Science.gov

Sample records for silica composite nanoparticles

  1. Enhanced stab resistance of armor composites with functionalized silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahfuz, Hassan; Clements, Floria; Rangari, Vijaya; Dhanak, Vinod; Beamson, Graham

    2009-03-01

    Traditionally shear thickening fluid (STF) reinforced with Kevlar has been used to develop flexible armor. At the core of the STF-Kevlar composites is a mixture of polyethylene glycol (PEG) and silica particles. This mixture is often known as STF and is consisted of approximately 45 wt % PEG and 55 wt % silica. During rheological tests, STF shows instantaneous spike in viscosity above a critical shear rate. Fabrication of STF-Kevlar composites requires preparation of STF, dilution with ethanol, and then impregnation with Kevlar. In the current approach, nanoscale silica particles were dispersed directly into a mixture of PEG and ethanol through a sonic cavitation process. Two types of silica nanoparticles were used in the investigation: 30 nm crystalline silica and 7 nm amorphous silica. The admixture was then reinforced with Kevlar fabric to produce flexible armor composites. In the next step, silica particles are functionalized with a silane coupling agent to enhance bonding between silica and PEG. The performance of the resulting armor composites improved significantly. As evidenced by National Institute of Justice spike tests, the energy required for zero-layer penetration (i.e., no penetration) jumped twofold: from 12 to 25 J cm2/g. The source of this improvement has been traced to the formation of siloxane (Si-O-Si) bonds between silica and PEG and superior coating of Kevlar filaments with particles. Fourier transform infrared, x-ray photoemission spectroscopy, and scanning electron microscopy studies were performed to examine chemical bonds, elemental composition, and particle dispersion responsible for such improvement. In summary, our experiments have demonstrated that functionalization of silica particles followed by direct dispersion into PEG resulted in superior Kevlar composites having much higher spike resistance.

  2. Enhanced antibacterial activity of silver/polyrhodanine-composite-decorated silica nanoparticles.

    PubMed

    Song, Jooyoung; Kim, Hyunyoung; Jang, Yoonsun; Jang, Jyongsik

    2013-11-27

    This work describes the synthesis of silver/polyrhodanine-composite-decorated silica nanoparticles and their antibacterial activity. Polymerization of polyrhodanine proceeded preferentially on the surface of the silica nanoparticles where Ag(+) ions were located. In addition, the embedded Ag(+) ions were reduced to form metallic Ag nanoparticles; consequently, silver/polyrhodanine-composite nanoparticles (approximately 7 nm in diameter) were formed on the surface of the silica nanoparticles. The resulting nanostructure was investigated using electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy. The silver/polyrhodanine-nanocomposite-decorated silica nanoparticles exhibited excellent antimicrobial activity toward gram-negative Escherichia coli and gram-positive Staphylococcus aureus because of the antibacterial effects of the silver nanoparticles and the polyrhodanine. The silver/polyrhodanine-composite nanoparticles may therefore have potential for use as a long-term antibacterial agent.

  3. Highly Loaded Mesoporous Silica/Nanoparticle Composites and Patterned Mesoporous Silica Films

    NASA Astrophysics Data System (ADS)

    Kothari, Rohit; Hendricks, Nicholas R.; Wang, Xinyu; Watkins, James J.

    2014-03-01

    Novel approaches for the preparation of highly filled mesoporous silica/nanoparticle (MS/NP) composites and for the fabrication of patterned MS films are described. The incorporation of iron platinum NPs within the walls of MS is achieved at high NP loadings by doping amphiphilic poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (Pluronic®) copolymer templates via selective hydrogen bonding between the pre-synthesized NPs and the hydrophilic portion of the block copolymer. The MS is then synthesized by means of phase selective condensation of tetraethylorthosilicate (TEOS) within the NP loaded block copolymer templates dilated with supercritical carbon dioxide (scCO2) followed by calcination. For patterned films, microphase separated block copolymer/small molecule additive blends are patterned using UV-assisted nanoimprint lithography. Infusion and condensation of a TEOS within template films using ScCO2 as a processing medium followed by calcination yields the patterned MS films. Scanning electron microscopy is used characterize pattern fidelity and transmission electron microscopy analysis confirms the presence of the mesopores. Long range order in nanocomposites is confirmed by low angle x-ray diffraction.

  4. Composites of Eu(3+)-doped calcium apatite nanoparticles and silica particles: comparative study of two preparation methods.

    PubMed

    Isobe, Ayumu; Takeshita, Satoru; Isobe, Tetsuhiko

    2015-02-10

    We synthesized composites of Eu(3+)-doped calcium apatite (CaAp:Eu(3+)) nanoparticles and silica particles via two methods: (i) in situ synthesis of CaAp:Eu(3+) in the presence of silica particles and (ii) electrostatic adsorption of CaAp:Eu(3+) nanoparticles on silica particle surfaces. In both methods, submicrometer spherical silica particles were covered with CaAp:Eu(3+) nanoparticles without forming any impurity phases, as confirmed by X-ray diffractometry, Fourier-transform infrared spectroscopy, and scanning electron microscopy. In method i, part of the silica surface acted as a nucleation site for apatite crystals and silica particles were inhomogeneously covered with CaAp:Eu(3+) nanoparticles. In method ii, positively charged CaAp:Eu(3+) nanoparticles were homogeneously adsorbed on the negatively charged silica surface through electrostatic interactions. The bonds between the silica surface and CaAp:Eu(3+) nanoparticles are strong enough not to break under ultrasonic irradiation, irrespective of the synthetic method used. The composite particles showed red photoluminescence corresponding to 4f → 4f transitions of Eu(3+) under near-UV irradiation. Although the absorption coefficient of the forbidden 4f → 4f transitions of Eu(3+) was small, the red emission was detectable with a commercial fluorescence microscope because the CaAp:Eu(3+) nanoparticles accumulated on the silica particle surfaces.

  5. Effect of Silica Nanoparticles on Compressive Strength of Leaves-Waste Composite

    NASA Astrophysics Data System (ADS)

    Masturi, Masturi; Aliah, Hasniah; Aji, Mahardika Prasetya; Sagita, Adi Ardian; Bukit, Minsyahril; Sustini, Euis; Khairurrijal, Khairurrijal; Abdullah, Mikrajuddin

    2011-12-01

    The utilization of solid-waste, especially leaves-waste is one of interesting research of environmental field. One of them is making a composite using polyvinyl acetate (PVAc) polymer as binder (matrix) and silica nanoparticles as reinforcement (filler) to improve the strength of composite-produced. Those raw materials preliminary were mixed by simple mixing with varied compositions and then hot-pressed at 36 MPa and 100 °C for 20 minutes. From compressive strength test, it was found that composite with composition 7:8 of PVAc and leaves-waste had maximum compressive strength, i.e. 57.60 MPa. It was also that the enhancement of strength due to PVAc fraction (w/w) increasing is a percolation behavior, even though its mathematical explanation has not been performed. Into composition of maximum strength above, silica with average size is 74 nm then was added to improve the strength and found that at silica weight fraction of 0.79 (%w/w), the composite had optimum compressive strength, i.e. 70.5 MPa, or increased up to 22.4% of that without silica. The final compressive strength was very comparable to some building goods such as sandstones and bricks. The composite density was also measured and obtained that it was about 0.9 g/cm3 that is very close to some usual woods.

  6. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites.

    PubMed

    Canché-Escamilla, G; Duarte-Aranda, S; Toledano, M

    2014-09-01

    The effect of hybrid silica/poly(methylmethacrylate) (PMMA) nanoparticles on the properties of composites for dental restoration was evaluated. Hybrid nanoparticles with silica as core and PMMA as shell were obtained by a seeded emulsion polymerization process. Fourier transform infrared spectrum of the hybrid nanoparticles shows an intense peak at 1,730 cm(-1), corresponding to carbonyl groups (CO) of the ester. The thermal stability of the hybrid particles decreases with increasing amounts of PMMA and the residual mass at 700°C corresponds to the silica content in the hybrid particles. Composites were obtained by dispersing nanoparticles (silica or hybrid), as fillers, in a resin-bis glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (40%/60% (w/w)). The paste was then placed in a mold and polymerized under light irradiation. During the preparation of the composites, with the hybrid nanoparticles, the monomers swell the PMMA shell and after photo-curing, a semi-interpenetrating network (semi-IPN) is obtained around the silica core. The properties of the composites, obtained using the hybrid nanoparticles, depend on the filler content and the amount of PMMA in the semi-IPN matrix. For composites with similar inorganic filler contents, the composites with low amounts of PMMA shell had higher modulus than those in which silica was used as the filler.

  7. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis

    NASA Astrophysics Data System (ADS)

    Yuan, Ziming; Pan, Yue; Cheng, Ruoyu; Sheng, Lulu; Wu, Wei; Pan, Guoqing; Feng, Qiming; Cui, Wenguo

    2016-06-01

    There is a high local recurrence (LR) rate in breast-conserving therapy (BCT) and enhancement of the local treatment is promising as a way to improve this. Thus we propose a drug delivery system using doxorubicin (DOX)-loaded mesoporous silica nanoparticle composite nanofibers which can release anti-tumor drugs in two phases—burst release in the early stage and sustained release at a later stage—to reduce the LR of BCT. In the present study, we designed a novel composite nanofibrous scaffold to realize the efficient release of drugs by loading both DOX and DOX-loaded mesoporous silica nanoparticles into an electrospun PLLA nanofibrous scaffold. In vitro results demonstrated that this kind of nanomaterial can release DOX in two phases, and the results of in vivo experiments showed that this hybrid nanomaterial significantly inhibited the tumor growth in a solid tumor model. Histopathological examination demonstrated that the apoptosis of tumor cells in the treated group over a 10 week period was significant. The anti-cancer effects were also accompanied with decreased expression of Bcl-2 and TNF-α, along with up-regulation of Bax, Fas and the activation of caspase-3 levels. The present study illustrates that the mesoporous silica nanoparticle composite nanofibrous scaffold could have anti-tumor properties and could be further developed as adjuvant therapeutic protocols for the treatment of cancer.

  8. The effect of ultrasound on the gold plating of silica nanoparticles for use in composite solders.

    PubMed

    Cobley, A J; Mason, T J; Alarjah, M; Ashayer, R; Mannan, S H

    2011-01-01

    In order to produce electronic devices that can survive harsh environments it is essential that the solder joints are very reliable and this has led to the development of composite solders. One approach to the manufacture of such solders is to disperse silica nanoparticles into it to improve their mechanical and fatigue characteristics. However, this is difficult to achieve using bare silica particles because they are not "wettable" in the solder matrix and so cannot be dispersed efficiently. In an attempt to alleviate this issue it has been found that if the silica nanoparticles are first plated with gold then this problem of wetting can, to some extent, be overcome. However, the particles must be completely encapsulated with gold which, using the method previously described by workers at Kings College London, was found to be difficult to accomplish. In this short communication the effect of ultrasound on the gold coverage is described. Different frequencies of ultrasound were used (20, 850 and 1176 kHz) and it was found that higher frequencies of ultrasound improved the coverage and dispersion of the gold nanoparticles over silica during the seeding step compared to simple mechanical agitation. This subsequently led to a more complete encapsulation of gold in the plating stage. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers.

    PubMed

    Suzuki, Norihiro; Zakaria, Mohamed B; Chiang, Ya-Dong; Wu, Kevin C-W; Yamauchi, Yusuke

    2012-05-28

    The colloidal mesoporous silica nanoparticles with small particle sizes (namely, CMS) are used as inorganic fillers of polymers (i.e. epoxy and silicone). From simple calculation, almost all polymers are estimated to be confined in the mesopores. To clarify the superiority of CMS over nonporous silica particles and mesoporous silica particles with much larger size (TMPS-4) as inorganic fillers, a systematic study on mechanical strength and transparency of polymer-silica nanocomposites was conducted. Compared with nonporous silica particles, similar to TMPS-4, CMS shows a greater effect on lowering the CTE. In addition, obtained polymer-CMS nanocomposites show improved transparency than polymer-TMPS-4 nanocomposites.

  10. Composite silica coated gold nanosphere and quantum dots nanoparticles for X-ray CT and fluorescence bimodal imaging.

    PubMed

    Song, Ji-Tao; Yang, Xiao-Quan; Zhang, Xiao-Shuai; Yan, Dong-Mei; Yao, Ming-Hao; Qin, Meng-Yao; Zhao, Yuan-Di

    2015-07-07

    In this study, silica coated Au nanospheres (Au@SiO2) were prepared by a reverse microemulsion method; subsequently, a layer of fluorescent quantum dots (QDs) were adsorbed onto it and then it was coated with silica again. After modifying with PVP, the composite silica coated gold nanosphere and quantum dots nanoparticle (Au@SiO2-QDs/SiO2-PVP) was obtained. This composite structure contained Au and QDs, and it could be used for contrast-enhanced X-ray CT imaging and fluorescence imaging. Characterization showed that the composite nanoparticle had good dispersity, a high fluorescence intensity and a good effect of X-ray absorption, and it was suitable for using as a bimodal imaging probe.

  11. Monodisperse magnetizable silica composite particles from heteroaggregate of carboxylic polystyrene latex and Fe(3)O(4) nanoparticles.

    PubMed

    Lu, Ziyang; Qin, Yaqiong; Fang, Jianyong; Sun, Jing; Li, Jun; Liu, Fengqi; Yang, Wensheng

    2008-02-06

    Monodisperse magnetizable silica composite particles were prepared from heteroaggregates of carboxylic polystyrene latex and Fe(3)O(4) nanoparticles. It was found that the heteroaggregation of the carboxylic latex and Fe(3)O(4) nanoparticles is dependent on the pH of the solution. At low pH value (pH = 2-4), the aggregation proceeds effectively due to opposite charges on the surfaces of the latex and the magnetic nanoparticles. At high pH value (pH>8), no aggregation was observed due to the negative charge on both the surface of the latex and the magnetic nanoparticles. The heteroaggregate of the latex and magnetic nanoparticles was found to be stable in a wide range of pH values, due to the existence of coordination interactions at the interface of the latex and magnetic nanoparticles. After silica layer coating on the heteroaggregate by the Stöber process and removal of the latex by calcination, hollow monodisperse magnetizable silica composite particles are obtained.

  12. The effect of silica nanoparticles on the mechanical properties of fiber-reinforced composite resins

    PubMed Central

    Rezvani, Mohammad Bagher; Atai, Mohammad; Hamze, Faeze; Hajrezai, Reihane

    2016-01-01

    Background. Nanotechnology has introduced many nanoparticles in recent years, which can be incorporated for mechanical improvement of dental materials. However, the existing data are widely sparse. This study investigated the reinforcing effect of silica nanoparticles when incorporated into the matrix phase of an experimental dental fiber-reinforced compositeresin (FRC) through evaluation of its flexural properties. Methods. In this experimental study FRC samples were divided into two main groups (containing two or three bundles),either of whic consisted of five subgroups with 0, 0.2, 0.5, 2 and 5 wt% of silica nanoparticles in the matrix resin (n=10 in each subgroup); a commercial FRC (Angelus, Brazil) was used as the control group (n=10). Three-point bending test was performed to evaluate the flexural strength and modulus. Thereafter, the microstructure of the fractured samples was evalu-ated using scanning electron microscopy (SEM). The results were analyzed with one-way ANOVA and HSD Tukey tests (α = 0.05). Results. The results revealed that the silica nanoparticles had a significant and positive effect on the flexural strength and modulus of FRCs (P<0.05), with no significant differences from 0.2 to 5 wt% of nanoparticles (P > 0.05) in either group with two or three bundles of fibers. Conclusion. Incorporating silica nanoparticles into the FRC resin phase resulted in improved flexural strength and modulus of the final product. PMID:27429728

  13. Gold nanoparticle decorated graphene oxide/silica composite stationary phase for high-performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Wang, Xusheng; Ren, Haixia; Jiang, Shengxiang; Wang, Licheng; Liu, Shujuan

    2014-06-01

    In the initial phase of this study, graphene oxide (GO)/silica was fabricated by assembling GO onto the silica particles, and then gold nanoparticles (GNPs) were used to modify the GO/silica to prepare a novel stationary phase for high-performance liquid chromatography. The new stationary phase could be used in both reversed-phase chromatography and hydrophilic interaction liquid chromatography modes. Good separations of alkylbenzenes, isomerides, amino acids, nucleosides, and nucleobases were achieved in both modes. Compared with the GO/silica phase and GNPs/silica phase, it is found that except for hydrophilicity, large π-electron systems, hydrophobicity, and coordination functions, this new stationary phase also exhibited special separation performance due to the combination of 2D GO with zero-dimensional GNPs.

  14. Polymer-Silica nanoparticles composite films as protective coatings for stone-based monuments

    NASA Astrophysics Data System (ADS)

    Manoudis, P.; Papadopoulou, S.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C.

    2007-04-01

    The decrease of surface energy of mineral substrates similar to those used in many stone monuments of cultural heritage by the application of protective polymer coatings along with the simultaneous increase of their surface roughness can increase their ability to repel water substantially. In this work, the effect of artificially induced roughness on the water repellency of mineral substrates coated with protective polymer films was investigated. Natural marble samples or home made calcium carbonate blocks were tried as the mineral substrates. The roughness increase was achieved by mineral chemical etching or by creation of nanoscale binary composition film on the substrate surface. PMMA and PFPE were the polymers used, while different-sized silica nanoparticles were employed for the production of the nanocomposite films. Examination of the coated and uncoated surfaces with profilometry and AFM and measurements of water contact angles reveal a pronounced effect of the surface roughness on water repellency. Especially in the case of nanocomposite coatings, the surfaces become super-hydrophobic. This result indicates that the nanoscale binary composition film scheme, which is characterized by its simplicity and low cost, is a suitable candidate for the water protection of stone-based monuments on large scale.

  15. Bone cement based on vancomycin loaded mesoporous silica nanoparticle and calcium sulfate composites.

    PubMed

    Li, Hanwen; Gu, Jisheng; Shah, Luqman Ali; Siddiq, Mohammad; Hu, Jianhua; Cai, Xiaobing; Yang, Dong

    2015-04-01

    A novel bone cement pellet, with sustained release of vancomycin (VAN), was prepared by mixing VAN loaded mesoporous silica nanoparticle (MSN) and calcium sulfate α-hemihydrate (CS) together. To improve the VAN loading ability, MSN was functionalized with aminopropyltriethoxysilane (APS) to give APS-MSN. The VAN loading content and entrapment efficiency of APS-MSN could reach up to 45.91±0.81% and 84.88±1.52%, respectively, much higher than those of MSN, which were only 3.91% and 4.07%, respectively. The nitrogen adsorption-desorption measurement results demonstrated that most of the VAN were in the pores of APS-MSN. The CS/VAN@APS-MSN composite pellet showed a strongly drug sustained release effect in comparison with CS control pellet. The in vitro cell assays demonstrated that CS/APS-MSN composite was highly biocompatible and suitable to use as bone cement. Furthermore, CS/VAN@APS-MSN pellet showed no pyrogenic effect and meet the clinical requirements on hemolytic reaction. These results imply that CS/VAN@APS-MSN was an ideal candidate to replace CS bone cement in the treatment of open fractures. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity

    NASA Astrophysics Data System (ADS)

    Mortensen, Ninell P.; Hurst, Gregory B.; Wang, Wei; Foster, Carmen M.; Nallathamby, Prakash D.; Retterer, Scott T.

    2013-06-01

    The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated over time. Native SiO2, amine (-NH2) and carboxy (-COO-) modified NP were examined following incubation in mammalian growth media containing fetal bovine serum (FBS) for 1, 4, 24 and 48 hours. The protein corona transition from its early dynamic state to the later more stable corona was evaluated using mass spectrometry. The NP diameter was 22.4 +/- 2.2 nm measured by scanning transmission electron microscopy (STEM). Changes in hydrodynamic diameter and agglomeration kinetics were studied using dynamic light scattering (DLS). The initial surface chemistry of the NP played an important role in the development and final composition of the protein corona, impacting agglomeration kinetics and NP toxicity. Particle toxicity, indicated by changes in membrane integrity and mitochondrial activity, was measured by lactate dehydrogenase (LDH) release and tetrazolium reduction (MTT), respectively, in mouse alveolar macrophages (RAW264.7) and mouse lung epithelial cells (C10). SiO2-COO- NP had a slower agglomeration rate, formed smaller aggregates, and exhibited lower cytotoxicity compared to SiO2 and SiO2-NH2. Composition of the protein corona for each of the three NP was unique, indicating a strong dependence of corona development on NP surface chemistry. This work underscores the need to understand all aspects of NP toxicity, particularly the influence of agglomeration on effective dose and particle size. Furthermore, the interplay between materials and local biological environment is emphasized and highlights the need to conduct toxicity profiling under physiologically relevant conditions that provide an appropriate estimation of material modifications that occur during exposure in natural environments.The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated

  17. Biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites.

    PubMed

    Gu, Jisheng; Wang, Teng; Fan, Guoxin; Ma, Junhua; Hu, Wei; Cai, Xiaobing

    2016-04-01

    The aim of this study was to evaluate the in vitro and in vivo biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites. In vitro cytotoxicity tests by cholecystokinin octapeptide (CCK-8) assay showed that the 5%Van-MSN-CaSO4 and Van-CaSO4 bone cements were cytocompatible for mouse osteoblastic cell line MC3T3-E1. The microscopic observation confirmed that MC3T3-E1cells incubated with Van-CaSO4 group and 5%Van-MSN-CaSO4 group exhibited clear spindle-shaped changes, volume increase and maturation, showing that these cements supported adhesion of osteoblastic cells on their surfaces. In addition, the measurement of alkaline phosphatase activity revealed the osteoconductive property of these biomaterials. In order to assess in vivo biocompatibility, synthesized cements were implanted into the distal femur of twelve adult male and female New Zealand rabbits. After implantation in artificial defects of the distal femur, 5%Van-MSN-CaSO4 and Van-CaSO4 bone cements did not damage the function of main organs of rabbits. In addition, the Van-MSN-CaSO4 composite allowed complete repair of bone defects with new bone formation 3 months after implantation. These results show potential application of Van-MSN-CaSO4 composites as bone graft materials for the treatment of open fracture in human due to its mechanical, osteoconductive and potential sustained drug release characteristics and the absence of adverse effects on the body.

  18. Silica-maltose composites: obtaining drug carrier systems through tailored ultrastructural nanoparticles.

    PubMed

    Leirose, Glaucia D S; Cardoso, Mateus B

    2011-07-01

    The formation of tailored silica-maltose composites through a simple and direct sol-gel chemistry approach is demonstrated. The ultrastructural organization of the composite associated with their tailorability allows envisaging a future application in drug delivery field. Ultraviolet-visible spectroscopy is used to follow the maltose encapsulation yield, whereas a combination of characterization techniques is employed to reconstruct the multilevel hierarchical structure of composites. Scanning electron microscopy shows that the overall size of spherical composites can be tuned from 250 to 750 nm by changing the amount of maltose within the structure. Composite size distribution indicates that this synthesis approach produces structures with low polydispersity as required for drug delivery purposes. Small-angle X-ray scattering and nitrogen adsorption-desorption techniques show evidence that the composite is elementarily formed by fundamental silica spheres with size ranging from approximately 4 to approximately 7 nm. Surface area of composites is reduced when maltose concentration is increased, which indicates that carbohydrate molecules are preferentially located into the interstitial space between fundamental silica spheres. Through an ultrastructural control over the synthesis process, it has been shown that sol-gel method employed here presents considerable potential for producing efficient drug carrier systems.

  19. Improved optical properties of silica/UV-cured polymer composite films made of hollow silica nanoparticles with a hierarchical structure for light diffuser film applications.

    PubMed

    Suthabanditpong, W; Takai, C; Fuji, M; Buntem, R; Shirai, T

    2016-06-28

    This study successfully improved the optical properties of silica/UV-cured polymer composite films made of hollow silica nanoparticles having a hierarchical structure. The particles were synthesized by an inorganic particle method, which involves two steps of sol-gel silica coating around the template and acid dissolution removal of the template. The pH of the acid was varied to achieve different hierarchical structures of the particles. The morphologies and surface properties of the obtained particles were characterized before dispersing in a UV-curable acrylate monomer solution to prepare dispersions for fabricating light diffuser films. The optical properties and the light diffusing ability of the fabricated films were studied. The results revealed that the increased pH of the acid provides the particles with a thinner shell, a larger hollow interior and a higher specific surface area. Moreover, the films with these particles exhibit a better light diffusing ability and a higher diffuse transmittance value when compared to those without particles. Therefore, the composite films can be used as light diffuser films, which is an essential part of optical diffusers in the back-light unit of LCDs. In addition, utilizing the hierarchical particles probably reduces the number of back-light units in the LCDs leading to energy-savings and subsequently lightweight LCDs.

  20. Dual roles of amphiphilic triblock copolymer P123 in synthesis of α-Fe nanoparticle/ordered mesoporous silica composites

    NASA Astrophysics Data System (ADS)

    Li, Jiansheng; Li, Huijun; Zhu, Ye; Hao, Yanxia; Sun, Xiuyun; Wang, Lianjun

    2011-11-01

    A simple and effective method for in situ synthesis of α-Fe nanoparticle/ordered mesoporous silica (OMS) composites is reported. Evaporation induced self-assembly (EISA) and carbothermal reduction (CR) are strategically combined by using amphiphilic triblock copolymer P123 as not only a template and but also a precursor of carbon material. P123 plays dual roles in assembly of mesostructure and reduction of ferric species. Thermogravimetric analysis-mass spectrometer was used to investigate the pyrolysis process of the wet gels. The synthesized composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS) and N2 adsorption. The results showed that the composites possess ordered hexagonal mesoporous structure and the α-Fe nanoparticles with about 16 nm were well dispersed in mesoporous matrix. The carbon material resulting from P123 can reduce ferric species to α-Fe nanoparticles at 800 °C. Moreover, the formation mechanism for Fe nanoparticles in OMS matrix is proposed.

  1. Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Zhu, Yufang; Zhang, Lingxia; Shi, Jianlin

    2013-08-01

    We have developed composite hydrogels of chitosan (CS) and mesoporous silica nanoparticles (MSNs) in this study. The gelation rate, gel strength, drug delivery behavior and chondrocyte proliferation properties were investigated. The introduction of MSNs into CS accelerated the gelation process at body temperature and also increased the elastic modulus G‧ from 1000 to 1800 Pa. When we used gentamicin (GS) and bovine serum albumin (BSA) as model small chemical drugs and biomacromolecules, respectively, the CS/MSN hydrogels released GS and BSA in a sustained manner simultaneously, but the CS hydrogels only showed sustained BSA release. Furthermore, in vitro chondrocyte culture showed that the CS/MSN composite hydrogels indeed performed much better in supporting chondrocyte growth and maintaining chondrocytic phenotype compared to the CS hydrogels. Therefore, the results suggest that the CS/MSN composite hydrogels can be potentially very useful for cartilage regeneration.

  2. Mechanical properties of composites made of hybrid fabric impregnated with silica nanoparticles and epoxy resin

    NASA Astrophysics Data System (ADS)

    Kordani, N.; Alizadeh, M.; Lohrasby, F.; Khajavi, R.; Baharvandi, H. R.; Rezanejad, M.; Ahmadzadeh, M.

    2017-09-01

    In this study, the mechanical properties of composites will be examined which were made from Kenaf and hybrid fabric with a simple structure that was coated with epoxy resin and nano silica particles. This fabric cotton has a different situation in terms of yarn score and the type of fiber that is used in textiles. Nano silica particles of 200 nm, polyethylene glycol with 200 molecular weights and ethanol with mechanical weight molecular with ratio of 6:1 will be mixed. Suspension of 60% was chosen according to the silica particles. The D6264 standard test for concentrated force was carried out through the cone edge to determine the strength of each of the samples. Increasing of resistance against penetration in the Kenaf samples from the raw until impregnated with the shear thickening fluid is less than the hybrid samples. Slippage of the fibers with the change of round edge indenter to cone edge indenter has changed. Penetration by cone edge to the cloth is done with lower force and it shows the effect of slippage of fibers on the resistance of the penetration. Samples impregnated with the shear thickening fluid in comparison with epoxy resin have lower resistance. Slippage of natural fibers in comparison with synthetic fibers is lower and on the other hand the average of friction between fibers in the natural fibers is more than synthetic fibers.

  3. A Thermally Conductive Composite with a Silica Gel Matrix and Carbon-Encapsulated Copper Nanoparticles as Filler

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Zhang, Haiyan; Hong, Haoqun; Liu, Hui; Zhang, Xiubin

    2014-07-01

    Core-shell-structured nanocapsules with a copper core encapsulated in a carbon shell (Cu-C) were synthesized by a direct-current arc-discharge method. Morphological and microstructural characterization showed that the Cu-C consisted of a nanosized Cu core and carbon shell, with the carbon shells containing 6 to 15 ordered graphitic layers and amorphous carbon that effectively shield the metallic Cu core from oxidation. A thermally conductive composite was successfully fabricated using a silica gel matrix incorporated with Cu-C filler. The Cu-C nanoparticles were homogeneously dispersed in the silica gel. The effects of Cu-C on the thermal conductivity, electrical resistivity, and coefficient of thermal expansion (CTE) of the composite were investigated. For composites with 6.16 vol.%, 11.04 vol.%, 16.70 vol.%, and 23.34 vol.% Cu-C content, the thermal conductivity at 50°C was 0.32 W/(m K) to 0.77 W/(m K), the electrical resistivity was 1.98 × 109, 3.48 × 107, 302, and 1 Ω m, respectively, while the CTE at 200°C was 3.79 × 10-4 K-1 to 3.44 × 10-4 K-1. The results reveal that the ordered graphitic shells in the Cu-C increased both the thermal and electrical conduction, but decreased the CTE by preventing the Cu cores from expanding.

  4. Mesoporous silica templated zirconia nanoparticles

    NASA Astrophysics Data System (ADS)

    Ballem, Mohamed A.; Córdoba, José M.; Odén, Magnus

    2011-07-01

    Nanoparticles of zirconium oxide (ZrO2) were synthesized by infiltration of a zirconia precursor (ZrOCl2·8H2O) into a SBA-15 mesoporous silica mold using a wet-impregnation technique. X-ray diffractometry and high-resolution transmission electron microscopy show formation of stable ZrO2 nanoparticles inside the silica pores after a thermal treatment at 550 °C. Subsequent leaching out of the silica template by NaOH resulted in well-dispersed ZrO2 nanoparticles with an average diameter of 4 nm. The formed single crystal nanoparticles are faceted with 110 surfaces termination suggesting it to be the preferred growth orientation. A growth model of these nanoparticles is also suggested.

  5. Silica-based composite and mixed-oxide nanoparticles from atmospheric pressure flame synthesis

    NASA Astrophysics Data System (ADS)

    Akurati, Kranthi K.; Dittmann, Rainer; Vital, Andri; Klotz, Ulrich; Hug, Paul; Graule, Thomas; Winterer, Markus

    2006-08-01

    Binary TiO2/SiO2 and SnO2/SiO2 nanoparticles have been synthesized by feeding evaporated precursor mixtures into an atmospheric pressure diffusion flame. Particles with controlled Si:Ti and Si:Sn ratios were produced at various flow rates of oxygen and the resulting powders were characterized by BET (Brunauer-Emmett-Teller) surface area analysis, XRD, TEM and Raman spectroscopy. In the Si-O-Ti system, mixed oxide composite particles exhibiting anatase segregation formed when the Si:Ti ratio exceeded 9.8:1, while at lower concentrations only mixed oxide single phase particles were found. Arrangement of the species and phases within the particles correspond to an intermediate equilibrium state at elevated temperature. This can be explained by rapid quenching of the particles in the flame and is in accordance with liquid phase solubility data of Ti in SiO2. In contrast, only composite particles formed in the Sn-O-Si system, with SnO2 nanoparticles predominantly found adhering to the surface of SiO2 substrate nanoparticles. Differences in the arrangement of phases and constituents within the particles were observed at constant precursor mixture concentration and the size of the resultant segregated phase was influenced by varying the flow rate of the oxidant. The above effect is due to the variation of the residence time and quenching rate experienced by the binary oxide nanoparticles when varying the oxygen flow rate and shows the flexibility of diffusion flame aerosol reactors.

  6. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light.

    PubMed

    Zhang, Zhigang; Chai, Aiyun

    2012-12-01

    Lack of solubility under physiological conditions poses an additional risk for toxicity and side effects for intravenous delivery of the photodynamic therapeutic agent in vivo. Employing magnetite-silica composite nanoparticles as carriers of the photodynamic therapeutic agents may be a promising way to solve the problem. In this study, core-shell magnetite-silica composite nanoparticles were prepared by a sol-gel method, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering, then they were used as carriers of a photoactive platinum diimine complex. The interactions of the photosensitizer-loaded magnetic composite nanoparticles with DNA in red light were monitored by agarose-gel electrophoresis. The results suggest that high doses of magnetite-silica composite nanoparticles might facilitate the transformation of covalently closed circular (ccc)-DNA band to open circular (oc)-DNA band though they are harmless to DNA at their low concentrations, therefore enhancing the extent of DNA damage caused by the metal complex in red light.

  7. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles.

    PubMed

    Massa, Miguel A; Covarrubias, Cristian; Bittner, Mauricio; Fuentevilla, Ignacio Andrés; Capetillo, Pavel; Von Marttens, Alfredo; Carvajal, Juan Carlos

    2014-12-01

    Infection is the most common factor that leads to dental titanium implant failure. Antibacterial implant surfaces based on nano-scale modifications of the titanium appear as an attractive strategy for control of peri-implantitis. In the present work, the preparation and antibacterial properties of a novel composite coating for titanium based on nanoporous silica and silver nanoparticles are presented. Starch-capped silver nanoparticles (AgNPs) were synthesized and then incorporated into sol-gel based solution system. The AgNP-doped nanoporous silica coatings were prepared on titanium surface using a combined sol-gel and evaporation-induced self-assembly (EISA) method. The coating nanostructure was characterized by XRD, SEM-EDX, and HR-TEM. Antibacterial activity was evaluated against Aggregatibacter actinomycetemcomitans, a representative pathogen of dental peri-implantitis. Colony-forming units (CFUs) were counted within the biofilm and at the planktonic state. Biofilm development was quantified using crystal violet staining and viability of adherent bacteria was confirmed with the Live/Dead fluorescence assay. Silica-based composite coating containing AgNPs (AgNP/NSC) was prepared on titanium surface by direct incorporation of AgNP suspension into the sol-gel system. The self-assembly technique enabled the spontaneous formation of a highly ordered nanoporosity in the coating structure, which is a desired property for osseointegration aspects of titanium implant surface. AgNP/NSC coating produces a strong antibacterial effect on titanium surface by not only killing the adherent bacteria but also reducing the extent of biofilm formation. Biofilm survival is reduced by more than 70% on the AgNP/NSC-modified titanium surface, compared to the control. This antibacterial effect was verified for up to 7 days of incubation. The long-term antibacterial activity exhibited by the nanostructured AgNP/NSC-titanium surface against A. actinomycetemcomitans suggests that this

  8. Dataset for acrylate/silica nanoparticles formulations and photocured composites: Viscosity, filler dispersion and bulk Poisson׳s ratio.

    PubMed

    Gojzewski, Hubert; Sadej, Mariola; Andrzejewska, Ewa; Kokowska, Martyna

    2017-06-01

    UV-curable polymer composites are of importance in industry, biomedical applications, scientific fields, and daily life. Outstanding physical properties of polymer composites were achieved with nanoparticles as filler, primarily in enhancing mechanical strength or barrier properties. Structure-property relationships of the resulting nanocomposites are dictated by the polymer-filler molecular architecture, i.e. interactions between polymer matrix and filler, and high surface area to volume ratio of the filler particles. Among monomers, acrylates and methacrylates attracted wide attention due to their ease of polymerization and excellent physicochemical and mechanical properties of the derived polymers. We prepared and photopolymerized two series of formulations containing hydrophobized silica nanofiller (Aerosil R7200) dispersed in 2-hydroxyethyl acrylate (HEA) or polyethylene glycol diacrylate (PEGDA) monomers. We compared selected physical properties of the formulations, both before and after photocuring; specifically the viscosity of formulations and dispersion of the filler in the polymer matrices. Additionally, we estimated the bulk Poisson׳s ratio of the investigated nanocomposites. This article contains data related to the research article entitled "Nanoscale Young׳s modulus and surface morphology in photocurable polyacrylate/nanosilica composites" (Gojzewski et al., 2017) [1].

  9. Investigation of laundering and dispersion approaches for silica and calcium phosphosilicate composite nanoparticles synthesized in reverse micelles

    NASA Astrophysics Data System (ADS)

    Tabakovic, Amra

    Nanotechnology, the science and engineering of materials at the nanoscale, is a booming research area with numerous applications in electronic, cosmetic, automotive and sporting goods industries, as well as in biomedicine. Composite nanoparticles (NPs) are of special interest since the use of two or more materials in NP design imparts multifunctionality on the final NP constructs. This is especially relevant for applications in areas of human healthcare, where the use of dye or drug doped composite NPs is expected to improve the diagnosis and treatment of cancer and other serious illnesses. Since the physicochemical properties of NP suspensions dictate the success of these systems in biomedical applications, especially drug delivery of chemotherapeutics, synthetic routes which offer precise control of NP properties, especially particle diameter and colloidal stability, are utilized to form a variety of composite NPs. Formation of NPs in reverse, or water-in-oil, micelles is one such synthetic approach. However, while the use of reverse micelles to form composite NPs offers precise control over NP size and shape, the post-synthesis laundering and dispersion of synthesized NP suspensions can still be a challenge. Reverse micelle synthetic approaches require the use of surfactants and low dielectric constant solvents, like hexane and cyclohexane, as the oil phase, which can compromise the biocompatibility and colloidal stability of the final composite NP suspensions. Therefore, appropriate dispersants and solvents must be used during laundering and dispersion to remove surfactant and ensure stability of synthesized NPs. In the work presented in this dissertation, two laundering and dispersion approaches, including packed column high performance liquid chromatography (HPLC) and centrifugation (sedimentation and redispersion), are investigated for silver core silica (Ag-SiO2) and calcium phosphosilicate (Caw(HxPO4)y(Si(OH)zOa) b · cH2O, CPS) composite NP suspensions

  10. Superhydrophobicity of silica nanoparticles modified with polystyrene

    NASA Astrophysics Data System (ADS)

    Sun, X. L.; Fan, Z. P.; Zhang, L. D.; Wang, L.; Wei, Z. J.; Wang, X. Q.; Liu, W. L.

    2011-01-01

    Polystyrene/silica nanoparticles were prepared by radical polymerization of silica nanoparticles possessing vinyl groups and styrene with benzoyl peroxide. The resulting vinyl silica nanoparticles, polystyrene/silica nanoparticles were characterized by means of Fourier transformation infrared spectroscopy, scanning electron microscopy and UV-vis absorption spectroscopy. The results indicated that polystyrene had been successfully grafted onto vinyl silica nanoparticles via covalent bond. The morphological structure of polystyrene/silica nanoparticles film, investigated by scanning electron microscopy, showed a characteristic rough structure. Surface wetting properties of the polystyrene/silica nanoparticles film were evaluated by measuring water contact angle and the sliding angle using a contact angle goniometer, which were measured to be 159° and 2°, respectively. The excellent superhydrophobic property enlarges potential applications of the superhydrophobic surfaces.

  11. Application of silica nanoparticles for increased silica availability in maize

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N.

    2013-02-01

    Silica nanoparticles were extracted from rice husk and characterised comprehensively. The synthesised silica powders were amorphous in size with 99.7% purity (20-40 nm). Nanosilica was amended with red soil at 15 kg ha-1 along with micron silica. The influence of nanoscale on silica uptake, accumulation and nutritional variations in maize roots were evaluated through the studies such as root sectioning, elemental analysis and physiological parameters (root length and silica content) and compared with micron silica and control. Nanosilica treated soil reveals enhanced silica uptake and elongated roots which make the plant to resist in stress conditions like drought.

  12. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles.

    PubMed

    Lee, Ga Hyun; Lee, Sung June; Jeong, Sang Won; Kim, Hyun-Chul; Park, Ga Young; Lee, Se Geun; Choi, Jin Hyun

    2016-07-01

    Utilizing the biological activities of compounds by encapsulating natural components in stable nanoparticles is an important strategy for a variety of biomedical and healthcare applications. In this study, quercetin-loaded silica nanoparticles were synthesized using an oil-in-water microemulsion method, which is a suitable system for producing functional nanoparticles of controlled size and shape. The resulting quercetin-loaded silica nanoparticles were spherical, highly monodispersed, and stable in an aqueous system. Superoxide radical scavenging effects were found for the quercetin-loaded silica nanoparticles as well as free quercetin. The quercetin-loaded silica nanoparticles showed cell viability comparable to that of the controls. The amounts of proinflammatory cytokines produced by macrophages, such as interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha, were reduced significantly for the quercetin-loaded silica nanoparticles. These results suggest that the antioxidative and antiinflammatory activities of quercetin are maintained after encapsulation in silica. Silica nanoparticles can be used for the effective and stable incorporation of biologically active natural components into composite biomaterials.

  13. Cellular membrane trafficking of mesoporous silica nanoparticles

    SciTech Connect

    Fang, I-Ju

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  14. Thermal resistance between amorphous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Meng, Fanhe; Elsahati, Muftah; Liu, Jin; Richards, Robert F.

    2017-05-01

    Nanoparticle-based materials have been used as thermal insulation in a variety of macroscale and microscale applications. In this work, we investigate the heat transfer between nanoparticles using non-equilibrium molecular dynamics simulations. We calculate the total thermal resistance and thermal boundary resistance between adjacent amorphous silica nanoparticles. Numerical results are compared to interparticle resistances determined from experimental measurements of heat transfer across packed silica nanoparticle beds. The thermal resistance between nanoparticles is shown to increase rapidly as the particle contact radius decreases. More significantly, the interparticle resistance depends strongly on the forces between particles, in particular, the presence or absence of chemical bonds between nanoparticles. In addition, the effect of interfacial force strength on thermal resistance increases as the nanoparticle diameter decreases. The simulations results are shown to be in good agreement with experimental results for 20 nm silica nanoparticles.

  15. Electrorheological properties of carbon nanotube/ polyelectrolyte composite silica nanoparticles by layer-by-layer self-assembly.

    PubMed

    Kim, Byung-Soo; Kim, Bumsu; Suh, Kyung-Do

    2008-08-01

    Multiwall carbon nanotubes (MCNTs)/silica (SiO2) composite particles were prepared by layer-by-layer (LbL) self-assembly method using polyelectrolytes and functionalized MCNTs (fMCNTs). The fMCNTs prepared by chemical oxidation method were incorporated on the outermost layer of polyelectrolyte-coated SiO2 particles. The amount of fMCNTs was varied by LbL self assembly. In the process the number of fMCNT layers on SiO2 particles could be controlled. The fMCNT-coated SiO2 particles were characterized by zeta-potential analysis, transmission electron microscopy (TEM), and optical microscopy (OM). In addition, the electrorheological (ER) properties of multilayers containing fMCNTs on silica particles were investigated under controlled electric fields. The ER properties of the composite particles were influenced by the amount of fMCNTs in multilayers.

  16. Wear behavior of light-cured resin composites with bimodal silica nanostructures as fillers.

    PubMed

    Wang, Ruili; Bao, Shuang; Liu, Fengwei; Jiang, Xiaoze; Zhang, Qinghong; Sun, Bin; Zhu, Meifang

    2013-12-01

    To enhance wear behavior of resin composites, bimodal silica nanostructures including silica nanoparticles and silica nanoclusters were prepared and proposed as fillers. The silica nanoclusters, a combination of individually dispersed silica nanoparticles and their agglomerations, with size distribution of 0.07-2.70 μm, were fabricated by the coupling reaction between amino and epoxy functionalized silica nanoparticles, which were obtained by the surface modification of silica nanoparticles (~70 nm) using 3-aminopropyl triethoxysilane (APTES) and 3-glycidoxypropyl trimethoxysilane (GPS) as coupling agents, respectively. Silica nanoparticles and nanoclusters were then silanized with 3-methacryloxypropyl trimethoxysilane (γ-MPS) to prepare composites by mixing with bisphenol A glycerolate dimethacrylate (Bis-GMA) and tri (ethylene glycol) dimethacrylate (TEGDMA). Experimental composites with various filler compositions were prepared and their wear behaviors were assessed in this work. The results suggested that composites with increasing addition of silica nanoparticles in co-fillers possessed lower wear volume and smoother worn surface. Particularly, the composite 53:17 with the optimum weight ratio of silica nanoparticles and silica nanoclusters presented the excellent wear behavior with respect to that of the commercial Esthet-X, although the smallest wear volume was achieved by Z350 XT. The introduction of bimodal silica nanostructures as fillers might provide a new sight for the design of resin composites with significantly improved wear resistance.

  17. Sonochemical coating of magnetite nanoparticles with silica.

    PubMed

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  18. Enhanced electrochemiluminescence based on Ru(bpy)₃²⁺-doped silica nanoparticles and graphene composite for analysis of melamine in milk.

    PubMed

    Zhou, Limin; Huang, Jianshe; Yang, Lu; Li, Libo; You, Tianyan

    2014-05-08

    A sensitive electrochemiluminescence (ECL) sensor for melamine analysis was fabricated based on Ru(bpy)3(2+)-doped silica (Ru(bpy)3(2+)@SiO2) nanoparticles and graphene composite. Spherical Ru(bpy)3(2+)@SiO2 nanoparticles with uniform size about 55 nm were prepared by the reverse microemulsion method. Since per Ru(bpy)3(2+)@SiO2 nanoparticle encapsulated a great deal of Ru(bpy)3(2+), the ECL intensity has been greatly enhanced, which resulted in high sensitivity. Due to its extraordinary electric conductivity, graphene improved the conductivity and accelerated the electron transfer rate. In addition, graphene could work as electronic channel improving the efficient luminophor amount participating in the ECL reaction, which further enhanced the ECL signal. This proposed sensor was used to melamine analysis and the ECL intensity was proportional to logarithmic melamine concentration range from 1×10(-13) M to 1×10(-8) M with the detect limit as low as 1×10(-13) M. In application to detect melamine in milk, satisfactory recoveries could be obtained, which indicated this sensor having potential application in melamine analysis in real samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds.

    PubMed

    Zu, Guoqing; Shen, Jun; Wang, Wenqin; Zou, Liping; Lian, Ya; Zhang, Zhihua

    2015-03-11

    Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (<200 m(2)/g at 600 °C) at high temperatures combined with the simple method makes the silica-titania aerogels promising candidates as photocatalysts.

  20. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    SciTech Connect

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  1. Synthesis of nitric oxide-releasing silica nanoparticles.

    PubMed

    Shin, Jae Ho; Metzger, Sara K; Schoenfisch, Mark H

    2007-04-18

    The synthesis and characterization of a new nitric oxide (NO)-releasing scaffold prepared from amine-functionalized silica nanoparticles are reported. Inorganic-organic hybrid silica was prepared via cocondensation of tetraethoxy- or tetramethoxysilane (TEOS or TMOS) and aminoalkoxysilane with appropriate amounts of ethanol (or methanol), water, and ammonia. The amine functional groups in the silica were converted to N-diazeniumdiolate NO donors via exposure to high pressures of NO (5 atm) under basic conditions. Control over both the structure and concentration of the silane precursors (i.e., tetraalkoxy- and aminoalkoxysilanes) and specific synthetic conditions allowed for the preparation of NO donor silica particles of widely varying sizes (d = 20-500 nm), NO payloads (50-1780 nmol.mg-1), maximum amounts of NO released (10-5500 ppb.mg-1), half-lives (0.1-12 h), and NO release durations (up to 30 h). The silica nanoparticles were characterized by solid-state 29Si nuclear magnetic resonance (NMR), atomic force microscopy (AFM), elemental analysis, and gas adsorption-desorption isotherms. The advantages of silica-derived NO storage/delivery systems over previously reported macromolecular NO donors include the ability to (1) store large quantities of NO, (2) modulate NO release kinetics, and (3) readily tune particle size based on the composition of the particle. In addition, a one-pot strategy for preparing the NO donor silica allows for straightforward, high-throughput synthesis and purification.

  2. Aminosilane-Grafted Zirconia-Titiania-Silica Nanoparticles/Torlon Hollow Fiber Composites for CO2 Capture.

    PubMed

    Rownaghi, Ali A; Kant, Amit; Li, Xin; Thakkar, Harshul; Hajari, Amit; He, Yingxin; Brennan, Patrick J; Hosseini, Hooman; Koros, William J; Rezaei, Fateme

    2016-05-23

    In this work, the development of novel binary and ternary oxide/Torlon hollow fiber composites comprising zirconia, titania, and silica as amine supports was demonstrated. The resulting binary (Zr-Si/PAI-HF, Ti-Si/PAI-HF) and ternary (Zr-Ti-Si/PAI-HF) composites were then functionalized with monoamine-, diamine-, and triamine-substituted trialkoxysilanes and were evaluated in CO2 capture. Although the introduction of both Zr and Ti improved the CO2 adsorption capacity relative to that with Si/PAI-HF sorbents, zirconia was found to have a more favorable effect on the CO2 adsorption performance than titania, as previously demonstrated for amine sorbents in the powder form. The Zr-Ti-Si/PAI-HF sample with an oxide content of 20 wt % was found to exhibit a relatively high CO2 capacity, that is, 1.90 mmol g(-1) at atmospheric pressure under dry conditions, owing to more favorable synergy between the metal oxides and CO2 . The ternary fiber sorbent showed improved sorption kinetics and long-term stability in cyclic adsorption/desorption runs.

  3. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this...

  4. Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites.

    PubMed

    Kim, J W; Kim, L U; Kim, C K

    2007-01-01

    Nearly monodispersed silica nanoparticles having a controlled size from 5 to 450 nm were synthesized via a sol-gel process, and then the optimum conditions for the surface treatment of the synthesized silica nanoparticles with a silane coupling agent (i.e., 3-methacryloxypropyltrimethoxysilane (gamma-MPS)) were explored to produce dental composites exhibiting enhanced adhesion and dispersion of silica nanoparticles in the resin matrix. The particle size was increased by increasing amounts of the catalyst (NH4OH) and silica precursor (tetraethylorthosilicate, TEOS) and by decreasing the amount of water in the reaction mixtures regardless of solvents used for the synthesis. The particle size prepared by using ethanol as a solvent was significantly larger than that prepared by using methanol as a solvent when the composition of the reaction mixture was fixed. The nanosized particles in the 5-25 nm range were aggregated. The amount of grafted gamma-MPS on the surface of the synthesized silica nanoparticles was dependent on the composition of the reaction mixture when an excess amount of gamma-MPS was used. When surface treatment was performed at optimum conditions found here, the amount of the grafted gamma-MPS per unit surface area of the silica nanoparticles was nearly the same regardless of the particle size. Dispersion of the silica particles in the resin matrix and interfacial adhesion between silica particles and resin matrix were enhanced when surface treated silica nanoparticles were used for preparing dental nanocomposites.

  5. Nonporous Silica Nanoparticles for Nanomedicine Application

    PubMed Central

    Tang, Li; Cheng, Jianjun

    2013-01-01

    Summary Nanomedicine, the use of nanotechnology for biomedical applications, has potential to change the landscape of the diagnosis and therapy of many diseases. In the past several decades, the advancement in nanotechnology and material science has resulted in a large number of organic and inorganic nanomedicine platforms. Silica nanoparticles (NPs), which exhibit many unique properties, offer a promising drug delivery platform to realize the potential of nanomedicine. Mesoporous silica NPs have been extensively reviewed previously. Here we review the current state of the development and application of nonporous silica NPs for drug delivery and molecular imaging. PMID:23997809

  6. Electrophoretic deposition of composite hydroxyapatite-silica-chitosan coatings

    SciTech Connect

    Grandfield, K.; Zhitomirsky, I.

    2008-01-15

    Electrophoretic deposition (EPD) method has been developed for the fabrication of nanocomposite silica-chitosan coatings. Cathodic deposits were obtained on various conductive substrates using suspensions of silica nanoparticles in a mixed ethanol-water solvent, containing dissolved chitosan. Co-deposition of silica and hydroxyapatite (HA) nanoparticles resulted in the fabrication of HA-silica-chitosan coatings. The deposition yield has been studied at a constant voltage mode at various deposition durations. The method enabled the formation of coatings of different thickness in the range of up to 100 {mu}m. Deposit composition, microstructure and porosity can be varied by variation of HA and silica concentration in the suspensions. It was demonstrated that EPD can be used for the fabrication of HA-silica-chitosan coatings of graded composition and laminates. The method enabled the deposition of coatings containing layers of silica-chitosan and HA-chitosan nanocomposites using suspensions with different HA and silica content. Obtained coatings were studied by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy and energy dispersive spectroscopy. The mechanism of deposition is discussed.

  7. The properties of silica-gelatin composites

    NASA Astrophysics Data System (ADS)

    Stavinskaya, O. N.; Laguta, I. V.

    2010-06-01

    Silica-gelatin composites with various silica-to-gelatin ratios were obtained. The influence of high-dispersity silica on the swelling of composites in water and desorption of pyridoxine and thiamine vitamins incorporated into the material was studied. The addition of silica to gelatin was shown to increase the time of the dissolution of the materials in aqueous medium and decelerate the desorption of vitamins.

  8. Dielectric properties of mixed composites prepared from nanodisperse silica and triglycine sulfate

    NASA Astrophysics Data System (ADS)

    Milovidova, S. D.; Rogazinskaya, O. V.; Sidorkin, A. S.; Vorotnikov, E. V.; Nguen, Kh. T.; Lazarev, A. P.

    2015-03-01

    The dielectric properties of mixed composites prepared from the nanodisperse silica and ferroelectrics triglycine sulfate have been studied. The performed investigations have demonstrated that, for the composites containing silica in the hydrosol state, the temperature shift of the maximum dielectric permeability is more significant in the case of composites with smaller silica nanoparticles. There is another maximum at lower temperatures in the temperature dependence of the dielectric permeability of the composite containing silica in the gel state, in addition to the maximum detected in the sol-based composite, which is attributed to ordering of the silica particles in the gels in cross-linked structures.

  9. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    NASA Astrophysics Data System (ADS)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-09-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  10. Immobilization of silver nanoparticles on silica microspheres

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Kai; Chen, Chia-Yin; Han, Jin-Lin; Chen, Chii-Chang; Jiang, Meng-Dan; Hsu, Jen-Sung; Chan, Chia-Hua; Hsieh, Kuo-Huang

    2010-01-01

    The silver nanoparticles (Ag NPs) have been immobilized onto silica microspheres through the adsorption and subsequent reduction of Ag+ ions on the surfaces of the silica microspheres. The neat silica microspheres that acted as the core materials were prepared through sol-gel processing; their surfaces were then functionalized using 3-mercaptopropyltrimethoxysilane (MPTMS). The major aims of this study were to immobilize differently sized Ag particles onto the silica microspheres and to understand the mechanism of formation of the Ag nano-coatings through the self-assembly/adsorption behavior of Ag NPs/Ag+ ions on the silica spheres. The obtained Ag NP/silica microsphere conglomerates were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). Their electromagnetic wave shielding effectiveness were also tested and studied. The average particle size of the obtained Ag NPs on the silica microsphere was found that could be controllable (from 2.9 to 51.5 nm) by adjusting the ratio of MPTMS/TEOS and the amount of AgNO3.

  11. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  12. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  13. Assembly of functional gold nanoparticle on silica microsphere.

    PubMed

    Wang, Hsuan-Lan; Lee, Fu-Cheng; Tang, Tse-Yu; Zhou, Chenguang; Tsai, De-Hao

    2016-05-01

    We demonstrate a controlled synthesis of silica microsphere with the surface-decorated functional gold nanoparticles. Surface of silica microsphere was modified by 3-aminopropypltriethoxysilane and 3-aminopropyldimethylethoxysilane to generate a positive electric field, by which the gold nanoparticles with the negative charges (unconjugated, thiolated polyethylene glycol functionalized with the traceable packing density and conformation) were able to be attracted to the silica microsphere. Results show that both the molecular conjugation on gold nanoparticle and the uniformity in the amino-silanization of silica microsphere influenced the loading and the homogeneity of gold nanoparticles on silica microsphere. The 3-aminopropyldimethylethoxysilane-functionalized silica microsphere provided an uniform field to attract gold nanoparticles. Increasing the ethanol content in aminosilane solution significantly improved the homogeneity and the loading of gold nanoparticles on the surface of silica microsphere. For the gold nanoparticle, increasing the molecular mass of polyethylene glycol yielded a greater homogeneity but a lower loading on silica microsphere. Bovine serum albumin induced the desorption of gold nanoparticles from silica microsphere, where the extent of desorption was suppressed by the presence of high-molecular mass polyethylene glycol on gold nanoparticles. This work provides the fundamental understanding for the synthesis of gold nanoparticle-silica microsphere constructs useful to the applications in chemo-radioactive therapeutics.

  14. Nickel Oxide Nanoparticle-Deposited Silica Composite Solid-Phase Extraction for Benzimidazole Residue Analysis in Milk and Eggs by Liquid Chromatography-Mass Spectrometry.

    PubMed

    Sun, Huan; Yu, Qiong-Wei; He, Hai-Bo; Lu, Qian; Shi, Zhi-Guo; Feng, Yu-Qi

    2016-01-13

    A novel nickel oxide nanoparticle-deposited silica (SiO2@NiO) composite was prepared via liquid-phase deposition (LPD) and then employed as a solid-phase extraction (SPE) sorbent. When the SPE was coupled with liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS) analysis, an analytical platform for the sensitive determination of benzimidazole residues in egg and milk was established. The limits of detection of nine benzimidazoles were in the range of 0.8-2.2 ng/mL in milk and 0.3-2.1 ng/g in eggs, respectively, which was 5-10 times superior to the methods with other adsorbents for SPE. The recoveries of nine benzimidazoles spiked in milk and egg ranged from 70.8 to 118.7%, with relative standard deviations (RSDs) being less than 18.9%. This work presented the excellent extraction performance of NiO on benzimidazoles for the first time, and the applicability of the LPD technique used as sorbents for trace analysis in complex matrices was also demonstrated.

  15. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.

    PubMed

    Qiu, Kexin; Chen, Bo; Nie, Wei; Zhou, Xiaojun; Feng, Wei; Wang, Weizhong; Chen, Liang; Mo, Xiumei; Wei, Youzhen; He, Chuanglong

    2016-02-17

    The incorporation of microcarriers as drug delivery vehicles into polymeric scaffold for bone regeneration has aroused increasing interest. In this study, the aminated mesoporous silica nanoparticles (MSNs-NH2) were prepared and used as microcarriers for dexamethasone (DEX) loading. Poly(l-lactic acid)/poly(ε-caprolactone) (PLLA/PCL) nanofibrous scaffold was fabricated via thermally induced phase separation (TIPS) and served as template, onto which the drug-loaded MSNs-NH2 nanoparticles were deposited by electrophoretic deposition (EPD). The physicochemical and release properties of the prepared scaffolds (DEX@MSNs-NH2/PLLA/PCL) were examined, and their osteogenic activities were also evaluated through in vitro and in vivo studies. The release of DEX from the scaffolds revealed an initial rapid release followed by a slower and sustained one. The in vitro results indicated that the DEX@MSNs-NH2/PLLA/PCL scaffold exhibited good biocompatibility to rat bone marrow-derived mesenchymal stem cells (BMSCs). Also, BMSCs cultured on the DEX@MSNs-NH2/PLLA/PCL scaffold exhibited a higher degree of osteogenic differentiation than those cultured on PLLA/PCL and MSNs-NH2/PLLA/PCL scaffolds, in terms of alkaline phosphatase (ALP) activity, mineralized matrix formation, and osteocalcin (OCN) expression. Furthermore, the in vivo results in a calvarial defect model of Sprague-Dawley (SD) rats demonstrated that the DEX@MSNs-NH2/PLLA/PCL scaffold could significantly promote calvarial defect healing compared with the PLLA/PCL scaffold. Thus, the EPD technique provides a convenient way to incorporate osteogenic agents-containing microcarriers to polymer scaffold, and thus, prepared composite scaffold could be a potential candidate for bone tissue engineering application due to its capacity for delivery of osteogenic agents.

  16. Functional Films from Silica/Polymer Nanoparticles

    PubMed Central

    Ribeiro, Tânia; Baleizão, Carlos; Farinha, José Paulo S.

    2014-01-01

    High performance functional coatings, based on hybrid organic/inorganic materials, are being developed to combine the polymer flexibility and ease of processing with the mechanical properties and versatility of inorganic materials. By incorporating silica nanoparticles (SiNPs) in the polymeric matrices, it is possible to obtain hybrid polymer films with increased tensile strength and impact resistance, without decreasing the flexural properties of the polymer matrix. The SiNPs can further be used as carriers to impart other functionalities (optical, etc.) to the hybrid films. By using polymer-coated SiNPs, it is possible to reduce particle aggregation in the films and, thus, achieve more homogeneous distributions of the inorganic components and, therefore, better properties. On the other hand, by coating polymer particles with silica, one can create hierarchically structured materials, for example to obtain superhydrophobic coatings. In this review, we will cover the latest developments in films prepared from hybrid polymer/silica functional systems. PMID:28788655

  17. Crystallization of hollow mesoporous silica nanoparticles.

    PubMed

    Drisko, Glenna L; Carretero-Genevrier, Adrian; Perrot, Alexandre; Gich, Martí; Gàzquez, Jaume; Rodriguez-Carvajal, Juan; Favre, Luc; Grosso, David; Boissière, Cédric; Sanchez, Clément

    2015-03-11

    Complex 3D macrostructured nanoparticles are transformed from amorphous silica into pure polycrystalline α-quartz using catalytic quantities of alkaline earth metals as devitrifying agent. Walls as thin as 10 nm could be crystallized without losing the architecture of the particles. The roles of cation size and the mol% of the incorporated devitrifying agent in crystallization behavior are studied, with Mg(2+), Ca(2+), Sr(2+) and Ba(2+) all producing pure α-quartz under certain conditions.

  18. Inexpensive approach for production of high-surface-area silica nanoparticles from rice hulls biomass.

    PubMed

    Palanivelu, Rajagounder; Padmanaban, Periasamy; Sutha, Sadhasivam; Rajendran, Venkatachalam

    2014-12-01

    In this study, we prepared amorphous and crystalline silica nanoparticles from rice hulls biomass using pyrolysis technique at different processing temperatures such as 923, 973, 1023, 1073, 1123 and 1173 K. X-ray fluorescence studies show that the purity of all the synthesised silica nanoparticles is in the range of 98-99.7%. X-ray diffraction studies reveal that amorphous silica nanoparticles are formed at 923-1023 K, whereas crystalline particles at 1073-1173 K. Morphology and microstructure of silica nanoparticles are studied by scanning electron and transmission electron microscopes. Silica nanoparticles obtained at different processing temperatures yield particle size in the range of 6-100 nm. Chemical composition and surface functionalities of the particles are examined by energy-dispersive X-ray diffraction and Fourier transform infrared spectroscopic studies. The developed method effectively uses rice hulls biomass as a green natural source in the synthesis of amorphous and crystalline silica nanoparticles with high-specific surface area. The optimised processing temperature (1023 K) enables amorphous silica nanoparticles to have high-specific surface area of 538 m(2)g(-1).

  19. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent

    NASA Astrophysics Data System (ADS)

    Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

    2013-02-01

    Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV

  20. Protein-templated biomimetic silica nanoparticles.

    PubMed

    Jackson, Erienne; Ferrari, Mariana; Cuestas-Ayllon, Carlos; Fernández-Pacheco, Rodrigo; Perez-Carvajal, Javier; de la Fuente, Jesús M; Grazú, Valeria; Betancor, Lorena

    2015-03-31

    Biomimetic silica particles can be synthesized as a nanosized material within minutes in a process mimicked from living organisms such as diatoms and sponges. In this work, we have studied the effect of bovine serum albumin (BSA) as a template to direct the synthesis of silica nanoparticles (NPs) with the potential to associate proteins on its surface. Our approach enables the formation of spheres with different physicochemical properties. Particles using BSA as a protein template were smaller (∼250-380 nm) and were more monodisperse than those lacking the proteic core (∼700-1000 nm) as seen by dynamic light scattering (DLS), scanning electron microscopy (SEM), and environmental scanning electron microscopy (ESEM) analysis. The absence of BSA during synthesis produced silica nanoparticles without any porosity that was detectable by nitrogen adsorption, whereas particles containing BSA developed porosity in the range of 4 to 5 nm which collapsed on the removal of BSA, thus producing smaller pores. These results were in accordance with the pore size calculated by high-resolution transmission electron microscopy (HTEM). The reproducibility of the BSA-templated nanoparticle properties was determined by analyzing four batches of independent synthesizing experiments that maintained their properties. The high positive superficial charge of the nanoparticles facilitated adsorption under mild conditions of a range of proteins from an E. coli extract and a commercial preparation of laccase from Trametes versicolor. All of the proteins were quantitatively desorbed. Experiments conducted showed the reusability of the particles as supports for the ionic adsorption of the biomolecules. The protein loading capacity of the BSA-based biomimetic particles was determined using laccase as 98.7 ± 6.6 mg·g(-1) of particles.

  1. Luminescent Silica Nanoparticles for cancer diagnosis

    PubMed Central

    Montalti, Marco; Petrizza, Luca; Rampazzo, Enrico; Zaccheroni, Nelsi; Marchiò, Serena

    2015-01-01

    Fluorescence imaging techniques are becoming essential in preclinical investigations, and the research of suitable tools for in vivo measurements is gaining more and more importance and attention. Nanotechnology entered the field to try to find solutions for many limitation at the state of the art, and luminescent nanoparticles (NPs) are one of the most promising materials proposed for future diagnostic implementation. NPs constitute also a versatile platform that can allow facile multi-functionalization to perform multimodal imaging or theranostic (simultaneous diagnosis and therapy). In this contribution we have focussed our attention only on dye doped silica or silica-based NPs conjugated with targeting moieties to enable specific cancer cells imaging and differentiation, even if also a few non targeted systems have been cited and discussed for completeness. We have summarized common synthetic approaches to these materials and then surveyed the most recent imaging applications of silica-based nanoparticles in cancer. The field of theranostic is so important and stimulating that, even if it is not the central topic of this paper, we have included some significant examples. We have then concluded with short hints on systems already in clinical trials and examples of specific applications in children tumours. This review tries to describe and discuss, through focussed examples, the great potentialities of these materials in the medical field, with the aim to encourage further research to implement applications that are still rare. PMID:23458621

  2. Fluorescent silica nanoparticles for cancer imaging.

    PubMed

    Santra, Swadeshmukul

    2010-01-01

    In recent years, fluorescent silica nanoparticles (FSNPs) received immense interest in cancer imaging. FSNPs are a new class of engineered optical probes consisting of silica NPs loaded with fluorescent dye molecules. These probes exhibit some attractive features, such as photostability and brightness, which allow sensitive imaging of cancer cells. In general, FSNPs are chemically synthesized in solution using appropriate silane-based precursors. Fluorescent dye molecules are entrapped during the synthesis process. The synthetic process involves hydrolysis and condensation reactions of silane precursors. Stöber's sol-gel and water-in-oil (W/O) microemulsion methods are two popular chemical methods that have been used for synthesizing FSNPs. Silica matrix is capable of carrying hundreds of fluorescent dye molecules in each FSNP, resulting in bright fluorescence. In FSNPs, fluorescent molecules are somewhat protected by the surrounding silica layer, resulting in good photostability. For cancer cell imaging, surface modification of FSNPs is often necessary to obtain appropriate surface functional groups to improve NP aqueous dispersibility as well as bioconjugation capability. Using conventional bioconjugate chemistry, cancer cell-specific biomolecules are then attached to the surface-modified FSNPs. For targeting cancer cells, the FSNPs are often conjugated to specific biomolecules such as antibodies, aptamers, and folic acid. In this chapter, different approaches for the FSNP design will be discussed and some representative protocols for FSNP synthesis will be provided. We will also discuss FSNP surface modification and bioconjugation techniques that are useful for cancer cell imaging.

  3. Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent.

    PubMed

    Bae, Geun Yeol; Min, Byung Gil; Jeong, Young Gyu; Lee, Sang Cheol; Jang, Jin Ho; Koo, Gwang Hoe

    2009-09-01

    To obtain the superhydrophobic water-repellent cotton fabrics, cotton fabrics were treated with silica nanoparticles and/or a cost-effective water-repellent agent (WR agent). Two different silica nanoparticles were synthesized via a sol-gel process and their shapes, sizes, and compositions were characterized. It was found that silica particles are spherical and have diameters of 143 and 378 nm. For the cotton fabrics treated with the WR agent alone, the water contact angles on the fabric surface remained lower than 20 degrees at the WR agent concentration of 0.3 wt% or less. Silica nanoparticle treatment itself did not change the hydrophilic surface of cotton fabric, indicating that water drops were adsorbed into fabrics due to the hydroxyl groups on both cotton and silica nanoparticle surfaces. However, for the cotton fabrics treated with both silica nanoparticles and the WR agent, a contact angle above 130 degrees can be obtained even at the very low WR agent concentration of 0.1 wt%. Therefore, superhydrophobic cotton fabrics could be obtained via the combined treatment of silica nanoparticle and WR agent, which is cost effective compared with fluorinate silane treatment.

  4. Perylene-labeled silica nanoparticles: synthesis and characterization of three novel silica nanoparticle species for live-cell imaging.

    PubMed

    Blechinger, Julia; Herrmann, Rudolf; Kiener, Daniel; García-García, F Javier; Scheu, Christina; Reller, Armin; Bräuchle, Christoph

    2010-11-05

    The increasing exposure of humans to nanoscaled particles requires well-defined systems that enable the investigation of the toxicity of nanoparticles on the cellular level. To facilitate this, surface-labeled silica nanoparticles, nanoparticles with a labeled core and a silica shell, and a labeled nanoparticle network-all designed for live-cell imaging-are synthesized. The nanoparticles are functionalized with perylene derivatives. For this purpose, two different perylene species containing one or two reactive silica functionalities are prepared. The nanoparticles are studied by transmission electron microscopy, widefield and confocal fluorescence microscopy, as well as by fluorescence spectroscopy in combination with fluorescence anisotropy, in order to characterize the size and morphology of the nanoparticles and to prove the success and homogeneity of the labeling. Using spinning-disc confocal measurements, silica nanoparticles are demonstrated to be taken up by HeLa cells, and they are clearly detectable inside the cytoplasm of the cells.

  5. Robust, ultrasmall organosilica nanoparticles without silica shells

    NASA Astrophysics Data System (ADS)

    Murray, Eoin; Born, Philip; Weber, Anika; Kraus, Tobias

    2014-07-01

    Traditionally, organosilica nanoparticles have been prepared inside micelles with an external silica shell for mechanical support. Here, we compare these hybrid core-shell particles with organosilica particles that are robust enough to be produced both inside micelles and alone in a sol-gel process. These particles form from octadecyltrimethoxy silane as silica source either in microemulsions, resulting in water-dispersible particles with a hydrophobic core, or precipitate from an aqueous mixture to form particles with both hydrophobic core and surface. We examine size and morphology of the particles by dynamic light scattering and transmission electron microscopy and show that the particles consist of Si-O-Si networks pervaded by alkyl chains using nuclear magnetic resonance, infrared spectroscopy, and thermogravimetric analysis.

  6. Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun

    2010-01-01

    carboxyl groups of the organic phase. The polymerization process has been adapted to create interpenetrating PMA and silica-gel networks from monomers and prevent any phase separations that could otherwise be caused by an overgrowth of either phase. Typically, the resulting PMA/silica aerogel, without or with fiber reinforcement, has a density and a thermal conductivity similar to those of pure silica aerogels. However, the PMA enhances mechanical properties. Specifically, flexural strength at rupture is increased to 102 psi (=0.7 MPa), about 50 times the flexural strength of typical pure silica aerogels. Resistance to compression is also increased: Applied pressure of 17.5 psi (=0.12 MPa) was found to reduce the thicknesses of several composite PMA/silica aerogels by only about 10 percent.

  7. Formation of silica nanoparticles in microemulsions.

    PubMed

    Finnie, Kim S; Bartlett, John R; Barbé, Christophe J A; Kong, Linggen

    2007-03-13

    Silica nanoparticles for controlled release applications have been produced by the reaction of tetramethylorthosilicate (TMOS) inside the water droplets of a water-in-oil microemulsion, under both acidic (pH 1.05) and basic (pH 10.85) conditions. In-situ FTIR measurements show that the addition of TMOS to the microemulsion results in the formation of silica as TMOS, preferentially located in the oil phase, diffuses into the water droplets. Once in the hydrophilic domain, hydrolysis occurs rapidly as a result of the high local concentration of water. Varying the pH of the water droplets from 1.05 to 10.85, however, considerably slows the hydrolysis reaction of TMOS. The formation of a dense silica network occurs rapidly under basic conditions, with IR indicating the slower formation of more disordered silica in acid. SAXS analysis of the evolving particles shows that approximately 11 nm spheres are formed under basic conditions; these are stabilized by a water/surfactant layer on the particle surface during formation. Under acidic conditions, highly uniform approximately 5 nm spheres are formed, which appear to be retained within the water droplets (approximately 6 nm diameter) and form an ordered micelle nanoparticle structure that exhibits sufficient longer-range order to generate a peak in the scattering at q approximately equal to 0.05 A-1. Nitrogen adsorption analysis reveals that high surface area (510 m2/g) particles with an average pore size of 1 nm are formed at pH 1.05. In contrast, base synthesis results in low surface area particles with negligible internal porosity.

  8. A bioinspired strategy for surface modification of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Tian, Jianwen; Zhang, Haoxuan; Liu, Meiying; Deng, Fengjie; Huang, Hongye; Wan, Qing; Li, Zhen; Wang, Ke; He, Xiaohui; Zhang, Xiaoyong; Wei, Yen

    2015-12-01

    Silica nanoparticles have become one of the most promising nanomaterials for a vast of applications. In this work, a novel strategy for surface modification of silica nanoparticles has been developed for the first time via combination of mussel inspired chemistry and Michael addition reaction. In this procedure, thin polydopamine (PDA) films were first coated on the bare silica nanoparticles via self-polymerization of dopamine in alkaline condition. And then amino-containing polymers were introduced onto the PDA coated silica nanoparticles through Michael addition reaction, that are synthesized from free radical polymerization using poly(ethylene glycol) methyl methacrylate (PEGMA) and N-(3-aminopropyl) methacrylamide (NAPAM) as monomers and ammonium persulfate as the initiator. The successful modification of silica nanoparticles was evidenced by a series of characterization techniques. As compared with the bare silica nanoparticles, the polymers modified silica nanoparticles showed remarkable enhanced dispersibility in both aqueous and organic solution. This strategy is rather simple, effective and versatile. Therefore, it should be of specific importance for further applications of silica nanoparticles and will spark great research attention of scientists from different fields.

  9. Synthesis and surface functionalization of silica nanoparticles for nanomedicine

    NASA Astrophysics Data System (ADS)

    Liberman, Alexander; Mendez, Natalie; Trogler, William C.; Kummel, Andrew C.

    2014-09-01

    There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications.

  10. Synthesis and surface functionalization of silica nanoparticles for nanomedicine

    PubMed Central

    Liberman, Alexander; Mendez, Natalie; Trogler, William C.; Kummel, Andrew C.

    2014-01-01

    There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications. PMID:25364083

  11. Mesoporous silica nanoparticles inhibit cellular respiration.

    PubMed

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  12. Superhydrophobic silica nanoparticles as ultrasound contrast agents.

    PubMed

    Jin, Qiaofeng; Lin, Chih-Yu; Kang, Shih-Tsung; Chang, Yuan-Chih; Zheng, Hairong; Yang, Chia-Min; Yeh, Chih-Kuang

    2017-05-01

    Microbubbles have been widely studied as ultrasound contrast agents for diagnosis and as drug/gene carriers for therapy. However, their size and stability (lifetime of 5-12min) limited their applications. The development of stable nanoscale ultrasound contrast agents would therefore benefit both. Generating bubbles persistently in situ would be one of the promising solutions to the problem of short lifetime. We hypothesized that bubbles could be generated in situ by providing stable air nuclei since it has been found that the interfacial nanobubbles on a hydrophobic surface have a much longer lifetime (orders of days). Mesoporous silica nanoparticles (MSNs) with large surface areas and different levels of hydrophobicity were prepared to test our hypothesis. It is clear that the superhydrophobic and porous nanoparticles exhibited a significant and strong contrast intensity compared with other nanoparticles. The bubbles generated from superhydrophobic nanoparticles sustained for at least 30min at a MI of 1.0, while lipid microbubble lasted for about 5min at the same settings. In summary MSNs have been transformed into reliable bubble precursors by making simple superhydrophobic modification, and made into a promising contrast agent with the potentials to serve as theranostic agents that are sensitive to ultrasound stimulation.

  13. Continuous polymer nanocoating on silica nanoparticles.

    PubMed

    Chen, Dengyue; Singh, Dhananjay; Sirkar, Kamalesh K; Zhu, Jiangtao; Pfeffer, Robert

    2014-07-08

    Continuous polymer coating of nanoparticles is of interest in many industries such as pharmaceuticals, cosmetics, food, and electronics. Here we introduce a polymer coating/precipitation technique to achieve a uniform and controllable nanosize polymer coating on nanoparticles in a continuous manner. The utility of this technique is demonstrated by coating Aerosil silica nanoparticles (SNPs) of diameter 12 nm with the polymer Eudragit RL 100. Both hydrophilic and hydrophobic SNPs were successfully coated. After determining the cloud point of an acetone solution of the polymer containing a controlled amount of the nonsolvent water, the solid hollow fiber cooling crystallization (SHFCC) technique was employed to continuously coat SNPs with the polymer. A suspension of the SNPs in an acetone-water solution of the polymer containing a surfactant was pumped through the lumen of solid polypropylene hollow fibers in a SHFCC device; cold liquid was circulated on the shell side. Because of rapid cooling-induced supersaturation and heterogeneous nucleation, precipitated polymers will coat the nanoparticles. The thickness and morphology of the nanocoating and the particle size distribution of the coated SNPs were analyzed by scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS), thermogravimetric analysis (TGA), and dynamic light scattering (DLS). Results indicate that uniformly polymer-coated SNPs can be obtained from the SHFCC device after suitable post-treatments. The technique is also easily scalable by increasing the number of hollow fibers in the SHFCC device.

  14. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice

    NASA Astrophysics Data System (ADS)

    Yamashita, Kohei; Yoshioka, Yasuo; Higashisaka, Kazuma; Mimura, Kazuya; Morishita, Yuki; Nozaki, Masatoshi; Yoshida, Tokuyuki; Ogura, Toshinobu; Nabeshi, Hiromi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Monobe, Youko; Imazawa, Takayoshi; Aoshima, Hisae; Shishido, Kiyoshi; Kawai, Yuichi; Mayumi, Tadanori; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshikawa, Tomoaki; Yanagihara, Itaru; Saito, Shigeru; Tsutsumi, Yasuo

    2011-05-01

    The increasing use of nanomaterials has raised concerns about their potential risks to human health. Recent studies have shown that nanoparticles can cross the placenta barrier in pregnant mice and cause neurotoxicity in their offspring, but a more detailed understanding of the effects of nanoparticles on pregnant animals remains elusive. Here, we show that silica and titanium dioxide nanoparticles with diameters of 70 nm and 35 nm, respectively, can cause pregnancy complications when injected intravenously into pregnant mice. The silica and titanium dioxide nanoparticles were found in the placenta, fetal liver and fetal brain. Mice treated with these nanoparticles had smaller uteri and smaller fetuses than untreated controls. Fullerene molecules and larger (300 and 1,000 nm) silica particles did not induce these complications. These detrimental effects are linked to structural and functional abnormalities in the placenta on the maternal side, and are abolished when the surfaces of the silica nanoparticles are modified with carboxyl and amine groups.

  15. Stabilization of silica nanoparticles dispersions by surface modification with silicon derivative of thiacalix[4]arene

    NASA Astrophysics Data System (ADS)

    Gorbachuk, Vladimir V.; Ziatdinova, Ramilia V.; Evtugyn, Vladimir G.; Stoikov, Ivan I.

    2015-03-01

    For the first time, silica nanopowder functionalized with thiacalixarene derivatives was synthesized by ultrasonication of nanoparticles (diameter 23.7 ± 2.4 nm) with organosilicon derivative of thiacalixarene in glacial acetic acid. The protocol resulted in the formation of colloidal solution of low-disperse (polydispersity index of 0.11) submicron-sized (diameter 192.5 nm) clusters of nanoparticles according to the dynamic light scattering data. As defined by scanning electron microscopy (SEM), mean diameter of thiacalixarene-functionalized nanoparticles is equal to 25.5 ± 2.5 nm and the shape is close to spherical. SEM images confirm low aggregation of thiacalixarene-modified nanoparticle compared to initial silica nanopowder (mean diameter of aggregates 330 and 429 nm, correspondingly). According to the thermogravimetry/differential scanning calorimetry and elemental analysis of the nanoparticles obtained, 5 % of the powder mass was related to thiacalixarene units. The effect of thiacalixarene functionalization of silica nanoparticles on linear polydimethylsiloxane (PDMS)—silica dispersions was modeled to achieve high resistance toward liquid media required for similar sol-gel prepared PDMS-based materials applied for solid-phase microextraction. In such a manner, the influence of thiacalixarene-modified nanofiller on thermal stability and resistance against polar organic solvents was estimated. Similarity of decomposition temperature of both thiacalixarene-functionalized nanoparticles and non-functionalized silica nanoparticles was found. Swelling/solubility behavior observed was related to partial dissolution of PDMS/silica (10 % mixture) in alcohols. Thiacalixarene-functionalized silica particles exerted significantly higher resistance of PDMS/silica composites toward alcohol solvents.

  16. Synthesis of mesoporous silica nanoparticles by means of a hydrogel

    NASA Astrophysics Data System (ADS)

    Samadi-Maybodi, Abdolraouf; Vahid, Amir

    2013-05-01

    Synthesis and application of mesoporous silicate nanoparticles are important areas of research in many fields such as drug delivery, medicine, catalysis, and optic. The method of synthesis strongly affects the properties of a product. In this work, the mesoporous silica nanoparticles were synthesized by means of a hydrogel. The obtained product was characterized by X-ray diffraction, scanning electron microscopy, and nitrogen physisorption. The results show that highly ordered mesoporous silica nanoparticles were synthesized by means of a hydrogel.

  17. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles.

    PubMed

    Topouzi, Marianthi; Kontonasaki, Eleana; Bikiaris, Dimitrios; Papadopoulou, Lambrini; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2017-05-01

    Fractures in long span provisional/interim restorations are a common complication. Adequate fracture toughness is necessary to resist occlusal forces and crack propagation, so these restorations should be constructed with materials of improved mechanical properties. The aim of this study was to investigate the possible reinforcement of neat silica nanoparticles and trietoxyvinylsilane-modified silica nanoparticles in a PMMA resin for fixed interim restorations. Composite PMMA-Silica nanoparticles powders were mixed with PMMA liquid and compact bar shaped specimens were fabricated according to the British standard BS EN ISO 127337:2005. The single-edge notched method was used to evaluate fracture toughness (three-point bending test), while the dynamic thermomechanical properties (Storage Modulus, Loss Modulus, tanδ) of a series of nanocomposites with different amounts of nanoparticles (0.25%, 0.50%, 0.75%, 1% w.t.) were evaluated. Statistical analysis was performed and the statistically significant level was set to p<0.05. The fracture toughness of all experimental composites was remarkably higher compared to control. There was a tendency to decrease of fracture toughness, by increasing the concentration of the filler. No statistically significant differences were detected among the modified/unmodified silica nanoparticles. Dynamic mechanical properties were also affected. By increasing the silica nanoparticles content an increase in Storage Modulus was recorded, while Glass Transition Temperature was shifted at higher temperatures. Under the limitations of this in-vitro study, it can be suggested that both neat silica nanoparticles and trietoxyvinylsilane-modified silica nanoparticles, especially at low concentrations, may enhance the overall performance of fixed interim prostheses, as can effectively increase the fracture toughness, the elastic modulus and the Glass Transition Temperature of PMMA resins used in fixed provisional restorations. Copyright © 2017

  18. Hydrophilic Silica-Polypeptide Composite Particles

    NASA Astrophysics Data System (ADS)

    Soto-Cantu, Erick; Russo, Paul

    2007-03-01

    Composite, pH-responsive particles have been synthesized by covalently attaching a simple polypeptide to a silica core. The synthesis begins with the production of organophilic poly(benzylglutamate)-coated silica particles. The particles are rendered hydrophilic by cleaving the benzyl side group by treatment with hydrogen bromide in benzene. The resulting poly(glutamic acid)-coated silica spheres exhibit a change in hydrodynamic radius in response to pH stimulus. The size transition is due to a change in the polypeptide conformation, as deduced from circular dichroism measurements. Fong,B.; Russo, P.S. Organophilic Colloidal Particles with a Synthetic Polypeptide Coating. Langmuir 1999, 15, 4421-4426.

  19. Phase behavior and rheological characterization of silica nanoparticle gel

    NASA Astrophysics Data System (ADS)

    Metin, Cigdem O.; Rankin, Kelli M.; Nguyen, Quoc P.

    2014-01-01

    Preferential injection into high permeability thief zones or fractures can result in early breakthrough at production wells and large unswept areas of high oil saturation, which impact the economic life of a well. A variety of conformance control techniques, including polymer and silica gel treatments, have been designed to block flow through the swept zones. Over a certain range of salinities, silica nanoparticle suspensions form a gel in bulk phase behavior tests. These gels have potential for in situ flow diversion, but in situ flow tests are required to determine their applicability. To determine the appropriate scope of the in situ tests, it is necessary to obtain an accurate description of nanoparticle phase behavior and gel rheology. In this paper, the equilibrium phase behavior of silica nanoparticle solutions in the presence of sodium chloride (NaCl) is presented with four phase regions classified as a function of salinity and nanoparticle concentration. Once the gelation window was clearly defined, rheology experiments of silica nanoparticle gels were also carried out. Gelation time decreases exponentially as a function of silica concentration, salinity, and temperature. Following a power law behavior, the storage modulus, G', increases with particle concentration. Steady shear measurements show that silica nanoparticle gels exhibit non-Newtonian, shear thinning behavior. This comprehensive study of the silica nanoparticle gels has provided a clear path forward for in situ tests to determine the gel's applicability for conformance control operations.

  20. Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles.

    PubMed

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-08-10

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

  1. Pegylated silica nanoparticles: cytotoxicity and macrophage uptake

    NASA Astrophysics Data System (ADS)

    Glorani, Giulia; Marin, Riccardo; Canton, Patrizia; Pinto, Marcella; Conti, Giamaica; Fracasso, Giulio; Riello, Pietro

    2017-08-01

    Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.

  2. Insitu grafting silica nanoparticles reinforced nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Han, Chun-Rui; Duan, Jiu-Fang; Xu, Feng; Sun, Run-Cang

    2013-10-01

    Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties.Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties. Electronic supplementary information (ESI) available: FTIR spectra of SNP after silane treatment, dynamic oscillatory shear measurements as a function of frequency, constrained polymer chain analysis by a change in the peak height in loss factor spectra, molecular weight of grafted chains at different stages of gelation, prediction of the SNP reinforcing mechanism in the

  3. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    NASA Astrophysics Data System (ADS)

    Yoncheva, K.; Popova, M.; Szegedi, A.; Mihaly, J.; Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V.; Pessina, F.; Valoti, M.

    2014-03-01

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide.

  4. Selective porous gates made from colloidal silica nanoparticles

    PubMed Central

    Avetta, Paola; Calza, Paola; Fabbri, Debora; Magnacca, Giuliana; Scalarone, Dominique

    2015-01-01

    Summary Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS), and using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field). Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution. PMID:26665082

  5. Elastic Phase Response of Silica Nanoparticles Buried in Soft Matter

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Lynch, Rachel M; Voy, Brynn H; Shekhawat, Gajendra; Dravid, Vinayak; Thundat, Thomas George

    2008-01-01

    Tracking the uptake of nanomaterials by living cells is an important component in assessing both potential toxicity and in designing future materials for use in vivo. We show that the difference in the local elasticity at the site of silica (SiO{sub 2}) nanoparticles confined within a macrophage enables functional ultrasonic interactions. By elastically exciting the cell, a phase perturbation caused by the buried SiO{sub 2} nanoparticles was detected and used to map the subsurface populations of nanoparticles. Localization and mapping of stiff chemically synthesized silica nanoparticles within the cellular structures of a macrophage are important in basic as well as applied studies.

  6. Silica nanoparticles as a tool for fluorescence collection efficiency enhancement.

    PubMed

    Krajnik, Bartosz; Gajda-Rączka, Magdalena; Piątkowski, Dawid; Nyga, Piotr; Jankiewicz, Bartłomiej; Hofmann, Eckhard; Mackowski, Sebastian

    2013-03-28

    In this work we demonstrate enhancement of the fluorescence collection efficiency for chlorophyll-containing photosynthetic complexes deposited on SiO2 spherical nanoparticles. Microscopic images of fluorescence emission reveal ring-like emission patterns associated with chlorophyll-containing complexes coupled to electromagnetic modes within the silica nanoparticles. The interaction leaves no effect upon the emission spectra of the complexes, and the transient behavior of the fluorescence also remains unchanged, which indicates no influence of the silica nanoparticles on the radiative properties of the fluorophores. We interpret this enhancement as a result of efficient scattering of electromagnetic field by the dielectric nanoparticles that increases collection efficiency of fluorescence emission.

  7. Silica nanoparticles as a tool for fluorescence collection efficiency enhancement

    NASA Astrophysics Data System (ADS)

    Krajnik, Bartosz; Gajda-Rączka, Magdalena; Piątkowski, Dawid; Nyga, Piotr; Jankiewicz, Bartłomiej; Hofmann, Eckhard; Mackowski, Sebastian

    2013-03-01

    In this work we demonstrate enhancement of the fluorescence collection efficiency for chlorophyll-containing photosynthetic complexes deposited on SiO2 spherical nanoparticles. Microscopic images of fluorescence emission reveal ring-like emission patterns associated with chlorophyll-containing complexes coupled to electromagnetic modes within the silica nanoparticles. The interaction leaves no effect upon the emission spectra of the complexes, and the transient behavior of the fluorescence also remains unchanged, which indicates no influence of the silica nanoparticles on the radiative properties of the fluorophores. We interpret this enhancement as a result of efficient scattering of electromagnetic field by the dielectric nanoparticles that increases collection efficiency of fluorescence emission.

  8. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    SciTech Connect

    Yoncheva, K.; Popova, M.; Szegedi, A.; Mihaly, J.; Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V.; Pessina, F.; Valoti, M.

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  9. Thermal conductivity of silica nanoparticle powder: Measurement and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Huang, Congliang; Lin, Zizhen; Feng, Yanhui; Zhang, Xinxin; Wang, Ge

    2015-12-01

    The hot-wire method was applied to experimentally determine the thermal conductivity (TC) of a silica nanoparticle powder. A fitting model was further employed to analyze the experimental results and to predict the TC over a wider porosity scale. Results show that the effective TC of the silica-nanoparticle powder can be less than that of free air because of the low TC of both the silica nanoparticles and the air confined in the pore spaces; the relative contribution of the nanoparticle TC, the confined air TC, and the radiation heat transfer coefficient to the effective TC will significantly affect at which porosity the extreme value of the effective TC occurs; the porosity obtained when the contribution to the effective TC of the confined air equals that of the nanoparticles is the most favorable for constructing thermal insulation materials.

  10. Photoswitchable bactericidal effects from novel silica-coated silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Fuertes, Gustavo; Pedrueza, Esteban; Abderrafi, Kamal; Abargues, Rafael; Sánchez, Orlando; Martínez-Pastor, Juan; Salgado, Jesús; Jiménez, Ernesto

    2011-07-01

    The enhancement of the electromagnetic field in the surroundings of nanoparticles via surface plasmon resonance offers promising possibilities for biomedical applications. Here we report on the selective triggering of antibacterial activity using a new type of silver nanoparticles coated with silica, Ag@silica, irradiated at their surface plasmon frequency. The nanoparticles are able to bind readily to the surface of bacterial cells, although this does not affect bacterial growing since the silica shell largely attenuates the intrinsic toxicity of silver. However, upon simultaneous exposure to light corresponding to the absorption band of the nanoparticles, bacterial death is triggered selectively on the irradiated zone. Because of the low power density used in the treatments, we discard thermal effects as the cause of cell killing. Instead, we propose that the switched toxicity is due to the enhanced electromagnetic field in the proximity of the nanoparticles, which either directly (through membrane perturbation) or indirectly (through induced photochemical reactions) is able to cause cell death.

  11. TOXICITY OF AMORPHOUS SILICA NANOPARTICLES IN MOUSE KERATINOCYTES

    SciTech Connect

    Yu, Kyung; Wang, Wei; Gu, Baohua; Hussain, Saber

    2009-01-01

    The present study was designed to examine the uptake, localization and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118 and 535 nm SiO2) then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 g/mL) compare to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100 and 200 g/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size-of the particles is critical to produce biological effects.

  12. SANS study to probe nanoparticle dispersion in nanocomposite membranes of aromatic polyamide and functionalized silica nanoparticles.

    PubMed

    Jadav, Ghanshyam L; Aswal, Vinod K; Singh, Puyam S

    2010-11-01

    Silica nanoparticles produced from organically functionalized silicon alkoxide precursors were incorporated into polyamide film to produce a silica-polyamide nanocomposite membrane with enhanced properties. The dispersion of the silica nanoparticles in the nanocomposite membrane was characterized by performing small-angle neutron scattering (SANS) measurements on dilute reactant systems and dilute solution suspensions of the final product. Clear scattering of monodisperse spherical particles of 10-18 A R(g) were observed from dilute solutions of the initial reactant system. These silica nanoparticles initially reacted with diamine monomers of polyamide and subsequently were transformed into polyamide-coated silica nanoparticles; finally nanoparticle aggregates of 27-45 A R(g) were formed. The nanoparticle dispersion of the membrane as the nanosized aggregates is in corroboration with ring- or chain-like assemblies of the nanoparticles dispersed in the bulk polyamide phase as observed by transmission electron microscopy. It is demonstrated that dispersions of silica nanoparticles as the nanosized aggregates in the polyamide phase could be achieved in the nanocomposite membrane with a silica content up to about 2 wt.%. Nanocomposite membranes with higher silica loading approximately 10 wt.% lead to the formation of large aggregates of sizes over 100 A R(g) in addition to the nanosized aggregates.

  13. Autocatalytic synthesis of multifunctional precursors for fabricating silica microspheres with well-dispersed Ag and Co3O4 nanoparticles.

    PubMed

    Xu, Linxu; Cui, Fang; Zhang, Jiajia; Hao, Yanjun; Wang, Yan; Cui, Tieyu

    2017-01-05

    Herein, an autocatalytic route to fabricate dual metal ion-equipped organic/inorganic hybrid silica, an ideal precursor for multifunctional silica-based composites integrated with well-dispersed Ag and Co3O4 nanoparticles was demonstrated. Significantly, by rational selection of reactants, such dual metal ion-equipped organic/inorganic hybrid silica can be synthesized through successive spontaneous reactions under near neutral conditions without an additional catalyst. Both the Ag(+) and Co(2+) ions are introduced into silica by chemical bonds, which favor the formation of small-sized and well-dispersed Ag and Co3O4 nanoparticles without aggregation in the entire silica matrix. After calcination, multifunctional silica composites equipped with well-dispersed Ag and Co3O4 nanoparticles were obtained. The as-obtained silica composites, as indicated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), have a spherical morphology and smooth surface. TEM tests also reveal the well dispersed fashion of Ag and Co3O4 nanoparticles. In addition, the obtained Ag-Co3O4@SiO2 composites exhibit good catalytic performance in the reduction of methylene blue (MB) with NaBH4 as a reducing agent, and can be readily recycled by an external magnetic field due to their superparamagnetic properties.

  14. Composite Silica Aerogels Opacified with Titania

    NASA Technical Reports Server (NTRS)

    Paik, Jon-Ah; Sakamoto, Jeffrey; Jones, Steven; Fleurial, Jean-Pierre; DiStefano, Salvador; Nesmith, Bill

    2009-01-01

    A further improvement has been made to reduce the high-temperature thermal conductivities of the aerogel-matrix composite materials described in Improved Silica Aerogel Composite Materials (NPO-44287), NASA Tech Briefs, Vol. 32, No. 9 (September 2008), page 50. Because the contribution of infrared radiation to heat transfer increases sharply with temperature, the effective high-temperature thermal conductivity of a thermal-insulation material can be reduced by opacifying the material to reduce the radiative contribution. Therefore, the essence of the present improvement is to add an opacifying constituent material (specifically, TiO2 powder) to the aerogel-matrix composites.

  15. Memory effect in composites of liquid crystal and silica aerosil

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Leheny, Robert L.; Reven, Linda; Sutton, Mark

    2011-12-01

    Aerosil silica nanoparticles dispersed in a liquid crystal (LC) possess the interesting property of keeping memory of an electric- or magnetic-field-induced orientation. Two types of memory have been identified: thermally erasable memory arising from the pinning of defect lines versus a “permanent” memory where the orientation persists even after thermal cycling the samples up to the isotropic phase. To address the source of the latter type of memory, solid-state nuclear magnetic resonance spectroscopy and conventional x-ray diffraction (XRD) were first combined to characterize the LC orientational order as a function of multiple in-field temperature cycles. Microbeam XRD was then performed on aligned gels of different concentrations to gain knowledge of the structural properties at the origin of the memory effect. No detectable anisotropy of the gel or significant breaking of silica strands with heating ruled out the formation of an anisotropic silica network as the source of the permanent memory as previously proposed. Instead, support for a role of the surface memory effect, well known for planar substrates, in stabilizing the permanent memory was deduced from “training” of the composites, that is, optimizing the orientational order through the thermal in-field cycling. The ability to train the composites is inversely proportional to the strength of the random-field disorder. The portion of thermally erasable memory also decreases as the silica density increases. We propose that the permanent memory originates from the surface memory effect operating at points of intersection in the silica network. These areas, where the LC is strongly confined with conflicted surface interactions, are trained to achieve an optimized orientation and subsequently act as sites from which the LC orientational order regrows after zero-field thermal cycling up to the isotropic phase.

  16. Memory effect in composites of liquid crystal and silica aerosil

    SciTech Connect

    Relaix, Sabrina; Leheny, Robert L.; Reven, Linda; Sutton, Mark

    2012-02-07

    Aerosil silica nanoparticles dispersed in a liquid crystal (LC) possess the interesting property of keeping memory of an electric- or magnetic-field-induced orientation. Two types of memory have been identified: thermally erasable memory arising from the pinning of defect lines versus a 'permanent' memory where the orientation persists even after thermal cycling the samples up to the isotropic phase. To address the source of the latter type of memory, solid-state nuclear magnetic resonance spectroscopy and conventional x-ray diffraction (XRD) were first combined to characterize the LC orientational order as a function of multiple in-field temperature cycles. Microbeam XRD was then performed on aligned gels of different concentrations to gain knowledge of the structural properties at the origin of the memory effect. No detectable anisotropy of the gel or significant breaking of silica strands with heating ruled out the formation of an anisotropic silica network as the source of the permanent memory as previously proposed. Instead, support for a role of the surface memory effect, well known for planar substrates, in stabilizing the permanent memory was deduced from 'training' of the composites, that is, optimizing the orientational order through the thermal in-field cycling. The ability to train the composites is inversely proportional to the strength of the random-field disorder. The portion of thermally erasable memory also decreases as the silica density increases. We propose that the permanent memory originates from the surface memory effect operating at points of intersection in the silica network. These areas, where the LC is strongly confined with conflicted surface interactions, are trained to achieve an optimized orientation and subsequently act as sites from which the LC orientational order regrows after zero-field thermal cycling up to the isotropic phase.

  17. Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica

    PubMed Central

    Kim, Kyoung-Min; Kim, Hye Min; Lee, Won-Jae; Lee, Chang-Woo; Kim, Tae-il; Lee, Jong-Kwon; Jeong, Jayoung; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    An attempt was made to control the surface charge of colloidal silica nanoparticles with 20 nm and 100 nm diameters. Untreated silica nanoparticles were determined to be highly negatively charged and have stable hydrodynamic sizes in a wide pH range. To change the surface to a positively charged form, various coating agents, such as amine containing molecules, multivalent metal cation, or amino acids, were used to treat the colloidal silica nanoparticles. Molecules with chelating amine sites were determined to have high affinity with the silica surface to make agglomerations or gel-like networks. Amino acid coatings resulted in relatively stable silica colloids with a modified surface charge. Three amino acid moiety coatings (L-serine, L-histidine, and L-arginine) exhibited surface charge modifying efficacy of L-histidine > L-arginine > L-serine and hydrodynamic size preservation efficacy of L-serine > L-arginine > L-histidine. The time dependent change in L-arginine coated colloidal silica was investigated by measuring the pattern of the backscattered light in a Turbiscan™. The results indicated that both the 20 nm and 100 nm L-arginine coated silica samples were fairly stable in terms of colloidal homogeneity, showing only slight coalescence and sedimentation. PMID:25565824

  18. Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor

    NASA Astrophysics Data System (ADS)

    Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal

    2011-12-01

    Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.

  19. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Zhang, Shaowei

    2016-03-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties.

  20. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties

    PubMed Central

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Zhang, Shaowei

    2016-01-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties. PMID:26940294

  1. Advances in silica based nanoparticles for targeted cancer therapy.

    PubMed

    Yang, Yannan; Yu, Chengzhong

    2016-02-01

    Targeted delivery of anticancer drug specifically to tumor site without damaging normal tissues has been the dream of all scientists fighting against cancer for decades. Recent breakthrough on nanotechnology based medicines has provided a possible tool to solve this puzzle. Among diverse nanomaterials that are under development and extensive study, silica based nanoparticles with vast advantages have attracted great attention. In this review, we concentrate on the recent progress using silica based nanoparticles, particularly mesoporous silica nanoparticles (MSNs), for targeted drug delivery applications. First, we discuss the passive targeting capability of silica based nanoparticles in relation to their physiochemical properties. Then, we focus on the recent advances of active targeting strategies involving tumor cell targeting, vascular targeting, nuclear targeting and multistage targeting, followed by an introduction to magnetic field directed targeting approach. We conclude with our personal perspectives on the remaining challenges and the possible future directions. Chemotherapy has been one of the mainstays of cancer treatment. The advances in nanotechnology has allowed the development of novel carrier systems for the delivery of anticancer drugs. Mesoporous silica has shown great promise in this respect. In this review article, the authors provided a comprehensive overview of the use of this nanoparticle in both passive, as well as active targeting in the field of oncology. The advantages of this particle were further discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the

  3. Synthesis of internally functionalized silica nanoparticles for theranostic applications

    NASA Astrophysics Data System (ADS)

    Walton, Nathan Isaac

    This thesis addresses the synthesis and characterization of novel inorganic silica nanoparticle hybrids. It focuses in large part on their potential applications in the medical field. Silica acts as a useful carrier for a variety of compounds and this thesis silica will demonstrate its use as a carrier for boron or gadolinium. Boron-10 and gadolinium-157 have been suggested for the radiological treatment of tumor cells through the process called neutron capture therapy (NCT). Gadolinium is also commonly used as a Magnetic Resonance Imaging (MRI) contrast agent. Particles that carry it have potential theranostic applications of both imaging and treating tumors. Chapter 1 presents a background on synthetic strategies and usages of silica nanoparticles, and NCT theory. Chapter 2 describes a procedure to create mesoporous metal chelating silica nanoparticles, mDTTA. This is achieved via a co-condensation of tetraethoxysilane (TEOS) and 3-trimethoxysilyl-propyl diethylenetriamine (SiDETA) followed by a post-synthesis modification step with bromoacetic acid (BrAA). These particles have a large surface area and well-defined pores of ~2 nm. The mDTTA nanoparticles were used to chelate the copper(II), cobalt(II) and gadolinium(III). The chelating of gadolinium is the most interesting since it can be used as a MRI contrast agent and a neutron capture therapeutic. The synthetic procedure developed also allows for the attachment of a fluorophore that gives the gadolinium chelating mDTTA nanoparticles a dual imaging modality. Chapter 3 presents the synthetic method used to produce two classes of large surface area organically modified silica (ORMOSIL) nanoparticles. Condensating the organosilane vinyltrimethoxysilane in a micellar solution results in nanoparticles that are either surface rough (raspberry-like) or mesoporous nanoparticles, which prior to this thesis has not been demonstrated in ORMOSIL chemistry. Furthermore, the vinyl functionalities are modified, using

  4. Mesoporous silica nanoparticles for biomedical and catalytical applications

    SciTech Connect

    Sun, Xiaoxing

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  5. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles

    PubMed Central

    Hetrick, Evan M.; Shin, Jae Ho; Stasko, Nathan A.; Johnson, C. Bryce; Wespe, Daniel A.; Holmuhamedov, Ekhson; Schoenfisch, Mark H.

    2013-01-01

    The utility of nitric oxide (NO)-releasing silica nanoparticles as a novel antibacterial is demonstrated against Pseudomonas aeruginosa. Nitric oxide-releasing nanoparticles were prepared via co-condensation of tetraalkoxysilane with aminoalkoxysilane modified with diazeniumdiolate NO donors, allowing for the storage of large NO payloads. Comparison of the bactericidal efficacy of the NO-releasing nanoparticles to 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (PROLI/NO), a small molecule NO donor, demonstrated enhanced bactericidal efficacy of nanoparticle-derived NO and reduced cytotoxicity to healthy cells (mammalian fibroblasts). Confocal microscopy revealed that fluorescently-labeled NO-releasing nanoparticles associated with the bacteria, providing rationale for the enhanced bactericidal efficacy of the nanoparticles. Intracellular NO concentrations were measurable when the NO was delivered from nanoparticles as opposed to PROLI/NO. Collectively, these results demonstrate the advantage of delivering NO via nanoparticles for antimicrobial applications. PMID:19206623

  6. Improved Silica Aerogel Composite Materials

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  7. Sers-Based Aqueous Immunoassay Realized with Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, C. Y.; Wang, Z. Y.; Yang, J.; Zhang, R. H.; Wu, H.; Cui, Y. P.

    A simple, sensitive SERS-based immunoassay realized in aqueous solution is demonstrated with a sandwich immune protocol. In such an immunoassay, antibodies-immobilized silica nanoparticles served as the immune substrate while 4MBA-labeled immuno-Au nanoparticles are used as the immune sensors. According to the TEM images, it is clear that the immune gold nanoparticles are embedded onto the surfaces of the silica nanoparticles specifically after the immunoreaction. As a result, the aggregations of gold nanoparticles have been formed with SERS-active "hot spots" on the dimers or multimers. The SERS results confirm that the method proposed in this paper is an effective way for SERS-based aqueous immunoassay and that the detection limit is as low as 0.1 ng/mL.

  8. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots.

    PubMed

    Yi, Dong Kee; Selvan, S Tamil; Lee, Su Seong; Papaefthymiou, Georgia C; Kundaliya, Darshan; Ying, Jackie Y

    2005-04-13

    Quantum dots (QDs) and magnetic nanoparticles (MPs) are of interest for biological imaging, drug targeting, and bioconjugation because of their unique optoelectronic and magnetic properties, respectively. To provide for water solubility and biocompatibility, QDs and MPs were encapsulated within a silica shell using a reverse microemulsion synthesis. The resulting SiO2/MP-QD nanocomposite particles present a unique combination of magnetic and optical properties. Their nonporous silica shell allows them to be surface modified for bioconjugation in various biomedical applications.

  9. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei

    2016-11-01

    We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  10. Adsorption and release of biocides with mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Popat, Amirali; Liu, Jian; Hu, Qiuhong; Kennedy, Michael; Peters, Brenton; Lu, Gao Qing (Max); Qiao, Shi Zhang

    2012-01-01

    In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles

  11. Direct formation of S-nitroso silica nanoparticles from a single silica source.

    PubMed

    Chou, Hung-Chang; Chiu, Shih-Jiuan; Liu, Ying-Ling; Hu, Teh-Min

    2014-01-28

    Nitric oxide (NO) is a ubiquitous molecule in the body. Because of its multiple pathophysiologic roles, the potential for treating various diseases by the exogenous administration of NO has been under intensive investigation. However, the unstable, radical nature of NO poses a major challenge to the effective delivery of NO. Previously, silica nanoparticles synthesized by the traditional method have been developed into NO-carrying systems. In the present study, for the first time NO-carrying silica nanoparticles were prepared from a single silica precursor using a simple nanoprecipitation method. (3-Mercaptopropyl)-trimethoxysilane (MPTMS) was used as the sole silane source, which was subjected to acid-catalyzed S-nitrosation and condensation reactions in a one-pot organic phase. S-Nitroso silica nanoparticles (SNO-SiNPs) were then produced by injecting a smaller quantity of the organic phase into a larger amount of water without surfactants. Various preparation parameters were tested to obtain optimized conditions. Moreover, a phase diagram demonstrating the ouzo effect was constructed. The prepared SNO-SiNPs were spherical particles with a tunable size in the range of 100-400 nm. The nanoparticles in aqueous dispersions exhibited high colloid stability, possibly resulting from highly negatively charged surfaces. The result of solid-state (29)Si NMR shows the predominance of T(2) and T(3) silicon structures, suggesting that nanoparticles were formed from polycondensed silica species. In conclusion, NO-loaded silica nanoparticles have been directly prepared from a single silane precursor using a surfactant-free, low-energy, one-step nanoprecipitation approach. The method precludes the need for the initial formation of bare particles and subsequent functionalization steps.

  12. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    PubMed

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules.

  13. Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: syntheses and characterizations.

    PubMed

    Vitorge, Elsa; Szenknect, Stéphanie; Martins, Jean M F; Barthès, Véronique; Auger, Aurélien; Renard, Oliver; Gaudet, Jean-Paul

    2014-01-01

    The synthesis and the characterization of three kinds of labeled silica nanoparticles were performed. Three different labeling strategies were investigated: fluorescent organic molecule (FITC) embedded in silica matrix, heavy metal core (Ag(0)) and radioactive core ((110m)Ag) surrounded by a silica shell. The main properties and the suitability of each kind of labeled nanoparticle in terms of size, surface properties, stability, detection limits, and cost were determined and compared regarding its use for transport studies. Fluorescent labeling was found the most convenient and the cheapest, but the best detection limits were reached with chemical (Ag(0)) and radio-labeled ((110m)Ag) nanoparticles, which also allowed nondestructive quantifications. This work showed that the choice of labeled nanoparticles as surrogates of natural colloids or manufactured nanoparticles strongly depends on the experimental conditions, especially the concentration and amount required, the composition of the effluent, and the timescale of the experiment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Silica nanoparticles functionalized via click chemistry and ATRP for enrichment of Pb(II) ion

    NASA Astrophysics Data System (ADS)

    Li, Wei; Xu, Yaohui; Zhou, Yang; Ma, Wenhui; Wang, Shixing; Dai, Yongnian

    2012-08-01

    Silica nanoparticles have been functionalized by click chemistry and atom transfer radical polymerization (ATRP) simultaneously. First, the silanized silica nanoparticles were modified with bromine end group, and then the azide group was grafted onto the surface via covalent coupling. 3-Bromopropyl propiolate was synthesized, and then the synthesized materials were used to react with azide-modified silica nanoparticles via copper-mediated click chemistry and bromine surface-initiated ATRP. Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis were performed to characterize the functionalized silica nanoparticles. We investigated the enrichment efficiency of bare silica and poly(ethylene glycol) methacrylate (PEGMA)-functionalized silica nanoparticles in Pb(II) aqueous solution. The results demonstrated that PEGMA-functionalized silica nanoparticles can enrich Pb(II) more quickly than pristine silica nanoparticles within 1 h.

  15. Silica nanoparticles functionalized via click chemistry and ATRP for enrichment of Pb(II) ion

    PubMed Central

    2012-01-01

    Silica nanoparticles have been functionalized by click chemistry and atom transfer radical polymerization (ATRP) simultaneously. First, the silanized silica nanoparticles were modified with bromine end group, and then the azide group was grafted onto the surface via covalent coupling. 3-Bromopropyl propiolate was synthesized, and then the synthesized materials were used to react with azide-modified silica nanoparticles via copper-mediated click chemistry and bromine surface-initiated ATRP. Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis were performed to characterize the functionalized silica nanoparticles. We investigated the enrichment efficiency of bare silica and poly(ethylene glycol) methacrylate (PEGMA)-functionalized silica nanoparticles in Pb(II) aqueous solution. The results demonstrated that PEGMA-functionalized silica nanoparticles can enrich Pb(II) more quickly than pristine silica nanoparticles within 1 h. PMID:22931369

  16. Anionic-cationic switchable amphoteric monodisperse mesoporous silica nanoparticles.

    PubMed

    Ma, Yanhang; Xing, Lei; Zheng, Haoquan; Che, Shunai

    2011-01-18

    Anionic-cationic switchable monodisperse mesoporous silica nanoparticles were synthesized by one-pot amino and carboxylic acid bifunctionalization based on the self-assembly of the surfactant, two types of co-structure-directing agents containing amino and carboxylic groups, and silica sources. These nanoparticles revealed properties of dispersity and reversibility, with the advantage of the pH-responsive anionic-cationic/acid-base switchability. It was demonstrated that the extracted materials achieved reutilization and controllable dispersity in aqueous solution by adjusting the static electric power among the particles during the switching process.

  17. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles.

    PubMed

    Besinis, Alexandros; van Noort, Richard; Martin, Nicolas

    2012-09-01

    The management of demineralized dentin resulting from dental caries or acid erosion remains an oral healthcare clinical challenge. This paper investigates, through a range of studies, the ability of colloidal silica and hydroxyapatite (HA) nanoparticles to infiltrate the collagen structure of demineralized dentin. Dentin samples were completely demineralized in 4 N formic acid. The remaining collagen matrix of the dentin samples was subsequently infiltrated with a range of nano-particulate colloidal silica and HA solutions. The effectiveness and extent of the infiltration was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Silica nanoparticles have the ability to penetrate dentin and remain embedded within the collagen matrix. It is suggested that particle size plays a major role in the degree of dentin infiltration, with smaller diameter particles demonstrating a greater infiltrative capacity. The infiltration of demineralized dentin with sol-gel HA nanoparticles was limited but was significantly increased when combined with the deflocculating agent sodium hexametaphosphate. The use of acetone as a transport vehicle is reported to enhance the infiltration capacity of sol-gel HA nanoparticles. Collagen infiltrated with HA and silica nanoparticles may provide a suitable scaffold for the remineralization of dentin, whereby the infiltrated particles act as seeds within the collage matrix and given the appropriate remineralizing environment, mineral growth may occur. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-07

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.

  19. Pore Structure of Macroporous Polymers Using Polystyrene/Silica Composite Particles as Pickering Stabilizers.

    PubMed

    Tu, Shuhua; Zhu, Chenxu; Zhang, Lingyun; Wang, Haitao; Du, Qiangguo

    2016-12-13

    A novel approach for the preparation of interconnected macroporous polymers with a controllable pore structure was reported. The method was based on the polymerization of water-in-oil Pickering high internal phase emulsion (HIPE) stabilized by polystyrene (PS)/silica composite particles. The composite Pickering stabilizers were facilely obtained by mixing positively charged PS microspheres and negatively charged silica nanoparticles, and their amphiphilicity could be delicately tailored by varying the ratio of PS and silica. The droplet size of Pickering HIPEs was characterized using an optical microscope. The pore structure of polymer foams was observed using a scanning electron microscope. The interconnectivity of macroporous polymers was evaluated upon their gas permeability, which was greatly improved after etching PS microspheres included in the Pickering stabilizers with tetrahydrofuran. As a result, fine tailoring of the pore structure of polymer foams could be realized by simply tuning the ratio of PS to silica particles in the composite stabilizer.

  20. Silica passivated conjugated polymer nanoparticles for biological imaging applications

    NASA Astrophysics Data System (ADS)

    Bourke, Struan; Urbano, Laura; Olona, Antoni; Valderrama, Ferran; Dailey, Lea Ann; Green, Mark A.

    2017-02-01

    Colorectal and prostate cancers are major causes of cancer-related death, with early detection key to increased survival. However, as symptoms occur during advanced stages and current diagnostic methods have limitations, there is a need for new fluorescent probes that remain bright, are biocompatible and can be targeted. Conjugated polymer nanoparticles have shown great promise in biological imaging due to their unique optical properties. We have synthesised small, bright, photo-stable CN-PPV, nanoparticles encapsulated with poloxamer polymer and a thin silica shell. By incubating the CN-PPV silica shelled cross-linked (SSCL) nanoparticles in mammalian (HeLa) cells; we were able to show that cellular uptake occurred. Uptake was also shown by incubating the nanoparticles in RWPE-1, WPE1-NB26 and WPE1- NA22 prostate cancer cell lines. Finally, HEK cells were used to show the particles had limited cytotoxicity.

  1. Mesoporous silica nanoparticles deliver DNA and chemicals into plants

    NASA Astrophysics Data System (ADS)

    Torney, François; Trewyn, Brian G.; Lin, Victor S.-Y.; Wang, Kan

    2007-05-01

    Surface-functionalized silica nanoparticles can deliver DNA and drugs into animal cells and tissues. However, their use in plants is limited by the cell wall present in plant cells. Here we show a honeycomb mesoporous silica nanoparticle (MSN) system with 3-nm pores that can transport DNA and chemicals into isolated plant cells and intact leaves. We loaded the MSN with the gene and its chemical inducer and capped the ends with gold nanoparticles to keep the molecules from leaching out. Uncapping the gold nanoparticles released the chemicals and triggered gene expression in the plants under controlled-release conditions. Further developments such as pore enlargement and multifunctionalization of these MSNs may offer new possibilities in target-specific delivery of proteins, nucleotides and chemicals in plant biotechnology.

  2. Surfactant templating effects on the encapsulation of iron oxide nanoparticles within silica microspheres.

    PubMed

    Zheng, Tonghua; Pang, Jiebin; Tan, Grace; He, Jibao; McPherson, Gary L; Lu, Yunfeng; John, Vijay T; Zhan, Jingjing

    2007-04-24

    Hollow silica microspheres encapsulating ferromagnetic iron oxide nanoparticles were synthesized by a surfactant-aided aerosol process and subsequent treatment. The cationic surfactant cetyltrimethyl ammonium bromide (CTAB) played an essential role in directing the structure of the composite. Translation from mesoporous silica particles to hollow particles was a consequence of increased loading of ferric species in the precursor solution and the competitive partitioning of CTAB between silicate and ferric colloids. The hypothesis was that CTAB preferentially adsorbed onto more positively charged ferric colloids under acidic conditions. At a critical Fe/Si ratio, most of the CTAB was adsorbed onto ferric colloids and coagulated the colloids to form larger clusters. During the aerosol process, a silica shell was first formed due to the preferred silicate condensation on the gas-liquid interface of the aerosol droplet. Subsequent drying concentrated the ferric clusters inside the silica shell and resulted in a silica shell/ferric core particle. Thermal treatment of the core shell particle led to encapsulation of a single iron oxide nanoparticle inside each silica hollow microsphere.

  3. Silica nanoparticles produced by DC arc plasma from a solid raw materials

    NASA Astrophysics Data System (ADS)

    Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.

    2017-05-01

    Plasma synthesis of SiO2 nanoparticles in experimental atmospheric pressure plasma reactor on the basis of DC arc plasma generator was presented in this paper. Solid high-silica raw materials such as diatomite from Kamyshlovskoye deposit in Russia, quartzite from Chupinskoye deposit in Russia and milled window glass were used. The obtained nanoparticles were characterized based on their morphology, chemical composition and size distribution. Scanning electron microscopy, laser diffractometry, nitrogen absorption (Brunauer-Emmett-Teller method), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the synthesized products. The obtained silica nanoparticles are agglomerated, have spherical shape and primary diameters between 10-300 nm. All samples of synthesized nanopowders were compared with commercial nanopowders.

  4. Fibrous composites comprising carbon nanotubes and silica

    DOEpatents

    Peng, Huisheng; Zhu, Yuntian Theodore; Peterson, Dean E.; Jia, Quanxi

    2011-10-11

    Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO).sub.3Si--(CH.sub.2).sub.n--NR.sub.1R.sub.2) or (SiO).sub.3Si--(CH.sub.2).sub.n--NCO; where n is from 1 to 6, and R.sub.1 and R.sub.2 are each independently H, CH.sub.3, or C.sub.2H.sub.5.

  5. Independent optically addressable nanoparticle-polymer optomechanical composites

    NASA Astrophysics Data System (ADS)

    Sershen, S. R.; Westcott, S. L.; Halas, N. J.; West, J. L.

    2002-06-01

    We report the fabrication and characterization of optomechanically active composite materials consisting of a thermally responsive poly(NIPAAm-co-AAm) hydrogel matrix incorporating a dilute concentration of Au or silica-Au core-shell nanoparticles. Under optical illumination at the resonance absorption wavelength of the nanoparticle dopant, a dramatic volume collapse of the composite occurs due to local photothermal heating of the NIPAAm matrix. Nanoparticle dopants were chosen so that each composite was specifically optically addressable, exhibiting optomechanical behavior at independent wavelengths. Such materials can be useful as independently addressable remotely triggerable switches and gates in a wide variety of micromechanical applications.

  6. Interaction of surface-modified silica nanoparticles with clay minerals

    NASA Astrophysics Data System (ADS)

    Omurlu, Cigdem; Pham, H.; Nguyen, Q. P.

    2016-11-01

    In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate), cationic (quaternary ammonium (quat)), and nonionic (polyethylene glycol (PEG)) surfactant. We employed ultraviolet-visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl) and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  7. Modification of microfluidic paper-based devices with silica nanoparticles.

    PubMed

    Evans, Elizabeth; Gabriel, Ellen Flávia Moreira; Benavidez, Tomás E; Tomazelli Coltro, Wendell Karlos; Garcia, Carlos D

    2014-11-07

    This paper describes a silica nanoparticle-modified microfluidic paper-based analytical device (μPAD) with improved color intensity and uniformity for three different enzymatic reactions with clinical relevance (lactate, glucose, and glutamate). The μPADs were produced on a Whatman grade 1 filter paper and using a CO2 laser engraver. Silica nanoparticles modified with 3-aminopropyltriethoxysilane were then added to the paper devices to facilitate the adsorption of selected enzymes and prevent the washing away effect that creates color gradients in the colorimetric measurements. According to the results herein described, the addition of silica nanoparticles yielded significant improvements in color intensity and uniformity. The resulting μPADs allowed for the detection of the three analytes in clinically relevant concentration ranges with limits of detection (LODs) of 0.63 mM, 0.50 mM, and 0.25 mM for lactate, glucose, and glutamate, respectively. An example of an analytical application has been demonstrated for the semi-quantitative detection of all three analytes in artificial urine. The results demonstrate the potential of silica nanoparticles to avoid the washing away effect and improve the color uniformity and intensity in colorimetric bioassays performed on μPADs.

  8. Functionalized mesoporous silica nanoparticles for stimuli-responsive and targeted

    SciTech Connect

    Knezevic, Nikola

    2009-12-15

    Construction of functional supramolecular nanoassemblies has attracted great deal of attention in recent years for their wide spectrum of practical applications. Mesoporous silica nanoparticles (MSN) in particular were shown to be effective scaffolds for the construction of drug carriers, sensors and catalysts. Herein, we describe the synthesis and characterization of stimuli-responsive, controlled release MSN-based assemblies for drug delivery.

  9. Highly Aminated Mesoporous Silica Nanoparticles with Cubic Pore Structure

    PubMed Central

    Suteewong, Teeraporn; Sai, Hiroaki; Cohen, Roy; Wang, Suntao; Bradbury, Michelle; Baird, Barbara; Gruner, Sol M.; Wiesner, Ulrich

    2010-01-01

    Mesoporous silica with cubic symmetry has attracted interest from researchers for some times. Here we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3̄n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, e.g. for co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously uptaken by cells as demonstrated by fluorescence microscopy. PMID:21158438

  10. Impact of silica environment on hyperfine interactions in 𝜖-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kubíčková, Lenka; Kohout, Jaroslav; Brázda, Petr; Veverka, Miroslav; Kmječ, Tomáš; Kubániová, Denisa; Bezdička, Petr; Klementová, Mariana; Šantavá, Eva; Závěta, Karel

    2016-12-01

    Magnetic nanoparticles have found broad applications in medicine, especially for cell targeting and transport, and as contrast agents in MRI. Our samples of 𝜖-Fe2O3 nanoparticles were prepared by annealing in silica matrix, which was leached off and the bare particles were then coated with amorphous silica layers of various thicknesses. The distribution of particle sizes was determined from the TEM pictures giving the average size ˜20 nm and the thickness of silica coating ˜5; 8; 12; 19 nm. The particles were further characterized by the XRPD and DC magnetic measurements. The nanoparticles consisted mainly of 𝜖-Fe2O3 with admixtures of ˜1 % of the α phase and less than 1 % of the γ phase. The hysteresis loops displayed coercivities of ˜2 T at room temperature. The parameters of hyperfine interactions were derived from transmission Mössbauer spectra. Observed differences of hyperfine fields for nanoparticles in the matrix and the bare ones are ascribed to strains produced during cooling of the composite. This interpretation is supported by slight changes of their lattice parameters and increase of the elementary cell volume deduced from XRD. The temperature dependence of the magnetization indicated a two-step magnetic transition of the 𝜖-Fe2O3 nanoparticles spread between ˜85 K and ˜150 K, which is slightly modified by remanent tensile stresses in the case of nanoparticles in the matrix. The subsequent coating of the bare particles by silica produced no further change in hyperfine parameters, which indicates that this procedure does not modify magnetic properties of nanoparticles.

  11. Rare Earth Doped Silica Nanoparticles via Thermolysis of a Single Source Metallasilsesquioxane Precursor

    PubMed Central

    Davies, Gemma-Louise; O’Brien, John; Gun’ko, Yurii K.

    2017-01-01

    Rare earth metal doped silica nanoparticles have significant advantages over traditional organic dyes and quantum dots. Silsesquioxanes are promising precursors in the production of silica nanoparticles by thermolysis, due to their structural similarities with silica materials. This manuscript describes the production of a new Eu3+-based metallasilsesquioxane species and its use as a single source precursor in the thermolytic production of luminescent rare earth metal doped silica nanoparticles with characteristic emission in the visible region of the spectrum. PMID:28378754

  12. Rare Earth Doped Silica Nanoparticles via Thermolysis of a Single Source Metallasilsesquioxane Precursor

    NASA Astrophysics Data System (ADS)

    Davies, Gemma-Louise; O'Brien, John; Gun'Ko, Yurii K.

    2017-04-01

    Rare earth metal doped silica nanoparticles have significant advantages over traditional organic dyes and quantum dots. Silsesquioxanes are promising precursors in the production of silica nanoparticles by thermolysis, due to their structural similarities with silica materials. This manuscript describes the production of a new Eu3+-based metallasilsesquioxane species and its use as a single source precursor in the thermolytic production of luminescent rare earth metal doped silica nanoparticles with characteristic emission in the visible region of the spectrum.

  13. Rare Earth Doped Silica Nanoparticles via Thermolysis of a Single Source Metallasilsesquioxane Precursor.

    PubMed

    Davies, Gemma-Louise; O'Brien, John; Gun'ko, Yurii K

    2017-04-05

    Rare earth metal doped silica nanoparticles have significant advantages over traditional organic dyes and quantum dots. Silsesquioxanes are promising precursors in the production of silica nanoparticles by thermolysis, due to their structural similarities with silica materials. This manuscript describes the production of a new Eu(3+)-based metallasilsesquioxane species and its use as a single source precursor in the thermolytic production of luminescent rare earth metal doped silica nanoparticles with characteristic emission in the visible region of the spectrum.

  14. Self-Assembled Silica Nano-Composite Polymer Electrolytes: Synthesis, Rheology & Electrochemistry

    SciTech Connect

    Khan, Saad A.: Fedkiw Peter S.; Baker, Gregory L.

    2007-01-24

    The ultimate objectives of this research are to understand the principles underpinning nano-composite polymer electrolytes (CPEs) and facilitate development of novel CPEs that are low-cost, have high conductivities, large Li+ transference numbers, improved electrolyte-electrode interfacial stability, yield long cycle life, exhibit mechanical stability and are easily processable. Our approach is to use nanoparticulate silica fillers to formulate novel composite electrolytes consisting of surface-modified fumed silica nano-particles in polyethylene oxides (PEO) in the presence of lithium salts. We intend to design single-ion conducting silica nanoparticles which provide CPEs with high Li+ transference numbers. We also will develop low-Mw (molecular weight), high-Mw and crosslinked PEO electrolytes with tunable properties in terms of conductivity, transference number, interfacial stability, processability and mechanical strength

  15. Thermally Stable Nanocatalyst for High Temperature Reactions: Pt-Mesoporous Silica Core-Shell Nanoparticles

    SciTech Connect

    Joo, Sang Hoon; Park, J.Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G.A.

    2008-10-25

    Recent advances in colloidal synthesis enabled the precise control of size, shape and composition of catalytic metal nanoparticles, allowing their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here we report the design of a high-temperature stable model catalytic system that consists of Pt metal core coated with a mesoporous silica shell (Pt{at}mSiO{sub 2}). While inorganic silica shells encaged the Pt cores up to 750 C in air, the mesopores directly accessible to Pt cores made the Pt{at}mSiO{sub 2} nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt{at}mSiO{sub 2} nanoparticles permitted high-temperature CO oxidation studies, including ignition behavior, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt{at}mSiO{sub 2} nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept employed in the Pt{at}mSiO{sub 2} core-shell catalyst can be extended to other metal-metal oxide compositions.

  16. Enhancement of Electrochromic Durability of a Film Made of Silica-Polyaniline Core-Shell Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Lee, Heungyeol; Kim, Hohyeong; Kim, Gyuntak; Mun, Gyeongjin

    Enhancing the operation life time or the electrochemical durability is one of the key issues in electrochromic material studies. It is generally accepted that the inorganic-organic hybrid structure is one of the effective ways to enhance the chemical stability of the material. In this study, an electrochromic film made of silica-polyaniline core-shell composite nanoparticles was tested. The composite particles were prepared through a chemical dispersion polymerization of aniline in an aqueous colloidal solution of silica. The synthesized particles were then dispersed into ethanol and the solution was deposited onto an Indium Tin Oxide (ITO)-coated glass substrate. The electrochromic characterization on the prepared films was performed using the cyclovoltammetry and the optical response to a switching potential. The results showed that the inorganic-organic core-shell hybrid nanoparticle could be a promising choice for the enhancement of electrochromic durability.

  17. Immobilization of Metal Nanoparticles in Surface Layer of Silica Matrices

    NASA Astrophysics Data System (ADS)

    Katok, Kseniia; Tertykh, Valentin; Yanishpolskii, Victor

    Gold and silver nanoparticles were obtained by in situ reduction with silicon hydride groups grafted to the mesoporous MCM-41 silica surface. Nickel-, cobalt-, and iron-containing silicas were synthesized by chemisorption of appropriate metal acetylacetonates with following reduction in the acetylene atmosphere. Such metal-containing MCM-41 matrices have been applied for preparation of carbon nanostructures at pyrolytic decomposition of acetylene. From transmission electron microscopy (TEM) data a lot of carbon nanotubes were formed, namely tubes with external diameter of 10-35 nm for Ni-, 42-84 nm for Co-, and 14-24 nm for Fecontaining silicas. In the metal absence on the silica surface low yield of nanotubes (up to 2%) was detected.

  18. Deposition of zeolite nanoparticles onto porous silica monolith

    SciTech Connect

    Gackowski, Mariusz; Bielanska, Elzbieta; Szczepanowicz, Krzysztof; Warszynski, Piotr; Derewinski, Miroslaw

    2016-06-01

    A facile and effective method of deposition of MFl zeolite nanoparticles (nanocrystals) onto macro-/mesoporous silica monolith was proposed. The electrostatic interaction between those two materials was induces by adsorption of cationic polyelectrolytes. That can be realized either by adsorption of polyelectrolyte onto silica monolith or on zeolite nanocrystals. The effect of time, concentration of zeolite nanocrystals, type of polyelectrolyte, and ultrasound treatment is scrutinized. Adsorption of polyelectrolyte onto silica monolith with subsequent deposition of nanocrystals resulted in a monolayer coverage assessed with SEM images. Infrared spectroscopy was applied as a useful method to determine the deposition effectiveness of zeolite nanocrystals onto silica. Modification of nanocrystals with polyelectrolyte resulted in a multilayer coverage due to agglomeration of particles. On the other hand, the excess of polyelectrolyte in the system resulted in a low coverage due to competition between polyelectrolyte and modified nanocrystals.

  19. Synthesis, characterization and bactericidal activity of silica/silver core-shell nanoparticles.

    PubMed

    Devi, Pooja; Patil, Supriya Deepak; Jeevanandam, P; Navani, Naveen K; Singla, M L

    2014-05-01

    Silica/silver core-shell nanoparticles (NPs) were synthesized by coating silver NPs on silica core particles (size ~300 ± 10 nm) via electro less reduction method. The core-shell NPs were characterized for their structural, morphological, compositional and optical behavior using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and UV-Visible spectroscopy, respectively. The size (16-35 nm) and loaded amount of silver NPs on the silica core were found to be dependent upon reaction time and activation method of silica. The bactericidal activity of the NPs was tested by broth micro dilution method against both Bacillus subtilis (gram positive) and Escherichia coli ATCC25922 (gram negative) bacterium. The bactericidal activity of silica/silver core-shell NPS is more against E. coli ATCC25922, when compared to B. subtilis. The minimal inhibitory concentration of the core-shell NPs ranged from 7.8 to 250 μg/mL and is found to be dependent upon the amount of silver on silica, the core. These results suggest that silica/silver core-shell NPs can be utilized as a strong substitutional candidate to control pathogenic bacterium, which are otherwise resistant to antibiotics, making them applicable in diverse medical devices.

  20. Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere.

    PubMed

    Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan

    2016-02-01

    This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used.

  1. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    SciTech Connect

    Khezri, Khezrollah; Roghani-Mamaqani, Hossein

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  2. Fluorescent silica nanoparticles containing covalently bound dyes for reporter, marker, and sensor applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sidney

    2016-03-01

    Silica nanoparticles have proven to be useful in many bioanalytical and medical applications and have been used in numerous applications during the last decade. Combining the properties of silica nanoparticles and fluorescent dyes that may be used as chemical probes or labels can be relatively easy by simply soaking porous silica nanoparticles in a solution of the dye of interest. Under proper conditions the entrapped dye can stay inside the silica nanoparticle for several hours resulting in a useful probe. In spite of the relative durability of these probes, leaching can still occur. A much better approach is to synthesize silica nanoparticles that have the fluorescent dye covalently attached to the backbone structure of the silica nanoparticle. This can be achieved by using appropriately modified tetraethyl orthosilicate (TEOS) analogues during the silica nanoparticle synthesis. The molar ratio of TEOS and modified TEOS will determine the fluorescent dye load in the silica nanoparticle. Dependent on the chemical stability of the reporting dye either reverse micellar (RM) or Stöber method can be used for silica nanoparticle synthesis. If dye stability allows RM procedure is preferred as it results in a much easier control of the silica nanoparticle reaction itself. Also controlling the size and uniformity of the silica nanoparticles are much easier using RM method. Dependent on the functional groups present in the reporting dye used in preparation of the modified TEOS, the silica nanoparticles can be utilized in many applications such as pH sensor, metal ion sensors, labels, etc. In addition surface activated silica nanoparticles with reactive moieties are also excellent reporters or they can be used as bright fluorescent labels. Many different fluorescent dyes can be used to synthesize silica nanoparticles including visible and NIR dyes. Several bioanalytical applications are discussed including studying amoeba phagocytosis.

  3. Effect of silica nanoparticles on morphology of segmented polyurethanes

    SciTech Connect

    Petrovic, Zoran S.; Cho, Young Jin; Javni, Ivan; Magonov, Sergei; Yerina, Natalia; Schaefer, Dale W.; Ilavsky, Jan; Waddon, Alan

    2010-11-16

    Two series of segmented polyurethanes having soft segment concentration of 50 and 70 wt%, and different concentrations of nanometer-diameter silica were prepared and tested. Atomic force microscopy revealed a strong effect of nanoparticles on the large-scale spherulitic morphology of the hard domains. Addition of silica suppresses fibril formation in spherulites. Filler particles were evenly distributed in the hard and soft phase. Nano-silica affected the melting point of the hard phase only at loadings >30 wt% silica. A single melting peak was observed at higher filler loadings. There is no clear effect of the filler on the glass transition of soft segments. Wide-angle X-ray diffraction showed decreasing crystallinity of the hard domains with increasing filler concentration in samples with 70 wt% soft segment. Ultra small-angle X-ray scattering confirms the existence of nanometer phase-separated domains in the unfilled sample. These domains are disrupted in the presence of nano-silica. The picture that emerges is that nano-silica suppresses short-scale phase separation of the hard and soft segments. Undoubtedly, the formation of fibrils on larger scales is related to short-scale segment segregation, so when the latter is suppressed by the presence of silica, fibril growth is also impeded.

  4. Dye-doped silica-based nanoparticles for bioapplications

    NASA Astrophysics Data System (ADS)

    Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Tan Pham, Minh; Van Nguyen, Thi; Trang Tran, Thu; Chu, Viet Ha; Thuan Tong, Kim; Thuy Tran, Thanh; Le, Thi Thanh Xuan; Brochon, Jean-Claude; Quy Nguyen, Thi; Nhung Hoang, My; Nguyen Duong, Cao; Thuy Nguyen, Thi; Hoang, Anh Tuan; Hoa Nguyen, Phuong

    2013-12-01

    This paper presents our recent research results on synthesis and bioapplications of dye-doped silica-based nanoparticles. The dye-doped water soluble organically modified silicate (ORMOSIL) nanoparticles (NPs) with the size of 15-100 nm were synthesized by modified Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). Because thousands of fluorescent dye molecules are encapsulated in the silica-based matrix, the dye-doped nanoparticles are extremely bright and photostable. Their surfaces were modified with bovine serum albumin (BSA) and biocompatible chemical reagents. The highly intensive luminescent nanoparticles were combined with specific bacterial and breast cancer antigen antibodies. The antibody-conjugated nanoparticles can identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody-antigen interaction and recognition. A highly sensitive breast cancer cell detection has been achieved with the anti-HER2 monoclonal antibody-nanoparticles complex. These results demonstrate the potential to apply these fluorescent nanoparticles in various biodetection systems.

  5. Passive mass transport for direct and quantitative SERS detection using purified silica encapsulated metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Shrestha, Binaya Kumar

    This thesis focuses on understanding implications of nanomaterial quality control and mass transport through internally etched silica coated nanoparticles for direct and quantitative molecular detection using surface enhanced Raman scattering (SERS). Prior to use, bare nanoparticles (partially or uncoated with silica) are removal using column chromatography to improve the quality of these nanomaterials and their SERS reproducibility. Separation of silica coated nanoparticles with two different diameters is achieved using Surfactant-free size exclusion chromatography with modest fractionation. Next, selective molecular transport is modeled and monitored using SERS and evaluated as a function of solution ionic strength, pH, and polarity. Molecular detection is achieved when the analytes first partition through the silica membrane then interact with the metal surface at short distances (i.e., less than 2 nm). The SERS intensities of unique molecular vibrational modes for a given molecule increases as the number of molecules that bind to the metal surface increases and are enhanced via both chemical and electromagnetic enhancement mechanisms as long as the vibrational mode has a component of polarizability tensor along the surface normal. SERS signals increase linearly with molecular concentration until the three-dimensional SERS-active volume is saturated with molecules. Implications of molecular orientation as well as surface selection rules on SERS intensities of molecular vibrational modes are studied to improve quantitative and reproducible SERS detection using internally etched Ag Au SiO2 nanoparticles. Using the unique vibrational modes, SERS intensities for p-aminothiophenol as a function of metal core compositions and plasmonics are studied. By understanding molecular transport mechanisms through internally etched silica matrices coated on metal nanoparticles, important experimental and materials design parameters are learned, which can be subsequently applied

  6. Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles.

    PubMed

    El Sayed, Sameh; Pascual, Lluı́s; Licchelli, Maurizio; Martínez-Máñez, Ramón; Gil, Salvador; Costero, Ana M; Sancenón, Félix

    2016-06-15

    Silica nanoparticles functionalized with thiol reactive units and bulky polar polyamines were used for the selective colorimetric detection of formaldehyde. The reaction of thiols groups in the nanoparticles surface with a squaraine dye resulted in loss of the π-conjugation of the chromophores, and the subsequent bleaching of the solution. However, when formaldehyde was present in the suspension, the thiol-squaraine reaction was inhibited and a chromogenic response was observed. A selective response to formaldehyde was observed only when the thiol and polyamine groups were anchored to the silica surface. The observed selective response was ascribed to the fact that bulky polyamines generate a highly polar environment around thiols, which were only able to react with the small and polar formaldehyde, but not with other aldehydes. The sensing nanoparticles showed a limit of detection (LOD) for formaldehyde of 36 ppb in water.

  7. Condensation of silica nanoparticles on a phospholipid membrane

    NASA Astrophysics Data System (ADS)

    Asadchikov, V. E.; Volkov, V. V.; Volkov, Yu. O.; Dembo, K. A.; Kozhevnikov, I. V.; Roshchin, B. S.; Frolov, D. A.; Tikhonov, A. M.

    2011-12-01

    The structure of the transient layer at the interface between air and the aqueous solution of silica nanoparticles with the size distribution of particles that has been determined from small-angle scattering has been studied by the X-ray reflectometry method. The reconstructed depth profile of the polarizability of the substance indicates the presence of a structure consisting of several layers of nanoparticles with the thickness that is more than twice as large as the thickness of the previously described structure. The adsorption of 1,2-distearoyl-sn-glycero-3-phosphocholine molecules at the hydrosol/air interface is accompanied by the condensation of anion silica nanoparticles at the interface. This phenomenon can be qualitatively explained by the formation of the positive surface potential due to the penetration and accumulation of Na+ cations in the phospholipid membrane.

  8. Graphene-silica composite thin films as transparent conductors.

    PubMed

    Watcharotone, Supinda; Dikin, Dmitriy A; Stankovich, Sasha; Piner, Richard; Jung, Inhwa; Dommett, Geoffrey H B; Evmenenko, Guennadi; Wu, Shang-En; Chen, Shu-Fang; Liu, Chuan-Pu; Nguyen, SonBinh T; Ruoff, Rodney S

    2007-07-01

    Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiOx/silicon substrates by incorporation of individual graphene oxide sheets into silica sols followed by spin-coating, chemical reduction, and thermal curing. The resulting films were characterized by SEM, AFM, TEM, low-angle X-ray reflectivity, XPS, UV-vis spectroscopy, and electrical conductivity measurements. The electrical conductivity of the films compared favorably to those of composite thin films of carbon nanotubes in silica.

  9. Application of Super-Amphiphilic Silica-Nanogel Composites for Fast Removal of Water Pollutants.

    PubMed

    Atta, Ayman M; Al-Lohedan, Hamad A; Tawfik, Ahmed M; Ezzat, Abdelrahman O

    2016-10-19

    This work first reports the preparation of super-amphiphilic silica-nanogel composites to reduce the contact angle of water to increase the diffusion of pollutant into adsorbents. In this respect, the silica nanoparticles were encapsulated into nanogels based on ionic and nonionic polyacrylamides by dispersion polymerization technique. The morphologies and the dispersion stability of nanogel composites were investigated to clarify the ability of silica-nanogel composites to adsorb at different interfaces. The feasibility of silica polyacrylamide nanogel composites to act as a high-performance adsorbent for removal of methylene blue (MB) dye and heavy metals (Co(2+) and Ni(2+)) from aqueous solution was investigated. The surface tension, contact angle, average pore size, and zeta potential of the silica-nanogel composites have been evaluated. The MB dye and heavy metal adsorption capacity achieved Qmax = 438-387 mg/g which is considerably high. The adsorption capacity results are explained from the changes in the morphology of the silica surfaces as recorded from scanning electron microscopy (SEM).

  10. Diatomite silica nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  11. Gas-Phase Synthesis of Gold- and Silica-Coated Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boies, Adam Meyer

    2011-12-01

    Composite nanoparticles consisting of separate core-shell materials are of interest for a variety of biomedical and industrial applications. By combining different materials at the nanoscale, particles can exhibit enhanced or multi-functional behavior such as plasmon resonance combined with superparamagnetism. Gas-phase nanoparticle synthesis processes are promising because they can continuously produce particles with high mass-yield rates. In this dissertation, new methods are investigated for producing gas-phase coatings of nanoparticles in an "assembly-line" fashion. Separate processes are developed to create coatings from silica and gold that can be used with a variety of core-particle chemistries. A photoinduced chemical vapor deposition (photo-CVD) method is used to produce silica coatings from tetraethyl orthosilicate (TEOS) on the surface of nanoparticles (diameter ˜5--70 nm). Tandem differential mobility analysis (TDMA) of the process demonstrates that particle coatings can be produced with controllable thicknesses (˜1--10 nm) by varying system parameters such as precursor flow rate. Electron microscopy and infrared spectroscopy confirm that the photo-CVD films uniformly coat the particles and that the coatings are silica. In order to describe the coating process a chemical mechanism is proposed that includes gas-phase, surface and photochemical reactions. A chemical kinetics model of the mechanism indicates that photo-CVD coating proceeds primarily through the photodecomposition of TEOS which removes ethyl groups, thus creating activated TEOS species. The activated TEOS then adsorbs onto the surface of the particle where a series of subsequent reactions remove the remaining ethyl groups to produce a silica film with an open site for further attachment. The model results show good agreement with the experimentally measured coating trends, where increased TEOS flow increases coating thickness and increased nitrogen flow decreases coating thickness. Gold

  12. Core-Shell Composite Nanoparticles: Synthesis, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Sanyal, Sriya

    Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.

  13. Mesoporous Silica Nanoparticles and Films for Cargo Delivery

    NASA Astrophysics Data System (ADS)

    Guardado Alvarez, Tania Maria

    Mesoporous silica materials are well known materials that can range from films to nanoparticles. Mesoporous silica nanoparticles (MSNs) and mesoporous silica films have been of increasing interest among the scientific community for its use in cargo delivery. Silica provides ease of functionalization, a robust support and biocompatibility. Several methods have been used in order to give the mesoporous silica nanomaterials different qualities that render them a useful material with different characteristics. Among these methods is surface modification by taking advantage of the OH groups on the surface. When a molecule attached to the surface can act as a molecular machine it transforms the nanomaterial to act as delivery system that can be activated upon command. The work covered in this thesis focuses on the development and synthesis of different mesoporous silica materials for the purpose of trapping and releasing cargo molecules. Chapter 2 focuses in the photoactivation of "snap-top" stoppers over the pore openings of mesoporous silica nanoparticles that releases intact cargo molecules from the pores. The on-command release can be stimulated by either one UV photon or two coherent near-IR photons. Two-photon activation is particularly desirable for use in biological systems because it enables good tissue penetration and precise spatial control. Chapter 3 focuses on the design and synthesis of a nano-container consisting of mesoporous silica nanoparticles with the pore openings covered by "snap-top" caps that are opened by near-IR light. A photo transducer molecule that is a reducing agent in an excited electronic state is covalently attached to the system. Near IR two-photon excitation causes intermolecular electron transfer that reduces a disulfide bond holding the cap in place, thus allowing the cargo molecules to escape. The operation of the "snap-top" release mechanism by both one- and two photon is described. This system presents a proof of concept of a near

  14. Mesoporous silica nanoparticles in target drug delivery system: A review

    PubMed Central

    Bharti, Charu; Nagaich, Upendra; Pal, Ashok Kumar; Gulati, Neha

    2015-01-01

    Due to lack of specification and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the field of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical field. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields. PMID:26258053

  15. Kinetics of silica nanoparticles in the human placenta

    PubMed Central

    Poulsen, Marie Sønnegaard; Mose, Tina; Maroun, Lisa Leth; Mathiesen, Line; Knudsen, Lisbeth Ehlert; Rytting, Erik

    2015-01-01

    The potential medical applications of nanoparticles warrant their investigation in terms of biodistribution and safety during pregnancy. The transport of silica nanoparticles (NPs) across the placenta was investigated using two models of maternal-fetal transfer in human placenta, namely, the BeWo b30 choriocarcinoma cell line and the ex vivo perfused human placenta. Nanotoxicity in BeWo cells was examined by the MTT assay and demonstrated decreased cell viability at concentrations greater than 100 μg/mL. In the placental perfusion experiments, antipyrine crossed the placenta rapidly, with a fetal/maternal ratio of 0.97 ± 0.10 after 2 hours. In contrast, the percentage of silica NPs reaching the fetal perfusate after 6 hours was limited to 4.2 ± 4.9% and 4.6 ± 2.4% for 25-nm and 50-nm NPs, respectively. The transport of silica NPs across the BeWo cells was also limited, with an apparent permeability of only 1.54 × 10−6 ± 1.56 × 10−6 cm/sec. Using confocal microscopy, there was visual confirmation of particle accumulation in both BeWo cells and in perfused placental tissue. Despite the low transfer of silica NPs to the fetal compartment, questions regarding biocompatibility could limit the application of unmodified silica NPs in biomedical imaging or therapy. PMID:23742169

  16. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    PubMed

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  17. Pillaring effects in macroporous carrageenan-silica composite microspheres.

    PubMed

    Boissière, M; Tourrette, A; Devoisselle, J M; Di Renzo, F; Quignard, F

    2006-02-01

    The impregnation of a carrageenan gel by a silica sol is an efficient method to form a composite material which can be conveniently activated by CO2 supercritical drying. The textural properties of the solids have been characterized by nitrogen adsorption-desorption at 77 K and their composition by thermogravimetric analysis and EDX microprobe. Morphology was examined by SEM. The silica-carrageenan composites present an open macroporous structure. Silica particles retained inside the gel behaved as pillars between the polysaccharide fibrils and form a stick-and-ball network. The stiffening of the carrageenan gel by silica prevented its shrinkage upon drying. The nature of the alkali cations affected the retention of silica particles inside the gel. In the absence of silica, carrageenan fibrils rearrange under supercritical drying and form an aerogel with cavities in the mesopore range.

  18. Evaluation of silica nanoparticle binding to major human blood proteins

    NASA Astrophysics Data System (ADS)

    Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-ichi; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-12-01

    Nanomaterials are used for various biomedical applications because they are often more effective than conventional materials. Recently, however, it has become clear that the protein corona that forms on the surface of nanomaterials when they make contact with biological fluids, such as blood, influences the pharmacokinetics and biological responses induced by the nanomaterials. Therefore, when evaluating nanomaterial safety and efficacy, it is important to analyze the interaction between nanomaterials and proteins in biological fluids and to evaluate the effects of the protein corona. Here, we evaluated the interaction of silica nanoparticles, a commonly used nanomaterial, with the human blood proteins albumin, transferrin, fibrinogen, and IgG. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the amount of albumin, transferrin, and IgG binding to the silica particles increased as the particle size decreased under conditions where the silica particle mass remained the same. However, under conditions in which the specific surface area remained constant, there were no differences in the binding of human plasma proteins to the silica particles tested, suggesting that the binding of silica particles with human plasma proteins is dependent on the specific surface area of the silica particles. Furthermore, the amount of albumin, transferrin, and IgG binding to silica nanoparticles with a diameter of 70 nm (nSP70) and a functional amino group was lower than that with unmodified nSP70, although there was no difference in the binding between nSP70 with the surface modification of a carboxyl functional group and nSP70. These results suggest that the characteristics of nanomaterials are important for binding with human blood proteins; this information may contribute to the development of safe and effective nanomaterials.

  19. Electrospray formation of ring-shaped silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Uchida, Kazuhiro; Higashi, Kazuhiko; Hishida, Koichi; Hotta, Atsushi; Miki, Norihisa

    2015-02-01

    Electrospray is one of the processes employed for the production of silica nanoparticles (NPs). We have experimentally determined that not only spherical but also ring-shaped NPs can be manufactured by electrospray, and that the shape of the NPs is dependent on ambient humidity and the substrate on which the NPs are deposited. Although the effect of humidity that reflects the evaporation characteristics of the suspension during flight has been reported, we have experimentally determined that the affinity of the sol suspension and the substrate play a crucial role in the formation of torus silica NPs.

  20. Effect of silica nanoparticles on microbial biomass and silica availability in maize rhizosphere.

    PubMed

    Rangaraj, Suriyaprabha; Gopalu, Karunakaran; Rathinam, Yuvakkumar; Periasamy, Prabu; Venkatachalam, Rajendran; Narayanasamy, Kannan

    2014-01-01

    The effect of silica nanoparticles and conventional silica sources on the changes in microbial biomass and silica availability to pure soil and maize rhizosphere was studied. Nanosilica (20-40 nm) was synthesized from rice husk and comprehensively characterized. The efficiency of nanosilica was evaluated in terms of its effects on beneficial microbial population such as phosphate solubilizers, nitrogen fixers, silicate solubilizers, microbial biomass carbon and nitrogen content, and silica content in comparison with other silica sources such as microsilica, sodium silicate, and silicic acid. Nanosilica significantly (P < 0.05) enhanced microbial populations, total biomass content (C = 1508 μg g(-1) and N = 178 μg g(-1) ), and silica content (14.75 mg mL(-1) ). Although microsilica sources enhanced factors associated with soil fertility, their use by maize roots and silicification in soil was found to be less. The results show that nanosilica plays a vital role in influencing soil nutrient content and microbial biota and, hence, may promote the growth of maize crop.

  1. Magnetic heating of silica-coated manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-07-01

    Manganese ferrite nanoparticles were synthesized using the reverse micelle method; these particles were then coated with silica. The silica-coated nanoparticles were spherical in shape, with an average diameter of 14 nm. The inverse spinel crystalline structure was observed through X-ray diffraction patterns. The coating status of silica on the surface of the nanoparticles was confirmed with a Fourier transform infrared spectrometer. The superparamagnetic properties were revealed by the zero coercive force in the hysteresis curve. Controllable heating at a fixed temperature of 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field. We found that at a fixed field strength of 5.5 kA/m, the 2.6 mg/ml sample showed a saturation temperature of 42 °C for magnetic hyperthermia. On the other hand, at a fixed concentration of 3.6 mg/ml, a field intensity of 4.57 kA/m satisfied the required temperature of 42 °C.

  2. Antibacterial Dental Composites with Chlorhexidine and Mesoporous Silica

    PubMed Central

    Zhang, J.F.; Wu, R.; Fan, Y.; Liao, S.; Wang, Y.; Wen, Z.T.; Xu, X.

    2014-01-01

    One of the leading causes for the failure of dental composite restorations is secondary caries. Effectively inhibiting cariogenic biofilms and reducing secondary caries could extend the service life of composite restorations. Dental composites releasing antibacterial agents such as chlorhexidine (CHX) have shown biofilm-inhibitory efficacy, but they usually have poor physical and mechanical properties. Herein, we present a study of a new method to encapsulate and release CHX from dental composite using mesoporous silica nanoparticles (MSNs). SBA-15 MSNs were synthesized according to a reported procedure. CHX (62.9 wt%) was encapsulated into dried MSN from 0.3 M CHX ethanol solution. The dental composites containing 0% (control), 3%, 5%, and 6.3% CHX or the same amounts of CHX entrapped in MSN (denoted as CHX@MSN) were fabricated with methacrylate monomers and silanized glass fillers (CHX or CHX@MSN + glass filler particle = 70 wt%). The monomer mixture consisted of bisphenol A glycidyl methacrylate (BisGMA), hexanediol dimethacrylate (HDDMA), ethoxylated bisphenol A dimethacrylate (EBPADMA), and urethane dimethacrylates (UEDMA) at a weight ratio of 40:30:20:10. The composites were tested for CHX release and recharge, flexural strength and modulus (at 24 hr and 1 mo), surface roughness, in vitro wear, and antibacterial activity against Streptococcus mutans and Lactobacillus casei (in both planktonic growth and biofilm formation). The results showed that the composites with CHX@MSN largely retained mechanical properties and smooth surfaces and showed controlled release of CHX over a long time. In contrast, the composites with directly mixed CHX showed reduced mechanical properties, rough surfaces, and burst release of CHX in a short time. The composites with CHX either directly mixed or in MSN showed strong inhibition to S. mutans and L. casei. This research has demonstrated the successful application of MSNs as a novel nanotechnology in dental materials to inhibit

  3. Antibacterial dental composites with chlorhexidine and mesoporous silica.

    PubMed

    Zhang, J F; Wu, R; Fan, Y; Liao, S; Wang, Y; Wen, Z T; Xu, X

    2014-12-01

    One of the leading causes for the failure of dental composite restorations is secondary caries. Effectively inhibiting cariogenic biofilms and reducing secondary caries could extend the service life of composite restorations. Dental composites releasing antibacterial agents such as chlorhexidine (CHX) have shown biofilm-inhibitory efficacy, but they usually have poor physical and mechanical properties. Herein, we present a study of a new method to encapsulate and release CHX from dental composite using mesoporous silica nanoparticles (MSNs). SBA-15 MSNs were synthesized according to a reported procedure. CHX (62.9 wt%) was encapsulated into dried MSN from 0.3 M CHX ethanol solution. The dental composites containing 0% (control), 3%, 5%, and 6.3% CHX or the same amounts of CHX entrapped in MSN (denoted as CHX@MSN) were fabricated with methacrylate monomers and silanized glass fillers (CHX or CHX@MSN + glass filler particle = 70 wt%). The monomer mixture consisted of bisphenol A glycidyl methacrylate (BisGMA), hexanediol dimethacrylate (HDDMA), ethoxylated bisphenol A dimethacrylate (EBPADMA), and urethane dimethacrylates (UEDMA) at a weight ratio of 40:30:20:10. The composites were tested for CHX release and recharge, flexural strength and modulus (at 24 hr and 1 mo), surface roughness, in vitro wear, and antibacterial activity against Streptococcus mutans and Lactobacillus casei (in both planktonic growth and biofilm formation). The results showed that the composites with CHX@MSN largely retained mechanical properties and smooth surfaces and showed controlled release of CHX over a long time. In contrast, the composites with directly mixed CHX showed reduced mechanical properties, rough surfaces, and burst release of CHX in a short time. The composites with CHX either directly mixed or in MSN showed strong inhibition to S. mutans and L. casei. This research has demonstrated the successful application of MSNs as a novel nanotechnology in dental materials to inhibit

  4. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Treekamol, Yaowapa; Schieda, Mauricio; Robitaille, Lucie; MacKinnon, Sean M.; Mokrini, Asmae; Shi, Zhiqing; Holdcroft, Steven; Schulte, Karl; Nunes, Suzana P.

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion® matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however, was more severe for solvent-cast membranes at loadings beyond 5 wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the composite membranes decreases with decreasing relative humidity, but good performance values are still obtained at 34% RH and 90 °C, with the best results obtained for solvent cast membranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that for pure Nafion® membranes, possibly due to porosity resulting from suboptimal particle-matrix compatibility.

  5. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    SciTech Connect

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-04-15

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  6. Electrochemiluminescence sensor for melamine based on a Ru(bpy)₃²⁺-doped silica nanoparticles/carboxylic acid functionalized multi-walled carbon nanotubes/Nafion composite film modified electrode.

    PubMed

    Chen, Xiaomei; Lian, Sai; Ma, Ying; Peng, Aihong; Tian, Xiaotian; Huang, Zhiyong; Chen, Xi

    2016-01-01

    In this work, a sensitive electrochemiluminescence (ECL) sensor for the determination of melamine (MEL) was developed based on a Ru(bpy)3(2+)-doped silica nanoparticles (RUDS)/carboxylic acid functionalized multi-walled carbon nanotubes (CMWCNTs)/Nafion composite film modified electrode. The homogeneous spherical RUDS were synthesized by a reverse microemulsion method. As Ru(bpy)3(2+) were encapsulated in the RUDS, Ru(bpy)3(2+) dropping from the modified electrode can be greatly prevented, which is helpful for obtaining a stable ECL signal. Moreover, to improve the conductivity of the film and promote the electron transfer rate on electrode surface, CMWCNTs with excellent electrical conductivity and large surface area were applied in the construction of the sensing film. As CMWCNTs acted as electron bridges making more Ru(bpy)3(2+) participate in the reaction, the ECL intensity was greatly enhanced. Under the optimum conditions, the relative ECL signal (△IECL) was proportional to the logarithmic MEL concentration ranging from 5×10(-13) to 1×10(-7) mol L(-1) with a detection limit of 1×10(-13) mol L(-1). To verify the reliability, the thus-fabricated ECL sensor was applied to determine the concentration of MEL in milk. Based on these investigations, the proposed ECL sensor exhibited good feasibility and high sensitivity for the determination of MEL, promising the applicability of this sensor in practical analysis.

  7. Fast determination of Ziziphora tenuior L. essential oil by inorganic-organic hybrid material based on ZnO nanoparticles anchored to a composite made from polythiophene and hexagonally ordered silica.

    PubMed

    Piryaei, Marzieh; Abolghasemi, Mir Mahdi; Nazemiyeh, Hossein

    2015-01-01

    In this paper, for the first time, an inorganic-organic hybrid material based on ZnO nanoparticles was anchored to a composite made from polythiophene and hexagonally ordered silica (ZnO/PT/SBA-15) for use in solid-phase fibre microextraction (SPME) of medicinal plants. A homemade SPME apparatus was used for the extraction of volatile components of Ziziphora tenuior L. A simplex method was used for optimisation of five different parameters affecting the efficiency of the extraction. The main constituents extracted by ZnO/PT/SBA-15 and PDMS fibres and hydrodistillation (HD) methods, respectively, included pulegone (51.25%, 53.64% and 56.68%), limonene (6.73%, 6.58% and 8.3%), caryophyllene oxide (5.33%, 4.31% and 4.53%) and 1,8-cineole (4.21%, 3.31% and 3.18%). In comparison with the HD method, the proposed technique could equally monitor almost all the components of the sample, in an easier way, in a shorter time and requiring a much lower amount of the sample.

  8. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate.

    PubMed

    Konował, Emilia; Modrzejewska-Sikorska, Anna; Motylenko, Mykhailo; Klapiszewski, Łukasz; Wysokowski, Marcin; Bazhenov, Vasilii V; Rafaja, David; Ehrlich, Hermann; Milczarek, Grzegorz; Jesionowski, Teofil

    2016-04-01

    It is shown that lignosulfonate (LS) can be used as an effective reducing agent for gold ions and simultaneously as a stabilizing agent for gold nanoparticles (AuNPs). When organically modified silica is introduced to the reaction mixture, most of the AuNPs grow on the surface of the silica due to hydrophobic interactions between LS and organic layers covering the solid particles. It was also found that the structure of the organic layer is crucial for the effective deposition of gold nanoparticles onto silica spheres in terms of particle size and gold content in the final SiO2-LS-AuNPs composites. Due to the hydrophobicity of the modified silica it was necessary to carry out the modification in mixed organic/aqueous solvent. The polarity of the organic co-solvent was found to have an effect on the size of the deposited Au-NPs and their quantity. The physical appearance of the obtained hybrids was analyzed by colorimetry, and their structure and composition were evaluated using transmission electron microscopy (TEM). Additionally dispersive and thermal properties were examined by dynamic light scattering (DLS) and thermogravimetry (TG), respectively. The obtained multifunctional hybrid materials exhibits remarkable catalytic activity for the reduction of C.I. Basic Blue 9 (Methylene Blue) by borohydride.

  9. Unconventional assembly of bimetallic Au-Ni janus nanoparticles on chemically modified silica spheres.

    PubMed

    Jia, Lei; Pei, Xiaowei; Zhou, Feng; Liu, Weimin

    2014-02-10

    This paper reports that Janus Au-Ni nanoparticles (JANNPs) can self-assemble onto silica spheres in a novel way, which is different from that of single-component isotropic nanoparticles. JANNPs modified with octadecylamine (ODA) assemble onto catechol-modified silica spheres (SiO2-OH) to form a very special core-loop complex structure and finally the core-loop assemblies link each other to form large assemblies through capillary force and the hydrophobic interaction of the alkyl chains of ODA. The nanocomposites disassemble in the presence of vanillin and oleic acid because of the breakage of the catechol-metal link. Vanillin-induced disassembly enables the JANNPs to reassemble into a core-loop structure upon ODA addition. The assembly of SiO2-OH and isotropic Ni or Fe3O4 particles generates traditional core-satellite structures. This unconventional self-assembly can be attributed to the synergistic effect of Janus specificity and capillary force, which is also confirmed by the assembly of thiol-terminated silica spheres (SH-SiO2) with anisotropic JANNPs, isotropic Au, and Ni nanoparticles. These results can guide the development of novel composite materials using Janus nanoparticles as the primary building blocks.

  10. A photostable bi-luminophore pressure-sensitive paint measurement system developed with mesoporous silica nanoparticles.

    PubMed

    Mochizuki, Dai; Tamura, Shinichi; Yasutake, Hiroaki; Kataoka, Tomoharu; Mitsuo, Kazunori; Wada, Yuji

    2013-04-01

    The accurate and high-resolution measurement of surface pressure is achieved by a pressure/ temperature-sensitive composite paint (bi-PSP), whereas the pressure-sensitive dye photodegraded the temperature sensitive dye in close arrangement of both dyes. In the present study, an attempt was made to synthesize a homogeneous bi-PSP membrane without light-induced degradation of the dye using mesoporous silica. Mesoporous silica as a molecular sieve was the separation of pressure- and temperature-sensitive dyes. Both achievement of control of photodegradation in temperature-sensitive paints with molecule-screening capacity and macroscopically uniform placement of insoluble pigments in the respective solvent, was accomplished using the mesoporous silica nanoparticles in a compound PSP.

  11. Highly ordered poly(thiophene)s prepared in mesoporous silica nanoparticles.

    PubMed

    Seo, Seogjae; Kim, Jeonghun; Kim, Byeonggwan; Vinu, Ajayan; Kim, Eunkyoung

    2011-05-01

    Nanostructured PEDOT was synthesized using mesoporous silica as a nano-template. The polymerization of thiophene monomers was performed with an oxidant and mesoporous silica nanoparticles. The silica particles took essential role in absorbing monomers and oxidant molecules, and growth of polymers inside their pores. As prepared polymer/silica composite was treated with HF solution to remove silica template to result in 1D wire structure and mesh type porous 3D structures from SBA-15 and KIT-6 template, respectively. The average size of the poly(thiophene) wires was 10 15 nm, which was matched well to the pores size of the silica templates, as determined from an electron microscopy. At optimized condition, the room temperature electrical conductivities of the PEDOT grown from SBA-15 and KIT-6 template were similar as 1.1 and 1.0 S/cm, respectively. However, the evolution of the PEDOT conductivity versus temperature was different depending on the templates. These results gave a unique chance to tailor made 3 dimensional structure as well as properties of conductive polymer.

  12. Coordination-Accelerated "Iron Extraction" Enables Fast Biodegradation of Mesoporous Silica-Based Hollow Nanoparticles.

    PubMed

    Wang, Liying; Huo, Minfeng; Chen, Yu; Shi, Jianlin

    2017-09-21

    Biodegradation behavior of inorganic silica-based nanoplatforms is of critical importance in their clinical translations, but still remains a great challenge in achieving this goal by composition regulation of biocompatible silica framework. In the present work, a chemical coordination-accelerated biodegradation strategy to endow hollow mesoporous silica nanoparticles (HMSNs) with unique coordination-responsive biodegradability, on-demand coordination-responsive drug releasing behavior, and significantly enhanced chemotherapeutic efficacy by directly doping iron (Fe) ions into the framework of mesoporous silica is reported. A simple but versatile dissolution-regrowth strategy has been developed to enable the framework Fe doping via chemical bonding. The deferiprone-mediated biodegradation of Fe-doped HMSNs (Fe-HMSNs) has been comprehensively evaluated both in simulated body fluid and intracellular level, which have exhibited a specific coordination-accelerated biodegradation behavior. In addition to high biocompatibility of Fe-HMSNs, the anticancer drug doxorubicin (DOX)-loaded Fe-HMSNs show enhanced tumor-suppressing effect on 4T1 mammary cancer xenograft. This work paves a new way for tuning the biodegradation performance of mesoporous silica-based nanoplatforms simply by biocompatible Fe-ion doping into silica framework based on the specific coordination property between introduced metal Fe ions with Fe-coordination proteins. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Face-specific Replacement of Calcite by Amorphous Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Liesegang, M.; Milke, R.; Neusser, G.; Mizaikoff, B.

    2016-12-01

    Amorphous silica, composed of nanoscale spheres, is an important biomineral, alteration product of silicate rocks on the Earth's surface, and precursor material for stable silicate minerals. Despite constant progress in silica sphere synthesis, fundamental knowledge of natural silica particle interaction and ordering processes leading to colloidal crystals is absent so far. To understand the formation pathways of silica spheres in a geologic environment, we investigated silicified Cretaceous mollusk shell pseudomorphs from Coober Pedy (South Australia) using focused ion beam (FIB)-SEM tomography, petrographic microscopy, µ-XRD, and EMPA. The shells consist of replaced calcite crystals (<2 mm) composed of ordered arrays of uniform, close-packed silica spheres 300 ± 10 nm in size. Concentric layered spheres composed of 40 nm-sized subparticles provide evidence that, at least in the final stage, particle aggregation was the major sphere growth mechanism. Silica sphere arrays in periodically changing orientations perfectly replicate polysynthetic twinning planes of calcite. FIB-SEM tomography shows that cubic closed-packed sphere arrangements preserve the twin lamellae, while the twin plane consists of a submicrometer layer of randomly ordered spheres and vacancies. To transfer crystallographic information from parent to product, the advancement of synchronized dissolution and precipitation fronts along lattice planes is essential. We assume that the volume-preserving replacement process proceeds via a face-specific dissolution-precipitation mechanism with intermediate subparticle aggregation and subsequent layer-by-layer deposition of spheres along a planar surface. Porosity created during the replacement reaction allows permanent fluid access to the propagating reaction interface. Fluid pH and ionic strength remain constant throughout the replacement process, permitting continuous silica nanoparticle formation and diffusion-limited colloid aggregation. Our study

  14. Diatomite silica nanoparticles for drug delivery

    PubMed Central

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. PACS 87.85.J81.05.Rm; 61.46. + w PMID:25024689

  15. Diatomite silica nanoparticles for drug delivery.

    PubMed

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. 87.85.J81.05.Rm; 61.46. + w.

  16. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement

    NASA Astrophysics Data System (ADS)

    Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong

    2016-12-01

    In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.

  17. Fabrication of silica nano/micro-fibers doped with one-dimensional assembly of silver nanoparticles.

    PubMed

    Ma, Zhijun; Dong, Guoping; Peng, Mingying; Tan, Dezhi; Zhang, Liaolin; Qiu, Jianrong

    2013-01-01

    Nano/micro fibers doped with metal nanocrystals are of great interest both theorectically and practically. Nevertheless, the ordered assembly of metal nanocrystals with desired patterns in nano/micro fibers still remains a big challenge, which constrains the further development of the performance of the material. In this investigation, we propose a facile strategy based on the sol-gel and coaxial electrospinning technique to fabricate silica submicron fibers incorporating ordered 1D array of silver nanoparticles. The silver nanoparticles align strictly in a head-to-tail manner in silica fibers, and their size, shape and population are conveniently controlled through tailoring the properties of the precursor solutions and the electrospinning parameters. Therefore, the plasmon property of the obtained fibers is tuned with great freedom. The fabrication method applied here holds great potential for low-cost preparation of metal/glass composite fibers for nano/micro optical applications in general.

  18. Mesoporous silica nanoparticles for treating spinal cord injury

    NASA Astrophysics Data System (ADS)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2013-02-01

    An estimated 12,000 new cases of spinal cord injury (SCI) occur every year in the United States. A small oxidative molecule responsible for secondary injury, acrolein, is an important target in SCI. Acrolein attacks essential proteins and lipids, creating a feed-forward loop of oxidative stress in both the primary injury area and the surrounding areas. A small molecule used and FDA-approved for hypertension, hydralazine, has been found to "scavenge" acrolein after injury, but its delivery and short half-life, as well as its hypertension effects, hinder its application for SCI. Nanomedical systems broaden the range of therapeutic availability and efficacy over conventional medicine. They allow for targeted delivery of therapeutic molecules to tissues of interest, reducing side effects of untargeted therapies in unwanted areas. Nanoparticles made from silica form porous networks that can carry therapeutic molecules throughout the body. To attenuate the acrolein cascade and improve therapeutic availability, we have used a one-step, modified Stober method to synthesize two types of silica nanoparticles. Both particles are "stealth-coated" with poly(ethylene) glycol (PEG) (to minimize interactions with the immune system and to increase circulation time), which is also a therapeutic agent for SCI by facilitating membrane repair. One nanoparticle type contains an amine-terminal PEG (SiNP-mPEG-Am) and the other possesses a terminal hydrazide group (SiNP-mPEG-Hz). The former allows for exploration of hydralazine delivery, loading, and controlled release. The latter group has the ability to react with acrolein, allowing the nanoparticle to scavenge directly. The nanoparticles have been characterized and are being explored using neuronal PC-12 cells in vitro, demonstrating the potential of novel silica nanoparticles for use in attenuating secondary injury after SCI.

  19. Silica nanoparticles as vehicles for therapy delivery in neurological injury

    NASA Astrophysics Data System (ADS)

    Schenk, Desiree

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. This aldehyde overwhelms the natural anti-oxidant system, reacts freely with proteins, and releases during lipid peroxidation (LPO), effectively regenerating its self. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDA-approved hypertension drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Nanoparticles made from silica provide distinct advantages. They form porous networks that can carry therapeutic molecules throughout the body. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica nanoparticles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The

  20. β-ray irradiation effects on silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Alessi, A.; Agnello, S.; Buscarino, G.; Boizot, B.; Cannas, M.; Gelardi, F. M.

    2015-04-01

    By electron paramagnetic resonance (EPR) measurements, we examine the amplitude of the signal typically due to a combination of NBOHC (Non Bridging Hole Center) and POR (Peroxy Radical) defects induced by β-ray irradiation (from 1.2 to 1200 MGy) in silica nanoparticles with diameter ranging from 7 to 20 nm. Our data indicate that the signal line-shapes recorded at different doses is quite independent from the particles sizes and from the dose. Furthermore, for each considered nanoparticles size, the concentration of defects is also almost constant with respect to dose, and it does not change significantly if measured after 2 or 9 months from the irradiation. By contrast, we observed that the concentration of NBOHC+POR decreases on increasing the specific surface, indicating that the content of the defects depends on the nanoparticles size. Such dependence can be explained by a shell model in which the detected defects are located in the inner part of the nanoparticles.

  1. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    NASA Astrophysics Data System (ADS)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  2. Magnetic properties of Co Cu nanoparticles dispersed in silica matrix

    NASA Astrophysics Data System (ADS)

    de Julián Fernández, C.; Mattei, G.; Maurizio, C.; Cattaruzza, E.; Padovani, S.; Battaglin, G.; Gonella, F.; D'Acapito, F.; Mazzoldi, P.

    2005-04-01

    The magnetic properties of Co-Cu/silica nanocomposites prepared by sequential ion implantation have been investigated. The nanostructure is formed of 4 nm average size particles dispersed in silica matrix and with mainly FCC structure. The hysteresis loops at 3 K indicate that the nanoparticles have uniaxial anisotropy with values smaller than that of single Cobalt implants. The samples are characterized by a superparamagnetic behavior with blocking temperatures that depend on the Co/Cu implanted ratio, and the blocking temperature distributions are narrower than those obtained by taking into account only the particle size distribution. Results are discussed considering size effects and that the nanoparticles are formed of a Co-Cu solid solution or only of Co.

  3. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers

    NASA Astrophysics Data System (ADS)

    Popat, Amirali; Hartono, Sandy Budi; Stahr, Frances; Liu, Jian; Qiao, Shi Zhang; Qing (Max) Lu, Gao

    2011-07-01

    Mesoporous silica nanoparticles (MSNs) provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. The creation of smart, stimuli-responsive systems that respond to subtle changes in the local cellular environment are likely to yield long term solutions to many of the current drug/gene/DNA/RNA delivery problems. In addition, MSNs have proven to be promising supports for enzyme immobilisation, enabling the enzymes to retain their activity, affording them greater potential for wide applications in biocatalysis and energy. This review provides a comprehensive summary of the advances made in the last decade and a future outlook on possible applications of MSNs as nanocontainers for storage and delivery of biomolecules. We discuss some of the important factors affecting the adsorption and release of biomolecules in MSNs and review of the cytotoxicity aspects of such nanomaterials. The review also highlights some promising work on enzyme immobilisation using mesoporous silica nanoparticles.

  4. Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers.

    PubMed

    Popat, Amirali; Hartono, Sandy Budi; Stahr, Frances; Liu, Jian; Qiao, Shi Zhang; Qing Max Lu, Gao

    2011-07-01

    Mesoporous silica nanoparticles (MSNs) provide a non-invasive and biocompatible delivery platform for a broad range of applications in therapeutics, pharmaceuticals and diagnosis. The creation of smart, stimuli-responsive systems that respond to subtle changes in the local cellular environment are likely to yield long term solutions to many of the current drug/gene/DNA/RNA delivery problems. In addition, MSNs have proven to be promising supports for enzyme immobilisation, enabling the enzymes to retain their activity, affording them greater potential for wide applications in biocatalysis and energy. This review provides a comprehensive summary of the advances made in the last decade and a future outlook on possible applications of MSNs as nanocontainers for storage and delivery of biomolecules. We discuss some of the important factors affecting the adsorption and release of biomolecules in MSNs and review of the cytotoxicity aspects of such nanomaterials. The review also highlights some promising work on enzyme immobilisation using mesoporous silica nanoparticles.

  5. Silica decorated on porous activated carbon nanofiber composites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, So Yeun; Kim, Bo-Hye

    2016-10-01

    A hybrid of silica decorated on porous activated carbon nanofibers (ACNFs) is fabricated in the form of a web via electrospinning and an activation process as an electrode material for electrochemical capacitors in an organic electrolyte. The introduction of PhSiH3 (PS) into the polyacrylonitrile (PAN) solution induces a porous ACNF structure containing silica nanoparticles (NPs) via the spontaneous sol-gel process of PS by steam in the subsequent physical activation process. These inorganic-organic hybrid composites of porous ACNF containing silica NPs show superior specific capacitance and energy density in electrochemical tests, along with good rate capability and excellent cycle life in an organic electrolyte, which is attributed to the combination of ACNF's high surface area and silica's hydrophilicity. The electrochemical performance decreases with increasing PS concentration, and this trend is consistent with the specific surface area results, which reveal the rapid formation of a double layer.

  6. Phase Transformation in Silica-Coated FePt Nanoparticles

    NASA Astrophysics Data System (ADS)

    Colak, Levent; Hadjipanayis, George

    2009-03-01

    The A1 to L10 phase transformation has been examined in silica-coated FePt particles. The nanoparticles were synthesized by reduction of platinum acetylacetonate (Pt (acac) 2) followed by thermal decomposition of iron pentacarbonyl (Fe(CO)5) in the presence of oleic acid (OA) and oleyl amine (OY) as surfactants at low temperature ^[1]. The monodispersed FePt nanoparticles, with a size of 5.8 nm were then coated with silica (SiO2) shells ^[2] . The thickness of the silica shell could be controlled between 7.5-25 nm. The coated particles were subjected to thermal processing at 800 C for various amounts of times. No significant sintering was observed up to 2 hours of annealing for the shell thickness of 15.0 nm. In some silica-coated samples an increase in the particle size was observed after annealing. Selected Area Diffraction analysis and magnetic measurements showed the development of ordered L10 structure. Coercivity values up to 15 kOe at 7K are obtained. The phase transformation is currently being examined in other samples annealed at different times and temperatures and the results will be reported.1.Levent Colak and George C. Hadjipanayis, Nanotechnology 19 (2008) 235703.2.M. Aslam, L. Fu, S. Li, Vinayak P. Dravid, Journal of Colloid and Interface Science 290 (2005) 444--449.

  7. In vitro studies of interaction of modified silica nanoparticles with different types of immunocompetent cells.

    PubMed

    Kulikova, Galina A; Parfenyuk, Elena V; Ryabinina, Irina V; Antsiferova, Yuliya S; Sotnikova, Nataliya Yu; Posiseeva, Lubov V; Eliseeva, Mariya A

    2010-11-01

    Interactions between different types of immune cells and organically-modified silica nanoparticles were studied. The silica particles functionalized with amine groups were prepared by sol-gel technique. Sheep immunoglobulin labeled with fluoresceine isothiocyanate was immobilized by adsorption onto the nanoparticles. The presence of the functional groups was confirmed by infrared absorption measurements. The level of immunocompetent cells interacting with the silica nanoparticles was estimated as the amount of fluorescence-bright cells by flow cytometry method. A low level of interaction of the peripheral blood lymphocytes with the silica nanoparticles was found. On the contrary, the macrophages are actively involved in interaction with the silica nanoparticles. The influence of different size of the silica nanoparticles and incubation time on viability and functional activity of peripheral blood lymphocytes and peritoneal macrophages were investigated.

  8. Surfactant adsorption and aggregate structure of silica nanoparticles: a versatile stratagem for the regulation of particle size and surface modification

    NASA Astrophysics Data System (ADS)

    Chaudhary, Savita; Rohilla, Deepak; Mehta, S. K.

    2014-03-01

    The area of silica nanoparticles is incredibly polygonal. Silica particles have aroused exceptional deliberation in bio-analysis due to great progress in particular arenas, for instance, biocompatibility, unique properties of modifiable pore size and organization, huge facade areas and pore volumes, manageable morphology and amendable surfaces, elevated chemical and thermal stability. Currently, silica nanoparticles participate in crucial utilities in daily trade rationales such as power storage, chemical and genetic sensors, groceries dispensation and catalysis. Herein, the size-dependent interfacial relation of anionic silica nanoparticles with twelve altered categories of cationic surfactants has been carried out in terms of the physical chemical facets of colloid and interface science. The current analysis endeavours to investigate the virtual consequences of different surfactants through the development of the objective composite materials. The nanoparticle size controls, the surface-to-volume ratio and surface bend relating to its interaction with surfactant will also be addressed in this work. More importantly, the simulated stratagem developed in this work can be lengthened to formulate core-shell nanostructures with functional nanoparticles encapsulated in silica particles, making this approach valuable and extensively pertinent for employing sophisticated materials for catalysis and drug delivery.

  9. Composite Nanoparticles for Gene Delivery

    PubMed Central

    Wang, Yuhua; Huang, Leaf

    2016-01-01

    Nanoparticle-mediated gene and siRNA delivery has been an appealing area to gene therapists when they attempt to treat the diseases by manipulating the genetic information in the target cells. However, the advances in materials science could not keep up with the demand for multifunctional nanomaterials to achieve desired delivery efficiency. Researchers have thus taken an alternative approach to incorporate various materials into single composite nanoparticle using different fabrication methods. This approach allows nanoparticles to possess defined nanostructures as well as multiple functionalities to overcome the critical extracellular and intracellular barriers to successful gene delivery. This chapter will highlight the advances of fabrication methods that have the most potential to translate nanoparticles from bench to bedside. Furthermore, a major class of composite nanoparticle–lipid-based composite nanoparticles will be classified based on the components and reviewed in details. PMID:25409605

  10. Osteoinductive silk-silica composite biomaterials for bone regeneration.

    PubMed

    Mieszawska, Aneta J; Fourligas, Nikolaos; Georgakoudi, Irene; Ouhib, Nadia M; Belton, David J; Perry, Carole C; Kaplan, David L

    2010-12-01

    Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining silk fibroin with silica particles. The influence of these composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on silk/silica films. The addition of the silica to the silk films influenced gene expression leading to upregulation of bone sialoprotein (BSP) and collagen type 1 (Col 1) osteogenic markers. Evidence for early bone formation in the form of collagen fibers and apatite nodules was obtained on the silk/silica films. Collagen fibers were closely associated with apatite deposits and overall collagen content was higher for the silica containing samples. Also, smaller sized silica particles (24 nm-2 μm) with large surface area facilitated silica biodegradation in vitro through particle dissolution, leading to ∼5-fold decrease in silica content over 10 weeks. These results indicate the suitability of silk/silica composite system towards bone regeneration, where degradation/remodeling rates of the organic and inorganic components can be controlled. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Osteoinductive silk-silica composite biomaterials for bone regeneration

    PubMed Central

    Mieszawska, Aneta J.; Fourligas, Nikolaos; Georgakoudi, Irene; Ouhib, Nadia; Belton, David J.; Perry, Carole C.; Kaplan, David L.

    2010-01-01

    Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining silk fibroin with silica particles. The influence of these composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on silk/silica films. The addition of the silica to the silk films influenced gene expression leading to upregulation of bone sialoprotein (BSP) and collagen type 1 (Col 1) osteogenic markers. Evidence for early bone formation in the form of collagen fibers and apatite nodules was obtained on the silk/silica films. Collagen fibers were closely associated with apatite deposits and overall collagen content was higher for the silica containing samples. Also, smaller sized silica particles (24 nm – 2 μm) with large surface area facilitated silica biodegradation in vitro through particle dissolution, leading to ~5 fold decrease in silica content over 10 weeks. These results indicate suitability of silk/silica composite system towards bone regeneration, where degradation/remodeling rates of the organic and inorganic components can be controlled. PMID:20817293

  12. Preparation of iron boride-silica core-shell nanoparticles with soft ferromagnetic properties.

    PubMed

    Saiyasombat, C; Petchsang, N; Tang, I M; Hodak, J H

    2008-02-27

    A one-pot aqueous chemical synthesis for silica-passivated ferromagnetic nanoparticles is presented. The average size of these particles is 84 ± 20 nm. The x-ray and electron diffraction experiments revealed that the nanoparticles are mainly composed of polycrystalline iron boride. The broad x-ray diffraction peak leads to an average crystallite size of 1.8 nm, which is much smaller than the overall size of the particles, and is consistent with the polycrystalline nature of the samples. Mössbauer spectroscopy and magnetization experiments were used to establish the room temperature magnetic properties as well as the chemical nature of the particles. Fe(2)B dominates the composition of the nanoparticles, having a hyperfine field broadly distributed in the 10-33 T range. Alpha iron, the second ferromagnetic material identified in the particles, amounts to 4.6% of the composition. Finally, a paramagnetic phase accounting for approximately 14.6% of the material of the particles was also detected. These nanoparticles contain a core with soft ferromagnetic properties surrounded by a passivating silica layer, and are suitable for magnetically targeted drug delivery and electromagnetic induction heating applications.

  13. Versatile synthesis of thiol- and amine-bifunctionalized silica nanoparticles based on the ouzo effect.

    PubMed

    Chiu, Shih-Jiuan; Wang, Su-Yuan; Chou, Hung-Chang; Liu, Ying-Ling; Hu, Teh-Min

    2014-07-08

    In this article, we report a novel, nanoprecipitation-based method for preparing silica nanoparticles with thiol and amine cofunctionalization. (3-Mercaptopropyl)trimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) were used as the organosilane precursors, which were subjected to acid-catalyzed polycondensation in an organic phase containing a water-miscible solvent (e.g., dimethyl sulfoxide). A pale colloidal solution could be immediately formed when the preincubated organic phase was directly injected into water. The initial composition ratio between MPTMS and APTMS is an important factor governing the formation of nanoparticles. Specifically, large, unstable micrometer-sized particles were formed for preparation using MPTMS as the sole silane source. In contrast, when APTMS was used alone, no particles could be formed. By reducing the fraction of APTMS (or increasing that of MPTMS) in the initial mixture of organosilanes, the formation of nanometer-sized particles occurred at a critical fraction of APTMS (i.e., 25%). Remarkably, a tiny fraction (e.g., 1%) of APTMS was sufficient to produce stable nanoparticles with a hydrodynamic diameter of about 200 nm. Other factors that would also affect particle formation were determined. Moreover, an interesting temperature effect on particle formation was observed. The TEM micrographs show spherical nanospheres with mean sizes of 130-150 nm in diameter. The solid-state (29)Si NMR spectra demonstrate that the hybrid silica materials contain fully and partially condensed silicon structures. The bifunctionalized silica nanoparticles have positive zeta potentials whose magnitudes are positively correlated with the amount of APTMS. The total thiol content, however, is negatively correlated with the amount of APTMS. The cationic nanoparticles can bind an antisense oligonucleotide in a composition-dependent manner.

  14. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    SciTech Connect

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  15. Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites

    SciTech Connect

    Zheng Chan; Du Yuhong; Feng Miao; Zhan Hongbing

    2008-10-06

    Nanostructured Ag in shapes of nanoplate, nanowire, and nanoparticle, as well as their silica gel glass composites have been prepared and characterized. Nonlinear optical (NLO) properties were measured at 532 and 1064 nm using open aperture z-scan technique and studied from the view of shape effect. NLO behaviors of the nanostructured Ag are found to be shape dependent in suspensions at both the investigated wavelengths, although they originate differently. Comparing to the mother suspensions, the Ag/silica gel glass nanocomposites present rather dissimilar NLO behaviors, which is quite interesting for further studies.

  16. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    SciTech Connect

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and multi

  17. Structural and Magnetic Properties of Gold and Silica Doubly Coated gamma-Fe2O3 Nanoparticles

    SciTech Connect

    Park,K.; Liang, G.; Ji, X.; Luo, Z.; Li, C.; Croft, M.; Markert, J.

    2007-01-01

    Extensive structural and magnetic characterization measurements were carried out on gold and silica doubly coated ?-Fe2O3 nanoparticles, which were recently demonstrated to have an efficient photothermal effect and high transverse relaxivities for MRI applications. Powder X-ray diffraction and X-ray absorption spectroscopy show the phase of the uncoated and coated nanoparticles to be that of the ?-Fe2O3 structure. The sizes, structure, and chemical compositions of the nanoparticles were determined by transmission electron microscopy. The magnetization results indicate that coating of the iron oxide nanoparticles by gold/silica decreases the blocking temperature from 160 to 80 K. Such a decrease can be well-explained by spin disorder, causing reduction of the effective volume of the ?-Fe2O3 core. Moreover, it was found that in the temperature (T) range between 100 K and room temperature, the gold/silica coating can cause a slight magnetic change in the ?-Fe2O3 cores from superparamagnetic to almost superparamagnetic. Finally, it was found that the coercivity for both the uncoated and the coated nanoparticles decreases almost linearly with T1/2 with the former decreasing faster than the latter, and this coercivity result confirms that the blocking temperature is decreased by gold/silica coating. These results are valuable for evaluating the future applications of this class of multifunctional, hybrid magnetic nanoparticles in biomedicine.

  18. Electrical resistivity of assembled transparent inorganic oxide nanoparticle thin layers: influence of silica, insulating impurities, and surfactant layer thickness.

    PubMed

    Bubenhofer, Stephanie B; Schumacher, Christoph M; Koehler, Fabian M; Luechinger, Norman A; Sotiriou, Georgios A; Grass, Robert N; Stark, Wendelin J

    2012-05-01

    The electrical properties of transparent, conductive layers prepared from nanoparticle dispersions of doped oxides are highly sensitive to impurities. Production of cost-effective thin conducting films for consumer electronics often employs wet processing such as spin and/or dip coating of surfactant-stabilized nanoparticle dispersions. This inherently results in entrainment of organic and inorganic impurities into the conducting layer leading to largely varying electrical conductivity. Therefore, this study provides a systematic investigation on the effect of insulating surfactants, small organic molecules and silica in terms of pressure dependent electrical resistivity as a result of different core/shell structures (layer thickness). Application of high temperature flame synthesis gives access to antimony-doped tin oxide (ATO) nanoparticles with high purity. This well-defined starting material was then subjected to representative film preparation processes using organic additives. In addition ATO nanoparticles were prepared with a homogeneous inorganic silica layer (silica layer thickness from 0.7 to 2 nm). Testing both organic and inorganic shell materials for the electronic transport through the nanoparticle composite allowed a systematic study on the influence of surface adsorbates (e.g., organic, insulating materials on the conducting nanoparticle's surface) in comparison to well-known insulators such as silica. Insulating impurities or shells revealed a dominant influence of a tunneling effect on the overall layer resistance. Mechanical relaxation phenomena were found for 2 nm insulating shells for both large polymer surfactants and (inorganic) SiO(2) shells.

  19. A study of water chemistry extends the benefits of using silica-based nanoparticles on enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Torsæter, Ole

    2016-01-01

    Chemistry of the injected water has been investigated as an important parameter to improve/enhance oil recovery (IOR/EOR). Numerous extensive experiments have observed that water chemistry, such as ionic composition and salinity, can be modified for IOR/EOR purposes. However, the possible oil displacement mechanism remains debatable. Nanoparticle recently becomes more popular that have shown a great potential for IOR/EOR purposes in lab-scale, where in most experiments, water-based fluid were used as dispersed fluid. As yet, there has been no discussion in the literature on the study of water chemistry on enhanced oil recovery using silica-based nanoparticles. A broad range of laboratory studies involving rock, nanoparticles and fluid characterization; fluid-fluid and fluid-rock interactions; surface conductivity measurement; coreflood experiment; injection strategy formulation; filtration mechanism and contact angle measurement are conducted to investigate the impact of water chemistry, such as water salinity and ionic composition including hardness cations, on the performance of silica-based nanoparticles in IOR/EOR process and reveal possible displacement mechanism. The experimental results demonstrated that water salinity and ionic composition significantly impacted oil recovery using hydrophilic silica-based nanoparticles and that the oil recovery increased with the salinity. The primary findings from this study are that the water salinity, the ionic composition and the injection strategy are important parameters to be considered in Nano-EOR.

  20. Biocide silver nanoparticles in two different silica-based coating

    NASA Astrophysics Data System (ADS)

    Babapour, A.; Yang, B.; Bahang, S.; Cao, W.

    2012-09-01

    Silica-based coatings containing biocide silver nanoparticles have been synthesized using low temperature sol-gel method. Two different silane based matrices, phenyltriethoxysilane (PhTEOS) and tetraethyl orthosilicate (TEOS), were selected as precursor to prepare silica-based film. The films were analyzed by using UV-visible spectrophotometry, atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their optical, surface morphological as well as structural properties. Optical properties of nanosilver in these two matrices showed that the peak absorption observed at different wavelength, which is due to the fact that optical absorption of nanoparticles is affected by the surrounding medium. It is also found that the silver absorption has higher intensity in PhTEOS than in TEOS matrix, indicating higher concentration of silver nanoparticles being loaded into the coating. To study silver release property, the films were immersed in water for 12 and 20 days. AFM and SEM analyzes present that higher concentration of silver nanoparticles and smaller particle sizes were synthesis in PhTEOS coating and consequently, more particles remains on the surfaces after 20 days which leads to longer antibacterial activity of PhTEOS coating.

  1. [Subcellular distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells].

    PubMed

    Zhao, Guangqiang; Huang, Yunchao; Li, Guangjian; Li, Sen; Zhou, Yongchun; Lei, Yujie; Chen, Xiaobo; Yang, Kaiyun; Chen, Ying; Yang, Kun

    2013-03-01

    Silicon nanoparticles are widely used in daily life. Therefore, they attract increased attention because of their potential biotoxicity to the lungs when inhaled. The aims of this study are to explore the organism distribution and genotoxicity of silica nanoparticles in human bronchial epithelial cells (BEAS-2B). The biodistribution of silica with different particle sizes in human bronchial epithelial cells was observed by transmission electron microscopy (TEM). DNA damage was detected by single-cell gel electrophoresis (comet assay). TEM revealed that SiO₂ nanoparticles with different sizes can be uptaken by cells and be localized in the cytoplasm and the nucleus. Compared with micro-silica, nano-silica in BEAS-2B cells can inflict more severe DNA damage (P<0.05). The particle size of silica nanoparticles can be used to determine their distribution in biological cells. Compared with micro-silica, nano-silica has higher genotoxicity.

  2. Effects of silica content on the formation and morphology of ENR/PVC/Silica composites beads

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurul Amni; Tahiruddin, Nordiana Suhada Mohmad; Othaman, Rizafizah

    2017-05-01

    The effects of silica content in preparing silica-filled epoxidized natural rubber/polyvinyl chloride (ENR/PVC) beads were investigated. ENR/PVC matrix blend used was of composition 60% (ENR50) and 40% (PVC) by weight. The matrix blend was then dissolved in tetrahydrofuran (THF) by sol-gel technique prior to addition of silica fume as filler at varying amounts up to 25 wt% of the matrix mass. The composites beads were formed via phase inversion method by dropping the polymeric solution into a non-solvent. The size and shape were improved by adding in an increased amount of silica. Morphological studies showed distinct features of beads' surface in terms of homogeneity of silica particle distribution and presence of agglomerations and voids within the ENR/PVC matrix. Formation of silica network was apparent on the bead at 25 wt% silica content. The bead formation was found to be significantly affected by the silica loading in the ENR/PVC solution.

  3. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhakta, Snehasis; Dixit, Chandra K.; Bist, Itti; Abdel Jalil, Karim; Suib, Steven L.; Rusling, James F.

    2016-07-01

    Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ∼60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ∼3-fold higher silane can be used as efficient probes for biosensor applications.

  4. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles

    PubMed Central

    Bhakta, Snehasis; Dixit, Chandra K; Bist, Itti; Jalil, Karim Abdel; Suib, Steven L; Rusling, James F

    2016-01-01

    Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ~60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ~3-fold higher silane can be used as efficient probes for biosensor applications. PMID:27606068

  5. Fouling behavior of silica nanoparticle-surfactant mixtures during constant flux dead-end ultrafiltration.

    PubMed

    Trzaskus, Krzysztof W; Lee, Sooi Li; de Vos, Wiebe M; Kemperman, Antoine; Nijmeijer, Kitty

    2017-11-15

    The increasing use of engineered nanoparticles in customer products results in their accumulation in water sources. In this experimental study, we investigated the role of surfactant type (cationic, anionic and non-ionic) and concentration on fouling development, nanoparticle rejection and fouling irreversibility during dead-end ultrafiltration of model silica nanoparticles. Our work demonstrates that the type of surfactant influences the nanoparticle stability, which in turn is responsible for differences in fouling behavior of the nanoparticles. Moreover, the surfactant itself interacts with the PES-PVP membrane and contributes to the fouling as well. We have shown that anionic SDS (sodium dodecylsulfate) does not interact extensively with the negatively charged silica nanoparticles and does not change significantly the surface charge and size of these nanoparticles. Adsorption of the cationic CTAB (cetyltrimethylammonium bromide) onto the silica nanoparticles causes charge transition and nanoparticle aggregation, whereas non-ionic TX-100 (Triton X-100) neutralizes the surface charge of the nanoparticles but does not change significantly the nanoparticle size. The most severe fouling development was observed for the silica nanoparticle - TX-100 system, where nanoparticles in the filtration cake formed exhibited the lowest repulsive interactions. Rejection of the nanoparticles was also highest for the mixture containing silica nanoparticles and TX-100. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Synthesis and characterization of polyaniline-silica composites: Raspberry vs core-shell structures. Where do we stand?

    PubMed

    Roosz, Nicolas; Euvard, Myriam; Lakard, Boris; Buron, Cédric C; Martin, Nicolas; Viau, Lydie

    2017-09-15

    The synthesis of polyaniline-silica composites has been reinvestigated in view of the opposing results found in the literature. Firstly, we synthesized silica particles with tunable size using the Stöber process. These silica particles have been fully characterized before being used as solid support for the polymerization of aniline. This polymerization was performed according to a published procedure where the pH of the reaction mixture was below the pKa of aniline but at a value where the silica particles surface was still slightly negatively charged. The objective of this procedure was to favor electrostatic interactions between anilinium cations and the silica surface to lead to the formation of silica-polyaniline core-shell particles. Several sets of nanocomposites were prepared under different experimental conditions (oxidant/aniline ratio, silica concentration, temperature, silica particles diameters). The study evidenced that under all the conditions used the formation of core-shell nanoparticles is impossible. However, using different particle sizes, noticeable morphological differences were observed. The use of large silica particles led to the formation of non-uniform polyaniline-silica composites whereas the use of smaller particles always led to raspberry-like morphology as reported by other groups in highly acidic media. The difference in morphology led to different electrical properties with electrical conductivities measured at room temperature ranging from 1.6×10(-3) to 2.5×10(-5)S cm(-1). Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Surfactant anchoring and aggregate structure at silica nanoparticles: a persuasive facade for the adsorption of azo dye.

    PubMed

    Chaudhary, Savita; Sood, Aastha; Mehta, S K

    2014-09-01

    Nanotechnology's aptitude to silhouette matter at the scale of the nanometer has unlocked the flap to new inventions of applications in material science and nanomedicine. Engineered silica nanoparticles are key actor of this strategy. The amphitheatre of silica nanoparticles is inexplicably bilateral. Silica particles play essential function in everyday commercial purposes for instance energy storage, chemical and biological sensors, food processing and catalysis. One of the most appealing applications to emerge in the recent years is the use of silica particles for cleaning up contaminants in groundwater, soil and sediments. Herein this work, surfactant modified silica nanoparticles with unique surface and pore properties as well as high surface areas have been extensively investigated as an alternative for the dye removal. The physical and chemical characterizations of adsorbent have been studied using FTIR and scanning electron microscopy. The present investigation aims to explore the comparative effect of different surfactants during the formation of the target composite materials. The effects of various parameters like pH, adsorbent doses, dye concentration, addition of salt have also been investigated. These findings indicate that the nano silica particles are effective materials for dye removal and can be used to alleviate environmental problems.

  8. Tunable Pickering Emulsions with Environmentally Responsive Hairy Silica Nanoparticles.

    PubMed

    Liu, Min; Chen, Xiaoli; Yang, Zongpeng; Xu, Zhou; Hong, Liangzhi; Ngai, To

    2016-11-30

    Surface modification of the nanoparticles using surface anchoring of amphiphilic polymers offers considerable scope for the design of a wide range of brush-coated hybrid nanoparticles with tunable surface wettability that may serve as new class of efficient Pickering emulsifiers. In the present study, we prepared mixed polymer brush-coated nanoparticles by grafting ABC miktoarm star terpolymers consisting of poly(ethylene glycol), polystyrene, and poly[(3-triisopropyloxysilyl)propyl methacrylate] (μ-PEG-b-PS-b-PIPSMA) on the surface of silica nanoparticles. The wettability of the as-prepared nanoparticles can be precisely tuned by a change of solvent or host-guest complexation. (1)H NMR result confirmed that such wettability change is due to the reorganization of the polymer chain at the grafted layer. We show that this behavior can be used for stabilization and switching between water-in-oil (W/O) and oil-in-water (O/W) emulsions. For hairy particles initially dispersed in oil, W/O emulsions were always obtained with collapsed PEG chains and mobile PS chains at the grafted layer. However, initially dispersing the hairy particles in water resulted in O/W emulsions with collapsed PS chains and mobile PEG chains. When a good solvent for both PS and PEG blocks such as toluene was used, W/O emulsions were always obtained no matter where the hairy particles were dispersed. The wettability of the mixed polymer brush-coated silica particles can also be tuned by host-guest complexation between PEG block and α-CD. More importantly, our result showed that surprisingly the resultant mixed brush-coated hairy nanoparticles can be employed for the one-step production of O/W/O multiple emulsions that are not attainable from conventional Pickering emulsifiers. The functionalized hairy silica nanoparticles at the oil-water interface can be further linked together utilizing poly(acrylic acid) as the reversible linker to form supramolecular colloidosomes, which show p

  9. Synthesis and Characterization of Bionanoparticle-Silica Composites and Mesoporous Silica with Large Pores

    SciTech Connect

    Niu, Z.; Yang, L.; Kabisatpathy, S.; He, J.; Lee, A.; Ron, J.; Sikha, G.; Popov, B.N.; Emrick, T.; Russell, T. P.; Wang. Q.

    2009-03-24

    A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N{sub 2} adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica, was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.

  10. Graphene-silica Composite Thin Films as Transparent Conductors

    SciTech Connect

    Watcharotone,S.; Dikin, D.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G.; Evmenenko, G.; Wu, S.; Chen, S.; et al.

    2007-01-01

    Transparent and electrically conductive composite silica films were fabricated on glass and hydrophilic SiO{sub x}/silicon substrates by incorporation of individual graphene oxide sheets into silica sols followed by spin-coating, chemical reduction, and thermal curing. The resulting films were characterized by SEM, AFM, TEM, low-angle X-ray reflectivity, XPS, UV-vis spectroscopy, and electrical conductivity measurements. The electrical conductivity of the films compared favorably to those of composite thin films of carbon nanotubes in silica.

  11. Copolymerized and bonded silica nanoparticles as labels and pseudostationary phase in bioanalytical applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged M.; Abdelwahab, Walid; Chapman, Gala

    2017-02-01

    Silica nanoparticles have been increasingly used in developing bioanalytical, biomedical and in many other applications. Silica nanoparticles can easily be synthesized and with the advent of wide availability of modified TEOS reactive analogues only the researcher imagination is the limit of preparing silica nanoparticles that contain different molecules that are either copolymerized inside of the silica nanoparticle or chemically attached (bonded) to the silica nanoparticle surface. Relatively non-porous silica nanoparticles can contain copolymerized dyes for the creation of bright fluorescence labels while the surface of these silica nanoparticles can be bonded with reactive moieties that are suitable for covalently labeling the molecule of interest. Also the surface bonded moieties can serve other purposes, e.g., molecular recognition either on a non-fluorescent or fluorescent silica nanoparticle. As far as the fluorescent nanoparticles development concerns near-infrared (NIR) absorbing carbocyanine dyes have been increasingly used as they can be useful for developing bioanalytical, biomedical methods and in many other applications. Carbocyanines are preferred as they are relatively easy to synthesize and can be designed to achieve particular spectroscopic properties. For example either copolymerized or surface bound dyes can contain appropriate functional moieties absorption and fluorescence properties change when it is complexed to metal ions, to detect pH changes, bind to biological molecules, etc. Fluorescence intensity of carbocyanines significantly increases by enclosing several dye molecules in a single silica nanoparticle due to shielding however self quenching may become a problem at high dye concentrations in confined spaces. Large Stokes' shift dyes can significantly decrease this problem. This can be achieved by substituting meso position halogens in the NIR fluorescent carbocyanines with a linker containing amino moiety which can also serve as

  12. Influence of a silica interlayer on the structural and magnetic properties of sol-gel TiO₂-coated magnetic nanoparticles.

    PubMed

    De Matteis, Laura; Fernández-Pacheco, Rodrigo; Custardoy, Laura; García-Martín, María L; de la Fuente, Jesús M; Marquina, Clara; Ibarra, M Ricardo

    2014-05-13

    Superparamagnetic iron oxide nanoparticles coated with titanium dioxide have been synthesized, growing the titanium dioxide directly either on the magnetic nuclei or on magnetic nanoparticles previously coated with a semihydrophobic silica layer. Both coatings have been obtained by sol-gel. Since it is well-known that the existence of the intermediate silica layer influences the physicochemical properties of the material, a detailed characterization of both types of coatings has been carried out. The morphology, structure, and composition of the synthesized nanomatrices have been locally analyzed with subangstrom spatial resolution, by means of aberration corrected transmission electron microscopy (HRTEM and STEM-HAADF). Besides magnetization measurements, proton relaxivity experiments have been also performed on water suspensions of the as-synthesized nanoparticles to investigate the role of the silica interlayer in the relaxometric properties. The silica interlayer leads to nanoparticles with much higher water stability and to higher relaxivity of the suspensions.

  13. Monodisperse Mesoporous Carbon Nanoparticles from Polymer/Silica Self-Aggregates and Their Electrocatalytic Activities.

    PubMed

    Huang, Xiaoxi; Zhou, Li-Jing; Voiry, Damien; Chhowalla, Manish; Zou, Xiaoxin; Asefa, Tewodros

    2016-07-27

    In our quest to make various chemical processes sustainable, the development of facile synthetic routes and inexpensive catalysts can play a central role. Herein we report the synthesis of monodisperse, polyaniline (PANI)-derived mesoporous carbon nanoparticles (PAMCs) that can serve as efficient metal-free electrocatalysts for the hydrogen peroxide reduction reaction (HPRR) as well as the oxygen reduction reaction (ORR) in fuel cells. The materials are synthesized by polymerization of aniline with the aid of (NH4)2S2O8 as oxidant and colloidal silica nanoparticles as templates, then carbonization of the resulting PANI/silica composite material at different high temperatures, and finally removal of the silica templates from the carbonized products. The PAMC materials that are synthesized under optimized synthetic conditions possess monodisperse mesoporous carbon nanoparticles with an average size of 128 ± 12 nm and an average pore size of ca. 12 nm. Compared with Co3O4, a commonly used electrocatalyst for HPRR, these materials show much better catalytic activity for this reaction. In addition, unlike Co3O4, the PAMCs remain relatively stable during the reaction, under both basic and acidic conditions. The nanoparticles also show good electrocatalytic activity toward ORR. Based on the experimental results, PAMCs' excellent electrocatalytic activity is attributed partly to their heteroatom dopants and/or intrinsic defect sites created by vacancies in their structures and partly to their high porosity and surface area. The reported synthetic method is equally applicable to other polymeric precursors (e.g., polypyrrole (PPY)), which also produces monodisperse, mesoporous carbon nanoparticles in the same way. The resulting materials are potentially useful not only for electrocatalysis of HPRR and ORR in fuel cells but also for other applications where high surface area, small sized, nanostructured carbon materials are generally useful for (e.g., adsorption

  14. Reversible assembly of tunable nanoporous materials from "hairy" silica nanoparticles.

    PubMed

    Khabibullin, Amir; Fullwood, Emily; Kolbay, Patrick; Zharov, Ilya

    2014-10-08

    Membranes with 1-100 nm nanopores are widely used in water purification and in biotechnology, but are prone to blockage and fouling. Reversibly assembled nanoporous membranes may be advantageous due to recyclability, cleaning, and retentate recovery, as well as the ability to tune the pore size. We report the preparation and characterization of size-selective nanoporous membranes with controlled thickness, area, and pore size via reversible assembly of polymer brush-grafted ("hairy") silica nanoparticles. We describe membranes reversibly assembled from silica particles grafted with (1) polymer brushes carrying acidic and basic groups, and (2) polymer brushes carrying neutral groups. The former are stable in most organic solvents and easily disassemble in water, whereas the latter are water-stable and disassemble in organic solvents.

  15. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    SciTech Connect

    Munaweera, Imalka; Balkus, Kenneth J. Jr. E-mail: Anthony.DiPasqua@unthsc.edu; Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J. E-mail: Anthony.DiPasqua@unthsc.edu

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, {sup 1}H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  16. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    NASA Astrophysics Data System (ADS)

    Munaweera, Imalka; Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J.; Balkus, Kenneth J., Jr.

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, 1H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  17. Core-Shell-structured Dendritic Mesoporous Silica Nanoparticles for Combined Photodynamic Therapy and Antibody Delivery.

    PubMed

    Abbaraju, Prasanna Lakshmi; Yang, Yannan; Yu, Meihua; Fu, Jianye; Xu, Chun; Yu, Chengzhong

    2017-07-04

    Multifunctional core-shell-structured dendritic mesoporous silica nanoparticles with a fullerene-doped silica core, a dendritic silica shell and large pores have been prepared. The combination of photodynamic therapy and antibody therapeutics significantly inhibits the cancer cell growth by effectively reducing the level of anti-apoptotic proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pore fabrication in various silica-based nanoparticles by controlled etching.

    PubMed

    Zhao, Lan; Zhao, Yunfeng; Han, Yu

    2010-07-20

    A novel method based on controlled etching was developed to fabricate nanopores on preformed silica nanoparticles (<100 nm in diameter). The obtained monodisperse nanoporous particles could form highly stable homogeneous colloidal solution. Fluorescent silica nanoparticles and magnetic silica-coated gamma-Fe(2)O(3) nanoparticles were investigated as examples to illustrate that this strategy could be generally applied to various silica-based functional nanoparticles. The results indicated that this method was effective for generating pores on these nanoparticles without altering their original functionalities. The obtained multifunctional nanoparticles would be useful for many biological and biomedical applications. These porous nanoparticles could also serve as building blocks to fabricate three-dimensionally periodic structures that have the potential to be used as photonic crystals.

  19. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants

    NASA Astrophysics Data System (ADS)

    Hussain, Hashmath I.; Yi, Zhifeng; Rookes, James E.; Kong, Lingxue X.; Cahill, David M.

    2013-06-01

    We report the uptake by wheat, lupin and Arabidopsis of mesoporous silica nanoparticles functionalised with amine cross-linked fluorescein isothiocyanate (MSN-APTES-FITC). The preparation of these particles at room temperature enabled the synthesis of 20 nm particles that contained a network of interconnected pores around 2 nm in diameter. The uptake and distribution of these nanoparticles were examined during seed germination, in roots of plants grown in a hydroponic system and in whole leaves and roots of plants via vacuum infiltration. The nanoparticles did not affect seed germination in lupin and there was no phytotoxicity. Following germination of wheat and lupin grown in a nutrient solution containing nanoparticles, they were found within cells and cell walls of the emerging root and in the vascular transport elements, the xylem, and in other associated cells. In leaves and roots of Arabidopsis the nanoparticles were found, following vacuum infiltration of whole seedlings, to be taken up by the entire leaf and they were principally found in the intercellular spaces of the mesophyll but also throughout much of the root system. We propose that MSNs could be used as a novel delivery system for small molecules in plants.

  20. Fluorescent single walled carbon nanotube/silica composite materials.

    PubMed

    Satishkumar, B C; Doorn, Stephen K; Baker, Gary A; Dattelbaum, Andrew M

    2008-11-25

    We present a new approach for the preparation of single walled carbon nanotube silica composite materials that retain the intrinsic fluorescence characteristics of the encapsulated nanotubes. Incorporation of isolated nanotubes into optically transparent matrices, such as sol-gel prepared silica, to take advantage of their near-infrared emission properties for applications like sensing has been a challenging task. In general, the alcohol solvents and acidic conditions required for typical sol-gel preparations disrupt the nanotube/surfactant assembly and cause the isolated nanotubes to aggregate leading to degradation of their fluorescence properties. To overcome these issues, we have used a sugar alcohol modified silica precursor molecule, diglycerylsilane, for encapsulation of nanotubes in silica under aqueous conditions and at neutral pH. The silica/nanotube composite materials have been prepared as monoliths, at least 5 mm thick, or as films (<1 mm) and were characterized using fluorescence and Raman spectroscopy. In the present work we have investigated the fluorescence characteristics of the silica encapsulated carbon nanotubes by means of redox doping studies as well as demonstrated their potential for biosensing applications. Such nanotube/silica composite systems may allow for new sensing and imaging applications that are not currently achievable.

  1. Aggregation and Gelation of Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Cao, Xiujuan

    The gelation mechanism was explored in a comprehensive way both experimentally and numerically. The gelation dynamics of a sol of colloidal silica of approximately 7 nm radius particles is studied using a combination of light scattering and rheometry. By changing the ionic strength (by addition of a salt solution resulting in different ultimate molarities) of the mixture, a stable sol can be destabilized, leading to aggregation and later gelation. The gel time tgel can be varied from hours to weeks, indicating a reaction-limited aggregation process. Static light scattering is used to extract the fractal dimension Df of the aggregates, which is found to be approximately 2. The evolution of cluster size is probed by dynamic light scattering, and follows an exponential growth. Rheometry is used to assess the gelation time and further development of the network strength after gelation. The elastic modulus (G') is found to scale as G' ˜ φ3:3, where φ is the silica particle volume fraction. It was observed that the gel time (after salt solution addition) depends on both the particle volume fraction and salt concentration, showing a divergence at low volume fraction or low salt concentration. For a single solid fraction, data for the cluster hydrodynamic radius, normalized by the single particle radius, from experiments with a wide range of gel times can be collapsed onto a master curve when the time after the salt addition, t, is scaled as t/tgel; a similar collapse of viscosity and the linear viscoelastic data after gelation can be obtained using the same scaling of time. Salt concentration affects the gel time but not the strength of the gel network, thus allowing very accurate prediction of network formation times and mechanical properties. The effects of both hydrodynamic and repulsive forces on the rate of aggregation, and on the microstructure and mechanical properties of particle aggregates, are investigated by Brownian dynamics (BD) and Stokesian Dynamics (SD

  2. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles.

    PubMed

    Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu

    2014-08-13

    In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.

  3. The infrared fingerprint signals of silica nanoparticles and its application in immunoassay

    NASA Astrophysics Data System (ADS)

    Ding, Yadan; Chu, Xueying; Hong, Xia; Zou, Peng; Liu, Yichun

    2012-01-01

    Infrared absorption properties of silica nanoparticles were studied. The transverse optical and the longitudinal optical phonon modes from the silica were proved to be the characteristic spectroscopic fingerprint signals. Based on this, a sandwich-structured immunoassay was performed, and the detection of the analyte (human IgG) was achieved by using biofunctional silica nanoparticles as infrared probes. The immunoassay based on Fourier transform infrared reflection absorption spectroscopy of silica nanoparticles shows significant value for potential applications in many areas, such as biomedicine, food safety, and waste treatment.

  4. Antibacterial activity of N-halamine decorated mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Jiarong; Zhang, Yu; Zhao, Yanbao; Zou, Xueyan

    2017-09-01

    N-halamine decorated mesoporous silica nanoparticles (mSiO2/halamine NPs) were prepared by coating mSiO2 NPs with poly (1-allylhydantoin-co-methyl methacrylate) (AH-co-MMA) by the aid of the radical polymerization, followed by chlorination treatment. The sterilizing effect on the bacterial strain is investigated by incubating Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Results indicated that the mSiO2/halamine NPs had excellent antibacterial activity and no significant change occurred in antibacterial efficiency after five recycle experiments.

  5. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption

    NASA Astrophysics Data System (ADS)

    Ma, Zhiya; Guan, Yueping; Liu, Huizhou

    2006-06-01

    Superparamagnetic silica-coated magnetite (Fe 3O 4) nanoparticles with immobilized metal affinity ligands were prepared for protein adsorption. First, magnetite nanoparticles were synthesized by co-precipitating Fe 2+ and Fe 3+ in an ammonia solution. Then silica was coated on the Fe 3O 4 nanoparticles using a sol-gel method to obtain magnetic silica nanoparticles. The condensation product of 3-Glycidoxypropyltrimethoxysilane (GLYMO) and iminodiacetic acid (IDA) was immobilized on them and after charged with Cu 2+, the magnetic silica nanoparticles with immobilized Cu 2+ were applied for the adsorption of bovine serum albumin (BSA). Scanning electron micrograph showed that the magnetic silica nanoparticles with an average size of 190 nm were well dispersed without aggregation. X-ray diffraction showed the spinel structure for the magnetite particles coated with silica. Magnetic measurement revealed the magnetic silica nanoparticles were superparamagnetic and the saturation magnetization was about 15.0 emu/g. Protein adsorption results showed that the nanoparticles had high adsorption capacity for BSA (73 mg/g) and low nonspecific adsorption. The regeneration of these nanoparticles was also studied.

  6. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles

    PubMed Central

    Galagudza, Michael; Korolev, Dmitry; Postnov, Viktor; Naumisheva, Elena; Grigorova, Yulia; Uskov, Ivan; Shlyakhto, Eugene

    2012-01-01

    Pharmacological agents suggested for infarct size limitation have serious side effects when used at cardioprotective doses which hinders their translation into clinical practice. The solution to the problem might be direct delivery of cardioprotective drugs into ischemic-reperfused myocardium. In this study, we explored the potential of silica nanoparticles for passive delivery of adenosine, a prototype cardioprotective agent, into ischemic-reperfused heart tissue. In addition, the biodegradation of silica nanoparticles was studied both in vitro and in vivo. Immobilization of adenosine on the surface of silica nanoparticles resulted in enhancement of adenosine-mediated infarct size limitation in the rat model. Furthermore, the hypotensive effect of adenosine was attenuated after its adsorption on silica nanoparticles. We conclude that silica nanoparticles are biocompatible materials that might potentially be used as carriers for heart-targeted drug delivery. PMID:22619519

  7. Sculpting Silica Colloids by Etching Particles with Nonuniform Compositions

    PubMed Central

    2017-01-01

    We present the synthesis of new shapes of colloidal silica particles by manipulating their chemical composition and subsequent etching. Segments of silica rods, prepared by the ammonia catalyzed hydrolysis and condensation of tetraethylorthosilicate (TEOS) from polyvinylpyrrolidone loaded water droplets, were grown under different conditions. Upon decreasing temperature, delaying ethanol addition, or increasing monomer concentration, the rate of dissolution of the silica segment subsequently formed decreased. A watery solution of NaOH (∼mM) selectively etched these segments. Further tuning the conditions resulted in rod–cone or cone–cone shapes. Deliberately modulating the composition along the particle’s length by delayed addition of (3-aminopropyl)-triethoxysilane (APTES) also allowed us to change the composition stepwise. The faster etching of this coupling agent in neutral conditions or HF afforded an even larger variety of particle morphologies while in addition changing the chemical functionality. A comparable step in composition was applied to silica spheres. Biamine functional groups used in a similar way as APTES caused a charge inversion during the growth, causing dumbbells and higher order aggregates to form. These particles etched more slowly at the neck, resulting in a biconcave silica ring sandwiched between two silica spheres, which could be separated by specifically etching the functionalized layer using HF. PMID:28413261

  8. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles*

    PubMed Central

    Schütz, Irene; Lopez-Hernandez, Tania; Gao, Qi; Puchkov, Dmytro; Jabs, Sabrina; Nordmeyer, Daniel; Schmudde, Madlen; Rühl, Eckart; Graf, Christina M.; Haucke, Volker

    2016-01-01

    Nanoparticles (NPs) are widely used as components of drugs or cosmetics and hold great promise for biomedicine, yet their effects on cell physiology remain poorly understood. Here we demonstrate that clathrin-independent dynamin 2-mediated caveolar uptake of surface-functionalized silica nanoparticles (SiNPs) impairs cell viability due to lysosomal dysfunction. We show that internalized SiNPs accumulate in lysosomes resulting in inhibition of autophagy-mediated protein turnover and impaired degradation of internalized epidermal growth factor, whereas endosomal recycling proceeds unperturbed. This phenotype is caused by perturbed delivery of cargo via autophagosomes and late endosomes to SiNP-filled cathepsin B/L-containing lysosomes rather than elevated lysosomal pH or altered mTOR activity. Given the importance of autophagy and lysosomal protein degradation for cellular proteostasis and clearance of aggregated proteins, these results raise the question of beneficial use of NPs in biomedicine and beyond. PMID:27226546

  9. Visible-ultraviolet vibronic emission of silica nanoparticles.

    PubMed

    Spallino, Luisa; Vaccaro, Lavinia; Sciortino, Luisa; Agnello, Simonpietro; Buscarino, Gianpiero; Cannas, Marco; Gelardi, Franco Mario

    2014-10-28

    We report the study of the visible-ultraviolet emission properties and the structural features of silica nanoparticles prepared through a laboratory sol-gel technique. Atomic force microscopy, Raman and Infrared investigations highlighted the 10 nm size, purity and porosity of the obtained nanoparticles. By using time resolved photoluminescence techniques in air and in a vacuum we were able to single out two contributions in the visible emission: the first, stable in both atmospheres, is a typical fast blue band centered around 2.8 eV; the second, only observed in a vacuum around the 3.0-3.5 eV range, is a vibrational progression with two phonon modes at 1370 cm(-1) and 360 cm(-1). By fully characterizing the spectroscopic features of this structured emission, we determine its vibronic properties and clarify the different origins with respect to the blue luminescent defect.

  10. Synthesis and properties of water-soluble core-shell-shell silica-CdSe/CdS-silica nanoparticles.

    PubMed

    Lin, Yang-Wei; Liu, Chi-Wei; Chang, Huan-Tsung

    2006-04-01

    This paper describes the synthesis of highly water-soluble and fluorescent core-shell-shell silica-CdSe/CdS-silica nanoparticles (CSS silica-QDs-silica NPs). We used cadmium nitrate and 1,1-dimethyl-2-selenourea precursors to synthesize CdSe quantum dots (QDs) in aqueous solution under simultaneous illumination with a diode-pumped solid state green laser and a Xe-Hg lamp. After passivation of the CdSe QDs with CdS, the CdSe/CdS QDs were then conjugated covalently to (3-mercaptopropyl)trimethoxysilane (MPS); we call these nanoparticles "MPS-QDs". We mixed the MPS-QDs with tetraethoxysilane (TEOS), ethanol, and NH3. By controlling the concentrations of the reagents, the stirring speed, and the reaction time, we synthesized CSS silica-QDs-silica NPs having sizes ranging from 75 to 190 nm. The incubation time for preparing the MPS-QDs and their concentrations are important parameters in determining the morphologies of the CSS silica-QDs-silica NPs. When we mixed 50 nM MPS-QDs, 1.1 mM TEOS, and 78 mM NH3 and reacted them at a stirring speed of 750 rpm, we obtained 85-nm-diameter CSS silica-QDs-silica NPs having a QD shell thickness of about 20 nm. The CSS silica-QDs-silica NPs provide a strong photoluminescence intensity (quantum yield 88%) and exhibit enhanced stability both photochemically and in high-conductivity media (e.g., 1.0 M NaCl).

  11. Tailoring the size and distribution of Ag nanoparticles in silica glass by defects

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Zhang, Liqing; Zhang, Hengqing; Liu, Juan; Xian, Yongqiang; Ma, Yizhun

    2014-02-01

    The composites embedded with metallic nanoparticles show large nonlinear optical susceptibility and strong surface plasmon resonance absorption, which enable potential application in opto-electronics. Ion implantation has been proven to be a powerful technique of synthesis of metallic nanoparticles due to its versatility and compatibility. However, the synthesis of nanoparticles by ion implantation inevitably leads to a broad size distribution due to Ostwald ripening process. The broad size distribution has a negative effect on improving the figure of merits for nonlinear optics. In this paper, we tried to introduce defects in silica glass to act as pre-nucleation centers to mediate the size and distribution of Ag nanoparticles. In experiment, the silica glass samples were pre-irradiated by 200 keV Ar ions to fluences of 0.8, 2.0 and 5.0 × 1016 ions/cm2, and then 200 keV Ag ions were implanted into the pre-irradiated samples to fluence of 2.0 × 1016 ions/cm2. UV-VIS results show that the absorbance intensity of Ag SPR peak initially increases and then decreases with pre-irradiation fluence, which implies the change in size and density of Ag nanoparticles in samples. TEM results verify that Ag nanoparticles in the sample pre-irradiated to the fluence of 0.8 × 1016 ions/cm2 grow bigger and distribute in a relatively narrow region comparing with that without pre-irradiation. With further increase of pre-irradiation fluence, the size of Ag nanoparticles shows a depth dependent distribution. A boundary can be clear seen at the depth of 110 nm, larger Ag nanoparticles disperse in region shallower than 110 nm, and smaller Ag nanoparticles disperse in the region deeper than 110 nm. The average size of Ag nanoparticles initially increases and then decreases with pre-irradiation fluence. Therefore, the introduction of defects by pre-irradiation could be an effective way to tailor the size and distribution of metallic nanoparticles in matrix.

  12. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    NASA Astrophysics Data System (ADS)

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  13. Nanoparticle release from dental composites.

    PubMed

    Van Landuyt, K L; Hellack, B; Van Meerbeek, B; Peumans, M; Hoet, P; Wiemann, M; Kuhlbusch, T A J; Asbach, C

    2014-01-01

    Dental composites typically contain high amounts (up to 60 vol.%) of nanosized filler particles. There is a current concern that dental personnel (and patients) may inhale nanosized dust particles (<100 nm) during abrasive procedures to shape, finish or remove restorations but, so far, whether airborne nanoparticles are released has never been investigated. In this study, composite dust was analyzed in real work conditions. Exposure measurements of dust in a dental clinic revealed high peak concentrations of nanoparticles in the breathing zone of both dentist and patient, especially during aesthetic treatments or treatments of worn teeth with composite build-ups. Further laboratory assessment confirmed that all tested composites released very high concentrations of airborne particles in the nanorange (>10(6)cm(-3)). The median diameter of airborne composite dust varied between 38 and 70 nm. Electron microscopic and energy dispersive X-ray analysis confirmed that the airborne particles originated from the composite, and revealed that the dust particles consisted of filler particles or resin or both. Though composite dust exhibited no significant oxidative reactivity, more toxicological research is needed. To conclude, on manipulation with the bur, dental composites release high concentrations of nanoparticles that may enter deeply into the lungs. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Fluorescent proteins as efficient tools for evaluating the surface PEGylation of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ma, Minyan; Zhang, Xiao-ai; Zhang, Ze-yu; Saleh, Sayed M.; Wang, Xu-dong

    2017-06-01

    Surface PEGylation is essential for preventing non-specific binding of biomolecules when silica nanoparticles are utilized for in vivo applications. Methods for installing poly(ethylene glycol) on a silica surface have been widely explored but varies from study to study. Because there is a lack of a satisfactory method for evaluating the properties of silica surface after PEGylation, the prepared nanoparticles are not fully characterized before use. In some cases, even non-PEGylated silica nanoparticles were produced, which is unfortunately not recognized by the end-user. In this work, a fluorescent protein was employed, which acts as a sensitive material for evaluating the surface protein adsorption properties of silica nanoparticles. Eleven different methods were systematically investigated for their reaction efficiency towards surface PEGylation. Results showed that both reaction conditions (including pH, catalyst) and surface functional groups of parent silica nanoparticles play critical roles in producing fully PEGylated silica nanoparticles. Great care needs to be taken in choosing the proper coupling chemistry for surface PEGylation. The data and method shown here will guarantee high-quality PEGylated silica nanoparticles to be produced and guide their applications in biology, chemistry, industry and medicine.

  15. Photocatalytic degradation of methyl red dye by silica nanoparticles.

    PubMed

    Badr, Y; Abd El-Wahed, M G; Mahmoud, M A

    2008-06-15

    Silica nanoparticles (SiO2 NPs) were found to be photocatalytically active for degradation of methyl red dye (MR). The SiO2 NPs and SiO2 NPs doped with silver (and or) gold nanoparticles were prepared. From the transmission electron microscopy (TEM) images the particle size and particle morphology of catalysts were monitored. Moreover, SiO2 NPs doped with silver and gold ions were used as a photocatalyst for degradation of MR. The rate of photocatalytic degradation of MR was found to be increased in the order of SiO2 NPs, SiO2 NPs coated with gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs), SiO2 NPs coated with Ag NPs, SiO2 NPs coated with Au NPs, Ag+-doped SiO2 NPs, and Au3+-doped SiO2 NPs. The kinetic and mechanism of photocatalytic reaction were studied and accorded well with experimental results.

  16. Thermal pretreatment of silica composite filler materials

    PubMed Central

    Wan, Quan; Ramsey, Christopher

    2010-01-01

    Three different silica filler materials were thermally treated in order to effect dehydration, dehydroxylation, and rehydroxylation. Samples were characterized by thermogravimetry (TG), pycnometry, elemental analysis, and scanning electron microscopy (SEM). For all fillers, our results indicate incremental removal of silanol groups at higher heating temperatures and irreversible dehydroxylation at over 673 K. To remove the organic content and maintain adequate silanol density for subsequent silanization on Stöber-type silica, we suggest heating at 673 K followed by overnight boiling in water. PMID:20445821

  17. Bifunctional hairy silica nanoparticles as high-performance additives for lubricant

    PubMed Central

    Sui, Tianyi; Song, Baoyu; Wen, Yu-ho; Zhang, Feng

    2016-01-01

    Bifunctional hairy silica nanoparticles (BHSNs), which are silica nanoparticles covered with alkyl and amino organic chains, were prepared as high-performance additives for lubricants. Compared with hairy silica nanoparticles covered by a single type of organic chain, binary hairy silica nanoparticles exhibit the advantages of both types of organic chains, which exhibit excellent compatibility with lubricants and adsorbability to metal surfaces. Nanoparticles with different ratios of amino and alkyl ligands were investigated. In comparison to an untreated lubricant, BHSNs reduce the friction coefficient and wear scar diameter by 40% and 60%, respectively. The wear mechanism of BHSNs was investigated, and the protective and filling effect of the nanoparticles improved because of collaboration of amino and alkyl ligands. PMID:26936117

  18. Bifunctional hairy silica nanoparticles as high-performance additives for lubricant

    NASA Astrophysics Data System (ADS)

    Sui, Tianyi; Song, Baoyu; Wen, Yu-Ho; Zhang, Feng

    2016-03-01

    Bifunctional hairy silica nanoparticles (BHSNs), which are silica nanoparticles covered with alkyl and amino organic chains, were prepared as high-performance additives for lubricants. Compared with hairy silica nanoparticles covered by a single type of organic chain, binary hairy silica nanoparticles exhibit the advantages of both types of organic chains, which exhibit excellent compatibility with lubricants and adsorbability to metal surfaces. Nanoparticles with different ratios of amino and alkyl ligands were investigated. In comparison to an untreated lubricant, BHSNs reduce the friction coefficient and wear scar diameter by 40% and 60%, respectively. The wear mechanism of BHSNs was investigated, and the protective and filling effect of the nanoparticles improved because of collaboration of amino and alkyl ligands.

  19. Silica nanoparticles for cell imaging and intracellular sensing

    NASA Astrophysics Data System (ADS)

    Korzeniowska, B.; Nooney, R.; Wencel, D.; McDonagh, C.

    2013-11-01

    There is increasing interest in the use of nanoparticles (NPs) for biomedical applications. In particular, nanobiophotonic approaches using fluorescence offers the potential of high sensitivity and selectivity in applications such as cell imaging and intracellular sensing. In this review, we focus primarily on the use of fluorescent silica NPs for these applications and, in so doing, aim to enhance and complement the key recent review articles on these topics. We summarize the main synthetic approaches, namely the Stöber and microemulsion processes, and, in this context, we deal with issues in relation to both covalent and physical incorporation of different types of dyes in the particles. The important issue of NP functionalization for conjugation to biomolecules is discussed and strategies published in the recent literature are highlighted and evaluated. We cite recent examples of the use of fluorescent silica NPs for cell imaging in the areas of cancer, stem cell and infectious disease research, and we review the current literature on the use of silica NPs for intracellular sensing of oxygen, pH and ionic species. We include a short final section which seeks to identify the main challenges and obstacles in relation to the potential widespread use of these particles for in vivo diagnostics and therapeutics.

  20. Fracture behavior of silica nanoparticle filled epoxy resin

    NASA Astrophysics Data System (ADS)

    Dittanet, Peerapan

    This dissertation involves the addition of silica nanoparticles to a lightly crosslinked, model epoxy resin and investigates the effect of nanosilica content and particle size on glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus (E), yield stress, and fracture toughness. This study aims to understand the influence of silica nanoparticle size, bimodal particle size distribution and silica content on the toughening behavior. The toughening mechanisms were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and transmission optical microscopy (TOM). The approach identifies toughening mechanisms and develops a toughening model from unimodal-particle size systems first, then extends these concepts to various mixtures micron- and nanometer-size particles in a similar model epoxy. The experimental results revealed that the addition of nanosilica did not have a significant effect on Tg or the yield stress of epoxy resin, i.e. the yield stress and Tg remained constant regardless of nanosilica particle size. As expected, the addition of nanosilica had a significant impact on CTE, modulus and fracture toughness. The CTE values of nanosilica-filled epoxies were found to decrease with increasing nanosilica content, which can be attributed to the much lower CTE of the nanosilica fillers. Interestingly, the decreases in CTE showed strong particle size dependence. The Young's modulus was also found to significantly improve with addition of nanosilica and increase with increasing filler content. However, the particle size did not exhibit any effect on the Young's modulus. Finally, the fracture toughness and fracture energy showed significant improvements with the addition of nanosilica, and increased with increasing filler content. The effect of particle size on fracture toughness was negligible. Observation of the fracture surfaces using SEM and TOM showed evidence of debonding of nanosilica particles

  1. Enzyme-encapsulated silica nanoparticle for cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Chiu, Yi-Rong; Ho, Wei-Jen; Chao, Jiun-Shuan; Yuan, Chiun-Jye

    2012-03-01

    A novel horseradish peroxidase-encapsulated silica nanoparticle (SNP) was generated in this study under relatively mild conditions. The generated enzyme-encapsulated SNP were relatively uniform in size (average 70 ± 14.3 nm), monodispersed, and spherical, as characterized by transmission electron microscopy and scanning electron microscopy. The horseradish peroxidase encapsulated in silica nanoparticle exhibits biological properties, such as a pH-dependent activity profile and k m value, similar to that of free enzymes. Furthermore, enzyme-encapsulated SNP exhibited good operational stability for the repetitive usage with a relative standard deviation of 5.1 % ( n = 10) and a high stability for long term storage (>60 days) at 4 °C. The feasibility of using enzyme-encapsulated SNP in prodrug cancer therapy was also demonstrated by its capability to convert the prodrug indole-3-acetic acid into cytotoxic peroxyl radicals and trigger the death of tumor cells. These results indicate that the developed enzyme-encapsulated SNP has potential in the applications of prodrug cancer therapy.

  2. Silica nanoparticles separation from water: aggregation by cetyltrimethylammonium bromide (CTAB).

    PubMed

    Liu, Y; Tourbin, M; Lachaize, S; Guiraud, P

    2013-07-01

    Nanoparticles will inevitably be found in industrial and domestic wastes in the near future and as a consequence soon in water resources. Due to their ultra-small size, nanoparticles may not only have new hazards for environment and human health, but also cause low separation efficiency by classical water treatments processes. Thus, it would be an important challenge to develop a specific treatment with suitable additives for recovery of nanoparticles from waters. For this propose, this paper presents aggregation of silica nanoparticles (Klebosol 30R50 (75nm) and 30R25 (30nm)) by cationic surfactant cetyltrimethylammonium bromide (CTAB). Different mechanisms such as charge neutralization, "depletion flocculation" or "volume-restriction", and "hydrophobic effect" between hydrocarbon tails of CTAB have been proposed to explicate aggregation results. One important finding is that for different volume concentrations between 0.05% and 0.51% of 30R50 suspensions, the same critical coagulation concentration was observed at CTAB=0.1mM, suggesting the optimized quantity of CTAB during the separation process for nanoparticles of about 75nm. Furthermore, very small quantities of CTAB (0.01mM) can make 30R25 nanosilica aggregated due to the "hydrophobic effect". It is then possible to minimize the sludge and allow the separation process as "greener" as possible by studying this case. It has also shown that aggregation mechanisms can be different for very small particles so that a special attention has to be paid to the treatment of nanoparticles contained in water and wastewaters.

  3. Magnetic and noble metallic nanoparticles deposited on silica spheres via silanization.

    PubMed

    Zhang, Feifei; Shi, Ruixia; Yang, Ping

    2014-07-01

    A sol-gel technique has been developed to deposit various nanoparticles (NPs) on silica spheres. The silanization of the silica spheres using 3-mercaptopropyltrimethoxysilane (MPS) with mercapto groups (-SH) plays an important role for the deposition. After being functionalized by MPS, the deposition of magnetic and noble metallic NPs was performed by the reduction of Au3+ and Ag+ ions in-situ using sodium borohydride (NaBH4) or the co-precipitation reaction of Fe2+/Fe3+ ions and ammonia (NH3 H2O) at low reactant concentrations at room temperature. The transmission electron microscope (TEM) observation of samples exhibited the homogeneous deposition of Ag, Au, and Fe3O4 NPs on the silica spheres, in which the average size of Au and Ag NPs is 5 nm in diameter while the ones of Fe3O4 NPs is about 10 nm. In the case of without the silanization of silica spheres, the nucleation and growth of the NPs in solutions occur instead of the homogenous deposition. The results demonstrates that MPS containing the -SH metal-chelating functionality, can grow a layer in an ethanol solution on the silica spheres, thus improving the performance of the silica surface by grafting -SH groups. These hybrids offer a high absorption capacity for metal ions, all kinds of NPs can be deposited on the surface by co-precipitation channel on the basis of such property. The results presented hear may open up a novel and simple approach for the preparation of composite NPs.

  4. New porous polycaprolactone-silica composites for bone regeneration.

    PubMed

    Plazas Bonilla, Clara E; Trujillo, Sara; Demirdögen, Bermali; Perilla, Jairo E; Murat Elcin, Y; Gómez Ribelles, José L

    2014-07-01

    Polycaprolactone porous membranes were obtained by freeze extraction of dioxane from polycaprolactone-dioxane solid solutions. Porosities as high as 90% with interconnected structures were obtained by this technique. A silica phase was synthesized inside the pores of the polymer membrane by sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica precursor and catalyzed in acidic and basic conditions. Two different morphologies of the inorganic phase were obtained depending on the type of catalyst. In acid catalyzed sol-gel reaction, a homogeneous layer of silica was deposited on the pores, and discrete microspheres were synthesized on the pore walls when a basic catalyst was used. The morphology of the inorganic phase influenced the mechanical and thermal behavior, as well as the hydrophilic character of the composites. Bioactivity of the porous materials was tested in vitro by measuring the deposition of hydroxyapatite on the surfaces of the porous composite membranes. Polycaprolactone/silica composites revealed a superior bioactivity performance compared with that of the pure polymer; evidenced by the characteristic cauliflower structures on the material surface, increase in weight and Ca/P ratio of the hydroxyapatite layer. Also, the acid catalyzed composites presented better bioactivity than the base catalyzed composites, evidencing the importance in the morphology of the silica phase. Copyright © 2014. Published by Elsevier B.V.

  5. Functional characterization of recombinant human granulocyte colony stimulating factor (hGMCSF) immobilized onto silica nanoparticles.

    PubMed

    Vanitha, Selvarajan; Goswami, Upashi; Chaubey, Nidhi; Ghosh, Siddhartha S; Sanpui, Pallab

    2016-02-01

    Granulocyte macrophage colony stimulating factor (GMCSF), an important therapeutic cytokine, was immobilized onto silica nanoparticles. Maintenance of structural integrity and biological performance in immobilized cytokine was assessed to augment its applicability in possible biomedical implications. Following its cloning and expression in E. coli, the recombinant human GMCSF (hGMCSF) was purified as a GST-tagged protein corresponding to a 42 kDa band on SDS-PAGE. The purified cytokine was immobilized onto biocompatible silica nanoparticles (~129.4 nm) by adsorption and the binding was confirmed by dynamic light scattering and infrared spectroscopy. Maximum binding of hGMCSF was at 6.4 µg mg(-1) silica nanoparticles. Efficient release of the cytokine from the nanoparticles with its structural integrity intact was deduced from circular dichroism spectroscopy. hGMCSF-immobilized silica nanoparticles efficiently increased the proliferation of RAW 264.7 macrophage cells with 50 % increase in proliferation at 600 ng hGMCSF µg(-1) silica nanoparticles. Silica nanoparticles successfully immobilized hGMCSF maintaining its structural integrity. The release of the immobilized cytokine from silica nanoparticles resulted in the increased proliferation of macrophages indicating the potential of the system in future applications.

  6. Nanocomposite Membranes via the Codeposition of Polydopamine/Polyethylenimine with Silica Nanoparticles for Enhanced Mechanical Strength and High Water Permeability.

    PubMed

    Lv, Yan; Du, Yong; Qiu, Wen-Ze; Xu, Zhi-Kang

    2017-01-25

    A defect-free and stable selective layer is of critical significance for thin film composite membrane with excellent separation performance and service durability. We report a facial strategy for fabricating thin film nanocomposite (TFN) nanofltration membranes (NFMs) based on the codeposition of polydopamine, polyetheylenimine, and silica nanoparticles. Tripled water flux can be obtained from the TFN NFMs as compared with those NFMs without silica nanoparticles. This is ascribed to the improved wettability of the membrane surfaces and the enlarged pore sizes of the selective layer. The interfacial compatibility of the inorganic fillers and the polymer matrices can be enhanced by the electrostatic interactions of silica nanoparticles with polyethylenimine and the adhesive characteristics of polydopamine, resulting in a defect-free selective layer and then good rejection for both bivalent cations and neutral solutes. The rigid silica nanoparticles also improve the surface mechanical strength of the TFN NFMs effectively and lead to structural stability and compaction resistance during the long-term filtration process.

  7. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation

    PubMed Central

    Kim, Ki Joo; Joe, Young Ae; Kim, Min Kyoung; Lee, Su Jin; Ryu, Yeon Hee; Cho, Dong-Woo; Rhie, Jong Won

    2015-01-01

    Background Silicon dioxide composites have been found to enhance the mechanical properties of scaffolds and to support growth of human adipose tissue-derived stem cells (hADSCs) both in vitro and in vivo. Silica (silicon dioxide alone) exists as differently sized particles when suspended in culture medium, but it is not clear whether particle size influences the beneficial effect of silicon dioxide on hADSCs. In this study, we examined the effect of different sized particles on growth and mitogen-activated protein kinase signaling in hADSCs. Methods Silica gel was prepared by a chemical reaction using hydrochloric acid and sodium silicate, washed, sterilized, and suspended in serum-free culture medium for 48 hours, and then sequentially filtered through a 0.22 μm filter (filtrate containing nanoparticles smaller than 220 nm; silica NPs). hADSCs were incubated with silica NPs or 3 μm silica microparticles (MPs), examined by transmission electron microscopy, and assayed for cell proliferation, apoptosis, and mitogen-activated protein kinase signaling. Results Eighty-nine percent of the silica NPs were around 50–120 nm in size. When hADSCs were treated with the study particles, silica NPs were observed in endocytosed vacuoles in the cytosol of hADSCs, but silica MPs showed no cell entry. Silica NPs increased the proliferation of hADSCs, but silica MPs had no significant effect in this regard. Instead, silica MPs induced slight apoptosis. Silica NPs increased phosphorylation of extracellular signal-related kinase (ERK)1/2, while silica MPs increased phosphorylation of p38. Silica NPs had no effect on phosphorylation of Janus kinase or p38. Pretreatment with PD98059, a MEK inhibitor, prevented the ERK1/2 phosphorylation and proliferation induced by silica NPs. Conclusion Scaffolds containing silicon dioxide for tissue engineering may enhance cell growth through ERK1/2 activation only when NPs around 50–120 nm in size are included, and single component silica

  8. Controlled Microwave-Assisted Growth of Monodisperse of Silica Nanoparticles under Acid Catalysis (Postprint)

    DTIC Science & Technology

    2012-11-26

    nanoparticles or other nanoparticles by flow-through microwave synthetic methods for industrial applications , as well as a facile method for encapsulating...have utility for mass production of silica nanoparticles or other nanoparticles by flow-through microwave synthetic methods for industrial ... Synthesis of SiO2 Nanoparticles . SiO2 NPs were synthesized in a single-mode 2.45-GHz CEM Discover SP microwave reactor capable of producing

  9. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  10. Synthesis of hybrid inorganic/organic nitric oxide-releasing silica nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Carpenter, Alexis Wells

    Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to <7 days. An alternative strategy for increasing NO release duration involved directly stabilizing the N-diazeniumdiolate using O2-protecting groups. O2-Methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 μmol NO/mg and an NO release half-life of 23 d. Doping the MOM-Pip/NO-modified particles into resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered

  11. Experimental Investigation of Mechanical and Thermal Properties of Silica Nanoparticle-Reinforced Poly(acrylamide) Nanocomposite Hydrogels.

    PubMed

    Zaragoza, Josergio; Babhadiashar, Nasim; O'Brien, Victor; Chang, Andrew; Blanco, Matthew; Zabalegui, Aitor; Lee, Hohyun; Asuri, Prashanth

    2015-01-01

    Current studies investigating properties of nanoparticle-reinforced polymers have shown that nanocomposites often exhibit improved properties compared to neat polymers. However, over two decades of research, using both experimental studies and modeling analyses, has not fully elucidated the mechanistic underpinnings behind these enhancements. Moreover, few studies have focused on developing an understanding among two or more polymer properties affected by incorporation of nanomaterials. In our study, we investigated the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparticles. Both nanoparticle concentration and size affected hydrogel properties, with similar trends in enhancements observed for elastic modulus and thermal diffusivity. We also observed significantly lower swellability for hydrogel nanocomposites relative to neat hydrogels, consistent with previous work suggesting that nanoparticles can mediate pseudo crosslinking within polymer networks. Collectively, these results indicate the ability to develop next-generation composite materials with enhanced mechanical and thermal properties by increasing the average crosslinking density using nanoparticles.

  12. Experimental Investigation of Mechanical and Thermal Properties of Silica Nanoparticle-Reinforced Poly(acrylamide) Nanocomposite Hydrogels

    PubMed Central

    O’Brien, Victor; Chang, Andrew; Blanco, Matthew; Zabalegui, Aitor; Lee, Hohyun; Asuri, Prashanth

    2015-01-01

    Current studies investigating properties of nanoparticle-reinforced polymers have shown that nanocomposites often exhibit improved properties compared to neat polymers. However, over two decades of research, using both experimental studies and modeling analyses, has not fully elucidated the mechanistic underpinnings behind these enhancements. Moreover, few studies have focused on developing an understanding among two or more polymer properties affected by incorporation of nanomaterials. In our study, we investigated the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparticles. Both nanoparticle concentration and size affected hydrogel properties, with similar trends in enhancements observed for elastic modulus and thermal diffusivity. We also observed significantly lower swellability for hydrogel nanocomposites relative to neat hydrogels, consistent with previous work suggesting that nanoparticles can mediate pseudo crosslinking within polymer networks. Collectively, these results indicate the ability to develop next-generation composite materials with enhanced mechanical and thermal properties by increasing the average crosslinking density using nanoparticles. PMID:26301505

  13. Bioactive Silica Nanoparticles Reverse Age-Associated Bone Loss in Mice

    PubMed Central

    Vikulina, Tatyana; Roser-Page, Susanne; Lee, Jin-Kyu; Beck, George R.

    2015-01-01

    We recently reported that in vitro, engineered 50 nm spherical silica nanoparticles promote the differentiation and activity of bone building osteoblasts but suppress that of bone-resorbing osteoclasts. Furthermore, these nanoparticles promote bone accretion in young mice in vivo. In the present study the capacity of these nanoparticles to reverse bone loss in aged mice, a model of human senile osteoporosis, was investigated. Aged mice received nanoparticles weekly and bone mineral density (BMD), bone structure, and bone turnover was quantified. Our data revealed a significant increase in BMD, bone volume, and biochemical markers of bone formation. Biochemical and histological examinations failed to identify any abnormalities caused by nanoparticle administration. Our studies demonstrate that silica nanoparticles effectively blunt and reverse age-associated bone loss in mice by a mechanism involving promotion of bone formation. The data suggest that osteogenic silica nanoparticles may be a safe and effective therapeutic for counteracting age-associated bone loss. PMID:25680544

  14. Synthesis of monodisperse fluorinated silica nanoparticles and their superhydrophobic thin films.

    PubMed

    Brassard, Jean-Denis; Sarkar, D K; Perron, Jean

    2011-09-01

    Monodispersive silica nanoparticles have been synthesized via the Stöber process and further functionalized by adding fluorinated groups using fluoroalkylsilane in an ethanolic solution. In this process, six different sizes of fluorinated silica nanoparticles of varying diameter from 40 to 300 nm are prepared and used to deposit thin films on aluminum alloy surfaces using spin coating processes. The functionalization of silica nanoparticles by fluorinated group has been confirmed by the presence C-F bonds along with Si-O-Si bonds in the thin films as analyzed by Fourier transform infrared spectroscopy (FTIR). The surface roughnesses as well as the water contact angles of the fluorinated silica nanoparticle containing thin films are found to be increased with the increase of the diameter of the synthesized fluorinated silica nanoparticles. The thin films prepared using the fluorinated silica nanoparticles having a critical size of 119 ± 12 nm provide a surface roughness of ∼0.697 μm rendering the surfaces superhydrophobic with a water contact angle of 151 ± 4°. The roughness as well as the water contact angle increases on the superhydrophobic thin films with further increase in the size of the fluorinated silica nanoparticles in the films.

  15. Large third-order optical nonlinearity in vertically oriented mesoporous silica thin films embedded with Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Min; Liu, Qiming

    2016-12-01

    Taking advantage of the channel confinement of mesoporous films to prevent the agglomeration of Ag nanoparticles to achieve large third-order optical nonlinearity in amorphous materials, Ag-loaded composite mesoporous silica film was prepared by the electrochemical deposition method on ITO substrate. Ag ions were firstly transported into the channels of mesoporous film by the diffusion and binding force of channels, which were reduced to nanoparticles by applying suitable voltage. The existence and uniform distribution of Ag nanoparticles ranging in 1-10 nm in the mesoporous silica thin films were exhibited by UV spectrophotometer, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The third-order optical nonlinearity induced by Ag nanoparticles was studied by the Z-scan technique. Due to the local field surface plasmon resonance, the maximum third-order nonlinear optical susceptibility of Ag-loaded composite mesoporous silica film is 1.53×10-10 esu, which is 1000 times larger than that of the Ag-contained chalcogenide glasses which showed large nonlinearity in amorphous materials.

  16. Thermal stability of bimetallic Au/Fe nanoparticles in silica matrix

    SciTech Connect

    Pannu, Compesh Singh, Udai B. Hooda, Sonu Kabiraj, D. Avasthi, D. K.

    2014-04-24

    Thin silica film containing Au and Fe bimetallic nanoparticles were prepared by atom beam cosputtering. The samples were annealed at different temperatures from 400 to 800° C to study the thermal stability of bimetallic nanoparticles using X ray diffraction. It is observed that at 800° C strong structural rearrangement took place leading to thermal decomposition of bimetallic nanoparticles.

  17. Electrical properties of multiwalled carbon nanotube reinforced fused silica composites.

    PubMed

    Xiang, Changshu; Pan, Yubai; Liu, Xuejian; Shi, Xiaomei; Sun, Xingwei; Guo, Jingkun

    2006-12-01

    Multiwalled carbon nanotube (MWCNT)-fused silica composite powders were synthesized by solgel method and dense bulk composites were successfully fabricated via hot-pressing. This composite was characterized by XRD, HRTEM, and FESEM. MWCNTs in the hot-pressed composites are in their integrity observed by HRTEM. The electrical properties of MWCNT-fused silica composites were measured and analyzed. The electrical resistivity was found to decrease with the increase in the amount of the MWCNT loading in the composite. When the volume percentage of the MWCNTs increased to 5 vol%, the electrical resistivity of the composite is 24.99 omega cm, which is a decrease of twelve orders of value over that of pure fused silica matrix. The electrical resistivity further decreases to 1.742 omega. cm as the concentration of the MWCNTs increased to 10 vol%. The dielectric properties of the composites were also measured at the frequency ranging from 12.4 to 17.8 GHz (Ku band) at room temperature. The experimental results reveal that the dielectric properties are extremely sensitive to the volume percentage of the MWCNTs, and the permittivities, especially the imaginary permittivities, increase dramatically with the increase in the concentration of the MWCNTs. The improvement of dielectric properties in high frequency region mainly originates from the greatly increasing electrical properties of the composite.

  18. Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, S.; Sekine, Y.; Kempf, S.; Juhasz, A.; Horanyi, M.; Moragas-Klostermeyer, G.; Srama, R.

    2013-12-01

    Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor F. Postberg, H.-W. Hsu, Y. Sekine, S. Kempf, A. Juhasz, M. Horanyi, G. Moragas-Klostermeyer, R. Srama Silica serves as a unique indicator of hydrothermal activities on Earth as well as on Mars. Here we report the Cassini Cosmic Dust Analyser (CDA) observation of nanosilica particles from the Saturnian system. Based on their interaction with the solar wind electromagnetic fields, these charged nanosilica particles, so-called stream particles, are found to be originated in Saturn's E ring, indicating Enceladus being their ultimate source. CDA stream particle mass spectra reveal a metal-free but silicon-rich composition that is only plausible for nearly pure silica particles. The size range derived from our measurements confines the size of these particles to a radius of 2 - 8 nm. The unique properties of nano-grains with the observed composition and size are a well-known phenomenon on Earth and their formation requires specific hydrothermal rock-water interactions. The observation of Saturnian nanosilica particles thus serves as an evidence of hydrothermal activities at the interface of Enceladus subsurface ocean and its rocky core. Considering plasma erosion as the major mechanism of releasing embedded nanosilica particles from their carriers, the much larger E ring ice grains, our dynamical model and CDA observation provide a lower limit on the average nanosilica concentration in E ring grains. Together with dedicated hydrothermal experiments (Sekine at al., 2013) this can be translated into constraints on the hydrothermal activities on Enceladus. Measurements and experiments both point at dissolved silica concentrations at the ocean floor in the order of 1 - 3 mMol. The hydrothermal reactions likely take place with a pristine, chondritic rock composition at temperature higher than 130°C (Sekine at al. 2013). Colloidal nano-silica forms upon supersaturation during cooling of the

  19. Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics.

    PubMed

    Zhang, Wen Ling; Choi, Hyoung Jin

    2012-05-01

    Silica-graphene oxide (Si-GO) hybrid composite particles were prepared by the hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of hydrophilic GO obtained from a modified Hummers method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images provided visible evidence of the silica nanoparticles grafted on the surface of GO, resulting in Si-GO hybrid composite particles. Energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) spectra indicated the coexistence of silica and GO in the composite particles. The Si-GO hybrid composite particles showed better thermal stability than that of GO according to thermogravimetric analysis (TGA). The electrorheological (ER) characteristics of the Si-GO hybrid composite based ER fluid were examined further by optical microscopy and a rotational rheometer in controlled shear rate mode under various electric field strengths. Shear stress curves were fitted using both conventional Bingham model and a constitutive Cho-Choi-Jhon model. The polarizability and relaxation time of the ER fluid from dielectric spectra measured using an LCR meter showed a good correlation with its ER characteristics.

  20. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    NASA Astrophysics Data System (ADS)

    Ferraris, M.; Perero, S.; Ferraris, S.; Miola, M.; Vernè, E.; Skoglund, S.; Blomberg, E.; Odnevall Wallinder, I.

    2017-02-01

    A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel surface compared with a control surface. The antibacterial coating retained its antibacterial activity after thermal treatment up to 450 °C and after soaking in common cleaning products for stainless steel surfaces used for e.g. food applications. The antibacterial capacity of the coating remained at high levels for 1-5 days, and showed a good capacity to reduce the adhesion of bacteria up to 30 days. Only a few

  1. On-Chip Evaluation of Shear Stress Effect on Cytotoxicity of Mesoporous Silica Nanoparticles

    PubMed Central

    Kim, Donghyuk; Lin, Yu-Shen; Haynes, Christy L.

    2011-01-01

    In this work, nanotoxicity in the bloodstream was modeled and the cytotoxicity of sub-50 nm mesoporous silica nanoparticles to human endothelial cells was investigated under microfluidic flow conditions. Compared to traditional in vitro cytotoxicity assays performed under static conditions, unmodified mesoporous silica nanoparticles show higher and shear stress-dependent toxicity to endothelial cells under flow conditions. Interestingly, even under flow conditions, highly organo-modified mesoporous silica nanoparticles show no significant toxicity to endothelial cells. This paper clearly demonstrates that shear stress is an important factor to be considered in in vitro nanotoxicology assessments and provides a simple device for pursuing this consideration. PMID:22032307

  2. Recent advances in the rational design of silica-based nanoparticles for gene therapy.

    PubMed

    Niut, Yuting; Popatt, Amirali; Yu, Meihua; Karmakar, Surajit; Gu, Wenyi; Yu, Chengzhong

    2012-10-01

    Gene therapy has attracted much attention in modern society and provides a promising approach for treating genetic disorders, diseases and cancers. Safe and effective vectors are vital tools to deliver genetic molecules to cells. This review summarizes recent advances in the rational design of silica-based nanoparticles and their applications in gene therapy. An overview of different types of genetic agents available for gene therapy is provided. The engineering of various silica nanoparticles is described, which can be used as versatile complexation tools for genetic agents and advanced gene therapy. Several challenges are raised and future research directions in the area of gene therapy using silica-based nanoparticles are proposed.

  3. Effect of acid and temperature on the discontinuous shear thickening phenomenon of silica nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Li, Shuangbing; Wang, Jixiao; Cai, Wei; Zhao, Song; Wang, Zhi; Wang, Shichang

    2016-08-01

    The discontinuous shear thickening (DST) phenomenon of silica nanoparticle suspensions was investigated in this article. First, the non-aggregated silica nanoparticles were synthesized and characterized. The results indicate that the silica nanoparticles are spherical particles with a narrow size distribution with a diameter of approximately 90 nm. Next, the influence of nitric acid concentration and temperature on the DST phenomenon of shear thickening fluids (STFs) was investigated. The results indicate that the concentrated fluids with nitric acid concentration below 8.50 mmol/L and at a temperature below 40 °C exhibit a readily noticeable DST phenomenon.

  4. Preparation of bio-compatible boron nanoparticles and novel mesoporous silica nanoparticles for bio-applications

    NASA Astrophysics Data System (ADS)

    Gao, Zhe

    This dissertation presents the synthesis and characterization of several novel inorganic and hybrid nanoparticles, including the bio-compatible boron nanoparticles (BNPs) for boron neutron capture therapy (BNCT), tannic acid-templated mesoporous silica nanoparticles and degradable bridged silsesquioxane silica nanoparticles. Chapter 1 provides background information of BNCT and reviews the development of design and synthesizing silica nanoparticles and the study of silica material degradability. Chapter 2 describes the preparation and characterization of dopamine modified BNPs and the preliminary cell study of them. The BNPs were first produced via ball milling, with fatty acid on the surface to stabilize the combustible boron elements. This chapter will mainly focus on the ligand-exchange strategy, in which the fatty acids were replaced by non-toxic dopamines in a facile one-pot reaction. The dopamine-coated BNPs (DA-BNPs) revealed good water dispersibility and low cytotoxicity. Chapter 3 describes the synthesis of tannic acid template mesoporous silica nanoparticles (TA-TEOS SiNPs) and their application to immobilize proteins. The monodispersed TA SiNPs with uniform pore size up to approximately 13 nm were produced by utilizing tannic acid as a molecular template. We studied the influence of TA concentration and reaction time on the morphology and pore size of the particles. Furthermore, the TA-TEOS particles could subsequently be modified with amine groups allowing them to be capable of incorporating imaging ligands and other guest molecules. The ability of the TA-TEOS particles to store biomolecules was preliminarily assessed with three proteins of different charge characteristics and dimensions. The immobilization of malic dehydrogenase on TA-TEOS enhanced the stability of the enzyme at room temperature. Chapter 4 details the synthesis of several bridged silsesquioxanes and the preparation of degradable hybrid SiNPs via co-condensation of bridged

  5. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles.

    PubMed

    Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio

    2010-03-16

    Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.

  6. Breakable mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A; Robinet, Eric; De Cola, Luisa

    2016-04-07

    "Pop goes the particle". Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.

  7. Mesoporous silica nanoparticles in tissue engineering--a perspective.

    PubMed

    Rosenholm, Jessica Maria; Zhang, Jixi; Linden, Mika; Sahlgren, Cecilia

    2016-02-01

    In this review, we summarize the latest developments and give a perspective on future applications of mesoporous silica nanoparticles (MSNs) in regenerative medicine. MSNs constitute a flexible platform for controlled delivery of drugs and imaging agents in tissue engineering and stem cell therapy. We highlight the recent advances in applying MSNs for controlled drug delivery and stem cell tracking. We touch upon novel functions of MSNs in real time imaging of drug release and biological function, and as tools to control the chemical and mechanical environment of stem cells. We discuss the need for novel model systems for studying biofunctionality and biocompatibility of MSNs, and how the interdisciplinary activities within the field will advance biotechnology research.

  8. Hydrogen and oxygen adsorption stoichiometries on silica supported ruthenium nanoparticles

    SciTech Connect

    Berthoud, Romain; Delichere, Pierre; Gajan, David; Lukens, Wayne; Pelzer, Katrin; Basset, Jean-Marie; Candy, Jean-Pierre; Coperet, Christophe

    2008-12-01

    Treatment under H{sub 2} at 300 C of Ru(COD)(COT) dispersed on silica yields 2 nm ruthenium nanoparticles, [Ru{sub p}/SiO{sub 2}], according to EXAFS, HRTEM and XPS. H{sub 2} adsorption measurements on [Ru{sub p}/SiO{sub 2}] in the absence of O{sub 2} show that Ru particles adsorb up to ca. 2 H per surface ruthenium atoms (2H/Ru{sub s}) on various samples; this technique can therefore be used to measure the dispersion of Ru particles. In contrast, O{sub 2} adsorption on [Ru{sub p}/SiO{sub 2}] leads to a partial oxidation of the bulk at 25 C, to RuO{sub 2} at 200 C and to sintering upon further reduction under H{sub 2}, showing that O{sub 2} adsorption cannot be used to measure the dispersion of Ru particles.

  9. Silica-encapsulated magnetic nanoparticles: enzyme immobilization and cytotoxic study.

    PubMed

    Ashtari, Khadijeh; Khajeh, Khosro; Fasihi, Javad; Ashtari, Parviz; Ramazani, Ali; Vali, Hojatollah

    2012-05-01

    Silica-encapsulated magnetic nanoparticles (MNPs) were prepared via microemulsion method. The products were characterized by high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectrum (EDS). MNPs with no observed cytotoxic activity against human lung carcinoma cell and brine shrimp lethality were used as suitable support for glucose oxidase (GOD) immobilization. Binding of GOD onto the support was confirmed by the FTIR spectra. The amount of immobilized GODs was 95 mg/g. Storage stability study showed that the immobilized GOD retained 98% of its initial activity after 45 days and 90% of the activity was also remained after 12 repeated uses. Considerable enhancements in thermal stabilities were observed for the immobilized GOD at elevated temperatures up to 80°C and the activity of immobilized enzyme was less sensitive to pH changes in solution.

  10. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells

    NASA Astrophysics Data System (ADS)

    Morelli, Catia; Maris, Pamela; Sisci, Diego; Perrotta, Enrico; Brunelli, Elvira; Perrotta, Ida; Panno, Maria Luisa; Tagarelli, Antonio; Versace, Carlo; Casula, Maria Francesca; Testa, Flaviano; Andò, Sebastiano; Nagy, Janos B.; Pasqua, Luigi

    2011-08-01

    Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae-mediated, endocytosis. Moreover, internalized particles seem to be mostly exocytosed from cells within 96 h. Finally, cisplatin (Cp) loaded MSN-FOL were tested on cancerous FR-positive (HeLa) or normal FR-negative (HEK293) cells. A strong growth arrest was observed only in HeLa cells treated with MSN-FOL-Cp. The results presented here show that our mesoporous nanoparticles do not enter cells unless opportunely functionalized, suggesting that they could represent a promising vehicle for drug targeting applications.Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae

  11. A comparative study of non-covalent encapsulation methods for organic dyes into silica nanoparticles

    PubMed Central

    2011-01-01

    Numerous luminophores may be encapsulated into silica nanoparticles (< 100 nm) using the reverse microemulsion process. Nevertheless, the behaviour and effect of such luminescent molecules appear to have been much less studied and may possibly prevent the encapsulation process from occurring. Such nanospheres represent attractive nanoplatforms for the development of biotargeted biocompatible luminescent tracers. Physical and chemical properties of the encapsulated molecules may be affected by the nanomatrix. This study examines the synthesis of different types of dispersed silica nanoparticles, the ability of the selected luminophores towards incorporation into the silica matrix of those nanoobjects as well as the photophysical properties of the produced dye-doped silica nanoparticles. The nanoparticles present mean diameters between 40 and 60 nm as shown by TEM analysis. Mainly, the photophysical characteristics of the dyes are retained upon their encapsulation into the silica matrix, leading to fluorescent silica nanoparticles. This feature article surveys recent research progress on the fabrication strategies of these dye-doped silica nanoparticles. PMID:21711855

  12. Environmentally responsive surface-modified silica nanoparticles for enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Behzadi, Abed; Mohammadi, Aliasghar

    2016-09-01

    Environmentally responsive surface-modified nanoparticles are colloidal nanoparticles coated with, at least, two physicochemically distinct surface groups. Recent advances in the synthesis and production of nanoparticles have enabled the production of environmentally responsive surface-modified nanoparticles with both hydrophilic and hydrophobic surface groups. These nanoparticles act like colloidal surfactants. In this paper, environmentally responsive surface-modified silica nanoparticles are synthesized and used for enhancement of oil recovery. For this purpose, silica nanoparticles are coated with polyethylene glycol chains as hydrophilic agent and propyl chains as hydrophobic agent at various quantities, and their ability to modulate oil-water interface properties and oil recovery is examined. Oil-water interfacial tension and water surface tension are decreased by 50 % in the presence of silica nanoparticles coated with both agents. Measuring oil-drop contact angle on oil-wetted glass slides and carbonate rock sections, after aging in various surface-modified silica nanofluids, indicates that the wettability of various oil-wetted surfaces is modified from strongly oil-wet to water-wet. Flooding nanofluids to glass micro-models and pore-level investigations demonstrate that surface modification of silica nanoparticles, specially, with both hydrophilic and hydrophobic agents improves considerably their performance in increasing oil recovery and wettability alteration.

  13. Sol-Gel processing of silica nanoparticles and their applications.

    PubMed

    Singh, Lok P; Bhattacharyya, Sriman K; Kumar, Rahul; Mishra, Geetika; Sharma, Usha; Singh, Garima; Ahalawat, Saurabh

    2014-11-06

    Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized.

  14. Breakable mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A.; Robinet, Eric; de Cola, Luisa

    2016-03-01

    ``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. Electronic supplementary information (ESI) available: Full experimental procedures, additional SEM and TEM images of particles, complete UV-Vis and PL-monitored characterization of the breakdown of

  15. Nano-Web Cobalt Modified Silica Nanoparticles Catalysts for Water Oxidation and MB Oxidative Degradation.

    PubMed

    Wang, Li; Chen, Qiuyun; Li, Chenghao; Fang, Fang

    2016-05-01

    Dioxygen generating materials, using water as oxygen source, can be used as catalysts in hypoxic environments. Cobalt(II) modified silica (SiO2@NPCo) nanoparticles were synthesized through coordination of cobalt(II) ions with nitrogen atoms from 2-acetylpyridine modified silica (SiO2@NP). The SiO2@NPCo nanoparticles further reacted with 1,3,5-benzenetricarboxylic acids, forming porous nano-web nanoparticles (SiO2@NPCoCOOH). The synthesized SiO2@NPCoCOOH nanoparticles were demonstrated as better white LED light driven photochemical catalysts for oxidation of water than individual nanoparticles (SiO2@NPCo). Moreover, the SiO2@NPCoCOOH/water system could decrease the content of methylene blue (MB) in solution and therefore, the nanoweb cobalt(II) modified silica nanoparticles can be environmentally friendly catalysts for oxidative degradation of MB, using water as the oxygen source.

  16. Synthesis of WO 3 nanoparticles for superthermites by the template method from silica spheres

    NASA Astrophysics Data System (ADS)

    Gibot, Pierre; Comet, Marc; Vidal, Loic; Moitrier, Florence; Lacroix, Fabrice; Suma, Yves; Schnell, Fabien; Spitzer, Denis

    2011-05-01

    Nanosized WO 3 tungsten trioxide was prepared by calcination of H 3P 4W 12O 40· xH 2O phosphotungstic acid, previously dissolved in a silica colloidal solution. The influence of the silica spheres/tungsten precursor weight ratio ( x) was investigated. The pristine oxide powders were characterized by XRD, nitrogen adsorption, SEM and TEM techniques. A specific surface area and a pore volume of 64.2 m 2 g -1 and 0.33 cm 3 g -1, respectively, were obtained for the well-crystallized WO 3 powder prepared with x = 2/3 and after the removal of the silica template. The WO 3 particles exhibit a sphere-shaped morphology with a particle size of 13 and 320 nm as function of the x ratio. The performance and the sensitivity levels of the thermites prepared from aluminium nanoparticles mixed with (i) the smallest tungsten (VI) oxide material and (ii) the microscale WO 3 were compared. The combustion of these energetic composites was investigated by time resolved cinematography (TRC). This unconventional experimental technique consists to ignite the dried compressed composites by using a CO 2 laser beam, in order to determine their ignition delay time (IDT) and their combustion rate. The downsizing WO 3 particles improves, without ambiguity, the energetic performances of the WO 3/Al thermite. For instance, the ignition delay time was greatly shortened from 54 ± 10 ms to 5.7 ± 0.2 ms and the combustion velocity was increased by a factor 50 to reach a value of 4.1 ± 0.3 m/s. In addition, the use of WO 3 nanoparticles sensitizes the mixture to mechanical stimuli but decreases the sensitivity to electrostatic discharge.

  17. Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN).

    PubMed

    Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas

    2011-12-01

    Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er(2)O(3) particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.

  18. Ball milling synthesis of silica nanoparticle from rice husk ash for drug delivery application.

    PubMed

    Salavati-Niasari, Masoud; Javidi, Jaber; Dadkhah, Mahnaz

    2013-07-01

    Silica nanoparticles were synthesized from rice husk ash at room temperature by using high energy planetary ball mill. The milling time and mill rotational speed were varied in four levels. The morphology of the synthesized powders was investigated by the FE-SEM and TEM image as well as XRD patterns. The results have revealed that the nano-sized amorphous silica particles are formed after about 6 h ball milling and they are spherical in shape. The average particle size of the silica powders is found to be around 70 nm which decreases with increasing ball milling time or mill rotational speed. The as-synthesized silica nanoparticles were subsequently employed as drug carrier to investigate in vitro release behavior of Penicillin-G in simulated body fluid. UV-Vis spectroscopy was used to determine the amount of Penicillin-G released from the carrier. Penicillin-G release profile from silica nanoparticles exhibited a delayed release effect.

  19. Olympus Mons, Mars: Constraints on Lava Flow Silica Composition

    NASA Astrophysics Data System (ADS)

    Kirshner, M.; Jurdy, D. M.

    2016-12-01

    Olympus Mons, Mars, the largest known volcano in our solar system, contains numerous enigmatic lava flow features. Lava tubes have received attention as their final morphologies may offer habitable zones for both native life and human exploration. Such tubes were formed through mechanisms involving several volatile species with significant silica content. Olympus Mons, a shield volcano, might be expected to have flows with silica content similar to that of terrestrial basaltic flows. However, past investigations have estimated a slightly more andesitic composition. Data pertaining to lava tubes such as flow width and slope are collected from the Mars Reconnaissance Orbiter's Context Camera, Mars Odyssey's THEMIS instrument, and Mars Express' HRSC instrument. Compiling this data in GIS software allows for extensive mapping and analysis of Olympus Mons' seemingly inactive flow features. A rheological analysis performed on 62 mapped lava tubes utilizes geometric parameters inferred from mapping. Lava was modeled as a Bingham fluid on an inclined plane, allowing for the derivation of lava yield stress. Percent silica content was calculated for each of the 62 mapped flows using a relationship derived from observations of terrestrial lava yield strengths and corresponding silica composition. Results indicate that lava tube flows across Olympus Mons were on average basaltic in nature, occasionally reaching into the andesitic classification: percent silica content is 51% on average and ranges between roughly 40% and 57%.

  20. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups

    PubMed Central

    Ekkapongpisit, Maneerat; Giovia, Antonino; Follo, Carlo; Caputo, Giuseppe; Isidoro, Ciro

    2012-01-01

    Background and methods Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10–30 nm versus 50 nm), type of material (mesoporous silica versus polystyrene), and surface charge functionalization (none, amine groups, or carboxyl groups) on biocompatibility, uptake, compartmentalization, and intracellular retention of fluorescently labeled nanoparticles in cultured human ovarian cancer cells. We also investigated the involvement of caveolae in the mechanism of uptake of nanoparticles. Results We found that mesoporous silica nanoparticles entered via caveolae-mediated endocytosis and reached the lysosomes; however, while the 50 nm nanoparticles permanently resided within these organelles, the 10 nm nanoparticles soon relocated in the cytoplasm. Naked 10 nm mesoporous silica nanoparticles showed the highest and 50 nm carboxyl-modified mesoporous silica nanoparticles the lowest uptake rates, respectively. Polystyrene nanoparticle uptake also occurred via a caveolae-independent pathway, and was negatively affected by serum. The 30 nm carboxyl-modified polystyrene nanoparticles did not localize in lysosomes and were not toxic, while the 50 nm amine-modified polystyrene nanoparticles accumulated within lysosomes and eventually caused cell death. Ovarian cancer cells expressing caveolin-1 were more likely to endocytose these nanoparticles. Conclusion These data highlight the importance of considering both the physicochemical characteristics (ie, material, size and surface charge on chemical groups) of nanoparticles and the biochemical composition of the cell membrane when choosing the most suitable nanotheranostics for targeting cancer cells. PMID:22904626

  1. Age hardening of 6061/alumina-silica fiber composite

    SciTech Connect

    Khangaonkar, P.R.; Shamsul, J.B.; Azmi, R.

    1994-12-31

    Continuous alumina-silica fiber (Altex of Sumitomo) which yields high performance composites with some aluminium alloys was tried for squeeze cast 6061 based composites with volume fractions of 0.5 and 0.32, and the matrix microhardness and resistivity changes during age hardening were studied. The matrix in the composites hardened much more than the unreinforced alloy. Microhardness increases of up to 70 VPN above the solution treated condition at various aging temperatures were observed. The resistivity variation indicated an appreciable state of internal stress which continued to persist even when hardness fell by overaging. Energy dispersive X-ray analysis indicated that the regions close to the fibers had a higher silicon content than the matrix, and amorphous silica in the fiber may have a role in the formation of an enriched layer which may help the bonding and strength in the composite.

  2. Synthesis and characterization of functionalized silica/SPES composite membranes

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Sharma, Prem Prakash; Kulshrestha, Vaibhav

    2015-06-01

    Mesoporous silica (MCM-41) has been synthesized via sol gel route. Sulfonation of MCM-41 has been done. Synthesized Sulfonated MCM-41 (S-MCM-41) has been incorporated within SPES (sulfonated poly ether sulfone) polymer matrix to prepare composite membranes. Various concentration of S-MCM-41 has been incorporated into SPES i.e. 1, 2, 5, 10 and 20 wt% to synthesize membranes of different wt% of mesoporous silica. FTIR and XRD of MCM-41 and S-MCM-41 were done to confirm the chemical and structural properties. AFM and UTM are used to find out morphology and mechanical properties of the composites. The water uptake and ionic conductivity of the composite membranes increases with MCM content in composite membrane. Mechanical stability of the membrane also found to be increases with MCM content.

  3. Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water.

    PubMed

    Lozano-Torres, Beatriz; Pascual, Lluís; Bernardos, Andrea; Marcos, María D; Jeppesen, Jan O; Salinas, Yolanda; Martínez-Máñez, Ramón; Sancenón, Félix

    2017-03-23

    Mesoporous silica nanoparticles loaded with fluorescein and capped by a pseudorotaxane, formed between a naphthalene derivative and cyclobis(paraquat-p-phenylene) (CBPQT(4+)), were used for the selective and sensitive fluorogenic detection of 3,4-methylenedioxymethamphetamine (MDMA).

  4. Synthesis of monodisperse, hierarchically mesoporous, silica microspheres embedded with magnetic nanoparticles.

    PubMed

    Wang, Yong; He, Jie; Chen, Jiwei; Ren, Lianbing; Jiang, Biwang; Zhao, Jing

    2012-05-01

    We report a preparation method for the synthesis of monodisperse magnetic polymer/silica hybrid microspheres using polymer microspheres incorporated with magnetic nanoparticles as a novel template. Monodisperse, hierarchically mesoporous, silica microspheres embedded with magnetic nanoparticles were successfully fabricated after the calcination of the hybrid microspheres. The magnetic nanoparticles were encapsulated in silica and distributed over the whole area of the porous microspheres without leakage. The resulting inorganic materials possess highly useful properties such as high magnetic nanoparticle loading, high surface area, and large pore volumes. The hierarchically mesoporous magnetic silica microspheres resulted in a high bovine serum albumin (BSA) protein adsorption capacity (260 mg/g) and a fast adsorption rate (reaching equilibrium with 8 h).

  5. In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes.

    PubMed

    Yang, Xiaowei; Cai, Zhengwei; Ye, Zhangmei; Chen, Sheng; Yang, Yu; Wang, Haifang; Liu, Yuanfang; Cao, Aoneng

    2012-01-21

    A simple method is used to covalently encapsulate enzymes in silica nanoparticles. The encapsulation is highlighted by the high enzyme loading and porous channels that provide efficient diffusion for small substrate and product molecules while preventing protease degradation.

  6. Tunable catalysts for solvent-free biphasic systems: pickering interfacial catalysts over amphiphilic silica nanoparticles.

    PubMed

    Zhou, Wen-Juan; Fang, Lin; Fan, Zhaoyu; Albela, Belén; Bonneviot, Laurent; De Campo, Floryan; Pera-Titus, Marc; Clacens, Jean-Marc

    2014-04-02

    Stabilization of oil/oil Pickering emulsions using robust and recyclable catalytic amphiphilic silica nanoparticles bearing alkyl and propylsulfonic acid groups allows fast and efficient solvent-free acetalization of immiscible long-chain fatty aldehydes with ethylene glycol.

  7. Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Z. X.; Huang, Y. Z.; Shi, S. G.; Tang, S. H.; Li, D. H.; Chen, X. L.

    2014-07-01

    In this work, we develop novel mesoporous silica composite nanoparticles (hm-SiO2(AlC4Pc)@Pd) for the co-delivery of photosensitizer (PS) tetra-substituted carboxyl aluminum phthalocyanine (AlC4Pc) and small Pd nanosheets as a potential dual carrier system to combine photodynamic therapy (PDT) with photothermal therapy (PTT). In the nanocomposite, PS AlC4Pc was covalently conjugated to a mesoporous silica network, and small Pd nanosheets were coated onto the surface of mesoporous silica by both coordination and electrostatic interaction. Since small Pd nanosheets and AlC4Pc display matched maximum absorptions in the 600-800 nm near-infrared (NIR) region, the fabricated hm-SiO2(AlC4Pc)@Pd nanocomposites can generate both singlet oxygen and heat upon 660 nm single continuous wavelength (CW) laser irradiation. In vitro results indicated that the cell-killing efficacy by simultaneous PDT/PTT treatment using hm-SiO2(AlC4Pc)@Pd was higher than PDT or PTT treatment alone after exposure to a 660 nm CW-NIR laser.

  8. Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy.

    PubMed

    Zhao, Z X; Huang, Y Z; Shi, S G; Tang, S H; Li, D H; Chen, X L

    2014-07-18

    In this work, we develop novel mesoporous silica composite nanoparticles (hm-SiO2(AlC4Pc)@Pd) for the co-delivery of photosensitizer (PS) tetra-substituted carboxyl aluminum phthalocyanine (AlC4Pc) and small Pd nanosheets as a potential dual carrier system to combine photodynamic therapy (PDT) with photothermal therapy (PTT). In the nanocomposite, PS AlC4Pc was covalently conjugated to a mesoporous silica network, and small Pd nanosheets were coated onto the surface of mesoporous silica by both coordination and electrostatic interaction. Since small Pd nanosheets and AlC4Pc display matched maximum absorptions in the 600-800 nm near-infrared (NIR) region, the fabricated hm-SiO2(AlC4Pc)@Pd nanocomposites can generate both singlet oxygen and heat upon 660 nm single continuous wavelength (CW) laser irradiation. In vitro results indicated that the cell-killing efficacy by simultaneous PDT/PTT treatment using hm-SiO2(AlC4Pc)@Pd was higher than PDT or PTT treatment alone after exposure to a 660 nm CW-NIR laser.

  9. Engineered silica nanoparticles as additives in lubricant oils

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, Teresa; Fernández González, Alfonso; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E.; Badía-Laíño, Rosana

    2015-10-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol-gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives.

  10. Scattering of ultrasonic shock waves in suspensions of silica nanoparticles.

    PubMed

    Baudoin, Michael; Thomas, Jean-Louis; Coulouvrat, François; Chanéac, Corinne

    2011-03-01

    Experiments are carried out to assess, for the first time, the validity of a generalized Burgers' equation, introduced first by Davidson [J. Acoust. Soc. Am. 54, 1331-1342 (1973)] to compute the nonlinear propagation of finite amplitude acoustical waves in suspensions of "rigid" particles. Silica nanoparticles of two sizes (33 and 69 nm) have been synthesized in a water-ethanol mixture and precisely characterized via electron microscopy. An acoustical beam of high amplitude is generated at 1 MHz inside a water tank, leading to the formation of acoustical shock waves through nonlinear steepening. The signal is then measured after propagation in a cylinder containing either a reference solution or suspensions of nanoparticles. In this way, a "nonlinear attenuation" is obtained and compared to the numerical solution of a generalized Burgers' equation adapted to the case of hydrosols. An excellent agreement (corresponding to an error on the particles size estimation of 3 nm) is achieved in the frequency range from 1 to 40 MHz. Both visco-inertial and thermal scattering are significant in the present case, whereas thermal effects can generally be neglected for most hydrosols. This is due to the value of the specific heat ratio of water-ethanol mixture which significantly differs from unity.

  11. Engineered silica nanoparticles as additives in lubricant oils

    PubMed Central

    López, Teresa Díaz-Faes; González, Alfonso Fernández; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E; Badía-Laíño, Rosana

    2015-01-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol–gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives. PMID:27877840

  12. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles.

    PubMed

    Xu, Ligang; He, Junhui

    2012-05-15

    We herein report a simple and effective method to fabricate excellent transparent superhydrophobic coatings. 3-Aminopropytriethoxysilane (APTS)-modified hollow silica nanoparticle sols were dip-coated on slide glasses, followed by thermal annealing and chemical vapor deposition with 1H,1H,2H,2H-perfluorooctyltrimethoxysilane (POTS). The largest water contact angle (WCA) of coating reached as high as 156° with a sliding angle (SA) of ≤2° and a maximum transmittance of 83.7%. The highest transmittance of coated slide glass reached as high as 92% with a WCA of 146° and an SA of ≤6°. A coating simultaneously showing both good transparency (90.2%) and superhydrophobicity (WCA: 150°, SA: 4°) was achieved through regulating the concentration of APTS and the withdrawing speed of dip-coating. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to observe the morphology and structure of nanoparticles and coating surfaces. Optical properties were characterized by a UV-visible spectrophotometer. Surface wettability was studied by a contact angle/interface system. The effects of APTS concentration and the withdrawing speed of dip-coating were also discussed on the basis of experimental observations.

  13. Quantification of Internalized Silica Nanoparticles via STED Microscopy

    PubMed Central

    Peuschel, Henrike; Ruckelshausen, Thomas; Cavelius, Christian; Kraegeloh, Annette

    2015-01-01

    The development of safe engineered nanoparticles (NPs) requires a detailed understanding of their interaction mechanisms on a cellular level. Therefore, quantification of NP internalization is crucial to predict the potential impact of intracellular NP doses, providing essential information for risk assessment as well as for drug delivery applications. In this study, the internalization of 25 nm and 85 nm silica nanoparticles (SNPs) in alveolar type II cells (A549) was quantified by application of super-resolution STED (stimulated emission depletion) microscopy. Cells were exposed to equal particle number concentrations (9.2 × 1010 particles mL−1) of each particle size and the sedimentation of particles during exposure was taken into account. Microscopy images revealed that particles of both sizes entered the cells after 5 h incubation in serum supplemented and serum-free medium. According to the in vitro sedimentation, diffusion, and dosimetry (ISDD) model 20–27% of the particles sedimented. In comparison, 102-103 NPs per cell were detected intracellularly serum-containing medium. Furthermore, in the presence of serum, no cytotoxicity was induced by the SNPs. In serum-free medium, large agglomerates of both particle sizes covered the cells whereas only high concentrations (≥ 3.8 × 1012 particles mL−1) of the smaller particles induced cytotoxicity. PMID:26125028

  14. Synthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh

    2016-11-01

    Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) < 10°. In addition, the near infrared (NIR) reflectance properties of PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties.

  15. Synthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles

    PubMed Central

    Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh

    2016-01-01

    Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) < 10°. In addition, the near infrared (NIR) reflectance properties of PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties. PMID:27824064

  16. Silica-supported silver nanoparticles: Tailoring of structure-property relationships

    SciTech Connect

    Barreca, Davide; Gasparotto, Alberto; Maragno, Cinzia; Tondello, Eugenio; Gialanella, Stefano

    2005-03-01

    Silica-supported silver nanoparticles were obtained by rf sputtering from Ar plasmas under soft synthesis conditions, with particular attention to the combined influence of rf power and total pressure on the system composition, nanostructure, morphology, and optical properties. In order to attain a thorough insight into the nucleation and growth phenomena of Ag nanoparticles on the silica substrate, several in situ and ex situ characterization techniques were used. In particular, a laser reflection interferometry system was employed for a real-time monitoring of the deposition process, providing useful and complementary information with respect to the other ex situ techniques (x-ray photoelectron spectroscopy and x-ray excited Auger electron spectroscopy, glancing incidence x-ray diffraction, atomic force microscopy, optical-absorption spectroscopy, and transmission electron microscopy). The above investigations evidenced the formation of silver-based nanosystems (average crystallite size {<=}10 nm), whose features (metal content, Ag particle size and shape, structure and optical properties) could be carefully tailored by moderate and controlled variations of the synthesis parameters.

  17. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine.

    PubMed

    Ambrogio, Michael W; Thomas, Courtney R; Zhao, Yan-Li; Zink, Jeffrey I; Stoddart, J Fraser

    2011-10-18

    Medicine can benefit significantly from advances in nanotechnology because nanoscale assemblies promise to improve on previously established therapeutic and diagnostic regimes. Over the past decade, the use of delivery platforms has attracted attention as researchers shift their focus toward new ways to deliver therapeutic and/or diagnostic agents and away from the development of new drug candidates. Metaphorically, the use of delivery platforms in medicine can be viewed as the "bow-and-arrow" approach, where the drugs are the arrows and the delivery vehicles are the bows. Even if one possesses the best arrows that money can buy, they will not be useful if one does not have the appropriate bow to deliver the arrows to their intended location. Currently, many strategies exist for the delivery of bioactive agents within living tissue. Polymers, dendrimers, micelles, vesicles, and nanoparticles have all been investigated for their use as possible delivery vehicles. With the growth of nanomedicine, one can envisage the possibility of fabricating a theranostic vector that could release powerful therapeutics and diagnostic markers simultaneously and selectively to diseased tissue. In our design of more robust theranostic delivery systems, we have focused our attention on using mesoporous silica nanoparticles (SNPs). The payload "cargo" molecules can be stored within this robust domain, which is stable to a wide range of chemical conditions. This stability allows SNPs to be functionalized with stimulus-responsive mechanically interlocked molecules (MIMs) in the shape of bistable rotaxanes and psuedorotaxanes to yield mechanized silica nanoparticles (MSNPs). In this Account, we chronicle the evolution of various MSNPs, which came about as a result of our decade-long collaboration, and discuss advances in the synthesis of novel hybrid SNPs and the various MIMs which have been attached to their surfaces. These MIMs can be designed in such a way that they either change shape

  18. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  19. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  20. Silica nanoparticle stabilization of liquid crystalline lipid dispersions: impact on enzymatic digestion and drug solubilization.

    PubMed

    Bhatt, Achal B; Barnes, Timothy J; Prestidge, Clive A

    2015-01-01

    The high internal surface area and drug solubilizing capacity of liquid crystal lipids makes them promising oral drug delivery systems. Pluronic F127 is typically used to disperse highly viscous cubic liquid crystal lipids into cubosomes; however, such copolymers alter the internal structure and provide little control over enzymatic digestion. This study aimed to use hydrophilic silica nanoparticles to stabilize glyceryl monooleate (GMO) cubosomes prepared by ultrasonication. We investigate the influence of silica nanoparticles size and concentration on the physical (colloidal) and chemical (enzymatic digestion) stability, as well as in vitro solubilization of cinnarizine as a poorly soluble model drug. Silica stabilized nanostructured liquid crystal dispersions (120 nm to150 nm in diameter and zeta potentials of-30 mV to -60 mV) were successfully prepared with excellent long-term stability (<10% size change after 30 days). Silica stabilized GMO cubosomes demonstrated reduced enzymatic digestion compared to pluronic F127 stabilized cubosomes. This reduced digestion was attributed to a combination of adsorbed silica nanoparticles acting as a physical barrier and excess dispersed silica adsorbing/scavenging the lipase enzyme. Under simulated intestinal digestion conditions, silica stabilized GMO cubosomes showed a greater solubilization capacity for cinnarizine, which precipitated in non-crystalline form, in comparison to pure drug suspensions or pluronic F127 stabilized GMO cubosomes. Silica nanoparticle stabilized GMO liquid crystal dispersions are a promising oral delivery vehicle.

  1. Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics.

    PubMed

    Zhao, Yan; Xu, Zhiguang; Wang, Xungai; Lin, Tong

    2012-04-17

    In this study, we report the functionalization of silica nanoparticles with highly photoreactive phenyl azido groups and their utility as a negatively charged building block for layer-by-layer (LbL) electrostatic assembly to produce a stable silica nanoparticle coating. Azido-terminated silica nanoparticles were prepared by the functionalization of bare silica nanoparticles with 3-aminopropyltrimethoxysilane followed by the reaction with 4-azidobenzoic acid. The azido functionalization was confirmed by FTIR and XPS. Poly(allylamine hydrochloride) was also grafted with phenyl azido groups and used as photoreactive polycations for LbL assembly. For the photoreactive silica nanoparticle/polycation multilayers, UV irradiation can induce the covalent cross-linking within the multilayers as well as the anchoring of the multilayer film onto the organic substrate, through azido photochemical reactions including C-H insertion/abstraction reactions with surrounding molecules and dimerization of azido groups. Our results show that the stability of the silica nanoparticle/polycation multilayer film was greatly improved after UV irradiation. Combined with a fluoroalkylsilane post-treatment, the photoreactive LbL multilayers were used as a coating for superhydrophobic modification of cotton fabrics. Herein the LbL assembly method enables us to tailor the number of the coated silica nanoparticles through the assembly cycles. The superhydrophobicity of cotton fabrics was durable against acids, bases, and organic solvents, as well as repeated machine wash. Because of the unique azido photochemistry, the approach used here to anchor silica nanoparticles is applicable to almost any organic substrate. © 2012 American Chemical Society

  2. Carbohydrate-Conjugated Hollow Oblate Mesoporous Silica Nanoparticles as Nanoantibiotics to Target Mycobacteria.

    PubMed

    Hao, Nanjing; Chen, Xuan; Jeon, Seaho; Yan, Mingdi

    2015-12-30

    Engineering nanomaterials with enhanced antibacterial activities remains a critical and practical challenge. Hollow oblate mesoporous silica nanoparticles (HOMSNs) are synthesized by a simple protocol of ammonia hydrothermal treatment of oblate mesoporous silica nanoparticles prepared using dibenzyl ether as a cosolvent. When conjugated with trehalose as the targeting ligand, the antibiotic-encapsulated HOMSNs exhibit high binding affinity and antibacterial efficacy toward mycobacteria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Carbohydrate-Conjugated Hollow Oblate Mesoporous Silica Nanoparticles as Nanoantibiotics to Target Mycobacteria

    PubMed Central

    Hao, Nanjing; Chen, Xuan; Jeon, Seaho

    2015-01-01

    Engineering nanomaterials with enhanced antibacterial activities remains a critical and practical challenge. Hollow oblate mesoporous silica nanoparticles (HOMSNs) are synthesized by a simple protocol of ammonia hydrothermal treatment of oblate mesoporous silica nanoparticles prepared using dibenzyl ether as a co-solvent. When conjugate with trehalose as the targeting ligand, the antibiotic-encapsulated HOMSNs exhibit high binding affinity and antibacterial efficacy towards mycobacteria. PMID:26450697

  4. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    SciTech Connect

    Ahmad, Javed; Ahamed, Maqusood; Akhtar, Mohd Javed; Alrokayan, Salman A.; Siddiqui, Maqsood A.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2012-03-01

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion of glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.

  5. Mechanical behavior of silica nanoparticle-impregnated Kevlar fabrics

    NASA Astrophysics Data System (ADS)

    Dong, Zhaoxu

    Plain woven Kevlar fabrics are widely used as body protection materials. The present study investigated the impact performance of five styles of Kevlar fabrics K310, K706, K720, K745 and K779 from Hexcel. The fabrics are different in many aspects, i.e., weight per square meter, yarn counts, yarn size, Kevlar fiber type, friction and breaking strength. Silica nanoparticles were impregnated into the fabric to enhance the ballistic impact performance. The fabric impregnated with nanoparticles exhibit significant enhancement in impact performance over their neat counterparts. Fabrics experience large deformation under impact. More or less yarn pull-out was observed on all the fabrics. The in-plane yarn pull-out force has good correlation to the impact performance: fabrics with higher pull-out force performed better in impact tests. A two-dimensional finite element model was proposed to simulate the single yarn pull-out procedure and predict the maximum pull-out force. The most important fabric features are included in this model: yarn count, yarn size, fabric thickness, yarn waviness, fiber modulus, fiber diameter and coefficients of friction et al. The numerical results show good agreement with the experimentally measured pull-out forces. To understand the impact process, a constitutive model was developed to characterize the nonlinear anisotropic properties of the fabric in large deformation. The nanoparticles largely increase the shear stiffness, while only slightly affect the tension behavior along warp and weft yarn directions. This constitutive model was incorporated in the commercial FEA software ABAQUS through the user-defined material subroutine and used to simulate deformations with various loads. Finally the out-of-plane yarn pull-out force was predicted from the in-plane yarn pull-out results using finite element method and the proposed constitutive model.

  6. Cytotoxicity evaluation of silica nanoparticles using fish cell lines.

    PubMed

    Vo, Nguyen T K; Bufalino, Mary R; Hartlen, Kurtis D; Kitaev, Vladimir; Lee, Lucy E J

    2014-01-01

    Nanoparticles (NPs) have extensive industrial, biotechnological, and biomedical/pharmaceutical applications, leading to concerns over health risks to humans and biota. Among various types of nanoparticles, silica nanoparticles (SiO2 NPs) have become popular as nanostructuring, drug delivery, and optical imaging agents. SiO2 NPs are highly stable and could bioaccumulate in the environment. Although toxicity studies of SiO2 NPs to human and mammalian cells have been reported, their effects on aquatic biota, especially fish, have not been significantly studied. Twelve adherent fish cell lines derived from six species (rainbow trout, fathead minnow, zebrafish, goldfish, haddock, and American eel) were used to comparatively evaluate viability of cells by measuring metabolic impairment using Alamar Blue. Toxicity of SiO2 NPs appeared to be size-, time-, temperature-, and dose-dependent as well as tissue-specific. However, dosages greater than 100 μg/mL were needed to achieve 24 h EC50 values (effective concentrations needed to reduce cell viability by 50%). Smaller SiO2 NPs (16 nm) were relatively more toxic than larger sized ones (24 and 44 nm) and external lining epithelial tissue (skin, gills)-derived cells were more sensitive than cells derived from internal tissues (liver, brain, intestine, gonads) or embryos. Higher EC50 values were achieved when toxicity assessment was performed at higher incubation temperatures. These findings are in overall agreement with similar human and mouse cell studies reported to date. Thus, fish cell lines could be valuable for screening emerging contaminants in aquatic environments including NPs through rapid high-throughput cytotoxicity bioassays.

  7. Enhanced Pt utilization in electrocatalysts by covering of colloidal silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Jianhuang; Chen, Jianjun; Lee, Jim Yang

    This work aims at enhancing Pt utilization in electrocatalysts by covering of preformed silica nanoparticles. Pt/C electrocatalysts were prepared by reductive deposition of Pt by citrate at moderate temperatures on silica nanoparticles with varying atomic silica to Pt ratios (1.7:1 and 3.3:1) to study the effects of silica to Pt ratio. Considerable voidages were created by inter-situated 10-20 nm silica nanoparticles between support carbon particulates to facilitate mass transfer of reactants and products. This particular method of catalyst preparation increases the Pt metal utilization, and generates a large amount of accessible voidage in the interpenetrating particle network of carbon and silica to support the facile transport of reactants and products. Electrochemical hydrogen adsorption/desorption has shown an increase in electrochemically active surface area by this approach. Methanol electro-oxidation was used as a test reaction to evaluate the catalytic activity. It was found that the Pt catalyst modified with silica at silica:Pt = 1.7:1 atomic ratio was more active than a catalyst prepared when silica to Pt ratio increased to 3.3:1.

  8. Correlating the Morphological Properties and Structural Organization of Monodisperse Spherical Silica Nanoparticles Grown on a Commercial Silica Surface.

    PubMed

    Moreno, Yolice P; Cardoso, Mateus B; Moncada, Edwin A; dos Santos, João H Z

    2015-10-05

    A variety of nanosilicas have been widely used to fabricate rough surfaces with superhydrophobic and superhydrophilic properties. In this context, we prepared mixed silica and mixed nanosilica that were generated by the growth and self-assembly of synthesized monodisperse silica nanospheres (11-30 nm, 363 m(2)  g(-1) ) on the surface of Sylopol-948 and Dispercoll S3030 by using a base-catalyzed sol-gel route. Using this process, the interactions and hierarchical structure between the nano- and microsized synthesized silica particles were studied by changing the amount of tetraethoxysilane. The resulting materials were characterized by BET analysis, small-angle X-ray scattering (SAXS), dynamic light scattering, FTIR spectroscopy, and SEM. The mixed silica presented a higher specific surface area (326 m(2)  g(-1) ), a six-fold higher percentage of (SiO)6 (44-68 %), and a higher amount of silanol groups (14.0-30.7 %) than Sylopol-948 (271 m(2)  g(-1), 42.6 %, and 12.5 %, respectively). The morphological and hierarchical structural differences in the silica nanoparticles synthesized on the surface of commercial silica (micrometric or nanometric) were identified by SAXS. Mixed micrometric silica exhibited a higher degree of structural organization between particles than mixed nanosilica. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

    PubMed Central

    Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor

    2013-01-01

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052

  10. Improvement of thermal stability of polypropylene using DOPO-immobilized silica nanoparticles

    PubMed Central

    Dong, Quanxiao; Ding, Yanfen; Wen, Bin; Wang, Feng; Dong, Huicong; Zhang, Shimin

    2014-01-01

    After the surface silylation with 3-methacryloxypropyltrimethoxysilane, silica nanoparticles were further modified by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). The immobilization of DOPO on silica nanoparticles was confirmed by Fourier transform infrared spectroscopy, UV–visible spectroscopy, magic angle spinning nuclear magnetic resonance, and thermogravimetric analysis. By incorporating the DOPO-immobilized silica nanoparticles (5 wt%) into polypropylene matrix, the thermal oxidative stability exhibited an improvement of 62 °C for the half weight loss temperature, while that was only 26 °C increment with incorporation of virgin silica nanoparticles (5 wt%). Apparent activation energies of the polymer nanocomposites were estimated via Flynn–Wall–Ozawa method. It was found that the incorporation of DOPO-immobilized silica nanoparticles improved activation energies of the degradation reaction. Based on the results, it was speculated that DOPO-immobilized silica nanoparticles could inhibit the degradation of polypropylene and catalyze the formation of carbonaceous char on the surface. Thus, thermal stability was significantly improved. PMID:24729654

  11. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model.

    PubMed

    Duan, Junchao; Yu, Yongbo; Li, Yang; Yu, Yang; Sun, Zhiwei

    2013-07-01

    Environmental exposure to nanomaterials is inevitable as nanomaterials become part of our daily life, and as a result, nanotoxicity research is gaining attention. However, most investigators focus on the evaluation of overall toxicity instead of a certain organism system. In this regard, the evaluation of cardiovascular effects of silica nanoparticles was preformed in vitro and in vivo. It's worth noting that silica nanoparticles induced cytotoxicity as well as oxidative stress and apoptosis. ROS and apoptosis were considered as major factor to endothelial cells dysfunction, involved in several molecular mechanisms of cardiovascular diseases. In vivo study, mortality, malformation, heart rate and whole-embryo cellular death were measured in zebrafish embryos. Results showed that silica nanoparticles induced pericardia toxicity and caused bradycardia. We also examined the expression of cardiovascular-related proteins in embryos by western blot analysis. Silica nanoparticles inhibited the expression of p-VEGFR2 and p-ERK1/2 as well as the downregulation of MEF2C and NKX2.5, revealed that silica nanoparticles could inhibit the angiogenesis and disturb the heart formation and development. In summary, our results suggest that exposure to silica nanoparticles is a possible risk factor to cardiovascular system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    PubMed

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release

    NASA Astrophysics Data System (ADS)

    Du, Pengcheng; Zhao, Xubo; Zeng, Jin; Guo, Jinshan; Liu, Peng

    2015-08-01

    Fluorescent core/shell composite has been fabricated by the layer-by-layer (LbL) assembly of the fluorescein isothiocyanate modified chitosan (CS-FITC) and sodium alginate (AL) onto the carboxyl modified mesoporous silica nanoparticles (MSN-COOH), followed by PEGylation. It exhibits stability in high salt-concentration media and the pH responsive fluorescent feature can be used for cell imaging. Furthermore, the modified MSN cores can enhance the DOX loading capacity and the multifunctional polyelectrolyte shell can adjust the drug release upon the media pH, showing a low leakage quantity at the neutral environment but significantly enhanced release at lower pH media mimicking the tumor environments. Therefore, the biocompatible fluorescent polyelectrolyte coated mesoporous silica nanoparticles (MSN-LBL-PEG) offer promise for tumor therapy.

  14. Use of thulium-doped LaF3 nanoparticles to lower the phonon energy of the thulium's environment in silica-based optical fibres

    NASA Astrophysics Data System (ADS)

    Vermillac, Manuel; Fneich, Hussein; Lupi, Jean-François; Tissot, Jean-Baptiste; Kucera, Courtney; Vennéguès, Philippe; Mehdi, Ahmad; Neuville, Daniel R.; Ballato, John; Blanc, Wilfried

    2017-06-01

    New lasers and amplifiers based on rare-earth (RE)-doped silica optical fibres need improved spectroscopic performance. In this context, a route of interest consists of embedding RE ions within nanoparticles of composition and structure different from those of silica. In this report, optical fibres were prepared by doping the preform with LaF3:Tm3+ nanoparticles. Particles react through the process (Modified Chemical Vapor Deposition) to form fluoride-free amorphous nanoparticles that encapsulate the thulium ions. Nanoparticle doping permits enhanced 3H4 lifetimes up to 58 μs with good optical transparency and only 3000 at. ppm lanthanum. We also report on the advantage of doping with nanoparticles in order to control energy transfer.

  15. Enzymatic hydrolysis of quinizarin diester by lipase in silica nanoparticles investigated by fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sabatini, Carolina A.; Gehlen, Marcelo H.

    2014-06-01

    The enzymatic hydrolysis of quinizarin diester in silica nanoparticle (NP) of 200 nm diameter is investigated by confocal fluorescence microscopy. The quinizarin diester substrate and the intermediate quinizarin monoester are non-fluorescent species and only the end product—quinizarin formed by enzymatic hydrolysis produces intense fluorescence of the silica NP. The enzyme activity of lipase adsorbed into silica NP was similar to that observed for lipase chemically bound to silica surface. In both situations, partial aggregation of the silica NP dispersed in thin film of polyvinylpyrrolidone was observed from fluorescence and scanning electron microscopy images. The fluorescence decay of the end product—quinizarin in silica NP was biexponential with decay times of 0.49 and 2.17 ns. These two decay times found are ascribed to quinizarin adsorbed in silica NP and dispersed in the surrounding medium, respectively.

  16. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800

  17. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles.

    PubMed

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-03-11

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures.

  18. The synthesis and application of two mesoporous silica nanoparticles as drug delivery system with different shape

    NASA Astrophysics Data System (ADS)

    Wang, Jiayi; Wang, Zhuyuan; Chen, Hui; Zong, Shenfei; Cui, Yiping

    2015-05-01

    Mesoporous silica nanospheres(MSNSs) have been obtained utilizing the conventional reverse micelles synthesis method while the mesoporous silica nanorods(MSNRs) have been acquired by means of changing certain parameters. Afterwards, the prepared mesoporous silica nanospheres and nanorods were used as drug carriers to load and release the classical cancer therapeutic drug—DOX. According to the absorption spectra, the encapsulation efficiency of the mesoporous silica nanospheres is almost as high as that of the nanospheres. Different from the familiar encapsulation efficiency, the release characteristic curves of the mesoporous silica nanospheres and nanorods possessed certain differences during the release process. Finally incellular fluorescence imaging was achieved to observe the endocytosis of the mesoporous silica materials. Our results show that although both of the two kinds of nanoparticles possess favourable properties for loading and releasing drugs, the mesoporous silica nanospheres perform better in dispersity and controlled release than the nanorods, which probably endow them the potential as incellular drug delivery system.

  19. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    NASA Astrophysics Data System (ADS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-05-01

    Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles' surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  20. Preparation and evaluation of ionic liquid-gold nanoparticles functionalized silica monolithic column for capillary electrochromatography.

    PubMed

    Lu, Junyu; Ye, Fanggui; Zhang, Aizhu; Chen, Xia; Wei, Yu; Zhao, Shulin

    2012-12-21

    This paper describes the development of silica monolithic column modified with ionic liquids-gold nanoparticles (ILs-GNPs) for capillary electrochromatography (CEC). The novel ILs (1-methyl-2-mercapto-3-butylimidazolium bromide) were synthesized and used to modify GNPs functionalized silica monolithic column via the formation of a Au-S bond. The morphology of the GNPs and ILs-GNPs functionalized silica (ILs-GNPs-silica) monolithic column were characterized by transmission electron microscopy and scanning electron microscope, respectively. A cathodic electroosmotic flow was observed at pH above 6.4 on ILs-GNPs-silica monolithic column, which was reversed at acidic pH. The electrochromatographic performance of ILs-GNPs-silica monolithic column was evaluated by separation of different kinds of analytes such as hydrophobic, polar and basic compounds. The ILs-GNPs-silica monolithic column displayed enhanced hydrophobic retention characteristics in the separation of five hydrophobic n-alkylbenzenes when compared to the ILs bonded silica monolithic column. The column efficiencies for the n-alkylbenzenes were from 62,000 to 110,000 N m(-1). The ILs-GNPs-silica monolithic column exhibited reversed-phase electrochromatographic behavior toward neutral solutes. Separation of polar compounds was demonstrated on ILs-GNPs-silica monolithic column in reversed-phase CEC mode using high aqueous mobile phases. The relatively good peak shape and high separation efficiency on ILs-GNPs-silica monolithic column was obtained for basic solutes when compared to silica monolithic column modified GNPs.

  1. Anti-Adhesive Behaviors between Solid Hydrate and Liquid Aqueous Phase Induced by Hydrophobic Silica Nanoparticles.

    PubMed

    Min, Juwon; Baek, Seungjun; Somasundaran, P; Lee, Jae W

    2016-09-20

    This study introduces an "anti-adhesive force" at the interface of solid hydrate and liquid solution phases. The force was induced by the presence of hydrophobic silica nanoparticles or one of the common anti-agglomerants (AAs), sorbitan monolaurate (Span 20), at the interface. The anti-adhesive force, which is defined as the maximum pushing force that does not induce the formation of a capillary bridge between the cyclopentane (CP) hydrate particle and the aqueous solution, was measured using a microbalance. Both hydrophobic silica nanoparticles and Span 20 can inhibit adhesion between the CP hydrate probe and the aqueous phase because silica nanoparticles have an aggregative property at the interface, and Span 20 enables the hydrate surface to be wetted with oil. Adding water-soluble sodium dodecyl sulfate (SDS) to the nanoparticle system cannot affect the aggregative property or the distribution of silica nanoparticles at the interface and, thus, cannot change the anti-adhesive effect. However, the combined system of Span 20 and SDS dramatically reduces the interfacial tension: emulsion drops were formed at the interface without any energy input and were adsorbed on the CP hydrate surface, which can cause the growth of hydrate particles. Silica nanoparticles have a good anti-adhesive performance with a relatively smaller dosage and are less influenced by the presence of molecular surfactants; consequently, these nanoparticles may have a good potential for hydrate inhibition as AAs.

  2. Direct visual detection of DNA based on the light scattering of silica nanoparticles on a human papillomavirus DNA chip.

    PubMed

    Piao, Jing Yu; Park, Eun Hee; Choi, Kihwan; Quan, Bo; Kang, Dong Ho; Park, Pan Yun; Kim, Dai Sik; Chung, Doo Soo

    2009-12-15

    A detection system for a human papillomavirus (HPV) DNA chip based on the light scattering of aggregated silica nanoparticle probes is presented. In the assay, a target HPV DNA is sandwiched between the capture DNA immobilized on the chip and the probe DNA immobilized on the plain silica nanoparticle. The spot where the sandwich reaction occurs appears bright white and is readily distinguishable to the naked eye. Scanning electron microscopy images clearly show the aggregation of the silica nanoparticle probes. When three different sized (55 nm, 137 nm, 286 nm) plain silica nanoparticles were compared, probes of the larger silica nanoparticles showed a higher scattering intensity. Using 286-nm silica nanoparticles, the spots obtained with 200 pM of target DNA were visually detectable. The demonstrated capability to detect a disease related target DNA with direct visualization without using a complex detection instrument provides the prerequisite for the development of portable testing kits for genotyping.

  3. Adapting BODIPYs to singlet oxygen production on silica nanoparticles.

    PubMed

    Epelde-Elezcano, Nerea; Prieto-Montero, Ruth; Martínez-Martínez, Virginia; Ortiz, María J; Prieto-Castañeda, Alejandro; Peña-Cabrera, Eduardo; Belmonte-Vázquez, José L; López-Arbeloa, Iñigo; Brown, Ross; Lacombe, Sylvie

    2017-05-31

    A modified Stöber method is used to synthesize spherical core-shell silica nanoparticles (NPs) with an external surface functionalized by amino groups and with an average size around 50 nm. Fluorescent dyes and photosensitizers of singlet oxygen were fixed, either separately or conjointly, respectively in the core or in the shell. Rhodamines were encapsulated in the core with relatively high fluorescence quantum yields (Φfl ≥ 0.3), allowing fluorescence tracking of the particles. Various photosensitizers of singlet oxygen (PS) were covalenty coupled to the shell, allowing singlet oxygen production. The stability of NP suspensions strongly deteriorated upon grafting the PS, affecting their apparent singlet oxygen quantum yields. Agglomeration of NPs depends both on the type and on the amount of grafted photosensitizer. New, lab-made, halogenated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY) grafted to the NPs achieved higher singlet oxygen quantum yields (ΦΔ ∼ 0.35-0.40) than Rose Bengal (RB) grafted NPs (ΦΔ ∼ 0.10-0.27). Finally, we combined both fluorescence and PS functions in the same NP, namely a rhodamine in the silica core and a BODIPY or RB grafted in the shell, achieving the performance Φfl ∼ 0.10-0.20, ΦΔ ∼ 0.16-0.25 with a single excitation wavelength. Thus, proper choice of the dyes, of their concentrations inside and on the NPs and the grafting method enables fine-tuning of singlet oxygen production and fluorescence emission.

  4. Surface functionalized mesoporous silica nanoparticles for intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Vivero-Escoto, Juan Luis

    Mesoporous silica nanoparticles (MSNs) are a highly promising platform for intracellular controlled release of drugs and biomolecules. Despite that the application of MSNs in the field of intracellular drug delivery is still at its infancy very exciting breakthroughs have been achieved in the last years. A general review of the most recent progress in this area of research is presented, including a description of the latest findings on the pathways of entry into live mammalian cells together with the intracellular trafficking, a summary on the contribution of MSNs to the development of site-specific drug delivery systems, a report on the biocompatibility of this material in vitro andin vivo, and a discussion on the most recent breakthroughs in the synthesis and application of stimuli-responsive mesoporous silica-based delivery vehicles. A gold nanoparticles (AuNPs)-capped MSNs-based intracellular photoinduced drug delivery system (PR-AuNPs-MSNs) for the controlled release of anticancer drug inside of human fibroblast and liver cells was synthesized and characterized. We found that the mesoporous channels of MSNs could be efficiently capped by the photoresponsive AuNPs without leaking the toxic drug, paclitaxel, inside of human cells. Furthermore, we demonstrated that the cargo-release property of this PR-AuNPs-MSNs system could be easily photo-controlled under mild and biocompatible conditions in vitro. In collaboration with Renato Mortera (a visiting student from Italy), a MSNs based intracellular delivery system for controlled release of cell membrane impermeable cysteine was developed. A large amount of cysteine molecules were covalently attached to the silica surface of MSNs through cleavable disulfide linkers. These cysteine-containing nanoparticles were efficiently endocytosed by human cervical cancer cells HeLa. These materials exhibit 450 times higher cell growth inhibition capability than that of the conventional N-acetylcysteine prodrug. The ability to

  5. In situ and time resolved nucleation and growth of silica nanoparticles forming under simulated geothermal conditions

    NASA Astrophysics Data System (ADS)

    Tobler, Dominique J.; Benning, Liane G.

    2013-08-01

    Detailed knowledge of the reaction kinetics of silica nanoparticle formation in cooling supersaturated waters is fundamental to the understanding of many natural processes including biosilicifcation, sinter formation, and silica diagenesis. Here, we quantified the formation of silica nanoparticles from solution as it would occur in geothermal waters. We used an in situ and real-time approach with silica polymerisation being induced by fast cooling of a 230 °C hot and supersaturated silica solution. Experiments were carried out using a novel flow-through geothermal simulator system that was designed to work on-line with either a synchrotron-based small angle X-ray scattering (SAXS) or a conventional dynamic light scattering (DLS) detector system. Our results show that the rate of silica nanoparticle formation is proportional to the silica concentration (640 vs. 960 ppm SiO2), and the first detected particles form spheres of approximately 3 nm in diameter. These initial nanoparticles grow and reach a final particle diameter of approximately 7 nm. Interestingly, neither variations in ionic strength (0.02 vs. 0.06) nor temperature (reactions at 30 to 60 °C, mimicking Earth surface values) seem to affect the formation kinetics or the final size of the silica nanoparticles formed. Comparing these results with our previous data from experiments where silica polymerisation and nanoparticle formation was induced by a drop in pH from 12 to near neutral (pH-induced, Tobler et al., 2009) showed that (a) the mechanisms and kinetics of silica nanoparticle nucleation and growth were unaffected by the means to induce silica polymerisation (T drop or pH drop), both following first order reactions kinetics coupled with a surface controlled reaction mechanism. However, the rates of the formation of silica nanoparticles were substantially (around 50%) slower when polymerisation was induced by fast cooling as opposed to pH change. This was evidenced by the occurrence of an induction

  6. A comparative photophysicochemical study of phthalocyanines encapsulated in core-shell silica nanoparticles.

    PubMed

    Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello

    2015-02-25

    This work presents the synthesis and characterization of a new zinc phthalocyanine complex tetrasubstituted with 3-carboxyphenoxy in the peripheral position. The photophysical properties of the new complex are compared with those of phthalocyanines tetra substituted with 3-carboxyphenoxy or 4-carboxyphenoxy at non-peripheral positions. Three phthalocyanine complexes were encapsulated within silica matrix to form a core shell and the hybrid nanoparticles particles obtained were spherical and mono dispersed. When encapsulated within the silica shell nanoparticles, phthalocyanines showed improved triplet quantum yields and singlet oxygen quantum yields than surface grafted derivatives. The improvements observed could be attributed to the protection provided for the phthalocyanine complexes by the silica matrix.

  7. Carbon nanofibers decorated with poly(furfuryl alcohol)-derived carbon nanoparticles and tetraethylorthosilicate-derived silica nanoparticles.

    PubMed

    Zhang, Y; Yarin, A L

    2011-12-06

    The present paper introduces a novel method to functionalize nanofiber surfaces with carbon or silica nanoparticles by dip coating. This novel approach holds promise of significant benefits because dip coating of electrospun and carbonized nanofiber mats in poly(furfuryl alcohol) (abbreviated as PFA) is used to increase surface roughness by means of PFA-derived carbon nanoparticles produced at the fiber surface. Also, dip coating in tetraethylorthosilicate (abbreviated as TEOS) is shown to be an effective method for decorating carbon nanofibers with TEOS-derived silica nanoparticles at their surface. Furthermore, dip coating is an inexpensive technique which is easier to implement than the existing methods of nanofiber decoration with silica nanoparticles and results in a higher loading capacity. Carbon nanofiber mats with PFA- or TEOS-decorated surfaces hold promise of becoming the effective electrodes in fuel cells, Li-ion batteries and storage devices.

  8. Removal of trace level aqueous mercury by adsorption and photocatalysis on silica-titania composites.

    PubMed

    Byrne, Heather E; Mazyck, David W

    2009-10-30

    Silica-titania composites (STCs) were applied to trace level mercury solutions (100 microg/L Hg) to determine the degree of mercury removal that could be accomplished via adsorption and photocatalysis. STCs are a porous, high surface area silica substrate (> 200 m(2)/g), manufactured using sol-gel methodology, impregnated with TiO2 nanoparticles. The performance of this material along with its precursors, silica and Degussa P25 TiO2 were compared. Under adsorption alone (no UV illumination), STCs were able to achieve approximately 90% removal of mercury, which is comparable to that of Degussa P25. Silica without TiO2 performed poorly in comparison and was minimally affected by UV illumination. Contrary to expectations, the performance of Degussa P25 was not largely changed by UV irradiation and the STC was detrimentally affected under the same conditions. It was concluded that elemental mercury was formed under UV irradiation with or without the presence of TiO2 due to photochemical reactions, decreasing the mercury removal by STC. Additionally, the primary particle size of the STC was reduced to increase mass transfer. The result was improved Hg removal under adsorption and photocatalysis conditions. Improved adsorption kinetics were also achieved by altering the STC pore size and TiO2 loading.

  9. Processing pathway dependence of amorphous silica nanoparticle toxicity - colloidal versus pyrolytic

    PubMed Central

    Zhang, Haiyuan; Dunphy, Darren R.; Jiang, Xingmao; Meng, Huan; Sun, Bingbing; Tarn, Derrick; Xue, Min; Wang, Xiang; Lin, Sijie; Ji, Zhaoxia; Li, Ruibin; Garcia, Fred L.; Yang, Jing; Kirk, Martin L.; Xia, Tian; Zink, Jeffrey I; Nel, Andre; Brinker, C. Jeffrey

    2012-01-01

    We have developed structure/toxicity relationships for amorphous silica nanoparticles (NPs) synthesized through low temperature, colloidal (e.g. Stöber silica) or high temperature pyrolysis (e.g. fumed silica) routes. Through combined spectroscopic and physical analyses, we have determined the state of aggregation, hydroxyl concentration, relative proportion of strained and unstrained siloxane rings, and potential to generate hydroxyl radicals for Stöber and fumed silica NPs with comparable primary particle sizes (16-nm in diameter). Based on erythrocyte hemolytic assays and assessment of the viability and ATP levels in epithelial and macrophage cells, we discovered for fumed silica an important toxicity relationship to post-synthesis thermal annealing or environmental exposure, whereas colloidal silicas were essentially non-toxic under identical treatment conditions. Specifically, we find for fumed silica a positive correlation of toxicity with hydroxyl concentration and its potential to generate reactive oxygen species (ROS) and cause red blood cell hemolysis. We propose fumed silica toxicity stems from its intrinsic population of strained three-membered rings (3MRs) along with its chain-like aggregation and hydroxyl content. Hydrogen-bonding and electrostatic interactions of the silanol surfaces of fumed silica aggregates with the extracellular plasma membrane cause membrane perturbations sensed by the Nalp3 inflammasome, whose subsequent activation leads to secretion of the cytokine IL-1β. Hydroxyl radicals generated by the strained 3MRs in fumed silica but largely absent in colloidal silicas may contribute to the inflammasome activation. Formation of colloidal silica into aggregates mimicking those of fumed silica had no effect on cell viability or hemolysis. This study emphasizes that not all amorphous silica is created equal and that the unusual toxicity of fumed silica compared to colloidal silica derives from its framework and surface chemistry along

  10. Chemical durability of metallic copper nanoparticles in silica thin films synthesized by sol gel

    NASA Astrophysics Data System (ADS)

    Akhavan, O.

    2008-12-01

    In this study, chemical durability of metallic copper nanoparticles dispersed in sol-gel silica thin films was investigated by exposing the films to air after a reduction process. At first, heat treatment in air for 1 h produced silica films containing crystalline cupric oxide nanoparticles agglomerated on the film surface. Subsequently, reduction of the oxidized films in a reducing environment of N2-H2 for another 1 h at temperatures of 400, 500 and 600 °C resulted in the formation of crystalline metallic Cu nanoparticles diffused in the silica matrix. The time evolution of the surface plasmon resonance absorption peak of the reduced Cu nanoparticles was studied after the reduction processes at different temperatures. By fitting the optical absorption spectra with the Mie model, the conversion of Cu into CuO in the silica films exposed to air was examined as a function of the elapsing time. It was found that increasing the reducing temperature resulted in greater diffusion of the reduced Cu nanoparticles into the substrate, and also, in a decrease in the water content of the silica film. Diffusion of the nanoparticles decreased the number of particles exposed to air, and further, the decrease in the water content densified the silica film surrounding the diffused nanoparticles. While after the reduction process of the films at 400 °C, the presence of water in the film and considerable copper on the surface resulted in conversion of 94% of the reduced Cu into CuO in just 24 h, by reducing the film at the high temperature of 600 °C, no water and small copper concentration could be detected on the silica film so that only 8% of the Cu nanoparticles converted to CuO in as much as 12 months.

  11. Synthesis and characterization of uniform silica nanoparticles on nickel substrate by spin coating and sol-gel method

    NASA Astrophysics Data System (ADS)

    Ngoc Thi Le, Hien; Jeong, Hae Kyung

    2014-01-01

    Spin coating and sol-gel methods are proposed for the preparation of silica nanoparticles on a nickel substrate using silicon tetrachloride, 2-methoxyethanol, and four different types of alkaline solutions. The effects of the type of alkaline solution, concentration of silica solution, and speed of spin coating on the properties of silica nanoparticles are investigated systematically. Uniform spherical shape of silica nanoparticles on Ni with the smallest size are obtained with sodium carbonate among the alkaline solutions after stirring at 70 °C for 6 h and spin-coating at 7000 rpm. Physical and electrochemical properties of the silica particles are investigated.

  12. The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells.

    PubMed

    Yang, Xing; Liu, Xujie; Li, Yuanyuan; Huang, Qianli; He, Wei; Zhang, Ranran; Feng, Qingling; Benayahu, Dafna

    2017-12-01

    Nanoparticles have drawn much attention for a wide variety of applications in biomedical and bioengineering fields. The combined use of nanoparticles and human mesenchymal stem cells (hMSCs) in tissue engineering and regenerative medicine requires more knowledge of the influence of nanoparticles on cell viability and differentiation potential of hMSCs. The objective of this study is to investigate the in vitro uptake of silica nanoparticles (silica NPs) and their effect on adipogenic differentiation of hMSCs. After exposure of hMSCs to silica NPs, the uptake and localization of silica NPs were assessed using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The adipogenic differentiation potential of hMSCs was examined by analyzing the formation and accumulation of lipids droplets, triglyceride (TG) content and the expression of adipogenic marker genes/proteins. The results showed that silica NPs did not affect the cell viability but significantly decreased the differentiation of hMSCs to adipocytes. These findings improve the understanding of the influence of silica NPs on adipogenic differentiation of hMSCs and will provide a reference for the applications of silica NPs in biomedical and bioengineering fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    NASA Astrophysics Data System (ADS)

    Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl

    2010-10-01

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  14. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    SciTech Connect

    Kaur, Navjot Chudasama, Bhupendra

    2015-05-15

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe{sub 3}O{sub 4}) nanoparticles and their coating with SiO{sub 2} is reported. Fe{sub 3}O{sub 4} nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.

  15. Structure and infrared emissivity of polyimide/mesoporous silica composite films

    SciTech Connect

    Lin Baoping . E-mail: lbp@seu.edu.cn; Tang Jinan; Liu Hongjian; Sun Yueming; Yuan Chunwei

    2005-03-15

    Polyimide/mesoporous silica composite films were prepared by direct mixing of polyamic acid solution and silylated mesoporous silica particles, or by condensation polymerization of dianhydride and diamine with silylated mesoporous silica particles in N,N-dimethylacetamide, followed with thermal imidization. Structure and glass transition temperatures of the composite films were measured with FTIR, SEM, EDX, XPS and DMTA. The results show that the silylated mesoporous silica particles in the composites tend to form the aggregation with a strip shape due to phase separation. The composite films exhibit higher glass transition temperature as comparing with that of pure polyimide. It is found that the composite films present lower infrared emissivity value than the pure polyimide and the magnitude of infrared emissivity value is related to the content of silylated mesoporous silica in the composite films. Inhibiting actions of silylated mesoporous silica on infrared emission of the composite films may be owing to presence of nanometer-scale pores in silylated mesoporous silica.

  16. Formation of silver nanoparticles in an acid-catalyzed silica colloidal solution

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Jie; Liu, Chun-Yan; Liu, Yun

    2004-06-01

    In a weak basic, weak acidic or neutral water-alcohol solution, silver nanoparticles were generated by the reduction of Ag + ions in the present of colloidal silica. Silica as a substrate played an important role in the formation of Silver particles. The plasmon band of silver particles supported on the surface of silica was considerably shifted to longer wavelength compared with the pure silver sol. The shift in absorption spectra was explained in terms of surface effects induced by the interaction of silver and silica, as well as size effects and irregular shape.

  17. Gene expression profiles for genotoxic effects of silica-free and silica-coated cobalt ferrite nanoparticles.

    PubMed

    Hwang, Do Won; Lee, Dong Soo; Kim, Soonhag

    2012-01-01

    Nanomaterials have been widely evaluated for potential use as efficient delivery carriers for cancer diagnosis and therapy. To translate these nanomaterials to the clinic, their safety needs to be verified, particularly in terms of genotoxicity and cytotoxicity. We investigated changes in gene expression profiles influenced by silica-coated cobalt ferrite magnetic-fluorescence nanoparticles and silica-free cobalt ferrite magnetic-core nanoparticles in vivo and in vitro. (68)Ga-labeled cobalt ferrite nanoparticles produced by synthesis of 2-(p-isothio-cyanatobenzyl)-1,4,7-triazacyclonane-1,4,7-triacetic acid chelator were established after labeling efficiency had been validated through a thin-layer chromatography method. The expression of genes associated with the stress and toxicity pathways was verified by a commercially available polymerase chain reaction array kit. In comparison with magnetic-fluorescence nanoparticles, magnetic-core nanoparticles revealed severe cytotoxic effects at various doses and treatment times as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Whole-body small-animal PET and biodistribution studies, including transmission electron microscope analysis, showed that tail-vein injection of magnetic-core or magnetic-fluorescence nanoparticles exhibited substantial liver accumulation. Real-time polymerase chain reaction array using 52 genes related to cellular toxicity demonstrated that 17 genes from the magnetic-core-treated liver samples were significantly affected, mostly in relation to DNA damage or repair and to oxidative or metabolic stress. The magnetic-fluorescence-treated liver samples showed gene expression approximately 90% similar to that of untreated liver samples. We compared a variety of gene expression profiles in mice injected with magnetic-fluorescence or magnetic-core nanoparticles. This study of gene expression profiles affected by nanotoxicity provides critical information for the

  18. Effect of amino-modified silica nanoparticles on the corrosion protection properties of epoxy resin-silica hybrid materials.

    PubMed

    Chang, Kung-Chin; Lin, Hui-Fen; Lin, Chang-Yu; Kuo, Tai-Hung; Huang, Hsin-Hua; Hsu, Sheng-Chieh; Yeh, Jui-Ming; Yang, Jen-Chang; Yu, Yuan-Hsiang

    2008-06-01

    In this paper, a series of organic-inorganic hybrid materials consisting of epoxy resin frameworks and dispersed nanoparticles of amino-modified silica (AMS) were successfully prepared. First of all, the AMS nanoparticles were synthesized by carrying out the conventional acid-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) in the presence of (3-aminopropyl)-trimethoxysilane (APTES) molecules. The as-prepared AMS nanoparticles were then characterized by FTIR, 13C-NMR and 29Si-NMR spectroscopy. Subsequently, a series of hybrid materials were prepared by performing in-situ thermal ring-opening polymerization reactions of epoxy resin in the presence of as-prepared AMS nanoparticles and raw silica (RS) particles. The as-prepared epoxy-silica hybrid materials with AMS nanoparticles were found to show better dispersion capability than that of RS particles existed in hybrid materials based on the morphological observation of transmission electron microscopy (TEM). The hybrid materials containing AMS nanoparticles in the form of coating on cold-rolled steel (CRS) were found to be much superior in corrosion protection over those of hybrid materials with RS particles when tested by a series of electrochemical measurements of potentiodynamic and impedance spectroscopy in 5 wt% aqueous NaCI electrolyte. The increase of corrosion protection effect of hybrid coatings may have probably resulted from the enhancement of the adhesion strength of the hybrid coatings on CRS coupons, which may be attributed to the formation of Fe-O-Si covalent bond at the interface of coating/CRS system based on the FTIR-RAS (reflection absorption spectroscopy) studies. The better dispersion capability of AMS nanoparticles in hybrid materials were found to lead more effectively enhanced molecular barrier property, mechanical strength, surface hydrophobicity and optical clarity as compared to that of RS particles, in the form of coating and membrane, based on the measurements of molecular

  19. Diatom culture media contain extracellular silica nanoparticles which form opalescent films

    NASA Astrophysics Data System (ADS)

    Losic, Dusan; Mitchell, James G.; Voelcker, Nicolas H.

    2008-12-01

    Diatoms are unicellular photosynthetic algae with enormous diversity of patterns in their silica structures at the nano- to micronscale. In this study, we present results, which support the hypothesis that silica nanoparticles are released into the diatom culture medium. The formation of an opalescent film by the self-assembly of silica nanoparticles produced in the growth medium of diatoms. This film was formed on the filter paper from the culture medium of a Coscinodiscus sp. culture. A numbers of diatoms with partially opened valves were observed on the film surface under light microscopy and SEM, which indicates that cell contents inside of diatoms had been released into the culture solution. AFM images of produced opalescent films show ordered arrays of silica nanoparticles with different diameters depending on the colors observed by light microscopy. The film forming silica nanoparticles are either released by the diatoms during reproduction or after cell death. This approach provides an environmentally friendly means for fabricating silica nanoparticles, decorative coatings and novel optical materials.

  20. Green synthesis and characterization of size tunable silica-capped gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Shekhawat, Gajendra; Wu, Jin-Song; Bhasin, Aman K. K.; Suri, C. R.; Bhasin, K. K.; Dravid, Vinayak

    2012-08-01

    Silica-coated gold nanoparticles (Au@SiO2) with controlled silica-shell thickness were prepared by a modified Stober's method using 10-nm gold nanoparticles (AuNPs) as seeds. The AuNPs were silica-coated with a sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica source and ammonia as a catalyst. An increase in TEOS concentration resulted in an increase in shell thickness. The NPs were characterized by transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectroscopy, scanning near-field ultrasound holography and scanning transmission electron microscopy. The method required no surface modification and the synthesized core shell nanoparticles can be used for various types of biological applications.

  1. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    PubMed

    Kyeong, San; Jeong, Cheolhwan; Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules.

  2. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation

    PubMed Central

    Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules. PMID:26599084

  3. Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles

    SciTech Connect

    Arora, Ekta; Ritu,; Kumar, Sacheen; Kumar, Dinesh

    2016-05-06

    Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM), UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.

  4. Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Arora, Ekta; Ritu, Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM), UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.

  5. Hyaluronan degrading silica nanoparticles for skin cancer therapy

    NASA Astrophysics Data System (ADS)

    Scodeller, P.; Catalano, P. N.; Salguero, N.; Duran, H.; Wolosiuk, A.; Soler-Illia, G. J. A. A.

    2013-09-01

    We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human melanoma bearing mice and compared with the non-immobilized enzyme, on the basis of equal enzymatic activity. Alcian Blue staining of A375 tumors indicated large overexpression of hyaluronan. At the end of the experiment, tumor volume reduction with SiNP-immobilized Hyal was significantly enhanced compared to non-immobilized Hyal. Field emission scanning electron microscopy (FE-SEM) images together with energy dispersive X-ray spectroscopy (EDS) spectra confirmed the presence of SiNP on the tumor. We mean a proof of concept: this extracellular matrix (ECM) degrading enzyme, immobilized on SiNP, is a more effective local adjuvant of cancer drugs than the non-immobilized enzyme. This could prove useful in future therapies using other or a combination of ECM degrading enzymes.We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human

  6. Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging.

    PubMed

    Sreejith, Sivaramapanicker; Ma, Xing; Zhao, Yanli

    2012-10-24

    Squaraine dyes were loaded inside mesoporous silica nanoparticles, and the nanoparticle surfaces were then wrapped with ultrathin graphene oxide sheets, leading to the formation of a novel hybrid material. The hybrid exhibits remarkable stability and can efficiently protect the loaded dye from nucleophilic attack. The biocompatible hybrid is noncytotoxic and presents significant potential for application in fluorescence imaging in vitro.

  7. Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions.

    PubMed

    Napierska, Dorota; Rabolli, Virginie; Thomassen, Leen C J; Dinsdale, David; Princen, Catherine; Gonzalez, Laetitia; Poels, Katrien L C; Kirsch-Volders, Micheline; Lison, Dominique; Martens, Johan A; Hoet, Peter H

    2012-04-16

    Amorphous silica nanoparticles (SiO₂-NPs) have found broad applications in industry and are currently intensively studied for potential uses in medical and biomedical fields. Several studies have reported cytotoxic and inflammatory responses induced by SiO₂-NPs in different cell types. The present study was designed to examine the association of oxidative stress markers with SiO₂-NP induced cytotoxicity in human endothelial cells. We used pure monodisperse amorphous silica nanoparticles of two sizes (16 and 60 nm; S16 and S60) and a positive control, iron-doped nanosilica (16 nm; SFe), to study the generation of hydroxyl radicals (HO·) in cellular-free conditions and oxidative stress in cellular systems. We investigated whether SiO₂-NPs could influence intracellular reduced glutathione (GSH) and oxidized glutathione (GSSG) levels, increase lipid peroxidation (malondialdehyde (MDA) and 4-hydroxyalkenal (HAE) concentrations), and up-regulate heme oxygenase-1 (HO-1) mRNA expression in the studied cells. None of the particles, except SFe, produced ROS in cell-free systems. We found significant modifications for all parameters in cells treated with SFe nanoparticles. At cytotoxic doses of S16 (40-50 μg/mL), we detected weak alterations of intracellular glutathione (4 h) and a marked induction of HO-1 mRNA (6 h). Cytotoxic doses of S60 elicited similar responses. Preincubation of cells being exposed to SiO₂-NPs with an antioxidant (5 mM N-acetylcysteine, NAC) significantly reduced the cytotoxic activity of S16 and SFe (when exposed up to 25 and 50 μg/mL, respectively) but did not protect cells treated with S60. Preincubation with NAC significantly reduced HO-1 mRNA expression in cells treated with SFe but did not have any effect on HO-1 mRNA level in cell exposed to S16 and S60. Our study demonstrates that the chemical composition of the silica nanoparticles is a dominant factor in inducing oxidative stress.

  8. pH-dependent interaction and resultant structures of silica nanoparticles and lysozyme protein.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Callow, P

    2014-02-18

    Small-angle neutron scattering (SANS) and UV-visible spectroscopy studies have been carried out to examine pH-dependent interactions and resultant structures of oppositely charged silica nanoparticles and lysozyme protein in aqueous solution. The measurements were carried out at fixed concentration (1 wt %) of three differently sized silica nanoparticles (8, 16, and 26 nm) over a wide concentration range of protein (0-10 wt %) at three different pH values (5, 7, and 9). The adsorption curve as obtained by UV-visible spectroscopy shows exponential behavior of protein adsorption on nanoparticles. The electrostatic interaction enhanced by the decrease in the pH between the nanoparticle and protein (isoelectric point ∼11.4) increases the adsorption coefficient on nanoparticles but decreases the overall amount protein adsorbed whereas the opposite behavior is observed with increasing nanoparticle size. The adsorption of protein leads to the protein-mediated aggregation of nanoparticles. These aggregates are found to be surface fractals at pH 5 and change to mass fractals with increasing pH and/or decreasing nanoparticle size. Two different concentration regimes of interaction of nanoparticles with protein have been observed: (i) unaggregated nanoparticles coexisting with aggregated nanoparticles at low protein concentrations and (ii) free protein coexisting with aggregated nanoparticles at higher protein concentrations. These concentration regimes are found to be strongly dependent on both the pH and nanoparticle size.

  9. Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites.

    PubMed

    Tartaj, Pedro; Serna, Carlos J

    2003-12-24

    A new method for the synthesis of monodisperse superparamagnetic nanospherical composites with a core containing metallic alpha-Fe nanocrystals dispersed in a silica matrix, and a shell only containing silica, is reported. Essential to the formation of this microstructure is to work with lamellar-like structures in conditions close to the upper-phase boundary limit for formation of microemulsions, and to control the solubility and pH of the metallic precursors. An advantage of the method is its versatility, which allows us to change the particle size (both for the nanomagnets and for the composite) and the spatial arrangement of the nanomagnets in the matrix. Our results indicate that this material could be adequate for biotechnology applications.

  10. Development of novel dye-doped silica nanoparticles for biomarker application

    NASA Astrophysics Data System (ADS)

    Santra, Swadeshmukul; Wang, Kemin; Tapec, Ruby; Tan, Weihong

    2001-04-01

    We report the development of novel luminescent nanoparticles composed of inorganic luminescent dye, Tris(2,2'-bipyridyl) dichlororuthenium (II) hexahydrate, doped inside a silica network. These dye doped silica (DDS) nanoparticles have been synthesized using a water-in-oil microemulsion technique in which controlled hydrolysis of the tetraethyl orthosilicate leads to the formation of mono-dispersed nanoparticles. They are prepared with a variety of sizes: small (5 +/- 1 nm), medium (63 +/- 4 nm), and large (400 +/- 10 nm), which shows the efficiency of the microemulsion technique for the synthesis of uniform nanoparticles. All these nanoparticles are suitable for biomarker application since they are much smaller than cellular dimension. These nanoparticles are highly photostable in comparison to most commonly used organic dyes. These nanoparticles have been characterized by various microscopic and spectroscopic techniques. The amount of dye content in these nanoparticles has been optimized to eliminate self-quenching. It has been observed that maximum luminescence intensity is achieved when the dye content is around 20 wt%. Silica surface of DDS nanoparticles is available for surface modification and bioconjunction. For demonstration as a biomarker, the DDS nanoparticle's surface has been biochemically modified to attach membrane-anchoring groups and applied successfully to stain human leukemia cells.

  11. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery.

    PubMed

    Du, Xin; Li, Xiaoyu; Xiong, Lin; Zhang, Xueji; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    Mesoporous silica material with organo-bridged silsesquioxane frameworks is a kind of synergistic combination of inorganic silica, mesopores and organics, resulting in some novel or enhanced physicochemical and biocompatible properties compared with conventional mesoporous silica materials with pure Si-O composition. With the rapid development of nanotechnology, monodispersed nanoscale periodic mesoporous organosilica nanoparticles (PMO NPs) and organo-bridged mesoporous silica nanoparticles (MSNs) with various organic groups and structures have recently been synthesized from 100%, or less, bridged organosilica precursors, respectively. Since then, these materials have been employed as carrier platforms to construct bioimaging and/or therapeutic agent delivery nanosystems for nano-biomedical application, and they demonstrate some unique and/or enhanced properties and performances. This review article provides a comprehensive overview of the controlled synthesis of PMO NPs and organo-bridged MSNs, physicochemical and biocompatible properties, and their nano-biomedical application as bioimaging agent and/or therapeutic agent delivery system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Inhibition of total oxygen uptake by silica nanoparticles in activated sludge.

    PubMed

    Sibag, Mark; Choi, Byeong-Gyu; Suh, Changwon; Lee, Kwan Hyung; Lee, Jae Woo; Maeng, Sung Kyu; Cho, Jinwoo

    2015-01-01

    Nanoparticle toxicity to biological activities in activated sludge is largely unknown. Among the widely used nanoparticles, silica nanoparticles (SNP) have a limited number of studies associated with inhibition to the activated sludge process (ASP). We demonstrated SNP inhibition of activated sludge respiration through oxygen uptake rate (OUR) measurement. Based on the percentage inhibition of total oxygen consumption (IT), we observed that smaller SNPs (12 nm, IT=33 ± 3%; 151 nm, IT=23 ± 2%) were stronger inhibitors than larger SNPs (442 and 683 nm, IT=5 ± 1%). Transmission electron micrographs showed that some of the SNPs were adsorbed on and/or apparently embedded somewhere in the microbial cell membrane. Whether SNPs are directly associated with the inhibition of total oxygen uptake warrants further studies. However, it is clear that SNPs statistically significantly altered the composition of microbial membrane lipids, which was more clearly described by principal component analysis and weighted Euclidian distance (PCA-ED) of the fatty acid methyl ester (FAME) data. This study suggests that SNPs potentially affect the biological activity in activated sludge through the inhibition of total oxygen uptake. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating.

    PubMed

    Kaman, O; Pollert, E; Veverka, P; Veverka, M; Hadová, E; Knízek, K; Marysko, M; Kaspar, P; Klementová, M; Grünwaldová, V; Vasseur, S; Epherre, R; Mornet, S; Goglio, G; Duguet, E

    2009-07-08

    Nanoparticles of manganese perovskite of the composition La(0.75)Sr(0.25)MnO(3) uniformly coated with silica were prepared by encapsulation of the magnetic cores (mean crystallite size 24 nm) using tetraethoxysilane followed by fractionation. The resulting hybrid particles form a stable suspension in an aqueous environment at physiological pH and possess a narrow hydrodynamic size distribution. Both calorimetric heating experiments and direct measurements of hysteresis loops in the alternating field revealed high specific power losses, further enhanced by the encapsulation procedure in the case of the coated particles. The corresponding results are discussed on the basis of complex characterization of the particles and especially detailed magnetic measurements. Moreover, the Curie temperature (335 K) of the selected magnetic cores resolves the risk of local overheating during hyperthermia treatment.

  14. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used.

  15. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    NASA Astrophysics Data System (ADS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-10-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION.

  16. Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics.

    PubMed

    Alwi, Rudolf; Telenkov, Sergey; Mandelis, Andreas; Leshuk, Timothy; Gu, Frank; Oladepo, Sulayman; Michaelian, Kirk

    2012-10-01

    In this study, we report for the first time the use of silica-coated superparamagnetic iron oxide nanoparticles (SPION) as contrast agents in biomedical photoacoustic imaging. Using frequency-domain photoacoustic correlation (the photoacoustic radar), we investigated the effects of nanoparticle size, concentration and biological media (e.g. serum, sheep blood) on the photoacoustic response in turbid media. Maximum detection depth and the minimum measurable SPION concentration were determined experimentally. The nanoparticle-induced optical contrast ex vivo in dense muscular tissues (avian pectus and murine quadricept) was evaluated and the strong potential of silica-coated SPION as a possible photoacoustic contrast agents was demonstrated.

  17. Synthesis of magnetic rhenium sulfide composite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tang, Naimei; Tu, Weixia

    2009-10-01

    Rhenium sulfide nanoparticles are associated with magnetic iron oxide through coprecipitation of iron salts with tetramethylammonium hydroxide. Sizes of the formed magnetic rhenium sulfide composite particles are in the range 5.5-12.5 nm. X-ray diffraction and energy-dispersive analysis of X-rays spectra demonstrate the coexistence of Fe 3O 4 and ReS 2 in the composite particle, which confirm the formation of the magnetic rhenium sulfide composite nanoparticles. The association of rhenium sulfide with iron oxide not only keeps electronic state and composition of the rhenium sulfide nanoparticles, but also introduces magnetism with the level of 24.1 emu g -1 at 14 kOe. Surface modification with monocarboxyl-terminated poly(ethylene glycol) (MPEG-COOH) has the role of deaggregating the composite nanoparticles to be with average hydrodynamic size of 27.3 nm and improving the dispersion and the stability of the composite nanoparticles in water.

  18. Decoupling energetic modifications to diffusion from free volume in polymer/nanoparticle composites.

    PubMed

    Janes, Dustin W; Bilchak, Connor; Durning, Christopher J

    2017-01-18

    Diffusion coefficients of small molecules in a model composite of spherical nanoparticles and polymer with attractive interfacial interactions are reduced from that in the pure polymer, to a degree far below the level expected from geometric tortuosity arguments. We determine whether such dramatic reductions are due to modifications to the matrix polymer free volume near the nanoparticle surface, or alternatively are due to energetic attractions between the diffusants and nanoparticle surface. We performed ethyl acetate sorption experiments within the vicinity of the polymer glass transition (Tg ≤ T ≤ Tg + 25 K) for a model polymer/nanoparticle composite, silica-filled poly(methyl acrylate). By application of the Vrentas-Duda free volume theory of diffusion we have decoupled the energetic effects from those related to free-volume and segmental dynamics. While the latter is unaffected by addition of nanoparticles, the energy needed for the ethyl acetate diffusant to overcome neighboring attractive forces doubles after adding 40 vol% nanoparticles with a diameter of 14 nm. This is qualitatively consistent with hydrogen bonding interactions between the silica surface and ethyl acetate slowing its rate of diffusion. On the other hand for benzene, which does not hydrogen bond to the silica surface, diffusion coefficients that can be explained by tortuosity effects were obtained. This work provides quantitative evidence that the diffusant-filler energetic interactions and geometric blocking effects can be fully responsible for the substantially reduced diffusivity commonly observed in polymer/nanoparticle composite systems.

  19. Characterizing structural and vibrational properties of nanoparticles embedded in silica with XAS, SAXS and auxiliary techniques

    SciTech Connect

    Araujo, Leandro L.; Kluth, Patrick; Giulian, Raquel; Sprouster, David J.; Ridgway, Mark C.; Johannessen, Bernt; Foran, Garry J.; Cookson, David J.

    2009-01-29

    Synchrotron-based techniques were combined with conventional analysis methods to probe in detail the structural and vibrational properties of nanoparticles grown in a silica matrix by ion implantation and thermal annealing, as well as the evolution of such properties as a function of nanoparticle size. This original approach was successfully applied for several elemental nanoparticles (Au, Co, Cu, Ge, Pt) and the outcomes for Ge are reported here, illustrating the power of this combined methodology. The thorough analysis of XANES, EXAFS, SAXS, TEM and Raman data for Ge nanoparticles with mean diameters between 4 and 9 nm revealed that the peculiar properties of embedded Ge nanoparticles, like the existence of amorphous Ge layers between the silica matrix and the crystalline nanoparticle core, are strongly dependent on particle size and mainly governed by the variation in the surface area-to-volume ratio. Such detailed information provides valuable input for the efficient planning of technological applications.

  20. Sol-gel synthesized silver nanoparticles doped silica/titanosilicate films for plasmonic solar cell applications

    NASA Astrophysics Data System (ADS)

    Arun Kumar, K. V.; Seema, R.; Aiswarya, R.; Vineetha, V. R.

    2017-06-01

    Metal nanoparticles with plasmonic effect are being given considerable attention for the past few decades due to their potential applications in solar cell. Silver nanoparticles doped silica/titanosilicate films were synthesized by means of hydrolytic and non hydrolytic sol-gel method. The sol-gel derived samples were effectively coated on silica substrate by dip coating method and annealed at 400 °C. The absorption spectrum of the nanoparticle doped films were analyzed and reveals that there is a broad peak around 360-380 nm is due to plasmonic effect of the silver nanoparticles. The samples were characterized structurally by means of XRD and TEM. The XRD data confirmed the crystalline nature of Ag nanoparticles and size is calculated around 14-15 nm. The TEM observations was also confirmed the crystalline planes of silver nanoparticles and is found to be around 15nm.

  1. In Vivo Toxicity of Intravenously Administered Silica and Silicon Nanoparticles

    PubMed Central

    Ivanov, Sergey; Zhuravsky, Sergey; Yukina, Galina; Tomson, Vladimir; Korolev, Dmitry; Galagudza, Michael

    2012-01-01

    Both silicon and silica nanoparticles (SiNPs and SiO2NPs, respectively) are currently considered to be promising carriers for targeted drug delivery. However, the available data on their in vivo toxicity are limited. The present study was aimed at investigation of SiNP and SiO2NP (mean diameter 10 and 13 nm, respectively) toxicity using both morphological and functional criteria. Hematological and biochemical parameters were assessed in Sprague-Dawley rats 5, 21 and 60 days after administration of NPs. Inner ear function was determined using otoacoustic emission testing at 21 and 60 days after infusion of NPs. Furthermore, the histological structure of liver, spleen and kidney samples was analyzed. Intravenous infusion of SiNPs or SiO2NPs (7 mg/kg) was not associated with significant changes in hemodynamic parameters. Hearing function remained unchanged over the entire observation period. Both inter- and intragroup changes in blood counts and biochemical markers were non-significant. Histological findings included the appearance of foreign body-type granulomas in the liver and spleen as well as microgranulation in the liver after administration of NPs. The number of granulomas was significantly lower after administration of SiNPs compared with SiO2NPs. In conclusion, both tested types of NPs are relatively biocompatible nanomaterials, at least when considering acute toxicity.

  2. Dual surface plasmon resonances in Ni nanoparticles in silica

    SciTech Connect

    Majhi, Jayanta K.; Kuiri, Probodh K.

    2015-06-24

    We report the observations of two broad absorption bands (at ∼3.5 and ∼6.0 eV) in the optical absorption (OA) spectra of Ni nanoparticles (NPs) in silica. For the calculations of the OA spectra, Maxwell-Garnett type effective medium theory has been used with NP radii in the range of 1 – 50 nm. The peak positions of both the OA bands have been found to shift towards higher energy (blue-shift) with decrease in NP radius. In addition, the OA spectra are found to more sensitive for smaller NPs as compare to larger NPs. These observations are argued as due to the confinement of the mean free path of free electrons in Ni NPs. Based on this, we conclude that the observed OA bands are due to the surface plasmon resonance (SPR) absorptions irrespective of the satisfaction of the criteria of the SPR conditions, thus resolving the unclear understanding of the appearance of two absorption bands in Ni NPs.

  3. Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae

    PubMed Central

    Shi, Huiqin; Tian, Linwei; Guo, Caixia; Huang, Peili; Zhou, Xianqing; Peng, Shuangqing; Sun, Zhiwei

    2013-01-01

    Silica nanoparticles (SiNPs) have been widely used in biomedical and biotechnological applications. Environmental exposure to nanomaterials is inevitable as they become part of our daily life. Therefore, it is necessary to investigate the possible toxic effects of SiNPs exposure. In this study, zebrafish embryos were treated with SiNPs (25, 50, 100, 200 µg/mL) during 4–96 hours post fertilization (hpf). Mortality, hatching rate, malformation and whole-embryo cellular death were detected. We also measured the larval behavior to analyze whether SiNPs had adverse effects on larvae locomotor activity. The results showed that as the exposure dosages increasing, the hatching rate of zebrafish embryos was decreased while the mortality and cell death were increased. Exposure to SiNPs caused embryonic malformations, including pericardial edema, yolk sac edema, tail and head malformation. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lower dose (25 and 50 µg/mL SiNPs) produced substantial hyperactivity while the higher doses (100 and 200 µg/mL SiNPs) elicited remarkably hypoactivity in dark periods. In summary, our data indicated that SiNPs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior. PMID:24058598

  4. Mesoporous Silica Nanoparticles under Sintering Conditions: A Quantitative Study.

    PubMed

    Silencieux, Fanny; Bouchoucha, Meryem; Mercier, Olivier; Turgeon, Stéphane; Chevallier, Pascale; Kleitz, Freddy; Fortin, Marc-André

    2015-12-01

    Thin films made of mesoporous silica nanoparticles (MSNs) are finding new applications in catalysis, optics, as well as in biomedicine. The fabrication of MSNs thin films requires a precise control over the deposition and sintering of MSNs on flat substrates. In this study, MSNs of narrow size distribution (150 nm) are synthesized, and then assembled onto flat silicon substrates, by means of a dip-coating process. Using concentrated MSN colloidal solutions (19.5 mg mL(-1) SiO2), withdrawal speed of 0.01 mm s(-1), and well-controlled atmospheric conditions (ambient temperature, ∼ 70% of relative humidity), monolayers are assembled under well-structured compact patterns. The thin films are sintered up to 900 °C, and the evolution of the MSNs size distributions are compared to those of their pore volumes and densities. Particle size distributions of the sintered thin films were precisely fitted using a model specifically developed for asymmetric particle size distributions. With increasing temperature, there is first evidence of intraparticle reorganization/relaxation followed by intraparticle sintering followed by interparticle sintering. This study is the first to quantify the impact of sintering on MSNs assembled as thin films.

  5. The Effect of Silica Nanoparticles on Human Corneal Epithelial Cells

    PubMed Central

    Park, Joo-Hee; Jeong, Hyejoong; Hong, Jinkee; Chang, Minwook; Kim, Martha; Chuck, Roy S.; Lee, Jimmy K.; Park, Choul-Yong

    2016-01-01

    Ocular drug delivery is an interesting field in current research. Silica nanoparticles (SiNPs) are promising drug carriers for ophthalmic drug delivery. However, little is known about the toxicity of SiNPs on ocular surface cells such as human corneal epithelial cells (HCECs). In this study, we evaluated the cytotoxicity induced by 50, 100 and 150 nm sizes of SiNPs on cultured HCECs for up to 48 hours. SiNPs were up-taken by HCECs inside cytoplasmic vacuoles. Cellular reactive oxygen species generation was mildly elevated, dose dependently, with SiNPs, but no significant decrease of cellular viability was observed up to concentrations of 100 μg/ml for three different sized SiNPs. Western blot assays revealed that both cellular autophagy and mammalian target of rapamycin (mTOR) pathways were activated with the addition of SiNPs. Our findings suggested that 50, 100 and 150 nm sized SiNPs did not induce significant cytotoxicity in cultured HCECs. PMID:27876873

  6. Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine

    NASA Astrophysics Data System (ADS)

    Ambrogio, Michael William

    Nanotechnology has emerged as one of humanity's most promising prospects for addressing a plethora of significant challenges facing society. One of these challenges is the effective treatment of cancer, and while cancer treatment has enjoyed many significant advances over the past several years, it is by no means perfect, and still suffers from many drawbacks. For example, although there are several drugs on the market that can kill cancer tissue quite effectively, these drugs are often non-selective, resulting in a large amount of healthy tissue being killed as well. When healthy tissue is destroyed, it results in many of the horrendous side-effects that we typically associate with cancer treatment, such as hair loss and extreme nausea. The use of selective drug delivery vehicles has the potential to reduce these side effects significantly, since they are able to deliver drugs directly to the tumor site, leaving healthy tissue intact. As a result, the use of sophisticated delivery platforms - mechanized silica nanoparticles (MSNPs) in particular - has attracted attention during the past decade, with researchers shifting their focus towards devising ways to deliver therapeutic and / or diagnostic agents, and away from developing new drug candidates. The advancement of these MSNP delivery systems is featured in this Dissertation, and highlights the fabrication of several new MSNPs, as well as biological experiments that have been initiated on these systems.

  7. Effective water disinfection using silver nanoparticle containing silica beads

    NASA Astrophysics Data System (ADS)

    Quang, Dang Viet; Sarawade, Pradip B.; Jeon, Sun Jeong; Kim, Sang Hoon; Kim, Jong-Kil; Chai, Young Gyu; Kim, Hee Taik

    2013-02-01

    The shortage of safe drinking water in developing countries and at the sites of natural disaster has spurred scientists to develop more effective materials for water disinfection at the point of use. In the present study, silver nanoparticle supported silica beads (Ag-NPBs) with sizes ranging from 0.5 to 1 mm were prepared, and their potential for water disinfection was examined. Escherichia coli was utilized to assess water disinfection potential by flow tests using a filter column filled with Ag-NPBs. Ag-NPBs inactivated > 99% of E. coli with a contact time of several seconds when the input water had a bacterial load of approximately 106 colony-forming units per mL. Ag-NPBs have an antibacterial capacity of 4.5 L/g. The effect of ammonium and urea on the release rate of silver into filtrate was investigated. The results suggest that Ag-NPBs could be an effective material for water disinfection.

  8. Nanoengineered mesoporous silica nanoparticles for smart delivery of doxorubicin

    NASA Astrophysics Data System (ADS)

    Mishra, Akhilesh Kumar; Pandey, Himanshu; Agarwal, Vishnu; Ramteke, Pramod W.; Pandey, Avinash C.

    2014-08-01

    The motive of the at hand exploration was to contrive a proficient innovative pH-responsive nanocarrier designed for an anti-neoplastic agent that not only owns competent loading capacity but also talented to liberate the drug at the specific site. pH sensitive hollow mesoporous silica nanoparticles ( MSN) have been synthesized by sequence of chemical reconstruction with an average particle size of 120 nm. MSN reveal noteworthy biocompatibility and efficient drug loading magnitude. Active molecules such as Doxorubicin (DOX) can be stocked and set free from the pore vacuities of MSN by tuning the pH of the medium. The loading extent of MSN was found up to 81.4 wt% at pH 7.8. At mild acidic pH, DOX is steadily released from the pores of MSN. Both, the nitrogen adsorption-desorption isotherms and X-ray diffraction patterns reflects that this system holds remarkable stable mesostructure. Additionally, the outcomes of cytotoxicity assessment further establish the potential of MSN as a relevant drug transporter which can be thought over an appealing choice to a polymeric delivery system.

  9. Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity

    NASA Astrophysics Data System (ADS)

    Kurtz-Chalot, A.; Klein, J. P.; Pourchez, J.; Boudard, D.; Bin, V.; Alcantara, G. B.; Martini, M.; Cottier, M.; Forest, V.

    2014-11-01

    Silica nanoparticles are particularly interesting for medical applications because of the high inertness and chemical stability of silica material. However, at the nanoscale their innocuousness must be carefully verified before clinical use. The aim of this study was to investigate the in vitro biological toxicity of silica nanoparticles depending on their surface chemical functionalization. To that purpose, three kinds of 50 nm fluorescent silica-based nanoparticles were synthesized: (1) sterically stabilized silica nanoparticles coated with neutral polyethylene glycol molecules, (2) positively charged silica nanoparticles coated with amine groups, and (3) negatively charged silica nanoparticles coated with carboxylic acid groups. RAW 264.7 murine macrophages were incubated for 20 h with each kind of nanoparticles. Their cellular uptake and adsorption at the cell membrane were assessed by a fluorimetric assay, and cellular responses were evaluated in terms of cytotoxicity, pro-inflammatory factor production, and oxidative stress. Results showed that the highly positively charged nanoparticle were the most adsorbed at cell surface and triggered more cytotoxicity than other nanoparticle types. To conclude, this study clearly demonstrated that silica nanoparticles surface functionalization represents a key parameter in their cellular uptake and biological toxicity.

  10. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    SciTech Connect

    Yadav, Indresh Aswal, V. K.; Kohlbrecher, J.

    2014-04-24

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4.

  11. Anti-Biofilm Efficacy of Nitric Oxide-Releasing Silica Nanoparticles

    PubMed Central

    Hetrick, Evan M.; Shin, Jae Ho; Paul, Heather S.

    2009-01-01

    The ability of nitric oxide (NO)-releasing silica nanoparticles to kill biofilm-based microbial cells is reported. Biofilms of Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were formed in vitro and exposed to NO-releasing silica nanoparticles. Replicative viability experiments revealed that ≥ 99% of cells from each type of biofilm were killed via NO release, with the greatest efficacy (≥ 99.999% killing) against gram-negative P. aeruginosa and E. coli biofilms. Cytotoxicity testing demonstrated that the highest dose of NO-releasing silica nanoparticles inhibited fibroblast proliferation to a lesser extent than clinical concentrations of currently-administered antiseptics (e.g., chlorhexidine) with proven wound-healing benefits. This study demonstrates the promise of employing nanoparticles for delivering an antimicrobial agent to microbial biofilms. PMID:19233464

  12. Antireflective silica nanoparticle array directly deposited on flexible polymer substrates by chemical vapor deposition.

    PubMed

    Yun, Jungheum; Bae, Tae-Sung; Kwon, Jung-Dae; Lee, Sunghun; Lee, Gun-Hwan

    2012-11-21

    We report the direct coating of a novel antireflective (AR) nanoarray structure of silica nanoparticles on highly flexible polymer substrates by a conventional vacuum coating method using plasma-enhanced chemical vapor deposition. Globular-shaped silica nanoparticles are found to be self-arranged in a periodic pattern on subwavelength scales without the use of artificial assemblies that typically require complicated nanolithography or solution-based nanoparticle fabrication approaches. Highly efficient AR characteristics in the visible spectral range are obtained at optimized refractive indices by controlling the dimensions and average distances of the silica nanoparticle arrays in a level accuracy of tens of nanometers. The AR nanoarrays exhibit sufficient structural durability against the very high strain levels that arise from the flexibility of polymer substrates. This simple coating process provides a cost-effective, high-throughput, room-temperature fabrication solution for producing large-area polymer substrates with AR characteristics.

  13. Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation.

    PubMed

    Fuertes, Gustavo; Sánchez-Muñoz, Orlando L; Pedrueza, Esteban; Abderrafi, Kamal; Salgado, Jesús; Jiménez, Ernesto

    2011-03-15

    Here we report on the triggering of antibacterial activity by a new type of silver nanoparticle coated with porous silica, Ag@silica, irradiated at their surface plasmon resonant frequency. The nanoparticles are able to bind readily to the surface of bacterial cells, although this does not affect bacterial growth since the silica shell largely attenuates the intrinsic toxicity of silver. However, upon simultaneous exposure to light corresponding to the absorption band of the nanoparticles, bacterial death is enhanced selectively on the irradiated zone. Because of the low power density used for the treatments, we discard thermal effects as the cause of cell killing. Instead, we propose that the increase in toxicity is due to the enhanced electromagnetic field in the proximity of the nanoparticles, which indirectly, most likely through induced photochemical reactions, is able to cause cell death.

  14. A New Class of Silica Crosslinked Micellar Core-Shell /nanoparticles."

    SciTech Connect

    Huo, Qisheng; Liu, Jun; Wang, Li Q.; Jiang, Yingbing; Lambert, Timothy N.; Fang, Erica

    2006-05-17

    Micellar nanoparticles made of surfactants and polymers have attracted wide attention in the materials and biomedical community for controlled drug delivery, molecular imaging and sensing; however, their long-term stability remains a topic of intense study. Here we report a new class of robust, ultrafine (10nm) silica core-shell nanoparticles formed from silica crosslinked, individual block copolymer micelles. Compared with pure polymer micelles, the new core-shell nanoparticles have significantly improved stability and do not break down during dilution. They also achieve much higher loading capacity for a wide range of chemicals, with the entrapped molecules slowly released over a much longer period of time. A wide range of functional groups can be easily incorporated through co-condensation with the silica matrix. The potential to deliver hydrophobic agents into cancer cells has been demonstrated. Because of their unique properties, these novel core-shell nanoparticles could potentially provide a new nanomedicine platform for imaging, detection and treatment.

  15. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution

    PubMed Central

    Lee, Haisung; Sung, Dongkyung; Kim, Jinhoon; Kim, Byung-Tae; Wang, Tuntun; An, Seong Soo A; Seo, Soo-Won; Yi, Dong Kee

    2015-01-01

    In this study, fluorescent dye-conjugated magnetic resonance (MR) imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice. PMID:26357472

  16. Adsorption of Silica Nanoparticles onto Poly(N-vinylpyrrolidone)-Functionalized Polystyrene Latex.

    PubMed

    Zou, Hua; Wang, Xia

    2017-02-14

    This paper presents a more general method to prepare silica-coated polystyrene (PS) particles with minimal excess silica by adsorption, highlighting the role of poly(N-vinylpyrrolidone) (PVP). The method is based on the addition of small silica nanoparticles onto submicrometer-sized near-monodisperse polymer latex particles under the conditions of monolayer silica coverage of the latex surface. Either a cationic or an anionic initiator could be used in the PVP-involved emulsion polymerization to prepare PS particles, and the adsorption was conducted successfully either under acidic or basic conditions. Neither a cationic initiator nor a basic condition is a prerequisite for the adsorption process, which should be related to the much stronger interaction between PVP and the silica surface. This method is expected to substantially extend the adsorption conditions of polymer-silica colloidal nanocomposite syntheses.

  17. Supramolecular Complex Antioxidant Consisting of Vitamins C, E and Hydrophilic-Hydrophobic Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.

    Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins’ content. The antioxidant remained active during long-term storage under standard conditions.

  18. Supramolecular Complex Antioxidant Consisting of Vitamins C, E and Hydrophilic-Hydrophobic Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.

    Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins' content. The antioxidant remained active during long-term storage under standard conditions.

  19. Novel Dental Composites Reinforced with Zirconia-Silica Ceramic Nanofibers

    PubMed Central

    Guo, Guangqing; Fan, Yuwei; Zhang, Jian-Feng; Hagan, Joseph; Xu, Xiaoming

    2011-01-01

    Objective To fabricate and characterize dental composites reinforced with various amounts of zirconia-silica (ZS) or zirconia-yttria-silica (ZYS) ceramic nanofibers. Methods Control composites (70 wt% glass particle filler, no nanofibers) and experimental composites (2.5, 5.0, and 7.5 wt% ZS or ZYS nanofibers replacing glass particle filler) were prepared by blending 29 wt% dental resin monomers, 70 wt% filler, and 1.0 wt% initiator, and polymerized by either heat or dental curing light. Flexural strength (FS), flexural modulus (FM), energy at break (EAB), and fracture toughness (FT) were tested after the specimens were stored in 37 °C deionized water for 24 h, 3 months, or 6 months. Degree of conversion (DC) of monomers in composites was measured using Fourier transformed near-infrared (FT-NIR) spectroscopy. Fractured surfaces were observed by field-emission scanning electron microscope (FE-SEM). The data were analyzed using ANOVA with Tukey’s Honestly Significant Differences test used for post hoc analysis. Results Reinforcement of dental composites with ZS or ZYS nanofibers (2.5% or 5.0%) can significantly increase the FS, FM and EAB of dental composites over the control. Further increase the content of ZS nanofiber (7.5%), however, decreases these properties (although they are still higher than those of the control). Addition of nanofibers did not decrease the long-term mechanical properties of these composites. All ZS reinforced composites (containing 2.5%, 5.0% and 7.5% ZS nanofibers) exhibit significantly higher fracture toughness than the control. The DC of the composites decreases with ZS nanofiber content. Significance Incorporation of ceramic nanofibers in dental composites can significantly improve their mechanical properties and fracture toughness and thus may extend their service life. PMID:22153326

  20. Novel dental composites reinforced with zirconia-silica ceramic nanofibers.

    PubMed

    Guo, Guangqing; Fan, Yuwei; Zhang, Jian-Feng; Hagan, Joseph L; Xu, Xiaoming

    2012-04-01

    To fabricate and characterize dental composites reinforced with various amounts of zirconia-silica (ZS) or zirconia-yttria-silica (ZYS) ceramic nanofibers. Control composites (70 wt% glass particle filler, no nanofibers) and experimental composites (2.5, 5.0, and 7.5 wt% ZS or ZYS nanofibers replacing glass particle filler) were prepared by blending 29 wt% dental resin monomers, 70 wt% filler, and 1.0 wt% initiator, and polymerized by either heat or dental curing light. Flexural strength (FS), flexural modulus (FM), energy at break (EAB), and fracture toughness (FT) were tested after the specimens were stored in 37°C deionized water for 24h, 3 months, or 6 months. Degree of conversion (DC) of monomers in composites was measured using Fourier transformed near-infrared (FT-NIR) spectroscopy. Fractured surfaces were observed by field-emission scanning electron microscope (FE-SEM). The data were analyzed using ANOVA with Tukey's Honestly Significant Differences test used for post hoc analysis. Reinforcement of dental composites with ZS or ZYS nanofibers (2.5% or 5.0%) can significantly increase the FS, FM and EAB of dental composites over the control. Further increase the content of ZS nanofiber (7.5%), however, decreases these properties (although they are still higher than those of the control). Addition of nanofibers did not decrease the long-term mechanical properties of these composites. All ZS reinforced composites (containing 2.5%, 5.0% and 7.5% ZS nanofibers) exhibit significantly higher fracture toughness than the control. The DC of the composites decreases with ZS nanofiber content. Incorporation of ceramic nanofibers in dental composites can significantly improve their mechanical properties and fracture toughness and thus may extend their service life. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Tailored silica-antibiotic nanoparticles: overcoming bacterial resistance with low cytotoxicity.

    PubMed

    Capeletti, Larissa Brentano; de Oliveira, Luciane França; Gonçalves, Kaliandra de Almeida; de Oliveira, Jessica Fernanda Affonso; Saito, Ângela; Kobarg, Jörg; dos Santos, João Henrique Zimnoch; Cardoso, Mateus Borba

    2014-07-01

    New and more aggressive antibiotic resistant bacteria arise at an alarming rate and represent an ever-growing challenge to global health care systems. Consequently, the development of new antimicrobial agents is required to overcome the inefficiency of conventional antibiotics and bypass treatment limitations related to these pathologies. In this study, we present a synthesis protocol, which was able to entrap tetracycline antibiotic into silica nanospheres. Bactericidal efficacy of these structures was tested against bacteria that were susceptible and resistant to antibiotics. For nonresistant bacteria, our composite had bactericidal efficiency comparable to that of free-tetracycline. On the other hand, the synthesized composites were able to avoid bacterial growth of resistant bacteria while free-tetracycline has shown no significant bactericidal effect. Finally, we have investigated the cytotoxicity of these nanoparticles against mammalian cells to check any possible poisoning effect. It was found that these nanospheres are not apoptosis-inducers and only a reduction on the cell replication rate was seen when compared to the control without nanoparticles.

  2. Surface functionalization of silica-coated magnetic nanoparticles for covalent attachment of cholesterol oxidase

    NASA Astrophysics Data System (ADS)

    Šulek, Franja; Drofenik, Miha; Habulin, Maja; Knez, Željko

    2010-01-01

    A systematic approach towards the fabrication of highly functionalized silica shell magnetic nanoparticles, presently used for enzyme immobilization, is herein fully presented. The synthesis of bare maghemite (γ-Fe 2O 3) nanoparticles was accomplished by thermal co-precipitation of iron ions in ammonia alkaline solution at harsh reaction conditions, respectively. Primary surface engineering of maghemite nanoparticles was successfully performed by the proper deposition of silica onto nanoparticles surface under strictly regulated reaction conditions. Next, the secondary surface functionalization of the particles was achieved by coating the particles with organosilane followed by glutaraldehyde activation in order to enhance protein immobilization. Covalent immobilization of cholesterol oxidase was attempted afterwards. The structural and magnetic properties of magnetic silica nanocomposites were characterized by TEM and vibrating sample magnetometer (VSM) instruments. X-ray diffraction measurements confirmed the spinel structure and average size of uncoated maghemite nanoparticles to be around 20 nm in diameter. SEM-EDS spectra indicated a strong signal for Si, implying the coating procedure of silica onto the particles surface to be successfully accomplished. Fourier transform infrared (FT-IR) spectra analysis confirmed the binding of amino silane molecules onto the surface of the maghemite nanoparticles mediated Si-O-Si chemical bonds. Compared to the free enzyme, the covalently bound cholesterol oxidase retained 50% of its activity. Binding of enzyme onto chemically modified magnetic nanoparticles via glutaraldehyde activation is a promising method for developing biosensing components in biomedicine.

  3. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    PubMed

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system.

  4. Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy.

    PubMed

    Zečević, Jovana; Hermannsdörfer, Justus; Schuh, Tobias; de Jong, Krijn P; de Jonge, Niels

    2017-01-01

    Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of scanning TEM (STEM) brings about the dissolution of silica nanoparticles in water by a gradual reduction of their sizes, and that silica redeposites at the sides of the nanoparticles in the scanning direction of the electron beam, such that elongated nanoparticles are formed. Nanoparticles with an elongation in a different direction are obtained simply by changing the scan direction. Material is expelled from the center of the nanoparticles at higher electron dose, leading to the formation of doughnut-shaped objects. Nanoparticles assembled in an aggregate gradually fuse, and the electron beam exposed section of the aggregate reduces in size and is elongated. Under TEM conditions with a stationary electron beam, the nanoparticles dissolve but do not elongate. The observed phenomena are important to consider when conducting liquid-phase STEM experiments on silica-based materials and may find future application for controlled anisotropic manipulation of the size and the shape of nanoparticles in liquid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-06

    Fumed silica nanoparticles (FSNPs), were incorporated for the first time into a polymethacrylate monolithic column containing glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in order to develop a new monolithic column for hydrophilic interaction high performance liquid chromatography (HILIC). When compared to poly(GMM-EDMA) monolithic column without FSNPs, the same monolithic column with incorporated FSNPs yielded important effects on HILIC separations. The effects of monomers and FSNPs content of the polymerization mixture on the performance of the monolithic column were examined in details, and the optimized stationary phase was investigated over a wide range of mobile phase composition with polar acidic, weakly basic and neutral analytes including hydroxy benzoic acids, nucleotides, nucleosides, dimethylformamide, formamide and thiourea. The retention of these analytes was mainly controlled by hydrophilic interactions with the FSNPs and electrostatic repulsion from the negatively charged silica surface in the case of hydroxy benzoic acids and nucleotides. The electrostatic repulsion was minimized by decreasing the pH of the aqueous component of the mobile phase, which in turn enhanced the retention of acidic solutes. Nucleotides were best separated using step gradient elution at decreasing pH as well as ACN concentration in the mobile phase. Improved peak shape and faster analysis of nucleosides were attained by a fast linear gradient elution with a shallow decrease in the ACN content of the ACN-rich mobile phase. The run-to-run and column-to-column reproducibility were satisfactory. The percent relative standard deviations (%RSDs) for the retention times of tested solutes were lower than 2.5% under isocratic conditions and lower than 3.5 under gradient conditions.

  6. Modeling the self-assembly of silica-templated nanoparticles in the initial stages of zeolite formation.

    PubMed

    Chien, Szu-Chia; Auerbach, Scott M; Monson, Peter A

    2015-05-05

    The reaction ensemble Monte Carlo method was used to model the self-assembly and structure of silica nanoparticles found in the initial stages of the clear-solution synthesis of the silicalite-1 zeolite. Such nanoparticles, which comprise both silica and organic structure-directing agents (OSDAs), are believed to play a crucial role in the formation of silica nanoporous materials, yet very limited atomic-level structural information is available for these nanoparticles. We have modeled silica monomers as flexible tetrahedra with spring constants fitted in previous work to silica bulk moduli and OSDAs as spheres attracted to anionic silica monomers. We have studied one-step and two-step formation mechanisms, the latter involving the initial association of silica species and OSDAs driven by physical solution forces, followed by silica condensation/hydrolysis reactions simulated with reaction ensemble Monte Carlo. The two-step process with preassociation was found to be crucial for generating nearly spherical nanoparticles; otherwise, without preassociation they exhibited jagged, ramified structures. The two-step nanoparticles were found to exhibit a core-shell structure with mostly silica in the core surrounded by a diffuse shell of OSDAs, in agreement with SANS and SAXS data. The Qn distribution, quantifying silicon atoms bound to n bridging oxygens, found in the simulated nanoparticles is in broad agreement with (29)Si solid-state NMR data on smaller, 2 nm nanoparticle populations. Ring-size distributions from the simulated nanoparticles show that five-membered rings are prevalent when considering OSDA/silica mole fractions (∼0.2) that lead to silicalite-1, in agreement with a previous IR and modeling study. Nanoparticles simulated with higher OSDA concentrations show ring-size distributions shifted to smaller rings, with three-membered silica rings dominating at an OSDA/silica mole fraction of 0.8. Our simulations show no evidence of long-range silicalite-1

  7. Incorporation of polyoxotungstate complexes in silica spheres and in situ formation of tungsten trioxide nanoparticles.

    PubMed

    Zhao, Yuanyuan; Fan, Haimei; Li, Wen; Bi, Lihua; Wang, Dejun; Wu, Lixin

    2010-09-21

    In this paper, we demonstrated a new convenient route for in situ fabrication of well separated small sized WO(3) nanoparticles in silica spheres, through a predeposition of surfactant encapsulated polyoxotungates as tungsten source, and followed by a calcination process. In a typical procedure, selected polyoxotungates with different charges were enwrapped with dioctadecyldimethylammonium cations through electrostatic interaction. Elemental analysis, thermogravimetric analysis, and spectral characterization confirmed the formation of prepared complexes with the anticipated chemical structure. The complexes were then phase-transferred into aqueous solution that predissolved surfactant cetyltrimethylammonium bromide, and finally incorporated into silica spheres through a joint sol-gel reaction with tetraethyl orthosilicate in a well dispersed state under the protection of organic layer for polyoxotungates from the alkaline reaction condition. Transmission electron microscopic images illustrated the well dispersed WO(3) nanoparticles in the size range of ca. 2.2 nm in the silica spheres after the calcination at 465 °C. The sizes of both the silica spheres and WO(3) nanoparticles could be adjusted independently through changing the doping content to a large extent. Meanwhile, the doped polyoxotungate complexes acted as the template for the mesoporous structure in silica spheres after the calcination. Along with the increase of doping content and surfactant, the mesopore size changed little (2.0-2.9 nm), but the specific surface areas increased quite a lot. Importantly, the WO(3)-nanoparticle-doped silica spheres displayed an interesting photovoltaic property, which is favorable for the funtionalization of these nanomaterials.

  8. Effect of silica nanoparticles on reinforcement of poly(phenylene ether) based thermoplastic elastomer.

    PubMed

    Gupta, Samik; Maiti, Parnasree; Krishnamoorthy, Kumar; Krishnamurthy, Raja; Menon, Ashok; Bhowmick, Anil K

    2008-04-01

    Reinforcement of a novel poly(phenylene ether) (PPE) based thermoplastic elastomer (TPE), i.e., styrene-ethylene-butylene-styrene (SEBS)/ethylene vinyl acetate (EVA) and PPE-polystyrene (PS), was studied to develop a reinforced thermoplastic elastomer or thermoplastic vulcanizate (TPV). An effort was made to reinforce selectively the elastomeric dispersed phase of EVA by silica nanoparticles and silica sol-gel precursors, like alkoxy orthosilanes, using twin-screw extrusion and injection molding processes. Improvement of tensile strength and percent elongation at break was observed both with silica nanoparticles and tetraethoxy orthosilane (TEOS). Addition of TEOS transformed the dispersed EVA lamellar morphology into semispherical domains as a consequence of possible crosslinking. Soxhlet extraction was done on the silica and TEOS reinforced materials. The insoluble residues collected from both the silica and TEOS reinforced samples were analyzed in detail using both morphological and spectroscopic studies. This extensive study also provided an in-depth conceptual understanding of the PPE based TPE behavior upon reinforcement with silica nanoparticles and silica sol-gel precursors and the effect of reinforcement on recycling behavior.

  9. A novel method for the synthesis of monodisperse gold-coated silica nanoparticles

    NASA Astrophysics Data System (ADS)

    English, Michael D.; Waclawik, Eric R.

    2012-01-01

    Monodisperse silica nanoparticles were synthesised by the well-known Stober protocol, then dispersed in acetonitrile (ACN) and subsequently added to a bisacetonitrile gold(I) coordination complex ([Au(MeCN)2]+) in ACN. The silica hydroxyl groups were deprotonated in the presence of ACN, generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]+ complex to undergo ligand exchange with the silica nanoparticles and form a surface coordination complex with reduction to metallic gold (Au0) proceeding by an inner sphere mechanism. The residual [Au(MeCN)2]+ complex was allowed to react with water, disproportionating into Au0 and Au(III), respectively, with the Au0 adding to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of Au(III) to Au0 by ascorbic acid (ASC). This process generated a thin and uniform gold coating on the silica nanoparticles. The silica NPs batches synthesised were in a size range from 45 to 460 nm. Of these silica NP batches, the size range from 400 to 480 nm were used for the gold-coating experiments.

  10. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    NASA Astrophysics Data System (ADS)

    Francés, A. B.; Navarro Bañón, M. V.

    2014-08-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction.

  11. Amino acid-based anti-fouling functionalization of silica nanoparticles using divinyl sulfone.

    PubMed

    Wang, Hanqi; Cheng, Fang; Shen, Wen; Cheng, Gang; Zhao, Jing; Peng, Wei; Qu, Jingping

    2016-08-01

    Natural amino acids are zwitterionic molecules and the good biocompatibility promises them potential candidates as anti-fouling materials. Here, we developed a new method to functionalize silica nanoparticles with a natural amino acid-based anti-fouling layer. Amino acids were covalently immobilized on 3-aminopropyltriethoxysilane modified silica nanoparticles using divinyl sulfone through a two-step reaction in aqueous solution at room temperature. The progress was monitored with NMR, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM) and zeta potential measurements. A library of amino acids was screened and the nonspecific protein adsorption of bovine serum albumin (BSA) and fetal bovine serum (FBS) were investigated using dynamic light scattering method. The results showed that cysteine, lysine and arginine functionalized silica nanoparticles can effectively resist protein adsorption due to the zwitterionic structure. Among them, lysine functionalized silica nanoparticles had the best anti-fouling performance, which showed hydrodynamic diameter increases of only 10% after incubated in BSA solution and 20% after incubated in FBS solution for 24h. The neat aqueous modification process can conveniently create a thin zwitterionic layer on silica particles, and it has a great potential in biomolecule immobilization and biofunctional surface preparation. Zwitterionic polymer is an outstanding class of anti-fouling material; but the difficulty in synthesis is challenging its spread utilization. In this study, we developed a new method to create an amino acid-based zwitterionic layer on APTES functionalized silica nanoparticles through a two-step reaction in aqueous solution at room temperature. The surface chemistry was monitored with NMR, XPS, TEM and zeta potential measurements. With this method, a library of amino acid conjugated-silica nanoparticles was synthesized and their anti-fouling performance was evaluated using dynamic light

  12. Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation.

    PubMed

    Xia, Zhiwei; Lin, Zian; Xiao, Yun; Wang, Ling; Zheng, Jiangnan; Yang, Huanghao; Chen, Guonan

    2013-09-15

    Surface imprinting over nanostructured matrices is an effective solution to overcome template removal and achieve high binding capacity. In this work, a facile method was developed for synthesis of polydopamine-coated molecularly imprinted silica nanoparticles (PDA-coated MIP silica NPs) based on self-polymerization of dopamine (DA) on the surface of silica NPs in the presence of template protein. Transmission electronic microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) showed that PDA layers were successfully attached on the surface of silica NPs and the corresponding thickness was about 5nm, which enabled the MIP silica NPs to have fast binding kinetics and high binding capacity. Under the aqueous media, the imprinted silica NPs showed much higher binding affinity toward template than non-imprinted (NIP) silica NPs. The protein recognition properties were examined by single-protein or competitive batch rebinding experiments and rebinding kinetics study, validating that the imprinted silica NPs have high selectivity for the template. The resultant BHb-MIP silica NPs could not only selectively separate BHb from the protein mixture, but also specifically deplete high-abundance BHb from cattle whole blood. In addition, the stability and regeneration were also investigated, which indicated that the imprinted silica NPs had excellent reusability. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    PubMed

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis.

  14. Uptake of bright fluorophore core-silica shell nanoparticles by biological systems

    PubMed Central

    Zane, Andrew; McCracken, Christie; Knight, Deborah A; Young, Tanya; Lutton, Anthony D; Olesik, John W; Waldman, W James; Dutta, Prabir K

    2015-01-01

    Nanoparticles are used in a variety of consumer applications. Silica nanoparticles in particular are common, including as a component of foods. There are concerns that ingested nano-silica particles can cross the intestinal epithelium, enter the circulation, and accumulate in tissues and organs. Thus, tracking these particles is of interest, and fluorescence spectroscopic methods are well-suited for this purpose. However, nanosilica is not fluorescent. In this article, we focus on core-silica shell nanoparticles, using fluorescent Rhodamine 6G, Rhodamine 800, or CdSe/CdS/ZnS quantum dots as the core. These stable fluorophore/silica nanoparticles had surface characteristics similar to those of commercial silica particles. Thus, they were used as model particles to examine internalization by cultured cells, including an epithelial cell line relevant to the gastrointestinal tract. Finally, these particles were administered to mice by gavage, and their presence in various organs, including stomach, small intestine, cecum, colon, kidney, lung, brain, and spleen, was examined. By combining confocal fluorescence microscopy with inductively coupled plasma mass spectrometry, the presence of nanoparticles, rather than their dissolved form, was established in liver tissues. PMID:25759579

  15. Preparation, characterization, and in vivo evaluation of tanshinone IIA solid dispersions with silica nanoparticles

    PubMed Central

    Jiang, Yan-rong; Zhang, Zhen-hai; Liu, Qi-yuan; Hu, Shao-ying; Chen, Xiao-yun; Jia, Xiao-bin

    2013-01-01

    We prepared solid dispersions (SDs) of tanshinone IIA (TSIIA) with silica nanoparticles, which function as dispersing carriers, using a spray-drying method and evaluated their in vitro dissolution and in vivo performance. The extent of TSIIA dissolution in the silica nanoparticles/TSIIA system (weight ratio, 5:1) was approximately 92% higher than that of the pure drug after 60 minutes. However, increasing the content of silica nanoparticles from 5:1 to 7:1 in this system did not significantly increase the rate or extent of TSIIA dissolution. The physicochemical properties of SDs were investigated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and Fourier transforms infrared spectroscopy. Studying the stability of the SDs of TSIIA revealed that the drug content of the formulation and dissolution behavior was unchanged under the applied storage conditions. In vivo tests showed that SDs of the silica nanoparticles/TSIIA had a significantly larger area under the concentration-time curve, which was 1.27 times more than that of TSIIA (P < 0.01). Additionally, the values of maximum plasma concentration and the time to reach maximum plasma concentration of the SDs were higher than those of TSIIA and the physical mixing system. Based on these results, we conclude that the silica nanoparticle based SDs achieved complete dissolution, increased absorption rate, maintained drug stability, and showed improved oral bioavailability compared to TSIIA alone. PMID:23836971

  16. Highly efficient antibody immobilization with multimeric protein Gs coupled magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Choi, H. K.; Chang, J. H.

    2011-10-01

    This work reports the immobilization of monomeric, dimeric and trimer protein Gs onto silica magnetic nanoparticles for self-oriented antibody immobilization. To achieve this, we initially prepared the silica-coated magnetic nanoparticle having about 170 nm diameters. The surface of the silica coated magnetic nanoparticles was modified with 3- aminopropyl-trimethoxysilane (APTMS) to chemically link to multimeric protein Gs. The conjugation of amino groups on the SiO2-MNPs to cysteine tagged in multimeric protein Gs was performed using a sulfo-SMCC coupling procedure. The binding efficiencies of monomer, dimer and trimer were 77 %, 67 % and 55 % respectively. However, the efficiencies of antibody immobilization were 70 %, 83 % and 95 % for monomeric, dimeric and trimeric protein G, respectively. To prove the enhancement of accessibility by using multimeric protein G, FITC labeled goat-anti-mouse IgG was treated to mouse IgG immobilized magnetic silica nanoparticles through multimeric protein G. FITC labeled goat anti-mouse IgGs were more easily bound to mouse IgG immobilized by trimeric protein G than others. Finally protein G bound silica magnetic nanoparticles were utilized to develop highly sensitive immunoassay to detect hepatitis B antigen.

  17. Polyvinylpyrrolidone molecular weight controls silica shell thickness on Au nanoparticles with diglycerylsilane as precursor.

    PubMed

    Vanderkooy, Alan; Brook, Michael A

    2012-08-01

    Several strategies have been described for the preparation of silica-encapsulated gold nanoparticles (SiO(2)-AuNP), which typically suffer from an initial interface between gold and silica that is difficult to control, and layer thicknesses that are very sensitive to minor changes in silane concentration and incubation time. The silica shell thicknesses are normally equal to or larger than the gold particles themselves, which is disadvantageous when the particles are to be used for biodiagnostic applications. We present a facile and reproducible method to produce very thin silica shells (3-5 nm) on gold nanoparticles: the process is highly tolerant to changes in reaction conditions. The method utilized polyvinylpyrrolidone (PVP) of specific molecular weights to form the interface between gold and silica. The method further requires a nontraditional silica precursor, diglycerylsilane, which efficiently undergoes sol-gel processing at neutrality. Under these conditions, higher molecular weight PVP leads to thicker silica shells: PVP acts as the locus for silica growth into an interpenetrating organic-inorganic hybrid structure.

  18. Preparation of silica stabilized Tobacco mosaic virus templates for the production of metal and layered nanoparticles.

    PubMed

    Royston, Elizabeth S; Brown, Adam D; Harris, Michael T; Culver, James N

    2009-04-15

    The use of biological molecules as templates for the production of metal nanoparticles and wires is often limited by the stability of the bio-template and its affinity for nucleating metal deposition. In this study, Tobacco mosaic virus (TMV) was used as a model bio-template to investigate the use of silica coatings as a means to both enhance template stability and increase its affinity for metal ions. Results indicate that the unmodified TMV particle can function as a template for the growth of thin (<1 nm) silica layers. However, this thin silica shell did not enhance the stability of the template during metal deposition. To increase silica growth on the TMV template, a pretreatment with aniline was used to produce a uniform silica attractive surface. Aniline pretreated templates yielded significant silica layers of >20 nm in thickness. These silica shells conferred a high degree of stability to the TMV particle and promoted the deposition of various metal nanoparticles through conventional silica mineralization chemistries. This process provides a simple and robust method for the layering of inorganics onto a biological template.

  19. Molecular dynamics simulations of silica nanoparticles grafted with poly(ethylene oxide) oligomer chains.

    PubMed

    Hong, Bingbing; Panagiotopoulos, Athanassios Z

    2012-03-01

    A molecular model of silica nanoparticles grafted with poly(ethylene oxide) oligomers has been developed for predicting the transport properties of nanoparticle organic-hybrid materials (NOHMs). Ungrafted silica nanoparticles in a medium of poly(ethylene oxide) oligomers were also simulated to clarify the effect of grafting on the dynamics of nanoparticles and chains. The model approximates nanoparticles as solid spheres and uses a united-atom representation for chains, including torsional and bond-bending interactions. The calculated viscosities from Green-Kubo relationships and temperature extrapolation are of the same order of magnitude as experimental data but show a smaller activation energy relative to real NOHMs systems. Grafted systems have higher viscosities, smaller diffusion coefficients, and slower chain dynamics than the ungrafted ones at high temperatures. At lower temperatures, grafted systems exhibit faster dynamics for both nanoparticles and chains relative to ungrafted systems, because of lower aggregation of particles and enhanced correlations between nanoparticles and chains. This agrees with the experimental observation that NOHMs have liquidlike behavior in the absence of a solvent. For both grafted and ungrafted systems at low temperatures, increasing chain length reduces the volume fraction of nanoparticles and accelerates the dynamics. However, at high temperatures, longer chains slow down nanoparticle diffusion. From the Stokes-Einstein relationship, it was determined that the coarse-grained treatment of nanoparticles leads to slip on the nanoparticle surfaces. Grafted systems obey the Stokes-Einstein relationship over the temperature range simulated, but ungrafted systems display deviations from it.

  20. Exposure to Silica Nanoparticles Causes Reversible Damage of the Spermatogenic Process in Mice

    PubMed Central

    Yu, Yang; Li, Yang; Li, Yan-Bo; Yu, Yong-Bo; Zhou, Xian-Qing; Sun, Zhi-Wei

    2014-01-01

    Environmental exposure to nanomaterials is inevitable, as nanomaterials have become part of our daily life now. In this study, we firstly investigated the effects of silica nanoparticles on the spermatogenic process according to their time course in male mice. 48 male mice were randomly divided into control group and silica nanoparticle group with 24 mice per group, with three evaluation time points (15, 35 and 60 days after the first dose) per group. Mice were exposed to the vehicle control and silica nanoparticles at a dosage of 20 mg/kg every 3 days, five times over a 13-day period, and were sacrificed at 15, 35 and 60 days after the first dose. The results showed that silica nanoparticles caused damage to the mitochondrial cristae and decreased the levels of ATP, resulting in oxidative stress in the testis by days 15 and 35; however, the damage was repaired by day 60. DNA damage and the decreases in the quantity and quality of epididymal sperm were found by days 15 and 35; but these changes were recovered by day 60. In contrast, the acrosome integrity and fertility in epididymal sperm, the numbers of spermatogonia and sperm in the testes, and the levels of three major sex hormones were not significantly affected throughout the 60-day period. The results suggest that nanoparticles can cause reversible damage to the sperms in the epididymis without affecting fertility, they are more sensitive than both spermatogonia and spermatocytes to silica nanoparticle toxicity. Considering the spermatogenesis time course, silica nanoparticles primarily influence the maturation process of sperm in the epididymis by causing oxidative stress and damage to the mitochondrial structure, resulting in energy metabolism dysfunction. PMID:25003337

  1. Sonochemical synthesis of silica and silica sulfuric acid nanoparticles from rice husk ash: a new and recyclable catalyst for the acetylation of alcohols and phenols under heterogeneous conditions.

    PubMed

    Salavati-Niasari, Masoud; Javidi, Jaber

    2012-11-01

    Silica nanoparticles were synthesized from rice husk ash at room temperature by sonochemical method. The feeding rate of percipiteting agent and time of sonication were investigated. The nanostructure of the synthesized powder was realized by the FE-SEM photomicrograph, FT-IR spectroscopy, XRD and XRF analyses. These analytical observations have revealed that the nano-sized amorphous silica particles are formed and they are spheroidal in shape. The average particle size of the silica powders is found to be around 50 nm. The as-synthesized silica nanoparticles were subsequently modified with chlorosulfonic acid and prepared silica sulfuric acid nanoparticles, which were employed as an efficient catalyst for the acylation of alcohols and phenols with acetic anhydride in excellent yields under solvent-free conditions at room temperature. This reported method is simple, mild, and environmentally viable and catalyst can be simply recovered and reused over 9 times without any significant loss of its catalytic activity.

  2. Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure To Increase Stability And Surface Reactivity Of Nano-crystalline Ceria

    SciTech Connect

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Varga, Tamas; Thevuthasan, Suntharampillai

    2014-01-21

    The mixed oxidation state (3+/4+) of ceria nanoparticles of smaller sizes make them attractive materials for their catalytic antioxidant biological properties. However the unmodified smaller ceria nanoparticles are limited in their use due to particles agglomeration and reduced surface chemical reactivity in the solutions used to disperse the nanoparticles. This work describes an effort to stabilize small ceria nanoparticles, retaining their desired activity, on a larger stable silica support. The ceria nanoparticles attached to silica was synthesized by a solution synthesis technique in which the surface functional groups of silica nanoparticles were found to be essential for the formation of smaller ceria nanoparticles. The surface chemical and vibrational spectroscopy analysis revealed cerium–silicate (Ce-O-Si) covalent bond linkage between silica and cerium oxide nanoparticles. The colloidal properties (agglomerate particle size and suspension stability) of ceria attached to silica was significantly improved due to inherent physico-chemical characteristics of silica against random collision and gravitation settling as opposed to unmodified ceria nanoparticles in solution. The bio-catalytic activity of ceria nanoparticles in the 3+ oxidation state was not found to be limited by attachment to the silica support as measured by free radical scavenging activity in different biological media conditions.

  3. Silica nanoparticles for micro-particle imaging velocimetry: fluorosurfactant improves nanoparticle stability and brightness of immobilized iridium(III) complexes.

    PubMed

    Lewis, David J; Dore, Valentina; Rogers, Nicola J; Mole, Thomas K; Nash, Gerard B; Angeli, Panagiota; Pikramenou, Zoe

    2013-11-26

    To establish highly luminescent nanoparticles for monitoring fluid flows, we examined the preparation of silica nanoparticles based on immobilization of a cyclometalated iridium(III) complex and an examination of the photophysical studies provided a good insight into the Ir(III) microenvironment in order to reveal the most suitable silica nanoparticles for micro particle imaging velocimetry (μ-PIV) studies. Iridium complexes covalently incorporated at the surface of preformed silica nanoparticles, [Ir-4]@Si500-Z, using a fluorinated polymer during their preparation, demonstrated better stability than those without the polymer, [Ir-4]@Si500, as well as an increase in steady state photoluminescence intensity (and therefore particle brightness) and lifetimes which are increased by 7-fold compared with nanoparticles with the same metal complex attached covalently throughout their core, [Ir-4]⊂Si500. Screening of the nanoparticles in fluid flows using epi-luminescence microscopy also confirm that the brightest, and therefore most suitable particles for microparticle imaging velocimetry (μ-PIV) measurements are those with the Ir(III) complex immobilized at the surface with fluorosurfactant, that is [Ir-4]@Si500-Z. μ-PIV studies demonstrate the suitability of these nanoparticles as nanotracers in microchannels.

  4. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Guo, Yanyan; Rogelj, Snezna; Zhang, Peng

    2010-02-01

    A new type of photosensitizer, made from Rose Bengal (RB)-decorated silica (SiO2-NH2-RB) nanoparticles, was developed to inactivate gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA), with high efficiency through photodynamic action. The nanoparticles were characterized microscopically and spectroscopically to confirm their structures. The characterization of singlet oxygen generated by RB, both free and immobilized on a nanoparticle surface, was performed in the presence of anthracene-9,10-dipropionic acid. The capability of SiO2-NH2-RB nanoparticles to inactivate bacteria was tested in vitro on both gram-positive and gram-negative bacteria. The results showed that RB-decorated silica nanoparticles can inactivate MRSA and Staphylococcus epidermidis (both gram-positive) very effectively (up to eight-orders-of-magnitude reduction). Photosensitizers of such design should have good potential as antibacterial agents through a photodynamic mechanism.

  5. In vitro toxicity of silica nanoparticles in human lung cancer cells

    SciTech Connect

    Lin Weisheng; Huang Yuewern; Zhou Xiaodong; Ma Yinfa . E-mail: yinfa@umr.edu

    2006-12-15

    The cytotoxicity of 15-nm and 46-nm silica nanoparticles was investigated by using crystalline silica (Min-U-Sil 5) as a positive control in cultured human bronchoalveolar carcinoma-derived cells. Exposure to 15-nm or 46-nm SiO{sub 2} nanoparticles for 48 h at dosage levels between 10 and 100 {mu}g/ml decreased cell viability in a dose-dependent manner. Both SiO{sub 2} nanoparticles were more cytotoxic than Min-U-Sil 5; however, the cytotoxicities of 15-nm and 46-nm silica nanoparticles were not significantly different. The 15-nm SiO{sub 2} nanoparticles were used to determine time-dependent cytotoxicity and oxidative stress responses. Cell viability decreased significantly as a function of both nanoparticle dosage (10-100 {mu}g/ml) and exposure time (24 h, 48 h, and 72 h). Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species (ROS), glutathione, malondialdehyde, and lactate dehydrogenase, were quantitatively assessed. Exposure to SiO{sub 2} nanoparticles increased ROS levels and reduced glutathione levels. The increased production of malondialdehyde and lactate dehydrogenase release from the cells indicated lipid peroxidation and membrane damage. In summary, exposure to SiO{sub 2} nanoparticles results in a dose-dependent cytotoxicity in cultural human bronchoalveolar carcinoma-derived cells that is closely correlated to increased oxidative stress.

  6. Lung toxicities of core–shell nanoparticles composed of carbon, cobalt, and silica

    PubMed Central

    Al Samri, Mohammed T; Silva, Rafael; Almarzooqi, Saeeda; Albawardi, Alia; Othman, Aws Rashad Diab; Al Hanjeri, Ruqayya SMS; Al Dawaar, Shaikha KM; Tariq, Saeed; Souid, Abdul-Kader; Asefa, Tewodros

    2013-01-01

    We present here comparative assessments of murine lung toxicity (biocompatibility) after in vitro and in vivo exposures to carbon (C–SiO2-etched), carbon–silica (C–SiO2), carbon–cobalt–silica (C–Co–SiO2), and carbon–cobalt oxide–silica (C–Co3O4–SiO2) nanoparticles. These nanoparticles have potential applications in clinical medicine and bioimaging, and thus their possible adverse events require thorough investigation. The primary aim of this work was to explore whether the nanoparticles are biocompatible with pneumatocyte bioenergetics (cellular respiration and adenosine triphosphate content). Other objectives included assessments of caspase activity, lung structure, and cellular organelles. Pneumatocyte bioenergetics of murine lung remained preserved after treatment with C–SiO2-etched or C–SiO2 nanoparticles. C–SiO2-etched nanoparticles, however, increased caspase activity and altered lung structure more than C–SiO2 did. Consistent with the known mitochondrial toxicity of cobalt, both C–Co–SiO2 and C–Co3O4–SiO2 impaired lung tissue bioenergetics. C–Co–SiO2, however, increased caspase activity and altered lung structure more than C–Co3O4–SiO2. The results indicate that silica shell is essential for biocompatibility. Furthermore, cobalt oxide is the preferred phase over the zerovalent Co(0) phase to impart biocompatibility to cobalt-based nanoparticles. PMID:23658487

  7. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles

    NASA Astrophysics Data System (ADS)

    Fan, Jianquan; Fang, Gang; Wang, Xiaodan; Zeng, Fang; Xiang, Yufei; Wu, Shuizhu

    2011-11-01

    A targeted anticancer prodrug system was fabricated with 180 nm mesoporous silica nanoparticles (MSNs) as carriers. The anticancer drug doxorubicin (DOX) was conjugated to the particles through an acid-sensitive carboxylic hydrazone linker which is cleavable under acidic conditions. Moreover, folic acid (FA) was covalently conjugated to the particle surface as the targeting ligand for folate receptors (FRs) overexpressed in some cancer cells. The in vitro release profiles of DOX from the MSN-based prodrug systems showed a strong dependence on the environmental pH values. The fluorescent dye FITC was incorporated in the MSNs so as to trace the cellular uptake on a fluorescence microscope. Cellular uptakes by HeLa, A549 and L929 cell lines were tested for FA-conjugated MSNs and plain MSNs respectively, and a much more efficient uptake by FR-positive cancer cells (HeLa) can be achieved by conjugation of folic acid onto the particles because of the folate-receptor-mediated endocytosis. The cytotoxicities for the FA-conjugated MSN prodrug, the plain MSN prodrug and free DOX against three cell lines were determined, and the result indicates that the FA-conjugated MSN prodrug exhibits higher cytotoxicity to FR-positive cells, and reduced cytotoxicity to FR-negative cells. Thus, with 180 nm MSNs as the carriers for the prodrug system, good drug loading, selective targeting and sustained release of drug molecules within targeted cancer cells can be realized. This study may provide useful insights for designing and improving the applicability of MSNs in targeted anticancer prodrug systems.

  8. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    NASA Astrophysics Data System (ADS)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  9. Rapid synthesis of ordered hexagonal mesoporous silica and their incorporation with Ag nanoparticles by solution plasma

    SciTech Connect

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang Yul

    2012-10-15

    Graphical abstract: Overall reactions of mesoporous silica and AgNPs-incorporated mesoporous silica syntheses by solution plasma process (SPP). Highlights: ► SPP for rapid synthesis of mesoporous silica. ► SPP for rapid synthesis of mesoporous silica and AgNPs incorporation. ► Higher surface area and larger pore diameter of mesoporous silica synthesized by SPP. -- Abstract: Rapid synthesis of silica with ordered hexagonal mesopore arrangement was obtained using solution plasma process (SPP) by discharging the mixture of P123 triblock copolymer/TEOS in acid solution. SPP, moreover, was utilized for Ag nanoparticles (AgNPs) incorporation in silica framework as one-batch process using silver nitrate (AgNO{sub 3}) solution as precursor. The turbid silicate gel was clearly observed after discharge for 1 min and the white precipitate formed at 3 min. The mesopore with hexagonal arrangement and AgNPs were observed in mesoporous silica. Two regions of X-ray diffraction patterns (2θ < 2° and 2θ = 35–90°) corresponded to the mesoporous silica and Ag nanocrystal characteristics. Comparing with mesoporous silica prepared by a conventional sol–gel route, surface area and pore diameter of mesoporous silica prepared by solution plasma were observed to be larger. In addition, the increase in Ag loading resulted in the decrease in surface area with insignificant variation in the pore diameter of mesoporous silica. SPP could be successfully utilized not only to enhance gelation time but also to increase surface area and pore diameter of mesoporous silica.

  10. Water-Dispersible, Multifunctional, Magnetic, Luminescent Silica-Encapsulated Composite Nanotubes

    SciTech Connect

    Sutter, E.; Wong, S.; Zhou, H.; Chen, J.; Sutter, E.; Feygenson, M.; Aronson, M.C.

    2010-02-05

    A multifunctional one-dimensional nanostructure incorporating both CdSe quantum dots (QDs) and Fe{sub 3}O{sub 4} nanoparticles (NPs) within a SiO{sub 2}-nanotube matrix is successfully synthesized based on the self-assembly of preformed functional NPs, allowing for control over the size and amount of NPs contained within the composite nanostructures. This specific nanostructure is distinctive because both the favorable photoluminescent and magnetic properties of QD and NP building blocks are incorporated and retained within the final silica-based composite, thus rendering it susceptible to both magnetic guidance and optical tracking. Moreover, the resulting hydrophilic nanocomposites are found to easily enter into the interiors of HeLa cells without damage, thereby highlighting their capability not only as fluorescent probes but also as possible drug-delivery vehicles of interest in nanobiotechnology.

  11. Conversion of silica nanoparticles into Si nanocrystals through electrochemical reduction

    NASA Astrophysics Data System (ADS)

    Nishihara, Hirotomo; Suzuki, Takashi; Itoi, Hiroyuki; An, Bai-Gang; Iwamura, Shinichiroh; Berenguer, Raúl; Kyotani, Takashi

    2014-08-01

    The precise design of Si-based materials at the nanometer scale is a quite complex issue but of utmost importance for their present and potential applications. This paper reports the first attempt to address the electrochemical reduction of SiO2 at the nanometer scale. SiO2 nanoparticles are first covered with a uniform carbon layer with controlled thickness at an accuracy of a few nanometers, by pressure-pulsed chemical vapor deposition. With appropriate thickness, the carbon layer plays significant roles as a current path and also as a physical barrier against Si-crystal growth, and the SiO2 nanoparticles are successfully converted into extremely small Si nanocrystals (<20 nm) inside the shell-like carbon layer whose morphology is derived from the original SiO2 nanoparticles. Thus, the proposed electroreduction method offers a new synthesis strategy of Si-C nanocomposites utilizing the morphology of SiO2 nanomaterials, which are well known for a wide variety of defined and regular nanostructures. Owing to the volume difference of SiO2 and the corresponding Si, nanopores are generated around the Si nanocrystals. It has been demonstrated that the nanopores around the Si nanocrystals are effective to improve cycle performance of Si as a negative electrode for lithium-ion batteries. The present method is in principle applicable to various SiO2 nanomaterials, and thus, offers production of a variety of Si-C composites whose carbon nanostructures can be defined by their parent SiO2 nanomaterials.The precise design of Si-based materials at the nanometer scale is a quite complex issue but of utmost importance for their present and potential applications. This paper reports the first attempt to address the electrochemical reduction of SiO2 at the nanometer scale. SiO2 nanoparticles are first covered with a uniform carbon layer with controlled thickness at an accuracy of a few nanometers, by pressure-pulsed chemical vapor deposition. With appropriate thickness, the carbon

  12. Toxic Effect of Silica Nanoparticles on Endothelial Cells through DNA Damage Response via Chk1-Dependent G2/M Checkpoint

    PubMed Central

    Duan, Junchao; Yu, Yongbo; Li, Yang; Yu, Yang; Li, Yanbo; Zhou, Xianqing; Huang, Peili; Sun, Zhiwei

    2013-01-01

    Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH) release were observed in human umbilical vein endothelial cells (HUVECs) as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS) generation caused oxidative damage followed by the production of malondialdehyde (MDA) as well as the inhibition of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP) decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM) were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR) via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases. PMID:23620807

  13. Reactions of methyl radicals with silica supported silver nanoparticles in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zidki, Tomer; Hänel, Andreas; Bar-Ziv, Ronen

    2016-07-01

    Silica supported silver nanoparticles (Ag°-SiO2-NCs, NCs=nanocomposites) suspended in aqueous solutions are efficient catalysts for the dimerization of methyl radicals to produce ethane, while bare silica is quite inert towards the interaction with methyl radicals. In the presence of small amounts of ethanol adsorbed on the SiO2 surface, the reaction path with methyl radicals is changed and methane is formed as the major product.

  14. Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: intracellular accumulation and stimuli responsive doxorubicin release.

    PubMed

    Hakeem, Abdul; Zahid, Fouzia; Duan, Ruixue; Asif, Muhammad; Zhang, Tianchi; Zhang, Zhenyu; Cheng, Yong; Lou, Xiaoding; Xia, Fan

    2016-03-07

    Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay.

  15. Formation of hybrid films from perylenediimide-labeled core-shell silica-polymer nanoparticles.

    PubMed

    Ribeiro, Tânia; Fedorov, Aleksander; Baleizão, Carlos; Farinha, José Paulo S

    2013-07-01

    We prepared water-dispersible core-shell nanoparticles with a perylenediimide-labeled silica core and a poly(butyl methacrylate) shell, for application in photoactive high performance coatings. Films cast from water dispersions of the core-shell nanoparticles are flexible and transparent, featuring homogeneously dispersed silica nanoparticles, and exhibiting fluorescence under appropriate excitation. We characterized the film formation process using nanoparticles where the polymer shell has been labeled with either a non-fluorescent N-benzophenone derivative (NBen) or a fluorescent phenanthrene derivative (PheBMA). We used Förster resonance energy transfer (FRET) from PheBMA to NBen to follow the interparticle interdiffusion of the polymer anchored to the silica surface that occurs after the dried dispersions are annealing above the glass transition temperature of the polymer. By calculating the evolution of the FRET quantum efficiency with annealing time, we could estimate the approximate fraction of mixing (fm) between polymer from neighbor particles, and from this, the apparent diffusion coefficients (Dapp) for this process. For long annealing times, the limiting values of fm are slightly lower than for films of pure PBMA particles at similar temperatures (go up to 80% of total possible mixing). The corresponding diffusion coefficients are also very similar to those reported for films of pure PBMA, indicating that the fact that the polymer chains are anchored to the silica particles does not significantly hinder the diffusion process during the initial part of the mixing process. From the temperature dependence of the diffusion coefficients, we found an effective activation energy for diffusion of Ea=38 kcal/mol, very similar to the value obtained for particles of the same polymer without the silica core. With these results, we show that, although the polymer is grafted to the silica surface, polymer interdiffusion during film formation is not significantly

  16. Growth and physiological responses of maize ( Zea mays L.) to porous silica nanoparticles in soil

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N.

    2012-12-01

    The present study aims to explore the effect of high surface area (360.85 m2 g-1) silica nanoparticles (SNPs) (20-40 nm) extracted from rice husk on the physiological and anatomical changes during maize growth in sandy loam soil at four concentrations (5-20 kg ha-1) in comparison with bulk silica (15-20 kg ha-1). The plant responses to nano and bulk silica treatments were analyzed in terms of growth characteristics, phyto compounds such as total protein, chlorophyll, and other organic compounds (gas chromatography-mass spectroscopy), and silica accumulation (high-resolution scanning electron microscopy). Growth characteristics were much influenced with increasing concentration of SNPs up to 15 kg ha-1 whereas at 20 kg ha-1, no significant increments were noticed. Silica accumulation in leaves was high at 10 and 15 kg ha-1 (0.57 and 0.82 %) concentrations of SNPs. The observed physiological changes show that the expression of organic compounds such as proteins, chlorophyll, and phenols favored to maize treated with nanosilica especially at 15 kg ha-1 compared with bulk silica and control. Nanoscale silica regimes at 15 kg ha-1 has a positive response of maize than bulk silica which help to improve the sustainable farming of maize crop as an alternative source of silica fertilizer.

  17. Solvent effects on silica domain growth in silica/siloxane composite materials

    SciTech Connect

    Ulibarri, T.A.; Bates, S.E.; Black, E.P.; Schaefer, D.W.; Beaucage, W.G.; Lee, M.K.; Moore, P.A.; Burns, G.T.

    1995-07-01

    The effect of solvent addition on the phase separation, mechanical Properties and thermal stability of silica/siloxane composite materials prepared by in situ reinforcement was examined. The addition of a solvent enhances the miscibility of the reinforcement precursor, a partial hydrolyzate of tetraethoxysilane (TEOS-PH), with the polydimethylsiloxane (PDMS) polymer. As a result, the phase separation at the micron level, termed the large-scale structure, diminished in size. This decrease in particle size resulting from the addition of moderate amounts of solvent was accompanied by an improvement in the mechanical properties. However, solvent addition in the excess of 50 weight percent led to a decrease in mechanical properties even though the large-scale structure continued to diminish in size. Small Angle X-Ray Scattering (SAXS) was used to examine the Angstrom level or small-scale structure. This small-scale structure was only affected by the presence of solvent, not the amount. The silica/siloxane composite materials showed the same thermal transition temperatures as the original PDMS material.

  18. Super-Hydrophobic/Icephobic Coatings Based on Silica Nanoparticles Modified by Self-Assembled Monolayers

    PubMed Central

    Liu, Junpeng; Janjua, Zaid A.; Roe, Martin; Xu, Fang; Turnbull, Barbara; Choi, Kwing-So; Hou, Xianghui

    2016-01-01

    A super-hydrophobic surface has been obtained from nanocomposite materials based on silica nanoparticles and self-assembled monolayers of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) using spin coating and chemical vapor deposition methods. Scanning electron microscope images reveal the porous structure of the silica nanoparticles, which can trap small-scale air pockets. An average water contact angle of 163° and bouncing off of incoming water droplets suggest that a super-hydrophobic surface has been obtained based on the silica nanoparticles and POTS coating. The monitored water droplet icing test results show that icing is significantly delayed by silica-based nano-coatings compared with bare substrates and commercial icephobic products. Ice adhesion test results show that the ice adhesion strength is reduced remarkably by silica-based nano-coatings. The bouncing phenomenon of water droplets, the icing delay performance and the lower ice adhesion strength suggest that the super-hydrophobic coatings based on a combination of silica and POTS also show icephobicity. An erosion test rig based on pressurized pneumatic water impinging impact was used to evaluate the durability of the super-hydrophobic/icephobic coatings. The results show that durable coatings have been obtained, although improvement will be needed in future work aiming for applications in aerospace. PMID:28335360

  19. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy.

    PubMed

    Qian, Hai Sheng; Guo, Hui Chen; Ho, Paul Chi-Lui; Mahendran, Ratha; Zhang, Yong

    2009-10-01

    Near-infrared (NIR)-to-visible up-conversion fluorescent nanoparticles have potential to be used for photodynamic therapy (PDT) in deep tissue because NIR light can penetrate thick tissue due to weak absorption in the optical window. Here a uniform layer of mesoporous silica is coated onto NaYF(4) up-converting nanocrystals, with a large surface area of approximately 770 m(2) g(-1) and an average pore size of 2 nm. A photosensitizer, zinc phthalocyanine, is incorporated into the mesoporous silica. Upon excitation by a NIR laser, the nanocrystals convert NIR light to visible light, which further activates the photosensitizer to release reactive singlet oxygen to kill cancer cells. The photosensitizer encapsulated in mesoporous silica is protected from degradation in the harsh biological environment. It is demonstrated that the photosensitizers loaded into the porous silica shell of the nanoparticles are not released out of the silica while they continuously produce singlet oxygen upon excitation by a NIR laser. The nanoparticles are reusable as the photosensitizers encapsulated in the silica are removed by soaking in ethanol.

  20. Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: intracellular accumulation and stimuli responsive doxorubicin release

    NASA Astrophysics Data System (ADS)

    Hakeem, Abdul; Zahid, Fouzia; Duan, Ruixue; Asif, Muhammad; Zhang, Tianchi; Zhang, Zhenyu; Cheng, Yong; Lou, Xiaoding; Xia, Fan

    2016-02-01

    Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay.Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08753h

  1. Structural and thermal characterizations of silica nanoparticles grafted with pendant maleimide and epoxide groups.

    PubMed

    Vejayakumaran, P; Rahman, I A; Sipaut, C S; Ismail, J; Chee, C K

    2008-12-01

    Grafting of free maleimide and epoxide pendant groups onto the surface of approximately 7-nm silica nanoparticles was investigated. Glycidyloxypropyl groups (3-glycidyloxypropyltrimethoxysilane and 3-aminopropyltrimethoxysilane) that carried epoxide groups and aminopropyl groups were grafted to the silica surface with the help of condensation reactions. Maleimide groups [1,1(')-(methylenedi-4,1-phenelene) bismaleimide] were introduced to the silica surface via nucleophilic addition reaction with the aminopropyl groups pre-grafted onto the surface. The grafted silica samples were characterized using CHN, FTIR, DSC, TGA-FTIR, and 13C and 29Si CP/MAS NMR spectroscopy. NMR analyses revealed that all the functional groups were covalently bonded to the silica surface and most of the maleimide and epoxide rings remained intact on surface. DSC analysis showed that the epoxide groups were more reactive than the maleimide groups.

  2. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA.

    PubMed

    Gao, Fei; Botella, Pablo; Corma, Avelino; Blesa, Jose; Dong, Lin

    2009-02-12

    Silica nanoparticles with controlled diameter (approximately 70-300 nm) and with uniform pores of 20 nm are prepared by a low temperature (10 degrees C) synthetic method in the presence of a dual surfactant system. While a triblock copolymer (Pluronic F127) acts as supramolecular template and coassembles with hydrolyzed silica species to develop a partially ordered mesophase with face-centered cubic symmetry, a fluorocarbon surfactant with high surface activity (FC-4) surrounds the silica particles through S+X-I+ interactions, thereby limiting their growth. The final textural properties of this material are achieved by means of a subsequent hydrothermal treatment to yield high pore volume mesoporous silica nanoparticles with the largest pore entrance size (17 nm) and cavity diameter (20 nm) reported up to now. After surface modification with aminopropyl groups, the nanoparticles are able to encapsulate inside the pores molecules of the firefly luciferase plasmid DNA (pGL3-Control, 5256 pb), leading to stable conjugates with up to 0.07 microg DNA m(-2), which is the highest content achieved with silica-based materials. Furthermore, plasmid DNA becomes protected from enzymatic degradation when conjugated with the mesostructured nanoparticles.

  3. Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles.

    PubMed

    Li, Xiaoyu; Du, Xin; He, Junhui

    2010-08-17

    Novel mesoporous silica nanoparticles of peculiar shapes were synthesized, from which hierarchically porous silica coatings were fabricated on glass substrates via layer-by-layer (LbL) assembly, followed by calcination. These porous silica coatings were highly transparent and superhydrophilic. The maximum transmittance reached as high as 94%, whereas that of the glass substrate is 91%. The time for a droplet to spread lower than 5 degrees decreased to as short as 0.25 s. After the coating surface was treated with a low surface energy material, the surface became superhydrophobic (water contract angle >150 degrees) with a very low sliding angle of <1 degree. Compared with MCM-41-type mesoporous silica nanoparticles, the coatings fabricated using the novel mesoporous silica nanoparticles possess much better self-cleaning property. We used scanning (SEM) and transmission (TEM) electron microscopy to observe the morphology and structure of nanoparticles and surfaces. Transmission spectra and their change with time were characterized by UV-vis spectrophotometer. We studied the surface wettability by a contact angle/interface system. The influence of mesopores on the transmittance and wetting properties of coatings was discussed on the basis of experimental observations.

  4. Castor oil polyurethane containing silica nanoparticles as filling material of bone defect in rats.

    PubMed

    Nacer, Renato Silva; Poppi, Rodrigo Ré; Carvalho, Paulo de Tarso Camilo de; Silva, Baldomero Antonio Kato da; Odashiro, Alexandre Nakao; Silva, Iandara Schettert; Delben, José Renato Jurkevicz; Delben, Angela Antonia Sanches Tardivo

    2012-01-01

    To evaluate the biologic behavior of the castor polymer containing silica nanoparticles as a bone substitute in diafisary defect. Twenty seven male Rattus norvegicus albinus Wistar lineage were submitted to bone defect filled with castor oil polymer. Three experimental groups had been formed with nine animals each: (1) castor oil polymer containing only calcium carbonate; (2) castor oil polymer with calcium carbonate and doped with 5% of silica nanoparticles; (3) castor polymer with calcium carbonate doped with 10% of silica nanoparticles; 3 animals of each group were submitted to euthanasia 15, 30 and 60 days after experimental procedure, and their femurs were removed to histological evaluation. there was bone growth in all the studied groups, with a greater tendency of growth in the group 1. After 30 days all the groups presented similar results. After 60 days a greater amount of fibroblasts, osteoblasts, osteocytes and osteoclasts in group 3 was observed, with integrated activity of 3 kinds of cells involved in the bone activation-reabsorption-formation. The castor polymer associated to the silica nanoparticles is biocompatible and allows osteoconduction. The presence of osteoprogenitors cells suggests silica osteoinduction capacity.

  5. Synthesis and characterization of core-shell europium(III)-silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Härmä, Harri; Graf, Christina; Hänninen, Pekka

    2008-10-01

    Luminescent core-shell europium(III)-silica nanoparticles were prepared using europium(III) chelate core structure and polyvinylpyrrolidone synthesis strategy for silica shell. Europium(III):naphtoyltrifluoroacetone:trioctylphosphineoxide complex was spontaneously agglomerated from organic solvent to water. Polyvinylpyrrolidone was adsorbed onto the core structure and stable silica shell was synthesized using tetraethylorthosilicate. Nanosized particles with a diameter of 71 ± 5 nm and 11 nm shell thickness were obtained with fluorescence decay rate of 517 μs and excitation and emission wavelengths of 334 and 614 nm, respectively.

  6. Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres.

    PubMed

    Insin, Numpon; Tracy, Joseph B; Lee, Hakho; Zimmer, John P; Westervelt, Robert M; Bawendi, Moungi G

    2008-02-01

    We describe the synthesis of magnetic and fluorescent silica microspheres fabricated by incorporating maghemite (gamma-Fe2O3) nanoparticles (MPs) and CdSe/CdZnS core/shell quantum dots (QDs) into a silica shell around preformed silica microspheres. The resultant approximately 500 nm microspheres have a narrow size distribution and show uniform incorporation of QDs and MPs into the shell. We have demonstrated manipulation of these microspheres using an external magnetic field with real-time fluorescence microscopy imaging.

  7. Interfacial properties of POPC/GDO liquid crystalline nanoparticles deposited on anionic and cationic silica surfaces.

    PubMed

    Chang, Debby P; Dabkowska, Aleksandra P; Campbell, Richard A; Wadsäter, Maria; Barauskas, Justas; Tiberg, Fredrik; Nylander, Tommy

    2016-09-29

    Reversed lipid liquid crystalline nanoparticles (LCNPs) of the cubic micellar (I2) phase have high potential in drug delivery applications due to their ability to encapsulate both hydrophobic and hydrophilic drug molecules. Their interactions with various interfaces, and the consequences for the particle structure and integrity, are essential considerations in their effectiveness as drug delivery vehicles. Here, we have studied LCNPs formed of equal fractions of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and glycerol dioleate in the presence of different fractions of the stabilizer Polysorbate 80. We have used a combination of ellipsometry, quartz crystal microbalance with dissipation monitoring and neutron reflectometry to reveal the structure and composition of the adsorbed layer on both anionic silica and cationic (aminopropyltriethoxysilane) silanized surfaces. For both types of surfaces, there is a spread near-surface layer comprising lipid and polymer as well as a sparse coverage of intact particles. The composition of the near-surface layer is very close to that of the particles, in contrast to the lipid bilayer observed with related systems. The interaction is stronger for cationic than anionic surfaces, which is rationalized in terms of the negative zeta potential of the LCNPs. The work shows that the attachment of and spreading from LCNPs is influenced by the properties of the surface, the internal structure, composition and stability of the particles as well as the nature of the stabilizer.

  8. EXAFS and DFT study of the cadmium and lead adsorption on modified silica nanoparticles.

    PubMed

    Arce, Valeria B; Gargarello, Romina M; Ortega, Florencia; Romañano, Virginia; Mizrahi, Martín; Ramallo-López, José M; Cobos, Carlos J; Airoldi, Claudio; Bernardelli, Cecilia; Donati, Edgardo R; Mártire, Daniel O

    2015-12-05

    Silica nanoparticles of 7 nm diameter were modified with (3-aminopropyl) triethoxysilane (APTES) and characterized by CP-MAS (13)C and (29)Si NMR, FTIR, zeta potential measurements, and thermogravimetry. The particles were shown to sorb successfully divalent lead and cadmium ions from aqueous solution. Lead complexation with these silica nanoparticles was clearly confirmed by EXAFS (Extended X-ray Absorption Fine Structure) with synchrotron light measurements. Predicted Pb-N and Pb-C distances obtained from quantum-chemical calculations are in very good agreement with the EXAFS determinations. The calculations also support the higher APTES affinity for Pb(2+) compared to Cd(2+).

  9. Biodegradable Starch/Copolyesters Film Reinforced with Silica Nanoparticles: Preparation and Characterization

    NASA Astrophysics Data System (ADS)

    Lima, Roberta A.; Oliveira, Rene R.; Wataya, Célio H.; Moura, Esperidiana A. B.

    Biodegradable starch/copolyesters/silica nanocomposite films were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The influence of the silica nanoparticle addition on mechanical and thermal properties of nanocomposite films was investigated by tensile tests; X-rays diffraction (XRD), differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) analysis and the correlation between properties was discussed. The results showed that incorporation of 2 % (wt %) of SiO2 nanoparticle in the blend matrix of PBAT/Starch, resulted in a gain of mechanical properties of blend.

  10. In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes

    NASA Astrophysics Data System (ADS)

    Yang, Xiaowei; Cai, Zhengwei; Ye, Zhangmei; Chen, Sheng; Yang, Yu; Wang, Haifang; Liu, Yuanfang; Cao, Aoneng

    2012-01-01

    A simple method is used to covalently encapsulate enzymes in silica nanoparticles. The encapsulation is highlighted by the high enzyme loading and porous channels that provide efficient diffusion for small substrate and product molecules while preventing protease degradation.A simple method is used to covalently encapsulate enzymes in silica nanoparticles. The encapsulation is highlighted by the high enzyme loading and porous channels that provide efficient diffusion for small substrate and product molecules while preventing protease degradation. Electronic supplementary information (ESI) available: Experimental procedures and the result of the surface-grafted catalase control experiment. See DOI: 10.1039/c1nr11153a

  11. Preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels.

    PubMed

    Im, Hee-Jung; Lee, Byung Cheol; Yeon, Jei-Won

    2013-11-01

    Ag nanoparticles, used for halogen (especially iodine) adsorption and an evaluation of halogen behavior, were embedded in synthesized inorganic-organic hybrid gels. In particular, an irradiation method using an electron beam plays a part in introducing Ag nanoparticles to the organofunctionalized silica gels from AgNO3 solutions in a simple way at atmospheric pressure and room temperature. For preparation of the Ag nanoparticle-embedded inorganic-organic hybrid gels, ligands of ethylenediamine (NH2CH2CH2NH-, TMSen) and mercapto (HS-) functionalized three-dimensional porous SiO2 sol-gels were first synthesized through hydrolysis and condensation reactions, and Ag nanoparticles were then embedded into the ethylenediamine- and mercapto-anchored silica gels each, through electron-beam irradiation. The addition of ligands yielded larger average pore sizes than the absence of any ligand. Moreover, the ethylenediamine ligand led to looser structures and better access of the Ag nanoparticles to the ethylenediamine-anchored gel. As a result, more Ag nanoparticles were introduced into the ethylenediamine-anchored gel. The preparation and characterization of Ag nanoparticle-embedded blank and ligand-anchored silica gels are discussed in detail.

  12. Coating thickness and coverage effects on the forces between silica nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Salerno, K. Michael; Ismail, Ahmed E.; Lane, J. Matthew D.; Grest, Gary S.

    2014-05-01

    The structure and interactions of coated silica nanoparticles have been studied in water using molecular dynamics simulations. For 5 nm diameter amorphous silica nanoparticles, we studied the effects of varying the chain length and grafting density of polyethylene oxide on the nanoparticle coating's shape and on nanoparticle-nanoparticle effective forces. For short ligands of length n = 6 and n = 20 repeat units, the coatings are radially symmetric while for longer chains (n = 100) the coatings are highly anisotropic. This anisotropy appears to be governed primarily by chain length, with coverage playing a secondary role. For the largest chain lengths considered, the strongly anisotropic shape makes fitting to a simple radial force model impossible. For shorter ligands, where the coatings are isotropic, we found that the force between pairs of nanoparticles is purely repulsive and can be fit to the form (R/2rcore - 1)-b where R is the separation between the center of the nanoparticles, rcore is the radius of the silica core, and b is measured to be between 2.3 and 4.1.

  13. Growth of Fe-Pt Magnetic Nanoparticles on Silica Particles Modified with Organic Molecules

    NASA Astrophysics Data System (ADS)

    Kitamoto, Yoshitaka; Fuchigami, Teruaki; Namiki, Yoshihisa

    2013-11-01

    In the present paper, we describe the formation of an assembly composed of Fe-Pt magnetic nanoparticles on a template particle. The assembly is composed of a magnetic nanoshell for core/shell particles or hollow particles for application in nanomedicine devices. For this purpose, magnetic nanoparticles should be densely accumulated or deposited on template particles, Fe-Pt nanoparticles completely cover silica template particles by modifying them with a polymer such as poly(diallyldimethylammonium chloride) (PDDA), polyethyleneimine (PEI), or poly(N-vinyl-2-pyrrolidone) (PVP) followed by the polyol reduction of Fe and Pt compounds. Studies of their morphological, crystallographic, and magnetic properties reveal that Fe-Pt nanoparticles are selectively grown on the polymer-modified silica template particles; the polymer probably supplies nucleation sites for the formation of such nanoparticles. The species of polymer used strongly affects crystallographic and magnetic properties of the nanoparticles, particularly, the atomic ordering of Fe-Pt nanoparticles formed on silica template particles.

  14. Organically modified silica nanoparticles are biocompatible and can be targeted to neurons in vivo.

    PubMed

    Barandeh, Farda; Nguyen, Phuong-Lan; Kumar, Rajiv; Iacobucci, Gary J; Kuznicki, Michelle L; Kosterman, Andrew; Bergey, Earl J; Prasad, Paras N; Gunawardena, Shermali

    2012-01-01

    The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications.

  15. Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo

    PubMed Central

    Kumar, Rajiv; Iacobucci, Gary J.; Kuznicki, Michelle L.; Kosterman, Andrew; Bergey, Earl J.; Prasad, Paras N.; Gunawardena, Shermali

    2012-01-01

    The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications. PMID:22238611

  16. Testicular biodistribution of silica-gold nanoparticles after intramuscular injection in mice.

    PubMed

    Leclerc, Lara; Klein, Jean-Philippe; Forest, Valérie; Boudard, Delphine; Martini, Matteo; Pourchez, Jérémie; Blanchin, Marie-Geneviève; Cottier, Michèle

    2015-08-01

    With the continuing development of nanomaterials, the assessment of their potential impact on human health, and especially human reproductive toxicity, is a major issue. The testicular biodistribution of nanoparticles remains poorly studied. This study investigated whether gold-silica nanoparticles could be detected in mouse testes after intramuscular injection, with a particular focus on their ability to cross the blood-testis barrier. To that purpose, well-characterized 70-nm gold core-silica shell nanoparticles were used to ensure sensitive detection using high-resolution techniques. Testes were collected at different time points corresponding to spermatogenesis stages in mice. Transmission electron microscopy and confocal microscopy were used for nanoparticle detection, and nanoparticle quantification was performed by atomic emission spectroscopy. All these techniques showed that no particles were able to reach the testes. Results accorded with the normal histological appearance of testes even at 45 days post sacrifice. High-resolution techniques did not detect 70-nm silica-gold nanoparticles in mouse testes after intramuscular injection. These results are reassuring about the safety of nanoparticles with regard to male human reproduction, especially in the context of nanomedicine.

  17. A simple route to disperse silver nanoparticles on the surfaces of silica nanofibers with excellent photocatalytic properties

    SciTech Connect

    Wang, Xin; Fan, Huiqing; Ren, Pengrong; Yu, Huawa; Li, Jin

    2012-07-15

    Graphical abstract: The SiO{sub 2}/Ag composite nanofibers have been prepared by electrospinning and thermal decomposition of hybrid nanofibers, which exhibit a good catalytic property in reducing the methyl orange dye. Highlights: ► Hydrochloric acid was used as the catalyst of tetraethyl orthosilicate. ► Silver nanoparticles are obtained by pyrolysis of silver chloride. ► PVP–silica hybrid can disperse silver chloride and thus preventing the aggregation of silver nanoparticles. ► The catalytic activity of SiO{sub 2}/Ag composite nanofibers is much larger than that of SiO{sub 2} nanofibers. -- Abstract: In this work, monodispersed silver nanoparticles decorated SiO{sub 2} nanofibers were synthesized by electrospinning method, followed by thermal treatment at 600 °C. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) were used to characterize the composite nanofibers. Accordingly, the detailed formation mechanism of SiO{sub 2}/Ag composite nanofibers was discussed. Furthermore, an excellent catalytic activity of SiO{sub 2}/Ag composite fibers was observed by a degradation reaction of methyl orange (MO) dye.

  18. Mechanical properties and water sorption of geothermal silica/thermoset composites

    NASA Astrophysics Data System (ADS)

    Santiago, D. E. O.; Pajarito, B. B.

    2017-05-01

    The effect of thermoset resin type and geothermal silica loading on the mechanical properties and water sorption of geothermal silica/thermoset composites are determined. Thermoset resin type has significant effect on the flexural strength, hardness, water uptake and weight loss of the composites. Composites based from isophthalic polyester resin has higher flexural properties and hardness and lower water uptake and weight loss over other types. Geothermal silica loading has significant effect on the hardness and water uptake of composites. The highest hardness and water uptake were observed at 5%w/w geothermal silica loading.

  19. Photoluminescence of cellulose acetate and silica sphere composite

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Sun

    2014-08-01

    Strong blue and green light emission has been observed from the cellulose acetate (CA) and silica sphere composite. Two different amounts of silica spheres were mixed in the CA solution to fabricate large area super-hydrophobic films. The silica spheres and CA solution ratios were 0.07:4.0 (SSCA-A) and 0.14:4.0 (SSCA-B). The milky color solution of SSCA-A and SSCA-B slowly turned to light yellow and red, respectively, with the time passed. The colors became intense yellow and red for the SSCA-A and SSCA-B, respectively, after 38 days. FTIR spectra show more absorption at 3478 cm-1 corresponding sbnd OH stretching vibration, at 2963 cm-1 caused by sbnd CH stretching vibration, at 1746 and 1713 cm-1 representing the Cdbnd O stretching vibration, and at 1100 cm-1 corresponding sbnd Rsbnd OH and Sisbnd Osbnd Si stretching vibration for CA and silica. Therefore, aged SSCA-A and SSCA-B have more sbnd OH, sbnd CH, sbnd Cdbnd O, and Sisbnd Osbnd Si groups than pure CA. UV-visible spectra show the absorption peaks at 410 nm for both SSCA-A and SSCA-B. Photoluminescence (PL) peaks were shifted toward longer wavelength with the increase of the excitation wavelength and became maximum at approximately 470 nm with excitation wavelength at 400 nm for the SSCA-A. There were two maximum luminescence peaks at 470 and 530 nm with the excitation wavelength at 400 and 470 nm, respectively, for the SSCA-B. The luminescence peak shift was due to the multiple emission center proved by the different excitation energy.

  20. Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation

    NASA Astrophysics Data System (ADS)

    Wan, Jiaqi; Meng, Xiangxi; Liu, Enzhong; Chen, Kezheng

    2010-06-01

    Bifunctional nanoprobes with both magnetic and optical contrast have been developed for ultra-sensitive brain tumor imaging at the cellular level. The nanoprobes were synthesized by simultaneously incorporating a magnetite nanoparticle cluster and fluorescence dyes into silica encapsulation by a sol-gel approach under ultrasonic treatment. The nanoprobes maintain superparamagnetic behavior at room temperature and possess enhanced transverse relaxivity and good photostability. As a glioma targeting ligand, chlorotoxin was covalently bonded to the surface of the nanoprobes. In vitro cellular uptake assays demonstrated that the nanoprobes were highly specific, taken up by human U251-MG glioma cells via receptor-mediated endocytosis. The labeled glioma cells were readily detectable by both MR imager and confocal laser scanning microscopy.

  1. Biomimetic Silica Nanoparticles Prepared by a Combination of Solid-Phase Imprinting and Ostwald Ripening.

    PubMed

    Piletska, Elena; Yawer, Heersh; Canfarotta, Francesco; Moczko, Ewa; Smolinska-Kempisty, Katarzyna; Piletsky, Stanislav S; Guerreiro, Antonio; Whitcombe, Michael J; Piletsky, Sergey A

    2017-09-14

    Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles. Material deposited in the vicinity of template molecules results in the formation of sol-gel molecular imprints after around 2 hours. Selective washing and elution allows the higher affinity nanoparticles to be isolated. Unlike other strategies commonly used to prepare imprinted silica nanoparticles this approach is extremely simple in nature and can be performed under physiological conditions, making it suitable for imprinting whole proteins and other biomacromolecules in their native conformations. We have demonstrated the generic nature of this method by preparing imprinted silica nanoparticles against targets of varying molecular mass (melamine, vancomycin and trypsin). Binding to the imprinted particles was demonstrated in an immunoassay (ELISA) format in buffer and complex media (milk or blood plasma) with sub-nM detection ability.

  2. Chitosan-mediated formation of biomimetic silica nanoparticles: an effective method for manganese peroxidase immobilization and stabilization.

    PubMed

    Luan, Pan-Pan; Jiang, Yan-Jun; Zhang, Song-Ping; Gao, Jing; Su, Zhi-Guo; Ma, Guang-Hui; Zhang, Yu-Fei

    2014-11-01

    Our work here, for the first time, reported the use of chitosan-mediated biomimetic silica nanoparticles in enzyme immobilization. In order to make clear the relationship among silicification process, silica nanoparticle structure and immobilized enzyme activity, a mechanism of chitosan-mediated silicification using sodium silicate as the silica source was primarily evaluated. Chitosan was demonstrated effectively to promote the silicification not only in accelerating the aggregation rate of sodium silicate, but also in templating the formation of silica nanoparticles. Although the whole biomimetic silicification process contained polycondensation-aggregation-precipitation three stages, the elemental unit in precipitated silica was confirmed to be nanoparticles with 100 nm diameter regardless of the chitosan and silicate concentration used. Furthermore, the effect of enzyme on silicification process was also investigated. The introducing of manganese peroxidase (MnP) to silica precursor solution had no obvious effect on the silicification rate and nanoparticle morphology. The residual activity and embedding rate of immobilized MnP were 64.2% and 36.4% respectively under the optimum conditions. In addition, compared to native MnP, the MnP embedded in chitosan/silica nanoparticles exhibited improved stability against organic solvent and ultrasonic wave. After ultrasonic treatment for 20 min, 77% of the initial activity was remained due to the protective effect of chitosan/silica nanoparticles, while native MnP lost almost all of its original activity.

  3. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: Magnetic properties and transverse relaxivity

    NASA Astrophysics Data System (ADS)

    Kaman, Ondřej; Kuličková, Jarmila; Herynek, Vít; Koktan, Jakub; Maryško, Miroslav; Dědourková, Tereza; Knížek, Karel; Jirák, Zdeněk

    2017-04-01

    Hydrothermal synthesis of Mn1-xZnxFe2O4 nanoparticles followed by direct encapsulation of the as-grown material into silica is demonstrated as a fast and facile method for preparation of efficient negative contrast agents based on clusters of ferrite crystallites. At first, the hydrothermal procedure is optimized to achieve strictly single-phase magnetic nanoparticles of Mn-Zn ferrites in the compositional range of x≈0.2-0.6 and with the mean size of crystallites ≈10 nm. The products are characterized by powder X-ray diffraction, X-ray fluorescence spectroscopy, and SQUID magnetometry, and the composition close to x=0.4 is selected for the preparation of silica-coated clusters with the mean diameter of magnetic cores ≈25 nm. Their composite structure is studied by means of transmission electron microscopy combined with detailed image analysis and magnetic measurements in DC fields. The relaxometric studies, performed in the magnetic field of B0=0.5 T, reveal high transverse relaxivity (r2(20 °C)=450 s-1 mmol(Me3O4)-1 L) with a pronounced temperature dependence, which correlates with the observed temperature dependence of magnetization and is ascribed to a mechanism of transverse relaxation similar to the motional averaging regime.

  4. Development of europium doped core-shell silica cobalt ferrite functionalized nanoparticles for magnetic resonance imaging.

    PubMed

    Kevadiya, Bhavesh D; Bade, Aditya N; Woldstad, Christopher; Edagwa, Benson J; McMillan, JoEllyn M; Sajja, Balasrinivasa R; Boska, Michael D; Gendelman, Howard E

    2017-02-01

    The size, shape and chemical composition of europium (Eu(3+)) cobalt ferrite (CFEu) nanoparticles were optimized for use as a "multimodal imaging nanoprobe" for combined fluorescence and magnetic resonance bioimaging. Doping Eu(3+) ions into a CF structure imparts unique bioimaging and magnetic properties to the nanostructure that can be used for real-time screening of targeted nanoformulations for tissue biodistribution assessment. The CFEu nanoparticles (size ∼7.2nm) were prepared by solvothermal techniques and encapsulated into poloxamer 407-coated mesoporous silica (Si-P407) to form superparamagnetic monodisperse Si-CFEu nanoparticles with a size of ∼140nm. Folic acid (FA) nanoparticle decoration (FA-Si-CFEu, size ∼140nm) facilitated monocyte-derived macrophage (MDM) targeting. FA-Si-CFEu MDM uptake and retention was higher than seen with Si-CFEu nanoparticles. The transverse relaxivity of both Si-CFEu and FA-Si-CFEu particles were r2=433.42mM(-1)s(-1) and r2=419.52mM(-1)s(-1) (in saline) and r2=736.57mM(-1)s(-1) and r2=814.41mM(-1)s(-1) (in MDM), respectively. The results were greater than a log order-of-magnitude than what was observed at replicate iron concentrations for ultrasmall superparamagnetic iron oxide (USPIO) particles (r2=31.15mM(-1)s(-1) in saline) and paralleled data sets obtained for T2 magnetic resonance imaging. We now provide a developmental opportunity to employ these novel particles for theranostic drug distribution and efficacy evaluations. A novel europium (Eu(3+)) doped cobalt ferrite (Si-CFEu) nanoparticle was produced for use as a bioimaging probe. Its notable multifunctional, fluorescence and imaging properties, allows rapid screening of future drug biodistribution. Decoration of the Si-CFEu particles with folic acid increased its sensitivity and specificity for magnetic resonance imaging over a more conventional ultrasmall superparamagnetic iron oxide particles. The future use of these particles in theranostic tests will serve

  5. Synthesis of Eu(III): naphtoyltrifluoroacetone:trioctylphosphineoxide complex-doped silica fluorescent nanoparticles through a new approach

    NASA Astrophysics Data System (ADS)

    Yin, Dongguang; Liu, Binhu; Zhang, Le; Wu, Minghong

    2011-12-01

    In this study, a new approach for the preparation of a fluorescent europium(III) complex-doped silica nanoparticles has been developed. The synthesis process involved the following steps: (1) preparing silica nanoparticles by water-in-oil microemulsion method, (2) dyeing the spherical silica particles by europium(III): naphtoyltrifluoroacetone (NTA):trioctylphosphineoxide (TOPO), (3) adsorbing polyvinylpyrrolidone (PVP) onto the core structure and growing silica on PVP surface. The as-prepared nanoparticles exhibited stronger emission intensity, higher photo- and chemical stability. Despite the fact that europium(III) complex was doped into the nanoparticles, its fluorescence properties such as a wide Stokes shift, a narrow emission peak, and long fluorescence lifetime, were retained. The nanoparticles are uniform in shape and size (50 ± 5 nm in diameter). This study could provide new avenue for the fabrication of Eu: NTA:TOPO-based nanoparticles, facilitating their application in bioassay issues.

  6. Effect of the size of silica nanoparticles on wettability and surface chemistry of sol-gel superhydrophobic and oleophobic nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Lakshmi, R. V.; Bera, Parthasarathi; Anandan, C.; Basu, Bharathibai J.

    2014-11-01

    Superhydrophobic sol-gel nanocomposite coatings have been fabricated by incorporating silica nanoparticles with different particle sizes separately in an acid-catalyzed sol of methyltriethoxysilane (MTEOS). Water contact angle (WCA) of the coatings increased with increase in the concentration of silica nanoparticles in both the cases. The coatings became superhydrophobic at an optimum silica concentration. The water repellency was further improved by the addition of fluoroalkylsilane (FAS). The optimum silica concentration was found to depend on the size of silica nanoparticles and FAS content and the coatings exhibited WCA of about 160° and water sliding angle (WSA) of <2°. FAS addition also improved the oleophobicity of the coatings. The coatings exhibited oil-repellency with a lubricant oil contact angle of 126° and ethylene glycol contact angle of 153.3°. Surface morphology of the coatings analyzed using field emission scanning electron microscopy (FESEM) showed a rough surface with microscale bumps and nanoscale pores. XPS was used to study the surface composition of the coatings. The superhydrophobic property of the coatings was due to the synergistic effect of surface chemistry and surface microstructure and can be explained using Cassie-Baxter model.

  7. Silica nanoparticles as substrates for chelator-free labeling of oxophilic radioisotopes.

    PubMed

    Shaffer, Travis M; Wall, Matthew A; Harmsen, Stefan; Longo, Valerie A; Drain, Charles Michael; Kircher, Moritz F; Grimm, Jan

    2015-02-11

    Chelator-free nanoparticles for intrinsic radiolabeling are highly desirable for whole-body imaging and therapeutic applications. Several reports have successfully demonstrated the principle of intrinsic radiolabeling. However, the work done to date has suffered from much of the same specificity issues as conventional molecular chelators, insofar as there is no singular nanoparticle substrate that has proven effective in binding a wide library of radiosotopes. Here we present amorphous silica nanoparticles as general substrates for chelator-free radiolabeling and demonstrate their ability to bind six medically relevant isotopes of various oxidation states with high radiochemical yield. We provide strong evidence that the stability of the binding correlates with the hardness of the radioisotope, corroborating the proposed operating principle. Intrinsically labeled silica nanoparticles prepared by this approach demonstrate excellent in vivo stability and efficacy in lymph node imaging.

  8. Self-organized patterning through the dynamic segregation of DNA and silica nanoparticles

    PubMed Central

    Joksimovic, Rastko; Watanabe, Shun; Riemer, Sven; Gradzielski, Michael; Yoshikawa, Kenichi

    2014-01-01

    Exotic pattern formation as a result of drying of an aqueous solution containing DNA and silica nanoparticles is reported. The pattern due to segregation was found to critically depend on the relative ratio of nanoparticles and DNA, as revealed by polarization microscopy, scanning electron microscopy, and fluorescence microscopy. The blurred radial pattern that is usually observed in the drying of a colloidal solution was shown to be vividly sharpened in the presence of DNA. Uniquely curved, crescent-shaped micrometer-scale domains are generated in regions that are rich in nanoparticles. The characteristic segregated patterns observed in the present study are interpreted in terms of a large aspect ratio between the persistence length (∼50 nm) and the diameter (∼2 nm) of double-stranded DNA, and the relatively small silica nanoparticles (radius: 5 nm). PMID:24413900

  9. Silica Nanoparticles as Substrates for Chelator-free Labeling of Oxophilic Radioisotopes

    PubMed Central

    2016-01-01

    Chelator-free nanoparticles for intrinsic radiolabeling are highly desirable for whole-body imaging and therapeutic applications. Several reports have successfully demonstrated the principle of intrinsic radiolabeling. However, the work done to date has suffered from much of the same specificity issues as conventional molecular chelators, insofar as there is no singular nanoparticle substrate that has proven effective in binding a wide library of radiosotopes. Here we present amorphous silica nanoparticles as general substrates for chelator-free radiolabeling and demonstrate their ability to bind six medically relevant isotopes of various oxidation states with high radiochemical yield. We provide strong evidence that the stability of the binding correlates with the hardness of the radioisotope, corroborating the proposed operating principle. Intrinsically labeled silica nanoparticles prepared by this approach demonstrate excellent in vivo stability and efficacy in lymph node imaging. PMID:25559467

  10. Cellular uptake, evolution, and excretion of silica nanoparticles in human cells

    NASA Astrophysics Data System (ADS)

    Chu, Zhiqin; Huang, Yuanjie; Tao, Qian; Li, Quan

    2011-08-01

    A systematic study on the interaction of silica nanoparticles (NPs) with human cells has been carried out in the present work. Endocytosis and exocytosis are identified as major pathways for NPs entering, and exiting the cells, respectively. Most of the NPs are found to be enclosed in membrane bounded organelles, which are fairly stable (against rupture) as very few NPs are released into the cytoplasm. The nanoparticle-cell interaction is a dynamic process, and the amount of NPs inside the cells is affected by both the amount and morphology (degree of aggregation) of NPs in the medium. These interaction characteristics determine the low cytotoxicity of SiO2 NPs at low feeding concentration.A systematic study on the interaction of silica nanoparticles (NPs) with human cells has been carried out in the present work. Endocytosis and exocytosis are identified as major pathways for NPs entering, and exiting the cells, respectively. Most of the NPs are found to be enclosed in membrane bounded organelles, which are fairly stable (against rupture) as very few NPs are released into the cytoplasm. The nanoparticle-cell interaction is a dynamic process, and the amount of NPs inside the cells is affected by both the amount and morphology (degree of aggregation) of NPs in the medium. These interaction characteristics determine the low cytotoxicity of SiO2 NPs at low feeding concentration. Electronic supplementary information (ESI) available: Low magnification TEM image of 400 nm amorphous silica NPs; TEM images depicting the evolution process of 50 nm silica NPs inside cells; Confocal microscopy images showing the interaction of silica NPs with cells; ζ potential of NPs in dispersion with different pH value; MTT results of H1299 and NE083 cells incubated with 400 nm and 10-20 nm amorphous silica NPs and light microscopy images of H1299 cells treated with 50 nm silica NPs. See DOI: 10.1039/c1nr10499c

  11. Facile strategy for synthesis of silica/polymer hybrid hollow nanoparticles with channels.

    PubMed

    Wu, Chenglin; Wang, Xin; Zhao, Lizhi; Gao, Yaohua; Ma, Rujiang; An, Yingli; Shi, Linqi

    2010-12-07

    The silica/polymer hybrid hollow nanoparticles with channels and gatekeepers were successfully fabricated with a facile strategy by using thermoresponsive complex micelles of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine) (PNIPAM-b-P4VP) as the template. In aqueous solution, the complex micelles (PEG-b-PNIPAM/PNIPAM-b-P4VP) formed with the PNIPAM block as the core and the PEG/P4VP blocks as the mixed shell at 45 °C and pH 4.0. After shell cross-linking by 1,2-bis(2-iodoethoxyl)ethane (BIEE), tetraethylorthosilicate (TEOS) selectively well-deposited on the P4VP block and processed the sol-gel reaction. When the temperature was decreased to 4 °C, the PNIPAM block became swollen and further soluble, and the PEG-b-PNIPAM block copolymer escaped from the hybrid nanoparticles as a result of swelled PNIPAM and weak interaction between PEG and silica at pH 4.0. Therefore, the hybrid hollow silica nanoparticles with inner thermoresponsive PNIPAM as gatekeepers and channels in the silica shell were successfully obtained, which could be used for switchable controlled drug release. In the system, the complex micelles, as a template, could avoid the formation of larger aggregates during the preparation of the hybrid hollow silica nanoparticles. The thermoresponsive core (PNIPAM) could conveniently control the hollow space through the stimuli-responsive phase transition instead of calcination or chemical etching. In the meantime, the channel in the hybrid silica shell could be achieved because of the escape of PEG chains from the hybrid nanoparticles.

  12. Amorphous silica nanoparticles enhance cross-presentation in murine dendritic cells

    SciTech Connect

    Hirai, Toshiro; Yoshioka, Yasuo; Takahashi, Hideki; Ichihashi, Ko-ichi; Yoshida, Tokuyuki; Tochigi, Saeko; Nagano, Kazuya; Abe, Yasuhiro; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silica nanoparticles enhanced cross-presentation. Black-Right-Pointing-Pointer Silica nanoparticles induced endosomal release of exogenous antigens. Black-Right-Pointing-Pointer Silica nanoparticle-induced cross-presentation was mediated by scavenger receptors. Black-Right-Pointing-Pointer Surface-modification may enable the manufacture of safer silica nanoparticles. -- Abstract: Nanomaterials (NMs) exhibit unique physicochemical properties and innovative functions, and they are increasingly being used in a wide variety of fields. Ensuring the safety of NMs is now an urgent task. Recently, we reported that amorphous silica nanoparticles (nSPs), one of the most widely used NMs, enhance antigen-specific cellular immune responses and may therefore aggravate immune diseases. Thus, to ensure the design of safer nSPs, investigations into the effect of nSPs on antigen presentation in dendritic cells, which are central orchestrators of the adaptive immune response, are now needed. Here, we show that nSPs with diameters of 70 and 100 nm enhanced exogenous antigen entry into the cytosol from endosomes and induced cross-presentation, whereas submicron-sized silica particles (>100 nm) did not. Furthermore, we show that surface modification of nSPs suppressed cross-presentation. Although further studies are required to investigate whether surface-modified nSPs suppress immune-modulating effects in vivo, the current results indicate that appropriate regulation of the characteristics of nSPs, such as size and surface properties, will be critical for the design of safer nSPs.

  13. Silica-coated quantum dots and magnetic nanoparticles for bioimaging applications (Mini-Review).

    PubMed

    Selvan, Subramanian Tamil

    2010-09-01

    Fluorescent quantum dots (e.g., CdSe-ZnS) and magnetic nanoparticles (e.g., Fe(2)O(3) or Fe(3)O(4)) are two important candidate systems that have been emerging as potential probes for bioimaging applications. This review focuses on the development of silica-coated inorganic probes (optical and magnetic) that are originated mainly from the author's laboratory for bioimaging applications. The recent developments in the synthesis of rare earth nanoparticles for multimodality imaging are also delineated.

  14. Catalyst free silica templated porous carbon nanoparticles from bio-waste materials.

    PubMed

    Kumar, Anuj; Hegde, Gurumurthy; Manaf, Shoriya Aruni Bt Abdul; Ngaini, Z; Sharma, K V

    2014-10-28

    Porous Carbon Nanoparticles (PCNs) with well-developed microporosity were obtained from bio-waste oil palm leaves (OPL) using single step pyrolysis in nitrogen atmosphere at 500-600 °C in tube-furnace without any catalysis support. The key approach was using silica (SiO2) bodies of OPL as a template in the synthesis of microporous carbon nanoparticles with very small particle sizes of 35-85 nm and pore sizes between 1.9-2 nm.

  15. Evaluation of silica nanoparticle toxicity after topical exposure for 90 days

    PubMed Central

    Ryu, Hwa Jung; Seong, Nak-won; So, Byoung Joon; Seo, Heung-sik; Kim, Jun-ho; Hong, Jeong-Sup; Park, Myeong-kyu; Kim, Min-Seok; Kim, Yu-Ri; Cho, Kyu-Bong; Seo, Mu Yeb; Kim, Meyoung-Kon; Maeng, Eun Ho; Son, Sang Wook

    2014-01-01

    Silica is a very common material that can be found in both crystalline and amorphous forms. Well-known toxicities of the lung can occur after exposure to the crystalline form of silica. However, the toxicities of the amorphous form of silica have not been thoroughly studied. The majority of in vivo studies of amorphous silica nanoparticles (NPs) were performed using an inhalation exposure method. Since silica NPs can be commonly administered through the skin, a study of dermal silica toxicity was necessary to determine any harmful effects from dermal exposures. The present study focused on the results of systemic toxicity after applying 20 nm colloidal silica NPs on rat skin for 90 days, in accordance with the Organization for Economic Cooperation and Development test guideline 411 with a good laboratory practice system. Unlike the inhalation route or gastrointestinal route, the contact of silica NPs through skin did not result in any toxicity or any change in internal organs up to a dose of 2,000 mg/kg in rats. PMID:25565831

  16. Effects of silica nanoparticles on copper nanowire dispersions in aqueous PVA solutions

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hak; Song, Hyeong Yong; Hyun, Kyu

    2016-05-01

    In this study, the effects of adding silica nanoparticles to PVA/CuNW suspensions were investigated rheologically, in particular, by small and large amplitude oscillatory shear (SAOS and LAOS) test. Interesting, the SAOS test showed the complex viscosities of CuNW/silica based PVA matrix were smaller than those of PVA/CuNW without silica. These phenomena show that nano-sized silica affects the dispersion of CuNW in aqueous PVA, which suggests small particles can prevent CuNW aggregation. Nonlinearity (third relative intensity ≡ I 3/1) was calculated from LAOS test results using Fourier Transform rheology (FT-rheology) and nonlinear linear viscoelastic ratio (NLR) value was calculated using the nonlinear parameter Q and complex modulus G*. Nonlinearity ( I 3/1) results showed more CuNW aggregation in PVA/CuNW without silica than in PVA/CuNW with silica. NLR (= [ Q 0( ϕ)/ Q 0(0)]/[ G*( ϕ)/ G*(0)]) results revealed an optimum concentration ratio of silica to CuNW to achieve a well-dispersed state. Degree of dispersion was assessed through the simple optical method. SAOS and LAOS test, and dried film morphologies showed nano-sized silica can improve CuNW dispersion in aqueous PVA solutions.

  17. Preparation of magnetic mesoporous silica nanoparticles as a multifunctional platform for potential drug delivery and hyperthermia

    PubMed Central

    Yu, Xia; Zhu, Yufang

    2016-01-01

    Abstract We report the preparation of magnetic mesoporous silica (MMS) nanoparticles with the potential multifunctionality of drug delivery and magnetic hyperthermia. Carbon-encapsulated magnetic colloidal nanoparticles (MCN@C) were used to coat mesoporous silica shells for the formation of the core-shell structured MMS nanoparticles (MCN@C/mSiO2), and the rattle-type structured MMS nanoparticles (MCN/mSiO2) were obtained after the removal of the carbon layers from MCN@C/mSiO2 nanoparticles. The morphology, structure, magnetic hyperthermia ability, drug release behavior, in vitro cytotoxicity and cellular uptake of MMS nanoparticles were investigated. The results revealed that the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had spherical morphology and average particle sizes of 390 and 320 nm, respectively. The MCN@C/mSiO2 nanoparticles exhibited higher magnetic hyperthermia ability compared to the MCN/mSiO2 nanoparticles, but the MCN/mSiO2 nanoparticles had higher drug loading capacity. Both MCN@C/mSiO2 and MCN/mSiO2 nanoparticles had similar drug release behavior with pH-controlled release and temperature-accelerated release. Furthermore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles showed low cytotoxicity and could be internalized into HeLa cells. Therefore, the MCN@C/mSiO2 and MCN/mSiO2 nanoparticles would be promising for the combination of drug delivery and magnetic hyperthermia treatment in cancer therapy. PMID:27877873

  18. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity

    NASA Astrophysics Data System (ADS)

    Guarnieri, Daniela; Malvindi, Maria Ada; Belli, Valentina; Pompa, Pier Paolo; Netti, Paolo

    2014-02-01

    Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.

  19. Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Sato, Sota; Fujita, Makoto

    2010-01-01

    One of the key challenges in materials science is to control the size and shape of inorganic nanoparticles with a high degree of precision, as these parameters have a significant influence on the nanoparticles' properties and potential applications. Here, we describe the preparation of highly monodisperse silica nanoparticles smaller than 5 nm in diameter by using self-assembled, hollow, spherical compounds as `endo-templates'. These coordination complexes with pendant sugar groups lining their interiors-assembled from 12 metal ions and 24 bis-pyridyl ligands containing glucose substituents-acted as structurally well-defined templates for the sol-gel condensation of alkoxysilanes. The polydispersities of the silica nanoparticles made with this method approached unity, with Mw/Mn < 1.01. The component ligands are modified easily, which enables an accurate expansion of the coordination complex and the subsequent control of the monodisperse silica nanoparticles that span molecular weights of 5,000 to 31,000 Da (corresponding to 2-4 nm in diameter). This method could be applicable to the preparation of other inorganic nanoparticles.

  20. Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres.

    PubMed

    Suzuki, Kosuke; S