercial raw NR is a mixture consisting of polyisoprene and non-isoprene, where the latter one might have impact on the properties of NR/silica composites as an inartificial modifier inside. Thus, investigating the effect of non-isoprene compounds on the structure and properties of NR/silica composites is a novel approach to disclose the peculiarity of NR, which is meaningful to the assessment of NR quality. In this paper, the influences of acetone extract (AE) from natural rubber on the structure and mechanical properties of NR/silica composites were studied. Then the interfacial interactions between AE and silica were also illustrated through Fourier transform infrared spectroscopy (FTIR), thermogravimetic analysis (TGA), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Results demonstrated the existence of hydrogen bond between silica and AE, also the covalent bond induced by esterification reaction between sbnd COOH and Sisbnd OH, which resulted in an increase of constrained regions around silica surface leading to the promotions on mechanical and dynamical properties of NR/silica composites significantly.
Silica removal from steamflood-produced water: South Texas tar sands pilot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, S.A.; Yost, M.E.; Cathey, S.R.
1987-05-01
Steamflood-produced waters commonly contain suspended solids, oil, hardness-causing minerals, sulfide, and silica. Removal of these contaminants would make many of these waters suitable for recycling as steamer feedwater. Reuse of steamflood-produced waters increases steamer feedwater supplies and reduces water disposal requirements. This paper describes a field pilot study of silica removal from steamflood-produced water in the south Texas tar sands region. A hot-lime precipitation process was used to reduce dissolved silica (SiO/sub 2/) concentrations from 400 to less than 50 mg/L SiO/sub 2/ in Mary R. Saner Ranch produced water. Most water systems using hot-lime precipitation for silica removal requiremore » the addition of magnesium salt, as well as lime, to enhance silica removal. In this field study, however, addition of magnesium salt did not improve silica removal efficiency. Hydrated lime, CA(OH)/sub 2/, alone was sufficient to attain desired silica residual, 50 mg/L SiO/sub 2/. The dissolved silica adsorbed onto the CaCO/sub 3/ crystals formed by lime reacting with the alkalinity present in the produced water. Required lime dosage was approximately 900 mg/L Ca(OH)/sub 2/.« less
Poly(2-aminothiazole)-silica nanocomposite particles: Synthesis and morphology control
NASA Astrophysics Data System (ADS)
Zou, Hua; Wu, Di; Sun, Hao; Chen, Suwu; Wang, Xia
2018-04-01
Synthesis of conducting polymer-silica colloidal nanocomposites has been recognized as an effective method to overcome the poor processability of heterocyclic conducting polymers prepared by chemical oxidative method. However, the morphology control of such conducting polymer-silica nanocomposites was seldomly reported in the literature. Novel poly(2-aminothiazole)(PAT)-silica nanocomposite particles can be conveniently prepared by chemical oxidative polymerization of 2-aminothiazole using CuCl2 oxidant in the presence of ∼20 nm silica nanoparticles. The effects of varying the oxidant/monomer ratio and silica sol concentration on the morphology and size of the resulting PAT-silica nanocmposites have been studied. Optimization of the oxidant/monomer molar ratio and initial silica sol concentration allows relatively round spherical particles of 150-350 nm in diameter to be achieved. The nanocomposite particles have a well-defined raspberry-like morphology with a silica-rich surface, but a significant fraction of PAT component still exists on the surface and, which is beneficial for its applications. Furthermore, the surface compositions of the colloidal nanocomposites could be regulated to some extent. Based on the above results, a possible formation mechanism of the spherical nanocomposite particles is proposed.
Veres, Péter; Kéri, Mónika; Bányai, István; Lázár, István; Fábián, István; Domingo, Concepción; Kalmár, József
2017-04-01
Specific features of a silica-gelatin aerogel (3 wt.% gelatin content) in relation to drug delivery has been studied. It was confirmed that the release of both ibuprofen (IBU) and ketoprofen (KET) is about tenfold faster from loaded silica-gelatin aerogel than from pure silica aerogel, although the two matrices are structurally very similar. The main goal of the study was to understand the mechanistic background of the striking difference between the delivery properties of these closely related porous materials. Hydrated and dispersed silica-gelatin aerogel has been characterized by NMR cryoporometry, diffusiometry and relaxometry. The pore structure of the silica aerogel remains intact when it disintegrates in water. In contrast, dispersed silica-gelatin aerogel develops a strong hydration sphere, which reshapes the pore walls and deforms the pore structure. The drug release kinetics was studied on a few minutes time scale with 1s time resolution. Simultaneous evaluation of all relevant kinetic and structural information confirmed that strong hydration of the silica-gelatin skeleton facilitates the rapid desorption and dissolution of the drugs from the loaded aerogel. Such a driving force is not operative in pure silica aerogels. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Ma, Minyan; Zhang, Xiao-ai; Zhang, Ze-yu; Saleh, Sayed M.; Wang, Xu-dong
2017-06-01
Surface PEGylation is essential for preventing non-specific binding of biomolecules when silica nanoparticles are utilized for in vivo applications. Methods for installing poly(ethylene glycol) on a silica surface have been widely explored but varies from study to study. Because there is a lack of a satisfactory method for evaluating the properties of silica surface after PEGylation, the prepared nanoparticles are not fully characterized before use. In some cases, even non-PEGylated silica nanoparticles were produced, which is unfortunately not recognized by the end-user. In this work, a fluorescent protein was employed, which acts as a sensitive material for evaluating the surface protein adsorption properties of silica nanoparticles. Eleven different methods were systematically investigated for their reaction efficiency towards surface PEGylation. Results showed that both reaction conditions (including pH, catalyst) and surface functional groups of parent silica nanoparticles play critical roles in producing fully PEGylated silica nanoparticles. Great care needs to be taken in choosing the proper coupling chemistry for surface PEGylation. The data and method shown here will guarantee high-quality PEGylated silica nanoparticles to be produced and guide their applications in biology, chemistry, industry and medicine.
NASA Astrophysics Data System (ADS)
Asano, Y.; Uchida, T.; Ohte, N.
2002-12-01
Dissolved silica has been used as a useful indicator of a chemical weathering in many geochemical studies in natural environment. Previous hydrological studies indicated that various hydrological processes affect the dissolution and precipitation of silica in hillslope and transport of this silica to stream; however, information is still limited to link this knowledge to understand geochemical processes. The observations of dissolved silica concentration in groundwater, spring and stream water was conducted at the unchannelled hillslope in the Tanakami Mountains of central Japan; (1) to clarify the effects of preferential flowpaths including lateral and vertical flow in soil layer and flow through bedrock fracture in the variation of dissolved silica concentration in runoff and groundwater, and (2) to isolate the effects of mixing of water from geochemically diverse water sources on the dissolved silica concentration. The mean dissolved silica concentrations in soil water at 40 cm depth and transient groundwater formed in upslope area were relatively constant independent of the variation in the new water ratio. The mean dissolved silica concentrations were similar regardless of the sampling depth in soil although the mean residence times of water increase with depth. These results indicated that dissolved silica concentrations in soil water and transient groundwater were defined almost independent of contact time of water with minerals. While the mean dissolved silica concentration in perennial groundwater, which was recharged by infiltrating water through soil and water emerging from bedrock in a area near to spring, was more than twice that of transient groundwater and the variation was relatively large. The mean dissolved silica concentration increased significantly at downslope from perennial groundwater, spring to the stream and the spring and stream concentrations also showed large variation. The dissolved silica concentrations of those perennial groundwater, the spring and the stream was controlled by the mixing of water from soil and bedrock. Our results demonstrated that in most areas of this headwater catchment, the preferential flowpaths give only small effect on dissolved silica concentrations. While in a small area (less than 10% of the longitudinal axis of the hollow near the spring), the dissolved silica concentration were controlled by the mixing of water from geochemically diverse water sources.
NASA Astrophysics Data System (ADS)
Lee, Yung-Lun; Lin, Ting-Xuan; Hsu, Feng-Ming; Jan, Jeng-Shiung
2016-01-01
We report a versatile approach to synthesize silica coatings with antireflective (AR) characteristics through the combination of a layer-by-layer (LbL) assembly technique and biomineralization. LbL assembled decanoyl-modified poly(l-lysine)/poly(l-glutamic acid) (PLL-g-Dec/PLGA) multilayer films were used as templates for silica mineralization, followed by calcination. The specific deposition of silica onto the LbL polypeptide assemblies through amine-catalyzed polycondensation resulted in silica coatings that exhibited the transcription of the nano-/microstructured polypeptide films and their film thickness and porosity can be tuned by varying the number of bilayers, degree of substitution, and PLL molecular weight. AR silica coatings exhibiting more than 6% increase in transmittance in the near UV/visible spectral range can be obtained at an optimized refractive index, thickness, and surface roughness. The abrasion test showed that the silica coatings exhibited sufficient structural durability due to continuous silica nanostructures and low surface roughness. This study demonstrated that nanostructured thin films can be synthesized for AR coatings using the synergy between the LbL assembly technique and biomineralization.We report a versatile approach to synthesize silica coatings with antireflective (AR) characteristics through the combination of a layer-by-layer (LbL) assembly technique and biomineralization. LbL assembled decanoyl-modified poly(l-lysine)/poly(l-glutamic acid) (PLL-g-Dec/PLGA) multilayer films were used as templates for silica mineralization, followed by calcination. The specific deposition of silica onto the LbL polypeptide assemblies through amine-catalyzed polycondensation resulted in silica coatings that exhibited the transcription of the nano-/microstructured polypeptide films and their film thickness and porosity can be tuned by varying the number of bilayers, degree of substitution, and PLL molecular weight. AR silica coatings exhibiting more than 6% increase in transmittance in the near UV/visible spectral range can be obtained at an optimized refractive index, thickness, and surface roughness. The abrasion test showed that the silica coatings exhibited sufficient structural durability due to continuous silica nanostructures and low surface roughness. This study demonstrated that nanostructured thin films can be synthesized for AR coatings using the synergy between the LbL assembly technique and biomineralization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06948c
The research progress of large-aperture fused silica for high power laser
NASA Astrophysics Data System (ADS)
Shao, Zhufeng; Wang, Yufen; Xiang, Zaikui; Rao, Chuandong
2016-03-01
Because of its excellent optical performance, the fused silica is widely used in laser industry. In addition, the fused silica can withstand high power laser, due to its pure component, and the performance is most outstanding within all types of glasses. So fused silica can be used for optical lens in high power laser field. From the manufacturing process stand point, the fused silica can be categorized to four types: type Ⅰ, type Ⅱ, type Ⅲ, and type Ⅳ. The fused silica of type Ⅰand type Ⅱ is made through melting silica sand in graphite furnace or oxyhydrogen flame. There are many defects in these types of fused silica, for example, the air bubbles, inclusions and metallic impurity. The other two types are made by synthetic reaction of SiCl4 with water in oxyhydrogen or plasma flame. Both type Ⅲ and Ⅳ have excellent performance in transmittance and internal quality. However, type Ⅳof fused silica has disadvantage in small aperture and overall high manufacturing cost. Take the transmittance and internal quality into consideration, the type Ⅲ fused silica is the most suitable for large-aperture lens, and can withstand high power laser. The systemic studies of manufacturing process were done to improve the performance of type Ⅲ fused silica in various areas, for instance, the optical homogeneity, the stress birefringence, the absorption coefficient and the damage threshold. There are four steps in manufacturing process of type Ⅲ fused silica, ingot production, reshaping, annealing and cold-working. The critical factors of ingot production, like the flame of burner and the structure of furnace, were deeply studied in this paper to improve the performance of fused silica. On the basis of the above research, the performance and quality of the fused silica measured up to advanced world levels. For instance, the result of optical homogeneity can be controlled to 2-5 ppm, the stress birefringence is better than 4 nm/cm, the absorption coefficient is about 5.971ppm cm-1 (1ω), the damage threshold is greater than 80, 25 and 23 J/cm2 with the wavelength at 1064, 532 and 351nm respectively, the bandwidth used for measuring is 3ns.The fused silica has already been used in the area of high power laser facilities, aerospace industry, primary lens of interferometer based on its excellent performance.
40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...
Epoxy Grout With Silica Thickener
NASA Technical Reports Server (NTRS)
Mcclung, C. E.
1984-01-01
Grout cures quickly, even in presence of hydraulic oil. Grout is mixture of aggregate particles, finely-divided silica, epoxy resin, and triethylenetetramine curing agent, with mixture containing about 85 percent silica and aggregate particle sand 15 percent resin and curing agent. Silica is thickening agent and keeps grout from sagging.
40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...
40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...
40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...
40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...
Hummel, Jürgen; Findeisen, Eva; Südekum, Karl-Heinz; Ruf, Irina; Kaiser, Thomas M.; Bucher, Martin; Clauss, Marcus; Codron, Daryl
2011-01-01
The circumstances of the evolution of hypsodonty (= high-crowned teeth) are a bone of contention. Hypsodonty is usually linked to diet abrasiveness, either from siliceous phytoliths (monocotyledons) or from grit (dusty environments). However, any empirical quantitative approach testing the relation of ingested silica and hypsodonty is lacking. In this study, faecal silica content was quantified as acid detergent insoluble ash and used as proxy for silica ingested by large African herbivores of different digestive types, feeding strategies and hypsodonty levels. Separate sample sets were used for the dry (n = 15 species) and wet (n = 13 species) season. Average faecal silica contents were 17–46 g kg−1 dry matter (DM) for browsing and 52–163 g kg−1 DM for grazing herbivores. No difference was detected between the wet (97.5 ± 14.4 g kg−1 DM) and dry season (93.5 ± 13.7 g kg−1 DM) faecal silica. In a phylogenetically controlled analysis, a strong positive correlation (dry season r = 0.80, p < 0.0005; wet season r = 0.74, p < 0.005) was found between hypsodonty index and faecal silica levels. While surprisingly our results do not indicate major seasonal changes in silica ingested, the correlation of faecal silica and hypsodonty supports a scenario of a dominant role of abrasive silica in the evolution of high-crowned teeth. PMID:21068036
Khalil, Kamal M S; Elsamahy, Ahmed A; Elanany, Mohamed S
2002-05-15
A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (Stöber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.
Lin, Zian; Yang, Fan; He, Xiwen; Zhao, Xiaomiao; Zhang, Yukui
2009-12-04
A novel type of macroporous molecularly imprinted hybrid silica monolithic column was first developed for recognition of proteins. The macroporous silica-based monolithic skeleton was synthesized in a 4.6mm i.d. stainless steel column by a mild sol-gel process with methyltrimethoxysilane (MTMS) as a sole precursor, and then vinyl groups were introduced onto the surface of the silica skeleton by chemical modification of gamma-methacryloxypropyltrimethoxysilane (gamma-MAPS). Subsequently, the molecularly imprinted polymer (MIP) coating was copolymerized and anchored onto the surface of the silica monolith. Bovine serum albumin (BSA) and lysozyme (Lyz), which differ greatly in molecular size, isoelectric point, and charge, were representatively selected for imprinted templates to evaluate recognition property of the hybrid silica-based MIP monolith. Some important factors, such as template-monomer molar ratio, total monomer concentration and crosslinking density, were systematically investigated. Under the optimum conditions, the obtained hybrid silica-based MIP monolith showed higher binding affinity for template than its corresponding non-imprinted (NIP) monolith. The imprinted factor (IF) for BSA and Lyz reached 9.07 and 6.52, respectively. Moreover, the hybrid silica-based MIP monolith displayed favorable binding characteristics for template over competitive protein. Compared with the imprinted silica beads for stationary phase and in situ organic polymer-based hydrogel MIP monolith, the hybrid silica MIP monolith exhibited higher recognition, stability and lifetime.
Fabrication of mesoporous silica for ultra-low-k interlayer dielectrics
NASA Astrophysics Data System (ADS)
Fujii, Nobutoshi; Kohmura, Kazuo; Nakayama, Takahiro; Tanaka, Hirofumi; Hata, Nobuhiro; Seino, Yutaka; Kikkawa, Takamaro
2005-11-01
We have developed sol-gel self-assembly techniques to control the pore structure and diameter of ultra-low-k interlayer dielectric (ILD) films. Porous silica films have been fabricated using cationic and nonionic surfactants as templates, resulting in 2D-hexagonal and disordered pore structures, respectively. The disordered mesoporous silica film has a worm-hole like network of pore channels having a uniform diameter. Precursors of the mesoporous silica films were synthesized by use of tetraethyl-orthosilicate (TEOS), inorganic acid, water, ethanol and various surfactants. The surfactants used were cationic alkyltrimethyl-ammonium (ATMA) chloride surfactants for 2D-hexagonal pores and nonionic tri-block copolymer for disordered structures. Dimethyldiethoxysilane (DMDEOS) was added for forming the disordered mesoporous silica. The disordered cylindrical pore structure with a uniform pore size was fabricated by controlling the static electrical interaction between the surfactant and the silica oligomer with methyl group of DMDEOS. Tetramethylcycrotetrasiloxane (TMCTS) vapor treatment was developed, which improved the mechanical strength of mesoporous silica films. The TMCTS polymer covered the pore wall surface and cross-linked to passivate the mechanical defects in the silica wall. Significant enhancement of mechanical strength was demonstrated by TMCTS vapor treatment. The porous silica film modified with a catalyst and a plasma treatment achieved higher mechanical strength and lower dielectric constant than conventional porous silica films because the TMCTS vapor treatment was more effective for mechanical reinforcement and hydrophobicity.
Kern, M; Thompson, V P
1994-05-01
Silica coating can improve bonding of resin to glass-infiltrated aluminum oxide ceramic (In-Ceram), and sandblasting is a pretreatment to thermal silica coating (Silicoater MD system) or a tribochemical coating process (Rocatec system). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology, and surface composition of In-Ceram ceramic. Volume loss through sandblasting was 36 times less for In-Ceram ceramic compared with a feldspathic glass ceramic (IPS-Empress), and sandblasting of In-Ceram ceramic did not change its surface composition. After tribochemical coating with the Rocatec system, a layer of small silica particles remained that elevated the silica content to 19.7 weight percentage (energy-dispersive spectroscopy). Ultrasonic cleaning removed loose silica particles from the surface and decreased the silica content to 15.8 weight percentage, which suggested firm attachment of most of the silica layer to the surface. After treatment with the Silicoater MD system, the silica content increased only slightly from that of the sandblasted specimen. The silica layer created by these systems differs greatly in both morphology and thickness, which could result in different bond strengths. Sandblasting of all ceramic clinical restorations with feldspathic glass materials should be avoided, but for In-Ceram ceramic the volume loss was within an acceptable range and similar to that of noble metals.
Kang, Taewook; Oh, Seogil; Kim, Honggon; Yi, Jongheop
2005-06-21
A facile method for introducing mesoporous silica sublayer onto the surface of a ceramic membrane for use in liquid-phase separation is described. To reduce the electrostatic repulsion between the mesoporous silica sol and the ceramic membrane in highly acidic conditions (pH < 2), thus facilitating the approach of hydrolyzed silica sol to the surface of the membrane, poly(sodium 4-styrenesulfonate) (Na+PSS-, denoted as PSS-) was used as an ionic linker. The use of PSS- led to a significant reduction in positive charge on the ceramic membrane, as confirmed by experimental titration data. Consistent with the titration results, the amount of mesoporous silica particles on the surface of the ceramic membrane was low, in the absence of PSS- treatment, whereas mesoporous silica sublayer with hierarchical pore structure was produced, when 1 wt % PSS- was used. The results show that mesoporous silica grows in the confined surface, eventually forming a multistacked surface architecture. The mesoporous silica sublayer contained uniform, ordered (P6 mm) mesopores of ca. 7.5 nm from mesoporous silica as well as macropores ( approximately mum) from interparticle voids, as evidenced by transmission electron microscopy and scanning electron microscopy analyses. The morphologies of the supported mesoporous silica could be manipulated, thus permitting the generation of uniform needlelike forms or uniform spheroid particles by varying the concentration of PSS-.
Sonochemical synthesis of silica particles and their size control
NASA Astrophysics Data System (ADS)
Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan
2016-09-01
Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.
Green synthesis of silica nanoparticles using sugarcane bagasse
NASA Astrophysics Data System (ADS)
Mohd, Nur Kamilah; Wee, Nik Nur Atiqah Nik; Azmi, Alyza A.
2017-09-01
Silica nanoparticles have been great attention as it being evaluated for used in abundant fields and applications. Due to this significance, this research was conducted to synthesis silica nanoparticles using local agricultural waste, sugarcane bagasse. We executed extraction and precipitation process as it involved low cost, less toxic and low energy process compared to other methods. The Infrared (IR) spectra showed the vibration peak of Si-O-Si, which clearly be the evidence for the silica characteristics in the sample. In this research, amorphous silica nanoparticles with spherical morphology with an average size of 30 nm, and specific surface area of 111 m2/g-1 have been successfully synthesized. The XRD patterns showed the amorphous nature of silica nanoparticles. As a comparison, the produced silica nanoparticles from sugarcane bagasse are compared with the respective nanoparticles synthesized using Stöber method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, Z.; Yang, L.; Kabisatpathy, S.
2009-03-24
A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N{sub 2} adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica,more » was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.« less
Silica removal from steamflood produced water: South Texas Tar Sands Pilot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, S.A.; Cathey, S.R.; Yost, M.E.
1984-09-01
Steamflood produced waters commonly contain suspended solids, oil, hardness, sulfide, and silica. Removal of these contaminants would make many of these waters suitable candidates for recycling as steam feedwater. Reuse of steamflood produced waters will increase steamer feedwater supplies, as well as reduce water disposal requirements. This paper describes a field pilot study of silica removal from steamflood produced water in the South Texas Tar Sands region. A hot-lime precipitation process was used to reduce dissolved silica concentrations from 400 mg/l to less than 50 mg/l SiO/sub 2/ in Mary R. Saner Ranch produced water. Most water systems using hot-limemore » precipitation for silica removal call for the addition of magnesium salts, as well as lime, to enhance silica removal. In this field study, however, magnesium salt addition did not improve silica removal efficiency. Hydrated lime ((Ca(OH)/sub 2/), alone, was sufficient to attain the desired silica residual, 50 mg/l SiO/sub 2/. The dissolved silica adsorbed onto the CaCO/sub 3/ crystals formed by lime reacting with the alkalinity present in the produced water. Required lime dosage was approximately 900 mg/lCa(OH)/sub 2/. Residual silica concentrations were found to be strongly related to both precipitator pH and calcium ion concentration. Therefore, on-line pH and hardness monitoring may be used to estimate and control residual silica concentration. A 50,000-BPD (7,900 m/sup 3//d) produced water treating plant has been designed using results from this pilot study.« less
Physical characteristics of chitosan-silica composite of rice husk ash
NASA Astrophysics Data System (ADS)
Sumarni, Woro; Sri Iswari, Retno; Marwoto, Putut; Rahayu, Endah F.
2016-02-01
Some previous studies showed that the characteristics of chitosan membranes have a very rigid and non-porous structure so that its utilization is not maximized, particularly in the filtration process. Hence, it needs modification to improve the quality of the chitosan membranes. Adding the silica into the chitosan membranes is one of the offered solutions to overcome the problems of physical and mechanical properties of chitosan. This study aims to investigate the effect of variations in the silica composition to the physical characteristics of the chitosan-silica membranes of rice husk ash that were synthesized. The chitosan used is derived from the chitin of Vannamei shrimps’ shell with 82% degree of de-acetylation, while the silica was synthesized from rice husk ash with rendering of silica (SiO2) by 5% and the results of XRD analysis showed an amorphous phase. Membrane synthesis was performed using the phase inversion method with chitosan-silica mass ratios of rice husk ash, which were 1:0.0; 1:0.5; 1:1.0; 1:1.5 and 1:2.0. The results showed that the addition of silica increases the swelling index and the membrane permeability. The results of the analysis, FTIR spectra, obtained a new functional group after the addition of silica, they are Si-OH, Si-O-Si, and CO- NH2. The morphology test using CCD Microscope MS-804 results in the very tight chitosan membranes without the silica surface, it has no pores, smooth and homogeneous, while the chitosan-silica composite membrane of rice husk ash obviously has cracks and small cavities that seemed to spread out.
Koralay, Tamer; Kadıoğlu, Yusuf Kağan
2015-02-25
The studied area is located in Western Anatolia and situated on the NE-SW directed Uşak-Güre cross-graben that developed under a crustal extensional regime during the Late Miocene-Pliocene. Silica occurrences have been mostly found as mushroom-shaped big caps. They also show sedimentary structures such as stratification. Silica occurrences are milky white, yellowish white, yellow to chocolate brown and rarely pale blue, bluish gray in color and have no crystal forms in hand specimen. Some of the silica samples show conchoidal fracture. Silica minerals are mostly chalcedony, low-quartz (α-quartz) and sporadically opal-CT in spectras, according to confocal Raman spectrometry. The silica samples have enrichment of Fe (1000-24,600 ppm), Ca (100-10,200 ppm), P (4-3950 ppm) and Mn (8-3020 ppm). Other striking elements in fewer amounts are Ba (0.9-609.6 ppm), Ni (15.7-182.3 ppm) and Co (18.6-343.1 ppm). In chondrite-normalized spider diagram, silica samples display partial enrichment in LIL elements (Rb, Ba, Th). The δ(18)O (‰ V-SMOW) values for silica samples vary from 18.4‰ to 22.8‰ and are similar to low temperature hydrothermal silica. Confocal Raman spectrometry and oxygen isotope indicate that the silica minerals may precipitate from host fluid which is relatively has low temperatures hydrothermal solutions derived from the residual melt of basaltic magma. Copyright © 2014 Elsevier B.V. All rights reserved.
Risk of silicosis in a Colorado mining community.
Kreiss, K; Zhen, B
1996-11-01
We investigated exposure-response relations for silicosis among 134 men over age 40 who had been identified in a previous community-based random sample study in a mining town. Thirty-two percent of the 100 dust-exposed subjects had radiologic profusions of small opacities of I/O or greater at a mean time since first silica exposure of 36.1 years. Of miners with cumulative silica exposures of 2 mg/m3-years or less, 20% had silicosis; of miners accumulating > 2 mg/m3 years, 63% had silicosis. Average silica exposure was also strongly associated with silicosis prevalence rates, with 13% silicotics among those with average exposure of 0.025-0.05 mg/m3, 34% among those with exposures of > 0.05-0.1 mg/m3, and 75% among those with average exposures > 0.1 mg/m3. Logistic regression models demonstrated that time since last silica exposure and either cumulative silica exposure or a combination of average silica exposure and duration of exposure predicted silicosis risk. Exposure-response relations were substantially higher using measured silica exposures than using estimated silica exposures based on measured dust exposures assuming a constant silica proportion of dust, consistent with less exposure misclassification. The risk of silicosis found in this study is higher than has been found in workforce studies having no follow-up of those leaving the mining industry and in studies without job title-specific silica measurements, but comparable to several recent studies of dust exposure-response relationships which suggest that a permissible exposure limit of 0.1 mg/m3 for silica does not protect against radiologic silicosis.
Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN)
NASA Astrophysics Data System (ADS)
Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F.; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas
2011-12-01
Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er2O3 particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell. Electronic supplementary information (ESI) available: Figures S1 to S12, Tables S1 and S2. See DOI: 10.1039/c1nr10930h
Investigating the Origin of Silica Occurrences on Mars through Laboratory Observations
NASA Astrophysics Data System (ADS)
Ruff, S. W.; Milliken, R. E.; Farmer, J. D.; Mills, V. W.; Robertson, K.
2012-12-01
Natural amorphous "opaline" silica is a non-crystalline, typically hydrated phase of nearly pure SiO2 that is a common product of aqueous alteration of basaltic materials [e.g., 1]. It has been identified on Mars with orbital spectral data [2] and in situ measurements from the Spirit rover [3]. On Earth, opaline silica is produced over a range of temperature, pH, and water-to-rock ratio conditions that occur in hot springs, fumaroles, volcanic exhalations, low temperature weathering, and diagenesis [e.g., 4 and references therein]. The mere identification of silica on Mars therefore does not indicate a unique geologic environment or setting. However, various attributes of a given silica occurrence can be used to narrow or perhaps uniquely define the conditions in which it formed. Field relationships, microtexture, bulk and trace element chemistry, and spectral characteristics provide clues to the geologic environment in which the silica formed. Here we focus on the opaline silica in outcrops and soil at the Home Plate feature in Gusev crater where there is good evidence for past hydrothermal processes [3]. Unresolved is whether fumaroles, hot springs, geysers, or some combination of these features were present and responsible for the emplacement of opaline silica there. Knowing the answer has implications for understanding ancient climate and habitability of Mars. We have begun an investigation involving a range of laboratory measurements on natural silica-rich samples collected from various settings in Yellowstone and Hawaii Volcanoes National Parks. Visible and near infrared (VNIR) and thermal infrared (TIR) spectral measurements are supplemented with X-ray powder diffraction, scanning electron microscopy, petrographic microscopy, and ultimately with bulk and trace element measurements. Among our emerging results: 1) both VNIR and TIR spectra can detect the presence of <2 μm silica coatings on altered basalts; 2) VNIR spectra of silica from different environments exhibit only subtle differences, likely controlled primarily by variations in water content; and 3) fumarolic silica appears to have TIR spectral characteristics distinct from hot spring silica. This last result applies to samples of basaltic rocks enriched in silica by acid-sulfate leaching from Sulfur Banks, HI, which has been suggested as an analog for the Home Plate silica [3]. TIR spectra of four samples display only a weak feature near 8 μm related to high emission angle compared to that observed in hot spring silica sinter from Yellowstone. This spectral behavior may arise from microtextural or contaminant differences between the two kinds of silica. TIR spectra of Home Plate silica display a strong 8-μm feature like those of hot spring silica. If this preliminary result survives subsequent scrutiny, it may provide additional insight into the nature of the Home Plate hydrothermal system, the first to be investigated in situ on Mars. [1] McLennan, S. M. (2003), Geology, 31, 4, 315-318, [2] Milliken, R. E., et al. (2008), Geology, 36, 11, 847-850, 10.1130/G24967A.1. [3] Squyres, S. W., et al. (2008), Science, 320, 1063-1067, [4] Ruff, S. W., et al. (2011), J. Geophys. Res., 116, E00F23, 10.1029/2010JE003767.
Code of Federal Regulations, 2010 CFR
2010-07-01
... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant..., dicoco alkyldimethyl, chlorides, reaction products with silica (PMN P-08-157; CAS No. 956147-76-5) is...
Code of Federal Regulations, 2011 CFR
2011-07-01
... alkyldimethyl, chlorides, reaction products with silica. 721.10154 Section 721.10154 Protection of Environment..., dicoco alkyldimethyl, chlorides, reaction products with silica. (a) Chemical substance and significant..., dicoco alkyldimethyl, chlorides, reaction products with silica (PMN P-08-157; CAS No. 956147-76-5) is...
Solution blow spun spinel ferrite and highly porous silica nanofibers
USDA-ARS?s Scientific Manuscript database
The novelty of this work is the production of nano- and submicrometric silica and spinel-ferrite fibers using the solution blow spinning (SBS) method. A pseudo-core-shell method for the production of large surface area silica fibers is also reported. Silica fibers present mean diameters and specific...
Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates
NASA Astrophysics Data System (ADS)
Green, Nathaniel Scott
The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic scattering. Our aim is to promote heteroaggregation with functionalized silica nanoparticles while minimizing homoaggregation of silica-silica or gold-gold species. Reproducible production of multiple gold nanospheres about a dye-doped silica nanoparticle should lead to dramatic fluorescence brightness enhancements in solution. Gold nanorods can potentially be used to establish radiationless energy transfer between hetero dye-doped silica nanoparticles via gold nanorod plasmon mediated FRET by aggregating two different dye-doped silica nanoparticles preferentially at opposite ends of the nanorod. End-cap binding is accomplished by tuning the strength of gold binding ligands that functionalize the surface of the silica nanoparticles. The gold nanorod can then theoretically serve as a waveguide by employing the longitudinal plasmon as a non-radiative energy transfer agent between the two different fluorophores, giving rise to a new ultrafast signaling paradigm. Heteroaggregation of dye-doped silica nanoparticles and gold nanorods can be potentially employed to as nano waveguides. Construction and aggregation of functionalized silica and gold nano-materials provides an opportunity to advance the field of fluorescence. The synthesis of gold nano-particles allows control over their size and shape, which give rise to useful optical and electronic properties. Silica nanoparticles provide a framework allowing control over a requisite distance for increasing beneficial and deceasing non-radiative dye-metal interactions as well fluorophore protection. Our aim is to take advantage of fine-tuned synthetic control of functionalized nanomaterials to realize the great potential of solution based metal-enhanced fluorescence for future applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.
A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.
Silica powders for powder evacuated thermal insulating panel and method
Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.
1996-01-01
A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.
Silica powders for powder evacuated thermal insulating panel and method
Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.
1994-01-01
A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.
Silica powders for powder evacuated thermal insulating panel and method
Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.
1995-01-01
A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.
Silica powders for powder evacuated thermal insulating panel and method
Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.
1996-01-02
A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.
Hwang, Geelsu; Lee, Chang-Ha; Ahn, Ik-Sung; Mhin, Byung Jin
2010-07-15
The extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was applied to explain the hydrophobic interaction-mediated adhesion of Pseudomonas putida NCIB 9816-4 to soil. Soil particles are heterogeneous, and it is difficult to define consistent physico-chemical properties such as a contact angle and zeta potential. Hence, a silica gel and a silanized (3-aminopropyltriethoxysilane-coated) silica gel, which showed greater hydrophobicity than the unmodified silica gel, were used as model soils. Gibbs energies for the cell adhesion to the silica gels were calculated with the physico-chemical properties of the microbes and the silica gels and then plotted as a function of the separation distance. The extended DLVO theory successfully explained that the adhesion of P. putida NCIB 9816-4 to the silica gel, a model soil, was primarily caused by hydrophobic interaction. 2010 Elsevier B.V. All rights reserved.
Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites
Ślosarczyk, Agnieszka
2017-01-01
The presented paper contains a brief review on the synthesis and characterization of silica aerogels and its nanocomposites with nanofibers and fibers based on a literature study over the past twenty years and my own research. Particular attention is focused on carbon fiber-based silica aerogel nanocomposites. Silica aerogel is brittle in nature, therefore, it is necessary to improve this drawback, e.g., by polymer modification or fiber additives. Nevertheless, there are very few articles in the literature devoted to the synthesis of silica aerogel/fiber nanocomposites, especially those focusing on carbon fibers and nanofibers. Carbon fibers are very interesting materials, namely due to their special properties: high conductivity, high mechanical properties in relation to very low bulk densities, high thermal stability, and chemical resistance in the silica aerogel matrix, which can help enhance silica aerogel applications in the future. PMID:28336876
NASA Astrophysics Data System (ADS)
Khan, Tasneem M. A.; Khan, Asiya; Sarawade, Pradip B.
2018-05-01
We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid-base sol-gel polymerization of sodium silicate in via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density, high surface area, and large cumulative pore volume was obtained when TMCS was used. Properties of the final product were examined by BET, and TG-DT analyses. The hydrophobic silica aerogel beads were thermally stable up to 350°C. We discuss our results and compare our findings for modified versus unmodified silica beads.
The synthesis of silica nanotubes through chlorosilanization of single wall carbon nanotubes
NASA Astrophysics Data System (ADS)
Lin, Tsung-Wu; Shen, Hsin-Hui
2010-09-01
We demonstrate that single wall carbon nanotubes (SWCNTs) can be coated by a layer of silica through the reaction between chlorosilane and acid-treated SWCNTs. The presence of carboxylic acid groups in the SWCNTs provides the active sites where chlorosilane can be anchored to form the silica coating. Silica nanotubes with diameters ranging from 5 to 23 nm were synthesized after the calcination of silica coated SWCNTs at 900 °C in air. It was found that the presence of SWCNT templates and carboxylic acid groups on the SWCNTs' surface is essential to the formation of silica nanotubes. Furthermore, the dependence of the inner diameters of the silica nanotubes on the diameters of bundled or isolated SWCNTs was observed. This novel technique can be applied to the synthesis of other oxide nanotubes if a precursor such as TiCl4 or ZrCl4 is used.
Evaluation of Respirable Crystalline Silica in High School Ceramics Classrooms
Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah
2014-01-01
Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher’s work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an exceedance of 21%. PMID:24464235
NASA Astrophysics Data System (ADS)
Porwal, Harshit; Tatarko, Peter; Grasso, Salvatore; Hu, Chunfeng; Boccaccini, Aldo R.; Dlouhý, Ivo; Reece, Mike J.
2013-10-01
The processing conditions for preparing well dispersed silica-graphene nanoplatelets and silica-graphene oxide nanoplatelets (GONP) composites were optimized using powder and colloidal processing routes. Fully dense silica-GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering. The GONP aligned perpendicularly to the applied pressure during sintering. The fracture toughness of the composites increased linearly with increasing concentration of GONP and reached a value of ˜0.9 MPa m1/2 for 2.5 vol% loading. Various toughening mechanisms including GONP necking, GONP pull-out, crack bridging, crack deflection and crack branching were observed. GONP decreased the hardness and brittleness index (BI) of the composites by ˜30 and ˜50% respectively. The decrease in BI makes silica-GONP composites machinable compared to pure silica. When compared to silica-Carbon nanotube composites, silica-GONP composites show better process-ability and enhanced mechanical properties.
A Two-Dimensional 'Zigzag' Silica Polymorph on a Metal Support.
Kuhness, David; Yang, Hyun Jin; Klemm, Hagen W; Prieto, Mauricio; Peschel, Gina; Fuhrich, Alexander; Menzel, Dietrich; Schmidt, Thomas; Yu, Xin; Shaikhutdinov, Shamil; Lewandowski, Adrian; Heyde, Markus; Kelemen, Anna; Włodarczyk, Radosław; Usvyat, Denis; Schütz, Martin; Sauer, Joachim; Freund, Hans-Joachim
2018-05-16
We present a new polymorph of the two-dimensional (2D) silica film with a characteristic 'zigzag' line structure and a rectangular unit cell which forms on a Ru(0001) metal substrate. This new silica polymorph may allow for important insights into growth modes and transformations of 2D silica films as a model system for the study of glass transitions. Based on scanning tunneling microscopy, low energy electron diffraction, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy measurements on the one hand, and density functional theory calculations on the other, a structural model for the 'zigzag' polymorph is proposed. In comparison to established monolayer and bilayer silica, this 'zigzag' structure system has intermediate characteristics in terms of coupling to the substrate and stoichiometry. The silica 'zigzag' phase is transformed upon reoxidation at higher annealing temperature into a SiO 2 silica bilayer film which is chemically decoupled from the substrate.
Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.
Ikegami, Tohru; Tanaka, Nobuo
2016-06-12
Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.
Chen, Yun-Sheng; Frey, Wolfgang; Kim, Seungsoo; Homan, Kimberly; Kruizinga, Pieter; Sokolov, Konstantin; Emelianov, Stanislav
2010-04-26
Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy.
Chen, Yun-Sheng; Frey, Wolfgang; Kim, Seungsoo; Homan, Kimberly; Kruizinga, Pieter; Sokolov, Konstantin; Emelianov, Stanislav
2010-01-01
Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy. PMID:20588732
Boday, Dylan J; Stover, Robert J; Muriithi, Beatrice; Keller, Michael W; Wertz, Jason T; Defriend Obrey, Kimberly A; Loy, Douglas A
2009-07-01
Strong polymer-silica aerogel composites were prepared by chemical vapor deposition of cyanoacrylate monomers onto amine-modified aerogels. Amine-modified silica aerogels were prepared by copolymerizing small amounts of (aminopropyl)triethoxysilane with tetraethoxysilane. After silation of the aminated gels with hexamethyldisilazane, they were dried as aerogels using supercritical carbon dioxide processing. The resulting aerogels had only the amine groups as initiators for the cyanoacrylate polymerizations, resulting in cyanoacrylate macromolecules that were higher in molecular weight than those observed with unmodified silica and that were covalently attached to the silica surface. Starting with aminated silica aerogels that were 0.075 g/cm(3) density, composite aerogels were made with densities up to 0.220 g/cm(3) and up to 31 times stronger (flexural strength) than the precursor aerogel and about 2.3 times stronger than an unmodified silica aerogel of the same density.
Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites.
Ślosarczyk, Agnieszka
2017-02-16
The presented paper contains a brief review on the synthesis and characterization of silica aerogels and its nanocomposites with nanofibers and fibers based on a literature study over the past twenty years and my own research. Particular attention is focused on carbon fiber-based silica aerogel nanocomposites. Silica aerogel is brittle in nature, therefore, it is necessary to improve this drawback, e.g., by polymer modification or fiber additives. Nevertheless, there are very few articles in the literature devoted to the synthesis of silica aerogel/fiber nanocomposites, especially those focusing on carbon fibers and nanofibers. Carbon fibers are very interesting materials, namely due to their special properties: high conductivity, high mechanical properties in relation to very low bulk densities, high thermal stability, and chemical resistance in the silica aerogel matrix, which can help enhance silica aerogel applications in the future.
Evaluation of respirable crystalline silica in high school ceramics classrooms.
Fechser, Matthew; Alaves, Victor; Larson, Rodney; Sleeth, Darrah
2014-01-23
Air concentrations of respirable crystalline silica were measured in eleven (11) high school ceramics classrooms located in Salt Lake County, UT, USA. Respirable dust was collected on PVC filters using precision flow pumps and cyclone samplers (n = 44). Filters were subsequently analyzed for respirable dust and percent crystalline silica content. The geometric mean of the silica concentrations was 0.009 mg/m3 near the teacher's work station and 0.008 mg/m3 near the kilns. The number of students in the classroom was correlated to the silica concentration in the ceramics classroom, but no correlation was found between the silica concentrations and either the size of the classroom or the age of the building. Results from this study indicate that ceramics teachers may be at an increased risk of exposure to crystalline silica based on the ACGIH TLV of 0.025 mg/m3, with an excess of 21%.
NASA Astrophysics Data System (ADS)
Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.
Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins’ content. The antioxidant remained active during long-term storage under standard conditions.
NASA Astrophysics Data System (ADS)
Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.
Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins' content. The antioxidant remained active during long-term storage under standard conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-988] Silica Bricks and Shapes... of initiation of an antidumping duty investigation of silica bricks and shapes from the People's... than April 24, 2013. \\1\\ See Silica Bricks and Shapes From the People's Republic of China: Initiation...
40 CFR 721.9680 - Alkaline titania silica gel (generic name).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...
40 CFR 721.9680 - Alkaline titania silica gel (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...
40 CFR 721.9680 - Alkaline titania silica gel (generic name).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...
40 CFR 721.9680 - Alkaline titania silica gel (generic name).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...
40 CFR 721.9680 - Alkaline titania silica gel (generic name).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the significant...
SYNTHESIS AND CHARACTERIZATION OF LIX-84 NON-COVALENTLY BOUND SILICA SORBENTS FOR METAL-ION RECOVERY
Mesoporous silica particles were modified with LIX-84: (2-hydroxy-5-nonylacetophenome oxime). The LIX-84: was attached to the surface of silica via non-covelent forces. The effects of silica particle size, temperature, and pH on metal ion adsorption properties were studied and co...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-, hydrolysis products with alkanol zirconium(4+) salt and silica, acetates (generic). 721.10152 Section 721... Oxirane, substituted silylmethyl-, hydrolysis products with alkanol zirconium(4+) salt and silica... zirconium(4+) salt and silica, acetates (PMN P-07-674) is subject to reporting under this section for the...
21 CFR 182.1711 - Silica aerogel.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered...
21 CFR 582.1711 - Silica aerogel.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1711 Silica aerogel. (a) Product. Silica...
21 CFR 582.1711 - Silica aerogel.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1711 Silica aerogel. (a) Product. Silica...
21 CFR 582.1711 - Silica aerogel.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1711 Silica aerogel. (a) Product. Silica...
21 CFR 582.1711 - Silica aerogel.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1711 Silica aerogel. (a) Product. Silica...
21 CFR 582.1711 - Silica aerogel.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1711 Silica aerogel. (a) Product. Silica...
Supramolecular structures on silica surfaces and their adsorptive properties.
Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F
2005-05-01
The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.
NASA Astrophysics Data System (ADS)
Nizar, U. K.; Hidayatul, J.; Sundari, R.; Bahrizal, B.; Amran, A.; Putra, A.; Latisma DJ, L.; Dewata, I.
2018-04-01
This study investigates the correlation of the number of titanium tetrahedral coordination and biodiesel production. The solid-state method has been used to synthesis of silica-titania catalyst for biodiesel production, which the precursors, i.e. silica and titania commercials were heated in the temperature range of 450 - 550°C. The characterization of the prepared silica-titania has been studied by FTIR and DR UV-Vis in order to identify and calculate the presence of titanium tetrahedral coordination in silica-titania catalyst. A very small peak at around 950 cm-1 indicated the presence of titanium tetrahedral coordination through Si–O–Ti bonds. Deconvolution of DR UV-Vis spectra showed the coordination of titanium in silica-titania is more octahedral. However, the number of titanium tetrahedral coordination of the prepared silica-titania is found higher than that of TiO2 commercial. The increasing of titanium tetrahedral fraction in silica-titania affects the physical properties of biodiesel in terms of boiling point, viscosity and density, which is produced by the reaction of methanol and palm oil.
Exceptional selectivity for dissolved silicas in industrial waters using mixed oxides
Sasan, Koroush; Brady, Patrick V.; Krumhansl, James L.; ...
2017-11-07
The removal of silica, ubiquitous in produced and industrial waters, by novel mixed oxides is investigated in this present study. We have combined the advantage of high selectivity hydrotalcite (HTC, (Mg 6Al 2(OH) 16(CO 3)·4H 2O)), with large surface area of active alumina (AA, (Al 2O 3)) for effective removing of the dissolved silica from cooling tower water. The batch test results indicated the combined HTC/AA is a more effective method for removing silica from CTW than using each of HTC or AA separately. The silica uptake was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Ourmore » results indicate HTC/AA effectively removes silica from cooling tower water (CTW), even in the presence of large concentrations of competing anions, such as Cl -, NO 3 - HCO 3 -, CO 3 2- and SO 4 2-. The Single Path Flow Through (SPFT) tests confirmed to rapid uptake of silica by combined HTC/AA during column filtration. The experimental data of silica adsorption fit best to Freundlich isotherm model.« less
Exceptional selectivity for dissolved silicas in industrial waters using mixed oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasan, Koroush; Brady, Patrick V.; Krumhansl, James L.
The removal of silica, ubiquitous in produced and industrial waters, by novel mixed oxides is investigated in this present study. We have combined the advantage of high selectivity hydrotalcite (HTC, (Mg 6Al 2(OH) 16(CO 3)·4H 2O)), with large surface area of active alumina (AA, (Al 2O 3)) for effective removing of the dissolved silica from cooling tower water. The batch test results indicated the combined HTC/AA is a more effective method for removing silica from CTW than using each of HTC or AA separately. The silica uptake was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Ourmore » results indicate HTC/AA effectively removes silica from cooling tower water (CTW), even in the presence of large concentrations of competing anions, such as Cl -, NO 3 - HCO 3 -, CO 3 2- and SO 4 2-. The Single Path Flow Through (SPFT) tests confirmed to rapid uptake of silica by combined HTC/AA during column filtration. The experimental data of silica adsorption fit best to Freundlich isotherm model.« less
Theoretical and experimental studies on silica-coated carbon spheres composites
NASA Astrophysics Data System (ADS)
Guo, Xingmei; Liu, Haixing; Shen, Yinghua; Niu, Mei; Yang, Yongzhen; Liu, Xuguang
2013-10-01
In order to prepare carbon-based photonic crystals, first of all, theoretical modeling calculation was used to predict the bandgap characteristics of silica-coated carbon spheres. Then, silica-coated carbon spheres composites were synthesized using tetraethyl orthosilicate as precursor of silica by a sol-gel method combined with Stöber method. Effect of reaction conditions on surface coating of carbon spheres with silica, including the pH, the amount of precursor and reaction time, was emphasized. The morphology and structure of the composites and the effect coating of carbon spheres with silica were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and Fourier-transform infrared spectrometry. The coating ratio of silica was investigated by thermogravimetry. The results show that pH value played an important role in coating reaction, the dosage of the precursor and reaction time had significant effect on coating layer thickness, that is, coating ratio. Carbon spheres coated with silica had good dispersibility and dispersion stability in water and ethanol, which is preconditions of reactivity of carbon spheres in liquid phase and lays the basis for the application of carbon spheres.
Ramesh, Sivalingam; Kim, Heung Soo; Lee, Young-Jun; Hong, Gwang-Wook; Kim, Joo-Hyung
2017-12-01
It is demonstrated in this paper that silica nanoparticles coated with core/shell gold provide efficient thermal, optical, and morphological properties with respect to the cellulose-polyhedral oligomeric silsesquioxanes (POSS) hybrid system. The one-step synthesis of a silica/gold nanocomposite is achieved with a simultaneous hydrolysis and reduction of gold chloride in the presence of formic acid, and the trimethoxysilane group acts as a silica precursor. The focus here comprises the synthesis of cellulose-POSS and silica/gold hybrid nanocomposites using the following two methods: (1) an in situ sol-gel process and (2) a polyvinyl alcohol/tetrakis (hydroxymethyl)phosphonium chloride process. Accordingly, the silica/gold core/shell nanoparticles are synthesized. The growth and attachment of the gold nanoparticles onto the functionalized surface of the silica at the nanometer scale is achieved via both the sol-gel and the tetrakis (hydroxymethyl) phosphonium chloride processes. The cellulose-POSS-silica/gold nanocomposites are characterized according to Fourier transformed infrared spectroscopy, Raman, X-ray diffraction, UV, photoluminescence, SEM, energy-dispersive X-ray spectroscopy, TEM, thermogravimetric, and Brunauer-Emmett-Teller analyses.
NASA Astrophysics Data System (ADS)
Ramesh, Sivalingam; Kim, Heung Soo; Lee, Young-June; Hong, Gwang-Wook; Kim, Joo-Hyung
2017-06-01
It is demonstrated in this paper that silica nanoparticles coated with core/shell gold provide efficient thermal, optical, and morphological properties with respect to the cellulose-polyhedral oligomeric silsesquioxanes (POSS) hybrid system. The one-step synthesis of a silica/gold nanocomposite is achieved with a simultaneous hydrolysis and reduction of gold chloride in the presence of formic acid, and the trimethoxysilane group acts as a silica precursor. The focus here comprises the synthesis of cellulose-POSS and silica/gold hybrid nanocomposites using the following two methods: (1) an in situ sol-gel process and (2) a polyvinyl alcohol/tetrakis (hydroxymethyl)phosphonium chloride process. Accordingly, the silica/gold core/shell nanoparticles are synthesized. The growth and attachment of the gold nanoparticles onto the functionalized surface of the silica at the nanometer scale is achieved via both the sol-gel and the tetrakis (hydroxymethyl) phosphonium chloride processes. The cellulose-POSS-silica/gold nanocomposites are characterized according to Fourier transformed infrared spectroscopy, Raman, X-ray diffraction, UV, photoluminescence, SEM, energy-dispersive X-ray spectroscopy, TEM, thermogravimetric, and Brunauer-Emmett-Teller analyses.
Shen, Xiang; Liang, Fuxin; Zhang, Guanxin; Zhang, Deqing
2012-05-07
Emissive core-shell silica particles with tetraphenylethylene moieties were prepared and characterized. Fluorescence quenching was observed for the silica particles upon addition of compound 2 (Dabcyl-ACh). This was attributed to the electrostatic interaction between the silica particles and 2 and the resulting photoinduced energy transfer between them. After incubation with AChE, the fluorescence intensity started to increase. The fluorescence enhancement became more significant when the concentration of AChE was higher. The reaction kinetic parameters for AChE were successfully estimated with the silica particles and 2. These results reveal that the ensemble of the silica particles and 2 can be utilized for AChE assay. Moreover, the fluorescence spectra of the ensemble of the silica particles and 2 containing AChE were also measured after further addition of either neostigmine or tacrine which are typical inhibitors of AChE. The results manifest that the ensemble of the emissive silica particles and 2 is also useful for screening the inhibitors of AChE.
Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antionali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme
2017-06-30
80% vinyltrimethoxysilane-based hybrid silica monoliths (80-VTMS), which have been initially developed for separation in reversed-phase liquid chromatography, have been investigated in high pressure gas chromatography separations (carrier gas pressure up to 60bar) and compared to silica monolithic columns. The behavior of both silica and 80-VTMS monolithic columns was investigated using helium, nitrogen and carbon dioxide as carrier gas. The efficiency of 80-VTMS monolithic columns was shown to vary differently than silica monolithic columns according to the temperature and the carrier gas used. Carrier gas nature was a significant parameter on the retention for both silica and vinyl columns in relation to its adsorption onto the stationary phase in such high pressure conditions. The comparison of retention and selectivity between 80-VTMS monoliths and silica was performed under helium using the logarithm of the retention factor according to the number of carbon atoms combined to Kovats indexes. The very good performances of these columns were demonstrated, allowing the separation of 8 compounds in less than 1min. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis of silica aerogel monoliths with controlled specific surface areas and pore sizes
NASA Astrophysics Data System (ADS)
Gao, Bingying; Lu, Shaoxiang; Kalulu, Mulenga; Oderinde, Olayinka; Ren, Lili
2017-07-01
To replace traditional preparation methods of silica aerogels, a small-molecule 1,2-epoxypropane (PO) has been introduced into the preparation process instead of using ammonia as the cross-linking agent, thus generating a lightweight, high porosity, and large surface area silica aerogel monolithic. We put forward a simple solution route for the chemical synthesis of silica aerogels, which was characterized by scanning electron microscopy (SEM), TEM, XRD, FTIR, thermogravimetric analysis (TGA) and the Brunauer-Emmett-Teller (BET) method In this paper, the effect of the amount of PO on the microstructure of silica aerogels is discussed. The BET surface areas and pore sizes of the resulting silica aerogels can be freely adjusted by changing the amount of PO, which will be helpful in promoting the development of silica aerogels to fabricate other porous materials with similar requirements. We also adopted a new organic solvent sublimation drying (OSSD) method to replace traditional expensive and dangerous drying methods such as critical point drying and freeze drying. This simple approach is easy to operate and has good repeatability, which will further facilitate actual applications of silica aerogels.
Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability
Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao
2015-01-01
A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188
Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications
NASA Astrophysics Data System (ADS)
Kaur, Navjot; Chudasama, Bhupendra
2015-05-01
Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe3O4) nanoparticles and their coating with SiO2 is reported. Fe3O4 nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.
Escobar, Sindy; Bernal, Claudia; Mesa, Monica
2015-01-01
The sol-gel process has been very useful for preparing active and stable biocatalysts, with the possibility of being reused. Especially those based on silica are well known. However, the study of the enzyme behavior during this process is not well understood until now and more, if the surfactant is involved in the synthesis mixture. This work is devoted to the encapsulation of β-galactosidase from Bacillus circulans in silica by sol-gel process, assisted by non-ionic Triton X-100 surfactant. The correlation between enzyme activity results for the β-galactosidase in three different environments (soluble in buffered aqueous reference solution, in the silica sol, and entrapment on the silica matrix) explains the enzyme behavior under stress conditions offered by the silica sol composition and gelation conditions. A stable β-galactosidase/silica biocatalyst is obtained using sodium silicate, which is a cheap source of silica, in the presence of non-ionic Triton X-100, which avoids the enzyme deactivation, even at 40 °C. The obtained biocatalyst is used in the whey hydrolysis for obtaining high value products from this waste. The preservation of the enzyme stability, which is one of the most important challenges on the enzyme immobilization through the silica sol-gel, is achieved in this study.
Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol
NASA Astrophysics Data System (ADS)
Verma, Surbhi; Rani, Saruchi; Kumar, Sushil
2018-05-01
Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.
Differentiating and characterizing geminal silanols in silicas by (29)Si NMR spectroscopy.
Murray, David K
2010-12-01
Single and geminal hydroxyl species in silicas have been characterized using solid-state (29)Si NMR spectroscopy. Differentiating hydroxyl types is important in understanding their roles in chemical toxicity mechanisms for inhaled crystalline silicas responsible for silicosis. (1)H-(29)Si cross polarization NMR spectroscopy has been employed to obtain (29)Si NMR chemical shift data and signal accrual and relaxation characteristics. Spectral deconvolution is used to examine relative single and geminal hydroxyl resonance areas for a series of representative silicas and silica gels. Silicon-containing materials examined include 1878a quartz, and 1879a cristobalite from the National Institute for Science and Technology, kaolin, and several widely used respirable silicas and silica gels. Geminal hydroxyls were observed in every case, with relative resonance areas accounting for 21-65% of total hydroxyl signals. Factors affecting relative areas measured as a function of contact time, relaxation, and surface area are discussed. Subsequent (29)Si and (31)P NMR studies of a silica coated with various sodium hydrogen phosphates show preferential single silanol-phosphate interaction for basic phosphates, and oligomerization products for acidic phosphates. Geminal hydroxyl resonance areas displayed significant error (4-17%) for low surface area silicas, limiting this method to studies exhibiting major changes in chemical or spectroscopic properties. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Rangaraj, Suriyaprabha; Venkatachalam, Rajendran
2017-06-01
Synthesis of silica nanoparticles from natural resources/waste via cost effective route is presently one of the anticipating strategies for extensive applications. This study reports the low-cost indigenous production of silica nanoparticles from the leftover of bamboo (leaf biomass) through thermal combustion and alkaline extraction, and examination of physico-chemical properties and yield percentage using comprehensive characterization tools. The outcome of primed silica powder exhibits amorphous particles (average size: 25 nm) with high surface area (428 m2 g-1) and spherical morphology. Despite the yield percentage of silica nanoparticles from bamboo leave ash is 50.2%, which is less than rice husk ask resources (62.1%), the bamboo waste is only an inexpensive resource yielding high purity (99%). Synthesis of silica nanoparticles from natural resources/waste with the help of lucrative route is at present times one of the anticipating strategies for extensive applications. In vitro study on animal cell lines (MG-63) shows non-toxic nature of silica nanoparticles up to 125 µg mL-1. Hence, this study highlights the feasibility for the mass production of silica nanoparticles from bamboo leave waste rather using chemical precursor of silica for drug delivery and other medical applications.
Ruff, S.W.; Farmer, J.D.; Calvin, W.M.; Herkenhoff, K. E.; Johnson, J. R.; Morris, R.V.; Rice, M.S.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Squyres, S. W.
2011-01-01
The presence of outcrops and soil (regolith) rich in opaline silica (???65-92 wt % SiO2) in association with volcanic materials adjacent to the "Home Plate" feature in Gusev crater is evidence for hydrothermal conditions. The Spirit rover has supplied a diverse set of observations that are used here to better understand the formation of silica and the activity, abundance, and fate of water in the first hydrothermal system to be explored in situ on Mars. We apply spectral, chemical, morphological, textural, and stratigraphic observations to assess whether the silica was produced by acid sulfate leaching of precursor rocks, by precipitation from silica-rich solutions, or by some combination. The apparent lack of S enrichment and the relatively low oxidation state of the Home Plate silica-rich materials appear inconsistent with the originally proposed Hawaiian analog for fumarolic acid sulfate leaching. The stratiform distribution of the silica-rich outcrops and their porous and brecciated microtextures are consistent with sinter produced by silica precipitation. There is no evidence for crystalline quartz phases among the silica occurrences, an indication of the lack of diagenetic maturation following the production of the amorphous opaline phase. Copyright ?? 2011 by the American Geophysical Union.
A novel method to characterize silica bodies in grasses.
Dabney, Clemon; Ostergaard, Jason; Watkins, Eric; Chen, Changbin
2016-01-01
The deposition of silicon into epidermal cells of grass species is thought to be an important mechanism that plants use as a defense against pests and environmental stresses. There are a number of techniques available to study the size, density and distribution pattern of silica bodies in grass leaves. However, none of those techniques can provide a high-throughput analysis, especially for a great number of samples. We developed a method utilizing the autofluorescence of silica bodies to investigate their size and distribution, along with the number of carbon inclusions within the silica bodies of perennial grass species Koeleria macrantha. Fluorescence images were analyzed by image software Adobe Photoshop CS5 or ImageJ that remarkably facilitated the quantification of silica bodies in the dry ash. We observed three types of silica bodies or silica body related mineral structures. Silica bodies were detected on both abaxial and adaxial epidermis of K. macrantha leaves, although their sizes, density, and distribution patterns were different. No auto-fluorescence was detected from carbon inclusions. The combination of fluorescence microscopy and image processing software displayed efficient utilization in the identification and quantification of silica bodies in K. macrantha leaf tissues, which should applicable to biological, ecological and geological studies of grasses including forage, turf grasses and cereal crops.
Uchiyama, Shigehisa; Inaba, Yohei; Kunugita, Naoki
2010-06-25
A new method for the determination of acrolein and other carbonyls in cigarette smoke using a dual cartridge system has been developed. Each cartridge consists of reagent-impregnated silica particles. The first contains hydroquinone (HQ) for the inhibition of acrolein polymerization, while the second contains 2,4-dinitrophenylhydrazine (DNPH) for the derivatization of carbonyls. Smoke samples were firstly drawn through the cartridge containing HQ-impregnated silica (HQ-silica) and then through the DNPH-impregnated silica (DNPH-silica). Acrolein in the sample was completely trapped in the first HQ-silica cartridge. Some other airborne carbonyls were also trapped by the HQ-silica, and those that pass through were trapped in the second DNPH-silica cartridge. Extraction was performed in the reverse direction to air sampling. When solvent was eluted through the dual-cartridges, excess DNPH was washed into the HQ bed where it reacted with acrolein and other trapped carbonyls to form the corresponding hydrazone derivatives. All of the hydrazones derived from airborne carbonyls were completely separated and measured using high-performance liquid chromatography. This HQ-DNPH-method can be applied for the determination of acrolein and other alpha,beta-unsaturated aldehydes, such as crotonaldehyde, in cigarette smoke. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Dangge; Chang, Rui; Lyu, Bin; Ma, Jianzhong; Duan, Xiying
2018-03-01
This paper presents a facile and efficient synthesis method to fabricate epoxy-acrylate copolymer/nano-silica latex via Pickering emulsion polymerization stabilized by silica sol. The effects of solid contents, silica concentration and polymerization time on emulsion polymerization were studied. The core-shell epoxy-acrylate copolymer/nano-silica was obtained with average diameter 690 nm, was observed by Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). The formation mechanism of epoxy-acrylate copolymer/nano-silica emulsion polymerization was proposed through observing the morphology of latex particles at different polymerization time. Fourier Transformation Infrared (FT-IR) and Thermogravimetric Analysis (TGA) were used to study structure and thermostability of the composites. Morphology of the latex film was characterized by Scanning Electron Microscope (SEM). The results indicated that nano-silica particles existed in the composite emulsion and could improve the thermal stability of the film. The epoxy-acrylate copolymer/nano-silica latex was used as binder applied to cotton fabric for pigment printing. The application results demonstrated that Pickering emulsion stabilized by silica sol has good effects in the pigment printing binder without surfactant. Compared with commodity binder, the resistance to wet rubbing fastness and soaping fastness were improved half grade.
Waste Water for Power Generation via Energy Efficient Selective Silica Separations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenoff, Tina M.; Brady, Patrick Vane; Sasan, Koroush
Silica is ubiquitous in produced and industrial waters, and plays a major disruptive role in water recycle. Herein we have investigated the use of mixed oxides for the removal of silica from these waters, and their incorporation into a low cost and low energy water purification process. High selectivity hydrotalcite (HTC, (Mg 6Al 2(OH) 16(CO 3)•4H 2O)), is combined in series with high surface area active alumina (AA, (Al 2O 3)) as the dissolved silica removal media. Batch test results indicated that combined HTC/AA is a more effective method for removing silica from industrial cooling tower wasters (CTW) than usingmore » HTC or AA separately. The silica uptake via ion exchange on the mixed oxides was confirmed by Fourier transform infrared (FTIR), and Energy dispersive spectroscopy (EDS). Furthermore, HTC/AA effectively removes silica from CTW even in the presence of large concentrations of competing anions, such as Cl -, NO 3 - HCO 3 -, CO 3 2- and SO 4 2-. Similar to batch tests, Single Path Flow Through (SPFT) tests with sequential HTC/AA column filtration has very high silica removal too. Technoeconomic Analysis (TEA) was simultaneously performed for cost comparisons to existing silica removal technologies.« less
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.
2018-06-01
Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.
Influence of F- on stark splitting of Yb3+ and the thermal expansion of silica glass
NASA Astrophysics Data System (ADS)
Cao, Yabin; Chen, Si; Shao, Chongyun; Yu, Chunlei
2018-06-01
A local phosphate/fluoride environment of Yb3+ was created in silica glass using a multi-step method. The influence of F- on the Stark splitting of Yb3+ in Al3+/P5+/F- co-doped silica glass was studied at room-temperature, in addition to its effect on the thermal expansion performance of the glass matrix. The results indicate that Yb3+ ions in Al3+/P5+/F- co-doped silica glass have a larger Stark splitting energy of 2F7/2 compared to Al3+/P5+ co-doped silica glass. Moreover, a larger integrated absorption cross-section (34.58 pm2 × nm), stimulated emission cross-section (0.63 pm2), and better thermal expansion performance (1.3062 × 10-6 K- at 100 °C) are achieved in Al3+/P5+/F- co-doped silica glass. Finally, different function mechanisms of F- in silica and phosphate glasses were analyzed and the F-Si bond was used to explain the results in silica glass. The combination of low refractive index, large Stark splitting energy of 2F7/2, and small thermal expansion makes Al3+/P5+/F- co-doped silica glass a preferred material for large mode area fibers for high-power laser applications.
Chen, Fang; Hableel, Ghanim; Zhao, Eric Ruike; Jokerst, Jesse V
2018-07-01
The idea of multifunctional nanomedicine that enters the human body to diagnose and treat disease without major surgery is a long-standing dream of nanomaterials scientists. Nanomaterials show incredible properties that are not found in bulk materials, but achieving multi-functionality on a single material remains challenging. Integrating several types of materials at the nano-scale is critical to the success of multifunctional nanomedicine device. Here, we describe the advantages of silica nanoparticles as a tool for multifunctional nano-devices. Silica nanoparticles have been intensively studied in drug delivery due to their biocompatibility, degradability, tunable morphology, and ease of modification. Moreover, silica nanoparticles can be integrated with other materials to obtain more features and achieve theranostic capabilities and multimodality for imaging applications. In this review, we will first compare the properties of silica nanoparticles with other well-known nanomaterials for bio-applications and describe typical routes to synthesize and integrate silica nanoparticles. We will then highlight theranostic and multimodal imaging application that use silica-based nanoparticles with a particular interest in real-time monitoring of therapeutic molecules. Finally, we will present the challenges and perspective on future work with silica-based nanoparticles in medicine. Copyright © 2018 Elsevier Inc. All rights reserved.
Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption
NASA Astrophysics Data System (ADS)
van den Heuvel, Daniela B.; Stawski, Tomasz M.; Tobler, Dominique J.; Wirth, Richard; Peacock, Caroline L.; Benning, Liane G.
2018-04-01
Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material.
NASA Astrophysics Data System (ADS)
Ramezani, Maedeh; Vaezi, Mohammad Reza; Kazemzadeh, Asghar
2014-10-01
In this paper, we study the two-step dip coating via a sol-gel process to prepare superhydrophobic silica films on the glass substrate. The water repellency of the silica films was controlled by surface silylation method using isooctyltrimethoxysilane (iso-OTMS) as a surface modifying agent. Silica alcosol was synthesized by keeping the molar ratio of ethyltriethoxysilane (ETES) precursor, ethanol (EtOH) solvent, water (H2O) was kept constant at 1:36:6.6 respectively, with 6 M NH4OH throughout the experiment and the percentages of hydrophobic agent in hexane bath was varied from 0 to 15 vol.%. The static water contact angle values of the silica films increased from 108° to 160° with an increase in the vol.% of iso-OTMS. At 15 vol%. of iso-OTMS, the silica film shows static water contact angle as high as 160°. The superhydrophobic silica films are thermally stable up to 440 °C and above this temperature, the silica films lose superhydrophobicity. By controlling the primer particle size of SiO2 about 26 nm, leading to decrease the final size of silica nanoparticles after modification of nanoparticles by isooctyltrimethoxysilane about 42 nm. The films are transparent and have uniform size on the surface. The silica films have been characterized by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FT-IR), transparency, contact angle measurement (CA), Zeta-potential, Thermal stability by TG-DTA analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessop, Forrest; Hamilton, Raymond F.; Rhoderick,
Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5{sup fl/fl}LysM-Cre{sup +} mice resulted in enhanced cytotoxicity and inflammationmore » after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5{sup fl/fl}LysM-Cre{sup +} mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis. - Highlights: • Silica exposure increases autophagy in macrophages. • Autophagy deficient mice have enhanced inflammation and silicosis. • Autophagy deficiency in macrophages results in greater silica-induced cytotoxicity. • Autophagy deficiency in macrophages increases extracellular IL-18 and HMGB1.« less
NASA Astrophysics Data System (ADS)
Darmawan, Adi; Utari, Riyadini; Eka Saputra, Riza; Suhartana; Astuti, Yayuk
2018-01-01
This study investigated the synthesis and characterization of MTMS hydrophobic silica prepared by sol-gel method. In principle, silica xerogels and silica thin layer were obtained by reacting MTMS in ethanol solvent in some pH variations. The MTMS solution was used to modify the surface of the ceramic plate by dipcoating method to further be calcined at two different temperatures of 350°C and 500°C. The silica xerogels were analysed by FTIR, TGA-DSC and GSA to determine functional group characteristics, thermal properties and pore morphology respectively. Meanwhile, the silica thin layers were analysed their hydrophobic properties using water contact angle measurement and surface roughness determination using SEM. The results showed that the higher the pH used in the MTMS solution, the higher the resulting contact angle. The highest contact angle was obtained at pH 8.12 which reached 94.7° and 79.5° for silica thin layer calcined at 350°C and 500°C, respectively. The TGA results indicated that the methyl group survived up to 400°C and disappeared at 500°C which had implications on silica thin layer hydrophobic nature. GSA result exhibited that the silica xerogel had a close structure with a very low pore volume. While the SEM-EDX results displayed that the silica thin layer prepared at acidic pH had smoother surface morphology and became rough when prepared at an alkaline pH.
Chauhan, Kalpana; Patiyal, Priyanka; Chauhan, Ghanshyam S; Sharma, Praveen
2014-06-01
Silica, in natural waters (due to weathering of rocks) decreases system performance in water processing industry due to scaling. In view of that, the present work involves the synthesis of novel green star shaped additives of algae core (a bio-inspired material as diatom maintains silicic acid equilibrium in sea water) as silica polymerization inhibitors. Star shaped materials with bio-inspired core and poly(acrylamide) [poly(AAm)] and poly(acrylic acid) [poly(AAc)] arms were synthesized by economical green approach. The proficiency was evaluated in 'mini lab' scale for the synthesized APAAm (Algae-g-poly(AAm)) and APAAc (Algae-g-poly(AAc)) dendrimers (star shaped) in colloidal silica mitigation/inhibition at 35 °C and 55 °C. Synthesized dendrimers were equally proficient in silica inhibition at 12 h and maintains ≥450 ppm soluble silica. However, APAAm dendrimers of generation 0 confirmed better results (≈300 ppm) in contrast to APAAc dendrimers in silica inhibition at 55 °C. Additionally, dendrimers also worked as a nucleator for heterogeneous polymerization to inhibit silica homo-polymerization. APAAm dendrimer test set showed no silica deposit for more than 10 days of inhibition. EDX characterization results support nucleator mechanism with Si content of 6.97%-10.98% by weight in silica deposits (SiO2-APAAm dendrimer composites). Copyright © 2014 Elsevier Ltd. All rights reserved.
A hydrothermal peroxo method for preparation of highly crystalline silica-titania photocatalysts.
Krivtsov, Igor; Ilkaeva, Marina; Avdin, Viacheslav; Khainakov, Sergei; Garcìa, Jose R; Ordòñez, Salvador; Dìaz, Eva; Faba, Laura
2015-04-15
A new completely inorganic method of preparation of silica-titania photocatalyst has been described. It has been established that the addition of silica promotes crystallinity of TiO2 anatase phase. Relative crystallinity and TiO2 crystal size in the silica-titania particles increase with the silica content until SiO2/TiO2 molar ratio of 0.9, but at higher molar ratios they start to decrease. The single-source precursor containing peroxo titanic (PTA) and silicic acids has been proved to be responsible for high crystallinity of TiO2 encapsulated into amorphous silica. It has been proposed that peroxo groups enhance rapid formation of crystalline titania seeds, while silica controls their growth. It has been concluded from the TEM that the most morphologically uniform anatase crystallites covered with SiO2 particles are prepared at SiO2/TiO2 molar ratio of 0.4. This sample, according to (29)Si NMR, also shows the high content of hydroxylated silica Q(3) and Q(2) groups, and it is the most photocatalytically active in UV-assisted decomposition of methylene blue among the tested materials. It has been determined that the increase in the amount of the condensed Q(4) silica in the mixed oxides leads to the decrease in photocatalytic performance of the material, despite its better crystallinity. High crystallinity, low degree of incorporation of Ti atoms in SiO2 in the mixed oxide and adsorption of methylene blue in the vicinity of photoactive sites on the hydroxylated silica have been considered as the main factors determining the high degradation degree of methylene blue in the presence of silica-titania. Copyright © 2014 Elsevier Inc. All rights reserved.
Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; ...
2014-12-12
In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less
Glacial Chemical Alteration of Mars-Like Bedrock
NASA Astrophysics Data System (ADS)
Rutledge, A. M.; Horgan, B. H. N.; Havig, J. R.; Rampe, E. B.; Scudder, N.; Hamilton, T.
2017-12-01
Mars is understood to have had a widespread and long-lived cryosphere, including glaciers and ice sheets, possibly since the Noachian. However, the contribution of glaciers to the observed alteration mineralogy of Mars is unclear. To characterize this alteration, water and rock samples were collected from glaciated volcanic bedrock of a range of compositions in the Cascade Volcanic Arc, USA: Mount Hood (silicic), Mount Adams (intermediate), North Sister (mafic), and Middle Sister (most mafic). We analyzed glacial meltwater using field meters (pH, temperature), portable spectrophotometry (dissolved silica), and ion chromatography (major ions). We analyzed proglacial rock coatings and sediments using scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible/short-wave-infrared (VSWIR) and thermal-infrared (TIR) spectroscopies. Water samples are dominated by dissolved silica across a range of pH values, and dissolved silica increases significantly at more mafic sites. Rock coatings associated with glacial striations on mafic terrains include a major poorly crystalline silica component, as do proglacial sediments. This field study demonstrates that silica cycling is the dominant alteration process at glaciated volcanics, and more mafic glaciovolcanic sites have higher concentrations of dissolved silica compared to more felsic glaciovolcanic sites. Though basalts have lower silica content than more felsic volcanic rocks, they are more susceptible to silica mobility. On Mars, widespread poorly crystalline, high silica deposits have been modeled in Nothern Acidalia and Gusev Crater, and hydrated silica deposits have been identified in Nili Fossae and elsewhere. We hypothesize that these phases may be indicators of a cold climate regime on early Mars such as one dominated by large regional ice sheets. Cryosphere-driven silica cycling on low-carbonate, mafic rocks may be more important than previously thought on Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.
2015-12-28
A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-04-01
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e
Ahmad, Munir; Ahmad, Mahtab; Usman, Adel R A; Al-Faraj, Abdullah S; Abduljabbar, Adel; Ok, Yong Sik; Al-Wabel, Mohammad I
2017-03-23
Engineered organo-mineral composites were synthesized from date palm waste biochar and silica or zeolite via mechanochemical treatments. Date palm tree rachis (leaves) waste biomass was pre-treated with silica or zeolite minerals via ball milling and sonication prior to pyrolysis at 600 °C. The resultant organo-mineral composites and pristine materials were characterized using X-ray diffraction, thermogravimetric-differential thermal (TG-DTA), Fourier transform infrared, scanning electron microscope analyses and surface area and porosity analyzer to investigate the variations in physiochemical and structural characteristics. Compared to the resultant composites derived from non-milled date palm biomass, ball milling increased surface area, while decreased crystallinity index and effective particle size of the biochar composites. Silica composited biochars were located near origin in the van Krevelen diagram indicating lowest H/C and O/C molar ratios, thus suggesting higher aromaticity and lower polarity compared to other biochars. TGA thermograms indicated highest thermal stability of silica composited biochars. Ash and moisture corrected TGA thermograms were used to calculate recalcitrance index (R 50 ) of the materials, which speculated high degradability of biomass (R 50 < 0.4), minimal degradability of biochars and zeolite composited biochars (0.5 < R 50 < 0.7) and high recalcitrant nature of silica composited biochars (R 50 > 0.7). Silica composited biochars exhibited highest carbon sequestration potential (64.17-95.59%) compared to other biochars. Highest recalcitrance and carbon sequestration potential of silica composited biochars may be attributed to changes in structural arrangements in the silica-biochar complex. Encapsulations of biochar particles with amorphous silica via Si-C bonding may have prevented thermal degradation, subsequently increasing recalcitrance potential of silica composited biochars.
Enhanced stab resistance of armor composites with functionalized silica nanoparticles
NASA Astrophysics Data System (ADS)
Mahfuz, Hassan; Clements, Floria; Rangari, Vijaya; Dhanak, Vinod; Beamson, Graham
2009-03-01
Traditionally shear thickening fluid (STF) reinforced with Kevlar has been used to develop flexible armor. At the core of the STF-Kevlar composites is a mixture of polyethylene glycol (PEG) and silica particles. This mixture is often known as STF and is consisted of approximately 45 wt % PEG and 55 wt % silica. During rheological tests, STF shows instantaneous spike in viscosity above a critical shear rate. Fabrication of STF-Kevlar composites requires preparation of STF, dilution with ethanol, and then impregnation with Kevlar. In the current approach, nanoscale silica particles were dispersed directly into a mixture of PEG and ethanol through a sonic cavitation process. Two types of silica nanoparticles were used in the investigation: 30 nm crystalline silica and 7 nm amorphous silica. The admixture was then reinforced with Kevlar fabric to produce flexible armor composites. In the next step, silica particles are functionalized with a silane coupling agent to enhance bonding between silica and PEG. The performance of the resulting armor composites improved significantly. As evidenced by National Institute of Justice spike tests, the energy required for zero-layer penetration (i.e., no penetration) jumped twofold: from 12 to 25 J cm2/g. The source of this improvement has been traced to the formation of siloxane (Si-O-Si) bonds between silica and PEG and superior coating of Kevlar filaments with particles. Fourier transform infrared, x-ray photoemission spectroscopy, and scanning electron microscopy studies were performed to examine chemical bonds, elemental composition, and particle dispersion responsible for such improvement. In summary, our experiments have demonstrated that functionalization of silica particles followed by direct dispersion into PEG resulted in superior Kevlar composites having much higher spike resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinyu; Zhou, Guowei, E-mail: guoweizhou@hotmail.com; Jiang, Bin
2014-05-01
Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} andmore » a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.« less
An Overview of Orbital Detections of Hydrated Silica and Silica-Rich Rocks on Mars
NASA Astrophysics Data System (ADS)
Sun, V. Z.; Milliken, R.
2016-12-01
Early predictions of high-silica phases on Mars have been confirmed by numerous orbital observations throughout the past 15 years and supported by recent rover and meteorite investigations. Orbital spectroscopy at visible-near-IR (CRISM/OMEGA) and thermal IR (TES/THEMIS) wavelengths has established the presence of aqueously formed hydrated silica across the planet as well as regional silica-rich rocks of igneous origin. TES data provided the first indications of widespread silica enrichment in the northern lowlands, which were debated to represent either andesite or altered basalt on the basis of spectral and geologic arguments. Since then, more localized occurrences of primary silicic lithologies have suggested that igneous processes on Mars may have been more diverse and complex than previously recognized. CRISM and OMEGA data also reveal numerous occurrences of hydrated silica on the Martian surface, likely reflecting primary chemical precipitates or secondary processes such as aqueous alteration or diagenesis. These detections have been associated with fluvial landforms, volcanic settings, uplifted central peak rocks, and mobile sediments, suggesting a variety of formation mechanisms. These silica phases and their colocation with other alteration products such as clays and sulfates reveal aqueous environments that may have been acidic, alkaline, or alternatingly both through space and time. Although there is an apparent prevalence of geochemically immature silica (e.g., glass or opal-A) indicating limited aqueous alteration, several instances of more mature silica (e.g., opal-CT or quartz) point to locales that may have experienced periods of prolonged water-rock interaction. This presentation will give an overview of the distribution and variety of these high-silica phases as seen from orbital datasets and discuss their implications for the magmatic and aqueous history of Mars.
NASA Astrophysics Data System (ADS)
Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat, Suzery, Meiny
2015-12-01
Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak's extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r2=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak's extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.
Peters, Ruud; Kramer, Evelien; Oomen, Agnes G; Rivera, Zahira E Herrera; Oegema, Gerlof; Tromp, Peter C; Fokkink, Remco; Rietveld, Anton; Marvin, Hans J P; Weigel, Stefan; Peijnenburg, Ad A C M; Bouwmeester, Hans
2012-03-27
The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products subjected to in vitro digestion included (i) hot water, (ii) coffee with powdered creamer, (iii) instant soup, and (iv) pancake which either contained silica as the food additive E551, or to which a form of synthetic amorphous silica or 32 nm SiO(2) particles were added. The results showed that, in the mouth stage of the digestion, nano-sized silica particles with a size range of 5-50 and 50-500 nm were present in food products containing E551 or added synthetic amorphous silica. However, during the successive gastric digestion stage, this nano-sized silica was no longer present for the food matrices coffee and instant soup, while low amounts were found for pancakes. Additional experiments showed that the absence of nano-sized silica in the gastric stage can be contributed to an effect of low pH combined with high electrolyte concentrations in the gastric digestion stage. Large silica agglomerates are formed under these conditions as determined by DLS and SEM experiments and explained theoretically by the extended DLVO theory. Importantly, in the subsequent intestinal digestion stage, the nano-sized silica particles reappeared again, even in amounts higher than in the saliva (mouth) digestion stage. These findings suggest that, upon consumption of foods containing E551, the gut epithelium is most likely exposed to nano-sized silica. © 2012 American Chemical Society
The silica cycle in a Northeast Pacific fjord; the role of biological resuspension
NASA Astrophysics Data System (ADS)
Katz, Timor; Yahel, Gitai; Tunnicliffe, Verena; Herut, Barak; Whitney, Frank; Snelgrove, Paul V. R.; Lazar, Boaz
2016-09-01
This study is a quantitative assessment of the role fish-induced bio-resuspension plays in the silica cycle of coastal waters. We used new, published and archived oceanographic data to construct a comprehensive silica budget for Saanich Inlet (Vancouver Island, Canada), a highly productive Northeast Pacific fjord, where siliceous diatoms dominate primary productivity. Anoxia in the deep water of the inlet persists during most of the year, precluding animal life, whereas abundant groundfish continuously rework and resuspend bottom sediments in the shallower, oxygenated margins. This resuspension transfers settled biogenic silica fragments from the sediment, where they are immersed in porewater that is rich with dissolved silica, to the overlying water, where the much lower concentrations accelerate their dissolution rate. The budget shows that Saanich Inlet sediments constitute a sink for approximately 250 × 106 mol Si y-1. Most of this Si enters the inlet in advected, siliceous phytoplankton. Sediment resuspension by groundfish in the oxygenated margins of Saanich Inlet generates about 50% of the total flux of dissolved silica from the inlet seafloor. This resuspension also facilitates a massive transport of biogenic silica from the margins to the anoxic basin, where approximately 90% of all the biogenic silica is buried. The excess dissolution caused by fish activity reduces the burial efficiency of biogenic silica in the entire inlet sediments by about 20%. This case study emphasizes the link between the silica cycle and groundfish activity. Based on this study and because biological resuspension occurs in most regions of the ocean, we recommend that it will be taken into account when budgeting the silica cycle, and potentially other geochemical cycles, in marine environments.
NASA Astrophysics Data System (ADS)
Tobler, Dominique J.; Benning, Liane G.
2013-08-01
Detailed knowledge of the reaction kinetics of silica nanoparticle formation in cooling supersaturated waters is fundamental to the understanding of many natural processes including biosilicifcation, sinter formation, and silica diagenesis. Here, we quantified the formation of silica nanoparticles from solution as it would occur in geothermal waters. We used an in situ and real-time approach with silica polymerisation being induced by fast cooling of a 230 °C hot and supersaturated silica solution. Experiments were carried out using a novel flow-through geothermal simulator system that was designed to work on-line with either a synchrotron-based small angle X-ray scattering (SAXS) or a conventional dynamic light scattering (DLS) detector system. Our results show that the rate of silica nanoparticle formation is proportional to the silica concentration (640 vs. 960 ppm SiO2), and the first detected particles form spheres of approximately 3 nm in diameter. These initial nanoparticles grow and reach a final particle diameter of approximately 7 nm. Interestingly, neither variations in ionic strength (0.02 vs. 0.06) nor temperature (reactions at 30 to 60 °C, mimicking Earth surface values) seem to affect the formation kinetics or the final size of the silica nanoparticles formed. Comparing these results with our previous data from experiments where silica polymerisation and nanoparticle formation was induced by a drop in pH from 12 to near neutral (pH-induced, Tobler et al., 2009) showed that (a) the mechanisms and kinetics of silica nanoparticle nucleation and growth were unaffected by the means to induce silica polymerisation (T drop or pH drop), both following first order reactions kinetics coupled with a surface controlled reaction mechanism. However, the rates of the formation of silica nanoparticles were substantially (around 50%) slower when polymerisation was induced by fast cooling as opposed to pH change. This was evidenced by the occurrence of an induction period, the formation of larger critical nuclei, and the absence of particle aggregation in the T-induced experiments.
Picoplankton contribution to biogenic silica stocks and production rates in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Krause, J. W.; Brzezinski, M. A.; Baines, S. B.; Collier, J.; Ohnemus, D.; Twining, B. S.
2016-02-01
The picoplankton size class (< 3 µm) was observed to contribute a measurable, and at times significant, proportion of the total biogenic silica (>0.4 µm) standing stock and to its rate of production in the Sargasso Sea. These trends were robust after correcting biogenic silica, and the calculated rates which use these data, for interference by lithogenic silica. The 100-m total integrated biogenic silica concentration was low and ranged from 0.7 - 5.0 mmol Si m-2, with the highest value within a mesoscale eddy. Material within the picoplankton size fraction was present at every low-biomass station and provided a relatively consistent contribution to total biogenic silica (10 - 24%, average 14%). The integrated rates of total biogenic silica production were reflective of the low biomass: 0.2 - 1.8 mmol Si m-2 d-1 in non-eddy stations and 6.0 mmol Si m-2 d-1 within the eddy. The average proportion of biogenic silica production in the picoplankton was 16% (range 3 - 38%), with a lower value within the eddy. Outside the eddy, the biomass-normalized rates of silica production were similar for each size class, 0.6 d-1. Using Synechococcus abundance data in the upper 30 m and assuming this group was the only contributor to the picoplankton biogenic silica, we calculate an average Si quota of 229 amol Si cell-1; this is two-fold higher than reported previously by direct measurement on cells using x-ray fluorescence. In the eddy, the estimated Synechococcus Si-quotas were up to 50-fold higher than estimated at other stations, suggesting that most of the pico-sized biogenic silica in this feature may have been diatom fragments. This interpretation is also supported by the eddy having the lowest biomass-normalized production rates for the picoplankton. Our results suggest picoplankton may have a small, but relatively stable, contribution to biogenic silica in this region, which underlies a more dynamic microplankton biogenic silica pool driven by diatoms.
NASA Astrophysics Data System (ADS)
Megawati, Jannah, Reni Ainun; Rahayuningtiyas, Indi
2017-01-01
This research studied the difference of white and blue silica gels when used as an adsorbent for ethanol purification that is processed via Adsorptive-Distillation (AD) at 1 atm pressure. The effect of process duration to purification process is also recorded and studied to evaluate the performance of designed AD equipment. The experiment was conducted using boiling flask covered with a heating mantle and the temperature was maintained at 78°C. The vapour flowed into the adsorbent column and was condensed using water as a cooling medium. The initial ethanol concentration was 90.8% v/v and volume was 300 mL. Experiment shows that designed AD equipment could be used to purify ethanol. The average vapour velocity was about 39.29 and 45.91 m/s for white and blue silica gels, respectively, which is considered very high. Therefore the saturated adsorption could not be obtained. Highest ethanol concentration achieved using white silica gel is about 96.671% v/v after 50 minutes. Thus AD with white silica gel showed good performance and passed azeotropic point. But AD with blue silica gel showed a different result, the adsorption of blue silica gel failed to break the azeotropic point. The outlet average water concentration for white and blue silica gels is 3.54 and 3.42 mole/L. Based on the weight ratio of adsorbed water per adsorbent, at 55th minutes of time; this ratio of blue silica gel is about 0.053 gwater/gads. The time required by the blue silica to achieve 0.5 wwater-adsorbed/wwater-initial is 45 minutes, and the average outlet water concentration is 3.42 mole/L. Meanwhile, the time required by a white silica to complete 0.5 wwater-adsorbed/wwater-initial is 35 minutes, and the average outlet water level is 3.54 mole/L. Based on the results, the blue silica as an adsorbent for AD of ethanol-water mixture is better than white silica gel.
Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites
NASA Astrophysics Data System (ADS)
Patel, Binay S.
Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental and modeled fracture energy results. Furthermore, the contribution of microcracking was most prevalent at lower filler contents which suggests that the presence of microcracking may account for the previously unexplained improvements in fracture behavior attained in silica-filled epoxy nanocomposites at low filler contents. Secondly, surface modification through the application of three different propriety surface treatments ("A", "B" and "C") was found to greatly influence the processibility and fracture behavior of silica-filled epoxy nanocomposites. B-treated silica nanoparticles were found to readily form micron-scale agglomerates, settled during nanocomposite curing and showed no improvement in fracture toughness with increasing filler content. In contrast, the nanocomposites consisting of A-treated and C-treated silica nanoparticles yielded morphologies primarily containing well-dispersed nanoparticles. Therefore, fracture toughness improved with increasing filler content. Finally, particle porosity was found to have no significant effect on fracture behavior for the range of silica-filled epoxy nanocomposites investigated. Lower density porous silica nanoparticles were just as effective toughening agents as higher density non-porous silica nanoparticles. Consequently, the potential exists for the use of toughened-epoxies in lightweight structural applications.
Formation of hollow silica nanospheres by reverse microemulsion
NASA Astrophysics Data System (ADS)
Lin, Cheng-Han; Chang, Jen-Hsuan; Yeh, Yi-Qi; Wu, Si-Han; Liu, Yi-Hsin; Mou, Chung-Yuan
2015-05-01
Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water.Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01395j
NASA Astrophysics Data System (ADS)
Faber, C.; Rowe, C. D.; Miller, J. A.; Backeberg, N.; Sylvester, F.
2009-12-01
The apparently low frictional strength of faults during earthquake slip is not sufficiently well explained. Dynamic weakening has been observed in recent laboratory experiments at seismic slip rates, even if materials are strong at slow slip rates. Di Toro et al. (2004) performed experiments on crystalline rocks at slip rates of 1m/s and observed frictional strength drops to near zero. Examination of the slip surface revealed an amorophous silica had formed during fast slip and interpreted this as a solidified silica gel. If similar silica gel forms during earthquakes, and solidifies to amorphous silica, it would be expected to slowly crystallize over time. Ujiie et al (2007) reported a microcrystalline silica fault vein from the Shimanto Complex (Japan) which contains colloidal microspheres of silica, consistent with its origin as a silica gel. This vein may have been created during seismic slip, although other explanations are possible. No other natural examples of this potentially important coseismic weakening mechanism have been reported. To investigate whether silica gel actually forms during seismic slip, it will be necessary to discover and fully characterize additional natural examples. The Naukluft Nappe Complex in central Namibia is a foreland thrust stack at the distal southern margin of the Pan-African Damara Orogen (active at ~ 550Ma). A fault vein of microcrystalline silica has been found in an intra-nappe thrust fault . The vein occurs as a mostly continuous, planar, 0.1-1.0cm-thick fault vein within dolomite breccias of the Olive Fault. There are no other veins of silica associated with the fault. The hanging wall and footwall are dolomite and calcareous shales, respectively. The layer is petrographically similar to the microcrystalline silica described by Ujiie et al. (2007). The silica layer is purple-blue to white in color cathodoluminescence, in contrast to the bright turquoise typical of quartz. Although X-ray diffraction spectra show only silica and minor dolomite in the fault vein, SEM revealed the presence of small grains of Ti-oxides which have not been observed in the host rock. The cathodoluminescence has also revealed primary textures in the dolomite breccias which are overprinted by recrystallization and invisible in transmitted light . Transmission Electron Microscopy will be used to determine whether colloidal silica particles are present. The possible finding of the solidified silica gel in the Olive Fault is significant because it may represent a new way to identify fault surfaces which have slipped seismically in the past. In particular, the presence of this unusual silica vein in a carbonate-dominated environment is consistent with the experiments of Di Toro et al (2004) who suggested that quartz need not be present in the source rocks in order to form silica gel. Di Toro, G. et al. (2004) Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Nature, 427, 436-439 Ujie, K. et al. (2007) Fluidization of granular material in a subduction thrust at seismogenic depths. EPSL, 259, 307-318
Process for the preparation of metal-containing nanostructured films
NASA Technical Reports Server (NTRS)
Lu, Yunfeng (Inventor); Wang, Donghai (Inventor)
2006-01-01
Metal-containing nanostructured films are prepared by electrodepositing a metal-containing composition within the pores of a mesoporous silica template to form a metal-containing silica nanocomposite. The nanocomposite is annealed to strengthen the deposited metal-containing composition. The silica is then removed from the nanocomposite, e.g., by dissolving the silica in an etching solution to provide a self-supporting metal-containing nanostructured film. The nanostructured films have a nanowire or nanomesh architecture depending on the pore structure of the mesoporous silica template used to prepare the films.
Preparation and flow cytometry of uniform silica-fluorescent dye microspheres.
Bele, Marjan; Siiman, Olavi; Matijević, Egon
2002-10-15
Uniform fluorescent silica-dye microspheres have been prepared by coating preformed monodispersed silica particles with silica layers containing rhodamine 6G or acridine orange. The resulting dispersions exhibit intense fluorescent emission between 500 and 600 nm, over a broad excitation wavelength range of 460 to 550 nm, even with exceedingly small amounts of dyes incorporated into the silica particles (10-30 ppm, expressed as weight of dye relative to weight of dry particles). The fluorescent particles can be prepared in micrometer diameters suitable for analyses using flow cytometry with 488-nm laser excitation.
NASA Astrophysics Data System (ADS)
Li, Wenjiang; He, Jinglong; He, Sailing
2005-02-01
The colorful artificial 3D silica colloidal crystals (opal) were prepared through self-assembly of silica spheres in the visible frequency range. We directly synthesized nano silver particles in the void of the silica artificial opal film using the photolysis of silver nitrate under UV light, nano silver particles were self-deposited around the surface of silica sphere. The shifts of the stop band of the artificial crystals after exposing different time under UV light were studied. Synthetic silica opal with three-dimensional (3D) structure is potentially useful for the development of diffractive optical devices, micro mechanical systems, and sensory elements because photonic band gaps obtained from self-assembled closely packed periodic structures.
The effect of Al2O3, CaO, Cr2O3 and MgO on devitrification of silica
NASA Technical Reports Server (NTRS)
Zaplatynsky, Isidor
1988-01-01
The effect of doping on devitrification of vitreous silica was studied at 1100, 1200, and 1300 C. Dispersion of dopants on a molecular scale was accomplished via a sol-gel technique. All dopants accelerated the devitrification of silica but to different degrees. The most active was CaO followed by MgO, Al2O3, and Cr2O3. Pure silica and silica containing Cr2O3 and Al2O3 devitrified to alpha-cristobalite only, whereas silica doped with CaO and MgO produced alpha-quartz and alpha-cristobalite. It appears that prolonged heat treatment would cause alpha-quartz to transform to alpha-cristobalite.
Occupational exposure assessment for crystalline silica dust: approach in Poland and worldwide.
Maciejewska, Aleksandra
2008-01-01
Crystalline silica is a health hazard commonly encountered in work environment. Occupational exposure to crystalline silica dust concerns workers employed in such industries as mineral, fuel-energy, metal, chemical and construction industry. It is estimated that over 2 million workers in the European Union are exposed to crystalline silica. In Poland, over 50 thousand people work under conditions of silica dust exposure exceeding the occupational exposure limit. The assessment of occupational exposure to crystalline silica is a multi-phase process, primarily dependent on workplace measurements, quantitative analyses of samples, and comparison of results with respective standards. The present article summarizes the approaches to and methods used for assessment of exposure to crystalline silica as adopted in different countries in the EU and worldwide. It also compares the occupational limit values in force in almost 40 countries. Further, it points out the consequences resulting from the fact that IARC has regarded the two most common forms of crystalline silica: quartz and cristobalite as human carcinogens. The article includes an inter-country review of the methods used for air sample collection, dust concentration measurements, and determination of crystalline silica. The selection was based on the GESTIS database which lists the methods approved by the European Union for the measurements and tests regarding hazardous agents. Special attention has been paid to the methods of determining crystalline silica. The author attempts to analyze the influence of analytical techniques, sample preparation and the reference materials on determination results. Also the operating parameters of the method, including limit of detection, limit of quantification, and precision, have been compared.
[The "silica" component in the PM10 of an urban site].
De Berardis, Barbara; Incocciati, Emma; Massera, S; Gargaro, G; Paoletti, L
2007-01-01
In vivo and in vitro toxicological studies have shown that the aged fracturated crystalline silica, which is a component of airborne particulate, exerts an important inflammatory action on airways. The evaluation of the concentration level of airborne crystalline silica in an urban area is an important research subject in order to determine the exposure levels of the general population. The aim was to study the seasonal trend of the quartz (the most common form of crystalline silica) concentration levels in the particulate inhalable faction (PM10) in the urban area of Rome. PM10, sampled by a cascade impactor, was analysed by scanning electron microscopy, equipped with a thin-window system for X-ray microanalysis (SEM/EDX) for qualitative analysis. Parallely the concentration levels of quartz in the particulate were determined by X-ray diffractometry (XRD) for quantitative analysis, using the NIOSH 7500 method (NIOSH, 1994). From September 2004 to October 2005 the abundance of silica particles, evaluated by SEM/EDX was in the range 1.6/10.4%, with a concentration level of free crystalline silica in the range 0.25/2.87 microg/mi. The equivalent diameter of silica particles ranged from 0.3 to 10.5 mircom, moreover, more than 87% of particles showed a diameter less than 2.5 microm. The correlations between SEM/EDX and XRD data seem to suggest that the airborne silica particles in the urban location studied consisted mostly of crystalline silica. Moreover, the data suggest the existence of a significant contribution of silica particles due to southwest wind carrying a fine dust from the Sahara desert to Mediterranean Europe.
Gandhi, Aditya V; Thipsay, Priyanka; Kirthivasan, Bharat; Squillante, Emilio
2017-11-01
The purpose of this research was to design and characterize an immediate-release formulation of carbamazepine (CBZ), a poorly soluble anti-epileptic drug, using a porous silica carrier. Carbon dioxide in its supercritical state (2000 psi, 30-35°C) was used as an anti-solvent to precipitate CBZ onto two particle size variants of silica. Adsorption isotherms were used as a pre-formulation strategy to select optimum ratios of silica and CBZ. The obtained drug-silica formulations were characterized by dissolution studies, differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). This formulation strategy resulted in a 2.4-fold improvement in dissolution rate when compared to pure drug after 30 min of dissolution testing. PXRD and DSC confirmed the amorphous nature of CBZ in the formulations as well as the differences in polymorphic forms of commercial and supercritical fluid-processed CBZ. Additionally, solid-state NMR spectroscopy showed that the spin-lattice relaxation time for bulk drug (without silica) was ∼7.5 times greater than that for silica-confined CBZ, implying that when CBZ was adsorbed onto mesoporous silica, it is structurally disordered and had higher structural mobility, a characteristic of amorphous solids. The mesoporous silica matrix prevented CBZ crystal growth by imposing spatial constraint on CBZ nuclei and hence resulted in faster dissolution compared to bulk solid drug. Adsorption onto mesoporous silica using supercritical fluid technology may be used as a novel formulation strategy for amorphization of poorly soluble compounds, in turn improving their dissolution rate.
The potential use of silica sand as nanomaterials for mortar
NASA Astrophysics Data System (ADS)
Setiati, N. Retno
2017-11-01
The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.
Effect of silica nanoparticles on polyurethane foaming process and foam properties
NASA Astrophysics Data System (ADS)
Francés, A. B.; Navarro Bañón, M. V.
2014-08-01
Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction.
Effect of Bacterial Microbiota on the Silica Uptake of the Marine Diatom, Odontella sp.
NASA Astrophysics Data System (ADS)
Hughes, E. J.; Kempnich, M.; Sison-Mangus, M.
2016-12-01
Diatoms are the most prolific primary producers in the ocean and are known to dominate the phytoplankton community when nutrients become available. Diatoms require silica for growth in order to produce their silica wall frustules. Studies pertaining to silica uptake in diatoms have recently become possible with the use of PDMPO [2-(4-pyridyl)-5{[4-dimethylaminoethyl-aminocarbamoyl]-methoxy}phenyl]oxazole], a dye which selectively binds to free silica and can effectively be used to demonstrate silica uptake and deposition in diatoms. Many factors affect the growth of diatoms, including their bacterial associates or microbiome. Some members of their microbiota can increase diatom growth while others stunt their growth and eventually lyse them. Bacteria-free diatoms, on the other hand, have significantly lower growth than diatoms associating with bacteria. Here we ask if the silica uptake of Odontella sp. was influenced by co-culture with various types of bacteria. Silicification was measured using spectrophotometry to calculate PDMPO concentration as a proxy for silica uptake. We found that axenic cultures have the lowest silica uptake while non-axenic diatoms and diatoms co-cultured with the bacteria from Bacteroidetes (Cellulophaga), Firmicutes (Planococcus) and Gamma-proteobacteria (Vibrio) have varying effects on the silica uptake of the 3 diatoms. This study adds another piece of evidence that bacteria can play an important role on the growth and development of the diatoms. This work suggests that different types of bacteria can have a profound effect on the survival and ecological success of diatoms and bacterial associates should be considered when studying diatom's biology and ecology.
Paleozoic and Mesozoic silica-rich seawater: Evidence from hematitic chert (jasper) deposits
Grenne, Tor; Slack, J.F.
2003-01-01
Laterally extensive beds of highly siliceous, hematitic chert (jasper) are associated with many volcanogenic massive sulfide (VMS) deposits of Late Cambrian to Early Cretaceous age, yet are unknown in analogous younger (including modern) settings. Textural studies suggest that VMS-related jaspers in the Ordovician Løkken ophiolite of Norway were originally deposited as Si- and Fe-rich gels that precipitated from hydrothermal plumes as colloidal silica and iron-oxyhydroxide particles. Rare earth element patterns and Ge/Si ratios of the jaspers reflect precipitation from plumes having seawater dilution factors of 103 to 104, similar to modern examples. We propose that silica in the ancient jaspers is not derived from submarine hydrothermal fluids-as suggested by previous workers-but instead was deposited from silic-rich sea-water. Flocculation and precipitation of the silica were triggered inorganically by the bridging effect of positively charged iron oxyhydroxides in the hydrothermal plume. A model involving amorphous silica (opal-A) precursors to the jaspers suggests that silica contents of Cambrian-Early Cretaceous oceans were at least 110 mg/L SiO2, compared to values of 40-60 mg/L SiO2 estimated in other studies. The evolution of ancient silica-rich to modern Fe-rich precipitates in submarine-hydrothermal plumes reflects a changeover from silica-saturated to silica-depleted seawater through Phanerozoic time, due mainly to ocean-wide emergence of diatoms in the Cretaceous.
da Silva, Lucas H; Feitosa, Sabrina A; Valera, Marcia C; de Araujo, Maria A M; Tango, Rubens N
2012-06-01
The purpose of this study was to evaluate the flexural strength and Vickers hardness of a microwave energy heat-cured acrylic resin by adding different concentrations of silane surface-treated nanoparticle silica. Acrylic resin specimens with dimensions of 65 × 10 × 2.5 mm were formed and divided into five experimental groups (n = 10) according to the silica concentration added to the acrylic resin mass (weight %) prior to polymerisation : G1, without silica; G2, 0.1% silica; G3, 0.5% silica; G4, 1.0% silica; and G5, 5.0% silica. The specimens were submitted to a three-point flexural strength test and to the Vickers hardness test (HVN). The data obtained were statistically analysed by anova and the Tukey test (α = 0.05). Regarding flexural strength, G5 differed from the other experimental groups (G1, G2, G3 and G4) presenting the lowest mean, while G4 presented a significantly higher mean, with the exception of group G3. Regarding Vickers hardness, a decrease in values was observed, in which G1 presented the highest hardness compared with the other experimental groups. Incorporating surface-treated silica resulted in direct benefits in the flexural strength of the acrylic resin activated by microwave energy; however, similar results were not achieved for hardness. © 2012 The Gerodontology Society and John Wiley & Sons A/S.
Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas
2017-01-01
A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes. PMID:28685115
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasan, Koroush; Brady, Patrick; Krumhansl, James L.
Fresh water scarcity is going to be a global great challenge in the near future because of the increasing population. Our water resources are limited and, hence, water treatment and recycling methods are the only alternatives for fresh water procurement in the upcoming decades. Water treatment and recycling methods serve to remove harmful or problematic constituents from ground, surface and waste waters prior to its consumption, industrial supply, or other uses. Scale formation in industrial and domestic installations is still an important problem during water treatment. In water treatment, silica scaling is a real and constant concern for plant operations.more » The focus of this study is on the viability of using a combination of catechol and active carbon to remove dissolved silica from concentrated cooling tower water (CCTW). Various analytical methods, such as ICP-MS and UV-vis, were used to understand the structure-property relationship between the material and the silica removal results. UV-Vis indicates that catechol can react with silica ions and form a silica-catecholate complex. The speciation calculation of catechol and silica shows that catechol and silica bind in the pH range of 8 – 10; there is no evidence of linkage between them in neutral and acidic pHs. The silica removal results indicate that using ~4g/L of catechol and 10g/L active carbon removes up to 50% of the dissolved silica from the CCTW.« less
Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas; Volkmer, Dirk
2017-01-01
A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol-gel-processing of silica precursors is used to deposit a silica coating directly on the fiber's surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.
Sprenger, K G; Prakash, Arushi; Drobny, Gary; Pfaendtner, Jim
2018-01-23
Biomimetic silica formation, a process that is largely driven by proteins, has garnered considerable interest in recent years due to its role in the development of new biotechnologies. However, much remains unknown of the molecular-scale mechanisms underlying the binding of proteins to biomineral surfaces such as silica, or even of the key residue-level interactions between such proteins and surfaces. In this study, we employ molecular dynamics (MD) simulations to study the binding of R5-a 19-residue segment of a native silaffin peptide used for in vitro silica formation-to a silica surface. The metadynamics enhanced sampling method is used to converge the binding behavior of R5 on silica at both neutral (pH 7.5) and acidic (pH 5) conditions. The results show fundamental differences in the mechanism of binding between the two cases, providing unique insight into the pH-dependent ability of R5 and native silaffin to precipitate silica. We also study the effect of phosphorylation of serine residues in R5 on both the binding free energy to silica and the interfacial conformation of the peptide. Results indicate that phosphorylation drastically decreases the binding free energy and changes the structure of silica-adsorbed R5 through the introduction of charge and steric repulsion. New mechanistic insights from this work could inform rational design of new biomaterials and biotechnologies.
miR-98 and its host gene Huwe1 target Caspase-3 in Silica nanoparticles-treated male germ cells
NASA Astrophysics Data System (ADS)
Xu, Bo; Mao, Zhilei; Ji, Xiaoli; Yao, Mengmeng; Chen, Minjian; Zhang, Xuemei; Hang, Bo; Liu, Yi; Tang, Wei; Tang, Qiusha; Xia, Yankai
2015-08-01
Silica nanoparticles (NP) is one of the most commonly used nanomaterials with potential health hazards. However, the effects of Silica NP on germ cells and the underlying mechanisms are still unclear. In this study, GC-2 and TM-4, which are two different types of male germ cells were exposed to Silica NP for 24h, and then general cytotoxicity and multi-parameter cytotoxicity were evaluated. Our results showed that Silica NP could induce apoptosis in GC-2 cells. Transmission electron microscopy (TEM) results showed that Silica NP was localized in the lysosomes of GC-2 cells. High content screening (HCS) showed that Silica NP exposure could increased cell permeabilization and decreased mitochondrial membrane potential in GC-2 cells. The mRNA and protein levels of apoptosis markers (Bax, Caspase-3, Caspase-9) in GC-2 cells were significantly increased, while Bcl-2 was decreased. Accordingly, the expression level of miR-98, which can regulate Caspase-3, was significantly decreased. Huwe1, the host gene of miR-98, was positively associated with miR-98 expression after Silica NP exposure. Dual luciferase reporter assay suggested that miR-98 directly targets Caspase-3. These results suggest that Silica NP induces apoptosis via loss of mitochondrial membrane potential and Caspase-3 activation, while miR-98 plays key role in modulating this effect.
Process for preparing polymer reinforced silica aerogels
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Capadona, Lynn A. (Inventor)
2011-01-01
Process for preparing polymer-reinforced silica aerogels which comprises a one-pot reaction of at least one alkoxy silane in the presence of effective amounts of a polymer precursor to obtain a silica reaction product, the reaction product is gelled and subsequently subjected to conditions that promotes polymerization of the precursor and then supercritically dried to obtain the polymer-reinforced monolithic silica aerogels.
Failure Behavior of Glass and Aluminum Oxynitride (AlON) Tiles Under Spherical Indenters
2010-05-01
soda - lime - silica glass are the result of intersections of shear flow lines...commercial glass manufacturers. The glasses were soda - lime - silica float glass (Starphire*), borosilicate float glass (BOROFLOAT†), and vitreous silica . The...ensued. For example, Swain and Hagan (47) observed plastic yielding and the formation of ring-cone, radial, and lateral cracks in soda - lime - silica
In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes
NASA Astrophysics Data System (ADS)
Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl
2010-10-01
In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.
Metal-silica sol-gel materials
NASA Technical Reports Server (NTRS)
Stiegman, Albert E. (Inventor)
2002-01-01
The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.
NASA Astrophysics Data System (ADS)
Wang, Xiao-hong; Zhang, Xue-hua; Schröder, Heinz C.; Müller, Werner E. G.
2009-09-01
Like all sponges (phylum Porifera), the glass sponges (Hexactinellida) are provided with an elaborate and distinct body plan, which relies on a filigree skeleton. It is constructed by an array of morphologically determined elements, the spicules. Schulze described the largest siliceous hexactinellid sponge on Earth, the up to 3 m high Monorhaphis chuni, collected during the German Deep Sea Expedition "Valdivia" (1898-1899). This species develops an equally large bio-silica structure, the giant basal spicule (3 m × 10 mm). Using these spicules as a model, one can obtain the basic knowledge on the morphology, formation, and development of silica skeletal elements. The silica matrix is composed of almost pure silica, endowing it with unusual optophysical properties, which are superior to those of man-made waveguides. Experiments suggest that the spicules function in vivo as a nonocular photoreception system. The spicules are also provided with exceptional mechanical properties. Like demosponges, the hexactinellids synthesize their silica enzymatically via the enzyme silicatein (27 kDa protein). This enzyme is located in/embedded in the silica layers. This knowledge will surely contribute to a further utilization and exploration of silica in biomaterial/biomedical science.
Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.
Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu
2017-11-24
The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.
Hong, Feifei; Yan, Chengcheng; Si, Yang; He, Jianxin; Yu, Jianyong; Ding, Bin
2015-09-16
Many applications proposed for magnetic silica nanofibers require their assembly into a cellular membrane structure. The feature to keep structure stable upon large deformation is crucial for a macroscopic porous material which functions reliably. However, it remains a key issue to realize robust flexibility in two-dimensional (2D) magnetic silica nanofibrous networks. Here, we report that the combination of electrospun silica nanofibers with zein dip-coating can lead to the formation of flexible, magnetic, and hierarchical porous silica nanofibrous membranes (SNM). The 290 nm diameter silica nanofibers act as templates for the uniform anchoring of nickel ferrite nanoparticles (size of 50 nm). Benefiting from the homogeneous and stable nanofiber-nanoparticle composite structure, the resulting magnetic SNM can maintain their structure integrity under repeated bending as high as 180° and can facilely recover. The unique hierarchical structure also provides this new class of silica membrane with integrated properties of ultralow density, high porosity, large surface area, good magnetic responsiveness, robust dye adsorption capacity, and effective emulsion separation performance. Significantly, the synthesis of such fascinating membranes may provide new insight for further application of silica in a self-supporting, structurally adaptive, and 2D membrane form.
Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik
2013-11-01
Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.
Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Navjot, E-mail: navjot.dhindsa2989@gmail.com; Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com
Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe{sub 3}O{sub 4}) nanoparticles and their coating with SiO{sub 2} is reported. Fe{sub 3}O{sub 4} nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identicalmore » to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.« less
Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen
2015-12-15
Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.
Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis.
Farzana, Rifat; Rajarao, Ravindra; Sahajwalla, Veena
2016-02-01
This fundamental research on end-of-life automotive glasses, which are difficult to recycle, is aimed at understanding the chemical and physical characteristics of waste glasses as a resource of silica to produce ferrosilicon. Laboratory experiments at 1550°C were carried out using different automotive glasses and the results compared with those obtained with pure silica. In situ images of slag-metal separation showed similar behaviour for waste glasses and silica-bearing pellets. Though X-ray diffraction (XRD) showed different slag compositions for glass and silica-bearing pellets, formation of ferrosilicon was confirmed. Synthesized ferrosilicon alloy from waste glasses and silica were compared by Raman, X-ray photoelectron spectroscopy and scanning electron microscopy (SEM) analysis. Silicon concentration in the synthesized alloys showed almost 92% silicon recovery from the silica-bearing pellet and 74-92% silicon recoveries from various waste glass pellets. The polyvinyl butyral (PVB) plastic layer in the windshield glass decomposed at low temperature and did not show any detrimental effect on ferrosilicon synthesis. This innovative approach of using waste automotive glasses as a silica source for ferrosilicon production has the potential to create sustainable pathways, which will reduce specialty glass waste in landfill. © The Author(s) 2015.
Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yang, Fan
2018-01-01
Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future. PMID:29385745
Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yi, Yong; Yang, Fan
2018-01-30
Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.
Size- and structure-dependent toxicity of silica particulates
NASA Astrophysics Data System (ADS)
Hanada, Sanshiro; Miyaoi, Kenichi; Hoshino, Akiyoshi; Inasawa, Susumu; Yamaguchi, Yukio; Yamamoto, Kenji
2011-03-01
Nano- and micro-particulates firmly attach with the surface of various biological systems. In some chronic pulmonary disease such as asbestosis and silicosis, causative particulates will induce chronic inflammatory disorder, followed by poor prognosis diseases. However, nano- and micro-scale specific toxicity of silica particulates is not well examined enough to recognize the risk of nano- and micro-particulates from the clinical aspect. To clarify the effect of the size and structure of silica particulates on the cellular damage and the biological response, we assessed the cytotoxicity of the various kinds of silica particles including amorphous and crystalline silica, in mouse alveolar macrophage culture, focusing on the fibrotic and inflammatory response. Our study showed that the cytotoxicity, which depends on the particle size and surface area, is correlated with their inflammatory response. By contrast, production of TGF-β, which is one of the fibrotic agents in lung, by addition of crystal silica was much higher than that of amorphous silica. We conclude that fibrosis and inflammation are induced at different phases and that the size- and structure-differences of silica particulates affect the both biological responses, caused by surface activity, radical species, and so on.
NASA Astrophysics Data System (ADS)
Li, Lin; Ni, Guo-hua; Guo, Qi-jia; Lin, Qi-fu; Zhao, Peng; Cheng, Jun-li
2017-09-01
Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon (serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.
Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles.
Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh
2017-08-10
Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.
Method for Waterproofing Ceramic Materials
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)
1998-01-01
Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.
Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis
Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor
2013-01-01
Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052
Datskos, Panos; Polizos, Georgios; Cullen, David A.; ...
2016-11-11
Role of water and ammonium hydroxide is investigated in evolution of shape of silica structures in the polyvinylpyrrolidone-pentanol emulsion droplet system. Shape control of silica structures is demonstrated by localization of the reagents. A uniform dispersion of reagents provided straight silica rods, while localization of the reagents at the emulsion droplet periphery provided a new type of structures half sphere-half funnel. The absence of water in the initial stages prompted a different nucleation process for the structure growth compared to when water was present in the intial stages. Effect of effective water concentration appeared to be related to the easemore » of diffusion of silica percursor inside the emulsion droplet,i.e., the higher the water concentration, the lower the silica precursor diffusion. Additionally, mixing the reagents in different combinations before adding to the reaction mixture also affected the silica structure thickness, length, and shape.« less
Grassy Silica Nanoribbons and Strong Blue Luminescence
NASA Astrophysics Data System (ADS)
Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng
2016-09-01
Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos; Polizos, Georgios; Cullen, David A.
Role of water and ammonium hydroxide is investigated in evolution of shape of silica structures in the polyvinylpyrrolidone-pentanol emulsion droplet system. Shape control of silica structures is demonstrated by localization of the reagents. A uniform dispersion of reagents provided straight silica rods, while localization of the reagents at the emulsion droplet periphery provided a new type of structures half sphere-half funnel. The absence of water in the initial stages prompted a different nucleation process for the structure growth compared to when water was present in the intial stages. Effect of effective water concentration appeared to be related to the easemore » of diffusion of silica percursor inside the emulsion droplet,i.e., the higher the water concentration, the lower the silica precursor diffusion. Additionally, mixing the reagents in different combinations before adding to the reaction mixture also affected the silica structure thickness, length, and shape.« less
Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang
2017-01-01
In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development. PMID:28796155
Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang
2017-08-10
In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development.
Jun, K S; Hwang, B G; Shin, H S; Won, Y S
2001-01-01
This paper discusses the development of mixtures with silica fume as a stabilization/solidification agent and binder for industrial wastewater residue containing organic and heavy metal contaminants. The UCS (Unconfined Compressive Strength) gradually increased to 66.7% as the silica fume content increased to 15%. The leaching of TOC and chromium decreased as more OPC was substituted with silica fume. When the mix had 5% silica fume, it retained about 85% TOC, and chromium leached out 0.76 mg-Cr/g-Cr in acidic solution. Also, microstructural studies on the solidified wastes through the scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and X-ray diffraction analysis showed that the silica fume caused an inhibition to the ettringite formation which did not contribute to setting, but coated the cement particles and retarded the setting reactions. The results indicated that the incorporation of silica fume into the cement matrix minimized the detrimental effects of organic materials on the cement hydration reaction and contaminant leachability.
Nanoscale assembly of lanthanum silica with dense and porous interfacial structures.
Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R; Smart, Simon; Diniz da Costa, João C
2015-02-03
This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.
Exposure to respirable crystalline silica in South African farm workers
NASA Astrophysics Data System (ADS)
Swanepoel, Andrew; Rees, David; Renton, Kevin; Kromhout, Hans
2009-02-01
Although listed in some publications as an activity associated with silica (quartz) exposure, agriculture is not widely recognized as an industry with a potential for silica associated diseases. Because so many people work in agriculture; and because silica exposure and silicosis are associated with serious diseases such as tuberculosis (TB), particular in those immunological compromised by the Human immunodeficiency virus (HIV), silica exposure in agriculture is potentially very important. But in South Africa (SA) very little is known about silica exposure in this industry. The objectives of this project are: (a) to measure inhalable and respirable dust and its quartz content on two typical sandy soil farms in the Free State province of SA for all major tasks done on the farms; and (b) to characterise the mineralogy soil type of these farms. Two typical farms in the sandy soil region of the Free State province were studied. The potential health effects faced by these farm workers from exposure to respirable crystalline silica are discussed.
Agricultural waste as a source for the production of silica nanoparticles.
Vaibhav, Vineet; Vijayalakshmi, U; Roopan, S Mohana
2015-03-15
The major interest of the paper deals with the extraction of silica from four natural sources such as rice husk, bamboo leaves, sugarcane bagasse and groundnut shell. These waste materials in large quantities can create a serious environmental problem. Hence, there is a need to adopt proper strategy to reduce the waste. In the present investigation, all the waste materials are subjected to moisture removal in a hot plate and sintered at 900°C for 7 h. The sintered powder was treated with 1 M NaOH to form sodium silicate and then with 6M H2SO4 to precipitate silica. The prepared silica powders were characterized by FT-IR, XRD and SEM-EDAX analysis. The silica recovered from different sources was found to vary between 52% and 78%. Magnesium substituted silica was formed from the groundnut waste and further treatment is required to precipitate silica. Copyright © 2014 Elsevier B.V. All rights reserved.
Monte Carlo Study on Carbon-Gradient-Doped Silica Aerogel Insulation.
Zhao, Y; Tang, G H
2015-04-01
Silica aerogel is almost transparent for wavelengths below 8 µm where significant energy is transferred by thermal radiation. The radiative heat transfer can be restricted at high temperature if doped with carbon powder in silica aerogel. However, different particle sizes of carbon powder doping have different spectral extinction coefficients and the doped carbon powder will increase the solid conduction of silica aerogel. This paper presents a theoretical method for determining the optimal carbon doping in silica aerogel to minimize the energy transfer. Firstly we determine the optimal particle size by combining the spectral extinction coefficient with blackbody radiation and then evaluate the optimal doping amount between heat conduction and radiation. Secondly we develop the Monte Carlo numerical method to study radiative properties of carbon-gradient-doped silica aerogel to decrease the radiative heat transfer further. The results indicate that the carbon powder is able to block infrared radiation and thus improve the thermal insulating performance of silica aerogel effectively.
NASA Astrophysics Data System (ADS)
Yang, Jian; Sandoval, Sergio; Alfaro, Jesus G.; Aschemeyer, Sharraya; Liberman, Alex; Martin, David T.; Makale, Milan; Kummel, Andrew C.; Trogler, William C.
2011-06-01
A simple method to fabricate Eu3+ doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu3+ doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells.
Silica-coated titania and zirconia colloids for subsurface transport field experiments
Ryan, Joseph N.; Elimelech, Menachem; Baeseman, Jenny L.; Magelky, Robin D.
2000-01-01
Silica-coated titania (TiO2) and zirconia (ZrO2) colloids were synthesized in two sizes to provide easily traced mineral colloids for subsurface transport experiments. Electrophoretic mobility measurements showed that coating with silica imparted surface properties similar to pure silica to the titania and zirconia colloids. Measurements of steady electrophoretic mobility and size (by dynamic light scattering) over a 90-day period showed that the silica-coated colloids were stable to aggregation and loss of coating. A natural gradient field experiment conducted in an iron oxide-coated sand and gravel aquifer also showed that the surface properties of the silica-coated colloids were similar. Colloid transport was traced at μg L-1 concentrations by inductively coupled plasma-atomic emission spectroscopy measurement of Ti and Zr in acidified samples.
High-average-power laser medium based on silica glass
NASA Astrophysics Data System (ADS)
Fujimoto, Yasushi; Nakatsuka, Masahiro
2000-01-01
Silica glass is one of the most attractive materials for a high-average-power laser. We have developed a new laser material base don silica glass with zeolite method which is effective for uniform dispersion of rare earth ions in silica glass. High quality medium, which is bubbleless and quite low refractive index distortion, must be required for realization of laser action. As the main reason of bubbling is due to hydroxy species remained in the gelation same, we carefully choose colloidal silica particles, pH value of hydrochloric acid for hydrolysis of tetraethylorthosilicate on sol-gel process, and temperature and atmosphere control during sintering process, and then we get a bubble less transparent rare earth doped silica glass. The refractive index distortion of the sample also discussed.
The regulation of crystalline silica: an industry perspective.
Elzea, J M
1997-01-01
Silica is ubiquitous in the earth's crust. It occurs in trace to large quantities in rocks and soil. Because it is so common, the regulation of silica has affected a large number of industries, including the mining industry and any industry that uses quartz in the manufacture of a products. Mineral commodities that contain silica include diatomite, bentonite, kaolinite, talc, pyrophyllite, sand and gravel, perlite, pumice, dimension stone, and barite. Products that contain minerals, many of which are associated with silica, include paint, paper, rubber, plastic, pharmaceuticals, food, cement, plaster, cat litter, potting soil, plaster board, and miscellaneous construction materials. In collaboration with some agencies and academic centers, the silica industry is supporting research to lower health risks and to improve the methods of detecting this common material.
NASA Astrophysics Data System (ADS)
Nandiyanto, Asep Bayu Dani; Iskandar, Ferry; Okuyama, Kikuo
2011-12-01
Monodisperse spherical mesoporous silica nanoparticles were successfully synthesized using a liquid-phase synthesis method. The result showed particles with controllable pore size from several to tens nanometers with outer diameter of several tens nanometers. The ability in the control of pore size and outer diameter was altered by adjusting the precursor solution ratios. In addition, we have conducted the adsorption ability of the prepared particles. The result showed that large organic molecules were well-absorbed to the prepared silica porous particles, in which this result was not obtained when using commercial dense silica particle and/or hollow silica particle. With this result, the prepared mesoporous silica particles may be used efficiently in various applications, such as sensors, pharmaceuticals, environmentally sensitive pursuits, etc.
Surface interactions between silica particles and water and organic solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douillard, J.M.; Elwafir, M.; Partyka, S.
1994-04-01
A silica sample has been studied by vapor adsorption and by microcalorimetric methods. The combination of these two methods in the case of water allows one to calculate all the thermodynamic terms related to the adhesion on this silica. Adhesion between silica and miscellaneous solvents has been studied by immersion microcalorimetry. The silica is slightly hydrophobic, but the enthalpy of immersion into water is the most energetic one of all the solvents studied. It appears a clear graduation of the enthalpies of immersion due to the presence of delocalized electrons in the studied solvents.
Dissolution and analysis of amorphous silica in marine sediments.
Eggimann, D.W.; Manheim, F. T.; Betzer, P.R.
1980-01-01
The analytical estimation of amorphous silica in selected Atlantic and Antarctic Ocean sediments, the U.S.G.S. standard marine mud (MAG-1), A.A.P.G. clays, and samples from cultures of a marine diatom, Hemidiscus, has been examined. Our values for amorphous silica-rich circum-Antarctic sediments are equal to or greater than literature values, whereas our values for a set of amorphous silica-poor sediments from a transect of the N. Atlantic at 11oN, after appropriate correction for silica released from clays, are significantly lower than previous estimates from the same region. -from Authors
Fabrication of amorphous silica nanowires via oxygen plasma treatment of polymers on silicon
NASA Astrophysics Data System (ADS)
Chen, Zhuojie; She, Didi; Chen, Qinghua; Li, Yanmei; Wu, Wengang
2018-02-01
We demonstrate a facile non-catalytic method of fabricating silica nanowires at room temperature. Different polymers including photoresists, parylene C and polystyrene are patterned into pedestals on the silicon substrates. The silica nanowires are obtained via the oxygen plasma treatment on those pedestals. Compared to traditional strategies of silica nanowire fabrication, this method is much simpler and low-cost. Through designing the proper initial patterns and plasma process parameters, the method can be used to fabricate various regiment nano-scale silica structure arrays in any laboratory with a regular oxygen-plasma-based cleaner or reactive-ion-etching equipment.
NASA Astrophysics Data System (ADS)
Marshall, B. D.; Moscati, R. J.
2005-12-01
Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios observed in coatings from the TCw, these data indicate that evaporation decreases with depth in the UZ. Evaporation at the repository horizon and in the overlying units is an important process that reduces the amount of seepage at the repository horizon.
NASA Astrophysics Data System (ADS)
Shah, Kwok Wei; Sreethawong, Thammanoon; Liu, Shu-Hua; Zhang, Shuang-Yuan; Tan, Li Sirh; Han, Ming-Yong
2014-09-01
Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields.Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03306j
Synthesis and characterization of titanium oxide supported silica materials
NASA Astrophysics Data System (ADS)
Schrijnemakers, Koen
2002-01-01
Titania-silica materials are interesting materials for use in catalysis, both as a catalyst support as well as a catalyst itself. Titania-silica materials combine the excellent support and photocatalytic properties of titania with the high thermal and mechanical stability of silica. Moreover, the interaction of titania with silica leads to new active sites, such as acid and redox sites, that are not found on the single oxides. In this Ph.D. two recently developed deposition methods were studied and evaluated for their use to create titanium oxide supported silica materials, the Chemical Surface Coating (CSC) and the Molecular Designed Dispersion (MDD). These methods were applied to two structurally different silica supports, an amorphous silica gel and the highly ordered MCM-48. Both methods are based on the specific interaction between a titanium source and the functional groups on the silica surface. With the CSC method high amounts of titanium can be obtained. However, clustering of the titania phase is observed in most cases. The MDD method allows much lower titanium amounts to be deposited without the formation of crystallites. Only at the highest Ti loading very small crystallites are formed after calcination. MCM-48 and silica gel are both pure SiO2 materials and therefore chemically similar to each other. However, they possess a different morphology and are synthesized in a different way. As such, some authors have reported that the MCM-48 surface would be more reactive than the surface of silica gel. In our experiments however no differences could be observed that confirmed this hypothesis. In the CSC method, the same reactions were observed and similar amounts of Ti and Cl were deposited. In the case of the MDD method, no difference in the reaction mechanism was observed. However, due to the lower thermal and hydrothermal stability of the MCM-48 structure compared to silica gel, partial incorporation of Ti atoms in the pore walls of MCM-48 took place. This incorporation manifested itself in both pore size as well as unit cell size increase and had a stabilizing effect on the titanium oxide coating prepared by the CSC method. Due to the incorporation of Ti in MCM-48, the coating was more firmly bound to the surface and no clustering was observed during the calcination in contrast to the silica gel support where no incorporation has taken place.
Thermo-mechanical properties of high aspect ratio silica nanofiber filled epoxy composites
NASA Astrophysics Data System (ADS)
Ren, Liyun
The optimization of thermo-mechanical properties of polymer composites at low filler loadings is of great interest in both engineering and scientific fields. There have been several studies on high aspect ratio fillers as novel reinforcement phase for polymeric materials. However, facile synthesis method of high aspect ratio nanofillers is limited. In this study, a scalable synthesis method of high aspect ratio silica nanofibers is going to be presented. I will also demonstrate that the inclusion of high aspect ratio silica nanofibers in epoxy results in a significant improvement of epoxy thermo-mechanical properties at low filler loadings. With silica nanofiber concentration of 2.8% by volume, the Young's modulus, ultimate tensile strength and fracture toughness of epoxy increased ~23, ~28 and ~50%, respectively, compared to unfilled epoxy. At silica nanofiber volume concentration of 8.77%, the thermal expansion coefficient decreased by ˜40% and the thermal conductivity was improved by ˜95% at room temperature. In the current study, the influence of nano-sized silica filler aspect ratio on mechanical and thermal behavior of epoxy nanocomposites were studied by comparing silica nanofibers to spherical silica nanoparticles (with aspect ratio of one) at various filler loadings. The significant reinforcement of composite stiffness is attributed to the variation of the local stress state in epoxy due to the high aspect ratio of the silica nanofiber and the introduction of a tremendous amount of interfacial area between the nanofillers and the epoxy matrix. The fracture mechanisms of silica nanofiber filled epoxy were also investigated. The existence of high aspect ratio silica nanofiber promotes fracture energy dissipation by crack deflection, crack pinning as well as debonding with fiber pull-out leading to enhanced fracture toughness. High aspect ratio fillers also provide significant reduction of photon scattering due to formation of a continuous fiber network within the composite. The resulting silica nanofiber filled epoxy would be widely applicable as underfill and encapsulant in advanced electronic packaging industry because of its electrically insulating, low cost and ease of processability.
Chen, Bao; Wang, Zhouhua; Quan, Guilan; Peng, Xinsheng; Pan, Xin; Wang, Rongchang; Xu, Yuehong; Li, Ge; Wu, Chuanbin
2012-01-01
Background A liquisolid technique has been reported to be a new approach to improve the release of poorly water-soluble drugs for oral administration. However, an apparent limitation of this technique is the formulation of a high dose because a large amount of liquid vehicle is needed, which finally results in a low-dose liquisolid formulation. Silica as an absorbent has been used extensively in liquisolid formulations. Although nanoparticle silica can be prepared and used to improve liquid adsorption capacity, loading a high dose of drug into a liquisolid is still a challenge. With the aim of improving adsorption capacity and accordingly achieving high drug loading, ordered mesoporous silica with a high surface area and narrow pore size distribution was synthesized and used in a liquisolid formulation. Methods Ordered mesoporous silica was synthesized and its particle size and morphology were tailored by controlling the concentration of cetyltrimethyl ammonium bromide. The ordered mesoporous silica synthesized was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, small-angle x-ray diffraction, wide angle x-ray diffraction, and nitrogen adsorption-desorption measurements. The liquid adsorption capacity of ordered mesoporous silica was subsequently compared with that of conventional silica materials using PEG400 as the model liquid. Carbamazepine was chosen as a model drug to prepare the liquisolid formulation, with ordered mesoporous silica as the adsorbent material. The preparation was evaluated and compared with commercially available fast-release carbamazepine tablets in vitro and in vivo. Results Characterization of the ordered mesoporous silica synthesized in this study indicated a huge Brunauer–Emmett–Teller surface area (1030 m2/g), an ordered mesoporous structure with a pore size of 2.8 nm, and high adsorption capacity for liquid compared with conventional silica. Compared with fast-release commercial carbamazepine tablets, drug release from the liquisolid capsules was greatly improved, and the bioavailability of the liquisolid preparation was enhanced by 182.7%. Conclusion Ordered mesoporous silica is a potentially attractive adsorbent which may lead to a new approach for development of liquisolid products. PMID:22275835
DOE Office of Scientific and Technical Information (OSTI.GOV)
YU,KUI; BRINKER,C. JEFFREY; HURD,ALAN J.
2000-11-22
Since the discovery of surfactant-templated silica by Mobil scientists in 1992, mesostructured silica has been synthesized in various forms including thin films, powders, particles, and fibers. In general, mesostructured silica has potential applications, such as in separation, catalysis, sensors, and fluidic microsystems. In respect to these potential applications, mesostructured silica in the form of thin films is perhaps one of the most promising candidates. The preparation of mesostructured silica films through preferential solvent evaporation-induced self-assembly (EISA) has recently received much attention in the laboratories. However, no amphiphile/silica films with reverse mesophases have ever been made through this EISA procedure. Furthermore,more » templates employed to date have been either surfactants or poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers, such as pluronic P-123, both of which are water-soluble and alcohol-soluble. Due to their relatively low molecular weight, the templated silica films with mesoscopic order have been limited to relatively small characteristic length scales. In the present communication, the authors report a novel synthetic method to prepare mesostructured amphiphilic/silica films with regular and reverse mesophases of large characteristic length scales. This method involves evaporation-induced self-assembly (EISA) of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers. In the present study, the PS-b-PEO diblocks are denoted as, for example, PS(215)-b-PEO(100), showing that this particular sample contains 215 S repeat units and 100 EO repeat units. This PS(215)-b-PEO(100) diblock possesses high molecular weight and does not directly mix with water or alcohol. To the authors knowledge, no studies have reported the use of water-insoluble and alcohol-insoluble amphiphilic diblocks as structure-directing agents in the synthesis of mesostructured silica films through EISA. It is believed that the present system is the first to yield amphiphile/silica films with regular and reverse mesophases, as well as curved multi-bilayer mesostructures, through EISA. The ready formation of the diblock/silica films with multi-bilayer vesicular mesostructures is discussed.« less
Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica
NASA Astrophysics Data System (ADS)
Kan, Caixia; Cai, Weiping; Li, Cuncheng; Fu, Ganhua; Zhang, Lide
2004-11-01
In this paper, we report the morphologic evolution and optical properties of nanostructured gold dispersed in monolithic mesoporous silica induced by soaking the silica into a HAuCl4 aqueous solution and subsequent treatments. It has been shown that the morphology of nanostructured Au depends on the subsequent treatments after soaking. If the HAuCl4-soaked mesoporous silica was dried at <100°C for enough time (>10h) and annealed at <300°C without any special reduction treatment, Au nanowires/silica assembly can be formed. Corresponding optical-absorption spectra exhibit a broad absorption band around 1000nm. Subsequent step annealing from 300°C to 800°C results in a blueshift of the absorption band down to the visible region, accompanied by a decrease of the bandwidth. The corresponding morphology of the nanostructured Au evolves from the wire, rodlike to a spherical shape. This means that we can control the optical properties of this assembly in a large region by such a simple way. Further experiments reveal that the pore walls of silica have significant reduction effect on AuCl4- ions at a low temperature (<100°C). The interconnected channels in the silica host and drying at <100°C for enough time after soaking are crucial to form such Au nanowire/silica assembly and hence to show tunable optical properties by subsequent step annealing. Not a single one of these conditions can be dispensed with. Otherwise, direct annealing the soaked monolithic silica at a high temperature (>300°C) or treating the soaked porous silica powders only leads to nearly spherical Au nanoparticles highly dispersed in silica, accompanying a normal surface plasmon resonance of Au around 540nm. It has been confirmed that the surface-mediated reducing groups (≡Si -OH) on the silica pore wall are responsible for the low-temperature reduction of Au3+ ions. The formation of the Au nanowires is attributed to the low nucleation rate, unidirectional diffusion of Au atoms along the pore channels and size confinement of pore channels.
Strain-modulated electronic and thermal transport properties of two-dimensional O-silica
NASA Astrophysics Data System (ADS)
Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming
2016-07-01
Silica is one of the most abundant materials in the Earth’s crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654-60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor-metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.
Strain-modulated electronic and thermal transport properties of two-dimensional O-silica.
Han, Yang; Qin, Guangzhao; Jungemann, Christoph; Hu, Ming
2016-07-01
Silica is one of the most abundant materials in the Earth's crust and is a remarkably versatile and important engineering material in various modern science and technology. Recently, freestanding and well-ordered two-dimensional (2D) silica monolayers with octahedral (O-silica) building blocks were found to be theoretically stable by (Wang G et al 2015 J. Phys. Chem. C 119 15654-60). In this paper, by performing first-principles calculations, we systematically investigated the electronic and thermal transport properties of 2D O-silica and also studied how these properties can be tuned by simple mechanical stretching. Unstrained 2D O-silica is an insulator with an indirect band gap of 6.536 eV. The band gap decreases considerably with bilateral strain up to 29%, at which point a semiconductor-metal transition occurs. More importantly, the in-plane thermal conductivity of freestanding 2D O-silica is found to be unusually high, which is around 40 to 50 times higher than that of bulk α-quartz and more than two orders of magnitude higher than that of amorphous silica. The thermal conductivity of O-silica decreases by almost two orders of magnitude when the bilateral stretching strain reaches 10%. By analyzing the mode-dependent phonon properties and phonon-scattering channel, the phonon lifetime is found to be the dominant factor that leads to the dramatic decrease of the lattice thermal conductivity under strain. The very sensitive response of both band gap and phonon transport properties to the external mechanical strain will enable 2D O-silica to easily adapt to the different environment of realistic applications. Our study is expected to stimulate experimental exploration of further physical and chemical properties of 2D silica systems, and offers perspectives on modulating the electronic and thermal properties of related low-dimensional structures for applications such as thermoelectric, photovoltaic, and optoelectronic devices.
Kato, Shinya; Saitoh, Yasukazu; Miwa, Nobuhiko
2013-01-01
We investigated the anti-melanogenetic efficacy of hydrogen-occluding silica microcluster (H2-Silica), which is a silsesquioxane-based compound with hydrogen interstitially embedded in a matrix of caged silica, against melanogenesis in HMV-II human melanoma cells and L-DOPA-tyrosinase reaction [EC1.14.18.1]. HMV-II cells were subjected to oxidative stress by ultraviolet ray-A (UVA) exposure of 3-times of 0.65 J/cm2 summed up to 1.95 J/cm2. After UVA irradiation, HMV-II cells were stimulated to produce melanin by 2.72-fold more abundantly than unirradiated control. When HMV-II cells were treated with H2-Silica of 20 ppm or kojic acid of 28.4 ppm before and after UVA-irradiation, the amount of melanin was repressed to 12.2% or 14.5% as compared to that of UVA-irradiated control, respectively. That is, H2-Silica exhibited a comparable efficacy to the whitening agent kojic acid. The H2-Silica could prevent melanogenesis in HMV-II cells by low-level doses at 1-10 ppm, and cell viability and apoptosis event did not change even by high-level doses at 100-1000 ppm. On the contrary, kojic acid was cytotoxic at the concentration of 14-28 ppm or more. By microscopic observation, H2-Silica suppressed such properties indicative of melanin-rich cells as cellular hypertrophy, cell process formation, and melanogenesis around the outside of nuclei. The enzymatic assay using L-DOPA and mushroom tyrosinase demonstrated that H2-Silica restrained UVA-mediated melanin formation owing to down-regulation of tyrosinase activity, which could be attributed to scavenging of free radicals and inhibition of L-DOPA-to-dopachrome oxidation by hydrogen released from H2-Silica. Thus H2-Silica has a potential to prevent melanin production against UVA and serves as a skin-lightening ingredient for supplements or cosmetics.
Molecular insights into the progression of crystalline silica-induced pulmonary toxicity in rats.
Sellamuthu, Rajendran; Umbright, Christina; Roberts, Jenny R; Cumpston, Amy; McKinney, Walter; Chen, Bean T; Frazer, David; Li, Shengqiao; Kashon, Michael; Joseph, Pius
2013-04-01
Identification of molecular target(s) and mechanism(s) of silica-induced pulmonary toxicity is important for the intervention and/or prevention of diseases associated with exposure to silica. Rats were exposed to crystalline silica by inhalation (15 mg m(-3), 6 h per day, 5 days) and global gene expression profile was determined in the lungs by microarray analysis at 1, 2, 4, 8 and 16 weeks following termination of silica exposure. The number of significantly differentially expressed genes (>1.5-fold change and <0.01 false discovery rate P-value) detected in the lungs during the post-exposure time intervals analyzed exhibited a steady increase in parallel with the progression of silica-induced pulmonary toxicity noticed in the rats. Quantitative real-time PCR analysis of a representative set of 10 genes confirmed the microarray findings. The number of biological functions, canonical pathways and molecular networks significantly affected by silica exposure, as identified by the bioinformatics analysis of the significantly differentially expressed genes detected during the post-exposure time intervals, also exhibited a steady increase similar to the silica-induced pulmonary toxicity. Genes involved in oxidative stress, inflammation, respiratory diseases, cancer, and tissue remodeling and fibrosis were significantly differentially expressed in the rat lungs; however, unresolved inflammation was the single most significant biological response to pulmonary exposure to silica. Excessive mucus production, as implicated by significant overexpression of the pendrin coding gene, SLC26A4, was identified as a potential novel mechanism for silica-induced pulmonary toxicity. Collectively, the findings of our study provided insights into the molecular mechanisms underlying the progression of crystalline silica-induced pulmonary toxicity in the rat. Published 2012. This article is a US Government work and is in the public domain in the USA. Published 2012. This article is a US Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Aftabi, Alijan; Atapour, Habibeh
2018-10-01
There exist few data on the geochemical signatures and occurrence of silica-rich coatings developed on siliceous carbonate substrates. The rock coatings in the Maran-e-Galu area in southeast-central Iran are composed of four layers; a lower thick layer (1 mm) of silica, a lower thin film of Fe-Mn oxide, an upper thick (1 mm) silica-rich layer, and an upper thin film of Fe-Mn oxide. Energy dispersive X-ray spectrometer (EDS), X-ray diffraction and bulk coating geochemistry data obtained by XRF and ICP-MS highlight that the 1-3 mm thick silica-rich coatings occur as a silica glaze of opal composition on the siliceous carbonate substrate. The coatings were probably formed by the interaction of rainfall, water vapor or dew with silicate and carbonate-rich detrital atmospheric dust, releasing H4SiO4with a pH of 5-10 in this semiarid-arid desert environment. This led to the formation of silica gels as well as minor Fe-Mn oxide gels by evaporation and supersaturation, and finally changed to the black brown silica glaze probably at ambient temperatures of >40 °C Major and minor element signatures are consistent with the known silica glazes, displaying enrichment in Ba, Sr, P, and LREEs with little to no Eu and Ce anomalies and a weak Tm anomaly. However, the very low content of aluminum oxide is well correlated with the known classified silica glaze of genetic type 1, reflecting the absence of detrital clay minerals. The low Fe and Mn contents in bulk coatings (3.6 and 10 magnitudes lower than crustal abundance, respectively) and lack of biochemical processes in the atmospheric dust highlight the semiarid-arid climate setting. We thereby conclude that a new variant of silica glaze of 1-3 mm thickness could form on siliceous carbonate substrates under an alkaline pH in semiarid-arid regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat,
Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak’s extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gelsmore » were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r{sup 2}=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak’s extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.« less
NASA Astrophysics Data System (ADS)
Numpilai, Thanapha; Witoon, Thongthai; Chareonpanich, Metta; Limtrakul, Jumras
2017-02-01
The conjugation of dexamethasone (DEX) onto modified-porous silica materials via a pH-responsive hydrazone bond has been reported to be highly efficient method to specifically deliver the DEX to diseased sites. However, the influence of physicochemical properties of porous silica materials has not yet been fully understood. In this paper, the impact of pore sizes, particle sizes and silanol contents on surface functionalization, drug loading and release behavior of porous silica materials conjugated with dexamethasone via pH-responsive hydrazone bond was investigated. The grafting density was found to relate to the number of silanol groups on the surface of porous silica materials. The particle size and macropores of the porous silica materials played an vital role on the drug loading and release behavior. Although the porous silica materials with larger particle sizes possessed a lower grafting density, a larger amount of drug loading could be achieved. Moreover, the porous silica materials with larger particle sizes showed a slower release rate of DEX due to a longer distance for cleaved DEX diffusion out of pores. DEX release rate exhibited pH-dependent, sustained release. At pH 4.5, the amount of DEX release within 10 days could be controlled in the range of 12.74-36.41%, depending on the host material. Meanwhile, less than 1.5% of DEX was released from each of type of the porous silica materials at pH 7.4. The results of silica dissolution suggested that the degradation of silica matrix did not significantly affect the release rate of DEX. In addition, the kinetic modeling studies revealed that the DEX releases followed Korsmeyer-Peppas model with a release exponent (n) ranged from 0.3 to 0.47, indicating a diffusion-controlled release mechanism.
Sundblom, Andreas; Palmqvist, Anders E C; Holmberg, Krister
2010-02-02
The interaction between silica and poly(ethylene oxide) (PEO) in water may appear trivial and it is generally stated that hydrogen bonding is responsible for the attraction. However, a literature search shows that there is not a consensus with respect to the mechanism behind the attractive interaction. Several papers claim that only hydrogen bonding is not sufficient to explain the binding. The silica-PEO interaction is interesting from an academic perspective and it is also exploited in the preparation of mesoporous silica, a material of considerable current interest. This study concerns the very early stage of synthesis of mesoporous silica under mild acidic conditions, pH 2-5, and the aim is to shed light on the interaction between silica and the PEO-containing structure directing agent. The synthesis comprises two steps. An organic silica source, tetraethylorthosilicate (TEOS), is first hydrolyzed and Pluronic P123, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, is subsequently added at different time periods following the hydrolysis of TEOS. It is shown that the interaction between the silica and the Pluronic is dependent both on the temperature and on the time between onset of TEOS hydrolysis and addition of the copolymer. The results show that the interaction is mainly driven by entropy. The effect of the synthesis temperature and of the time between hydrolysis and addition of the copolymer on the final material is also studied. The material with the highest degree of mesoorder was obtained when the reaction was performed at 20 degrees C and the copolymer was added 40 h after the start of TEOS hydrolysis. It is claimed that the reason for the good ordering of the silica is that whereas particle formation under these conditions is fast, the rate of silica condensation is relatively low.
Skrastina, Dace; Petrovskis, Ivars; Lieknina, Ilva; Bogans, Janis; Renhofa, Regina; Ose, Velta; Dishlers, Andris; Dekhtyar, Yuri; Pumpens, Paul
2014-01-01
Advances in nanotechnology and nanomaterials have facilitated the development of silicon dioxide, or Silica, particles as a promising immunological adjuvant for the generation of novel prophylactic and therapeutic vaccines. In the present study, we have compared the adjuvanting potential of commercially available Silica nanoparticles (initial particles size of 10–20 nm) with that of aluminium hydroxide, or Alum, as well as that of complete and incomplete Freund's adjuvants for the immunisation of BALB/c mice with virus-like particles (VLPs) formed by recombinant full-length Hepatitis B virus core (HBc) protein. The induction of B-cell and T-cell responses was studied after immunisation. Silica nanoparticles were able to adsorb maximally 40% of the added HBc, whereas the adsorption capacity of Alum exceeded 90% at the same VLPs/adjuvant ratio. Both Silica and Alum formed large complexes with HBc VLPs that sedimented rapidly after formulation, as detected by dynamic light scattering, spectrophotometry, and electron microscopy. Both Silica and Alum augmented the humoral response against HBc VLPs to the high anti-HBc level in the case of intraperitoneal immunisation, whereas in subcutaneous immunisation, the Silica-adjuvanted anti-HBc level even exceeded the level adjuvanted by Alum. The adjuvanting of HBc VLPs by Silica resulted in the same typical IgG2a/IgG1 ratios as in the case of the adjuvanting by Alum. The combination of Silica with monophosphoryl lipid A (MPL) led to the same enhancement of the HBc-specific T-cell induction as in the case of the Alum and MPL combination. These findings demonstrate that Silica is not a weaker putative adjuvant than Alum for induction of B-cell and T-cell responses against recombinant HBc VLPs. This finding may have an essential impact on the development of the set of Silica-adjuvanted vaccines based on a long list of HBc-derived virus-like particles as the biological component. PMID:25436773
... silica, and requires a repirator protection program until engineering controls are implemented. Additionally, OSHA has a National ... silica materials with safer substitutes, whenever possible. ■ Provide engineering or administrative controls, where feasible, such as local ...
Li, Chao; Du, Sitong; Lu, Yiping; Lu, Xiaowei; Liu, Fangwei; Chen, Ying; Weng, Dong; Chen, Jie
2016-01-01
Long term pulmonary exposure to crystalline silica leads to silicosis that manifests progressive interstitial fibrosis, eventually leading to respiratory failure and death. Despite efforts to eliminate silicosis, clinical cases continue to occur in both developing and developed countries. The exact mechanisms of crystalline silica-induced pulmonary fibrosis remain elusive. Herein, we find that 4-1BB is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. Therefore, we explore the role of 4-1BB pathway during crystalline silica-induced lung injury and find that a specific inhibitor blocking the pathway could effectively alleviate crystalline silica-induced lung inflammation and subsequent pulmonary fibrosis in vivo. Compared to controls, the treated mice exhibited reduced Th1 and Th17 responses. The concentrations of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17A following crystalline silica challenge were also reduced in inhibitor-treated mice. Although there was no significant alteration in Th2 cytokines of IL-4 and IL-13, another type of pro-fibrogenic cell, regulatory T cell (Treg) was significantly affected. In addition, one of the major participants in fibrogenesis, fibrocyte recruited less due to the blockade. Furthermore, we demonstrated the decreased fibrocyte recruitment was associated with chemokine reductions in lung. Our study discovers the 4-1BB pathway signaling enhances inflammatory response and promotes pulmonary fibrosis induced by crystalline silica. The findings here provide novel insights into the molecular events that control crystalline silica-induced lung inflammation and fibrosis through regulating Th responses and the recruitment of fibrocytes in crystalline silica-exposed lung. PMID:27698940
Long-term exposure to crystalline silica and risk of heart disease mortality.
Liu, Yuewei; Rong, Yi; Steenland, Kyle; Christiani, David C; Huang, Xiji; Wu, Tangchun; Chen, Weihong
2014-09-01
The association between crystalline silica exposure and risk of heart disease mortality remains less clear. We investigated a cohort of 42,572 Chinese workers who were potentially exposed to crystalline silica and followed from 1960 to 2003. Cumulative silica exposure was estimated by linking a job-exposure matrix to each person's work history. Low-level silica exposure was defined as never having held a job with an exposure higher than 0.1 mg/m. We estimated hazard ratios (HRs) in exposure-response analyses using Cox proportional hazards model. We identified 2846 deaths from heart disease during an average of 35 years follow-up. Positive exposure-response trends were observed for cumulative silica exposure associated with mortality from total heart disease (HRs for increasing quartiles of cumulative silica exposure compared with the unexposed group = 0.89, 1.09, 1.32, 2.10; P for linear trend < 0.001) and pulmonary heart disease (0.92, 1.39, 2.47, 5.46; P for linear trend < 0.001). These positive trends remained among workers with both high- and low-level silica exposure. There was also a positive trend for ischemic heart disease among workers with low-level exposure, with quartile HRs of 1.04, 1.13, 1.52, and 1.60 (P for linear trend < 0.001). Low-level crystalline silica exposure was associated with increased mortality from heart disease, including pulmonary heart disease and ischemic heart disease, whereas high-level exposure mainly increased mortality from pulmonary heart disease. Current permissible exposure limits for crystalline silica in many countries may be insufficient to protect people from deaths due to heart disease.
Abdelhamid, Mohamed A A; Ikeda, Takeshi; Motomura, Kei; Tanaka, Tatsuya; Ishida, Takenori; Hirota, Ryuichi; Kuroda, Akio
2016-11-01
We recently reported that the spore coat protein, CotB1 (171 amino acids), from Bacillus cereus mediates silica biomineralization and that the polycationic C-terminal sequence of CotB1 (14 amino acids), designated CotB1p, serves as a silica-binding tag when fused to other proteins. Here, we reduced the length of this silica-binding tag to only seven amino acids (SB7 tag: RQSSRGR) while retaining its affinity for silica. Alanine scanning mutagenesis indicated that the three arginine residues in the SB7 tag play important roles in binding to a silica surface. Monomeric l-arginine, at concentrations of 0.3-0.5 M, was found to serve as a competitive eluent to release bound SB7-tagged proteins from silica surfaces. To develop a low-cost, silica-based affinity purification procedure, we used natural volcanic ash particles with a silica content of ∼70%, rather than pure synthetic silica particles, as an adsorbent for SB7-tagged proteins. Using green fluorescent protein, mCherry, and mKate2 as model proteins, our purification method achieved 75-90% recovery with ∼90% purity. These values are comparable to or even higher than that of the commonly used His-tag affinity purification. In addition to low cost, another advantage of our method is the use of l-arginine as the eluent because its protein-stabilizing effect would help minimize alteration of the intrinsic properties of the purified proteins. Our approach paves the way for the use of naturally occurring materials as adsorbents for simple, low-cost affinity purification. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sun, Bingbing; Wang, Xiang; Liao, Yu-Pei; ...
2016-08-02
Contrary to the notion that the use of fumed silica in consumer products can “generally (be) regarded as safe” (GRAS), the high surface reactivity of pyrogenic silica differs from other forms of synthetic amorphous silica (SAS), including the capacity to induce membrane damage and acute proinflammatory changes in the murine lung. Additionally, the chain-like structure and reactive surface silanols also allow fumed silica to activate the NLRP3 inflammasome, leading to IL-1β production. This pathway is known to be associated with subchronic inflammation and profibrogenic effects in the lung by α-quartz and carbon nanotubes. Different from the latter materials, bolus dosemore » instillation of 21 mg/kg fumed silica did not induce sustained IL-1β production or subchronic pulmonary effects. In contrast, the NLRP3 inflammasome pathway was continuously activated by repetitive-dose administration of 3 × 7 mg/kg fumed silica, 1 week apart. We also found that while single-dose exposure failed to induce profibrotic effects in the lung, repetitive dosing can trigger increased collagen production, even at 3 × 3 mg/kg. The change between bolus and repetitive dosing was due to a change in lung clearance, with recurrent dosing leading to fumed silica biopersistence, sustained macrophage recruitment, and activation of the NLRP3 pathway. These subchronic proinflammatory effects disappeared when less surface-reactive titanium-doped fumed silica was used for recurrent administration. Finally, these data indicate that while fumed silica may be regarded as safe for some applications, we should reconsider the GRAS label during repetitive or chronic inhalation exposure conditions.« less
Occupational Exposure to Crystalline Silica Dust in the United States, 1988–2003
Yassin, Abdiaziz; Yebesi, Francis; Tingle, Rex
2005-01-01
The purposes of this study were a) to summarize measurements of airborne (respirable) crystalline silica dust exposure levels among U.S. workers, b) to provide an update of the 1990 Stewart and Rice report on airborne silica exposure levels in high-risk industries and occupations with data for the time period 1988–2003, c) to estimate the number of workers potentially exposed to silica in industries that the Occupational Safety and Health Administration (OSHA) inspected for high exposure levels, and d) to conduct time trend analyses on airborne silica dust exposure levels for time-weighted average (TWA) measurements. Compliance inspection data that were taken from the OSHA Integrated Management Information System (IMIS) for 1988–2003 (n = 7,209) were used to measure the airborne crystalline silica dust exposure levels among U.S. workers. A second-order autoregressive model was applied to assess the change in the mean silica exposure measurements over time. The overall geometric mean of silica exposure levels for 8-hr personal TWA samples collected during programmed inspections was 0.077 mg/m3, well above the applicable American Conference of Governmental Industrial Hygienists threshold limit value of 0.05 mg/m3. Surgical appliances supplies industry [Standard Industrial Classification (SIC) 3842] had the lowest geometric mean silica exposure level of 0.017 mg/m3, compared with the highest level, 0.166 mg/m3, for the metal valves and pipe fitting industry (SIC 3494), for an 8-hr TWA measurement. Although a downward trend in the airborne silica exposure levels was observed during 1988–2003, the results showed that 3.6% of the sampled workers were exposed above the OSHA-calculated permissible exposure limit. PMID:15743711
Laser-induced bulk damage of silica glass at 355nm and 266nm
NASA Astrophysics Data System (ADS)
Kashiwagi, R.; Aramomi, S.
2016-12-01
Laser processing machines using Nd:YAG 3rd harmonic wave (355 nm) and 4th harmonic wave (266 nm) have been developed and put into practical use lately. Due to this, optical elements with high laser durability to 355 nm and 266 nm are required. Silica glass is the optical element which has high UV transmission and high laser durability. Laser-induced surface damage of the silica glass has been studied in detail, but we hardly have the significant knowledge of laserinduced bulk damage. This knowledge is required in order to evaluate the silica glass itself. That is because cracks and scratches on the surface give rise to a higher possibility of damage. Therefore, we studied the laser durability of a variety of the silica glass samples by 1-on-1 and S-on-1 laser-induced bulk damage threshold (LIDT) at 355 nm and 266 nm. In this study, we gained knowledge in three areas about bulk damage to the silica glass. First, the LIDT became lower as shot counts increased. Second, the LIDT decreased as the hydroxyl content in the silica glass increased. Last, the LIDT became higher as the hydrogen concentration in the silica glass increased. Under the UV irradiation, impurities are generated and the silica glass absorbs more light. Therefore, the LIDT decreased as shot counts increased. Also, the hydroxyl in particular generates more impurities, so damage easily occurs. On the other hand, the hydrogen reacts with impurities and absorption is suppressed. Based on these results, we can improve laser durability at 355 nm and 266 nm by reducing the hydroxyl content and increasing the hydrogen concentration in the silica glass.
Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai
2015-04-01
Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.
Li, Chao; Du, Sitong; Lu, Yiping; Lu, Xiaowei; Liu, Fangwei; Chen, Ying; Weng, Dong; Chen, Jie
2016-01-01
Long term pulmonary exposure to crystalline silica leads to silicosis that manifests progressive interstitial fibrosis, eventually leading to respiratory failure and death. Despite efforts to eliminate silicosis, clinical cases continue to occur in both developing and developed countries. The exact mechanisms of crystalline silica-induced pulmonary fibrosis remain elusive. Herein, we find that 4-1BB is induced in response to crystalline silica injury in lungs and that it is highly expressed during development of experimental silicosis. Therefore, we explore the role of 4-1BB pathway during crystalline silica-induced lung injury and find that a specific inhibitor blocking the pathway could effectively alleviate crystalline silica-induced lung inflammation and subsequent pulmonary fibrosis in vivo. Compared to controls, the treated mice exhibited reduced Th1 and Th17 responses. The concentrations of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), including tumor necrosis factor (TNF)-α, interferon (IFN)-γ and interleukin (IL)-17A following crystalline silica challenge were also reduced in inhibitor-treated mice. Although there was no significant alteration in Th2 cytokines of IL-4 and IL-13, another type of pro-fibrogenic cell, regulatory T cell (Treg) was significantly affected. In addition, one of the major participants in fibrogenesis, fibrocyte recruited less due to the blockade. Furthermore, we demonstrated the decreased fibrocyte recruitment was associated with chemokine reductions in lung. Our study discovers the 4-1BB pathway signaling enhances inflammatory response and promotes pulmonary fibrosis induced by crystalline silica. The findings here provide novel insights into the molecular events that control crystalline silica-induced lung inflammation and fibrosis through regulating Th responses and the recruitment of fibrocytes in crystalline silica-exposed lung.
Silica Coating of Nonsilicate Nanoparticles for Resin-Based Composite Materials
Kaizer, M.R.; Almeida, J.R.; Gonçalves, A.P.R.; Zhang, Y.; Cava, S.S.; Moraes, R.R.
2016-01-01
This study was designed to develop and characterize a silica-coating method for crystalline nonsilicate ceramic nanoparticles (Al2O3, TiO2, and ZrO2). The hypothesis was that the coated nonsilicate nanoparticles would stably reinforce a polymeric matrix due to effective silanation. Silica coating was applied via a sol-gel method, with tetraethyl orthosilicate as a silica precursor, followed by heat treatment. The chemical and microstructural characteristics of the nanopowders were evaluated before and after silica coating through x-ray diffraction, BET (Brunauer-Emmett-Teller), energy-dispersive x-ray spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy analyses. Coated and noncoated nanoparticles were silanated before preparation of hybrid composites, which contained glass microparticles in addition to the nanoparticles. The composites were mechanically tested in 4-point bending mode after aging (10,000 thermal cycles). Results of all chemical and microstructural analyses confirmed the successful obtaining of silica-coated nanoparticles. Two distinct aspects were observed depending on the type of nanoparticle tested: 1) formation of a silica shell on the surface of the particles and 2) nanoparticle clusters embedded into a silica matrix. The aged hybrid composites formulated with the coated nanoparticles showed improved flexural strength (10% to 30% higher) and work of fracture (35% to 40% higher) as compared with composites formulated with noncoated nanoparticles. The tested hypothesis was confirmed: silanated silica-coated nonsilicate nanoparticles yielded stable reinforcement of dimethacrylate polymeric matrix due to effective silanation. The silica-coating method presented here is a versatile and promising novel strategy for the use of crystalline nonsilicate ceramics as a reinforcing phase of polymeric composite biomaterials. PMID:27470069
Multifunctional mesoporous silica catalyst
Lin, Victor Shang-Yi; Tsai, Chih-Hsiang; Chen, Hung-Ting; Pruski, Marek; Kobayashi, Takeshi
2015-03-31
The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles ("MSN"), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.
... metal ores. Silica is a main part of sand, so glass workers and sand-blasters are also exposed to silica. Three types ... Glass manufacturing Mining Quarrying Road and building construction Sand blasting Stone cutting Intense exposure to silica can ...
Shock-wave equation-of-state measurements in fused silica up to 1600 GPa
McCoy, C. A.; Gregor, M. C.; Polsin, D. N.; ...
2016-06-02
The properties of silica are important to geophysical and high-pressure equation of state research. The most prevalent crystalline form, α-quartz, has been extensively studied to TPa pressures. Recent experiments with amorphous silica, commonly referred to as fused silica, provided Hugoniot and reflectivity data up to 630 GPa using magnetically-driven aluminum impactors. This article presents measurements of the fused silica Hugoniot over the range from 200 to 1600 GPa using laser-driven shocks with a quartz standard. These results extend the measured Hugoniot of fused silica to higher pressures, but more importantly, in the 200-600 GPa range, the data are very goodmore » agreement with those obtained with a different driver and standard material. As a result, a new shock velocity-particle velocity relation is derived to fit the experimental data.« less
Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.
Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu
2017-09-01
Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.
Mineralization dynamics of metakaolin-based alkali-activated cements
Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.
2017-01-01
This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.
NASA Astrophysics Data System (ADS)
Utama, P. S.; Saputra, E.; Khairat
2018-04-01
Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-05-07
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.
Liu, Yuewei; Steenland, Kyle; Rong, Yi; Hnizdo, Eva; Huang, Xiji; Zhang, Hai; Shi, Tingming; Sun, Yi; Wu, Tangchun; Chen, Weihong
2013-11-01
Crystalline silica has been classified as a human carcinogen by the International Agency for Research on Cancer (Lyon, France); however, few previous studies have provided quantitative data on silica exposure, silicosis, and/or smoking. We investigated a cohort in China (in 1960-2003) of 34,018 workers without exposure to carcinogenic confounders. Cumulative silica exposure was estimated by linking a job-exposure matrix to work history. Cox proportional hazards model was used to conduct exposure-response analysis and risk assessment. During a mean 34.5-year follow-up, 546 lung cancer deaths were identified. Categorical analyses by quartiles of cumulative silica exposure (using a 25-year lag) yielded hazard ratios of 1.26, 1.54, 1.68, and 1.70, respectively, compared with the unexposed group. Monotonic exposure-response trends were observed among nonsilicotics (P for trend < 0.001). Analyses using splines showed similar trends. The joint effect of silica and smoking was more than additive and close to multiplicative. For workers exposed from ages 20 to 65 years at 0.1 mg/m(3) of silica exposure, the estimated excess lifetime risk (through age 75 years) was 0.51%. These findings confirm silica as a human carcinogen and suggest that current exposure limits in many countries might be insufficient to protect workers from lung cancer. They also indicate that smoking cessation could help reduce lung cancer risk for silica-exposed individuals.
Agmatine attenuates silica-induced pulmonary fibrosis.
El-Agamy, D S; Sharawy, M H; Ammar, E M
2014-06-01
There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p < 0.001) and reduced glutathione (p < 0.05) activities with significant decrease in the lung malondialdehyde (p < 0.001) content as compared to the silica group. Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.
Energy Landscape of Water and Ethanol on Silica Surfaces
Wu, Di; Guo, Xiaofeng; Sun, Hui; ...
2015-06-26
Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δh ads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually untilmore » reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less
Snyder, James A; Abramyan, Tigran; Yancey, Jeremy A; Thyparambil, Aby A; Wei, Yang; Stuart, Steven J; Latour, Robert A
2012-12-01
Adsorption free energies for eight host-guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5-9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface.
Snyder, James A.; Abramyan, Tigran; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.
2012-01-01
Adsorption free energies for eight host–guest peptides (TGTG-X-GTGT, with X = N, D, G, K, F, T, W, and V) on two different silica surfaces [quartz (100) and silica glass] were calculated using umbrella sampling and replica exchange molecular dynamics and compared with experimental values determined by atomic force microscopy. Using the CHARMM force field, adsorption free energies were found to be overestimated (i.e., too strongly adsorbing) by about 5–9 kcal/mol compared to the experimental data for both types of silica surfaces. Peptide adsorption behavior for the silica glass surface was then adjusted using a modified version of the CHARMM program, which we call dual force-field CHARMM, which allows separate sets of nonbonded parameters (i.e., partial charge and Lennard-Jones parameters) to be used to represent intra-phase and inter-phase interactions within a given molecular system. Using this program, interfacial force field (IFF) parameters for the peptide-silica glass systems were corrected to obtain adsorption free energies within about 0.5 kcal/mol of their respective experimental values, while IFF tuning for the quartz (100) surface remains for future work. The tuned IFF parameter set for silica glass will subsequently be used for simulations of protein adsorption behavior on silica glass with greater confidence in the balance between relative adsorption affinities of amino acid residues and the aqueous solution for the silica glass surface. PMID:22941539
NASA Astrophysics Data System (ADS)
Han, Lu; Gao, Chuanbo; Wu, Xiaowei; Chen, Qianru; Shu, Peng; Ding, Zhiguang; Che, Shunai
2011-04-01
Silica hollow spheres with different shell porosity were simply synthesized with micelle and emulsion dual templating route. Various anionic surfactants, such as palmitic acid (C 16AA), N-acyl- L-phenylalanine (C 18Phe), N-palmitoyl- L-alanine (C 16AlaA) and oleic acid (OA) have been used as templates, and 3-aminopropyl-triethoxysilane (APES) and tetraethyl orthosilicate (TEOS) have been used as co-structure directing agent (CSDA) and silica source, respectively. The circle lamellar layer structure and mesopores vertical to the silica hollow spheres surface are believed to originate from the initial formation of amphiphilic carboxylic acid oil drop, which afterwards self-assemble to form the shell of hollow spheres and its mesostructure upon addition of CSDA and silica source. The mesoporous silica hollow spheres with high porosity could be achieved by adding a moderate amount of ethanol in the OA synthesis system, depending on the co-surfactant effect of ethanol that changes the curvature of micelles. The particle diameter and the hollow structure have been controlled by choosing different templates and by manipulating synthesis gel composition. The average particle diameter of the mesoporous silica hollow spheres were controlled in the range of 80-220 nm with constant shell thickness of ˜20 nm and constant mesopore size of ˜4 nm. Besides, the formation of the silica hollow spheres has been investigated in detail with reaction time. These mesoporous silica hollow spheres would have potential applications on catalysis, bimolecular encapsulation, adsorption, drug release, etc.
Biomimetic silica encapsultation of living cells
NASA Astrophysics Data System (ADS)
Jaroch, David Benjamin
Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.
Culver, James N; Royston, Elizabeth; Brown, Adam; Harris, Michael
2013-02-26
The present invention relates to a system and method providing for increased silica growth on a bio-template, wherein the bio-template is pretreated with aniline to produce a uniform silica attractive surface and yielding a significant silica layers of at least 10 nm, and more preferably at least 20 nm in thickness, thereby providing for a high degree of stability to the bio-template.
Embedding Luminescent Nanocrystals in Silica Sol-Gel Matrices
2006-01-01
procedure necessary to form low-density silica aerogels using supercritical drying procedures. The resulting aerogel networks show a high surface area...reactions. Recent research that just begins to delve into the subject of taking quantum dot semiconductors in silica aerogels was published in...surface of the QD is desirable. As such, ultra low-density silica aerogel materials are an excellent medium for sensor applications as they can be
Using Silica Sol as a Nanoglue to Prepare Nanoscale Mesoporous Composite Gel and Aerogels
2000-03-31
solution-phase reactants remain unaltered. Furthermore, the composite constitutes a rigid solid architecture, such that the silica aerogel structure...nm) was immobilized in a silica aerogel structure according to the method of the present invention. The optical properties of 9 these materials...Aerogel Preparation. Acid- and base-catalyzed silica aerogels were prepared by procedures similarto those previously published in Russo et al.J.Non
Silica biomineralization via the self-assembly of helical biomolecules.
Liu, Ben; Cao, Yuanyuan; Huang, Zhehao; Duan, Yingying; Che, Shunai
2015-01-21
The biomimetic synthesis of relevant silica materials using biological macromolecules as templates via silica biomineralization processes attract rapidly rising attention toward natural and artificial materials. Biomimetic synthesis studies are useful for improving the understanding of the formation mechanism of the hierarchical structures found in living organisms (such as diatoms and sponges) and for promoting significant developments in the biotechnology, nanotechnology and materials chemistry fields. Chirality is a ubiquitous phenomenon in nature and is an inherent feature of biomolecular components in organisms. Helical biomolecules, one of the most important types of chiral macromolecules, can self-assemble into multiple liquid-crystal structures and be used as biotemplates for silica biomineralization, which renders them particularly useful for fabricating complex silica materials under ambient conditions. Over the past two decades, many new silica materials with hierarchical structures and complex morphologies have been created using helical biomolecules. In this review, the developments in this field are described and the recent progress in silica biomineralization templating using several classes of helical biomolecules, including DNA, polypeptides, cellulose and rod-like viruses is summarized. Particular focus is placed on the formation mechanism of biomolecule-silica materials (BSMs) with hierarchical structures. Finally, current research challenges and future developments are discussed in the conclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine
Sun, Jie; Jakobsson, Eric; Wang, Yingxiao; ...
2015-01-19
In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interiormore » structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.« less
Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jie; Jakobsson, Eric; Wang, Yingxiao
In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interiormore » structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.« less
NASA Astrophysics Data System (ADS)
Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma
2014-02-01
Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.
NASA Astrophysics Data System (ADS)
Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul
2018-05-01
The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.
Chen, Yiqing; Zhou, Qingtao; Jiang, Haifeng; Su, Yong; Xiao, Haihua; Zhu, Li-Ang; Xu, Liang
2006-02-28
Large area, aligned amorphous silica nanowires grow on the inner wall of bubble-like silica film, which is prepared by thermal evaporation of a molten gallium-silicon alloy in a flow of ammonia. These nanowires are 10-20 nm in diameter and 0.5-1.5 µm in length. The bubble-like silica film functions as a substrate, guiding the growth of silica nanowires by a vapour-solid process. This work helps us to clearly elucidate the growth mechanism of aligned amorphous silica nanowires, ruling out the possibility of liquid gallium acting as a nucleation substrate for the growth of the aligned silica nanowires. A broad emission band from 290 to 600 nm is observed in the photoluminescence (PL) spectrum of these nanowires. There are seven PL peaks: two blue emission peaks at 430 nm (2.88 eV) and 475 nm (2.61 eV); and five ultraviolet emission peaks at 325 nm (3.82 eV), 350 nm (3.54 eV), 365 nm (3.40 eV), 385 nm (3.22 eV) and 390 nm (3.18 eV), which may be related to various oxygen defects.
Three-dimensional printing of transparent fused silica glass
NASA Astrophysics Data System (ADS)
Kotz, Frederik; Arnold, Karl; Bauer, Werner; Schild, Dieter; Keller, Nico; Sachsenheimer, Kai; Nargang, Tobias M.; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E.
2017-04-01
Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.
Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry.
Nistor, Cristina Lavinia; Ianchis, Raluca; Ghiurea, Marius; Nicolae, Cristian-Andi; Spataru, Catalin-Ilie; Culita, Daniela Cristina; Pandele Cusu, Jeanina; Fruth, Victor; Oancea, Florin; Donescu, Dan
2016-01-05
The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA). The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent's molar ratio. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.
NASA Astrophysics Data System (ADS)
Gehlen, M.; Beck, L.; Calas, G.; Flank, A.-M.; Van Bennekom, A. J.; Van Beusekom, J. E. E.
2002-05-01
We used X-ray absorption spectroscopy at the Al K-edge to investigate the atomic structure of biogenic silica and to assess the effect of Al on its crystal chemistry. Our study provides the first direct evidence for a structural association of Al and Si in biogenic silica. In samples of cultured diatoms, Al is present exclusively in fourfold coordination. The location and relative intensity of X-ray absorption near-edge structure (XANES) features suggests the structural insertion of tetrahedral Al inside the silica framework synthesized by the organism. In diatom samples collected in the marine environment, Al is present in mixed six- and fourfold coordination. The relative intensity of XANES structures indicates the coexistence of structural Al with a clay component, which most likely reflects sample contamination by adhering mineral particles. Extended X-ray absorption fine structure spectroscopy has been used to get Al-O distances in biogenic silica of cultured diatoms, confirming a tetrahedral coordination. Because of its effect on solubility and reaction kinetics of biogenic silica, the structural association between Al and biogenic silica at the stage of biosynthesis has consequences for the use of sedimentary biogenic silica as an indicator of past environmental conditions.
NASA Astrophysics Data System (ADS)
Purwaningsih, Hariyati; Pratiwi, Vania Mitha; Purwana, Siti Annisa Bani; Nurdiansyah, Haniffudin; Rahmawati, Yenny; Susanti, Diah
2018-04-01
Rice husk is an agricultural waste that is potentially used as natural silica resources. Natural silica claimed to be safe in handling, cheap and can be generate from cheap resource. In this study mesoporous silica was synthesized using sodium silicate extracted from rice husk ash. This research's aim are to study the optimization of silica extraction from rice husk, characterizing mesoporous silica from sol-gel method and surfactant templating from rice husk and the effect of hydrothermal temperature on mesoporous silica nanoparticle (MSNp) formation. In this research, rice husk was extracted with sol-gel method and was followed by hydrothermal treatment; several of hydrothermal temperatures were 85°C, 100°C, 115°C, 130°C and 145° for 24 hours. X-ray diffraction analysis was identified of α-SiO2 phase and NaCl compound impurities. Scherer's analysis method for crystallite size have resulted 6.27-40.3 nm. FTIR results of silica from extraction and MSNp indicated Si-O-Si bonds on the sample. SEM result showed the morphology of the sample that has spherical shape and smooth surface. TEM result showed particle size ranged between 69,69-84,42 nm. BET showed that the pore size classified as mesoporous with pore diameter size is 19,29 nm.
Lovering, T.G.; Patten, L.E.
1962-01-01
The effect of 1 atm of CO2 over initially neutral solutions supersaturated with silica, at room temperature, as contrasted with 1 atm of air was determined over a period of 5 months, together with changes brought about by the introduction of calcite and dolomite to these solutions in the form of either chips or finely ground powder. In the absence of CO2 all solutions quickly reached equilibrium and no silica precipitated. In the presence of CO2 approximately two-thirds of the silica precipitated as silica gel within the first 2 months; the amount of silica precipitated was not affected by the presence of limestone or dolomite. Silica gel precipitated as a fine powder in the presence of finely ground calcite and dolomite, but as a cloudy gelatinous mass in the presence of coarse chips of dolomite and calcite, and in the absence of either calcite or dolomite. Preferential leaching of calcium from dolomite took place, both in the presence of air and in the presence of CO2, but was more pronounced in the presence of air. There was no evidence of physical replacement of either limestone or dolomite by precipitated silica. ?? 1962.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu Fengyu; Chemistry and Pharmaceutical College, Jiamusi University, Jiamusi 154007; Zhu Guangshan
2006-07-15
A series of mesoporous silica materials with similar pore sizes, different morphologies and variable pore geometries were prepared systematically. In order to control drug release, ibuprofen was employed as a model drug and the influence of morphology and pore geometry of mesoporous silica on drug release profiles was extensively studied. The mesoporous silica and drug-loaded samples were characterized by X-ray diffraction, Fourier transform IR spectroscopy, N{sub 2} adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. It was found that the drug-loading amount was directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drugmore » release profiles could be controlled by tailoring the morphologies of mesoporous silica carriers. - Graphical abstract: The release of ibuprofen is controlled by tailoring the morphologies of mesoporous silica. The mesoporous silica and drug-loaded samples are characterized by powder X-ray diffraction, Fourier transform IR spectroscopy, N{sub 2} adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The drug-loading amount is directly correlated to the Brunauer-Emmett-Teller surface area, pore geometry, and pore volume; while the drug release profiles can be controlled by tailoring the morphologies of mesoporous silica carriers.« less
Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression
NASA Astrophysics Data System (ADS)
Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping
2015-10-01
Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.
Shoeb, Mohammad; Joseph, Pius; Kodali, Vamsi; Mustafa, Gul; Farris, Breanne Y; Umbright, Christina; Roberts, Jenny R; Erdely, Aaron; Antonini, James M
2017-12-11
Exposure to silica can cause lung fibrosis and cancer. Identification of molecular targets is important for the intervention and/or prevention of silica-induced lung diseases. Telomeres consist of tandem repeats of DNA sequences at the end of chromosomes, preventing chromosomal fusion and degradation. Regulator of telomere length-1 (RTEL1) and telomerase reverse transcriptase (TERT), genes involved in telomere regulation and function, play important roles in maintaining telomere integrity and length. The goal of this study was to assess the effect of silica inhalation on telomere length and the regulation of RTEL1 and TERT. Lung tissues and blood samples were collected from rats at 4, 32, and 44 wk after exposure to 15 mg/m 3 of silica × 6 h/d × 5 d. Controls were exposed to air. At all-time points, RTEL1 expression was significantly decreased in lung tissue of the silica-exposed animals compared to controls. Also, significant increases in telomere length and TERT were observed in the silica group at 4 and 32 wk. Telomere length, RTEL1 and TERT expression may serve as potential biomarkers related to silica exposure and may offer insight into the molecular mechanism of silica-induced lung disease and tumorigeneses.
Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.
Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio
2008-09-02
Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.
Silica in Opal at Buckskin and Greenhorn on Mount Sharp
2015-12-17
This graph presents information from the NASA Curiosity Mars rover's onboard analysis of rock powder drilled from the "Buckskin" and "Greenhorn" target locations on lower Mount Sharp. Buckskin, in the "Marias Pass" area, and Greenhorn, in the "Bridger Basin" area, both contain high concentrations of silica. X-ray diffraction analysis of powered samples inside Curiosity's Chemistry and Mineralogy (CheMin) instrument revealed that each of them contains silica in the form of noncrystalline opal. The broad hump in the two X-ray diffraction patterns is diagnostic of opaline silica. Some of the silica in Buckskin is in the form of tridymite. http://photojournal.jpl.nasa.gov/catalog/PIA20273
Direct Observation Of Nanoparticle-Surfactant Interactions Using Small Angle Neutron Scattering
NASA Astrophysics Data System (ADS)
Kumar, Sugam; Aswal, V. K.
2010-12-01
Interactions of anionic silica nanoparticles with anionic, cationic and nonionic surfactants have directly been studied by contrast variation small angle neutron scattering (SANS). The measurements are performed on 1 wt% of both silica nanoparticles and surfactants of anionic sodium dodecyle sulphate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB) and non-ionic polyoxyethylene 10 lauryl ether (C12E10) in aqueous solution. We show that there is no direct interaction in the case of SDS with silica particles, whereas strong interaction for DTAB leads to the aggregation of silica particles. The interaction of C12E10 is found through the micelles adsorbed on the silica particles.
Coated Fused Silica Fibers for Enhanced Sensitivity Torsion Pendulum
NASA Technical Reports Server (NTRS)
Numata, Kenji; Horowitz, Jordan; Camp, Jordan
2007-01-01
In order to investigate the fundamental thermal noise limit of a torsion pendulum using a fused silica fiber, we systematically measured and modeled the mechanical losses of thin fused silica fibers coated by electrically conductive thin metal films. Our results indicate that it is possible to achieve a thermal noise limit for coated silica lower by a factor between 3 and 9, depending on the silica diameter, compared to the best tungsten fibers available. This will allow a corresponding increase in sensitivity of torsion pendula used for weak force measurements, including the gravitational constant measurement and ground-based force noise testing for the Laser Interferometer Space Antenna (LISA) mission.
Self-assembly of silica nanoparticles by tuning substrate-adsorbate interaction
NASA Astrophysics Data System (ADS)
Utsav, Khanna, Sakshum; Mukhopadhayay, Indrajit; Banerjee, Rupak
2018-05-01
We report on self-assembled nanodisc formations of silica nanoparticles on a surface modified silicon substrate using modified Langmuir-Schafer deposition technique (stamping). The size, inter-particle separation as well as the packing of the silica nanoparticles within the nanodiscs formed spontaneously can be tuned by the surface pressure applied on the water surface. We obtain self-assembled nanodiscs of silica nanoparticle arranged in a hexagonal symmetry. We also observe that by varying the surface pressure of deposition at the water-molecule-air interface we obtain such 2D disc-shaped structure with varying sizes and a packing ratio of the silica nanoparticle.
Measurement and modelization of silica opal optical properties
NASA Astrophysics Data System (ADS)
Avoine, Amaury; Hong, Phan Ngoc; Frederich, Hugo; Aregahegn, Kifle; Bénalloul, Paul; Coolen, Laurent; Schwob, Catherine; Thu Nga, Pham; Gallas, Bruno; Maître, Agnès
2014-03-01
We present the synthesis process and optical characterization of artificial silica opals. The specular reflection spectra are analyzed and compared to band structure calculations and finite difference time domain (FDTD) simulations. The silica optical index is a key parameter to correctly describe an opal and is usually not known and treated as a free parameter. Here we propose a method to infer the silica index, as well as the silica spheres diameter, from the reflection spectra and we validate it by comparison with two independent infrared methods for the index and, scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements for the spheres diameter.
NASA Astrophysics Data System (ADS)
Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.
2017-09-01
Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.
Chen, Chao; Yang, Seung-Tae; Ahn, Wha-Seung; Ryoo, Ryong
2009-06-28
A polyethylenimine-impregnated hierarchical silica monolith exhibited significantly higher CO(2) capturing capacity than other silica-supported amine sorbents, and produced a reversible and durable sorption performance.
NASA Astrophysics Data System (ADS)
Gun'ko, V. M.; Skubiszewska-Zi ęba, J.; Leboda, R.; Voronin, E. F.; Zarko, V. I.; Levitskaya, S. I.; Brei, V. V.; Guzenko, N. V.; Kazakova, O. A.; Seledets, O.; Janusz, W.; Chibowski, S.
2004-04-01
Initial oxides fumed silica, alumina/silica and titania/silica and silica gel and hybrid adsorbents with pyrocarbon formed on these oxide substrates by carbonisation of immobilised (adsorbed or synthesised) polymers such as starch, methyl cellulose, polyvinylpyrrolidone, polystyrene, and polybutylvinyl ether were studied by adsorption, AFM, TEM, and FTIR methods. Polymer/oxide materials were investigated by nitrogen and Pb(II) adsorption, FTIR, and potentiometric titration methods. Analysis of nitrogen adsorption-desorption isotherms by different methods, FTIR spectra, AFM and TEM images of the initial and hybrid adsorbents reveals that the morphology of the substrates significantly changes on carbonisation of oxygen-containing polymers because of hydrothermal treatment of them by water eliminated as a product of pyrolysis. Contribution of own microporosity of pyrocarbon deposits formed on carbonisation of immobilised polymers is greater (dependent on reaction conditions) than that on pyrolysis of low-molecular compounds at the same oxide substrates. Pyrocarbon particles formed on silica gel are larger than those formed on fumed oxides and larger than those formed on silica gel on pyrolysis of low-molecular compounds.
Beauvais, Muriel; Serreau, Laurence; Heitz, Caroline; Barthel, Etienne
2009-03-01
The effect of an aminosilane on the lubricant properties of a C(18) double-chained cationic surfactant has been investigated in the context of glass fiber forming process. The surfactant adsorption was studied on silica by Fourier transform infrared (FT-IR) spectroscopy in the attenuated total reflexion (ATR) mode as a function of the aminosilane concentration in an organic water based formulation (sizing) used to coat the glass fibers during the process. A reciprocating ball-on-plate tribometer was used to compare friction properties of silica in contact with the aminosilane-surfactant mixture and in presence of each component of the sizing. Surface forces were measured between silica and an atomic force microscope (AFM) silicon nitride tip in the sizing and in the pure cationic surfactant solution. The aminosilane on its own has no lubricant property and reduces or even suppresses the cationic surfactant adsorption on silica. However, the silica-silica contact is lubricated even if the infrared spectroscopy does not detect any surfactant adsorption. The repeated contacts and shear due to the friction experiment itself induce accumulation, organization and compactness of surfactant bilayers.
Ahmed, Khalil; Nizami, Shaikh Sirajuddin; Riza, Nudrat Zahid
2013-01-01
A research has been carried out to develop natural rubber (NR) hybrid composites reinforced with marble sludge (MS)/Silica and MS/rice husk derived silica (RHS). The primary aim of this development is to scrutinize the cure characteristics, mechanical and swelling properties of such hybrid composite. The use of both industrial and agricultural waste such as marble sludge and rice husk derived silica has the primary advantage of being eco-friendly, low cost and easily available as compared to other expensive fillers. The results from this study showed that the performance of NR hybrid composites with MS/Silica and MS/RHS as fillers is extremely better in mechanical and swelling properties as compared with the case where MS used as single filler. The study suggests that the use of recently developed silica and marble sludge as industrial and agricultural waste is accomplished to provide a probable cost effective, industrially prospective, and attractive replacement to the in general purpose used fillers like china clay, calcium carbonate, and talc. PMID:25685484
Li, Jing; Guo, Yingyu
2017-04-01
Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Urich, A; Maier, R R J; Mangan, B J; Renshaw, S; Knight, J C; Hand, D P; Shephard, J D
2012-03-12
In this paper the delivery of high power Er:YAG laser pulses through a silica hollow core photonic crystal fibre is demonstrated. The Er:YAG wavelength of 2.94 µm is well beyond the normal transmittance of bulk silica but the unique hollow core guidance allows silica to guide in this regime. We have demonstrated for the first time the ability to deliver high energy pulses through an all-silica fibre at 2.94 µm. These silica fibres are mechanically and chemically robust, biocompatible and have low sensitivity to bending. A maximum pulse energy of 14 mJ at 2.94 µm was delivered through the fibre. This, to our knowledge, is the first time a silica hollow core photonic crystal fibre has been shown to transmit 2.94 μm laser light at a fluence exceeding the thresholds required for modification (e.g. cutting and drilling) of hard biological tissue. Consequently, laser delivery systems based on these fibres have the potential for the realization of novel, minimally-invasive surgical procedures.
Bottoli, Carla B G; Vigna, Camila R M; Fischer, Gerd; Albert, Klaus; Collins, Kenneth E; Collins, Carol H
2004-03-19
Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by the deposition of PMOS, into the pores of HPLC silica. Portions of PMOS-loaded silica were allowed to remain at ambient temperature, without further treatment for 2, 9, 20, 31, 51, 105 and 184 days after preparation to undergo self-immobilization (irreversible adsorption of a layer of polymer on silica at ambient temperature in the absence of initiators). Other portions were subjected to a thermal treatment (100 degrees C for 4h) after 1, 2, 5, 7, 9, 15, 20, 25, 70, 111 and 184 days. Self-immobilized and thermally treated samples were characterized by % C, 29Si cross-polarization magic angle spinning (CP/MAS) NMR spectroscopy and reversed-phase column performance. The results show that thermal immobilization accelerates the distribution and rearrangement of the polymer on the silica surface. However, from the time that a monolayer has been formed by self-immobilization (approximately 100 days for PMOS on Kromasil silica), the thermal treatment does not alter this configuration and, thus, does not change the resulting chromatographic parameters.
NASA Technical Reports Server (NTRS)
Vivod, Stephanie L.; Meador, Mary Ann B.; Nguyen, Baochau N.; Quade, Derek; Randall, Jason; Perry, Renee
2008-01-01
Silica aerogels are desirable materials for many applications that take advantage of their light weight and low thermal conductivity. Addition of a conformal polymer coating which bonds with the amine decorated surface of the silica network improves the strength of the aerogels by as much as 200 times. Even with vast improvement in strength they still tend to undergo brittle failure due to the rigid silica backbone. We hope to increase the flexibility and elastic recovery of the silica based aerogel by altering the silica back-bone by incorporation of more flexible hexane links. To this end, we investigated the use of 1,6-bis(trimethoxysilyl)hexane (BTMSH), a polysilsesquioxane precursor3, as an additional co-reactant to prepare silica gels which were subsequently cross-linked with di-isocyanate. Previously, this approach of adding flexibility by BTMSH incorporation was demonstrated with styrene cross-linked aerogels. In our study, we varied silane concentration, mol % of silicon from BTMSH and di-isocyanate concentration by weight percent to attempt to optimize both the flexibility and the strength of the aerogels.
Rice Husk Ash-Derived Silica Nanofluids: Synthesis and Stability Study
NASA Astrophysics Data System (ADS)
Zhang, Zhiliang; He, Wenxiu; Zheng, Jianzhong; Wang, Guangquan; Ji, Jianbing
2016-11-01
Nanofluids, colloidal suspensions consisting of base fluids and nanoparticles, are a new generation of engineering working fluids. Nanofluids have shown great potential in heat/mass transfer applications. However, their practical applications are limited by the high production cost and low stability. In this study, a low-cost agricultural waste, rice husk ash (RHA), was used as a silicon source to the synthesis of silica nanofluids. First, silica nanoparticles with an average size of 47 nm were synthesized. Next, by dispersing the silica nanoparticles in water with ultrasonic vibration, silica nanofluids were formed. The results indicated that the dispersibility and stability of nanofluids were highly dependent on sonication time and power, dispersant types and concentrations, as well as pH; an optimal experiment condition could result in the highest stability of silica nanofluid. After 7 days storage, the nanofluid showed no sedimentation, unchanged particle size, and zeta potential. The results of this study demonstrated that there is a great potential for the use of RHA as a low-cost renewable resource for the production of stable silica nanofluids.
Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids
Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng
2015-01-01
The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616
NASA Astrophysics Data System (ADS)
Sudjarwo, Wisnu Arfian A.; Bee, Mei Magdayanti F.
2017-06-01
Synthesis of silica gel from waste glass bottles was conducted with aims to characterize the product and to analyze its application forthe reduction of free fatty acid (FFA) on waste cooking oil. Silica source taken from waste glass bottles was synthesized into silica gel by using the sol-gel method. Several types of silica gel were produced with three different weight ratios of waste glass and sodium hydroxide as an extractor. They were: 1:1, 1:2, and 1:3. The results indicated that synthesized silica possessed morphology innano-sizedranging from 85 nm to 459 nm. Adsorption performance was investigated by a batch system atthe temperature between 70°C and 110°C by a range of 10°C in an hour. Analysis of the adsorption characteristic showed that the highest efficiency value of FFA reduction of 91% was obtained by silica gel with ratiosof 1:1 (SG 1) and 1:3 (SG 3). Their performances were also followed by the decline of the refractive index and the density of waste cooking oil.
Properties of Silica-Based Aerogel Substrates and Application to C-Band Circular Patch Antenna
NASA Astrophysics Data System (ADS)
Abdel-Rahman, Mohamed; Haraz, Osama M.; Ashraf, Nadeem; Zia, Muhammad Fakhar; Khaled, Usama; Elsahfiey, Ibrahim; Alshebeili, Saleh; Sebak, Abdel Razik
2018-03-01
Silica aerogel is a lightweight and low-permittivity dielectric material that possesses attractive features for use as an antenna substrate. In this paper, we characterize the radio frequency and microwave dielectric permittivity properties of substrates composed of silica aerogel encapsulated in polymer aerogel in the frequency range from 10 MHz to 8.5 GHz. Characterized silica-based aerogel substrates show relative permittivity values varying between 1.055 and 1.25 and loss tangent values ranging from 5.08 × 10-4 to 0.0206. Silica-based aerogel substrates thus have the potential of use in designing antennas with high gain and large bandwidth. Validation is presented by characterizing the performance of a manufactured C-band circular patch antenna on silica-based aerogel substrate. The performance is also compared to a design that uses Rogers Duroid RT5880 substrate. The results reveal that the silica aerogel substrate antenna at 7.2 GHz provides 1.5 dB increase in gain, 88% enhancement in bandwidth and 68.5% reduction in mass, in comparison with the antenna on RT5880 substrate.
Bioactive and biodegradable silica biomaterial for bone regeneration.
Wang, Shunfeng; Wang, Xiaohong; Draenert, Florian G; Albert, Olga; Schröder, Heinz C; Mailänder, Volker; Mitov, Gergo; Müller, Werner E G
2014-10-01
Biosilica, a biocompatible, natural inorganic polymer that is formed by an enzymatic, silicatein-mediated reaction in siliceous sponges to build up their inorganic skeleton, has been shown to be morphogenetically active and to induce mineralization of human osteoblast-like cells (SaOS-2) in vitro. In the present study, we prepared beads (microspheres) by encapsulation of β-tricalcium phosphate [β-TCP], either alone (control) or supplemented with silica or silicatein, into the biodegradable copolymer poly(d,l-lactide-co-glycolide) [PLGA]. Under the conditions used, ≈5% β-TCP, ≈9% silica, and 0.32μg/mg of silicatein were entrapped into the PLGA microspheres (diameter≈800μm). Determination of the biocompatibility of the β-TCP microspheres, supplemented with silica or silicatein, revealed no toxicity in the MTT based cell viability assay using SaOS-2 cells. The adherence of SaOS-2 cells to the surface of silica-containing microspheres was higher than for microspheres, containing only β-TCP. In addition, the silica-containing β-TCP microspheres and even more pronounced, a 1:1 mixture of microspheres containing β-TCP and silica, and β-TCP and silicatein, were found to strongly enhance the mineral deposition by SaOS-2 cells. Using these microspheres, first animal experiments with silica/biosilica were performed in female, adult New Zealand White rabbits to study the effect of the inorganic polymer on bone regeneration in vivo. The microspheres were implanted into 5mm thick holes, drilled into the femur of the animals, applying a bilateral comparison study design (3 test groups with 4-8 animals each). The control implant on one of the two hind legs contained microspheres with only β-TCP, while the test implant on the corresponding leg consisted either of microspheres containing β-TCP and silica, or a 1:1 mixture of microspheres, supplemented with β-TCP and silica, and β-TCP and silicatein. The results revealed that tissue/bone sections of silica containing implants and implants, composed of a 1:1 mixture of silica-containing microspheres and silicatein-containing microspheres, show an enhanced regeneration of bone tissue around the microspheres, compared to the control implants containing only β-TCP. The formation of new bone induced by the microspheres is also evident from measurements of the stiffness/reduced Young's modulus of the regenerated bone tissue. The reduced Young's modulus of the regenerating bone tissue around the implants was markedly higher for the silica-containing microspheres (1.1MPa), and even more for the 1:1 mixture of the silica- and silicatein-containing microspheres (1.4MPa), compared to the β-TCP microsphere controls (0.4MPa). We propose that based on their morphogenetic activity on bone-forming cells in vitro and the results of the animal experiments presented here, silica/biosilica-based scaffolds are promising materials for bone repair/regeneration. Copyright © 2014 Elsevier Inc. All rights reserved.
Silica Precipitation and Lithium Sorption
Jay Renew
2015-09-20
This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.
Preparation and Characterization of Single Ion Conductors from High Surface Area Fumed Silica
NASA Technical Reports Server (NTRS)
Zhang, H.; Maitra, P.; Liu, B.; Wunder, S. L.; Lin, H.-P.; Salomon, M.; Hagedorn, Norman H. (Technical Monitor)
2002-01-01
Anions that can form dissociative salts with Li(+) have been prepared and covalently attached to high surface area fumed silica. When blended with polyethylene oxide (PEO), the functionalized fumed silica suppresses the crystallization of the PEO, provides dimensional stability, and serves as a single ion conductor. Since functionalized fumed silica is easily dispersed in common polar solvents, it can be incorporated in both the polymer electrolyte and the electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sodipo, Bashiru Kayode; Azlan, Abdul Aziz; Innovation
2015-04-24
Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly relatedmore » to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.« less
UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers.
Simone, Giuseppina; Perozziello, Gerardo
2011-03-01
Nanocomposite layers based on silica nanoparticles and a methacrylate matrix are synthesized by a solvent-free process and characterized in order to realize UV/Vis transparent optical waveguides. Chemical functionalization of the silica nanoparticles permits to interface the polymers and the silica. The refractive index, roughness and wettability and the machinability of the layers can be tuned changing the silica nanoparticle concentration and chemical modification of the surface of the nanoparticles. The optical transparency of the layers is affected by the nanoparticles organization between the organic chains, while it increased proportionally with respect to silica concentration. Nanocomposite layers with a concentration of 40 wt% in silica reached UV transparency for a wavelength of 250 nm. UV/Vis transparent waveguides were micromilled through nanocomposite layers and characterized. Propagation losses were measured to be around 1 dB cm(-1) at a wavelength of 350 nm.
Saboktakin, Amin; Saboktakin, Mohammad Reza
2015-01-01
An 1,4-cis polybutadiene rubber/carboxymethyl starch (CMS)-based silica aerogel nanocomposites as a insulation material was developed that will provide superior thermal insulation properties, flexibility, toughness, durability of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. In this study, reinforced 1,4-cis polybutadiene-CMS-silica aerogel nanocomposites were prepared from a silica aerogel with a surface area 710 m(2) g(-1), a pore size of 25.3 nm and a pore volume of 4.7 cm(3) g(-1). The tensile properties and dynamic mechanical properties of 1,4-cis polybutadiene/CMS nanocomposites were systematically enhanced at low silica loading. Similar improvements in tensile modulus and strength have been observed for 1,4-cis polybutadiene/CMS mesoporous silica aerogel nanocomposites. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantification of Residual Stress from Photonic Signatures of Fused Silica
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Hayward, Maurice; Yost, William E.
2013-01-01
A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress
Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica.
Ji, Yazhou; Caskey, Christopher; Richards, Ryan M
2015-07-09
As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability.
Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica
Ji, Yazhou; Caskey, Christopher; Richards, Ryan M.
2015-01-01
As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability. PMID:26274058
NASA Astrophysics Data System (ADS)
Azmiyawati, C.; Pratiwi, P. I.; Darmawan, A.
2018-04-01
The adsorption capacity of an adsorbent is determined by the adsorbent and the adsorbate properties. The character of the adsorbent will play a major role in its ability to adsorb the corresponding adsorbate. Therefore, in this study we looked at the effects of variations of sodium silicate concentrations on the resulting magnetite silica adsorbent properties. The application of silica coating on the magnetite was carried out through a sol-gel process with sodium silicate and HCl precursors. Based on the characterization data obtained, it was found that the silica coating on magnetite can increase the resistance to acid leaching, increase the particle size, but decrease the magnetic properties of the magnetite. Based on Gas Sorption Analyzer (GSA) and X-ray Difraction (XRD) data it can successively be determined that increase in concentration of sodium silicate will increase the surface area and amorphous structure of the Silica Magnetie.
Spontaneous formation of multiple land-and-groove structures of silica thin films
NASA Astrophysics Data System (ADS)
Takeda, Yasuhiko; Matsuoka, Yoriko; Motohiro, Tomoyoshi
1999-05-01
We found spontaneous formation of microscopic multiple land-and-groove structures of silica thin films. Silica and nickel were simultaneously deposited onto glass substrates from two opposite oblique directions to form columnar structures of silica among which nickel nanoparticles were embedded. Then nickel was dissolved in hydrochloric acid solution. After the dissolution of the nickel particles the columns of silica became very unstable and coalesced to form the multiple land-and-groove structures. The grooves are oriented to the direction perpendicular to the two deposition directions. The distances between the neighboring grooves are fairly uniform, and can be controlled between several hundred nanometers and several microns by changing the film thickness and the ratio of the nickel deposition rate to the silica deposition rate. The process found here may propose a new class of micro fabrication techniques in contrast to the artificial photolithography.
High purity silica reflecting heat shield development
NASA Technical Reports Server (NTRS)
Congdon, W.
1974-01-01
A reflecting heat shield composed of fused silica in which the scattering results from the refractive index mismatch between silica particles and the voids introduced during the fabrication process is developed. Major considerations and conclusions of the development are: the best material to use is Type A, which is capable of ultra-high-purity and which does not show the 0.243 micrometer absorption band; the reflection efficiency of fused silica is decreased at higher temperatures due to the bathochromic shift of the ultraviolet cut-off; for a given silica material, over the wavelength region and particle sizes tested, the monodisperse particle size configurations produce higher reflectances than continuous particle size configurations; and the smaller monodisperse particle size configurations give higher reflectance than the larger ones. A reflecting silica configuration that is an efficient reflector of shock layer radiation at high ablation temperatures is achieved by tailoring the matrix for optimum scattering and using an ultra-high-purity material.
Fused silica reflecting heat shields for outer planet entry probes
NASA Technical Reports Server (NTRS)
Congdon, W. M.; Peterson, D. L.
1975-01-01
The development of slip-cast fused silica is discussed as a heat shield designed to meet the needs of outer-planet entry probes. The distinguishing feature of silica is its ability to reflect the radiation imposed by planetary-entry environments. This reflectivity is particularly sensitive to degradation by the presence of trace amounts of contaminants introduced by the starting materials or by processing. The microstructure of a silica configuration also significantly influences the reflectivity and other thermomechanical properties. The processing techniques attendant on controlling microstructure while maintaining purity are discussed. The selection of a starting material of essential purity precludes the use of purified natural quartz and requires the use of synthetic fused silica. The silica is characterized in a limited combined heating test environment. The surface mass loss is controlled by liquid runoff from a relatively low-temperature melt layer; the reflectance is basically maintained and the material achieves a surprisingly high heat of ablation.
Controlled Dissolution of Phenytoin by Hybridizing with Silica Nanoparticles
NASA Astrophysics Data System (ADS)
Goto, H.; Isobe, T.; Senna, M.
1999-06-01
A sparingly soluble model drug, phenytoin (5,5-diphenyl-hydantoin, denoted as PT), was incorporated during or after hydrolysis and polycondensation of tetra orthoethyl silicate (TEOS) to obtain silica-drug hybrids. We also compare the hybrids obtained by sol-gel process with those obtained by simple adsorption on nonporous silica particles. The initial rate of dissolution in water increases by a factor of 40 with respect to the intact PT by aging silica before drug addition. The IR results show that νC=O in the position 2 of PT and νN-H shift toward the higher wavenumber, showing that intermolecular hydrogen bonds between C=O and N-H are loosened or broken to form new hydrogen bonds between C=O in PT and Si-OH in silica. The dissolution rate of PT is determined by the degree of the breakage of hydrogen bonds between PT molecules and the intensity of the interaction between silica and PT.
NASA Astrophysics Data System (ADS)
Biermann, Amelie; Aubert, Tangi; Baumeister, Philipp; Drijvers, Emile; Hens, Zeger; Maultzsch, Janina
2017-04-01
We investigate the encapsulation of CdSe/CdS quantum dots (QDs) in a silica shell by in situ Raman spectroscopy and find a distinct shift of the CdS Raman signal during the first hours of the synthesis. This shift does not depend on the final silica shell thickness but on the properties of the initial core-shell QD. We find a correlation between the Raman shift rate and the speed of the silica formation and attribute this to the changing configuration of the outermost layers of the QD shell, where an interface to the newly formed silica is created. This dependence of Raman shift rate on the speed of silica formation process will give rise to many possible studies concerning the growth mechanism in the water-in-oil microemulsion, rendering in situ Raman a valuable instrument in monitoring this type of reaction.
High export of dissolved silica from the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Meire, L.; Meire, P.; Struyf, E.; Krawczyk, D. W.; Arendt, K. E.; Yde, J. C.; Juul Pedersen, T.; Hopwood, M. J.; Rysgaard, S.; Meysman, F. J. R.
2016-09-01
Silica is an essential element for marine life and plays a key role in the biogeochemistry of the ocean. Glacial activity stimulates rock weathering, generating dissolved silica that is exported to coastal areas along with meltwater. The magnitude of the dissolved silica export from large glacial areas such as the Greenland Ice Sheet is presently poorly quantified and not accounted for in global budgets. Here we present data from two fjord systems adjacent to the Greenland Ice Sheet which reveal a large export of dissolved silica by glacial meltwater relative to other macronutrients. Upscaled to the entire Greenland Ice Sheet, the export of dissolved silica equals 22 ± 10 Gmol Si yr-1. When the silicate-rich meltwater mixes with upwelled deep water, either inside or outside Greenland's fjords, primary production takes place at increased silicate to nitrate ratios. This likely stimulates the growth of diatoms relative to other phytoplankton groups.
NASA Astrophysics Data System (ADS)
Conti, J.; De Coninck, J.; Ghazzal, M. N.
2018-04-01
The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Ramelan, A. H.; Wardoyo, D. T.; Ichsan, S.; Kristiawan, Y. R.
2018-03-01
The utilization and modification of silica from rice straw as the main ingredient of adsorbent has been studied. The aim of this study was to determine the optimum composition of PVA (polyvinyl alcohol): silica to produce adsorbents with excellent pore characteristics, optimum adsorption efficiency and optimum pH for methyl yellow adsorptions. X-Ray Fluorescence (XRF) analysis results showed that straw ash contains 82.12 % of silica (SiO2). SAA (Surface Area Analyzer) analysis showed optimum composition ratio 5:5 of PVA: silica with surface area of 1.503 m2/g. Besides, based on the pore size distribution of PVA: silica (5:5) showed the narrow pore size distribution with the largest pore cumulative volume of 2.8 x 10-3 cc/g. The optimum pH for Methanyl Yellow adsorption is pH 2 with adsorption capacity = 72.1346%.
Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels
NASA Technical Reports Server (NTRS)
Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun
2010-01-01
Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the carboxyl groups of the organic phase. The polymerization process has been adapted to create interpenetrating PMA and silica-gel networks from monomers and prevent any phase separations that could otherwise be caused by an overgrowth of either phase. Typically, the resulting PMA/silica aerogel, without or with fiber reinforcement, has a density and a thermal conductivity similar to those of pure silica aerogels. However, the PMA enhances mechanical properties. Specifically, flexural strength at rupture is increased to 102 psi (=0.7 MPa), about 50 times the flexural strength of typical pure silica aerogels. Resistance to compression is also increased: Applied pressure of 17.5 psi (=0.12 MPa) was found to reduce the thicknesses of several composite PMA/silica aerogels by only about 10 percent.
Environmental and Biomedical Applications of Iron Oxide/Mesoporous Silica Core-Shell Nanocomposites
NASA Astrophysics Data System (ADS)
Egodawatte, Shani Nirasha
Mesoporous silica has shown great potential as an adsorbent for environmental contaminants and as a host for imaging and therapeutic agents. Mesoporous silica materials have a high surface area, tunable pore sizes and well defined surface properties which are governed by the surface hydroxyl groups. Surface modification of the mesoporous silica can tailor the adsorption properties for a specific metal ion or a small drug molecule by providing better sites for chelation or electrostatic interactions. Iron oxide / mesoporous silica core shell materials couple the favorable properties of both the iron oxide and mesoporous silica materials. The core-shell materials have higher adsorption properties compared to the parent material. With magnetic iron oxide nanoparticle cores, an additional magnetic property is introduced that can be used as magnetic recovery or separation. Heavy metals such as Chromium (Cr) and Arsenic (As) discharged from residential and environmental sources pose a serious threat to human health as well as groundwater pollution. In this thesis, iron oxide nanoparticles and nanofibers were coated with mesoporous silica and functionalized with (3-aminopropyl)triethoxysilane (APTES) using the post synthesis grafting method. The parent and the functionalized magnetic silica samples were characterized using powder X-ray diffraction (pXRD), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy and nitrogen adsorption desorption isotherms for surface area and pore volumes. These materials were evaluated for Cr(III) and As(III)/As(V) adsorption from aqueous solutions in the optimum pH range for the specific metal. The aminopropyl functionalized magnetic mesoporous silica displayed the highest adsorption capacity for Cr(III) and Cu(II) of all the materials evaluated in this study. The high heavy metal adsorption capacity was attributed to a synergistic effect of iron oxide nanoparticles and amine functionalization on mesoporous silica as well as a judicious choice of pH. Modified magnetic mesoporous silica material was also found to have high adsorption capacity for high and low pH aqueous solutions of Uranium (VI). Tuning the loading and release of a small drug molecule (5-FU) onto these iron oxide/ mesoporous silica core-shell materials was also investigated. The polarity of the solvent used to load 5-FU onto the host had an impact not only on the loading but also on the release percentage of 5-FU. The synthesis of a novel core-shell material with a hematite nanofiber core and a SBA type mesoporous silica shell was also explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nisr, C.; Leinenweber, K.; Prakapenka, V.
Although it has previously been considered to be essentially anhydrous, Al-free stishovite can contain up to ~1.3 wt % of H2O, perhaps through the direct substitution ( math formula), according to recent studies. Yet the stability of such substitution and its impact on the properties of silica and rutile-structured hydrous phases (such as δ-AlOOH and phase H) are unknown at the conditions of the deeper mantle. We have synthesized hydrous and anhydrous Al-free stishovite samples at 723 K and 9 GPa, and 1473 K and 10 GPa, respectively. Synchrotron X-ray diffraction patterns show that the unit cell volume of hydrousmore » stishovite is 1.3% greater than that of anhydrous stishovite at 1 bar, suggesting significant incorporation of OH in the crystal structure (3.2 ± 0.5 wt % H2O). At 300 K, we found a lower and broader transition pressure from rutile type to CaCl2 type (28–42 GPa) in hydrous dense silica. We also found that hydrous silica polymorphs are more compressible than their anhydrous counterparts. After the phase transition, the unit cell volume of hydrous silica becomes the same as that of anhydrous silica, showing that the proton incorporation through a direct substitution can be further stabilized at high pressure. The lower pressure transition and the pressure stabilization of the proton incorporation in silica would provide ways to transport and store water in the lower mantle in silica-rich heterogeneities, such as subducted oceanic crust.« less
Mesoporous-silica films, fibers, and powders by evaporation
Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun
2008-05-06
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).
A study on modification of nanoporous rice husk silica for hydrophobic nano filter.
Kim, Hee Jin; So, Soo Jeong; Han, Chong Soo
2010-05-01
Nanoporous rice husk silica (RHS) was modified with alkylsilylation reagents, hexamethyldisilazane, diethoxydiphenylsilane, dichlorodimethylsilane and n-octodecyltrimethoxysilane. The silica samples were characterized with Raman spectrometer, thermal gravimetric analyzer, scanning electron microscope, nitrogen adsorption measurement and solid state nuclear magnetic resonance spectrometer. Raman spectra of the modified silica showed growth of the peaks of C-H stretching and CH3 bending at approximateluy 3000 cm(-1) and approximately 1500 cm(-1), respectively. Weight losses of 3 approximately 5% were observed in thermo gravimetric profiles of the modified silica. The microscopic shape of RHS, approximately 20 nm primary particles and their aggregates was almost not changed by the modification but there were colligations of the silica particles in the sample treated with dichlorodimethylsilane or diethoxydiphenylsilane. BET adsorption experiment showed the modification significantly decreased the mean pore size of the silica from approximately 5 nm to approximately 4 nm as well as the pore volume from 0.5 cm3/g to 0.4 cm3/g except the case of treatment with n-octodecyltrimethoxysilane. 29Si Solid NMR Spectra of the silica samples showed that there were decrease in the relative intensities of Q2 and Q3 peaks and large increments in Q4 after the modification except for the case of bulky n-octodecyltrimethoxysilane. From the results, it was concluded that the alkylsilylation reagents reacted with hydroxyl groups on the silica particles as well as in the nano pores while the size of the reagent molecule affected its diffusion and reaction with the hydroxyl groups in the pores.
Mesoporous-silica films, fibers, and powders by evaporation
Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun
1999-01-01
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).
Mesoporous-silica films, fibers, and powders by evaporation
Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.
1999-07-13
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.
Scully, N M; Ashu-Arrah, B A; Nagle, A P; Omamogho, J O; O'Sullivan, G P; Friebolin, V; Dietrich, B; Albert, K; Glennon, J D
2011-04-15
Investigations into the preparation of silica hydride intermediate in supercritical carbon dioxide (sc-CO(2)) that avoids the use of organic solvents such as toluene or dioxane are described. The effects of reaction temperature, pressure and time on the surface coverage of the supercritical fluid generated silica hydride intermediate were studied. Under optimised supercritical conditions of 120°C, 483 bar and 3 h reaction time, silica hydride (Si-H) conversion efficiencies of ca. 40% were achieved for the hydride intermediate prepared from a monofunctional silane reagent (dimethylmethoxysilane). Si-H conversion efficiencies (as determined from (29)Si CP-MAS NMR spectral analysis) for the hydride intermediate prepared from triethoxysilane (TES) in sc-CO(2) were found to be comparable to those obtained using a TES silanisation approach in an organic solvent. (13)C and (29)Si CP-MAS-NMR spectroscopy was employed to provide a complete structural assignment of the silica hydride intermediates. Furthermore, supercritical CO(2) was subsequently employed as a reaction medium for the heterogenous hydrosilation of silica hydride with octadecene and with styrene, in the presence of a free radical initiator. These supercritical fluid generated reversed-phase materials were prepared in a substantially reduced reaction time (3 h) compared to organic solvent based methods (100 h reaction time). Silica functionalisation in sc-CO(2) presents an efficient and clean alternative to organic solvent based methods for the preparation of important silica hydride intermediate and silica bonded stationary phases via a hydrosilation approach. Copyright © 2010 Elsevier B.V. All rights reserved.
Chen, Jun; Wang, Bihang; Zhang, Jialing; Yang, Ruiqi; Fan, Limei
2015-08-04
To establish the research model of ovarian carcinoma in nude mice, and to explore the effect of Paris Phyllin VII combined with silica nano complex on the inhibition and the antioxidant ability of ovarian carcinoma in nude mice. Nude mice models with ovarian carcinoma were established by axillary subcutaneous inoculation of human SKOV3/DDP resistant ovarian cancer cell 200 µl and were used in the experiment. Treating the nude mice with Paris Phyllin VII combined with silica nano complex by gavage for 15 days to observe the weight change of the nude mice, tumor inhibition effect and changes of serum antioxidant capacity. Compared with the negative control group, tumor inhibition rate increased significantly in Paris Phyllin VII combined with silica nano complex treatment group, and was higher than that in both Paris Phyllin VII treatment only and silica nano composites treatment only group. The serum superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) level of Paris Phyllin VII combined with silica nano complex treatment group was significantly higher than that of control group, Paris Phyllin VII treatment only and silica nano composites treatment only group. The serum malonaldehyde (MDA) level of Paris Phyllin VII combined with silica nano complex treatment group was significantly lower than that of the negative control group. Paris Phyllin VII combined with silica nano complex treatment can inhibit the ovarian carcinoma in nude mice, which may mediate by the enhancement of antioxidant capability in nude mice with ovarian cancer.
Pedogenic silica accumulation in chronosequence soils, southern California
Kendrick, K.J.; Graham, R.C.
2004-01-01
Chronosequential analysis of soil properties has proven to be a valuable approach for estimating ages of geomorphic surfaces where no independent age control exists. In this study we examined pedogenic silica as an indicator of relative ages of soils and geomorphic surfaces, and assessed potential sources of the silica. Pedogenic opaline silica was quantified by tiron (4,5-dihydroxy-1,3-benzene-disulfonic acid [disodium salt], C6H 4Na2O8S2) extraction for pedons in two different chromosequences in southern California, one in the San Timoteo Badlands and one in Cajon Pass. The soils of hoth of these chronosequences are developed in arkosic sediments and span 11.5 to 500 ka. The amount of pedogenic silica increases with increasing duration of pedogenesis, and the depth of the maximum silica accumulation generally coincides with the maximum expression of the argillic horizon. Pedogenic silica has accumulated in all of the soils, ranging from 1.2% tiron-extractable Si (Sitn) in the youngest soil to 4.6% in the oldest. Primary Si decreases with increasing duration of weathering, particularly in the upper horizons, where weathering conditions are most intense. The loss of Si coincides with the loss of Na and K, implicating the weathering of feld-spars as the likely source of Si loss. The quantity of Si lost in the upper horizons is adequate to account for the pedogenic silica accumulation in the subsoil. Pedogenic silica was equally effective as pedogenic Fe oxides as an indicator of relative soil age in these soils.
Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa
2013-04-12
Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Selectivity of silica species in ocean observed from seasonal and local changes
NASA Astrophysics Data System (ADS)
Tanaka, Miho; Takahashi, Kazuya; Nemoto, Masao; Horimoto, Naho
2013-03-01
Silicic acids, derived from SiO2 (silica), have several chemical forms in solution. Silica is a nutrient for diatoms, which are phytoplankton in oceans. Silica species can be used as a tracer to examine the behavior of silica in nature. The speciation for silica by FAB-MS (fast atom bombardment mass spectrometry) has been carried out for seawater samples from Tokyo Bay and Sagami Bay to investigate the seasonal and locational changes of the depth profiles of silica species. The species, [Si(OH)2O2Na+]-, [Si2(OH)5O2]- ([dimer]-), [Si2(OH)4O3Na+]-, [Si(OH)7O5-] ([cyclic tetramer]-), [Si4(OH)6O6Na+]-, [Si(OH)9O]- ([linear tetramer]-) and [Si4(OH)8O5Na+]- were mainly identified by FAB-MS. The seasonal and locational changes and the reproducibility of depth profiles of silica species were determined from October 2001 to July 2002. The depth profile of the ratio of linear tetramer to cyclic tetramer reflects the activity of diatoms, implying that the linear tetramer is the preferred "food" for diatoms. In particular, the depth profile for the ratio of linear tetramer to cyclic tetramer exhibits a critical changes that depend on the season. Furthermore, the depth profiles for the samples from Sagami Bay (open ocean) indicate that seawater is easily exchanged by ocean currents (the Japan Current). Thus, silica speciation by FAB-MS can give us a new tracer indicating the characteristics of the seawater budget, which change with depth, season and ocean locality.
Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan
2006-09-06
Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.
Learn about crystalline silica (quartz dust), which can raise your risk of lung cancer. Crystalline silica is present in certain construction materials such as concrete, masonry, and brick and also in commercial products such as some cleansers, cosmetics, pet litter, talcum powder, caulk, and paint.
NASA Astrophysics Data System (ADS)
Ruff, S. W.; Farmer, J. D.
2016-12-01
Hydrothermal spring deposits of silica (sinter) have long been targets in the search for fossil life on Mars and early Earth because of their ability to capture and preserve biosignatures. In 2007, the Spirit rover observed exposures of opaline silica (amorphous SiO2-*nH2O) adjacent to "Home Plate" in the inner basin of the Columbia Hills of Gusev crater. The presence of opaline silica in the context of a succession of volcanic rocks is interpreted as evidence of past volcanic hydrothermal activity. The silica occurs most commonly in nodular masses that have a rubbly appearance but are considered outcrops because of their stratiform expression and resistance to deformation by the rover wheels. An origin via either fumarole-related acid-sulfate leaching or precipitation from hot spring fluids was suggested previously. However, the potential significance of the characteristic nodular and mm-scale digitate opaline silica structures was not recognized. Our new observations of silica sinter deposits from the active volcanic hydrothermal system at El Tatio in northern Chile provide a basis for scale-integrated comparisons to the silica features at Home Plate, including geologic context, mesoscale structures in outcrops, mm-scale textures, and spectral signatures. The physical environment of El Tatio presents a rare combination of high elevation ( 4300 m), low precipitation rate (<100 mm/yr), high mean annual evaporation rate (132 mm), common diurnal freeze-thaw, and extremely high UV irradiance. Such conditions provide a better environmental analog for Mars than those of Yellowstone National Park (USA) and other well-known geothermal sites on Earth. Our results demonstrate that the more Mars-like conditions of El Tatio produce unique deposits with characteristics that compare favorably with the Home Plate silica outcrops. Halite (NaCl) encrusts the silica at El Tatio yielding thermal infrared spectra that are the best match yet to spectra from Spirit. Furthermore, the nodular and digitate silica structures at El Tatio that most closely resemble those on Mars include complex sedimentary structures produced by a combination of biotic and abiotic processes. Although fully abiotic processes are not ruled out for the Martian silica structures, they satisfy an a priori definition of potential biosignatures.
NASA Astrophysics Data System (ADS)
Mills, James G.; Saltoun, Benjamin W.; Vogel, Thomas A.
1997-09-01
The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km 3, respectively) chemically zoned (57-78 wt.% SiO 2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255-352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465-475) and therefore eruption must have occurred soon after emplacement of the magma batches into the chamber. Emplacement temperatures of the pumice fragments from the Ammonia Tanks Tuff show a continuous gradient of temperatures with composition. This continuous temperature gradient is consistent with the model of storage of magma batches in the Ammonia Tanks group that have undergone both thermal and chemical diffusion.
Method of handling radioactive alkali metal waste
Wolson, Raymond D.; McPheeters, Charles C.
1980-01-01
Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.
Silica exposure and silicosis among Ontario hardrock miners: II. Exposure estimates.
Verma, D K; Sebestyen, A; Julian, J A; Muir, D C; Schmidt, H; Bernholz, C D; Shannon, H S
1989-01-01
An epidemiological investigation was carried out to determine the relationship between silicosis in hardrock miners in Ontario and cumulative exposure to silica (free crystalline silica--alpha quartz) dust. This second report describes a side-by-side air-sampling program used to derive a konimeter/gravimetric silica conversion curve. A total of 2,360 filter samples and 90,000 konimeter samples were taken over 2 years in two mines representing the ore types gold and uranium, both in existing conditions as well as in an experimental stope in which dry drilling was used to simulate the high dust conditions of the past. The method of calculating cumulative respirable silica exposure indices for each miner is reported.
Gangwar, Rajesh K; Tomar, Geetanjali B; Dhumale, Vinayak A; Zinjarde, Smita; Sharma, Rishi B; Datar, Suwarna
2013-10-09
Curcumin, a yellow bioactive component of Indian spice turmeric, is known to have a wide spectrum of biological applications. In spite of various astounding therapeutic properties, it lacks in bioavailability mainly due to its poor solubility in water. In this work, we have conjugated curcumin with silica nanoparticles to improve its aqueous solubility and hence to make it more bioavailable. Conjugation and loading of curcumin with silica nanoparticles was further examined with transmission electron microscope (TEM) and thermogravimetric analyzer. Cytotoxicity analysis of synthesized silica:curcumin conjugate was studied against HeLa cell lines as well as normal fibroblast cell lines. This study shows that silica:curcumin conjugate has great potential for anticancer application.
Cellulose-silica/gold nanomaterials for electronic applications.
Kim, Gwang-Hoon; Ramesh, Sivalingam; Kim, Joo-Hyung; Jung, Dongsoo; Kim, Heung Soo
2014-10-01
Cellulose and one dimensional nano-material composite has been investigated for various industrial applications due to their optical, mechanical and electrical properties. In present investigation, cellulose/silica and silica-gold hybrid biomaterials were prepared by sol-gel covalent cross-linking process. The tetraethoxysiliane (TEOS) and gold precursors and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent were used for sol-gel cross-linking process. The chemical and morphological properties of cellulose/silica and cellulose/silica-gold nano-materials via covalent cross-linking hybrids were confirmed by FTIR, XRD, SEM, and TEM analysis. In the sol-gel process, the inorganic particles were dispersed in the cellulose host matrix at the nanometer scale, bonding to the cellulose through the covalent bonds.
Dry powder mixes comprising phase change materials
Salyer, Ival O.
1994-01-01
Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.
Method of handling radioactive alkali metal waste
Wolson, R.D.; McPheeters, C.C.
Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.
Dry powder mixes comprising phase change materials
Salyer, I.O.
1994-02-01
Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.
NASA Astrophysics Data System (ADS)
Yanovska, E. S.; Vretik, L. O.; Nikolaeva, O. A.; Polonska, Y.; Sternik, D.; Kichkiruk, O. Yu.
2017-03-01
Copolymer of 4-vinylpyridine with styrene was in situ immobilized on silica gel surface via the heterogeneous radical polymerization. Anchorage of the copolymer on the surface layer was confirmed by IR spectroscopy. The quantity of copolymer on the silica gel surface was evaluated as 25.73 wt.% by TG and DSC-MS analysis. "Islet" location of polymer layer on the silica surface was confirmed by the scanning electron microscopy. A high adsorption activity of silica gel with immobilized copolymer towards microquantitatives of Cu(II), Cd(II), Pb(II), Fe(III), and Ni(II) ions in steady state conditions as well as of Ni(II) ions in dynamic regime was found.
Yanovska, E S; Vretik, L O; Nikolaeva, O A; Polonska, Y; Sternik, D; Kichkiruk, O Yu
2017-12-01
Copolymer of 4-vinylpyridine with styrene was in situ immobilized on silica gel surface via the heterogeneous radical polymerization. Anchorage of the copolymer on the surface layer was confirmed by IR spectroscopy. The quantity of copolymer on the silica gel surface was evaluated as 25.73 wt.% by TG and DSC-MS analysis. "Islet" location of polymer layer on the silica surface was confirmed by the scanning electron microscopy. A high adsorption activity of silica gel with immobilized copolymer towards microquantitatives of Cu(II), Cd(II), Pb(II), Fe(III), and Ni(II) ions in steady state conditions as well as of Ni(II) ions in dynamic regime was found.
Silica coating of nanoparticles by the sonogel process.
Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting
2008-02-05
A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.
Green synthesis and characterization of size tunable silica-capped gold core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Wangoo, Nishima; Shekhawat, Gajendra; Wu, Jin-Song; Bhasin, Aman K. K.; Suri, C. R.; Bhasin, K. K.; Dravid, Vinayak
2012-08-01
Silica-coated gold nanoparticles (Au@SiO2) with controlled silica-shell thickness were prepared by a modified Stober's method using 10-nm gold nanoparticles (AuNPs) as seeds. The AuNPs were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source and ammonia as a catalyst. An increase in TEOS concentration resulted in an increase in shell thickness. The NPs were characterized by transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectroscopy, scanning near-field ultrasound holography and scanning transmission electron microscopy. The method required no surface modification and the synthesized core shell nanoparticles can be used for various types of biological applications.
Putting Lives on the Line: The Fast Rope Glove Challenge
2012-06-01
conductivity. They were 1) Silica Aerogel , 2) Silica/Ceramic NASA Q-Fiber and 3) Nomex/Kevlar. Silica Aerogel has the lowest thermal conductivity...of any known solid and was recently made into a viable material by the company Aspen Aerogel .3 The other materials have lower conductivity than the...blend and a silica aerogel pad that could be incorporated into the palms and finger pads of the glove. For this evaluation, we tested: • The Superior
Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki
2011-02-01
We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.
Graphene-silica composite thin films as transparent conductors.
Watcharotone, Supinda; Dikin, Dmitriy A; Stankovich, Sasha; Piner, Richard; Jung, Inhwa; Dommett, Geoffrey H B; Evmenenko, Guennadi; Wu, Shang-En; Chen, Shu-Fang; Liu, Chuan-Pu; Nguyen, SonBinh T; Ruoff, Rodney S
2007-07-01
Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiOx/silicon substrates by incorporation of individual graphene oxide sheets into silica sols followed by spin-coating, chemical reduction, and thermal curing. The resulting films were characterized by SEM, AFM, TEM, low-angle X-ray reflectivity, XPS, UV-vis spectroscopy, and electrical conductivity measurements. The electrical conductivity of the films compared favorably to those of composite thin films of carbon nanotubes in silica.
Graphene-silica Composite Thin Films as Transparent Conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watcharotone,S.; Dikin, D.; Stankovich, S.
2007-01-01
Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiO{sub x}/silicon substrates by incorporation of individual graphene oxide sheets into silica sols followed by spin-coating, chemical reduction, and thermal curing. The resulting films were characterized by SEM, AFM, TEM, low-angle X-ray reflectivity, XPS, UV-vis spectroscopy, and electrical conductivity measurements. The electrical conductivity of the films compared favorably to those of composite thin films of carbon nanotubes in silica.
Porous silica nanoparticles as carrier for curcumin delivery
NASA Astrophysics Data System (ADS)
Hartono, Sandy Budi; Hadisoewignyo, Lannie; Irawaty, Wenny; Trisna, Luciana; Wijaya, Robby
2018-04-01
Mesoporous silica nanoparticles (MSN) with large surface areas and pore volumes show great potential as drug and gene carriers. However, there are still some challenging issues hinders their clinical application. Many types of research in the use of mesoporous silica material for drug and gene delivery involving complex and rigorous procedures. A facile and reproducible procedure to prepare combined drug carrier is required. We investigated the effect of physiochemical parameters of mesoporous silica, including structural symmetry (cubic and hexagonal), particles size (micro size: 1-2 µm and nano size: 100 -300 nm), on the solubility and release profile of curcumin. Transmission Electron Microscopy, X-Ray Powder Diffraction, and Nitrogen sorption were used to confirm the synthesis of the mesoporous silica materials. Mesoporous silica materials with different mesostructures and size have been synthesized successfully. Curcumin has anti-oxidant, anti-inflammation and anti-virus properties which are beneficial to fight various diseases such as diabetic, cancer, allergic, arthritis and Alzheimer. Curcumin has low solubility which minimizes its therapeutic effect. The use of nanoporous material to carry and release the loaded molecules is expected to enhance curcumin solubility. Mesoporous silica materials with a cubic mesostructure had a higher release profile and curcumin solubility, while mesoporous silica materials with a particle size in the range of nano meter (100-300) nm also show better release profile and solubility.
Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts
NASA Astrophysics Data System (ADS)
Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.
2012-11-01
The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.
Probing Silica-Biomolecule Interactions by Solid-State NMR and Molecular Dynamics Simulations.
Brückner, Stephan Ingmar; Donets, Sergii; Dianat, Arezoo; Bobeth, Manfred; Gutiérrez, Rafael; Cuniberti, Gianaurelio; Brunner, Eike
2016-11-08
Understanding the molecular interactions between inorganic phases such as silica and organic material is fundamental for chromatographic applications, for tailoring silica-enzyme interactions, and for elucidating the mechanisms of biomineralization. The formation, structure, and properties of the organic/inorganic interface is crucial in this context. Here, we investigate the interaction of selectively 13 C-labeled choline with 29 Si-labeled monosilicic acid/silica at the molecular level. Silica/choline nanocomposites were analyzed by solid-state NMR spectroscopy in combination with extended molecular dynamics (MD) simulations to understand the silica/organic interface. Cross-polarization magic angle spinning (CP MAS)-based NMR experiments like 1 H- 13 C CP-REDOR (rotational-echo double resonance), 1 H- 13 C HETCOR (heteronuclear correlation), and 1 H- 29 Si- 1 H double CP are employed to determine spatial parameters. The measurement of 29 Si- 13 C internuclear distances for selectively 13 C-labeled choline provides an experimental parameter that allows the direct verification of MD simulations. Atomistic modeling using classical MD methodologies is performed using the INTERFACE force field. The modeling results are in excellent agreement with the experimental data and reveal the relevant molecular conformations as well as the nature and interplay of the interactions between the choline cation and the silica surface. Electrostatic interactions and hydrogen bonding are both important and depend strongly on the hydration level as well as the charge state of the silica surface.
Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua
2017-11-01
Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.
2016-07-01
Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.
NASA Astrophysics Data System (ADS)
Kim, Ji-Young; Kim, Kwang Heon; Kim, Kwang Bum
Carbon nanotube (CNT)/polypyrrole (PPy) composites with controlled pore size in a three-dimensional entangled structure of a CNT film are prepared as electrode materials for a pseudocapacitor. A CNT film electrode containing nanosize silica between the CNTs is first fabricated using an electrostatic spray deposition of a mixed suspension of CNTs and nanosize silica on to a platinium-coated silicon wafer. Later, nanosize silica is removed leaving a three-dimensional entangled structure of a CNT film. Before removal of the silica from the CNT/silica film electrode, PPy is electrochemically deposited on to the CNTs to anchor them in their entangled structure. Control of the pore size of the final CNT/PPy composite film can be achieved by changing the amount of silica in the mixed suspension of CNTs and nanosize silica. Nanosize silica acts as a sacrificial filler to change the pore size of the entangled CNT film. Scanning electron microscopy of the electrochemically prepared PPy on the CNT film substrate shows that the PPy nucleated heterogeneously and deposited on the surface of the CNTs. The specific capacitance and rate capability of the CNT/PPy composite electrode with a heavy loading of PPy of around 80 wt.% can be improved when it is made to have a three-dimensional network of entangled CNTs with interconnected pores through pore size control.
Silica and lung cancer: a controversial issue.
Pairon, J C; Brochard, P; Jaurand, M C; Bignon, J
1991-06-01
The role of crystalline silica in lung cancer has long been the subject of controversy. In this article, we review the main experimental and epidemiological studies dealing with this problem. Some evidence for a genotoxic potential of crystalline silica has been obtained in the rare in vitro studies published to date. In vivo studies have shown that crystalline silica is carcinogenic in the rat; the tumour types appear to vary according to the route of administration. In addition, an association between carcinogenic and fibrogenic potency has been observed in various animal species exposed to crystalline silica. An excess of lung cancer related to occupational exposure to crystalline silica is reported in many epidemiological studies, regardless of the presence of silicosis. However, most of these studies are difficult to interpret because they do not correctly take into account associated carcinogens such as tobacco smoke and other occupational carcinogens. An excess of lung cancer is generally reported in studies based on silicosis registers. Overall, experimental and human studies suggest an association between exposure to crystalline silica and an excess of pulmonary malignancies. Although the data available are not sufficient to establish a clear-cut causal relationship in humans, an association between the onset of pneumoconiosis and pulmonary malignancies is probable. In contrast, experimental observations have given rise to a pathophysiological mechanism that might account for a putative carcinogenic potency of crystalline silica.
Molecular modeling of the dissociation of methane hydrate in contact with a silica surface.
Bagherzadeh, S Alireza; Englezos, Peter; Alavi, Saman; Ripmeester, John A
2012-03-15
We use constant energy, constant volume (NVE) molecular dynamics simulations to study the dissociation of the fully occupied structure I methane hydrate in a confined geometry between two hydroxylated silica surfaces between 36 and 41 Å apart, at initial temperatures of 283, 293, and 303 K. Simulations of the two-phase hydrate/water system are performed in the presence of silica, with and without a 3 Å thick buffering water layer between the hydrate phase and silica surfaces. Faster decomposition is observed in the presence of silica, where the hydrate phase is prone to decomposition from four surfaces, as compared to only two sides in the case of the hydrate/water simulations. The existence of the water layer between the hydrate phase and the silica surface stabilizes the hydrate phase relative to the case where the hydrate is in direct contact with silica. Hydrates bound between the silica surfaces dissociate layer-by-layer in a shrinking core manner with a curved decomposition front which extends over a 5-8 Å thickness. Labeling water molecules shows that there is exchange of water molecules between the surrounding liquid and intact cages in the methane hydrate phase. In all cases, decomposition of the methane hydrate phase led to the formation of methane nanobubbles in the liquid water phase. © 2012 American Chemical Society
Anisotropic deformation of metallo-dielectric core shell colloids under MeV ion irradiation
NASA Astrophysics Data System (ADS)
Penninkhof, J. J.; van Dillen, T.; Roorda, S.; Graf, C.; van Blaaderen, A.; Vredenberg, A. M.; Polman, A.
2006-01-01
We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks.
Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El
2014-04-11
The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.
Xu, Hongrui; Xu, Zhendong; Yang, Limin; Wang, Qiuquan
2011-08-01
A novel "one-pot" strategy was developed for the preparation of amino acid (AA)-silica hybrid monolithic column. The basic AA (L-Arginine, L-Lysine and L-Histidine) was covalently incorporated into the silica hybrid skeleton via the epoxy ring-opening reaction between the amine group and the glycidyl moiety in γ-glycidoxypropyltrimethoxysilane (GPTMS), which was confirmed by elemental analysis and FT-IR studies, while the basic AA was also found to catalyze the polycondensation of tetramethoxysilane and GPTMS. The average mesopore and macropore sizes of the prepared basic AA-silica hybrid monolithic columns were 3.86 nm and 1.71 μm for the L-Lysine-silica hybrid monolith, 5.38 nm and 4.24 μm for the L-Arginine-silica hybrid monolith, and 6.38 nm and 1.24 μm for the L-Histidine-silica hybrid monolith. The hybrid monolith afforded a zwitterionic stationary phase for CEC, the direction and magnitude of EOF can be controlled by the pH of the mobile phase used. Besides an electrophoretic mechanism, the monoliths behave in a typical hydrophilic interaction with the analytes when ACN percentage in the mobile phase is over 40%. Four polar compounds (toluene, DMF, formamide and thiourea) were tested on the three AA-silica hybrid monolithic columns, and the best separation efficiency was observed in the L-Lysine-silica hybrid monolithic column, its theoretical plate height was down to 5.7 μm for thiourea when 20 mM HCOOH-HCOONH4 containing 20% ACN (pH 4.1) was used as a running buffer. The corresponding theoretical plate number for toluene, DMF, formamide and thiourea were 123,385, 103,620, 121,845 and 105,345 plates/m, respectively. Effective separation of phenols and peptides on the L-Lysine-silica hybrid monolithic column was achieved using CEC. We believe that this strategy paves a way for the easy preparation of various functional silica hybrid monolithic columns, aiming at different separation purposes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Predicting Raman Spectra of Aqueous Silica and Alumina Species in Solution From First Principles
NASA Astrophysics Data System (ADS)
Hunt, J. D.; Schauble, E. A.; Manning, C. E.
2006-12-01
Dissolved silica and alumina play an important role in lithospheric fluid chemistry. Silica concentrations in aqueous fluids vary over the range of crustal temperatures and pressures enough to allow for significant mass transport of silica via fluid-rock interaction. The polymerization of silica, and the possible incorporation of alumina into the polymer structure, could afford crystal-like or melt-like sites to otherwise insoluble elements such as titanium, leading to enhanced mobility. Raman spectroscopy in a hydrothermal diamond anvil cell (HDAC) has been used to study silica polymerization at elevated pressure and temperature [Ref. 1, 2], but Raman spectra of expected solutes are not fully understood. We calculated Raman spectra of H4SiO4 monomers, H6Si2O7 dimers, and H6SiAlO_7^- dimers, from first principles using hybrid density functional theory (B3LYP). These spectra take into account the variation in bridging angle (Si-O-Si and Si-O-Al angles) that the dimers will have at a given temperature by calculating a potential energy surface of the dimer as the bridging angle varies, and using a Boltzmann distribution at that temperature to determine relative populations at each geometry. Solution effects can be incorporated by using a polarizable continuum model (PCM), and a potential energy surface has been constructed for the silica dimer using a PCM. The bridging angle variation explains the broadness of the 630 cm^-^1 silica dimer peak observed in HDAC experiments [Ref. 1, 2] at high temperatures. The silica-alumina dimer bridging angle is shown to be stiffer than the silica dimer bridging angle, which results in a much narrower main peak. The synthetic spectrum obtained for the silica-alumina dimer suggests that there may be a higher ratio of complexed alumina to free alumina in solution at highly basic pH than previously estimated [Ref. 3]. References: 1. Zotov, N. and H. Keppler, Chemical Geology, 2002. 184: p. 71-82. 2. Zotov, N. and H. Keppler, American Mineralogist, 2000. 85: p. 600-603. 3. Gout, R., et al., Journal of Solution Chemistry, 2000. 29: p. 1173-1186.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Vaeudo V.; Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br
2012-12-15
Mesoporous SBA-16 silicas were synthesized through a direct methodology using the template (F127) combined with co-templates (ethanol and n-butanol), with tetraethylorthosilicate as the silica source. These ordered mesoporous silica were characterized by elemental analyses, infrared spectroscopy, solid-state nuclear magnetic resonance for {sup 13}C (CP/MAS) and {sup 29}Si (HP/DEC) nuclei, nitrogen sorption/desorption processes, small angle X-ray analyses (SAXS) and transmission electron microscopy (TEM). SAXS and TEM results confirmed the space group Im3m and cubic 3D symmetry, typical for highly ordered SBA-16. The sorption/desorption data for SBA-16 and when functionalized gave type IV isotherms, with hysteresis loop H2. Surface areas of 836;more » 657 and 618 m{sup 2} g{sup -1} and average pore diameters of 7.99; 8.10 and 9.85 nm, for SBA-16A, SBA-16B and SBA-16C were obtained, respectively. When functionalized the silicas presented a reduction in surface area, pore volume and pore diameter due to the pendant chains that interfere with nitrogen sorption in these measurements. The co-template ethanol favors the ordered mesopores with highest wall thicknesses. - Graphical Abstract: The mesoporous SBA-16 can be synthesized from binary (F127/TEOS) or ternary (F127/alcohol/TEOs) systems to give well-ordered mesoporous silicas. The co-templates ethanol or butanol gave the final material with highest wall thickness, mainly with ethanol. After these syntheses the pores were successfully organofunctionalized to give a good incorporation of the silylating agents. The final silicas presented of well-arranged solid characteristics as expressing by three distinct peaks, as indexed by the corresponding planes. Highlights: Black-Right-Pointing-Pointer Syntheses of mesoporous silicas by using ternary (F127/agent/TEOS) and binary (F127/TEOS) systems. Black-Right-Pointing-Pointer Use of co-templates to synthesize mesoporous silicas with larger wall thicknesses. Black-Right-Pointing-Pointer Immobilization of pendant chains inside the porous silicas. Black-Right-Pointing-Pointer Ordered mesoposous silicas as new materials for possible applications on sorption and delivering drug systems.« less
NASA Astrophysics Data System (ADS)
Licsandru, Erol-Dan; Schneider, Susanne; Tingry, Sophie; Ellis, Thomas; Moulin, Emilie; Maaloum, Mounir; Lehn, Jean-Marie; Barboiu, Mihail; Giuseppone, Nicolas
2016-03-01
Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water.Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water. Electronic supplementary information (ESI) available: Synthetic protocols, XPS measurements, contact angle measurements, additional cyclic voltammograms and electrochemical impedance spectroscopy. See DOI: 10.1039/c5nr06977g
Richards, John R; Brozell, Todd T; Rea, Charles; Boraston, Geoff; Hayden, John
2009-11-01
The California Construction and Industrial Minerals Association and the National Stone, Sand, & Gravel Association have sponsored tests at three sand and gravel plants in California to compile crystalline silica emission factors for particulate matter (PM) of aerodynamic diameter of 4 microm or less (PM4) and ambient concentration data. This information is needed by industrial facilities to evaluate compliance with the Chronic Reference Exposure Level (REL) for ambient crystalline silica adopted in 2005 by the California Office of Environmental Health Hazard Assessment. The REL applies to PM4 respirable PM. Air Control Techniques, P.C. sampled for PM4 crystalline silica using a conventional sampler for PM of aerodynamic diameter of 2.5 microm or less (PM2.5), which met the requirements of 40 Code of Federal Regulations Part 50, Appendix L. The sample flow rate was adjusted to modify the 50% cut size to 4 microm instead of 2.5 microm. The filter was also changed to allow for crystalline silica analyses using National Institute for Occupational Safety and Health (NIOSH) Method 7500. The particle size-capture efficiency curve for the modified Appendix L instrument closely matched the performance curve of NIOSH Method 0600 for PM4 crystalline silica and provided a minimum detection limit well below the levels attainable with NIOSH Method 0600. The results of the tests indicate that PM4 crystalline silica emissions range from 0.000006 to 0.000110 lb/t for screening operations, tertiary crushers, and conveyor transfer points. The PM4 crystalline silica emission factors were proportional to the crystalline silica content of the material handled in the process equipment. Measured ambient concentrations ranged from 0 (below detectable limit) to 2.8 microg/m3. All values measured above 2 microg/m3 were at locations upwind of the facilities being tested. The ambient PM4 crystalline silica concentrations measured during this study were below the California REL of 3 microg/m3. The measured ambient concentrations in the PM4 size range are consistent with previously published ambient crystalline silica data applicable to the PM2.5 and PM of aerodynamic diameter of 10 microm or less (PM10) size ranges.
Li, Qiang; Tanaka, Yoshiharu; Miwa, Nobuhiko
2017-01-01
In the last decade, many studies have shown that hydrogen gas or hydrogen water can reduce the levels of reactive oxygen species in the living body. Molecular hydrogen has antioxidant and antiapoptotic effects and a preventive effect on oxidative stress-induced cell death. In the present study, we investigated solidified hydrogen-occluding-silica (H 2 -silica) that can release molecular hydrogen into cell culture medium because the use of hydrogen gas has strict handling limitations in hospital and medical facilities and laboratories, owing to its physicochemical characteristics. Human esophageal squamous cell carcinoma (KYSE-70) cells and normal human esophageal epithelial cells (HEEpiCs) were used to investigate the effects of H 2 -silica on cell viability and proliferation. Cell migration was examined with wound healing and culture-insert migration assays. The intracellular levels of reactive oxygen species were evaluated with a nitroblue tetrazolium assay. To assess the apoptotic status of the cells, the Bax/Bcl-2 ratio and cleaved caspase-3 were analyzed by western blot. The results showed that KYSE-70 cells and HEEpiCs were generally inhibited by H 2 -silica administration, and there was a significant proliferation-inhibitory effect in an H 2 -silica concentration-dependent manner compared with the control group ( P < 0.05) in KYSE-70. Apoptosis-inducing effect on KYSE-70 cells was observed in 10, 300, 600, and 1,200 ppm H 2 -silica, and only 1,200 ppm H 2 -silica caused a 2.4-fold increase in apoptosis in HEEpiCs compared with the control group as the index of Bax/Bcl-2. H 2 silica inhibited cell migration in KYSE-70 cells, and high concentrations had a cytotoxic effect on normal cells. These findings should provide insights into the mechanism of inhibition of H 2 -silica on human cancer cells in vitro .
Acid-base equilibria inside amine-functionalized mesoporous silica.
Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio
2011-04-15
Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society
A novel approach for preparation and in situ tensile testing of silica glass membranes in the TEM
NASA Astrophysics Data System (ADS)
Mačković, Mirza; Przybilla, Thomas; Dieker, Christel; Herre, Patrick; Romeis, Stefan; Stara, Hana; Schrenker, Nadine; Peukert, Wolfgang; Spiecker, Erdmann
2017-04-01
The mechanical behavior of glasses in the micro- and/or nanometer regime increasingly gains importance in nowadays modern technology. However, suitable small scale preparation and mechanical testing approaches for a reliable assessment of the mechanical properties of glasses still remain a big challenge. In the present work, a novel approach for site-specific preparation and quantitative in situ tensile testing of thin silica glass membranes in the transmission electron microscope is presented. Thereby, advanced focused ion beam techniques are used for the preparation of nanoscale dog bone shaped silica glass specimens suitable for in situ tensile testing. Small amounts of gallium are detected on the surface of the membranes resulting from redeposition effects during the focused ion beam preparation procedure. Possible structural changes of silica glass upon irradiation with electrons and gallium ions are investigated by controlled irradiation experiments, followed by a structural analysis using Raman spectroscopy. While moderate electron beam irradiation does not alter the structure of silica glass, ion beam irradiation results in minor densification of the silica glass membranes. In situ tensile testing of membranes under electron beam irradiation results in distinctive elongations without fracture confirming the phenomenon of superplasticity. In contrast, in situ tensile testing in the absence of the electron beam reveals an elastic/plastic deformation behavior, and finally leads to fracture of the membranes. The Young’s moduli of the glass membranes pulled at beam off conditions in the TEM are comparable with values known for bulk fused silica, while the tensile strength is in the range of values reported for silica glass fibers with comparable dimensions. The impact of electron beam irradiation on the mechanical properties of silica glass membranes is further discussed. The results of the present work open new avenues for dedicated preparation and nanomechanical characterization of silica glasses, and further contribute to a fundamental understanding of the mechanical behavior of such glasses when being scaled down to the nanometer regime.
NASA Astrophysics Data System (ADS)
Hilonga, A.; Kim, J. K.; Sarawade, P. B.; Kim, H. T.
2009-07-01
In this study, a reinforced silver-embedded silica matrix was designed by utilizing the interaction between the [AlO 4] - tetrahedral and the Ag + in sol-gel process using sodium silicate as a silica precursor. The Ag + mole ratio in each sample was significantly varied to examine the influence of silver concentration on the properties of the final product. Aluminium ions were added to reinforce and improve the chemical durability of silver-embedded silica. A templated sample at Al/Ag = 1 atomic ratio was also synthesized to attempt a possibility of controlling porosity of the final product. Also, a sample neither embedded with silver nor templated was synthesized and characterized to serve as reference. The material at Al/Ag = 1 was found to have a desirable properties, compared to its counterparts, before and even after calcination up to 1000 °C. The results demonstrate that materials with desirable properties can be obtained by this unprecedented method while utilizing sodium silicate, which is relatively cheap, as a silica precursor. This may significantly boost the industrial production of the silver-embedded silicas for various applications.
NASA Astrophysics Data System (ADS)
Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng
2017-07-01
In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.
Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity
NASA Astrophysics Data System (ADS)
Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian
2018-04-01
Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.
Mannetje, Andrea 't; Steenland, Kyle; Checkoway, Harvey; Koskela, Riitta-Sisko; Koponen, Matti; Attfield, Michael; Chen, Jingqiong; Hnizdo, Eva; DeKlerk, Nicholas; Dosemeci, Mustafa
2002-08-01
Comprehensive quantitative silica exposure estimates over time, measured in the same units across a number of cohorts, would make possible a pooled exposure-response analysis for lung cancer. Such an analysis would help clarify the continuing controversy regarding whether silica causes lung cancer. Existing quantitative exposure data for 10 silica-exposed cohorts were retrieved from the original investigators. Occupation- and time-specific exposure estimates were either adopted/adapted or developed for each cohort, and converted to milligram per cubic meter (mg/m(3)) respirable crystalline silica. Quantitative exposure assignments were typically based on a large number (thousands) of raw measurements, or otherwise consisted of exposure estimates by experts (for two cohorts). Median exposure level of the cohorts ranged between 0.04 and 0.59 mg/m(3) respirable crystalline silica. Exposure estimates were partially validated via their successful prediction of silicosis in these cohorts. Existing data were successfully adopted or modified to create comparable quantitative exposure estimates over time for 10 silica-exposed cohorts, permitting a pooled exposure-response analysis. The difficulties encountered in deriving common exposure estimates across cohorts are discussed. Copyright 2002 Wiley-Liss, Inc.
Chaudhary, Savita; Sood, Aastha; Mehta, S K
2014-09-01
Nanotechnology's aptitude to silhouette matter at the scale of the nanometer has unlocked the flap to new inventions of applications in material science and nanomedicine. Engineered silica nanoparticles are key actor of this strategy. The amphitheatre of silica nanoparticles is inexplicably bilateral. Silica particles play essential function in everyday commercial purposes for instance energy storage, chemical and biological sensors, food processing and catalysis. One of the most appealing applications to emerge in the recent years is the use of silica particles for cleaning up contaminants in groundwater, soil and sediments. Herein this work, surfactant modified silica nanoparticles with unique surface and pore properties as well as high surface areas have been extensively investigated as an alternative for the dye removal. The physical and chemical characterizations of adsorbent have been studied using FTIR and scanning electron microscopy. The present investigation aims to explore the comparative effect of different surfactants during the formation of the target composite materials. The effects of various parameters like pH, adsorbent doses, dye concentration, addition of salt have also been investigated. These findings indicate that the nano silica particles are effective materials for dye removal and can be used to alleviate environmental problems.
Grazers: biocatalysts of terrestrial silica cycling
Vandevenne, Floor Ina; Barão, Ana Lúcia; Schoelynck, Jonas; Smis, Adriaan; Ryken, Nick; Van Damme, Stefan; Meire, Patrick; Struyf, Eric
2013-01-01
Silica is well known for its role as inducible defence mechanism countering herbivore attack, mainly through precipitation of opaline, biogenic silica (BSi) bodies (phytoliths) in plant epidermal tissues. Even though grazing strongly interacts with other element cycles, its impact on terrestrial silica cycling has never been thoroughly considered. Here, BSi content of ingested grass, hay and faeces of large herbivores was quantified by performing multiple chemical extraction procedures for BSi, allowing the assessment of chemical reactivity. Dissolution experiments with grass and faeces were carried out to measure direct availability of BSi for dissolution. Average BSi and readily soluble silica numbers were higher in faeces as compared with grass or hay, and differences between herbivores could be related to distinct digestive strategies. Reactivity and dissolvability of BSi increases after digestion, mainly due to degradation of organic matrices, resulting in higher silica turnover rates and mobilization potential from terrestrial to aquatic ecosystems in non-grazed versus grazed pasture systems (2 versus 20 kg Si ha−1 y−1). Our results suggest a crucial yet currently unexplored role of herbivores in determining silica export from land to ocean, where its availability is linked to eutrophication events and carbon sequestration through C–Si diatom interactions. PMID:24107532
Subsurface defects of fused silica optics and laser induced damage at 351 nm.
Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng
2013-05-20
Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.
NASA Technical Reports Server (NTRS)
Maliva, R. G.; Knoll, A. H.; Siever, R.
1989-01-01
In the modern oceans, the removal of dissolved silica from sea water is principally a biological process carried out by diatoms, with lesser contributions from radiolaria, silicoflagellates, and sponges. Because such silica in sediments is often redistributed locally during diagenesis to from nodular or bedded chert, stratigraphic changes in the facies distribution of early diagenetic chert provide important insights into the development of biological participation in the silica cycle. The abundance of chert in upper Proterozoic peritidal carbonates suggests that at this time silica was removed from seawater principally by abiological processes operating in part of the margins of the oceans. With the evolution of demosponges near the beginning of the Cambrian Period, subtidal biogenetic cherts became increasingly common, and with the Ordovician rise of radiolaria to ecological and biogeochemical prominence, sedimented skeletons became a principal sink for oceanic silica. Cherts of Silurian to Cretaceous age share many features of facies distribution and petrography but they differ from Cenozoic siliceous deposits. These differences are interpreted to reflect the mid-Cretaceous radiation of diatoms and their subsequent rise to domination of the silica cycle. Biogeochemical cycles provide an important framework for the paleobiological interpretation of the organisms that participate in them.
Structure and dynamics of a silica melt in neutral confinement
NASA Astrophysics Data System (ADS)
Geske, Julian; Drossel, Barbara; Vogel, Michael
2017-04-01
We analyze the effects of spatial confinement on viscous silica using molecular dynamics simulations. For this purpose, we prepare a silica melt in a cylindrical pore, which is produced by pinning appropriate fractions of silicon and oxygen atoms in a bulk system after an equilibration period. In this way, the structure of the confined silica melt remains unaffected, while the confinement has a strong impact on the dynamics. We find that the structural relaxation of viscous silica is slowed down according to a double exponential law when approaching the pore wall. Moreover, we observe that static density correlations exist in the vicinity of the pore wall. Based on these effects, we determine dynamical and structural length scales of the silica melt. Both length scales show a similar increase upon cooling, with values on the order of the next-neighbor distances in the studied temperature range. Interestingly, we find no evidence that the growth of the length scales is affected by a fragile-to-strong transition of the silica melt. This observation casts serious doubts on the relevance of these length scales for the structural relaxation, at least for the studied glass former.
Structure and dynamics of a silica melt in neutral confinement.
Geske, Julian; Drossel, Barbara; Vogel, Michael
2017-04-07
We analyze the effects of spatial confinement on viscous silica using molecular dynamics simulations. For this purpose, we prepare a silica melt in a cylindrical pore, which is produced by pinning appropriate fractions of silicon and oxygen atoms in a bulk system after an equilibration period. In this way, the structure of the confined silica melt remains unaffected, while the confinement has a strong impact on the dynamics. We find that the structural relaxation of viscous silica is slowed down according to a double exponential law when approaching the pore wall. Moreover, we observe that static density correlations exist in the vicinity of the pore wall. Based on these effects, we determine dynamical and structural length scales of the silica melt. Both length scales show a similar increase upon cooling, with values on the order of the next-neighbor distances in the studied temperature range. Interestingly, we find no evidence that the growth of the length scales is affected by a fragile-to-strong transition of the silica melt. This observation casts serious doubts on the relevance of these length scales for the structural relaxation, at least for the studied glass former.
[Surface modification of dental alumina ceramic with silica coating].
Xie, Hai-Feng; Zhang, Fei-Min; Wang, Xiao-Zu; Xia, Yang
2006-12-01
To make silica coating through sol-gel process, and to evaluate the wettability of dental alumina ceramic with or without coating. Silica coating was prepared with colloidal silica sol on In-Ceram alumina ceramic surface which had been treated with air particle abrasion. Coating gel after heat treatment was observed with atomic force microscope (AFM), and was analyzed by infrared spectrum (IR) with gel without sintered as control. Contact angles of oleic acid to be finished, sandblasted and coated ceramic surface of were measured. AFM pictures showed that some parts of nano-particles in coating gel conglomerated after heat treatment. It can be seen from the IR picture that bending vibration absorption kurtosis of Si-OH also vanished after heat treatment. Among contact angles of three treated surface, the ones on polished surface were the biggest (P = 0.000, P = 0.000), and sandblasting+silica coating surface the smallest (P = 0.000, P = 0.003). Silica coating can be made with sol-gel process successfully. Heat treatment may reinforce Si-O-Si net structure of coating gel. Wettability of dental alumina ceramic with silica coating is higher than with sandblasting and polishing.
Silica micro- and nanoparticles reduce the toxicity of surfactant solutions.
Ríos, Francisco; Fernández-Arteaga, Alejandro; Fernández-Serrano, Mercedes; Jurado, Encarnación; Lechuga, Manuela
2018-04-20
In this work, the toxicity of hydrophilic fumed silica micro- and nanoparticles of various sizes (7 nm, 12 nm, and 50 μm) was evaluated using the luminescent bacteria Vibrio fischeri. In addition, the toxicity of an anionic surfactant solution (ether carboxylic acid), a nonionic surfactant solution (alkyl polyglucoside), and a binary (1:1) mixture of these solutions all containing these silica particles was evaluated. Furthermore, this work discusses the adsorption of surfactants onto particle surfaces and evaluates the effects of silica particles on the surface tension and critical micellar concentration (CMC) of these anionic and nonionic surfactants. It was determined that silica particles can be considered as non-toxic and that silica particles reduce the toxicity of surfactant solutions. Nevertheless, the toxicity reduction depends on the ionic character of the surfactants. Differences can be explained by the different adsorption behavior of surfactants onto the particle surface, which is weaker for nonionic surfactants than for anionic surfactants. Regarding the effects on surface tension, it was found that silica particles increased the surface activity of anionic surfactants and considerably reduced their CMC, whereas in the case of nonionic surfactants, the effects were reversed. Copyright © 2018 Elsevier B.V. All rights reserved.
Regeneration of mesoporous silica aerogel for hydrocarbon adsorption and recovery.
Zhang, Chengzhao; Dai, Chong; Zhang, Huaqin; Peng, Shitao; Wei, Xin; Hu, Yandi
2017-09-15
Silica aerogel, with mesoporous structure and high hydrophobicity, is a promising adsorbent for oil spill clean-up. To make it economic and environmental-friendly, hydrocarbon desorption and silica aerogel regeneration were investigated. After hydrocarbon desorption at 80°C, silica aerogel maintained its hydrophobicity. After toluene, petrol, and diesel desorption, shrinkage of mesopores (from 19.9 to 16.8, 13.5, and 13.4nm) of silica aerogels occurred, causing decreased adsorption capacities (from 12.4, 11.2, and 13.6 to 12.0, 6.5, and 2.3g/g). Low surface tension of petrol caused high stress on mesopores during its desorption, resulting in significant pore shrinkage. For diesel, its incomplete desorption and oxidation further hindered the regeneration. Therefore, diesel desorption was also conducted at 200°C. Severe diesel oxidation occurred under aerobic condition and destroyed the mesopores. Under anaerobic condition, no diesel oxidation occurred and the decreases in pore size (to 13.2nm) and adsorption efficiency (to 10.0g/g) of regenerated silica aerogels were much less, compared with under aerobic condition. This study provided new insights on silica aerogel regeneration for oil spill clean-up. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis of porous carbon/silica nanostructured microfiber with ultrahigh surface area
NASA Astrophysics Data System (ADS)
Zhou, Dan; Dong, Yan; Cui, Liru; Lin, Huiming; Qu, Fengyu
2014-12-01
Carbon/silica-nanostructured microfibers were synthesized via electrospinning method using phenol-formaldehyde resin and tetraethyl orthosilicate as carbon and silica precursor with triblock copolymer Pluronic P123 as soft template. The prepared samples show uniform microfiber structure with 1 μm in diameter and dozens of microns in length. Additionally, the mesopores in the material is about 2-6 nm. When the silica component was removed by HF, the porous carbon microfibers (PCMFs) were obtained. In addition, after the carbon/silica composites were calcined in air, the porous silica microfibers (PSiMFs) were obtained, revealing the converse porous nanostructure as PCMFs. It is a simple way to prepare PCMFs and PSiMFs with silica and carbon as the template to each other. Additionally, PCMFs possess an ultrahigh specific surface area (2,092 m2 g-1) and large pore volume. The electrochemical performance of the prepared PCMF material was investigated in 6.0 M KOH electrolyte. The PCMF electrode exhibits a high specific capacitance (252 F g-1 at 0.5 A g-1). Then, superior cycling stability (97 % retention after 4,000 cycles) mainly is due to its unique nanostructure.
Czarnobaj, Katarzyna; Sawicki, Wiesław
2013-01-01
The aim of this study was to obtain stable and controlled release silica xerogels containing metronidazole (MT) prepared with surfactants with different charges: cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and hydroxypropyl cellulose (HPC), which could be the promising carrier materials used as the implantable drug delivery systems. The xerogels were prepared by the sol-gel method. The influence of various formulation precursors on porosity parameters and drug release were investigated. Addition of surfactants showed a promising result in controlling the MT release. Dissolution study revealed increased release of MT from silica modified SDS and CTAB, whereas the release of MT from silica modified HPC considerably decreased, in comparison with unmodified silica. The addition of surfactants showed slight changes in porosity parameters. All xerogels are characterized by a highly developed surface area (701-642 m(2) g(-1)) and mesoporous structure. The correlation between pore size obtained matrices and release rate of drug was also observed. Based on the presented results of this study, it may be stated that applied xerogel matrices: pure silica and surfactants-modified silica could be promising candidates for the formulation in local delivery systems.
Radiation hardening in sol-gel derived Er{sup 3+}-doped silica glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hari Babu, B., E-mail: hariphy2012@gmail.com, E-mail: matthieu.lancry@u-psud.fr; León Pichel, Mónica; Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS-UPSud 8182, Université Paris Sud, 91405 Orsay
2015-09-28
The aim of the present paper is to report the effect of radiation on the Er{sup 3+}-doped sol-gel silica glasses. A possible application of these sol-gel glasses could be their use in harsh radiation environments. The sol-gel glasses are fabricated by densification of erbium salt-soaked nanoporous silica xerogels through polymeric sol-gel technique. The radiation-induced attenuation of Er{sup 3+}-doped sol-gel silica is found to increase with erbium content. Electron paramagnetic resonance studies reveal the presence of E′{sub δ} point defects. This happens in the sol-gel aluminum-silica glass after an exposure to γ-rays (kGy) and in sol-gel silica glass after an exposuremore » to electrons (MGy). The concentration levels of these point defects are much lower in γ-ray irradiated sol-gel silica glasses. When the samples are co-doped with Al, the exposure to γ-ray radiation causes a possible reduction of the erbium valence from Er{sup 3+} to Er{sup 2+} ions. This process occurs in association with the formation of aluminum oxygen hole centers and different intrinsic point defects.« less
Glacial alteration of volcanic terrains: A chemical investigation of the Three Sisters, Oregon, USA.
NASA Astrophysics Data System (ADS)
Rutledge, Alicia; Horgan, Briony; Havig, Jeff
2017-04-01
Glacial silica cycling is more efficient than previously reported, and in some settings, particularly glaciated mafic volcanics, can be the dominant weathering process. Based on field work at glaciated volcanic sites, we hypothesize that this is due to a combination of high rates of silica dissolution from mafic bedrock and reprecipitation of silica in the form of opaline silica coatings and other poorly crystalline silicate alteration phases. The high rate of bedrock comminution in subglacial environments results in high rates of both chemical and physical weathering, due to the increased reactive mineral surface area formed through glacial grinding. In most bedrock types, carbonate weathering is enhanced and silica fluxes are depressed in glacial outwash compared with global average riverine catchment runoff due to low temperatures and short residence times. However, in mafic systems, higher dissolved SiO2 concentrations have been observed. The major difference between observed glacial alteration of volcanic bedrock and more typical continental terrains is the absence of significant dissolved carbonate in the former. In the absence of carbonate minerals which normally dominate dissolution processes at glacier beds, carbonation of feldspar can become the dominant weathering process, which can result in a high proportion of dissolved silica fluxes in glacial outwash waters compared to the total cation flux. Mafic volcanic rocks are particularly susceptible to silica mobility, due to the high concentration of soluble minerals (i.e. plagioclase) as compared to the high concentration of insoluble quartz found in felsic rocks. To investigate melt-driven chemical weathering of mafic volcanics, water and rock samples were collected during July 2016 from glaciated volcanic bedrock in the Three Sisters Wilderness, Oregon, U.S.A. (44°9'N, 121°46'W): Collier Glacier (basaltic andesite, andesite), Hayden Glacier (andesite, dacite), and Diller Glacier (basalt). Here we report major anion and cation concentrations in meltwaters for the summer 2016 melt season, with emphasis on SiO2. Dissolved silica concentration (range: below detectable levels to 240 μM) tends to increase with pH (range: 4.3 to 8.5), consistent with silica solubility increasing with pH. Proglacial streams, springs, and lakes exhibit dissolved silica concentrations that are greater than observed in glacial snow/ice. The highest silica concentrations were measured in moraine-sourced springs. More mafic glaciovolcanic sites exhibit higher concentrations of dissolved silica in outwash waters compared to more felsic glaciovolcanic sites. Though basalts have lower SiO2 content than more felsic volcanic rocks, they are more susceptible to silica mobility due to their higher content of minerals such as olivine, pyroxene, and plagioclase, which are more soluble than quartz. These mineral breakdown reactions are potentially enhanced by microbial populations at the glacier bed. The measured high silica concentrations in springs are potentially due to moraines acting as sediment traps. Moraines are poorly sorted sediments with a high proportion of subglacially ground fine particles, and glacial flour further accumulates by aeolian deposition. The increased fine-grained component - and thus increased surface area - and longer residence times due to associated decreased permeability could contribute to the observed high dissolved silica concentrations.
Use of fly ash, slag, or silica fume to inhibit alkali-silica reactivity.
DOT National Transportation Integrated Search
1995-01-01
This study had two objectives: (1) to evaluate the effectiveness of particular mineral admixtures when combined with portland cements of varying alkali content in preventing expansion due to alkali-silica reactivity (ASR), and (2) to determine if set...
Adsorption of hydrogen chloride on microcrystalline silica. [solid rocket propellant exhaust
NASA Technical Reports Server (NTRS)
Kang, Y.; Wightman, J. P.
1979-01-01
The interaction of hydrogen chloride with quartz was studied to determine the extent to which silica can irreversibly remove hydrogen chloride from the atmosphere. Adsorption isotherms were measured at 30 C for hydrogen chloride on silica outgassed between 100 C and 400 C. Readsorption isotherms were also measured. The silica surface was characterized further by infrared spectroscopy, electron spectroscopy for chemical analysis, scanning electron microscopy, and immersional calorimetry. Ground debris samples obtained from the Kennedy Space Center, were likewise examined.
Photonic integrated circuits based on silica and polymer PLC
NASA Astrophysics Data System (ADS)
Izuhara, T.; Fujita, J.; Gerhardt, R.; Sui, B.; Lin, W.; Grek, B.
2013-03-01
Various methods of hybrid integration of photonic circuits are discussed focusing on merits and challenges. Material platforms discussed in this report are mainly polymer and silica. We categorize the hybridization methods using silica and polymer waveguides into two types, chip-to-chip and on-chip integration. General reviews of these hybridization technologies from the past works are reviewed. An example for each method is discussed in details. We also discuss current status of our silica PLC hybrid integration technology.
Insulation Blankets for High-Temperature Use
NASA Technical Reports Server (NTRS)
Goldstein, H.; Leiser, D.; Sawko, P. M.; Larson, H. K.; Estrella, C.; Smith, M.; Pitoniak, F. J.
1986-01-01
Insulating blanket resists temperatures up to 1,500 degrees F (815 degrees C). Useful where high-temperature resistance, flexibility, and ease of installation are important - for example, insulation for odd-shaped furnaces and high-temperature ducts, curtains for furnace openings and fire control, and conveyor belts in hot processes. Blanket is quilted composite consisting of two face sheets: outer one of silica, inner one of silica or other glass cloth with center filling of pure silica glass felt sewn together with silica glass threads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, M., E-mail: makina.saito@elettra.eu; D’Amico, F.; Bencivenga, F.
2014-06-28
A spatial correlation between chemical and topological defects in the tetrahedron network in vitreous silica produced by a fusion process of natural quartz crystals was found by synchrotron-based UV resonance Raman experiments. Furthermore, a quantitative correlation between these defects was obtained by comparing visible Raman and UV absorption spectra. These results indicate that in vitreous silica produced by the fusion process the topological defects disturb the surrounding tetrahedral silica network and induce further disorder regions with sub nanometric sizes.
Silica coatings on clarithromycin.
Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko
2005-03-03
Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.
A Widely-Accessible Distributed MEMS Processing Environment. The MEMS Exchange Program
2012-10-29
promise for high-aspect and deep etching into fused silica. This process capability is important for a DARPA project called the Navigation-Grade...on fused silica samples that appear to allow 2 to 1 aspect ratios in fused silica with a depth of etch of around 125 microns – a dramatic result in a...very hard to etch material such as fused silica! After receiving approval from DARPA, the MEMS Exchange purchased a previously- owned Ulvac etcher
Improvements in geothermal electric power and silica production
Hill, J.H.; Fulk, M.M.
Electricity is generated from hot geothermal solution by extracting heat therefrom, mineral solids which form in a so cooled geothermal solution are separated to recover minerals and facilitate reinjection of the solution into the ground. The separated solids are treated to recover silica by addition of an acid (amorphous silica precipitates) or a base (other minerals precipitate and soulble silicates are formed which are subsequently precipitated by acid neutralization). If desired, after silica is separated, other minerals can be separated and recovered.
Soukup, Jan; Jandera, Pavel
2014-12-29
Excess adsorption of water from aqueous acetonitrile mobile phases was investigated on 16 stationary phases using the frontal analysis method and coulometric Karl-Fischer titration. The stationary phases include silica gel and silica-bonded phases with different polarities, octadecyl and cholesterol, phenyl, nitrile, pentafluorophenylpropyl, diol and zwitterionic sulfobetaine and phosphorylcholine ligands bonded on silica, hybrid organic-silica and hydrosilated matrices. Both fully porous and core-shell column types were included. Preferential uptake of water by the columns can be described by Langmuir isotherms. Even though a diffuse rather than a compact adsorbed discrete layer of water on the adsorbent surface can be formed because of the unlimited miscibility of water with acetonitrile, for convenience, the preferentially adsorbed water was expressed in terms of a hypothetical monomolecular water layer equivalent in the inner pores. The uptake of water strongly depends on the polarity and type of the column. Less than one monomolecular water layer equivalent was adsorbed on moderate polar silica hydride-based stationary phases, Ascentis Express F5 and Ascentis Express CN column at the saturation capacity, while on more polar stationary phases, several water layer equivalents were up-taken from the mobile phase. The strongest affinity to water was observed on the ZIC cHILIC stationary phases, where more than nine water layer equivalents were adsorbed onto its surface at its saturation capacity. Columns with bonded hydroxyl and diol ligands show stronger water adsorption in comparison to bare silica. Columns based on hydrosilated silica generally show significantly decreased water uptake in comparison to stationary phases bonded on ordinary silica. Significant correlations were found between the water uptake and the separation selectivity for compounds with strong polarity differences. Copyright © 2014 Elsevier B.V. All rights reserved.
Sol–gel method as a way of carbonyl iron powder surface modification for interaction improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Małecki, P., E-mail: pawel.malecki@pwr.edu.pl; Kolman, K.; Pigłowski, J.
2015-03-15
This article presents a method for modification of carbonyl iron particles’ surface (CIP), (d{sub 50}=4–9 µm) by silica coatings obtained using the sol–gel method. Reaction parameters were determined to obtain dry magnetic powder with homogeneous silica coatings without further processing and without any by-product in the solid or liquid phase. This approach is new among the commonly used methods of silica coating of iron particles. No attempt has been made to cover a carbonyl iron surface by silica in a waste-free method, up to date. In the current work two different silica core/shell structures were made by the sol–gel process,more » based on different silica precursors: tetraethoxy-silane (TEOS) and tetramethoxy-silane (TMOS). The dependence between the synthesis procedure and thickness of silica shell covering carbonyl iron particles has been described. Surface morphology of the modified magnetic particles and the coating thickness were characterized with the use of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Determination of the physicochemical structure of the obtained materials was performed by the energy-dispersive X-ray spectroscope (EDS), and the infrared technique (IR). The surface composition was analyzed using X-ray photoelectron spectroscopy (XPS). Additionally, distribution of particle size was measured using light microscopy. The new, efficient process of covering micro-size CIP with a nanometric silica layer was shown. Results of a performed analysis confirm the effectiveness of the presented method. - Highlights: • Proper covering CIP by sol–gel silica layer avoids agglomeration. • A new solid waste-free method of CIP coating is proposed. • Examination of the properties of modified CIP in depends on washing process. • Coatings on CIP particles doesn’t change the magnetic properties of particles.« less
Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites.
Wang, Ruili; Habib, Eric; Zhu, X X
2017-10-01
The aim of this work is to explore the reinforcing effect of wrinkled mesoporous silica (WMS), which should allow micromechanical resin matrix/filler interlocking in dental resin composites, and to investigate the effect of silica morphology, loading, and compositions on their mechanical properties. WMS (average diameter of 496nm) was prepared through the self-assembly method and characterized by the use of the electron microscopy, dynamic light scattering, and the N 2 adsorption-desorption measurements. The mechanical properties of resin composites containing silanized WMS and nonporous smaller silica were evaluated with a universal mechanical testing machine. Field-emission scanning electron microscopy was used to study the fracture morphology of dental composites. Resin composites including silanized silica particles (average diameter of 507nm) served as the control group. Higher filler loading of silanized WMS substantially improved the mechanical properties of the neat resin matrix, over the composites loaded with regular silanized silica particles similar in size. The impregnation of smaller secondary silica particles with diameters of 90 and 190nm, denoted respectively as Si90 and Si190, increased the filler loading of the bimodal WMS filler (WMS-Si90 or WMS-Si190) to 60wt%, and the corresponding composites exhibited better mechanical properties than the control fillers made with regular silica particles. Among all composites, the optimal WMS-Si190- filled composite (mass ratio WMS:Si190=10:90, total filler loading 60wt%) exhibited the best mechanical performance including flexural strength, flexural modulus, compressive strength and Vickers microhardness. The incorporation of WMS and its mixed bimodal fillers with smaller silica particles led to the design and formulation of dental resin composites with superior mechanical properties. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vieillard, Amanda M.; Fulweiler, Robinson W.; Hughes, Zoe J.; Carey, Joanna C.
2011-12-01
Salt marshes are widely studied due to the broad range of ecosystem services they provide including serving as crucial wildlife habitat and as hotspots for biogeochemical cycling. Nutrients such as nitrogen (N), phosphorus (P), and carbon (C) are well studied in these systems. However, salt marshes may also be important environments for the cycling of another key nutrient, silica (Si). Found at the land-sea interface, these systems are silica replete with large stocks in plant biomass, sediments, and porewater, and therefore, have the potential to play a substantial role in the transformation and export of silica to coastal waters. In an effort to better understand this role, we measured the fluxes of dissolved (DSi) and biogenic (BSi) silica into and out of two tidal creeks in a temperate, North American (Rowley, Massachusetts, USA) salt marsh. One of the creeks has been fertilized from May to September for six years allowing us to examine the impacts of nutrient addition on silica dynamics within the marsh. High-resolution sampling in July 2010 showed no significant differences in Si concentrations between the fertilized and reference creeks with dissolved silica ranging from 0.5 to 108 μM and biogenic from 2.0 to 56 μM. Net fluxes indicated that the marsh is a point source of dissolved silica to the estuary in the summer with a net flux of approximately 169 mol h -1, demonstrating that this system exports DSi on the same magnitude as some nearby, mid-sized rivers. If these findings hold true for all salt marshes, then these already valuable regions are contributing yet another ecosystem service that has been previously overlooked; by exporting DSi to coastal receiving waters, salt marshes are actively providing this important nutrient for coastal primary productivity.
Cai, Cuifang; Liu, Muhua; Li, Yun; Guo, Bei; Chang, Hui; Zhang, Xiangrong; Yang, Xiaoxu; Zhang, Tianhong
2016-01-01
In this study, to enhance the dissolution rate and oral bioavailability of bifendate, a silica-supported solid dispersion (SD) of bifendate was prepared using supercritical carbon dioxide (ScCO2) technology. The properties of bifendate-silica SD were characterized by differential scanning calorimetry (DSC), X-ray diffraction (X-RD) and scanning electron microscopy. The pharmacokinetic study was carried out in beagle dogs using commercial bifendate dropping pills as a reference which is a conventional SD formulation of bifendate and PEG6000. A novel method of Ultra Performance Convergence Chromatography-tandem mass spectrometry (UPC(2)™-MS/MS) method was applied to determine bifendate concentration in plasma. The amorphous state of bifendate in bifendate-silica SD was revealed in X-RD and DSC when the ratios of bifendate and silica were 1:15 and 1:19, respectively. In vitro dissolution rate was significantly improved with cumulative release of 67% within 20 min relative to 8% for the physical mixture of bifendate and silica, and which was also higher than the commercial dropping pill of 52%. After storage at 75% relative humidity (RH) for 10 d, no recrystallization was found and reduced dissolution rate was obtained due to the absorption of moisture. In pharmacokinetic study, Cmax and AUC0-t for bifendate-silica SD were 153.1 ng/ml and 979.8 ng h/ml, respectively. AUC0-t of bifendate-silica SDs was ∼1.6-fold higher than that of the commercial dropping pills. These results suggest that adsorbing bifendate onto porous silica via ScCO2 technique could be a feasible method to enhance oral bioavailability together with a higher dissolution rate.
Silica coating influences the corona and biokinetics of cerium oxide nanoparticles.
Konduru, Nagarjun V; Jimenez, Renato J; Swami, Archana; Friend, Sherri; Castranova, Vincent; Demokritou, Philip; Brain, Joseph D; Molina, Ramon M
2015-10-12
The physicochemical properties of nanoparticles (NPs) influence their biological outcomes. We assessed the effects of an amorphous silica coating on the pharmacokinetics and pulmonary effects of CeO2 NPs following intratracheal (IT) instillation, gavage and intravenous injection in rats. Uncoated and silica-coated CeO2 NPs were generated by flame spray pyrolysis and later neutron-activated. These radioactive NPs were IT-instilled, gavaged, or intravenously (IV) injected in rats. Animals were analyzed over 28 days post-IT, 7 days post-gavage and 2 days post-injection. Our data indicate that silica coating caused more but transient lung inflammation compared to uncoated CeO2. The transient inflammation of silica-coated CeO2 was accompanied by its enhanced clearance. Then, from 7 to 28 days, clearance was similar although significantly more (141)Ce from silica-coated (35%) was cleared than from uncoated (19%) (141)CeO2 in 28 days. The protein coronas of the two NPs were significantly different when they were incubated with alveolar lining fluid. Despite more rapid clearance from the lungs, the extrapulmonary (141)Ce from silica-coated (141)CeO2 was still minimal (<1%) although lower than from uncoated (141)CeO2 NPs. Post-gavage, nearly 100% of both NPs were excreted in the feces consistent with very low gut absorption. Both IV-injected (141)CeO2 NP types were primarily retained in the liver and spleen. The silica coating significantly altered the plasma protein corona composition and enhanced retention of (141)Ce in other organs except the liver. We conclude that silica coating of nanoceria alters the biodistribution of cerium likely due to modifications in protein corona formation after IT and IV administration.
Vihlborg, Per; Bryngelsson, Ing-Liss; Andersson, Lena; Graff, Pål
2017-07-20
To study the impact of occupational silica exposure on the incidence rates of sarcoidosis and rheumatoid arthritis (RA) in a cohort of exposed workers in Swedish iron foundries. The prevalence of sarcoidosis and RA in a cohort of silica exposed workers was compared with the prevalence in the general Swedish population in this register study. A mixed model was used to calculate silica exposure, and individual silica exposures were used to compute dose responses. Personnel records from 10 iron foundries were used to identify workers whose employment began before 2005 which was then linked to the national non-primary outpatient visits register. The final cohort consisted of 2187 silica-exposed male workers who had been employed for at least 1 year and were still alive without having emigrated when the follow-up study began. The cohort's employment period covers 23 807 person-years at risk. The presented results indicate that moderate to high levels of silica exposure increase risks for sarcoidosis and seropositive RA. Mean levels of airborne silica dust in the foundries decreased significantly between the 1970s and 2000s. Incidence rates of sarcoidosis (3.94; 95% CI 1.07 to 10.08) and seropositive RA (2.59; 95% CI 1.24 to 4.76) were significantly higher among highly exposed individuals. Our results reveal increased risks for sarcoidosis and seropositive RA among individuals with high exposure to silica dust (>0.048 mg/m 3 ) compared with non-exposed and less-exposed groups. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Rehman, Fozia; Rahim, Abdur; Airoldi, Claudio; Volpe, Pedro L O
2016-02-01
Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2m(2)g(-1) and pore volume was reduced from 1.98 to 0.89cm(3)g(-1), when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer-Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8h, while comparatively high release rates were observed in simulated intestinal (pH6.8) and simulated body fluids (pH7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system. Copyright © 2015 Elsevier B.V. All rights reserved.
Occupational exposure to crystalline silica and the risk of lung cancer in Canadian men.
Kachuri, Linda; Villeneuve, Paul J; Parent, Marie-Élise; Johnson, Kenneth C; Harris, Shelley A
2014-07-01
Crystalline silica is a recognized carcinogen, but the association with lung cancer at lower levels of exposure has not been well characterized. This study investigated the relationship between occupational silica exposure and lung cancer and the combined effects of cigarette smoking and silica exposure on lung cancer risk. A population-based case-control study was conducted in eight Canadian provinces between 1994 and 1997. Self-reported questionnaires were used to obtain a lifetime occupational history and information on other risk factors. Occupational hygienists assigned silica exposures to each job based on concentration, frequency and reliability. Data from 1681 incident lung cancer cases and 2053 controls were analyzed using logistic regression to estimate odds ratios (OR) and their 95% confidence intervals (CI). Models included adjustments for cigarette smoking, lifetime residential second-hand smoke and occupational exposure to diesel and gasoline engine emissions. Relative to the unexposed, increasing duration of silica exposure at any concentration was associated with a significant trend in lung cancer risk (OR ≥ 30 years: 1.67, 1.21-2.24; ptrend = 0.002). The highest tertile of cumulative silica exposure was associated with lung cancer (OR = 1.81, 1.34-2.42; ptrend = 0.004) relative to the lowest. Men exposed to silica for ≥30 years with ≥40 cigarette pack-years had the highest risk relative to those unexposed with <10 pack-years (OR = 42.53, 23.54-76.83). The joint relationship with smoking was consistent with a multiplicative model. Our findings suggest that occupational exposure to silica is a risk factor for lung cancer, independently from active and passive smoking, as well as from exposure to other lung carcinogens. © 2013 UICC.
Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyas, Josef; Engler, Robert K.
2013-09-01
The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into amore » final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C.« less
Chronic obstructive pulmonary disease and occupational exposure to silica.
Rushton, Lesley
2007-01-01
Prolonged exposure to high levels of silica has long been known to cause silicosis This paper evaluates the evidence for an increased risk of chronic obstructive pulmonary disease (COPD) in occupations and industries in which exposure to crystalline silica is the primary exposure, with a focus on the magnitude of risks and levels of exposure causing disabling health effects. The literature suggests consistently elevated risks of developing COPD associated with silica exposure in several occupations, including the construction industry; tunneling; cement industry; brick manufacturing; pottery and ceramic work; silica sand, granite and diatomaceous earth industries; gold mining; and iron and steel founding, with risk estimates being high in some, even after taking into account the effect of confounders like smoking. Average dust levels vary from about 0.5 mg.m3 to over 10 mg.m3 and average silica levels from 0.04 to over 5 mg.m3, often well above occupational standards. Factors influencing the variation from industry to industry in risks associated with exposure to silica-containing dusts include (a) the presence of other minerals in the dust, particularly when associated with clay minerals; (b) the size of the particles and percentage of quartz; (c) the physicochemical characteristics, such as whether the dust is freshly fractured. Longitudinal studies suggest that loss of lung function occurs with exposure to silica dust at concentrations of between 0.1 and 0.2 mg.m3, and that the effect of cumulative silica dust exposure on airflow obstruction is independent of silicosis. Nevertheless, a disabling loss of lung function in the absence of silicosis would not occur until between 30 and 40 years exposure.
Dry powder mixes comprising phase change materials
Salyer, Ival O.
1992-01-01
Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.
Dry powder mixes comprising phase change materials
Salyer, Ival O.
1993-01-01
Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.
Sol-gel processed porous silica carriers for the controlled release of diclofenac diethylamine.
Czarnobaj, Katarzyna; Czarnobaj, Joanna
2008-10-01
Silica xerogels doped with diclofenac diethylamine were prepared by the sol-gel method from a hydrolysed tetraethoxysilane (TEOS) solution containing diclofenac diethylamine. Two different catalysts, drying conditions and levels of water content were used to alter the microstructure of the silica xerogels. The aim of this study was to determine the rate of Diclofenac release from the silica xerogels. This in vitro study showed that the sol-gel method is useful for entrapping Diclofenac in the pores of xerogels. It also showed that, in vitro, Diclofenac is released from the silica xerogel, through the pores, by diffusion. Base-catalysed gels proved to be much more effective than acid-catalyzed gels. (c) 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Dong, Xiongbo; Sun, Zhiming; Liu, Yangyu; Jiang, Lei; Zheng, Shuilin
2018-05-01
Silica and alumina coated rutile TiO2 samples with various surface morphologies were fabricated using four different pre-dispersants. Using sodium silicate nonahydrate (SSNH) as pre-dispersant, the received sample displayed the best acidic stability. The addition of SSNH could induce layer-by-layer growth of hydrous silica via enhancing the dispersion of hydrous silica nucleus and accelerating the dehydration condensation rate of silica film. Alumina coated rutile TiO2 sample obtained by polyethyleneglycol 1000 (PEG) presented the highest dispersion stability. The existence of PEG can induce the formation of fibrous hydrous alumina film, which would increase the steric hindrance and the promotion of dispersion stability.
Fabrication and characterization of epoxy/silica functionally graded composite material
NASA Astrophysics Data System (ADS)
Misra, N.; Kapusetti, G.; Pattanayak, D. K.; Kumar, A.
2011-09-01
Increased use of composites in aerospace and defense application induces the search for heat resistant material. In present study silica reinforced epoxy functionally graded material using quartz fabric is prepared with different thickness. The gradation in silica : epoxy matrix is maintained with one side pure epoxy to opposite side pure silica. Thermal and mechanical behaviour of the composites were studied. It was found that the temperature gradient of 350°C to 950°C could be maintained for 2 to 5 min if the thickness of insulating silica layer is increased from 0.5 mm to 16 mm. Mechanical properties such as flexural modulus and strength of FGM composites were also evaluated. Strength and modulus decreased with increase of insulating layer.
Dry powder mixes comprising phase change materials
Salyer, Ival O.
1993-01-01
Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.
NASA Astrophysics Data System (ADS)
Wen, Wen; Li, Haibin; Chen, Xiaojing; Chang, Chengkang
Silica anti-reflective coatings have been prepared by a sol-gel dip-coating process using the sol containing phosphoric acid as a pore-forming template. The effect of the aging time of the sol on the anti-reflective properties has been investigated. The surface topography of the silica AR coatings has been characterized. With increasing sol aging time, more over-sized pores larger than 100 nm are formed in the silica coatings. These could act as scattering centers, scattering visible light and thereby lowering transmittance. The optimal aging time was identified as 1 day, and the corresponding silica coatings showed a maximum transmittance of 99.2%, representing an 8% increase compared to the bare glass substrate.
Hornung, Veit; Bauernfeind, Franz; Halle, Annett; Samstad, Eivind O.; Kono, Hajime; Rock, Kenneth L.; Fitzgerald, Katherine A.; Latz, Eicke
2010-01-01
Inhalation of silica crystals causes inflammation in the alveolar space. Prolonged silica exposure can lead to the development of silicosis, an irreversible, fibrotic pulmonary disease. The mechanisms by which silica and other crystals activate immune cells are not well understood. Here, we demonstrate that silica and aluminum salt crystals activate the NALP3 inflammasome. NALP3 activation requires crystal phagocytosis and crystal uptake leads to lysosomal damage and rupture. Sterile lysosomal damage is also sufficient to induce NALP3 activation and inhibition of phagosomal acidification or cathepsin B impairs NALP3 activation. These results indicate that the NALP3 inflammasome can sense lysosomal damage induced by various means as an endogenous danger signal. PMID:18604214
Dry powder mixes comprising phase change materials
Salyer, I.O.
1993-10-19
Free flowing, conformable powder-like mix of silica particles and a phase change material (pcm) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 10 figures.
Composite multilayer insulations for thermal protection of aerospace vehicles
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Pitts, William C.
1989-01-01
Composite flexible multilayer insulation systems (MLI), consisting of alternating layers of metal foil and scrim cloth or insulation quilted together using ceramic thread, were evaluated for thermal performance and compared with a silica fibrous (baseline) insulation system. The systems studied included: (1) alternating layers of aluminoborosilicate (ABS) scrim cloth and stainless steel foil, with silica, ABS, or alumina insulation; (2) alternating layers of scrim cloth and aluminum foil, with silica or ABS insulation; (3) alternating layers of aluminum foil and silica or ABS insulation; and (4) alternating layers of aluminum-coated polyimide placed on the bottom of the silica insulation. The MLIs containing aluminum were the most efficient, measuring as little as half the backface temperature increase of the baseline system.
New insights into silica-based NMR “chromatography”
NASA Astrophysics Data System (ADS)
Pemberton, Chava; Hoffman, Roy; Aserin, Abraham; Garti, Nissim
2011-02-01
Silica is used as an important component for NMR “chromatography”. In this study the effect of the binding strength to silica of a variety of compounds on their diffusion rate is measured for the first time. Over two orders of magnitude of diffusion difference enhancement was obtained in the presence of silica for some compounds. An explanation of the enhancement is given that also allows one to predict the “chromatographic” behavior of new compounds or mixtures. The binding strength is divided into categories of weakly bound, singly bound and multiply bound. Carboxylates, sulfonates, and diols are found to be particularly strongly bound and to diffuse up to 2½ orders of magnitude more slowly in the presence of silica.
NASA Astrophysics Data System (ADS)
El-Nahhal, Issa M.; Salem, Jamil K.; Tabasi, Nihal S.; Hempelmann, Rolf; Kodeh, Fawzi S.
2018-01-01
Two different mesoporous silica structures (hexagonal and lamellar) were synthesized via sol-gel method using a series of triblock copolymer (Pluronic) surfactants. L81, L61 & L31 surfactants form lamellar structure whereas P123 surfactant forms a hexagonal structure. CuO and ZnO nanoparticles (NPs) supported mesoporous silica were synthesized using impregnation method. The structural properties of these materials were investigated using several characterization techniques such as FTIR, XRD, SAXS, TEM and TGA. SAXS and TEM confirmed that the obtained mesoporous silica is based on the EO/PO ratio of Pluronic surfactants. They proved that the mesoporosity of silica is well maintained even after they loaded with metal oxide nanoparticles.
Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit
NASA Astrophysics Data System (ADS)
Sherlock, R. L.; Lehrman, N. J.
1995-06-01
Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.
Song, In-Wong; Park, Hyojung; Park, Jung Han; Kim, Hyunook; Kim, Seong Hun; Yi, Sung; Jaworski, Justyn; Sang, Byoung-In
2017-11-24
Biological systems often generate unique and useful structures, which can have industrial relevance either as direct components or as an inspiration for biomimetic materials. For fabrication of nanoscale silica structures, we explored the use of the silaffin R5 peptide from Cylindrotheca fusiformis expressed on the surface of the fd bacteriophage. By utilizing the biomineralizing peptide component displayed on the bacteriophage surface, we found that low concentrations (0.09 mg/mL of the R5 bacteriophage, below the concentration range used in other studies) could be used to create silica nanofibers. An additional benefit of this approach is the ability of our R5-displaying phage to form silica materials without the need for supplementary components, such as aminopropyl triethoxysilane, that are typically used in such processes. Because this method for silica formation can occur under mild conditions when implementing our R5 displaying phage system, we may provide a relatively simple, economical, and environmentally friendly process for creating silica nanomaterials.
Chonkaew, Wunpen; Minghvanish, Withawat; Kungliean, Ulchulee; Rochanawipart, Nutthaya; Brostow, Witold
2011-03-01
Two silane coupling agents were used for hydrolysis-condensation reaction modification of nanosilica surfaces. The surface characteristics were analyzed using Fourier transform infrared spectroscopy (FTIR). The vulcanization kinetics of natural rubber (NR) + silica composites was studied and compared to behavior of the neat NR using differential scanning calorimetry (DSC) in the dynamic scan mode. Dynamic mechanical analysis (DMA) was performed to evaluate the effects of the surface modification. Activation energy E(a) values for the reaction are obtained. The presence of silica, modified or otherwise, inhibits the vulcanization reaction of NR. The neat silica containing system has the lowest cure rate index and the highest activation energy for the vulcanization reaction. The coupling agent with longer chains causes more swelling and moves the glass transition temperature T(g) downwards. Below the glass transition region, silica causes a lowering of the dynamic storage modulus G', a result of hindering the cure reaction. Above the glass transition, silica-again modified or otherwise-provides the expected reinforcement effect.
Magnacca, Giuliana; Jadhav, Sushilkumar A; Scalarone, Dominique
2016-01-01
Summary Large-mesopore silica films with a narrow pore size distribution and high porosity have been obtained by a sol–gel reaction of a silicon oxide precursor (TEOS) and using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers as templates in an acidic environment. PS-b-PEO copolymers with different molecular weight and composition have been studied in order to assess the effects of the block length on the pore size of the templated silica films. The changes in the morphology of the porous systems have been investigated by transmission electron microscopy and a systematic analysis has been carried out, evidencing the dependence between the hydrophilic/hydrophobic ratio of the two polymer blocks and the size of the final silica pores. The obtained results prove that by tuning the PS/PEO ratio, the pore size of the templated silica films can be easily and finely predicted. PMID:27826520
NASA Astrophysics Data System (ADS)
Lee, Chul Joo; Choi, Hyoung Jin
2017-11-01
In this work, silica/poly(o-anisidine) (POA) core-shell structured microspheres were synthesized by coating the silica core surface with POA with a help of a chemical grafting agent, N-[(3-trimethoxylsilyl)-propyl] aniline. The synthesized silica microspheres were then applied as a polymer/inorganic composite particle-based electrorheological (ER) fluid. The morphology of the silica/POA microspheres was examined by using both transmission electron microscopy and scanning electron microscopy, while their thermal properties and chemical structure were checked by thermogravimetric analysis and Fourier-transform infrared spectroscopy, respectively. The ER properties of the silica/POA particle-based ER fluid were examined by using a Couette-type rotational rheometer equipped with a high-voltage power supplier and analyzed by the Bingham model and modified Mason number. In order to obtain additional information about the electrical polarization properties, the dielectric spectra were measured by an LCR meter and fitted by using the Cole-Cole equation. Furthermore, suspension stability of the ER fluid was tested using Turbiscan.
Yu, Yang-Yen; Chien, Wen-Chen; Chen, Shih-Ting
2010-07-01
Nanoporous silica films were prepared through the templating of amphiphilic block copolymer, poly(styrene-2-vinyl pyridine) (PS-b-P2VP), and monodispersed colloidal silica nanoparticles. The experimental and theoretical studies suggested that the intermolecular hydrogen bonding existes between the colloidal silica nanoparticles and PS-b-P2VP. The effects of the loading ratio and P2VP chain length on the morphology and properties of the prepared nanoporous silica films were investigated. TEM and AFM studies showed that the uniform pore size could be achieved and the pore size increased with increasing porogen loading. The refractive index and dielectric constant of the prepared nanoporous films decreased with an increase in PS-b-P2VP loading. On the other hand, the porosity increased with an increasing PS-b-P2VP loading. This study demonstrated a methodology to control pore morphology and properties of the nanoporous silica films through the templating of PS-b-P2VP.
Biogenic silica in Lake Baikal sediments: results from 1990-1992 American cores
Carter, Susan J.; Colman, Steven M.
1994-01-01
The Lake Baikal Paleoclimate Project is a joint Russian-American program established to study the paleoclimate of Central Asia. During three summer field seasons, duplicate Russian and American cores were taken at a number of sites in different sedimentary environments in the lake. Eight cores returned to the U.S. were quantitatively analyzed for biogenic silica using a single-step 5-hour alkaline leach, followed by dissolved silicon analysis by inductively-coupled-plasma atomic-emission spectroscopy. Sediments of Holocene age in these cores have biogenic silica maxima that range from about 15 to 80 percent. An underlying zone in each core with low biogenic-silica concentrations (0 to 5 percent) dates from the last glacial maximum. The transition from the last glaciation to the present interglaciation, recorded by biogenic silica, began about 13,000 years ago. Biogenic silica profiles from these cores appear to be a good measure of past diatom productivity and a useful basis for paleoclimatic interpretations.
Sun, Ting; Li, Xuwen; Yang, Jie; Li, Lanjie; Jin, Yongri; Shi, Xiaolei
2015-06-01
In this study, graphene-encapsulated silica was synthesized by a hydrothermal reduction strategy. The presence of silica in graphene was identified by Fourier-transform infrared spectrometry, X-ray diffraction and scanning electron microscopy. The graphene-encapsulated silica subsequently was used as adsorbent for matrix solid-phase dispersion extraction of poly-methoxylated flavonoids from the dried leaves of Murraya panaculata (L.) Jack. Compared with the other adsorbents (graphene, silica gel, C18 silica, neutral alumina, diatomaceous earth) and without any adsorbents, better results were obtained. Then a method for analysis of poly-methoxylated flavonoids was established by coupling matrix solid-phase dispersion extraction with ultra high performance liquid chromatography and UV detection. Compared with reflux extraction and ultrasonic extraction, the proposed method is quicker, more efficient and more environmental protection. Less than 10 min is needed from extraction to detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In situ X-Ray Diffraction of Shock-Compressed Fused Silica
NASA Astrophysics Data System (ADS)
Tracy, Sally June; Turneaure, Stefan J.; Duffy, Thomas S.
2018-03-01
Because of its widespread applications in materials science and geophysics, SiO2 has been extensively examined under shock compression. Both quartz and fused silica transform through a so-called "mixed-phase region" to a dense, low compressibility high-pressure phase. For decades, the nature of this phase has been a subject of debate. Proposed structures include crystalline stishovite, another high-pressure crystalline phase, or a dense amorphous phase. Here we use plate-impact experiments and pulsed synchrotron x-ray diffraction to examine the structure of fused silica shock compressed to 63 GPa. In contrast to recent laser-driven compression experiments, we find that fused silica adopts a dense amorphous structure at 34 GPa and below. When compressed above 34 GPa, fused silica transforms to untextured polycrystalline stishovite. Our results can explain previously ambiguous features of the shock-compression behavior of fused silica and are consistent with recent molecular dynamics simulations. Stishovite grain sizes are estimated to be ˜5 - 30 nm for compression over a few hundred nanosecond time scale.
Fabrication and characterization of plasma-sprayed HA/SiO(2) coatings for biomedical application.
Morks, M F
2008-01-01
Fused silica powder has been mixed with hydroxyapatite (HA) powder and plasma sprayed by using gas tunnel-type plasma jet. The influence of silica content (10 wt% and 20 wt%) on the microstructure and mechanical properties of HA-silica coatings was investigated. For investigating the microstructure and mechanical properties of HA-silica coatings, SUS 304 stainless steel was used as substrate material. The spraying was carried out on roughened substrate in an atmospheric chamber. Scanning electron microscope micrographs of cross-sectioned HA/SiO(2) coatings showed that the sprayed HA coatings with 10 and 20 wt% SiO(2) have dense structure with low porosity compared to the pure HA coatings. On the other hand, as the amount of silica was increased the coatings became denser, harder and exhibited high abrasive wear resistance. The presence of silica significantly improved the adhesive strength of HA/SiO(2) coatings mainly due to the increase in bonding strength of the coating at the interface.
Lee, Hyun Kyu; Yang, Da Som; Oh, Wonzin; Choi, Sang-June
2016-06-01
The copper ferrocyanide functionalized core-shell magnetic silica composite (mag@silica-CuFC) was prepared and was found to be easily separated from aqueous solutions by using magnetic field. The synthesized mag@silica-CuFC composite has a high sorption ability of Cs owing to its strong affinity for Cs as well as the high surface area of the supports. Cs sorption on the mag@silica-CuFC composite quickly reached the sorption equilibrium after 2 h of contact time. The effect of the presence of salts with a high concentration of up to 3.5 wt% on the efficiency of Cs sorption onto the composites was also studied. The maximum sorption ability was found to be maintained in the presence of up to 3.5 wt% of NaCl in the solution. Considering these results, the mag@silica-CuFC composite has great potential for use as an effective sorbent for the selective removal of radioactive Cs ions.
Licsandru, Erol-Dan; Schneider, Susanne; Tingry, Sophie; Ellis, Thomas; Moulin, Emilie; Maaloum, Mounir; Lehn, Jean-Marie; Barboiu, Mihail; Giuseppone, Nicolas
2016-03-14
Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water.
Molecular dynamics simulations of liquid silica crystallization.
Niu, Haiyang; Piaggi, Pablo M; Invernizzi, Michele; Parrinello, Michele
2018-05-07
Silica is one of the most abundant minerals on Earth and is widely used in many fields. Investigating the crystallization of liquid silica by atomic simulations is of great importance to understand the crystallization mechanism; however, the high crystallization barrier and the tendency of silica to form glasses make such simulations very challenging. Here we have studied liquid silica crystallization to [Formula: see text]-cristobalite with metadynamics, using X-ray diffraction (XRD) peak intensities as collective variables. The frequent transitions between solid and liquid of the biased runs demonstrate the highly successful use of the XRD peak intensities as collective variables, which leads to the convergence of the free-energy surface. By calculating the difference in free energy, we have estimated the melting temperature of [Formula: see text]-cristobalite, which is in good agreement with the literature. The nucleation mechanism during the crystallization of liquid silica can be described by classical nucleation theory. Copyright © 2018 the Author(s). Published by PNAS.
Chitosan-silica hybrid porous membranes.
Pandis, Christos; Madeira, Sara; Matos, Joana; Kyritsis, Apostolos; Mano, João F; Ribelles, José Luis Gómez
2014-09-01
Chitosan-silica porous hybrids were prepared by a novel strategy in order to improve the mechanical properties of chitosan (CHT) in the hydrogel state. The inorganic silica phase was introduced by sol-gel reactions in acidic medium inside the pores of already prepared porous scaffolds. In order to make the scaffolds insoluble in acidic media chitosan was cross-linked by genipin (GEN) with an optimum GEN concentration of 3.2 wt.%. Sol-gel reactions took place with Tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) acting as silica precursors. GPTMS served also as a coupling agent between the free amino groups of chitosan and the silica network. The morphology study of the composite revealed that the silica phase appears as a layer covering the chitosan membrane pore walls. The mechanical properties of the hybrids were characterized by means of compressive stress-strain measurements. By immersion in water the hybrids exhibit an increase in elastic modulus up to two orders of magnitude. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei
2015-01-01
A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.
Effect of Nano Silica on the Physical Property of Porous Concrete Pavement
NASA Astrophysics Data System (ADS)
Yusak, Mohd Ibrahim Mohd; Ezree Abdullah, Mohd; Putra Jaya, Ramadhansyah; Rosli Hainin, Mohd; Ibrahim, Mohd Haziman Wan
2017-08-01
Rice husk can be categorized as an organic waste material from paddy industries. Silica is a major inorganic element of the rice husk. The aim of present study is to evaluate the effect of Nano silica on the physical properties of porous concrete pavement. Rice husk has been burned in the furnace (650°C for 6 hours) and ground for four different grinding times (33, 48, 63 and 81 hours). Five types of mixes were prepared to evaluate the different Nano silica grinding time. A Nano silica dosage of 10% by weight of binder was used throughout the experiments. The physical properties were examined through compressive strength, transmission electron microscopy and x-ray fluorescence. The experimental results indicate that the different Nano size gives a different effect to porous concrete strength. Based on the results obtained, Nano silica ground for 63 hours (65.84nm) gives the best result and performance to porous concrete pavement specimens.