Science.gov

Sample records for silica composite nanoparticles

  1. A Pd/silica composite with highly uniform Pd nanoparticles on silica lamella via layered silicate

    NASA Astrophysics Data System (ADS)

    Hao, Jing; Cui, Zhi-Min; Cao, Chang-Yan; Song, Weiguo

    2016-08-01

    Pd nanoparticles was loaded on silica lamella via layered silicate through a simple ion-exchange and in situ reduction method. The obtained Pd/silica composite has Pd nanoparticles with highly uniform size dispersed well on the silica lamella. The Pd/silica composite is active and recoverable catalyst for the hydrogenation reaction and the reaction can be completed in a short time of 2 h at room temperature and 1 atm H2 pressure.

  2. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites.

    PubMed

    Canché-Escamilla, G; Duarte-Aranda, S; Toledano, M

    2014-09-01

    The effect of hybrid silica/poly(methylmethacrylate) (PMMA) nanoparticles on the properties of composites for dental restoration was evaluated. Hybrid nanoparticles with silica as core and PMMA as shell were obtained by a seeded emulsion polymerization process. Fourier transform infrared spectrum of the hybrid nanoparticles shows an intense peak at 1,730 cm(-1), corresponding to carbonyl groups (CO) of the ester. The thermal stability of the hybrid particles decreases with increasing amounts of PMMA and the residual mass at 700°C corresponds to the silica content in the hybrid particles. Composites were obtained by dispersing nanoparticles (silica or hybrid), as fillers, in a resin-bis glycidyl dimethacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (40%/60% (w/w)). The paste was then placed in a mold and polymerized under light irradiation. During the preparation of the composites, with the hybrid nanoparticles, the monomers swell the PMMA shell and after photo-curing, a semi-interpenetrating network (semi-IPN) is obtained around the silica core. The properties of the composites, obtained using the hybrid nanoparticles, depend on the filler content and the amount of PMMA in the semi-IPN matrix. For composites with similar inorganic filler contents, the composites with low amounts of PMMA shell had higher modulus than those in which silica was used as the filler.

  3. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis

    NASA Astrophysics Data System (ADS)

    Yuan, Ziming; Pan, Yue; Cheng, Ruoyu; Sheng, Lulu; Wu, Wei; Pan, Guoqing; Feng, Qiming; Cui, Wenguo

    2016-06-01

    There is a high local recurrence (LR) rate in breast-conserving therapy (BCT) and enhancement of the local treatment is promising as a way to improve this. Thus we propose a drug delivery system using doxorubicin (DOX)-loaded mesoporous silica nanoparticle composite nanofibers which can release anti-tumor drugs in two phases—burst release in the early stage and sustained release at a later stage—to reduce the LR of BCT. In the present study, we designed a novel composite nanofibrous scaffold to realize the efficient release of drugs by loading both DOX and DOX-loaded mesoporous silica nanoparticles into an electrospun PLLA nanofibrous scaffold. In vitro results demonstrated that this kind of nanomaterial can release DOX in two phases, and the results of in vivo experiments showed that this hybrid nanomaterial significantly inhibited the tumor growth in a solid tumor model. Histopathological examination demonstrated that the apoptosis of tumor cells in the treated group over a 10 week period was significant. The anti-cancer effects were also accompanied with decreased expression of Bcl-2 and TNF-α, along with up-regulation of Bax, Fas and the activation of caspase-3 levels. The present study illustrates that the mesoporous silica nanoparticle composite nanofibrous scaffold could have anti-tumor properties and could be further developed as adjuvant therapeutic protocols for the treatment of cancer.

  4. Core/shell fluorescent magnetic silica-coated composite nanoparticles for bioconjugation

    NASA Astrophysics Data System (ADS)

    He, Rong; You, Xiaogang; Shao, Jun; Gao, Feng; Pan, Bifeng; Cui, Daxiang

    2007-08-01

    A new class of highly fluorescent, photostable, and magnetic core/shell nanoparticles has been synthesized from a reverse microemulsion method. The obtained bifunctional nanocomposites were characterized by transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectrometry, photoluminescence (PL) spectrometry, and fluorescence microscopy in a magnetic field. To further improve their biocompatibility, the silica-coated nanoparticles were functionalized with amino groups. The fluorescent magnetic composite nanoparticles (FMCNPs) had a typical diameter of 50 ± 5 nm and a saturation magnetization of 3.21 emu g-1 at room temperature, and exhibited strong excitonic photoluminescence. Through activation with glutaraldehyde, the FMCNPs were successfully conjugated with goat anti-mouse immunoglobin G (GM IgG), and the bioactivity and binding specificity of the as-prepared FMCNPs-GM IgG were confirmed via immunofluorescence assays, commonly used in bioanalysis. So they are potentially useful for many applications in biolabelling, imaging, drug targeting, bioseparation and bioassays.

  5. pH-responsive composite microspheres based on magnetic mesoporous silica nanoparticle for drug delivery.

    PubMed

    Wen, Hao; Guo, Jia; Chang, Baisong; Yang, Wuli

    2013-05-01

    pH-responsive composite microspheres, consisting of a core of Fe₃O₄ nanoparticle, a sandwiched layer of mesoporous silica and a shell of crosslinked poly (methacrylic acid) (PMAA), were successfully synthesized via distillation precipitation polymerization. The pKa of the composite microsphere increased with the increase in the crosslinking density. Doxorubicin hydrochloride (DOX) was applied as a model drug, and the behavior of drug storage/release was investigated. The cumulative release of DOX-loaded composite microsphere in vitro showed that the drug release rate was much faster below its pKa than that of above its pKa. Because pH of most tumor tissues was lower than that of normal tissues, the pH-responsive composite microspheres are promising drug delivery system especially for cancer therapy.

  6. Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers.

    PubMed

    Suzuki, Norihiro; Zakaria, Mohamed B; Chiang, Ya-Dong; Wu, Kevin C-W; Yamauchi, Yusuke

    2012-05-28

    The colloidal mesoporous silica nanoparticles with small particle sizes (namely, CMS) are used as inorganic fillers of polymers (i.e. epoxy and silicone). From simple calculation, almost all polymers are estimated to be confined in the mesopores. To clarify the superiority of CMS over nonporous silica particles and mesoporous silica particles with much larger size (TMPS-4) as inorganic fillers, a systematic study on mechanical strength and transparency of polymer-silica nanocomposites was conducted. Compared with nonporous silica particles, similar to TMPS-4, CMS shows a greater effect on lowering the CTE. In addition, obtained polymer-CMS nanocomposites show improved transparency than polymer-TMPS-4 nanocomposites.

  7. Interfacial Structure of Composites of Poly(m-xylylen adipamide) and Silica Nano-Particles

    NASA Astrophysics Data System (ADS)

    Achiwa, Osamu; Kyogoku, Yoshitaka; Matsuda, Yasuhiro; Tasaka, Shigeru

    2012-10-01

    Interfacial structure of composites of poly(m-xylylen adipamide) (MXD6) and silica nano-particles (SNPs) was investigated by differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and infrared (IR) spectroscopy. In the DSC curves of the composites, changes in specific heat similar to a glass transition behavior (sub-Tg) were detected at 0-40 °C, and sub-Tg decreased with the increase in the weight fraction of SNPs. Crystallization temperature (Tc) decreased, and XRD peaks became sharper with the increase in the weight fraction of SNPs. The IR spectra suggest that the hydrogen bonds between MXD6 chains were weakened by the addition of SNPs.

  8. The effect of silica nanoparticles on the mechanical properties of fiber-reinforced composite resins.

    PubMed

    Rezvani, Mohammad Bagher; Atai, Mohammad; Hamze, Faeze; Hajrezai, Reihane

    2016-01-01

    Background. Nanotechnology has introduced many nanoparticles in recent years, which can be incorporated for mechanical improvement of dental materials. However, the existing data are widely sparse. This study investigated the reinforcing effect of silica nanoparticles when incorporated into the matrix phase of an experimental dental fiber-reinforced compositeresin (FRC) through evaluation of its flexural properties. Methods. In this experimental study FRC samples were divided into two main groups (containing two or three bundles),either of whic consisted of five subgroups with 0, 0.2, 0.5, 2 and 5 wt% of silica nanoparticles in the matrix resin (n=10 in each subgroup); a commercial FRC (Angelus, Brazil) was used as the control group (n=10). Three-point bending test was performed to evaluate the flexural strength and modulus. Thereafter, the microstructure of the fractured samples was evalu-ated using scanning electron microscopy (SEM). The results were analyzed with one-way ANOVA and HSD Tukey tests (α = 0.05). Results. The results revealed that the silica nanoparticles had a significant and positive effect on the flexural strength and modulus of FRCs (P<0.05), with no significant differences from 0.2 to 5 wt% of nanoparticles (P > 0.05) in either group with two or three bundles of fibers. Conclusion. Incorporating silica nanoparticles into the FRC resin phase resulted in improved flexural strength and modulus of the final product. PMID:27429728

  9. The effect of silica nanoparticles on the mechanical properties of fiber-reinforced composite resins

    PubMed Central

    Rezvani, Mohammad Bagher; Atai, Mohammad; Hamze, Faeze; Hajrezai, Reihane

    2016-01-01

    Background. Nanotechnology has introduced many nanoparticles in recent years, which can be incorporated for mechanical improvement of dental materials. However, the existing data are widely sparse. This study investigated the reinforcing effect of silica nanoparticles when incorporated into the matrix phase of an experimental dental fiber-reinforced compositeresin (FRC) through evaluation of its flexural properties. Methods. In this experimental study FRC samples were divided into two main groups (containing two or three bundles),either of whic consisted of five subgroups with 0, 0.2, 0.5, 2 and 5 wt% of silica nanoparticles in the matrix resin (n=10 in each subgroup); a commercial FRC (Angelus, Brazil) was used as the control group (n=10). Three-point bending test was performed to evaluate the flexural strength and modulus. Thereafter, the microstructure of the fractured samples was evalu-ated using scanning electron microscopy (SEM). The results were analyzed with one-way ANOVA and HSD Tukey tests (α = 0.05). Results. The results revealed that the silica nanoparticles had a significant and positive effect on the flexural strength and modulus of FRCs (P<0.05), with no significant differences from 0.2 to 5 wt% of nanoparticles (P > 0.05) in either group with two or three bundles of fibers. Conclusion. Incorporating silica nanoparticles into the FRC resin phase resulted in improved flexural strength and modulus of the final product. PMID:27429728

  10. Excellent thermal conductivity and dielectric properties of polyimide composites filled with silica coated self-passivated aluminum fibers and nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Yongcun; Bai, Yuanyuan; Yu, Ke; Kang, Yan; Wang, Hong

    2013-06-01

    A polymer based composite was prepared by using modified aluminum fibers and aluminum nanoparticles as fillers in polyimide matrix that resulted in the high thermal conductivity and low relative permittivity. It was found that silica coated aluminum fibers with the multilayer coating structures can significantly reduce the relative permittivity (about 19.6 at 1 MHz) of the composite while keeping lower dielectric loss (0.024 at 1 MHz). The thermal conductivity of composites was significantly increased to 15.2 W/m K. This work shows a useful way to choose proper modifier fillers to improve the composite properties for electronic packaging composite materials.

  11. Gold nanoparticle decorated graphene oxide/silica composite stationary phase for high-performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Wang, Xusheng; Ren, Haixia; Jiang, Shengxiang; Wang, Licheng; Liu, Shujuan

    2014-06-01

    In the initial phase of this study, graphene oxide (GO)/silica was fabricated by assembling GO onto the silica particles, and then gold nanoparticles (GNPs) were used to modify the GO/silica to prepare a novel stationary phase for high-performance liquid chromatography. The new stationary phase could be used in both reversed-phase chromatography and hydrophilic interaction liquid chromatography modes. Good separations of alkylbenzenes, isomerides, amino acids, nucleosides, and nucleobases were achieved in both modes. Compared with the GO/silica phase and GNPs/silica phase, it is found that except for hydrophilicity, large π-electron systems, hydrophobicity, and coordination functions, this new stationary phase also exhibited special separation performance due to the combination of 2D GO with zero-dimensional GNPs. PMID:24723561

  12. Gold nanoparticle decorated graphene oxide/silica composite stationary phase for high-performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Wang, Xusheng; Ren, Haixia; Jiang, Shengxiang; Wang, Licheng; Liu, Shujuan

    2014-06-01

    In the initial phase of this study, graphene oxide (GO)/silica was fabricated by assembling GO onto the silica particles, and then gold nanoparticles (GNPs) were used to modify the GO/silica to prepare a novel stationary phase for high-performance liquid chromatography. The new stationary phase could be used in both reversed-phase chromatography and hydrophilic interaction liquid chromatography modes. Good separations of alkylbenzenes, isomerides, amino acids, nucleosides, and nucleobases were achieved in both modes. Compared with the GO/silica phase and GNPs/silica phase, it is found that except for hydrophilicity, large π-electron systems, hydrophobicity, and coordination functions, this new stationary phase also exhibited special separation performance due to the combination of 2D GO with zero-dimensional GNPs.

  13. Preparation of composite with silica-coated nanoparticles of iron oxide spinels for applications based on magnetically induced hyperthermia

    NASA Astrophysics Data System (ADS)

    Andrade, Angela L.; Fabris, José D.; Pereira, Márcio C.; Domingues, Rosana Z.; Ardisson, José D.

    2013-04-01

    It is reported a novel method to prepare magnetic core (iron oxide spinels)-shell (silica) composites containing well-dispersed magnetic nanoparticles in aqueous solution. The synthetic process consists of two steps. In a first step, iron oxide nanoparticles obtained through co-precipitation are dispersed in an aqueous solution containing tetramethylammonium hydroxide; in a second step, particles of this sample are coated with silica, through hydrolyzation of tetraethyl orthosilicate. The intrinsic atomic structure and essential properties of the core-shell system were assessed with powder X-ray diffraction, Fourier transform infrared spectrometry, Mössbauer spectroscopy and transmission electron microscopy. The heat released by this ferrofluid under an AC-generated magnetic field was evaluated by following the temperature evolution under increasing magnetic field strengths. Results strongly indicate that this ferrofluid based on silica-coated iron oxide spinels is technologically a very promising material to be used in medical practices, in oncology.

  14. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity

    NASA Astrophysics Data System (ADS)

    Mortensen, Ninell P.; Hurst, Gregory B.; Wang, Wei; Foster, Carmen M.; Nallathamby, Prakash D.; Retterer, Scott T.

    2013-06-01

    The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated over time. Native SiO2, amine (-NH2) and carboxy (-COO-) modified NP were examined following incubation in mammalian growth media containing fetal bovine serum (FBS) for 1, 4, 24 and 48 hours. The protein corona transition from its early dynamic state to the later more stable corona was evaluated using mass spectrometry. The NP diameter was 22.4 +/- 2.2 nm measured by scanning transmission electron microscopy (STEM). Changes in hydrodynamic diameter and agglomeration kinetics were studied using dynamic light scattering (DLS). The initial surface chemistry of the NP played an important role in the development and final composition of the protein corona, impacting agglomeration kinetics and NP toxicity. Particle toxicity, indicated by changes in membrane integrity and mitochondrial activity, was measured by lactate dehydrogenase (LDH) release and tetrazolium reduction (MTT), respectively, in mouse alveolar macrophages (RAW264.7) and mouse lung epithelial cells (C10). SiO2-COO- NP had a slower agglomeration rate, formed smaller aggregates, and exhibited lower cytotoxicity compared to SiO2 and SiO2-NH2. Composition of the protein corona for each of the three NP was unique, indicating a strong dependence of corona development on NP surface chemistry. This work underscores the need to understand all aspects of NP toxicity, particularly the influence of agglomeration on effective dose and particle size. Furthermore, the interplay between materials and local biological environment is emphasized and highlights the need to conduct toxicity profiling under physiologically relevant conditions that provide an appropriate estimation of material modifications that occur during exposure in natural environments.The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated

  15. Biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites.

    PubMed

    Gu, Jisheng; Wang, Teng; Fan, Guoxin; Ma, Junhua; Hu, Wei; Cai, Xiaobing

    2016-04-01

    The aim of this study was to evaluate the in vitro and in vivo biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites. In vitro cytotoxicity tests by cholecystokinin octapeptide (CCK-8) assay showed that the 5%Van-MSN-CaSO4 and Van-CaSO4 bone cements were cytocompatible for mouse osteoblastic cell line MC3T3-E1. The microscopic observation confirmed that MC3T3-E1cells incubated with Van-CaSO4 group and 5%Van-MSN-CaSO4 group exhibited clear spindle-shaped changes, volume increase and maturation, showing that these cements supported adhesion of osteoblastic cells on their surfaces. In addition, the measurement of alkaline phosphatase activity revealed the osteoconductive property of these biomaterials. In order to assess in vivo biocompatibility, synthesized cements were implanted into the distal femur of twelve adult male and female New Zealand rabbits. After implantation in artificial defects of the distal femur, 5%Van-MSN-CaSO4 and Van-CaSO4 bone cements did not damage the function of main organs of rabbits. In addition, the Van-MSN-CaSO4 composite allowed complete repair of bone defects with new bone formation 3 months after implantation. These results show potential application of Van-MSN-CaSO4 composites as bone graft materials for the treatment of open fracture in human due to its mechanical, osteoconductive and potential sustained drug release characteristics and the absence of adverse effects on the body.

  16. Dexamethasone-loaded poly(ε-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition.

    PubMed

    de Matos, M B C; Piedade, A P; Alvarez-Lorenzo, C; Concheiro, A; Braga, M E M; de Sousa, H C

    2013-11-18

    A supercritical carbon dioxide (scCO2)-assisted foaming/mixing method (SFM) was implemented for preparing dexamethasone (DXMT)-loaded poly(ε-caprolactone)/silica nanoparticles (PCL/SNPs) composite materials suitable for bone regeneration. The composites were prepared from PCL and mesoporous SNPs (MCM-41/SBA-15) by means of scCO2-assisted SFM at several operational pressures, processing times and depressurization conditions. DXMT was loaded into SNPs (applying a scCO2 solvent impregnation/deposition method - SSID) and into PCL/SNPs composites (using the SFM method). The effects of the employed operational and compositional variables on the physicochemical and morphological features as well as in the in vitro release profiles of DXMT were analyzed in detail. This work demonstrates that the above-referred scCO2-based methods can be very useful for the preparation of DXMT-loaded PCL/SNPs composites with tunable physicochemical, thermomechanical, morphological and drug release properties and suitable for hard-tissue regeneration applications.

  17. Synthesis of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles.

    PubMed

    Massa, Miguel A; Covarrubias, Cristian; Bittner, Mauricio; Fuentevilla, Ignacio Andrés; Capetillo, Pavel; Von Marttens, Alfredo; Carvajal, Juan Carlos

    2014-12-01

    Infection is the most common factor that leads to dental titanium implant failure. Antibacterial implant surfaces based on nano-scale modifications of the titanium appear as an attractive strategy for control of peri-implantitis. In the present work, the preparation and antibacterial properties of a novel composite coating for titanium based on nanoporous silica and silver nanoparticles are presented. Starch-capped silver nanoparticles (AgNPs) were synthesized and then incorporated into sol-gel based solution system. The AgNP-doped nanoporous silica coatings were prepared on titanium surface using a combined sol-gel and evaporation-induced self-assembly (EISA) method. The coating nanostructure was characterized by XRD, SEM-EDX, and HR-TEM. Antibacterial activity was evaluated against Aggregatibacter actinomycetemcomitans, a representative pathogen of dental peri-implantitis. Colony-forming units (CFUs) were counted within the biofilm and at the planktonic state. Biofilm development was quantified using crystal violet staining and viability of adherent bacteria was confirmed with the Live/Dead fluorescence assay. Silica-based composite coating containing AgNPs (AgNP/NSC) was prepared on titanium surface by direct incorporation of AgNP suspension into the sol-gel system. The self-assembly technique enabled the spontaneous formation of a highly ordered nanoporosity in the coating structure, which is a desired property for osseointegration aspects of titanium implant surface. AgNP/NSC coating produces a strong antibacterial effect on titanium surface by not only killing the adherent bacteria but also reducing the extent of biofilm formation. Biofilm survival is reduced by more than 70% on the AgNP/NSC-modified titanium surface, compared to the control. This antibacterial effect was verified for up to 7 days of incubation. The long-term antibacterial activity exhibited by the nanostructured AgNP/NSC-titanium surface against A. actinomycetemcomitans suggests that this

  18. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light.

    PubMed

    Zhang, Zhigang; Chai, Aiyun

    2012-12-01

    Lack of solubility under physiological conditions poses an additional risk for toxicity and side effects for intravenous delivery of the photodynamic therapeutic agent in vivo. Employing magnetite-silica composite nanoparticles as carriers of the photodynamic therapeutic agents may be a promising way to solve the problem. In this study, core-shell magnetite-silica composite nanoparticles were prepared by a sol-gel method, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering, then they were used as carriers of a photoactive platinum diimine complex. The interactions of the photosensitizer-loaded magnetic composite nanoparticles with DNA in red light were monitored by agarose-gel electrophoresis. The results suggest that high doses of magnetite-silica composite nanoparticles might facilitate the transformation of covalently closed circular (ccc)-DNA band to open circular (oc)-DNA band though they are harmless to DNA at their low concentrations, therefore enhancing the extent of DNA damage caused by the metal complex in red light.

  19. Investigation of laundering and dispersion approaches for silica and calcium phosphosilicate composite nanoparticles synthesized in reverse micelles

    NASA Astrophysics Data System (ADS)

    Tabakovic, Amra

    Nanotechnology, the science and engineering of materials at the nanoscale, is a booming research area with numerous applications in electronic, cosmetic, automotive and sporting goods industries, as well as in biomedicine. Composite nanoparticles (NPs) are of special interest since the use of two or more materials in NP design imparts multifunctionality on the final NP constructs. This is especially relevant for applications in areas of human healthcare, where the use of dye or drug doped composite NPs is expected to improve the diagnosis and treatment of cancer and other serious illnesses. Since the physicochemical properties of NP suspensions dictate the success of these systems in biomedical applications, especially drug delivery of chemotherapeutics, synthetic routes which offer precise control of NP properties, especially particle diameter and colloidal stability, are utilized to form a variety of composite NPs. Formation of NPs in reverse, or water-in-oil, micelles is one such synthetic approach. However, while the use of reverse micelles to form composite NPs offers precise control over NP size and shape, the post-synthesis laundering and dispersion of synthesized NP suspensions can still be a challenge. Reverse micelle synthetic approaches require the use of surfactants and low dielectric constant solvents, like hexane and cyclohexane, as the oil phase, which can compromise the biocompatibility and colloidal stability of the final composite NP suspensions. Therefore, appropriate dispersants and solvents must be used during laundering and dispersion to remove surfactant and ensure stability of synthesized NPs. In the work presented in this dissertation, two laundering and dispersion approaches, including packed column high performance liquid chromatography (HPLC) and centrifugation (sedimentation and redispersion), are investigated for silver core silica (Ag-SiO2) and calcium phosphosilicate (Caw(HxPO4)y(Si(OH)zOa) b · cH2O, CPS) composite NP suspensions

  20. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles.

    PubMed

    Lee, Ga Hyun; Lee, Sung June; Jeong, Sang Won; Kim, Hyun-Chul; Park, Ga Young; Lee, Se Geun; Choi, Jin Hyun

    2016-07-01

    Utilizing the biological activities of compounds by encapsulating natural components in stable nanoparticles is an important strategy for a variety of biomedical and healthcare applications. In this study, quercetin-loaded silica nanoparticles were synthesized using an oil-in-water microemulsion method, which is a suitable system for producing functional nanoparticles of controlled size and shape. The resulting quercetin-loaded silica nanoparticles were spherical, highly monodispersed, and stable in an aqueous system. Superoxide radical scavenging effects were found for the quercetin-loaded silica nanoparticles as well as free quercetin. The quercetin-loaded silica nanoparticles showed cell viability comparable to that of the controls. The amounts of proinflammatory cytokines produced by macrophages, such as interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha, were reduced significantly for the quercetin-loaded silica nanoparticles. These results suggest that the antioxidative and antiinflammatory activities of quercetin are maintained after encapsulation in silica. Silica nanoparticles can be used for the effective and stable incorporation of biologically active natural components into composite biomaterials. PMID:27038916

  1. Non-seeded synthesis and characterization of superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles via ultrasound.

    PubMed

    Sodipo, Bashiru Kayode; Abdul Aziz, Azlan

    2015-03-01

    A non-seeded method of incorporating superparamagnetic iron oxide nanoparticles (SPION) into silica nanoparticles is presented. Mixture of both SPION and silica nanoparticles was ultrasonically irradiated. The collapsed bubbles and shockwave generated from the ultrasonic irradiation produce tremendous force that caused inelastic collision and incorporation of SPION into the silica. Physicochemical analyses using transmission electron microscope (TEM), electronic spectroscopic imaging (ESI), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy demonstrated the formation of SPION/silica composite nanoparticles. The prepared composite nanoparticles exhibited superparamagnetic behaviour and nearly 70% of the initial saturation magnetization (Ms) of the SPION was retained. The presence and reactivity of the silica were demonstrated via assembling decanethiol monolayer on the composite nanoparticles. The silanol group of the silica provided the binding site for the alkyl group in the decanethiol molecules. Therefore, the thiol moiety became the terminal and functional group on the magnetic composite nanoparticles.

  2. Cellular membrane trafficking of mesoporous silica nanoparticles

    SciTech Connect

    Fang, I-Ju

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  3. Toxicity assessment of silica nanoparticles, functionalised silica nanoparticles, and HASE-grafted silica nanoparticles.

    PubMed

    Clément, Laura; Zenerino, Arnaud; Hurel, Charlotte; Amigoni, Sonia; Taffin de Givenchy, Elisabeth; Guittard, Frédéric; Marmier, Nicolas

    2013-04-15

    Numerous nanomaterials have recently been developed, and numerous practical applications have been found in water treatment, medicine, cosmetics, and engineering. Associative polymers, such as hydrophobically modified alkali-soluble emulsion (HASE) systems are involved in several applications and have been extensively studied due to their ability to form three-dimensional networked gels. However, the data on the potential environmental effects of this polymers are scarce. The aim of this study is to assess the effect of functionalisation of silica nanoparticles, and coupling of functionalised silica nanoparticles to the associative polymer HASE on their toxicity. Thus, acute and chronic toxicity tests included a modified acute test (72 h) using daphnies, algae, and plants as model organisms. Gradient of toxicity varied with the tested organisms. Our results revealed that the functionalised nanoparticules and NP grafted polymer cause a global decrease in toxicity compared to commercial nanoparticule and HASE polymer. PMID:23474257

  4. Consolidated silica glass from nanoparticles

    SciTech Connect

    Mayerhoefer, Thomas G. Shen Zhijian; Leonova, Ekaterina; Eden, Mattias; Kriltz, Antje; Popp, Juergen

    2008-09-15

    A dense silica glass was prepared by consolidating a highly dispersed silicic acid powder (particle size <10 nm) with the Spark Plasma Sintering (SPS) technique. The glass was characterized by ellipsometry, transmission electron microscopy (TEM), infrared reflectance and transmittance spectroscopy, as well as by Raman, UV-Vis-NIR and solid-state nuclear magnetic resonance (NMR) spectroscopy. The prototypic sample showed a transmittance of about 63% compared to silica glass in the UV-Vis spectral range. Based on the results of infrared transmittance spectroscopy this lower transparency is due to the comparably high water content, which is about 40 times higher than that in silica glass. {sup 1}H magic-angle spinning (MAS) NMR confirmed an increase in hydroxyl groups in the sample prepared by SPS relative to that of the conventional SiO{sub 2} reference glass. Aside from the comparably high water content, we conclude from the similarity of the IR-reflectance and the {sup 29}Si MAS NMR spectra of the SPS sample and the corresponding spectra of the conventionally prepared silica glass, that the short- and medium-range order is virtually the same in both materials. Raman spectroscopy, however, suggests that the number of three- and four-membered rings is significantly smaller in the SPS sample compared to the conventionally prepared sample. Based on these results we conclude that it is possible to prepare glasses by compacting amorphous powders by the SPS process. The SPS process may therefore enable the preparation of glasses with compositions inaccessible by conventional methods. - Graphical abstract: We report the preparation of SiO{sub 2} glass by consolidating a highly dispersed silicic acid powder with the Spark Plasma Sintering (SPS) technique. The glass was characterized by ellipsometry, transmission electron microscopy (TEM), infrared reflectance and transmittance spectroscopy, as well as by Raman-, UV-Vis-NIR- and solid-state nuclear magnetic resonance (NMR

  5. Sonochemical coating of magnetite nanoparticles with silica.

    PubMed

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  6. Silica nanoparticle phytotoxicity to Arabidopsis thaliana.

    PubMed

    Slomberg, Danielle L; Schoenfisch, Mark H

    2012-09-18

    The phytotoxicity of silica nanoparticles (SiNPs) was evaluated as a function of particle size (14, 50, and 200 nm), concentration (250 and 1000 mg L(-1)), and surface composition toward Arabidopsis thaliana plants grown hydroponically for 3 and 6 weeks. Reduced development and chlorosis were observed for plants exposed to highly negative SiNPs (-20.3 and -31.9 mV for the 50 and 200 nm SiNPs, respectively) regardless of particle concentration when not controlling pH of the hydroponic medium, which resulted in increased alkalinity (~pH 8). Particles were no longer toxic to the plants at either concentration upon calcination or removal of surface silanols from the SiNP surface, or adjusting the pH of the growth medium to pH 5.8. The phytotoxic effects observed for the negatively charged 50 and 200 nm SiNPs were attributed to pH effects and the adsorption of macro- and micro-nutrients to the silica surface. Size-dependent uptake of the nanoparticles by the plants was confirmed using transmission electron microscopy (TEM) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) with plant roots containing 32.0, 1.85, and 7.00 × 10(-3) mg Si·kg tissue(-1)/nm(3) (normalized for SiNP volume) for the 14, 50, and 200 nm SiNPs respectively, after 6 weeks exposure at 1000 ppm (pH 5.8). This study demonstrates that the silica scaffolds are not phytotoxic up to 1000 ppm despite significant uptake of the SiNPs (14, 50, and 200 nm) into the root system of A. thaliana. PMID:22889047

  7. Enhanced electrochemiluminescence based on Ru(bpy)₃²⁺-doped silica nanoparticles and graphene composite for analysis of melamine in milk.

    PubMed

    Zhou, Limin; Huang, Jianshe; Yang, Lu; Li, Libo; You, Tianyan

    2014-05-01

    A sensitive electrochemiluminescence (ECL) sensor for melamine analysis was fabricated based on Ru(bpy)3(2+)-doped silica (Ru(bpy)3(2+)@SiO2) nanoparticles and graphene composite. Spherical Ru(bpy)3(2+)@SiO2 nanoparticles with uniform size about 55 nm were prepared by the reverse microemulsion method. Since per Ru(bpy)3(2+)@SiO2 nanoparticle encapsulated a great deal of Ru(bpy)3(2+), the ECL intensity has been greatly enhanced, which resulted in high sensitivity. Due to its extraordinary electric conductivity, graphene improved the conductivity and accelerated the electron transfer rate. In addition, graphene could work as electronic channel improving the efficient luminophor amount participating in the ECL reaction, which further enhanced the ECL signal. This proposed sensor was used to melamine analysis and the ECL intensity was proportional to logarithmic melamine concentration range from 1×10(-13) M to 1×10(-8) M with the detect limit as low as 1×10(-13) M. In application to detect melamine in milk, satisfactory recoveries could be obtained, which indicated this sensor having potential application in melamine analysis in real samples.

  8. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    NASA Astrophysics Data System (ADS)

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz

    2015-04-01

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  9. Superparamagnetic iron oxide nanoparticles incorporated into silica nanoparticles by inelastic collision via ultrasonic field: Role of colloidal stability

    SciTech Connect

    Sodipo, Bashiru Kayode; Azlan, Abdul Aziz

    2015-04-24

    Superparamagnetic iron oxide nanoparticles (SPION)/Silica composite nanoparticles were prepared by ultrasonically irradiating colloidal suspension of silica and SPION mixture. Both silica and SPION were synthesized independently via co-precipitation and sol-gel method, respectively. Their mixtures were sonicated at different pH between 3 and 5. Electrophoresis measurement and other physicochemical analyses of the products demonstrate that at lower pH SPION was found incorporated into the silica. However, at pH greater than 4, SPION was unstable and unable to withstand the turbulence flow and shock wave from the ultrasonic field. Results suggest that the formation of the SPION/silica composite nanoparticles is strongly related to the inelastic collision induced by ultrasonic irradiation. More so, the formation the composite nanoparticles via the ultrasonic field are dependent on the zeta potential and colloidal stability of the particles.

  10. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds.

    PubMed

    Zu, Guoqing; Shen, Jun; Wang, Wenqin; Zou, Liping; Lian, Ya; Zhang, Zhihua

    2015-03-11

    Silica-titania composite aerogels were synthesized by chemical liquid deposition of titania onto nanoporous silica scaffolds. This novel deposition process was based on chemisorption of partially hydrolyzed titanium alkoxides from solution onto silica nanoparticle surfaces and subsequent hydrolysis and condensation to afford titania nanoparticles on the silica surface. The titania is homogeneously distributed in the silica-titania composite aerogels, and the titania content can be effectively controlled by regulating the deposition cycles. The resultant composite aerogel with 15 deposition cycles possessed a high specific surface area (SSA) of 425 m(2)/g, a small particle size of 5-14 nm, and a large pore volume and pore size of 2.41 cm(3)/g and 18.1 nm, respectively, after heat treatment at 600 °C and showed high photocatalytic activity in the photodegradation of methylene blue under UV-light irradiation. Its photocatalytic activity highly depends on the deposition cycles and heat treatment. The combination of small particle size, high SSA, and enhanced crystallinity after heat treatment at 600 °C contributes to the excellent photocatalytic property of the silica-titania composite aerogel. The higher SSAs compared to those of the reported titania aerogels (<200 m(2)/g at 600 °C) at high temperatures combined with the simple method makes the silica-titania aerogels promising candidates as photocatalysts.

  11. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this...

  12. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this...

  13. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this...

  14. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this...

  15. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this...

  16. Nonporous Silica Nanoparticles for Nanomedicine Application

    PubMed Central

    Tang, Li; Cheng, Jianjun

    2013-01-01

    Summary Nanomedicine, the use of nanotechnology for biomedical applications, has potential to change the landscape of the diagnosis and therapy of many diseases. In the past several decades, the advancement in nanotechnology and material science has resulted in a large number of organic and inorganic nanomedicine platforms. Silica nanoparticles (NPs), which exhibit many unique properties, offer a promising drug delivery platform to realize the potential of nanomedicine. Mesoporous silica NPs have been extensively reviewed previously. Here we review the current state of the development and application of nonporous silica NPs for drug delivery and molecular imaging. PMID:23997809

  17. Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites.

    PubMed

    Kim, J W; Kim, L U; Kim, C K

    2007-01-01

    Nearly monodispersed silica nanoparticles having a controlled size from 5 to 450 nm were synthesized via a sol-gel process, and then the optimum conditions for the surface treatment of the synthesized silica nanoparticles with a silane coupling agent (i.e., 3-methacryloxypropyltrimethoxysilane (gamma-MPS)) were explored to produce dental composites exhibiting enhanced adhesion and dispersion of silica nanoparticles in the resin matrix. The particle size was increased by increasing amounts of the catalyst (NH4OH) and silica precursor (tetraethylorthosilicate, TEOS) and by decreasing the amount of water in the reaction mixtures regardless of solvents used for the synthesis. The particle size prepared by using ethanol as a solvent was significantly larger than that prepared by using methanol as a solvent when the composition of the reaction mixture was fixed. The nanosized particles in the 5-25 nm range were aggregated. The amount of grafted gamma-MPS on the surface of the synthesized silica nanoparticles was dependent on the composition of the reaction mixture when an excess amount of gamma-MPS was used. When surface treatment was performed at optimum conditions found here, the amount of the grafted gamma-MPS per unit surface area of the silica nanoparticles was nearly the same regardless of the particle size. Dispersion of the silica particles in the resin matrix and interfacial adhesion between silica particles and resin matrix were enhanced when surface treated silica nanoparticles were used for preparing dental nanocomposites.

  18. Growth of hydroxyapatite nanoparticles on silica gels.

    PubMed

    Rivera-Muñoz, E M; Huirache-Acuña, R; Velázquez, R; Alonso-Núñez, G; Eguía-Eguía, S

    2011-06-01

    Synthetic, hydroxyapatite nanoparticles were grown on the surface of silica gels. The synthesis of those nanoparticles was obtained by immersing silica gels in a simulated body fluid (SBF) at 37 degrees C. The SBF was replaced every week to keep constant the Ca and P ion concentration and subsequent growth of hydroxyapatite was evaluated after 1-6 weeks of total soaking time in SBF. Hydroxyapatite nanoparticles were observed by scanning electron microscopy (SEM) on the surface of silica gel samples and confirmed by energy dispersive X-ray spectroscopy (EDS), Fourier Transform Infra Red Spectroscopy (FTIR) and powder X-ray Diffractometry (XRD) analysis. These particles show a regular shape and uniform size every week, keeping within the nanoscale always. Both the size and morphology of hydroxyapatite nanoparticles obtained are the result of the use of different chemical additives in the synthesis of silica gels, since they affect the liquid-to-solid interface, and the growth could correspond to a diffusion limited aggregation (DLA) process. A more detailed analysis, with higher magnifications, showed that hydroxyapatite nanoparticles are not solid spheres, showing a branched texture and their size depends on the scale and resolution of the measure instrument. PMID:21770224

  19. Bright photoluminescent hybrid mesostructured silica nanoparticles.

    PubMed

    Miletto, Ivana; Bottinelli, Emanuela; Caputo, Giuseppe; Coluccia, Salvatore; Gianotti, Enrica

    2012-07-28

    Bright photoluminescent mesostructured silica nanoparticles were synthesized by the incorporation of fluorescent cyanine dyes into the channels of MCM-41 mesoporous silica. Cyanine molecules were introduced into MCM-41 nanoparticles by physical adsorption and covalent grafting. Several photoluminescent nanoparticles with different organic loadings have been synthesized and characterized by X-ray powder diffraction, high resolution transmission electron microscopy and nitrogen physisorption porosimetry. A detailed photoluminescence study with the analysis of fluorescence lifetimes was carried out to elucidate the cyanine molecules distribution within the pores of MCM-41 nanoparticles and the influence of the encapsulation on the photoemission properties of the guests. The results show that highly stable photoluminescent hybrid materials with interesting potential applications as photoluminescent probes for diagnostics and imaging can be prepared by both methods. PMID:22706523

  20. Native silica nanoparticles are powerful membrane disruptors.

    PubMed

    Alkhammash, Hend I; Li, Nan; Berthier, Rémy; de Planque, Maurits R R

    2015-06-28

    Silica nanoparticles are under development for intracellular drug delivery applications but can also have cytotoxic effects including cell membrane damage. In this study, we investigated the interactions of silica nanospheres of different size, surface chemistry and biocoating with membranes of phosphatidylcholine lipids. In liposome leakage assays many, but not all, of these nanoparticles induced dose-dependent dye leakage, indicative of membrane perturbation. It was found that 200 and 500 nm native-silica, aminated and carboxylated nanospheres induce near-total dye release from zwitterionic phosphatidylcholine liposomes at a particle/liposome ratio of ∼1, regardless of their surface chemistry, which we interpret as particle-supported bilayer formation following a global rearrangement of the vesicular membrane. In contrast, 50 nm diameter native-silica nanospheres did not induce total dye leakage below a particle/liposome ratio of ∼8, whereas amination or carboxylation, respectively, strongly reduced or prevented dye release. We postulate that for the smaller nanospheres, strong silica-bilayer interactions are manifested as bilayer engulfment of membrane-adsorbed particles, with localized lipid depletion eventually leading to collapse of the vesicular membrane. Protein coating of the particles considerably reduced dye leakage and lipid bilayer coating prevented dye release all together, while the inclusion of 33% anionic lipids in the liposomes reduced dye leakage for both native-silica and aminated surfaces. These results, which are compared with the effect of polystyrene nanoparticles and other engineered nanomaterials on lipid bilayers, and which are discussed in relation to nanosilica-induced cell membrane damage and cytotoxicity, indicate that a native-silica nanoparticle surface chemistry is a particularly strong membrane interaction motif.

  1. Electrophoretic deposition of composite hydroxyapatite-silica-chitosan coatings

    SciTech Connect

    Grandfield, K.; Zhitomirsky, I.

    2008-01-15

    Electrophoretic deposition (EPD) method has been developed for the fabrication of nanocomposite silica-chitosan coatings. Cathodic deposits were obtained on various conductive substrates using suspensions of silica nanoparticles in a mixed ethanol-water solvent, containing dissolved chitosan. Co-deposition of silica and hydroxyapatite (HA) nanoparticles resulted in the fabrication of HA-silica-chitosan coatings. The deposition yield has been studied at a constant voltage mode at various deposition durations. The method enabled the formation of coatings of different thickness in the range of up to 100 {mu}m. Deposit composition, microstructure and porosity can be varied by variation of HA and silica concentration in the suspensions. It was demonstrated that EPD can be used for the fabrication of HA-silica-chitosan coatings of graded composition and laminates. The method enabled the deposition of coatings containing layers of silica-chitosan and HA-chitosan nanocomposites using suspensions with different HA and silica content. Obtained coatings were studied by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning electron microscopy and energy dispersive spectroscopy. The mechanism of deposition is discussed.

  2. The properties of silica-gelatin composites

    NASA Astrophysics Data System (ADS)

    Stavinskaya, O. N.; Laguta, I. V.

    2010-06-01

    Silica-gelatin composites with various silica-to-gelatin ratios were obtained. The influence of high-dispersity silica on the swelling of composites in water and desorption of pyridoxine and thiamine vitamins incorporated into the material was studied. The addition of silica to gelatin was shown to increase the time of the dissolution of the materials in aqueous medium and decelerate the desorption of vitamins.

  3. Composition-dependent morphostructural properties of Ni-Cu oxide nanoparticles confined within the channels of ordered mesoporous SBA-15 silica.

    PubMed

    Ungureanu, Adrian; Dragoi, Brindusa; Chirieac, Alexandru; Ciotonea, Carmen; Royer, Sébastien; Duprez, Daniel; Mamede, Anne Sophie; Dumitriu, Emil

    2013-04-24

    NiO and NiO-CuO polycrystalline rodlike nanoparticles were confined and stabilized within the channels of ordered mesoporous SBA-15 silica by a simple and viable approach consisting in incipient wetness impregnation of the calcined support with aqueous solutions of metal nitrates followed by a mild drying step at 25 °C and calcination. As revealed by low- and high-angle XRD, N2 adsorption/desorption, HRTEM/EDXS and H2 TPR analyses, the morphostructural properties of NiO-CuO nanoparticles can be controlled by adjusting their chemical composition, creating the prerequisites to obtain high performance bimetallic catalysts. Experimental evidence by in situ XRD monitoring during the thermoprogrammed reduction indicates that the confined NiO-CuO nanoparticles evolve into thermostable and well-dispersed Ni-Cu heterostructures. The strong Cu-Ni and Ni-support interactions demonstrated by TPR and XPS were put forward to explain the formation of these new bimetallic structures. The optimal Ni-Cu/SBA-15 catalyst (i.e., Cu/(Cu+Ni) atomic ratio of 0.2) proved a greatly enhanced reducibility and H2 chemisorption capacity, and an improved activity in the hydrogenation of cinnamaldehyde, as compared with the monometallic Ni/SBA-15 or Cu/SBA-15 counterparts, which can be associated with the synergism between nickel and copper and high dispersion of active components on the SBA-15 host. The unique structure and controllable properties of both oxidic and metallic forms of Ni-Cu/SBA-15 materials make them very attractive for both fundamental research and practical catalytic applications. PMID:23496429

  4. Nanoparticle-doped radioluminescent silica optical fibers

    NASA Astrophysics Data System (ADS)

    Mrazek, J.; Nikl, M.; Kasik, I.; Podrazky, O.; Aubrecht, J.; Beitlerova, A.

    2014-05-01

    This contribution deals with the preparation and characterization of the silica optical fibers doped by nanocrystalline zinc silicate. The sol-gel approach was employed to prepare colloidal solution of zinc silicate precursors. Prepared sol was thermally treated to form nanocrystalline zinc silicate disperzed inside amorphous silica matrix or soaked inside the porous silica frit deposed inside the silica substrate tube which was collapsed into preform and drawn into optical fiber. Single mode optical fiber with the core diameter 15 μm and outer diamer 125 μm was prepared. Optical and waveguiding properties of the fiber were analyzed. Concentration of the zinc silicate in the fiber was 0.93 at. %. Radioluminescence properties of nanocrystalline zinc silicate powder and of the prepared optical fiber were investigated. The nanoparticle doped samples appear a emission maximum at 390 nm.

  5. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  6. Nickel Oxide Nanoparticle-Deposited Silica Composite Solid-Phase Extraction for Benzimidazole Residue Analysis in Milk and Eggs by Liquid Chromatography-Mass Spectrometry.

    PubMed

    Sun, Huan; Yu, Qiong-Wei; He, Hai-Bo; Lu, Qian; Shi, Zhi-Guo; Feng, Yu-Qi

    2016-01-13

    A novel nickel oxide nanoparticle-deposited silica (SiO2@NiO) composite was prepared via liquid-phase deposition (LPD) and then employed as a solid-phase extraction (SPE) sorbent. When the SPE was coupled with liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS) analysis, an analytical platform for the sensitive determination of benzimidazole residues in egg and milk was established. The limits of detection of nine benzimidazoles were in the range of 0.8-2.2 ng/mL in milk and 0.3-2.1 ng/g in eggs, respectively, which was 5-10 times superior to the methods with other adsorbents for SPE. The recoveries of nine benzimidazoles spiked in milk and egg ranged from 70.8 to 118.7%, with relative standard deviations (RSDs) being less than 18.9%. This work presented the excellent extraction performance of NiO on benzimidazoles for the first time, and the applicability of the LPD technique used as sorbents for trace analysis in complex matrices was also demonstrated. PMID:26652314

  7. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.

    PubMed

    Qiu, Kexin; Chen, Bo; Nie, Wei; Zhou, Xiaojun; Feng, Wei; Wang, Weizhong; Chen, Liang; Mo, Xiumei; Wei, Youzhen; He, Chuanglong

    2016-02-17

    The incorporation of microcarriers as drug delivery vehicles into polymeric scaffold for bone regeneration has aroused increasing interest. In this study, the aminated mesoporous silica nanoparticles (MSNs-NH2) were prepared and used as microcarriers for dexamethasone (DEX) loading. Poly(l-lactic acid)/poly(ε-caprolactone) (PLLA/PCL) nanofibrous scaffold was fabricated via thermally induced phase separation (TIPS) and served as template, onto which the drug-loaded MSNs-NH2 nanoparticles were deposited by electrophoretic deposition (EPD). The physicochemical and release properties of the prepared scaffolds (DEX@MSNs-NH2/PLLA/PCL) were examined, and their osteogenic activities were also evaluated through in vitro and in vivo studies. The release of DEX from the scaffolds revealed an initial rapid release followed by a slower and sustained one. The in vitro results indicated that the DEX@MSNs-NH2/PLLA/PCL scaffold exhibited good biocompatibility to rat bone marrow-derived mesenchymal stem cells (BMSCs). Also, BMSCs cultured on the DEX@MSNs-NH2/PLLA/PCL scaffold exhibited a higher degree of osteogenic differentiation than those cultured on PLLA/PCL and MSNs-NH2/PLLA/PCL scaffolds, in terms of alkaline phosphatase (ALP) activity, mineralized matrix formation, and osteocalcin (OCN) expression. Furthermore, the in vivo results in a calvarial defect model of Sprague-Dawley (SD) rats demonstrated that the DEX@MSNs-NH2/PLLA/PCL scaffold could significantly promote calvarial defect healing compared with the PLLA/PCL scaffold. Thus, the EPD technique provides a convenient way to incorporate osteogenic agents-containing microcarriers to polymer scaffold, and thus, prepared composite scaffold could be a potential candidate for bone tissue engineering application due to its capacity for delivery of osteogenic agents.

  8. Electroactive Silica Nanoparticles for Biological Labeling

    SciTech Connect

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2006-08-29

    A novel electrochemical immuno-biosensor based on poly(guanine)-functionalized silica nanoparticle labels and mediator-generated catalytic reaction was described. The functionalized silica NPs conjugates were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemistry. This immunobiosensor is very sensitive and the limit of detection was found to be down to 0.2 ng/ml (4 pM), which was attributed to signal amplification by poly[G] functionalized silica NPs and guanine catalytic oxidation. Attractive feature of this approach is feasible to develop a cheap, sensitive and portable device for multiplexed diagnoses of different proteins. This method is simple, selective and reproducible for trace protein analysis and can be extended to study protein/protein, peptide/protein, and DNA/ protein interactions.

  9. Crystallization of hollow mesoporous silica nanoparticles.

    PubMed

    Drisko, Glenna L; Carretero-Genevrier, Adrian; Perrot, Alexandre; Gich, Martí; Gàzquez, Jaume; Rodriguez-Carvajal, Juan; Favre, Luc; Grosso, David; Boissière, Cédric; Sanchez, Clément

    2015-03-11

    Complex 3D macrostructured nanoparticles are transformed from amorphous silica into pure polycrystalline α-quartz using catalytic quantities of alkaline earth metals as devitrifying agent. Walls as thin as 10 nm could be crystallized without losing the architecture of the particles. The roles of cation size and the mol% of the incorporated devitrifying agent in crystallization behavior are studied, with Mg(2+), Ca(2+), Sr(2+) and Ba(2+) all producing pure α-quartz under certain conditions.

  10. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent

    NASA Astrophysics Data System (ADS)

    Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

    2013-02-01

    Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV

  11. Protein-templated biomimetic silica nanoparticles.

    PubMed

    Jackson, Erienne; Ferrari, Mariana; Cuestas-Ayllon, Carlos; Fernández-Pacheco, Rodrigo; Perez-Carvajal, Javier; de la Fuente, Jesús M; Grazú, Valeria; Betancor, Lorena

    2015-03-31

    Biomimetic silica particles can be synthesized as a nanosized material within minutes in a process mimicked from living organisms such as diatoms and sponges. In this work, we have studied the effect of bovine serum albumin (BSA) as a template to direct the synthesis of silica nanoparticles (NPs) with the potential to associate proteins on its surface. Our approach enables the formation of spheres with different physicochemical properties. Particles using BSA as a protein template were smaller (∼250-380 nm) and were more monodisperse than those lacking the proteic core (∼700-1000 nm) as seen by dynamic light scattering (DLS), scanning electron microscopy (SEM), and environmental scanning electron microscopy (ESEM) analysis. The absence of BSA during synthesis produced silica nanoparticles without any porosity that was detectable by nitrogen adsorption, whereas particles containing BSA developed porosity in the range of 4 to 5 nm which collapsed on the removal of BSA, thus producing smaller pores. These results were in accordance with the pore size calculated by high-resolution transmission electron microscopy (HTEM). The reproducibility of the BSA-templated nanoparticle properties was determined by analyzing four batches of independent synthesizing experiments that maintained their properties. The high positive superficial charge of the nanoparticles facilitated adsorption under mild conditions of a range of proteins from an E. coli extract and a commercial preparation of laccase from Trametes versicolor. All of the proteins were quantitatively desorbed. Experiments conducted showed the reusability of the particles as supports for the ionic adsorption of the biomolecules. The protein loading capacity of the BSA-based biomimetic particles was determined using laccase as 98.7 ± 6.6 mg·g(-1) of particles.

  12. Luminescent Silica Nanoparticles for cancer diagnosis

    PubMed Central

    Montalti, Marco; Petrizza, Luca; Rampazzo, Enrico; Zaccheroni, Nelsi; Marchiò, Serena

    2015-01-01

    Fluorescence imaging techniques are becoming essential in preclinical investigations, and the research of suitable tools for in vivo measurements is gaining more and more importance and attention. Nanotechnology entered the field to try to find solutions for many limitation at the state of the art, and luminescent nanoparticles (NPs) are one of the most promising materials proposed for future diagnostic implementation. NPs constitute also a versatile platform that can allow facile multi-functionalization to perform multimodal imaging or theranostic (simultaneous diagnosis and therapy). In this contribution we have focussed our attention only on dye doped silica or silica-based NPs conjugated with targeting moieties to enable specific cancer cells imaging and differentiation, even if also a few non targeted systems have been cited and discussed for completeness. We have summarized common synthetic approaches to these materials and then surveyed the most recent imaging applications of silica-based nanoparticles in cancer. The field of theranostic is so important and stimulating that, even if it is not the central topic of this paper, we have included some significant examples. We have then concluded with short hints on systems already in clinical trials and examples of specific applications in children tumours. This review tries to describe and discuss, through focussed examples, the great potentialities of these materials in the medical field, with the aim to encourage further research to implement applications that are still rare. PMID:23458621

  13. Perylene-labeled silica nanoparticles: synthesis and characterization of three novel silica nanoparticle species for live-cell imaging.

    PubMed

    Blechinger, Julia; Herrmann, Rudolf; Kiener, Daniel; García-García, F Javier; Scheu, Christina; Reller, Armin; Bräuchle, Christoph

    2010-11-01

    The increasing exposure of humans to nanoscaled particles requires well-defined systems that enable the investigation of the toxicity of nanoparticles on the cellular level. To facilitate this, surface-labeled silica nanoparticles, nanoparticles with a labeled core and a silica shell, and a labeled nanoparticle network-all designed for live-cell imaging-are synthesized. The nanoparticles are functionalized with perylene derivatives. For this purpose, two different perylene species containing one or two reactive silica functionalities are prepared. The nanoparticles are studied by transmission electron microscopy, widefield and confocal fluorescence microscopy, as well as by fluorescence spectroscopy in combination with fluorescence anisotropy, in order to characterize the size and morphology of the nanoparticles and to prove the success and homogeneity of the labeling. Using spinning-disc confocal measurements, silica nanoparticles are demonstrated to be taken up by HeLa cells, and they are clearly detectable inside the cytoplasm of the cells.

  14. Biodegradable hollow silica nanospheres containing gold nanoparticle arrays.

    PubMed

    Cassano, Domenico; Rota Martir, Diego; Signore, Giovanni; Piazza, Vincenzo; Voliani, Valerio

    2015-06-21

    We introduce biodegradable hollow silica nanocapsules embedding arrays of 3 nm gold nanoparticles. The silica shell degrades in full serum in a few hours, potentially allowing the clearance of the capsules and their contents by the efficient renal pathway, and thereby overcoming accumulation issues typical of metal nanoparticles.

  15. A bioinspired strategy for surface modification of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Tian, Jianwen; Zhang, Haoxuan; Liu, Meiying; Deng, Fengjie; Huang, Hongye; Wan, Qing; Li, Zhen; Wang, Ke; He, Xiaohui; Zhang, Xiaoyong; Wei, Yen

    2015-12-01

    Silica nanoparticles have become one of the most promising nanomaterials for a vast of applications. In this work, a novel strategy for surface modification of silica nanoparticles has been developed for the first time via combination of mussel inspired chemistry and Michael addition reaction. In this procedure, thin polydopamine (PDA) films were first coated on the bare silica nanoparticles via self-polymerization of dopamine in alkaline condition. And then amino-containing polymers were introduced onto the PDA coated silica nanoparticles through Michael addition reaction, that are synthesized from free radical polymerization using poly(ethylene glycol) methyl methacrylate (PEGMA) and N-(3-aminopropyl) methacrylamide (NAPAM) as monomers and ammonium persulfate as the initiator. The successful modification of silica nanoparticles was evidenced by a series of characterization techniques. As compared with the bare silica nanoparticles, the polymers modified silica nanoparticles showed remarkable enhanced dispersibility in both aqueous and organic solution. This strategy is rather simple, effective and versatile. Therefore, it should be of specific importance for further applications of silica nanoparticles and will spark great research attention of scientists from different fields.

  16. Tailoring silver nanoparticle construction using dendrimer templated silica networks

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojun; Kakkar, Ashok

    2008-06-01

    We have examined the role of the internal environment of dendrimer templated silica networks in tailoring the construction of silver nanoparticle assemblies. Silica networks from which 3,5-dihydroxybenzyl alcohol based dendrimer templates have been completely removed, slowly wet with an aqueous solution of silver acetate. The latter then reacts with internal silica silanol groups, leading to chemisorption of silver ions, followed by the growth of silver oxide nanoparticles. Silica network constructed using generation 4 dendrimer contains residual dendrimer template, and mixes with aqueous silver acetate solution easily. Upon chemisorption, silver ions get photolytically reduced to silver metal under a stabilizing dendrimer environment, leading to the formation of silver metal nanoparticles.

  17. Synthesis and surface functionalization of silica nanoparticles for nanomedicine

    NASA Astrophysics Data System (ADS)

    Liberman, Alexander; Mendez, Natalie; Trogler, William C.; Kummel, Andrew C.

    2014-09-01

    There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications.

  18. Synthesis and surface functionalization of silica nanoparticles for nanomedicine

    PubMed Central

    Liberman, Alexander; Mendez, Natalie; Trogler, William C.; Kummel, Andrew C.

    2014-01-01

    There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications. PMID:25364083

  19. Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun

    2010-01-01

    carboxyl groups of the organic phase. The polymerization process has been adapted to create interpenetrating PMA and silica-gel networks from monomers and prevent any phase separations that could otherwise be caused by an overgrowth of either phase. Typically, the resulting PMA/silica aerogel, without or with fiber reinforcement, has a density and a thermal conductivity similar to those of pure silica aerogels. However, the PMA enhances mechanical properties. Specifically, flexural strength at rupture is increased to 102 psi (=0.7 MPa), about 50 times the flexural strength of typical pure silica aerogels. Resistance to compression is also increased: Applied pressure of 17.5 psi (=0.12 MPa) was found to reduce the thicknesses of several composite PMA/silica aerogels by only about 10 percent.

  20. Mesoporous silica nanoparticles inhibit cellular respiration.

    PubMed

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  1. Gold nanorods-silica Janus nanoparticles for theranostics

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Shuai; Shao, Dan; Zhang, Lu; Zhang, Xu-Lin; Li, Jing; Feng, Jing; Xia, Hong; Huo, Qi-Sheng; Dong, Wen-Fei; Sun, Hong-Bo

    2015-04-01

    A multi-functional gold nanorods-mesoporous silica Janus nanoparticles (NPs) were fabricated by a facile and mild strategy. These Janus NPs not only exhibit small shift of the local surface plasmon resonance wavelength but also have high potential for drug loading and low cytotoxicity. More importantly, the Janus nano-composites could efficiently deliver the imaging agents or drugs into liver cancer cells, at the same time the Janus NPs have good effect on photothermal, which indicate that the unique Janus NPs could be a promising candidate of theranostic system for combined photothermo-/chemo-cancer therapy.

  2. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice

    NASA Astrophysics Data System (ADS)

    Yamashita, Kohei; Yoshioka, Yasuo; Higashisaka, Kazuma; Mimura, Kazuya; Morishita, Yuki; Nozaki, Masatoshi; Yoshida, Tokuyuki; Ogura, Toshinobu; Nabeshi, Hiromi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Monobe, Youko; Imazawa, Takayoshi; Aoshima, Hisae; Shishido, Kiyoshi; Kawai, Yuichi; Mayumi, Tadanori; Tsunoda, Shin-Ichi; Itoh, Norio; Yoshikawa, Tomoaki; Yanagihara, Itaru; Saito, Shigeru; Tsutsumi, Yasuo

    2011-05-01

    The increasing use of nanomaterials has raised concerns about their potential risks to human health. Recent studies have shown that nanoparticles can cross the placenta barrier in pregnant mice and cause neurotoxicity in their offspring, but a more detailed understanding of the effects of nanoparticles on pregnant animals remains elusive. Here, we show that silica and titanium dioxide nanoparticles with diameters of 70 nm and 35 nm, respectively, can cause pregnancy complications when injected intravenously into pregnant mice. The silica and titanium dioxide nanoparticles were found in the placenta, fetal liver and fetal brain. Mice treated with these nanoparticles had smaller uteri and smaller fetuses than untreated controls. Fullerene molecules and larger (300 and 1,000 nm) silica particles did not induce these complications. These detrimental effects are linked to structural and functional abnormalities in the placenta on the maternal side, and are abolished when the surfaces of the silica nanoparticles are modified with carboxyl and amine groups.

  3. Aerosol coating of silica fibers with nanoparticles

    SciTech Connect

    Fotou, G.P.; Scott, S.J.; Pratsinis, S.E.

    1994-12-31

    Dendritic silica fibers are in demand for applications such as hot-gas filtration, chromatography, and fabrication of ceramic composites. Because of their high interception area, these fibers are particularly suitable for use as filter elements for high-efficiency, low-pressure drop filtration of particles from gas streams. An aerosol process was developed recently for coating ultrafine silica fibers with nonsize silica particles. Fibers were suspended in air and introduced in a particle-laden flame. Coagulation between the silica particles and the fibers resulted in dendritic structures that increased the specific surface area of the fibers by up to 16 times. Sol-gel processing has also been used for coating fibers. In this study, the catalytic effect of ferrocene on the flame synthesis of high-surface area particle-coated fibers is investigated. Ferrocene (dicylopentadienyl iron) is an organometallic compound of iron. It has been used in the past as catalyst in whisker growth on carbon fibers in a laser reactor. It has also been used as additive for the control of soot growth in hydrocarbon flames. These studies showed that the effect of ferrocene on soot particle growth is related to residence time and mixing of the reactants in the flame. The efficiency of the aerosol coating process is evaluated in terms of the specific surface area enhancement of the fibers.

  4. Phase behavior and rheological characterization of silica nanoparticle gel

    NASA Astrophysics Data System (ADS)

    Metin, Cigdem O.; Rankin, Kelli M.; Nguyen, Quoc P.

    2014-01-01

    Preferential injection into high permeability thief zones or fractures can result in early breakthrough at production wells and large unswept areas of high oil saturation, which impact the economic life of a well. A variety of conformance control techniques, including polymer and silica gel treatments, have been designed to block flow through the swept zones. Over a certain range of salinities, silica nanoparticle suspensions form a gel in bulk phase behavior tests. These gels have potential for in situ flow diversion, but in situ flow tests are required to determine their applicability. To determine the appropriate scope of the in situ tests, it is necessary to obtain an accurate description of nanoparticle phase behavior and gel rheology. In this paper, the equilibrium phase behavior of silica nanoparticle solutions in the presence of sodium chloride (NaCl) is presented with four phase regions classified as a function of salinity and nanoparticle concentration. Once the gelation window was clearly defined, rheology experiments of silica nanoparticle gels were also carried out. Gelation time decreases exponentially as a function of silica concentration, salinity, and temperature. Following a power law behavior, the storage modulus, G', increases with particle concentration. Steady shear measurements show that silica nanoparticle gels exhibit non-Newtonian, shear thinning behavior. This comprehensive study of the silica nanoparticle gels has provided a clear path forward for in situ tests to determine the gel's applicability for conformance control operations.

  5. Insitu grafting silica nanoparticles reinforced nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Han, Chun-Rui; Duan, Jiu-Fang; Xu, Feng; Sun, Run-Cang

    2013-10-01

    Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties.Highly flexible nanocomposite hydrogels were prepared by using silica nanoparticles (SNPs) as fillers and multi-functional cross-links to graft hydrophilic poly(acrylic acid) (PAA) by free radical polymerization from an aqueous solution. The SNPs were collected by neighboring polymer chains and dispersed uniformly within a PAA matrix. The mechanical properties of the nanocomposite hydrogels were tailored by the concentration of SNPs according to the percolation model. It was proposed that covalent bonds of adsorbed chains on the filler surface resulted in the formation of a shell of an immobilized glassy layer and trapped entanglements, where the glassy polymer layer greatly enhanced the elastic modulus and the release of trapped entanglements at deformation contributed to the viscoelastic properties. Electronic supplementary information (ESI) available: FTIR spectra of SNP after silane treatment, dynamic oscillatory shear measurements as a function of frequency, constrained polymer chain analysis by a change in the peak height in loss factor spectra, molecular weight of grafted chains at different stages of gelation, prediction of the SNP reinforcing mechanism in the

  6. In vivo penetration of bare and lipid-coated silica nanoparticles across the human stratum corneum.

    PubMed

    Iannuccelli, Valentina; Bertelli, Davide; Romagnoli, Marcello; Scalia, Santo; Maretti, Eleonora; Sacchetti, Francesca; Leo, Eliana

    2014-10-01

    Skin penetration of silica nanoparticles (NP) currently used in pharmaceutical and cosmetic products is a topic of interest not only to evaluate their possible toxicity, but also to understand their behaviour upon contact with the skin and to exploit their potential positive effects in drug or cosmetic delivery field. Therefore, the present work aimed to elucidate the in vivo mechanism by which amorphous hydrophilic silica NP enter human stratum corneum (SC) through the evaluation of the role played by the nanoparticle surface polarity and the human hair follicle density. Two silica samples, bare hydrophilic silica (B-silica, 162±51nm in size) and hydrophobic lipid-coated silica (LC-silica, 363±74nm in size) were applied on both the volar and dorsal side of volunteer forearms. Twelve repetitive stripped tapes were removed from the human skin and evaluated for elemental composition by Energy Dispersive X-ray (EDX) analysis and for silicon content by Inductively Coupled Plasma quadrupole Mass Spectrometry (ICP-MS). All the stripped tapes revealed nanosized structures generally located in the broad spaces between corneocytes and characterized by the same elemental composition (relative weight percentage of silicon and silicon to oxygen weight ratio) than that of the applied samples. However, only about 10% B-silica permeated until the deepest SC layers considered in the study indicating a silica retention in the upper layers of SC, regardless of the hair follicle density. Otherwise, the exposure to LC-silica led to a greater silica skin penetration extent into the deeper SC layers (about 42% and 18% silica following volar and dorsal forearm application, respectively) indicating that the NP surface polarity played a predominant role on that of their size in determining the route and the extent of penetration.

  7. Zwitterion-stabilized silica nanoparticles: toward nonstick nano.

    PubMed

    Estephan, Zaki G; Jaber, Jad A; Schlenoff, Joseph B

    2010-11-16

    Using a short-chain zwitterionic organosiloxane, silica nanoparticles were stabilized against aggregation by high ionic strength and/or proteins. Turbidimetry and dynamic light scattering showed that "zwitterated" nanoparticles did not exhibit a significant increase in hydrodynamic radius. When challenged with 3 M NaCl or 50% fetal bovine serum, aggregation was inhibited for at least 24 h, longer with mild heat treatment, which produced nanoparticles with zero net surface charge. These findings suggest "zwitteration" of silica-capped nanoparticles provides excellent stability for in vivo circulation diagnostics and therapies. PMID:20942453

  8. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    SciTech Connect

    Yoncheva, K.; Popova, M.; Szegedi, A.; Mihaly, J.; Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V.; Pessina, F.; Valoti, M.

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  9. Fluorescence anisotropy metrology of electrostatically and covalently labelled silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Yip, Philip; Karolin, Jan; Birch, David J. S.

    2012-08-01

    We compare determining the size of silica nanoparticles using the time-resolved fluorescence anisotropy decay of dye molecules when electrostatically and covalently bound to stable silica nanoparticles. Covalent labelling is shown to offer advantages by simplifying the dye rotational kinetics and the appropriateness of various kinetic models is discussed. Silica nanoparticles produced using Stöber synthesis of tetraethylorthosilicate (TEOS) are found to be controllable between ˜3.1 and 3.8 nm radius by adjusting the relative water:TEOS concentration. Covalent labelling with fluorescein 5(6)-isothiocyanate (FITC) bound to (3-aminopropyl) trimethoxysilane (FITC-APS) predicts a larger particle than electrostatically labelling with rhodamine 6G. The difference is attributed to the presence of an additional depolarization mechanism to Brownian rotation of the nanoparticle and dye wobbling with electrostatic labelling in the form of dye diffusion on the surface of the nanoparticle.

  10. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong

    2015-07-01

    Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a

  11. TOXICITY OF AMORPHOUS SILICA NANOPARTICLES IN MOUSE KERATINOCYTES

    SciTech Connect

    Yu, Kyung; Wang, Wei; Gu, Baohua; Hussain, Saber

    2009-01-01

    The present study was designed to examine the uptake, localization and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118 and 535 nm SiO2) then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 g/mL) compare to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100 and 200 g/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size-of the particles is critical to produce biological effects.

  12. Synthesis of highly emissive PIPES-stabilized gold nanoclusters and gold nanocluster-doped silica nanoparticles.

    PubMed

    Jang, Min Hoon; Pak, Joonsung; Yoo, Hyojong

    2013-04-01

    Stable and highly emissive gold nanoclusters were successfully synthesized by means of stabilization with PIPES (PIPES-Au NCs, where PIPES = 1,4-piperazinediethanesulfonic acid) using a thermal synthetic strategy. By varying the amount of PIPES, two Au NCs with different emission maxima were obtained. The synthesized Au NCs were successfully incorporated into a porous silica matrix to generate fluorescent PIPES-Au NC doped silica nanoparticles. Sequential doping of the PIPES-Au NCs with tetraethylorthosilicate (TEOS) and 3-(aminopropyl)triethoxysilane (APTS) furnished a silica matrix, which effectively protected the PIPES-Au NCs during repeated washing with polar solvent and the composite of which exhibited enhanced emission.

  13. SANS study to probe nanoparticle dispersion in nanocomposite membranes of aromatic polyamide and functionalized silica nanoparticles.

    PubMed

    Jadav, Ghanshyam L; Aswal, Vinod K; Singh, Puyam S

    2010-11-01

    Silica nanoparticles produced from organically functionalized silicon alkoxide precursors were incorporated into polyamide film to produce a silica-polyamide nanocomposite membrane with enhanced properties. The dispersion of the silica nanoparticles in the nanocomposite membrane was characterized by performing small-angle neutron scattering (SANS) measurements on dilute reactant systems and dilute solution suspensions of the final product. Clear scattering of monodisperse spherical particles of 10-18 A R(g) were observed from dilute solutions of the initial reactant system. These silica nanoparticles initially reacted with diamine monomers of polyamide and subsequently were transformed into polyamide-coated silica nanoparticles; finally nanoparticle aggregates of 27-45 A R(g) were formed. The nanoparticle dispersion of the membrane as the nanosized aggregates is in corroboration with ring- or chain-like assemblies of the nanoparticles dispersed in the bulk polyamide phase as observed by transmission electron microscopy. It is demonstrated that dispersions of silica nanoparticles as the nanosized aggregates in the polyamide phase could be achieved in the nanocomposite membrane with a silica content up to about 2 wt.%. Nanocomposite membranes with higher silica loading approximately 10 wt.% lead to the formation of large aggregates of sizes over 100 A R(g) in addition to the nanosized aggregates.

  14. Silica coated noble metal nanoparticle hydrosols as supported catalyst precursors.

    PubMed

    Kong, Tung Shing Adam; Yu, Kai Man Kerry; Tsang, Shik Chi

    2006-04-01

    Synthesis of well-defined nanoparticles has been intensively pursued not only for their fundamental scientific interest, but also for many technological applications. One important development of the nanomaterial is in the area of chemical catalysis. We have now developed a new aqueous-based method for the synthesis of silica encapsulated noble metal nanoparticles in controlled dimensions. Thus, colloid stable silica encapsulated approximately 5 nm platinum nanoparticle is synthesized by a multi-step method. The thickness of the silica coating could be controlled using a different amount of silica precursor. These particles supported on a high surface area alumina are also demonstrated to display a superior hydrogenation activity and stability against metal sintering after thermal activation.

  15. Carbogenically coated silica nanoparticles and their forensic applications.

    PubMed

    Fernandes, D; Krysmann, M J; Kelarakis, A

    2016-07-01

    Carbogenically coated silica nanoparticles (C-SiO2) exhibit color-tunability and carry great promise for two important forensic applications. First, the C-SiO2 nanopowders are ideal for fingerprint development, yielding strong contrast against multicoloured and patterned backgrounds. Second, spontaneous nanoparticle aggregation leads to non-duplicable, inexpensive nanotags that can support sustainable technologies to combat counterfeiting.

  16. Protein adsorption enhanced radio-frequency heating of silica nanoparticles

    PubMed Central

    Wosik, Jarek; Pande, Rohit; Xie, Leiming; Ketharnath, Dhivya; Srinivasan, Srimeenakshi; Godin, Biana

    2013-01-01

    Measurements of specific-absorption-rate (SAR) of silica 30, 50, and 100 nm nanoparticles (NP) suspended in water were carried out at 30 MHz in 7 kV/m radio-frequency (rf) electric field. Size dependent, NP-suspension interface related heating of silica NP was observed. To investigate a possible mechanism of heating, bovine serum albumin was adsorbed on the surface of silica NPs in suspension. It resulted in significant enhancement of SAR when compared to bare silica NPs. A calorimetric and rf loss model was used to calculate effective conductivity of silica NP with/without adsorbed albumin as a function of silica size and albumin concentration. PMID:23964135

  17. NIR fluorescent silica nanoparticles as reporting labels in bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sydney

    2015-03-01

    The use of the NIR spectral region (650-900 nm) for bioanalytical and biomedical analyses is advantageous due to the inherently lower background interference in biological matrices and the high molar absorptivities of NIR chromophores. There are several different groups of NIR fluorescing dye are available for bioanalytical applications. One of these groups, NIR carbocyanines are increasingly used in analytical, bioanalytical and medical applications. These dyes can be used as reporter labels for sensitive bioanalytical use, such as immunochemistry. Due to the spectroscopic sensitivity of NIR carbocyanines for polarity changes in the microenvironment fluorescence quantum yield can vary significantly dependent on the microenvironment. NIR dyes can have relatively low fluorescent quantum yields as compared to visible fluorophores, especially in aqueous buffers but the lower quantum yield is compensated for by a much higher molar absorptivity. The fluorescence intensity of NIR reporting labels can significantly be increased by enclosing several dye molecules in silica nanoparticles. Incorporation of NIR dyes in silica nanoparticles creates a unique challenge as these dyes can be unstable under certain chemical conditions present during silica nanoparticles syntheses. In addition, self quenching may also become a problem for carbocyanines at higher a concentrations that typically found inside of NIR dye loaded silica nanoparticles. Dyes possessing high Stokes' shift can significantly reduce this problem. NIR carbocyanines are uniquely positioned for achieving this goal using a synthetic route that substitutes meso position halogens in NIR fluorescent carbocyanines with a linker containing amino moiety, which can also serve as a linker for covalently attaching the dye molecule to the nanoparticle backbone. The resulting silica nanoparticles can contain a large number of NIR dyes dependent on their size. For example some NIR fluorescent silica nanoparticle labels

  18. Surface treatment of silica nanoparticles for stable and charge-controlled colloidal silica

    PubMed Central

    Kim, Kyoung-Min; Kim, Hye Min; Lee, Won-Jae; Lee, Chang-Woo; Kim, Tae-il; Lee, Jong-Kwon; Jeong, Jayoung; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    An attempt was made to control the surface charge of colloidal silica nanoparticles with 20 nm and 100 nm diameters. Untreated silica nanoparticles were determined to be highly negatively charged and have stable hydrodynamic sizes in a wide pH range. To change the surface to a positively charged form, various coating agents, such as amine containing molecules, multivalent metal cation, or amino acids, were used to treat the colloidal silica nanoparticles. Molecules with chelating amine sites were determined to have high affinity with the silica surface to make agglomerations or gel-like networks. Amino acid coatings resulted in relatively stable silica colloids with a modified surface charge. Three amino acid moiety coatings (L-serine, L-histidine, and L-arginine) exhibited surface charge modifying efficacy of L-histidine > L-arginine > L-serine and hydrodynamic size preservation efficacy of L-serine > L-arginine > L-histidine. The time dependent change in L-arginine coated colloidal silica was investigated by measuring the pattern of the backscattered light in a Turbiscan™. The results indicated that both the 20 nm and 100 nm L-arginine coated silica samples were fairly stable in terms of colloidal homogeneity, showing only slight coalescence and sedimentation. PMID:25565824

  19. Composite Silica Aerogels Opacified with Titania

    NASA Technical Reports Server (NTRS)

    Paik, Jon-Ah; Sakamoto, Jeffrey; Jones, Steven; Fleurial, Jean-Pierre; DiStefano, Salvador; Nesmith, Bill

    2009-01-01

    A further improvement has been made to reduce the high-temperature thermal conductivities of the aerogel-matrix composite materials described in Improved Silica Aerogel Composite Materials (NPO-44287), NASA Tech Briefs, Vol. 32, No. 9 (September 2008), page 50. Because the contribution of infrared radiation to heat transfer increases sharply with temperature, the effective high-temperature thermal conductivity of a thermal-insulation material can be reduced by opacifying the material to reduce the radiative contribution. Therefore, the essence of the present improvement is to add an opacifying constituent material (specifically, TiO2 powder) to the aerogel-matrix composites.

  20. Surfactant-free small Ni nanoparticles trapped on silica nanoparticles prepared by pulsed laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Mafuné, Fumitaka; Okamoto, Takumi; Ito, Miho

    2014-01-01

    Small Ni nanoparticles supported on silica nanoparticles were formed by pulsed laser ablation in liquid. Water dispersing surfactant-free silica particles was used here as a solvent, and a bulk Ni metal plate as a target. The nanoparticles formed by laser ablation in water were readily stabilized by the silica particles, whereas Ni nanoparticles prepared in water without silica were found to be precipitated a few hours after aggregation into 5-30 nm particles. The nanoparticles were characterized by TEM, dark-field STEM and optical absorption spectroscopy, which indicated that small 1-3 nm Ni nanoparticles were adsorbed on the surface of silica.

  1. Rapid and mild purification method for nanoparticles from a dispersed solution using a monolithic silica disk.

    PubMed

    Itoh, Naoki; Santa, Tomofumi; Kato, Masaru

    2015-07-24

    A rapid and mild purification method for nanoparticles using the commercially available monolithic silica disk, MonoSpin(®), was developed. The nanoparticles were purified from a dispersed solution by filtration with the aid of centrifugation at 2290×g for 2min. The purification conditions were rapid, mild, and simple compared with those of the conventional purification methods such as ultracentrifugation, dialysis, size exclusion chromatography, and ultrafiltration. The method was shown to be applicable for the purification of various nanoparticles, regardless of their size (from 21 to 100nm), composition material (silica, polyethylene glycol, and pegylated liposome), and encapsulated molecule (rhodamine 110 and doxorubicin). It was shown that this method is applicable to the purification of a wide range of nanoparticles in many different fields.

  2. The use of silica nanoparticles for gas chromatographic separation.

    PubMed

    Na, Na; Cui, Xianglan; De Beer, Thomas; Liu, Tingting; Tang, Tingting; Sajid, Muhammad; Ouyang, Jin

    2011-07-15

    A new IL-dispersed silica nanoparticles (IL-SNs) capillary column, combining properties of silica nanoparticles and ionic liquid (IL), was used for gas chromatographic separation. By dispersing silica nanoparticles in a conventional IL of 1-butyl-3-methylimidazolium hexafluorophosphate ([BuMIm][BF6]), a layer of homogeneous interconnected particulate silica networks (thickness: 0.4-0.6 μm) was formed on the inner surface of a capillary column. This coating integrates advantages of silica nanoparticles (high surface area, high dispersed behaviour) and IL (extended liquid-state temperature range, chemical stability), hence increasing interactions between stationary phase and analytes. It was demonstrated that mixtures of a wide range of organic compounds including alcohols, esters, alkanes, aromatic compounds, as well as isomers and non-polar compounds can be well separated using an IL-SNs capillary column. Comparing to traditional support coated open tubular columns, the IL-SNs capillary column displays retention behaviors of separating both polar and non-polar compounds. The much thinner coating film of IL-SNs capillary column, compared to the coating film of SNs capillary column, decreases the resistance to mass transfer, resulting a good column efficiency of 3030 theoretical plates per meter for n-butanol (which is about 5 times higher than for the SNs capillary column). Furthermore, the IL-SNs capillary column decreases the IL retention selectivity dominated by IL structures, and has a higher coating value than neat IL stationary phase. Moreover, the preparation is simple as no modification of ILs or adoption of additional reagents is needed in pretreatments. This manuscript is the first report on the use of silica nanoparticles for gas chromatography, which would expand the applicability of silica nanoparticles in analytical chemistry.

  3. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties.

    PubMed

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Zhang, Shaowei

    2016-01-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties. PMID:26940294

  4. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties

    PubMed Central

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-gai; Wu, Xiaowen; Zhang, Shaowei

    2016-01-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties. PMID:26940294

  5. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties.

    PubMed

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Zhang, Shaowei

    2016-03-04

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties.

  6. Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Huang, Zhaohui; Huang, Juntong; Xu, Song; Fang, Minghao; Liu, Yan-Gai; Wu, Xiaowen; Zhang, Shaowei

    2016-03-01

    Uniform silica nanoparticles and jellyfish-like nanowires were synthesized by a chemical vapour deposition method on Si substrates treated without and with Ni(NO3)2, using silicon powder as the source material. Composition and structural characterization using field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and fourier-transform infrared spectroscopy showed that the as-prepared products were silica nanoparticles and nanowires which have amorphous structures. The form of nanoparticles should be related to gas-phase nucleation procedure. The growth of the nanowires was in accordance with vapour-liquid-solid mechanism, followed by Ostwald ripening to form the jellyfish-like morphology. Photoluminescence and cathodoluminescence measurements showed that the silica products excited by different light sources show different luminescence properties. The emission spectra of both silica nanoparticles and nanowires are due to the neutral oxygen vacancies (≡Si-Si≡). The as-synthesized silica with controlled morphology can find potential applications in future nanodevices with tailorable photoelectric properties.

  7. The controlled release of tilmicosin from silica nanoparticles.

    PubMed

    Song, Meirong; Li, Yanyan; Fai, Cailing; Cui, Shumin; Cui, Baoan

    2011-06-01

    The aim of this study was to use silica nanoparticles as the carrier for controlled release of tilmicosin. Tilmicosin was selected as a drug model molecule because it has a lengthy elimination half-life and a high concentration in milk after subcutaneous administration. Three samples of tilmicosin-loaded silica nanoparticles were prepared with different drug-loading weight. The drug-loading weight in three samples, as measured by thermal gravimetric analysis, was 29%, 42%, and 64%, respectively. With increased drug-loading weight, the average diameter of the drug-loaded silica nanoparticles was increased from 13.4 to 25.7 nm, and the zeta potential changed from-30.62 to-6.78 mV, indicating that the stability of the drug-loaded particles in the aqueous solution decreases as drug-loading weight increases. In vitro release studies in phosphate-buffered saline showed the sample with 29% drug loading had a slow and sustained drug release, reaching 44% after 72 h. The release rate rose with increased drug-loading weight; therefore, the release of tilmicosin from silica nanoparticles was well-controlled by adjusting the drug loading. Finally, kinetics analysis suggested that drug released from silica nanoparticles was mainly a diffusion-controlled process.

  8. Memory effect in composites of liquid crystal and silica aerosil

    SciTech Connect

    Relaix, Sabrina; Leheny, Robert L.; Reven, Linda; Sutton, Mark

    2012-02-07

    Aerosil silica nanoparticles dispersed in a liquid crystal (LC) possess the interesting property of keeping memory of an electric- or magnetic-field-induced orientation. Two types of memory have been identified: thermally erasable memory arising from the pinning of defect lines versus a 'permanent' memory where the orientation persists even after thermal cycling the samples up to the isotropic phase. To address the source of the latter type of memory, solid-state nuclear magnetic resonance spectroscopy and conventional x-ray diffraction (XRD) were first combined to characterize the LC orientational order as a function of multiple in-field temperature cycles. Microbeam XRD was then performed on aligned gels of different concentrations to gain knowledge of the structural properties at the origin of the memory effect. No detectable anisotropy of the gel or significant breaking of silica strands with heating ruled out the formation of an anisotropic silica network as the source of the permanent memory as previously proposed. Instead, support for a role of the surface memory effect, well known for planar substrates, in stabilizing the permanent memory was deduced from 'training' of the composites, that is, optimizing the orientational order through the thermal in-field cycling. The ability to train the composites is inversely proportional to the strength of the random-field disorder. The portion of thermally erasable memory also decreases as the silica density increases. We propose that the permanent memory originates from the surface memory effect operating at points of intersection in the silica network. These areas, where the LC is strongly confined with conflicted surface interactions, are trained to achieve an optimized orientation and subsequently act as sites from which the LC orientational order regrows after zero-field thermal cycling up to the isotropic phase.

  9. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the

  10. Mesoporous silica nanoparticles for biomedical and catalytical applications

    SciTech Connect

    Sun, Xiaoxing

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  11. Reactivity characteristics of nanoscale zerovalent iron--silica composites for trichloroethylene remediation.

    PubMed

    Zheng, Tonghua; Zhan, Jingjing; He, Jibao; Day, Christopher; Lu, Yunfeng; McPherson, Gary L; Piringer, Gerhard; John, Vijay T

    2008-06-15

    Spherical silica particles containing nanoscale zerovalent iron were synthesized through an aerosol-assisted process. These particles are effective for groundwater remediation, with the environmentally benign silica particles serving as effective carriers for nanoiron transport. Incorporation of iron into porous sub-micrometer silica particles protects ferromagnetic iron nanoparticles from aggregation and may increase their subsurface mobility. Additionally, the presence of surface silanol groups on silica particles allows control of surface properties via silanol modification using organic functional groups. Aerosolized silica particles with functional alkyl moieties, such as ethyl groups on the surface, clearly adsorb solubilized trichloroethylene (TCE) in water. These materials may therefore act as adsorbents which have coupled reactivity characteristics. The nanoscale iron/silica composite particles with controlled surface properties have the potential to be efficiently applied for in situ source depletion and in the design of permeable reactive barriers.

  12. Robust antireflection coatings By UV cross-linking of silica nanoparticles and diazo-resin polycation

    NASA Astrophysics Data System (ADS)

    Ridley, Jason I.; Heflin, James R.; Ritter, Alfred L.

    2007-09-01

    Antireflection coatings have been fabricated by self-assembly using silica nanoparticles. The ionic self-assembled multilayer (ISAM) films are tightly packed and homogeneous. While the geometric properties of a matrix of spherical particles with corresponding void interstices are highly suitable to meet the conditions for minimal reflectivity, it is also a cause for the lack of cohesion within the constituent body, as well as to the substrate surface. This study investigates methods for improving the interconnectivity of the nanoparticle structure. One such method involves UV curing of diazo-resin (DAR)/silica nanoparticle films, thereby converting the ionic interaction into a stronger covalent bond. Factorial analysis and response surface methods are incorporated to determine factors that affect film properties, and to optimize their optical and adhesive capabilities. The second study looks at the adhesive strength of composite multilayer films. Films are fabricated with silica nanoparticles and poly(allylamine hydrochloride) (PAH), and dipped into aqueous solutions of PAH and poly(methacrylic acid, sodium salt) (PMA) to improve cohesion of silica nanoparticles in the matrix, as well as binding strength to the substrate surface. The results of the two studies are discussed.

  13. Improved Silica Aerogel Composite Materials

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  14. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei

    2016-11-01

    We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  15. Silica-based mesoporous nanoparticles for controlled drug delivery

    PubMed Central

    Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A

    2013-01-01

    Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012

  16. Direct formation of S-nitroso silica nanoparticles from a single silica source.

    PubMed

    Chou, Hung-Chang; Chiu, Shih-Jiuan; Liu, Ying-Ling; Hu, Teh-Min

    2014-01-28

    Nitric oxide (NO) is a ubiquitous molecule in the body. Because of its multiple pathophysiologic roles, the potential for treating various diseases by the exogenous administration of NO has been under intensive investigation. However, the unstable, radical nature of NO poses a major challenge to the effective delivery of NO. Previously, silica nanoparticles synthesized by the traditional method have been developed into NO-carrying systems. In the present study, for the first time NO-carrying silica nanoparticles were prepared from a single silica precursor using a simple nanoprecipitation method. (3-Mercaptopropyl)-trimethoxysilane (MPTMS) was used as the sole silane source, which was subjected to acid-catalyzed S-nitrosation and condensation reactions in a one-pot organic phase. S-Nitroso silica nanoparticles (SNO-SiNPs) were then produced by injecting a smaller quantity of the organic phase into a larger amount of water without surfactants. Various preparation parameters were tested to obtain optimized conditions. Moreover, a phase diagram demonstrating the ouzo effect was constructed. The prepared SNO-SiNPs were spherical particles with a tunable size in the range of 100-400 nm. The nanoparticles in aqueous dispersions exhibited high colloid stability, possibly resulting from highly negatively charged surfaces. The result of solid-state (29)Si NMR shows the predominance of T(2) and T(3) silicon structures, suggesting that nanoparticles were formed from polycondensed silica species. In conclusion, NO-loaded silica nanoparticles have been directly prepared from a single silane precursor using a surfactant-free, low-energy, one-step nanoprecipitation approach. The method precludes the need for the initial formation of bare particles and subsequent functionalization steps. PMID:24410024

  17. Incorporation of Ln-Doped LaPO4 Nanocrystals as Luminescent Markers in Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    van Hest, Jacobine J. H. A.; Blab, Gerhard A.; Gerritsen, Hans C.; Donega, Celso de Mello; Meijerink, Andries

    2016-05-01

    Lanthanide ions are promising for the labeling of silica nanoparticles with a specific luminescent fingerprint due to their sharp line emission at characteristic wavelengths. With the increasing use of silica nanoparticles in consumer products, it is important to label silica nanoparticles in order to trace the biodistribution, both in the environment and living organisms.

  18. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    PubMed

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules.

  19. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    PubMed

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. PMID:20347275

  20. Magnetic solid phase adsorption, preconcentration and determination of methyl orange in water samples using silica coated magnetic nanoparticles and central composite design

    NASA Astrophysics Data System (ADS)

    Shariati-Rad, Masoud; Irandoust, Mohsen; Amri, Somayyeh; Feyzi, Mostafa; Ja'fari, Fattaneh

    2014-10-01

    This work evaluates the efficiency of SiO2-coated Fe3O4 magnetic nanoparticles (SMNPs) for adsorption of methyl orange (MO). Adsorption of MO on the studied nanoparticle was developed for removal, preconcentration and spectrophotometric determination of trace amounts of it. To find the optimum adsorption conditions, the influence of pH, dosage of the adsorbent and contact time was explored by central composite design. In pH 2.66, with 10.0 mg of the SMNPs and time of 30.0 min, the maximum adsorption of MO was obtained. The experimental adsorption data were analyzed by the Langmuir and Freundlich adsorption isotherms. Both models were fitted to the equilibrium data and the maximum monolayer capacity q max of 53.19 mg g-1 was obtained for MO. Moreover, the sorption kinetics was fitted well to the pseudo-second-order rate equation model. The results showed that desorption efficiencies higher than 99 % can be achieved in a short contact time and in one step elution by 2.0 mL of 0.1 mol L-1 NaOH. The SMNPs were washed with deionized water and reused for two successive removal processes with removal efficiencies more than 90 %. The calibration curve was linear in the range of 10.0-120.0 ng mL-1 for MO. A preconcentration factor of about 45 % was achieved by the method.

  1. Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: syntheses and characterizations.

    PubMed

    Vitorge, Elsa; Szenknect, Stéphanie; Martins, Jean M F; Barthès, Véronique; Auger, Aurélien; Renard, Oliver; Gaudet, Jean-Paul

    2014-01-01

    The synthesis and the characterization of three kinds of labeled silica nanoparticles were performed. Three different labeling strategies were investigated: fluorescent organic molecule (FITC) embedded in silica matrix, heavy metal core (Ag(0)) and radioactive core ((110m)Ag) surrounded by a silica shell. The main properties and the suitability of each kind of labeled nanoparticle in terms of size, surface properties, stability, detection limits, and cost were determined and compared regarding its use for transport studies. Fluorescent labeling was found the most convenient and the cheapest, but the best detection limits were reached with chemical (Ag(0)) and radio-labeled ((110m)Ag) nanoparticles, which also allowed nondestructive quantifications. This work showed that the choice of labeled nanoparticles as surrogates of natural colloids or manufactured nanoparticles strongly depends on the experimental conditions, especially the concentration and amount required, the composition of the effluent, and the timescale of the experiment.

  2. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing. PMID:26781542

  3. Acetylcholinesterase immobilized onto PEI-coated silica nanoparticles.

    PubMed

    Tumturk, Hayrettin; Yüksekdag, Hazer

    2016-01-01

    Polyethyleneimine (PEI) coated-silica nanoparticles were prepared by the Stöber method. The formation and the structure of the nanoparticles were characterized by ATR-FT-IR spectroscopy and transmission electron microscopy (TEM). TEM images of the silica and PEI-coated nanoparticles revealed that they were well dispersed and that there was no agglomeration. The acetylcholineesterase enzyme was immobilized onto these nanoparticles. The effects of pH and temperature on the storage stability of the free and immobilized enzyme were investigated. The optimum pHs for free and immobilized enzymes were determined as 7.0 and 8.0, respectively. The optimum temperatures for free and immobilized enzymes were found to be 30.0 and 35.0°C, respectively. The maximum reaction rate (Vmax) and the Michaelis-Menten constant (Km) were investigated for the free and immobilized enzyme. The storage stability of acetylcholinesterase was increased when immobilized onto the novel PEI-coated silica nanoparticles. The reuse numbers of immobilized enzyme were also studied. These hybrid nanoparticles are desirable as carriers for biomedical applications.

  4. Interaction of surface-modified silica nanoparticles with clay minerals

    NASA Astrophysics Data System (ADS)

    Omurlu, Cigdem; Pham, H.; Nguyen, Q. P.

    2016-05-01

    In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate), cationic (quaternary ammonium (quat)), and nonionic (polyethylene glycol (PEG)) surfactant. We employed ultraviolet-visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl) and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  5. Modification of Microfluidic Paper-Based Devices with Silica Nanoparticles

    PubMed Central

    Evans, Elizabeth; Gabriel, Ellen Flávia Moreira; Benavidez, Tomás E.; Coltro, Wendell Karlos Tomazelli; Garcia, Carlos D.

    2014-01-01

    This paper describes a silica nanoparticle-modified microfluidic paper-based analytical device (μPAD) with improved color intensity and uniformity for three different enzymatic reactions with clinical relevance (lactate, glucose, and glutamate). The μPADs were produced on Whatman grade 1 filter paper and using a CO2 laser engraver. Silica nanoparticles modified with 3-aminopropyltriethoxysilane (APTES) were then added to the paper devices to facilitate the adsorption of selected enzymes and prevent the washing away effect that creates color gradients in the colorimetric measurements. Here we show three different enzymatic assays for compounds. According to the results herein described, the addition of silica nanoparticles yielded to significant improvements in color intensity and uniformity. The resulting μPADs allowed for the detection of the three analytes in clinically-relevant concentration ranges with limits of detection (LOD) of 0.63 mM, 0.50 mM, and 0.25 mM for lactate, glucose, and glutamate, respectively. An example of an analytical application has been demonstrated for the semi-quantitative detection of all three analytes in artificial urine. The results demonstrate the potential of silica nanoparticles to avoid the washing away effect and improve the color uniformity and intensity in colorimetric bioassays performed on μPADs. PMID:25204446

  6. Hierarchical mesoporous silica nanoparticles as superb light scattering materials.

    PubMed

    Ryu, Jaehoon; Yun, Juyoung; Lee, Jungsup; Lee, Kisu; Jang, Jyongsik

    2016-02-01

    A novel approach to enhance the light scattering effect was explored by applying hierarchical silica nanoparticles in DSSCs as scattering layers. The WSN-incorporated cells showed a PCE value of 9.53% and a PCE enhancement of 30.19% compared with those of the reference cells. PMID:26699659

  7. Fibrous composites comprising carbon nanotubes and silica

    DOEpatents

    Peng, Huisheng; Zhu, Yuntian Theodore; Peterson, Dean E.; Jia, Quanxi

    2011-10-11

    Fibrous composite comprising a plurality of carbon nanotubes; and a silica-containing moiety having one of the structures: (SiO).sub.3Si--(CH.sub.2).sub.n--NR.sub.1R.sub.2) or (SiO).sub.3Si--(CH.sub.2).sub.n--NCO; where n is from 1 to 6, and R.sub.1 and R.sub.2 are each independently H, CH.sub.3, or C.sub.2H.sub.5.

  8. Effect of polymer grafting density on silica nanoparticle toxicity.

    PubMed

    Lin, I-Chun; Liang, Mingtao; Liu, Tzu-Yu; Jia, Zhongfan; Monteiro, Michael J; Toth, Istvan

    2012-12-01

    Nanoparticles are commonly engineered with a layer of polymers on the surface used to increase their stability and biocompatibility, as well as providing multifunctional properties. Formulating the nanoparticle size and surface properties with polymers directly affects the way these nanoparticles interact with a biological system. Many previous studies have emphasized the importance of nanoparticle size and surface charge in affecting their toxicity in cells. However, the potential weakness in many of these studies is that the polymer grafting densities on nanoparticles have been disregarded during toxicity evaluation. In the current study, we hypothesized that the density of polymers on nanoparticles will affect their toxicity to cells, especially for nanoparticle cores that are toxic themselves. To address this issue, we synthesized a range of RAFT (reversible addition fragmentation chain transfer) polymers bearing different surface charges and coated them onto silica nanoparticles (SiNPs) with different grafting densities. The in vitro cytotoxicity of these SiNPs was evaluated using the MTT (thiazolyl blue tetrazolium bromide) assay with Caco-2 cells. We found that neutral (biocompatible) polymers with a high grafting density on SiNPs were effective at protecting the cells from the toxicity of the silica core. High cellular toxicity was only observed for cationic polymer-SiNPs, while all other neutral and anionic polymer-SiNPs induced limited cellular toxicity. In contrast, the toxic effects induced by low density polymer-coated SiNPs were mostly attributed to the silica core, while the polymer coatings had a limited contribution. These findings are important indicators for the future evaluation of the toxicological profile of polymer-coated nanoparticles.

  9. Large magnetocaloric effect in fine Gd2O3 nanoparticles embedded in porous silica matrix

    NASA Astrophysics Data System (ADS)

    ZeleÅáková, A.; Hrubovčák, P.; Kapusta, O.; ZeleÅák, V.; Franco, V.

    2016-09-01

    The magnetocaloric properties of a composite material consisting of isolated Gd2O3 nanoparticles with a diameter of 6-8 nm embedded in the pores of a mesoporous silica matrix have been studied. The fascinating nanostructure and composition were properly characterized by small angle X-ray scattering, X-ray absorption near edge structure, and TEM. Almost ideal paramagnetic behavior of the material was observed in the temperature range of 1.8-300 K. When compared to various nanosystems, the presented composite exhibits an extraordinarily large magnetic entropy change of 40 J/kg K for a field variation of 0-5 T at cryogenic temperature (3 K). Considering only the mass of the Gd2O3 nanoparticle fraction, this corresponds to 120 J/kg K. Calculated refrigerant capacities are 100 J/kg and 400 J/kg for the composite and nanoparticles, respectively. Our findings suggest that the combination of the unique porous structure of amorphous silica with fine gadolinium oxide nanoparticles and high value of magnetic entropy change enables to extend the application of the Gd2O3@SiO2 composite, to cryomagnetic refrigeration. In addition, the characteristics of the thermomagnetic behavior have been studied using the scaling analysis of the magnetic entropy change.

  10. Thermally Stable Nanocatalyst for High Temperature Reactions: Pt-Mesoporous Silica Core-Shell Nanoparticles

    SciTech Connect

    Joo, Sang Hoon; Park, J.Y.; Tsung, C.-K.; Yamada, Y.; Yang, P.; Somorjai, G.A.

    2008-10-25

    Recent advances in colloidal synthesis enabled the precise control of size, shape and composition of catalytic metal nanoparticles, allowing their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here we report the design of a high-temperature stable model catalytic system that consists of Pt metal core coated with a mesoporous silica shell (Pt{at}mSiO{sub 2}). While inorganic silica shells encaged the Pt cores up to 750 C in air, the mesopores directly accessible to Pt cores made the Pt{at}mSiO{sub 2} nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt{at}mSiO{sub 2} nanoparticles permitted high-temperature CO oxidation studies, including ignition behavior, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt{at}mSiO{sub 2} nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept employed in the Pt{at}mSiO{sub 2} core-shell catalyst can be extended to other metal-metal oxide compositions.

  11. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    SciTech Connect

    Khezri, Khezrollah; Roghani-Mamaqani, Hossein

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  12. Fluorescent silica nanoparticles containing covalently bound dyes for reporter, marker, and sensor applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sidney

    2016-03-01

    Silica nanoparticles have proven to be useful in many bioanalytical and medical applications and have been used in numerous applications during the last decade. Combining the properties of silica nanoparticles and fluorescent dyes that may be used as chemical probes or labels can be relatively easy by simply soaking porous silica nanoparticles in a solution of the dye of interest. Under proper conditions the entrapped dye can stay inside the silica nanoparticle for several hours resulting in a useful probe. In spite of the relative durability of these probes, leaching can still occur. A much better approach is to synthesize silica nanoparticles that have the fluorescent dye covalently attached to the backbone structure of the silica nanoparticle. This can be achieved by using appropriately modified tetraethyl orthosilicate (TEOS) analogues during the silica nanoparticle synthesis. The molar ratio of TEOS and modified TEOS will determine the fluorescent dye load in the silica nanoparticle. Dependent on the chemical stability of the reporting dye either reverse micellar (RM) or Stöber method can be used for silica nanoparticle synthesis. If dye stability allows RM procedure is preferred as it results in a much easier control of the silica nanoparticle reaction itself. Also controlling the size and uniformity of the silica nanoparticles are much easier using RM method. Dependent on the functional groups present in the reporting dye used in preparation of the modified TEOS, the silica nanoparticles can be utilized in many applications such as pH sensor, metal ion sensors, labels, etc. In addition surface activated silica nanoparticles with reactive moieties are also excellent reporters or they can be used as bright fluorescent labels. Many different fluorescent dyes can be used to synthesize silica nanoparticles including visible and NIR dyes. Several bioanalytical applications are discussed including studying amoeba phagocytosis.

  13. Dye-doped silica-based nanoparticles for bioapplications

    NASA Astrophysics Data System (ADS)

    Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Tan Pham, Minh; Van Nguyen, Thi; Trang Tran, Thu; Chu, Viet Ha; Thuan Tong, Kim; Thuy Tran, Thanh; Le, Thi Thanh Xuan; Brochon, Jean-Claude; Quy Nguyen, Thi; Nhung Hoang, My; Nguyen Duong, Cao; Thuy Nguyen, Thi; Hoang, Anh Tuan; Hoa Nguyen, Phuong

    2013-12-01

    This paper presents our recent research results on synthesis and bioapplications of dye-doped silica-based nanoparticles. The dye-doped water soluble organically modified silicate (ORMOSIL) nanoparticles (NPs) with the size of 15-100 nm were synthesized by modified Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). Because thousands of fluorescent dye molecules are encapsulated in the silica-based matrix, the dye-doped nanoparticles are extremely bright and photostable. Their surfaces were modified with bovine serum albumin (BSA) and biocompatible chemical reagents. The highly intensive luminescent nanoparticles were combined with specific bacterial and breast cancer antigen antibodies. The antibody-conjugated nanoparticles can identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody-antigen interaction and recognition. A highly sensitive breast cancer cell detection has been achieved with the anti-HER2 monoclonal antibody-nanoparticles complex. These results demonstrate the potential to apply these fluorescent nanoparticles in various biodetection systems.

  14. Self-Assembled Silica Nano-Composite Polymer Electrolytes: Synthesis, Rheology & Electrochemistry

    SciTech Connect

    Khan, Saad A.: Fedkiw Peter S.; Baker, Gregory L.

    2007-01-24

    The ultimate objectives of this research are to understand the principles underpinning nano-composite polymer electrolytes (CPEs) and facilitate development of novel CPEs that are low-cost, have high conductivities, large Li+ transference numbers, improved electrolyte-electrode interfacial stability, yield long cycle life, exhibit mechanical stability and are easily processable. Our approach is to use nanoparticulate silica fillers to formulate novel composite electrolytes consisting of surface-modified fumed silica nano-particles in polyethylene oxides (PEO) in the presence of lithium salts. We intend to design single-ion conducting silica nanoparticles which provide CPEs with high Li+ transference numbers. We also will develop low-Mw (molecular weight), high-Mw and crosslinked PEO electrolytes with tunable properties in terms of conductivity, transference number, interfacial stability, processability and mechanical strength

  15. Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles.

    PubMed

    El Sayed, Sameh; Pascual, Lluı́s; Licchelli, Maurizio; Martínez-Máñez, Ramón; Gil, Salvador; Costero, Ana M; Sancenón, Félix

    2016-06-15

    Silica nanoparticles functionalized with thiol reactive units and bulky polar polyamines were used for the selective colorimetric detection of formaldehyde. The reaction of thiols groups in the nanoparticles surface with a squaraine dye resulted in loss of the π-conjugation of the chromophores, and the subsequent bleaching of the solution. However, when formaldehyde was present in the suspension, the thiol-squaraine reaction was inhibited and a chromogenic response was observed. A selective response to formaldehyde was observed only when the thiol and polyamine groups were anchored to the silica surface. The observed selective response was ascribed to the fact that bulky polyamines generate a highly polar environment around thiols, which were only able to react with the small and polar formaldehyde, but not with other aldehydes. The sensing nanoparticles showed a limit of detection (LOD) for formaldehyde of 36 ppb in water. PMID:27250594

  16. Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles.

    PubMed

    El Sayed, Sameh; Pascual, Lluı́s; Licchelli, Maurizio; Martínez-Máñez, Ramón; Gil, Salvador; Costero, Ana M; Sancenón, Félix

    2016-06-15

    Silica nanoparticles functionalized with thiol reactive units and bulky polar polyamines were used for the selective colorimetric detection of formaldehyde. The reaction of thiols groups in the nanoparticles surface with a squaraine dye resulted in loss of the π-conjugation of the chromophores, and the subsequent bleaching of the solution. However, when formaldehyde was present in the suspension, the thiol-squaraine reaction was inhibited and a chromogenic response was observed. A selective response to formaldehyde was observed only when the thiol and polyamine groups were anchored to the silica surface. The observed selective response was ascribed to the fact that bulky polyamines generate a highly polar environment around thiols, which were only able to react with the small and polar formaldehyde, but not with other aldehydes. The sensing nanoparticles showed a limit of detection (LOD) for formaldehyde of 36 ppb in water.

  17. Thrombin-Responsive Gated Silica Mesoporous Nanoparticles As Coagulation Regulators.

    PubMed

    Bhat, Ravishankar; Ribes, Àngela; Mas, Núria; Aznar, Elena; Sancenón, Félix; Marcos, M Dolores; Murguía, Jose R; Venkataraman, Abbaraju; Martínez-Máñez, Ramón

    2016-02-01

    The possibility of achieving sophisticated actions in complex biological environments using gated nanoparticles is an exciting prospect with much potential. We herein describe new gated mesoporous silica nanoparticles (MSN) loaded with an anticoagulant drug and capped with a peptide containing a thrombin-specific cleavage site. When the coagulation cascade was triggered, active thrombin degraded the capping peptidic sequence and induced the release of anticoagulant drugs to delay the clotting process. The thrombin-dependent response was assessed and a significant increase in coagulation time in plasma from 2.6 min to 5 min was found. This work broadens the application of gated silica nanoparticles and demonstrates their ability to act as controllers in a complex scenario such as hemostasis. PMID:26794474

  18. Passive mass transport for direct and quantitative SERS detection using purified silica encapsulated metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Shrestha, Binaya Kumar

    This thesis focuses on understanding implications of nanomaterial quality control and mass transport through internally etched silica coated nanoparticles for direct and quantitative molecular detection using surface enhanced Raman scattering (SERS). Prior to use, bare nanoparticles (partially or uncoated with silica) are removal using column chromatography to improve the quality of these nanomaterials and their SERS reproducibility. Separation of silica coated nanoparticles with two different diameters is achieved using Surfactant-free size exclusion chromatography with modest fractionation. Next, selective molecular transport is modeled and monitored using SERS and evaluated as a function of solution ionic strength, pH, and polarity. Molecular detection is achieved when the analytes first partition through the silica membrane then interact with the metal surface at short distances (i.e., less than 2 nm). The SERS intensities of unique molecular vibrational modes for a given molecule increases as the number of molecules that bind to the metal surface increases and are enhanced via both chemical and electromagnetic enhancement mechanisms as long as the vibrational mode has a component of polarizability tensor along the surface normal. SERS signals increase linearly with molecular concentration until the three-dimensional SERS-active volume is saturated with molecules. Implications of molecular orientation as well as surface selection rules on SERS intensities of molecular vibrational modes are studied to improve quantitative and reproducible SERS detection using internally etched Ag Au SiO2 nanoparticles. Using the unique vibrational modes, SERS intensities for p-aminothiophenol as a function of metal core compositions and plasmonics are studied. By understanding molecular transport mechanisms through internally etched silica matrices coated on metal nanoparticles, important experimental and materials design parameters are learned, which can be subsequently applied

  19. Diatomite silica nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  20. Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere.

    PubMed

    Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan

    2016-02-01

    This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used. PMID:27433652

  1. Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere.

    PubMed

    Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan

    2016-02-01

    This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used.

  2. Mesoporous Silica Nanoparticles and Films for Cargo Delivery

    NASA Astrophysics Data System (ADS)

    Guardado Alvarez, Tania Maria

    Mesoporous silica materials are well known materials that can range from films to nanoparticles. Mesoporous silica nanoparticles (MSNs) and mesoporous silica films have been of increasing interest among the scientific community for its use in cargo delivery. Silica provides ease of functionalization, a robust support and biocompatibility. Several methods have been used in order to give the mesoporous silica nanomaterials different qualities that render them a useful material with different characteristics. Among these methods is surface modification by taking advantage of the OH groups on the surface. When a molecule attached to the surface can act as a molecular machine it transforms the nanomaterial to act as delivery system that can be activated upon command. The work covered in this thesis focuses on the development and synthesis of different mesoporous silica materials for the purpose of trapping and releasing cargo molecules. Chapter 2 focuses in the photoactivation of "snap-top" stoppers over the pore openings of mesoporous silica nanoparticles that releases intact cargo molecules from the pores. The on-command release can be stimulated by either one UV photon or two coherent near-IR photons. Two-photon activation is particularly desirable for use in biological systems because it enables good tissue penetration and precise spatial control. Chapter 3 focuses on the design and synthesis of a nano-container consisting of mesoporous silica nanoparticles with the pore openings covered by "snap-top" caps that are opened by near-IR light. A photo transducer molecule that is a reducing agent in an excited electronic state is covalently attached to the system. Near IR two-photon excitation causes intermolecular electron transfer that reduces a disulfide bond holding the cap in place, thus allowing the cargo molecules to escape. The operation of the "snap-top" release mechanism by both one- and two photon is described. This system presents a proof of concept of a near

  3. Core-Shell Composite Nanoparticles: Synthesis, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Sanyal, Sriya

    Nanoparticles are ubiquitous in various fields due to their unique properties not seen in similar bulk materials. Among them, core-shell composite nanoparticles are an important class of materials which are attractive for their applications in catalysis, sensing, electromagnetic shielding, drug delivery, and environmental remediation. This dissertation focuses on the study of core-shell type of nanoparticles where a polymer serves as the core and inorganic nanoparticles are the shell. This is an interesting class of supramolecular building blocks and can "exhibit unusual, possibly unique, properties which cannot be obtained simply by co-mixing polymer and inorganic particles". The one-step Pickering emulsion polymerization method was successfully developed and applied to synthesize polystyrene-silica core-shell composite particles. Possible mechanisms of the Pickering emulsion polymerization were also explored. The silica nanoparticles were thermodynamically favorable to self-assemble at liquid-liquid interfaces at the initial stage of polymerization and remained at the interface to finally form the shells of the composite particles. More importantly, Pickering emulsion polymerization was employed to synthesize polystyrene/poly(N-isopropylacrylamide) (PNIPAAm)-silica core-shell nanoparticles with N-isopropylacrylamide incorporated into the core as a co-monomer. The composite nanoparticles were temperature sensitive and could be up-taken by human prostate cancer cells and demonstrated effectiveness in drug delivery and cancer therapy. Similarly, by incorporating poly-2-(N,N)-dimethylamino)ethyl methacrylate (PDMA) into the core, pH sensitive core-shell composite nanoparticles were synthesized and applied as effective carriers to release a rheological modifier upon a pH change. Finally, the research focuses on facile approaches to engineer the transition of the temperature-sensitive particles and develop composite core-shell nanoparticles with a metallic shell.

  4. Mesoporous silica nanoparticles in target drug delivery system: A review

    PubMed Central

    Bharti, Charu; Nagaich, Upendra; Pal, Ashok Kumar; Gulati, Neha

    2015-01-01

    Due to lack of specification and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the field of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical field. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields. PMID:26258053

  5. Functioning of nanovalves on polymer coated mesoporous silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Juyao; Xue, Min; Zink, Jeffrey I.

    2013-10-01

    Nanomachines activated by a pH change can be combined with polymer coatings on mesoporous silica nanoparticles to produce a new generation of nanoparticles for drug delivery that exhibits properties of both components. The nanovalves can trap cargos inside the mesoporous silica nanoparticles without premature release and only respond to specific stimuli, resulting in a high local concentration of drugs at the site of release. The polymer surface coatings can increase the cellular uptake, avoid the reticuloendothelial uptake, provide protected space for storing siRNA, and enhance the biodistribution of nanoparticles. Two nanovalve-polymer systems are designed and their successful assembly is confirmed by solid state NMR and thermogravimetric analysis. The fluorescence spectroscopy results demonstrate that the controlled release functions of the nanomachines in both of the systems are not hindered by the polymer surface coatings. These new multifunctional nanoparticles combining stimulated molecule release together with the functionality provided by the polymers produce enhanced biological properties and multi-task drug delivery applications.Nanomachines activated by a pH change can be combined with polymer coatings on mesoporous silica nanoparticles to produce a new generation of nanoparticles for drug delivery that exhibits properties of both components. The nanovalves can trap cargos inside the mesoporous silica nanoparticles without premature release and only respond to specific stimuli, resulting in a high local concentration of drugs at the site of release. The polymer surface coatings can increase the cellular uptake, avoid the reticuloendothelial uptake, provide protected space for storing siRNA, and enhance the biodistribution of nanoparticles. Two nanovalve-polymer systems are designed and their successful assembly is confirmed by solid state NMR and thermogravimetric analysis. The fluorescence spectroscopy results demonstrate that the controlled release

  6. Action of colloidal silica films on different nano-composites

    NASA Astrophysics Data System (ADS)

    Abdalla, S.; Al-Marzouki, F.; Obaid, A.; Gamal, S.

    Nano-composite films have been the subject of extensive work to develop the energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nano-particles size, and film morphology drastically affect the electrostatic efficiency of the dielectric material that form an insulating film between conductive electrodes of a capacitor. This in turn affects the energy storage performance of the capacitor. In the present work, we have studied the dielectric properties of 4 high pure amorphous polymer films: polymethylmethacrylate (PMMA), polystyrene, polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers has revealed that the higher break down performance is a character of polyimide PI and PMMA. Also, our experimental data shows that adding colloidal silica to PMMA and PI leads to a net decrease in the dielectric properties compared to the pure polymer.

  7. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    PubMed

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  8. Surfactant-free synthesis of mesoporous and hollow silica nanoparticles with an inorganic template.

    PubMed

    Baù, Luca; Bártová, Barbora; Arduini, Maria; Mancin, Fabrizio

    2009-12-28

    A surfactant-free synthesis of mesoporous and hollow silica nanoparticles is reported in which boron acts as the templating agent. Using such a simple and mild procedure as a treatment with water, the boron-rich phase is selectively removed, affording mesoporous pure silica nanoparticles with wormhole-like pores or, depending on the synthetic conditions, silica nanoshells.

  9. Copper oxide and selenide nanoparticles embedded into sol-gel-derived silica glasses doped with europium

    NASA Astrophysics Data System (ADS)

    Gurin, Valerij S.; Yumashev, Konstantin V.; Prokoshin, P. V.; Zolotovskaya, S. A.; Alexeenko, A. A.

    2002-11-01

    The silica sol-gel derived glasses co-doped with CuxO and CuxSe nanoparticles and Eu3+ ions have been fabricated. The analysis of luminescence spectra of a series of glasses with different composition allows us to suppose the direct energy transfer between copper oxide nanoparticle and Eu3+ ion. A luminescence signal of europium ions occurs as the result of excitation of the complex active centres (SiO2:Cu2O:Eu3+) in the absorption range of copper oxide.

  10. Luminescent Silica Nanoparticles Featuring Collective Processes for Optical Imaging.

    PubMed

    Rampazzo, Enrico; Prodi, Luca; Petrizza, Luca; Zaccheroni, Nelsi

    2016-01-01

    The field of nanoparticles has successfully merged with imaging to optimize contrast agents for many detection techniques. This combination has yielded highly positive results, especially in optical and magnetic imaging, leading to diagnostic methods that are now close to clinical use. Biological sciences have been taking advantage of luminescent labels for many years and the development of luminescent nanoprobes has helped definitively in making the crucial step forward in in vivo applications. To this end, suitable probes should present excitation and emission within the NIR region where tissues have minimal absorbance. Among several nanomaterials engineered with this aim, including noble metal, lanthanide, and carbon nanoparticles and quantum dots, we have focused our attention here on luminescent silica nanoparticles. Many interesting results have already been obtained with nanoparticles containing only one kind of photophysically active moiety. However, the presence of different emitting species in a single nanoparticle can lead to diverse properties including cooperative behaviours. We present here the state of the art in the field of silica luminescent nanoparticles exploiting collective processes to obtain ultra-bright units suitable as contrast agents in optical imaging and optical sensing and for other high sensitivity applications.

  11. Evaluation of silica nanoparticle binding to major human blood proteins

    NASA Astrophysics Data System (ADS)

    Hata, Katsutomo; Higashisaka, Kazuma; Nagano, Kazuya; Mukai, Yohei; Kamada, Haruhiko; Tsunoda, Shin-ichi; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-12-01

    Nanomaterials are used for various biomedical applications because they are often more effective than conventional materials. Recently, however, it has become clear that the protein corona that forms on the surface of nanomaterials when they make contact with biological fluids, such as blood, influences the pharmacokinetics and biological responses induced by the nanomaterials. Therefore, when evaluating nanomaterial safety and efficacy, it is important to analyze the interaction between nanomaterials and proteins in biological fluids and to evaluate the effects of the protein corona. Here, we evaluated the interaction of silica nanoparticles, a commonly used nanomaterial, with the human blood proteins albumin, transferrin, fibrinogen, and IgG. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the amount of albumin, transferrin, and IgG binding to the silica particles increased as the particle size decreased under conditions where the silica particle mass remained the same. However, under conditions in which the specific surface area remained constant, there were no differences in the binding of human plasma proteins to the silica particles tested, suggesting that the binding of silica particles with human plasma proteins is dependent on the specific surface area of the silica particles. Furthermore, the amount of albumin, transferrin, and IgG binding to silica nanoparticles with a diameter of 70 nm (nSP70) and a functional amino group was lower than that with unmodified nSP70, although there was no difference in the binding between nSP70 with the surface modification of a carboxyl functional group and nSP70. These results suggest that the characteristics of nanomaterials are important for binding with human blood proteins; this information may contribute to the development of safe and effective nanomaterials.

  12. Magnetic heating of silica-coated manganese ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Iqbal, Yousaf; Bae, Hongsub; Rhee, Ilsu; Hong, Sungwook

    2016-07-01

    Manganese ferrite nanoparticles were synthesized using the reverse micelle method; these particles were then coated with silica. The silica-coated nanoparticles were spherical in shape, with an average diameter of 14 nm. The inverse spinel crystalline structure was observed through X-ray diffraction patterns. The coating status of silica on the surface of the nanoparticles was confirmed with a Fourier transform infrared spectrometer. The superparamagnetic properties were revealed by the zero coercive force in the hysteresis curve. Controllable heating at a fixed temperature of 42 °C was achieved by changing either the concentration of nanoparticles in the aqueous solution or the intensity of the alternating magnetic field. We found that at a fixed field strength of 5.5 kA/m, the 2.6 mg/ml sample showed a saturation temperature of 42 °C for magnetic hyperthermia. On the other hand, at a fixed concentration of 3.6 mg/ml, a field intensity of 4.57 kA/m satisfied the required temperature of 42 °C.

  13. Effect of silica nanoparticles on microbial biomass and silica availability in maize rhizosphere.

    PubMed

    Rangaraj, Suriyaprabha; Gopalu, Karunakaran; Rathinam, Yuvakkumar; Periasamy, Prabu; Venkatachalam, Rajendran; Narayanasamy, Kannan

    2014-01-01

    The effect of silica nanoparticles and conventional silica sources on the changes in microbial biomass and silica availability to pure soil and maize rhizosphere was studied. Nanosilica (20-40 nm) was synthesized from rice husk and comprehensively characterized. The efficiency of nanosilica was evaluated in terms of its effects on beneficial microbial population such as phosphate solubilizers, nitrogen fixers, silicate solubilizers, microbial biomass carbon and nitrogen content, and silica content in comparison with other silica sources such as microsilica, sodium silicate, and silicic acid. Nanosilica significantly (P < 0.05) enhanced microbial populations, total biomass content (C = 1508 μg g(-1) and N = 178 μg g(-1) ), and silica content (14.75 mg mL(-1) ). Although microsilica sources enhanced factors associated with soil fertility, their use by maize roots and silicification in soil was found to be less. The results show that nanosilica plays a vital role in influencing soil nutrient content and microbial biota and, hence, may promote the growth of maize crop. PMID:24329970

  14. Uniform silica nanoparticles encapsulating two-photon absorbing fluorescent dye

    SciTech Connect

    Wu Weibing; Liu Chang; Wang Mingliang; Huang Wei; Zhou Shengrui; Jiang Wei; Sun Yueming; Cui Yiping; Xu Chunxinag

    2009-04-15

    We have prepared uniform silica nanoparticles (NPs) doped with a two-photon absorbing zwitterionic hemicyanine dye by reverse microemulsion method. Obvious solvatochromism on the absorption spectra of dye-doped NPs indicates that solvents can partly penetrate into the silica matrix and then affect the ground and excited state of dye molecules. For dye-doped NP suspensions, both one-photon and two-photon excited fluorescence are much stronger and recorded at shorter wavelength compared to those of free dye solutions with comparative overall dye concentration. This behavior is possibly attributed to the restricted twisted intramolecular charge transfer (TICT), which reduces fluorescence quenching when dye molecules are trapped in the silica matrix. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells with low cytotoxicity. - Graphical abstract: Water-soluble silica NPs doped with a two-photon absorbing zwitterionic hemicyanine dye were prepared. They were found of enhanced one-photon and two-photon excited fluorescence compared to free dye solutions. Images from two-photon laser scanning fluorescence microscopy demonstrate that the dye-doped silica NPs can be actively uptaken by Hela cells.

  15. Electrochemiluminescence sensor for melamine based on a Ru(bpy)₃²⁺-doped silica nanoparticles/carboxylic acid functionalized multi-walled carbon nanotubes/Nafion composite film modified electrode.

    PubMed

    Chen, Xiaomei; Lian, Sai; Ma, Ying; Peng, Aihong; Tian, Xiaotian; Huang, Zhiyong; Chen, Xi

    2016-01-01

    In this work, a sensitive electrochemiluminescence (ECL) sensor for the determination of melamine (MEL) was developed based on a Ru(bpy)3(2+)-doped silica nanoparticles (RUDS)/carboxylic acid functionalized multi-walled carbon nanotubes (CMWCNTs)/Nafion composite film modified electrode. The homogeneous spherical RUDS were synthesized by a reverse microemulsion method. As Ru(bpy)3(2+) were encapsulated in the RUDS, Ru(bpy)3(2+) dropping from the modified electrode can be greatly prevented, which is helpful for obtaining a stable ECL signal. Moreover, to improve the conductivity of the film and promote the electron transfer rate on electrode surface, CMWCNTs with excellent electrical conductivity and large surface area were applied in the construction of the sensing film. As CMWCNTs acted as electron bridges making more Ru(bpy)3(2+) participate in the reaction, the ECL intensity was greatly enhanced. Under the optimum conditions, the relative ECL signal (△IECL) was proportional to the logarithmic MEL concentration ranging from 5×10(-13) to 1×10(-7) mol L(-1) with a detection limit of 1×10(-13) mol L(-1). To verify the reliability, the thus-fabricated ECL sensor was applied to determine the concentration of MEL in milk. Based on these investigations, the proposed ECL sensor exhibited good feasibility and high sensitivity for the determination of MEL, promising the applicability of this sensor in practical analysis.

  16. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate.

    PubMed

    Konował, Emilia; Modrzejewska-Sikorska, Anna; Motylenko, Mykhailo; Klapiszewski, Łukasz; Wysokowski, Marcin; Bazhenov, Vasilii V; Rafaja, David; Ehrlich, Hermann; Milczarek, Grzegorz; Jesionowski, Teofil

    2016-04-01

    It is shown that lignosulfonate (LS) can be used as an effective reducing agent for gold ions and simultaneously as a stabilizing agent for gold nanoparticles (AuNPs). When organically modified silica is introduced to the reaction mixture, most of the AuNPs grow on the surface of the silica due to hydrophobic interactions between LS and organic layers covering the solid particles. It was also found that the structure of the organic layer is crucial for the effective deposition of gold nanoparticles onto silica spheres in terms of particle size and gold content in the final SiO2-LS-AuNPs composites. Due to the hydrophobicity of the modified silica it was necessary to carry out the modification in mixed organic/aqueous solvent. The polarity of the organic co-solvent was found to have an effect on the size of the deposited Au-NPs and their quantity. The physical appearance of the obtained hybrids was analyzed by colorimetry, and their structure and composition were evaluated using transmission electron microscopy (TEM). Additionally dispersive and thermal properties were examined by dynamic light scattering (DLS) and thermogravimetry (TG), respectively. The obtained multifunctional hybrid materials exhibits remarkable catalytic activity for the reduction of C.I. Basic Blue 9 (Methylene Blue) by borohydride.

  17. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate.

    PubMed

    Konował, Emilia; Modrzejewska-Sikorska, Anna; Motylenko, Mykhailo; Klapiszewski, Łukasz; Wysokowski, Marcin; Bazhenov, Vasilii V; Rafaja, David; Ehrlich, Hermann; Milczarek, Grzegorz; Jesionowski, Teofil

    2016-04-01

    It is shown that lignosulfonate (LS) can be used as an effective reducing agent for gold ions and simultaneously as a stabilizing agent for gold nanoparticles (AuNPs). When organically modified silica is introduced to the reaction mixture, most of the AuNPs grow on the surface of the silica due to hydrophobic interactions between LS and organic layers covering the solid particles. It was also found that the structure of the organic layer is crucial for the effective deposition of gold nanoparticles onto silica spheres in terms of particle size and gold content in the final SiO2-LS-AuNPs composites. Due to the hydrophobicity of the modified silica it was necessary to carry out the modification in mixed organic/aqueous solvent. The polarity of the organic co-solvent was found to have an effect on the size of the deposited Au-NPs and their quantity. The physical appearance of the obtained hybrids was analyzed by colorimetry, and their structure and composition were evaluated using transmission electron microscopy (TEM). Additionally dispersive and thermal properties were examined by dynamic light scattering (DLS) and thermogravimetry (TG), respectively. The obtained multifunctional hybrid materials exhibits remarkable catalytic activity for the reduction of C.I. Basic Blue 9 (Methylene Blue) by borohydride. PMID:26724689

  18. Enhanced hydrophobicity of polyurethane via non-solvent induced surface aggregation of silica nanoparticles.

    PubMed

    Seyfi, Javad; Hejazi, Iman; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Simon, Frank

    2016-09-15

    Fabrication of superhydrophobic surfaces from hydrophilic polymers has always been regarded as a challenge. In this study, to achieve superhydrophobic polyurethane (PU) surfaces, silica nanoparticles and ethanol as non-solvent were simultaneously utilized during a solution casting-based process. Such modified version of phase separation process was found to be highly efficient, and also it required much lower concentration of nanoparticles to achieve superhydrophobicity as compared to the previously reported methods in the literature. According to the proposed mechanism, non-solvent induces a more profound aggregation of silica nanoparticles at the surface's top layer causing the surface energy to be highly diminished, and thus, the water repellency is improved. Morphology and topography results showed that a unique "triple-sized" structure was formed on the surface of superhydrophobic samples. X-ray photoelectron spectroscopy results proved that both PU macromolecules and silica nanoparticles were concurrently present at the surface layer of the superhydrophobic sample. It was concluded that surface composition and roughness could be regarded as competing factors in achieving superhydrophobicity. Based on the obtained results, the proposed method exhibits a promising potential in large-scale fabrication of surface layers with superhydrophobic property. Moreover, a mechanism was also presented to further explicate the physics behind the suggested method. PMID:27288577

  19. Diatomite silica nanoparticles for drug delivery

    PubMed Central

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. PACS 87.85.J81.05.Rm; 61.46. + w PMID:25024689

  20. Antibacterial dental composites with chlorhexidine and mesoporous silica.

    PubMed

    Zhang, J F; Wu, R; Fan, Y; Liao, S; Wang, Y; Wen, Z T; Xu, X

    2014-12-01

    One of the leading causes for the failure of dental composite restorations is secondary caries. Effectively inhibiting cariogenic biofilms and reducing secondary caries could extend the service life of composite restorations. Dental composites releasing antibacterial agents such as chlorhexidine (CHX) have shown biofilm-inhibitory efficacy, but they usually have poor physical and mechanical properties. Herein, we present a study of a new method to encapsulate and release CHX from dental composite using mesoporous silica nanoparticles (MSNs). SBA-15 MSNs were synthesized according to a reported procedure. CHX (62.9 wt%) was encapsulated into dried MSN from 0.3 M CHX ethanol solution. The dental composites containing 0% (control), 3%, 5%, and 6.3% CHX or the same amounts of CHX entrapped in MSN (denoted as CHX@MSN) were fabricated with methacrylate monomers and silanized glass fillers (CHX or CHX@MSN + glass filler particle = 70 wt%). The monomer mixture consisted of bisphenol A glycidyl methacrylate (BisGMA), hexanediol dimethacrylate (HDDMA), ethoxylated bisphenol A dimethacrylate (EBPADMA), and urethane dimethacrylates (UEDMA) at a weight ratio of 40:30:20:10. The composites were tested for CHX release and recharge, flexural strength and modulus (at 24 hr and 1 mo), surface roughness, in vitro wear, and antibacterial activity against Streptococcus mutans and Lactobacillus casei (in both planktonic growth and biofilm formation). The results showed that the composites with CHX@MSN largely retained mechanical properties and smooth surfaces and showed controlled release of CHX over a long time. In contrast, the composites with directly mixed CHX showed reduced mechanical properties, rough surfaces, and burst release of CHX in a short time. The composites with CHX either directly mixed or in MSN showed strong inhibition to S. mutans and L. casei. This research has demonstrated the successful application of MSNs as a novel nanotechnology in dental materials to inhibit

  1. Antibacterial Dental Composites with Chlorhexidine and Mesoporous Silica

    PubMed Central

    Zhang, J.F.; Wu, R.; Fan, Y.; Liao, S.; Wang, Y.; Wen, Z.T.; Xu, X.

    2014-01-01

    One of the leading causes for the failure of dental composite restorations is secondary caries. Effectively inhibiting cariogenic biofilms and reducing secondary caries could extend the service life of composite restorations. Dental composites releasing antibacterial agents such as chlorhexidine (CHX) have shown biofilm-inhibitory efficacy, but they usually have poor physical and mechanical properties. Herein, we present a study of a new method to encapsulate and release CHX from dental composite using mesoporous silica nanoparticles (MSNs). SBA-15 MSNs were synthesized according to a reported procedure. CHX (62.9 wt%) was encapsulated into dried MSN from 0.3 M CHX ethanol solution. The dental composites containing 0% (control), 3%, 5%, and 6.3% CHX or the same amounts of CHX entrapped in MSN (denoted as CHX@MSN) were fabricated with methacrylate monomers and silanized glass fillers (CHX or CHX@MSN + glass filler particle = 70 wt%). The monomer mixture consisted of bisphenol A glycidyl methacrylate (BisGMA), hexanediol dimethacrylate (HDDMA), ethoxylated bisphenol A dimethacrylate (EBPADMA), and urethane dimethacrylates (UEDMA) at a weight ratio of 40:30:20:10. The composites were tested for CHX release and recharge, flexural strength and modulus (at 24 hr and 1 mo), surface roughness, in vitro wear, and antibacterial activity against Streptococcus mutans and Lactobacillus casei (in both planktonic growth and biofilm formation). The results showed that the composites with CHX@MSN largely retained mechanical properties and smooth surfaces and showed controlled release of CHX over a long time. In contrast, the composites with directly mixed CHX showed reduced mechanical properties, rough surfaces, and burst release of CHX in a short time. The composites with CHX either directly mixed or in MSN showed strong inhibition to S. mutans and L. casei. This research has demonstrated the successful application of MSNs as a novel nanotechnology in dental materials to inhibit

  2. Antibacterial dental composites with chlorhexidine and mesoporous silica.

    PubMed

    Zhang, J F; Wu, R; Fan, Y; Liao, S; Wang, Y; Wen, Z T; Xu, X

    2014-12-01

    One of the leading causes for the failure of dental composite restorations is secondary caries. Effectively inhibiting cariogenic biofilms and reducing secondary caries could extend the service life of composite restorations. Dental composites releasing antibacterial agents such as chlorhexidine (CHX) have shown biofilm-inhibitory efficacy, but they usually have poor physical and mechanical properties. Herein, we present a study of a new method to encapsulate and release CHX from dental composite using mesoporous silica nanoparticles (MSNs). SBA-15 MSNs were synthesized according to a reported procedure. CHX (62.9 wt%) was encapsulated into dried MSN from 0.3 M CHX ethanol solution. The dental composites containing 0% (control), 3%, 5%, and 6.3% CHX or the same amounts of CHX entrapped in MSN (denoted as CHX@MSN) were fabricated with methacrylate monomers and silanized glass fillers (CHX or CHX@MSN + glass filler particle = 70 wt%). The monomer mixture consisted of bisphenol A glycidyl methacrylate (BisGMA), hexanediol dimethacrylate (HDDMA), ethoxylated bisphenol A dimethacrylate (EBPADMA), and urethane dimethacrylates (UEDMA) at a weight ratio of 40:30:20:10. The composites were tested for CHX release and recharge, flexural strength and modulus (at 24 hr and 1 mo), surface roughness, in vitro wear, and antibacterial activity against Streptococcus mutans and Lactobacillus casei (in both planktonic growth and biofilm formation). The results showed that the composites with CHX@MSN largely retained mechanical properties and smooth surfaces and showed controlled release of CHX over a long time. In contrast, the composites with directly mixed CHX showed reduced mechanical properties, rough surfaces, and burst release of CHX in a short time. The composites with CHX either directly mixed or in MSN showed strong inhibition to S. mutans and L. casei. This research has demonstrated the successful application of MSNs as a novel nanotechnology in dental materials to inhibit

  3. A photostable bi-luminophore pressure-sensitive paint measurement system developed with mesoporous silica nanoparticles.

    PubMed

    Mochizuki, Dai; Tamura, Shinichi; Yasutake, Hiroaki; Kataoka, Tomoharu; Mitsuo, Kazunori; Wada, Yuji

    2013-04-01

    The accurate and high-resolution measurement of surface pressure is achieved by a pressure/ temperature-sensitive composite paint (bi-PSP), whereas the pressure-sensitive dye photodegraded the temperature sensitive dye in close arrangement of both dyes. In the present study, an attempt was made to synthesize a homogeneous bi-PSP membrane without light-induced degradation of the dye using mesoporous silica. Mesoporous silica as a molecular sieve was the separation of pressure- and temperature-sensitive dyes. Both achievement of control of photodegradation in temperature-sensitive paints with molecule-screening capacity and macroscopically uniform placement of insoluble pigments in the respective solvent, was accomplished using the mesoporous silica nanoparticles in a compound PSP.

  4. β-ray irradiation effects on silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Alessi, A.; Agnello, S.; Buscarino, G.; Boizot, B.; Cannas, M.; Gelardi, F. M.

    2015-04-01

    By electron paramagnetic resonance (EPR) measurements, we examine the amplitude of the signal typically due to a combination of NBOHC (Non Bridging Hole Center) and POR (Peroxy Radical) defects induced by β-ray irradiation (from 1.2 to 1200 MGy) in silica nanoparticles with diameter ranging from 7 to 20 nm. Our data indicate that the signal line-shapes recorded at different doses is quite independent from the particles sizes and from the dose. Furthermore, for each considered nanoparticles size, the concentration of defects is also almost constant with respect to dose, and it does not change significantly if measured after 2 or 9 months from the irradiation. By contrast, we observed that the concentration of NBOHC+POR decreases on increasing the specific surface, indicating that the content of the defects depends on the nanoparticles size. Such dependence can be explained by a shell model in which the detected defects are located in the inner part of the nanoparticles.

  5. Mesoporous silica nanoparticles for treating spinal cord injury

    NASA Astrophysics Data System (ADS)

    White-Schenk, Désirée.; Shi, Riyi; Leary, James F.

    2013-02-01

    An estimated 12,000 new cases of spinal cord injury (SCI) occur every year in the United States. A small oxidative molecule responsible for secondary injury, acrolein, is an important target in SCI. Acrolein attacks essential proteins and lipids, creating a feed-forward loop of oxidative stress in both the primary injury area and the surrounding areas. A small molecule used and FDA-approved for hypertension, hydralazine, has been found to "scavenge" acrolein after injury, but its delivery and short half-life, as well as its hypertension effects, hinder its application for SCI. Nanomedical systems broaden the range of therapeutic availability and efficacy over conventional medicine. They allow for targeted delivery of therapeutic molecules to tissues of interest, reducing side effects of untargeted therapies in unwanted areas. Nanoparticles made from silica form porous networks that can carry therapeutic molecules throughout the body. To attenuate the acrolein cascade and improve therapeutic availability, we have used a one-step, modified Stober method to synthesize two types of silica nanoparticles. Both particles are "stealth-coated" with poly(ethylene) glycol (PEG) (to minimize interactions with the immune system and to increase circulation time), which is also a therapeutic agent for SCI by facilitating membrane repair. One nanoparticle type contains an amine-terminal PEG (SiNP-mPEG-Am) and the other possesses a terminal hydrazide group (SiNP-mPEG-Hz). The former allows for exploration of hydralazine delivery, loading, and controlled release. The latter group has the ability to react with acrolein, allowing the nanoparticle to scavenge directly. The nanoparticles have been characterized and are being explored using neuronal PC-12 cells in vitro, demonstrating the potential of novel silica nanoparticles for use in attenuating secondary injury after SCI.

  6. Silica nanoparticles as vehicles for therapy delivery in neurological injury

    NASA Astrophysics Data System (ADS)

    Schenk, Desiree

    Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as "secondary injury". Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. This aldehyde overwhelms the natural anti-oxidant system, reacts freely with proteins, and releases during lipid peroxidation (LPO), effectively regenerating its self. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDA-approved hypertension drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Nanoparticles made from silica provide distinct advantages. They form porous networks that can carry therapeutic molecules throughout the body. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica nanoparticles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The

  7. Highly ordered poly(thiophene)s prepared in mesoporous silica nanoparticles.

    PubMed

    Seo, Seogjae; Kim, Jeonghun; Kim, Byeonggwan; Vinu, Ajayan; Kim, Eunkyoung

    2011-05-01

    Nanostructured PEDOT was synthesized using mesoporous silica as a nano-template. The polymerization of thiophene monomers was performed with an oxidant and mesoporous silica nanoparticles. The silica particles took essential role in absorbing monomers and oxidant molecules, and growth of polymers inside their pores. As prepared polymer/silica composite was treated with HF solution to remove silica template to result in 1D wire structure and mesh type porous 3D structures from SBA-15 and KIT-6 template, respectively. The average size of the poly(thiophene) wires was 10 15 nm, which was matched well to the pores size of the silica templates, as determined from an electron microscopy. At optimized condition, the room temperature electrical conductivities of the PEDOT grown from SBA-15 and KIT-6 template were similar as 1.1 and 1.0 S/cm, respectively. However, the evolution of the PEDOT conductivity versus temperature was different depending on the templates. These results gave a unique chance to tailor made 3 dimensional structure as well as properties of conductive polymer. PMID:21780498

  8. Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles.

    PubMed

    Jambhrunkar, Siddharth; Qu, Zhi; Popat, Amirali; Karmakar, Surajit; Xu, Chun; Yu, Chengzhong

    2014-11-15

    Mesoporous silica nanoparticles (MCM-41) were used as a carrier system to study the influence of surface charge and hydrophobicity on solubility and in-vitro drug release behavior of Griseofulvin, a potent antifungal drug with low water solubility. Bare MCM-41 with a pure silica composition, MCM-41 after amino functionalization (MCM-41-NH2) and methyl functionalization (MCM-41-CH3) were used in this study followed by encapsulation of griseofulvin. Various characterization techniques have been employed to confirm the successful drug loading inside the nanopores. The surface functionalization on MCM-41 is found to have significant effect on griseofulvin's in vitro release and solubility. Both negatively and positively charged surface showed enhancement in solubility and drug release of griseofulvin. However, the hydrophobic modification led to a retarded drug release, which is caused by the poor wetting effect in the case of MCM-41-CH3 nanoparticles.

  9. Femtosecond laser writing over silver nanoparticles system embedded in silica using nonlinear microscopy

    NASA Astrophysics Data System (ADS)

    Licea-Rodríguez, Jacob; Rocha-Mendoza, Israel; Rangel-Rojo, Raúl; Rodríguez-Fernández, Luis; Oliver, Alicia

    2014-01-01

    We present results for the induction and monitoring of structural modification of a composite consisting of elongated silver nanoparticles films embedded in silica using ultrafast femtosecond laser irradiation and second harmonic generation imaging, respectively. Waveguide-like patterns are written and characterized under a laser scanning nonlinear microscope system by simply changing the laser fluence in the sample; switching in this way between two different physical processes occurring only within the composite film: second harmonic generation and laser induced nanoparticles removal. A study of the nanoparticles damage process as a function of the laser energy, polarization and scan velocity is also presented and discussed. The use of the non-irradiated zone between two written channels is proposed as a potential linear and nonlinear optical waveguide.

  10. Silica nanoparticles grown and stabilized in organic nonalcoholic media.

    PubMed

    El Hawi, Nancy; Nayral, Céline; Delpech, Fabien; Coppel, Yannick; Cornejo, Alfonso; Castel, Annie; Chaudret, Bruno

    2009-07-01

    This work features an alternative approach to the well-documented preparation of silica nanoparticles in protic media. We present here the one-pot synthesis of silica nanoparticles of adjustable size (between 18 and 174 nm), prepared and stabilized in organic nonalcoholic solvents. This novel route is based on hydrolysis and condensation of tetraethoxysilane, using water as reactant and different primary amines (butylamine, octylamine, dodecylamine, hexadecylamine) as catalysts in tetrahydrofuran or dimethoxyethane. The growth rate can be finely adjusted, and the first stages of the formation are observed by transmission electronic microscopy, revealing a silicated network in which the silica particles are formed and then released in solution. The amine plays not only a catalyst role but is also implied, as well as the solvent, in the stabilization process and the size control of the particles. A detailed NMR study demonstrates a core-shell structure in which the silica core is surrounded by a layer of alkylammonium ions together with solvent. PMID:19496545

  11. Composite Nanoparticles for Gene Delivery

    PubMed Central

    Wang, Yuhua; Huang, Leaf

    2016-01-01

    Nanoparticle-mediated gene and siRNA delivery has been an appealing area to gene therapists when they attempt to treat the diseases by manipulating the genetic information in the target cells. However, the advances in materials science could not keep up with the demand for multifunctional nanomaterials to achieve desired delivery efficiency. Researchers have thus taken an alternative approach to incorporate various materials into single composite nanoparticle using different fabrication methods. This approach allows nanoparticles to possess defined nanostructures as well as multiple functionalities to overcome the critical extracellular and intracellular barriers to successful gene delivery. This chapter will highlight the advances of fabrication methods that have the most potential to translate nanoparticles from bench to bedside. Furthermore, a major class of composite nanoparticle–lipid-based composite nanoparticles will be classified based on the components and reviewed in details. PMID:25409605

  12. Effect of silica nanoparticles on clay swelling and aqueous stability of nanoparticle dispersions.

    PubMed

    Pham, Hieu; Nguyen, Quoc P

    2014-01-01

    The results of the effects of electrolyte type and concentration, nanoparticle concentration, pH, and temperature on the mobility and aqueous stability of polyethylene glycol (PEG)-coated silica nanoparticles are presented. Nanoparticle mobility was evaluated based on the ability to inhibit montmorillonite swelling in aqueous solutions through visual swelling tests, and the results were quantified in terms of the swelling index. The presence of PEG-coated silica nanoparticles was found to have a positive influence on the inhibition of clay swelling only in the presence of electrolytes. Quantification of nanoparticle stability in the presence of montmorillonite particles was achieved using ultraviolet-visible (UV-vis) spectrophotometry. At the highest concentration of montmorillonite dispersion studied, interaction between the dispersed montmorillonite particles and PEG-coated silica nanoparticles resulted in nanoparticle aggregation as indicated by increased turbidity and absorbance readings. Both nanoparticle concentration and montmorillonite dispersion concentration, in addition to the presence and concentration of NaCl, were found to strongly influence the stability of the mixture.

  13. Preparation of concentrated colloids of gold core-silica shell nanoparticles for biomedical applications.

    PubMed

    Park, Yeon-Su

    2012-01-01

    Encapsulation of gold nanoparticles within a silica shell is highly beneficial to the preparation of highly concentrated gold nanoparticles that can strongly absorb X-ray and hence be used as an X-ray contrast agent. This chapter describes a method for preparing highly concentrated colloidal gold nanoparticles suitable for an X-ray contrast agent application. It describes specific details of procedures for preparing spherical gold nanoparticles, forming thin silica shell on each gold nanoparticle, and enriching the silica-encapsulated gold nanoparticles.

  14. Adsorption of Surface-Modified Silica Nanoparticles to the Interface of Melt Poly(lactic acid) and Supercritical Carbon Dioxide.

    PubMed

    Sarikhani, K; Jeddi, K; Thompson, R B; Park, C B; Chen, P

    2015-05-26

    With the purpose of fabricating polymer nanocomposite foams and preventing coalescence in foaming processes, the interfacial tension of poly(lactic acid) (PLA)-silica composites is investigated in this work. Synthesized silica nanoparticles (SNs) with a CO2-philic surface modification are used as the dispersed nanoparticles. Interfacial tension is a key parameter in processing of polymer foams since it directly affects the final foam properties, such as cell size and cell density. Interfacial tension of silica-containing PLA and supercritical carbon dioxide (CO2) is measured using axisymmetric drop shape analysis profile (ADSA-P) pendant drop method at high pressures and high temperatures. The interfacial tension between PLA and supercritical CO2 is observed to decrease as a result of the nanoparticles' adsorption to the interface. These results indicate that the reduction in interfacial tension with increasing silica content significantly deviates from a linear trend; there is a minimum at 2 wt % loading of the SNs and then the interfacial tension curve reaches a plateau. Contact angle measurements show an affinity of the SNs for the polymer-supercritical CO2 interface, and these obtained results are used to calculate the binding energy of the nanoparticles to the PLA/CO2 interface. In addition to interfacial properties, the adsorption of silica nanoparticles at the interface is also studied in detail with scanning electron microscopy.

  15. Surfactant adsorption and aggregate structure of silica nanoparticles: a versatile stratagem for the regulation of particle size and surface modification

    NASA Astrophysics Data System (ADS)

    Chaudhary, Savita; Rohilla, Deepak; Mehta, S. K.

    2014-03-01

    The area of silica nanoparticles is incredibly polygonal. Silica particles have aroused exceptional deliberation in bio-analysis due to great progress in particular arenas, for instance, biocompatibility, unique properties of modifiable pore size and organization, huge facade areas and pore volumes, manageable morphology and amendable surfaces, elevated chemical and thermal stability. Currently, silica nanoparticles participate in crucial utilities in daily trade rationales such as power storage, chemical and genetic sensors, groceries dispensation and catalysis. Herein, the size-dependent interfacial relation of anionic silica nanoparticles with twelve altered categories of cationic surfactants has been carried out in terms of the physical chemical facets of colloid and interface science. The current analysis endeavours to investigate the virtual consequences of different surfactants through the development of the objective composite materials. The nanoparticle size controls, the surface-to-volume ratio and surface bend relating to its interaction with surfactant will also be addressed in this work. More importantly, the simulated stratagem developed in this work can be lengthened to formulate core-shell nanostructures with functional nanoparticles encapsulated in silica particles, making this approach valuable and extensively pertinent for employing sophisticated materials for catalysis and drug delivery.

  16. Silica decorated on porous activated carbon nanofiber composites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, So Yeun; Kim, Bo-Hye

    2016-10-01

    A hybrid of silica decorated on porous activated carbon nanofibers (ACNFs) is fabricated in the form of a web via electrospinning and an activation process as an electrode material for electrochemical capacitors in an organic electrolyte. The introduction of PhSiH3 (PS) into the polyacrylonitrile (PAN) solution induces a porous ACNF structure containing silica nanoparticles (NPs) via the spontaneous sol-gel process of PS by steam in the subsequent physical activation process. These inorganic-organic hybrid composites of porous ACNF containing silica NPs show superior specific capacitance and energy density in electrochemical tests, along with good rate capability and excellent cycle life in an organic electrolyte, which is attributed to the combination of ACNF's high surface area and silica's hydrophilicity. The electrochemical performance decreases with increasing PS concentration, and this trend is consistent with the specific surface area results, which reveal the rapid formation of a double layer.

  17. Conductive polyurethane composites containing polyaniline-coated nano-silica.

    PubMed

    Liu, Bo-Tau; Syu, Jhan-Rong; Wang, De-Hua

    2013-03-01

    In this study, we used 1.2-Aminopropyltriethoxysilane (APTS) as a coupling agent to synthesize silica-polyaniline (PANI) core-shell nanoparticles. The core-shell nanoparticles and PANI oligomers were reacted with isocyanates to prepare the conductive polyurethane (PU)-PANI-silica nanocomposites. The core-shell-nanoparticle structure shows significant enhancement on electrical properties of the conductive nanocomposites even though only 0.0755-wt.% PANI was coated on the nano-silica. The surface resistance of the nanocomposite containing 5 wt.% PANI can reduce to ~10(8) Ω/sq, lowering two orders in contrast to the nanocomposite without the core-shell structure. In comparison with the neat PU, tensile strength and elongation of the nanocomposite containing silica-PANI core-shell nanoparticles can increase 3.1 and 3.8 times, respectively. We suspect that the extraordinary enhancement of electrical and mechanical properties may result from the fact that contact probability among PANI moieties and chemical bonding between particles and PU matrix increase due to the PANI coated on the surface of silica. PMID:23261334

  18. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    SciTech Connect

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has been used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and multi

  19. Osteoinductive silk-silica composite biomaterials for bone regeneration

    PubMed Central

    Mieszawska, Aneta J.; Fourligas, Nikolaos; Georgakoudi, Irene; Ouhib, Nadia; Belton, David J.; Perry, Carole C.; Kaplan, David L.

    2010-01-01

    Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining silk fibroin with silica particles. The influence of these composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on silk/silica films. The addition of the silica to the silk films influenced gene expression leading to upregulation of bone sialoprotein (BSP) and collagen type 1 (Col 1) osteogenic markers. Evidence for early bone formation in the form of collagen fibers and apatite nodules was obtained on the silk/silica films. Collagen fibers were closely associated with apatite deposits and overall collagen content was higher for the silica containing samples. Also, smaller sized silica particles (24 nm – 2 μm) with large surface area facilitated silica biodegradation in vitro through particle dissolution, leading to ~5 fold decrease in silica content over 10 weeks. These results indicate suitability of silk/silica composite system towards bone regeneration, where degradation/remodeling rates of the organic and inorganic components can be controlled. PMID:20817293

  20. Sonochemical synthesis of (3-aminopropyl)triethoxysilane-modified monodispersed silica nanoparticles for protein immobilization

    SciTech Connect

    Shen, Shou-Cang; Ng, Wai Kiong; Chia, Leonard; Dong, Yuan-Cai; Tan, Reginald B.H.

    2011-10-15

    Graphical abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by rapid sonochemical co-condensation to achieve high capability for protein immobilization. Highlights: {yields} Amino-modified monodispersed silica nanoparticles were synthesized by rapid co-condensation. {yields} Strong positive charge was created by aminopropyl-modification. {yields} Capability for immobilization of negatively charged protein was enhanced. {yields} Electrostatic interaction between proteins and surface contributed to the enhanced adsorption. -- Abstract: 3-Aminopropyltriethoxysilane modified monodispersed silica nanoparticles were synthesized by a rapid sonochemical co-condensation synthesis procedure. The chemical nature of surface organic modifier on the obtained modified silica nanoparticle was characterized by {sup 13}C and {sup 29}Si MAS Nuclear Magnetic Resonance (NMR) spectroscopies, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)- differential scanning calorimetry (DSC). Due to the strengthened positive surface charge of the silica nanoparticles by the modification with aminopropyl groups, the capability for bovine serum albumin (BSA) adsorption was significantly increased as compared with bare silica nanoparticles. 80 mg/g BSA was adsorbed on modified silica nanoparticles, whereas only 20 mg/g BSA could be loaded on pure silica nanoparticles. The enhanced positive surface charge repelled proteins with net positive charge and the modified silica nanoparticles exhibited negligible adsorption of lysozyme, thus a selective adsorption of proteins could be achieved.

  1. Biocide silver nanoparticles in two different silica-based coating

    NASA Astrophysics Data System (ADS)

    Babapour, A.; Yang, B.; Bahang, S.; Cao, W.

    2012-09-01

    Silica-based coatings containing biocide silver nanoparticles have been synthesized using low temperature sol-gel method. Two different silane based matrices, phenyltriethoxysilane (PhTEOS) and tetraethyl orthosilicate (TEOS), were selected as precursor to prepare silica-based film. The films were analyzed by using UV-visible spectrophotometry, atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their optical, surface morphological as well as structural properties. Optical properties of nanosilver in these two matrices showed that the peak absorption observed at different wavelength, which is due to the fact that optical absorption of nanoparticles is affected by the surrounding medium. It is also found that the silver absorption has higher intensity in PhTEOS than in TEOS matrix, indicating higher concentration of silver nanoparticles being loaded into the coating. To study silver release property, the films were immersed in water for 12 and 20 days. AFM and SEM analyzes present that higher concentration of silver nanoparticles and smaller particle sizes were synthesis in PhTEOS coating and consequently, more particles remains on the surfaces after 20 days which leads to longer antibacterial activity of PhTEOS coating.

  2. Structural and Magnetic Properties of Gold and Silica Doubly Coated gamma-Fe2O3 Nanoparticles

    SciTech Connect

    Park,K.; Liang, G.; Ji, X.; Luo, Z.; Li, C.; Croft, M.; Markert, J.

    2007-01-01

    Extensive structural and magnetic characterization measurements were carried out on gold and silica doubly coated ?-Fe2O3 nanoparticles, which were recently demonstrated to have an efficient photothermal effect and high transverse relaxivities for MRI applications. Powder X-ray diffraction and X-ray absorption spectroscopy show the phase of the uncoated and coated nanoparticles to be that of the ?-Fe2O3 structure. The sizes, structure, and chemical compositions of the nanoparticles were determined by transmission electron microscopy. The magnetization results indicate that coating of the iron oxide nanoparticles by gold/silica decreases the blocking temperature from 160 to 80 K. Such a decrease can be well-explained by spin disorder, causing reduction of the effective volume of the ?-Fe2O3 core. Moreover, it was found that in the temperature (T) range between 100 K and room temperature, the gold/silica coating can cause a slight magnetic change in the ?-Fe2O3 cores from superparamagnetic to almost superparamagnetic. Finally, it was found that the coercivity for both the uncoated and the coated nanoparticles decreases almost linearly with T1/2 with the former decreasing faster than the latter, and this coercivity result confirms that the blocking temperature is decreased by gold/silica coating. These results are valuable for evaluating the future applications of this class of multifunctional, hybrid magnetic nanoparticles in biomedicine.

  3. A study of water chemistry extends the benefits of using silica-based nanoparticles on enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Torsæter, Ole

    2016-01-01

    Chemistry of the injected water has been investigated as an important parameter to improve/enhance oil recovery (IOR/EOR). Numerous extensive experiments have observed that water chemistry, such as ionic composition and salinity, can be modified for IOR/EOR purposes. However, the possible oil displacement mechanism remains debatable. Nanoparticle recently becomes more popular that have shown a great potential for IOR/EOR purposes in lab-scale, where in most experiments, water-based fluid were used as dispersed fluid. As yet, there has been no discussion in the literature on the study of water chemistry on enhanced oil recovery using silica-based nanoparticles. A broad range of laboratory studies involving rock, nanoparticles and fluid characterization; fluid-fluid and fluid-rock interactions; surface conductivity measurement; coreflood experiment; injection strategy formulation; filtration mechanism and contact angle measurement are conducted to investigate the impact of water chemistry, such as water salinity and ionic composition including hardness cations, on the performance of silica-based nanoparticles in IOR/EOR process and reveal possible displacement mechanism. The experimental results demonstrated that water salinity and ionic composition significantly impacted oil recovery using hydrophilic silica-based nanoparticles and that the oil recovery increased with the salinity. The primary findings from this study are that the water salinity, the ionic composition and the injection strategy are important parameters to be considered in Nano-EOR.

  4. M2 polarization enhances silica nanoparticle uptake by macrophages

    PubMed Central

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K.

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but

  5. Wrinkling of graphene membranes supported by silica nanoparticles on substrates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mahito; Cullen, William; Fuhrer, Michael; Einstein, Theodore; Department of Physics, University of Maryland Team

    2011-03-01

    The challenging endeavor of modulating the morphology of graphene via a patterned substrate to produce a controlled deformation has great potential importance for strain engineering the electronic properties of graphene. An essential step in this direction is to understand the response of graphene to substrate features of known geometry. Here we employ silica nanoparticles with a diameter of 10-100 nm to uniformly decorate Si O2 and mica substrates before depositing graphene, to promote nanoscale modulation of graphene geometry. The morphology of graphene on this modified substrate is then characterized by atomic force spectroscopy. We find that graphene on the substrate is locally raised by the supporting nanoparticles, and wrinkling propagates radially from the protrusions to form a ridge network which links the protrusions. We discuss the dependence of the wrinkled morphology on nanoparticle diameter and graphene thickness in terms of graphene elasticity and adhesion energy. Supported by NSF-MRSEC, Grant DMR 05-20471

  6. Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhakta, Snehasis; Dixit, Chandra K.; Bist, Itti; Abdel Jalil, Karim; Suib, Steven L.; Rusling, James F.

    2016-07-01

    Understanding of the synthesis kinetics and our ability to modulate medium conditions allowed us to generate nanoparticles via an ultra-fast process. The synthesis medium is kept quite simple with tetraethyl orthosilicate (TEOS) as precursor and 50% ethanol and sodium hydroxide catalyst. Synthesis is performed under gentle conditions at 20 °C for 20 min Long synthesis time and catalyst-associated drawbacks are most crucial in silica nanoparticle synthesis. We have addressed both these bottlenecks by replacing the conventional Stober catalyst, ammonium hydroxide, with sodium hydroxide. We have reduced the overall synthesis time from 20 to 1/3 h, ∼60-fold decrease, and obtained highly monodispersed nanoparticles with 5-fold higher surface area than Stober particles. We have demonstrated that the developed NPs with ∼3-fold higher silane can be used as efficient probes for biosensor applications.

  7. Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites

    SciTech Connect

    Zheng Chan; Du Yuhong; Feng Miao; Zhan Hongbing

    2008-10-06

    Nanostructured Ag in shapes of nanoplate, nanowire, and nanoparticle, as well as their silica gel glass composites have been prepared and characterized. Nonlinear optical (NLO) properties were measured at 532 and 1064 nm using open aperture z-scan technique and studied from the view of shape effect. NLO behaviors of the nanostructured Ag are found to be shape dependent in suspensions at both the investigated wavelengths, although they originate differently. Comparing to the mother suspensions, the Ag/silica gel glass nanocomposites present rather dissimilar NLO behaviors, which is quite interesting for further studies.

  8. Morphology and Optical Properties of Bare and Silica Coated Hybrid Silver Nanoparticles.

    PubMed

    Ghimire, Sushant; Lebek, Werner; Godehardt, Reinhold; Lee, Wan In; Adhikari, Rameshwar

    2016-05-01

    Owing to their wide applications in the field of optoelectronics, photonics, catalysis, and medicine; plasmonic metal nanoparticles are attaining considerable interest nowadays. The optical properties of these metal nanoparticles depend upon their size, shape, and surrounding medium. The present work studies the morphology and optical properties of bare silver nanoparticles and silica coated hybrid silver nanoparticles. Aqueous phase mediated synthesis and water-in-oil microemulsion mediated synthesis are two different wet chemical routes employed for nanosynthesis. Direct coating of silica is performed in water-in-oil microemulsion on pre-synthesized silver nanoparticles using tetraethyl orthosilicate as silica precursor. This study shows that using different wet chemical routes the size of the synthesized nanoparticles could be tuned. In addition, using reverse micelles as nanoreactors, the thickness of the silica shell around the core silver nanoparticles could be significantly controlled. Further, the optical properties of silver nanoparticles could be adjusted through the size and the surface coating. PMID:27483900

  9. Surfactant anchoring and aggregate structure at silica nanoparticles: a persuasive facade for the adsorption of azo dye.

    PubMed

    Chaudhary, Savita; Sood, Aastha; Mehta, S K

    2014-09-01

    Nanotechnology's aptitude to silhouette matter at the scale of the nanometer has unlocked the flap to new inventions of applications in material science and nanomedicine. Engineered silica nanoparticles are key actor of this strategy. The amphitheatre of silica nanoparticles is inexplicably bilateral. Silica particles play essential function in everyday commercial purposes for instance energy storage, chemical and biological sensors, food processing and catalysis. One of the most appealing applications to emerge in the recent years is the use of silica particles for cleaning up contaminants in groundwater, soil and sediments. Herein this work, surfactant modified silica nanoparticles with unique surface and pore properties as well as high surface areas have been extensively investigated as an alternative for the dye removal. The physical and chemical characterizations of adsorbent have been studied using FTIR and scanning electron microscopy. The present investigation aims to explore the comparative effect of different surfactants during the formation of the target composite materials. The effects of various parameters like pH, adsorbent doses, dye concentration, addition of salt have also been investigated. These findings indicate that the nano silica particles are effective materials for dye removal and can be used to alleviate environmental problems. PMID:25924337

  10. Surfactant anchoring and aggregate structure at silica nanoparticles: a persuasive facade for the adsorption of azo dye.

    PubMed

    Chaudhary, Savita; Sood, Aastha; Mehta, S K

    2014-09-01

    Nanotechnology's aptitude to silhouette matter at the scale of the nanometer has unlocked the flap to new inventions of applications in material science and nanomedicine. Engineered silica nanoparticles are key actor of this strategy. The amphitheatre of silica nanoparticles is inexplicably bilateral. Silica particles play essential function in everyday commercial purposes for instance energy storage, chemical and biological sensors, food processing and catalysis. One of the most appealing applications to emerge in the recent years is the use of silica particles for cleaning up contaminants in groundwater, soil and sediments. Herein this work, surfactant modified silica nanoparticles with unique surface and pore properties as well as high surface areas have been extensively investigated as an alternative for the dye removal. The physical and chemical characterizations of adsorbent have been studied using FTIR and scanning electron microscopy. The present investigation aims to explore the comparative effect of different surfactants during the formation of the target composite materials. The effects of various parameters like pH, adsorbent doses, dye concentration, addition of salt have also been investigated. These findings indicate that the nano silica particles are effective materials for dye removal and can be used to alleviate environmental problems.

  11. Enzyme-modified nanoparticles using biomimetically synthesized silica.

    PubMed

    Zamora, Patricia; Narváez, Arántzazu; Domínguez, Elena

    2009-09-01

    The entrapment of enzymes within biomimetic silica nanoparticles offers unique and simple immobilization protocols that merge the stability of proteins confined in solid phases with the high loading and reduced diffusion limitations inherent to nano-sized structures. Herein, we report on the biomimetic silica entrapment of chemically derivatized horseradish peroxidase for amperometric sensing applications. Scanning electron microscopy shows evidence of the formation of enzyme-modified nanospheres using poly(ethylenimine) as a template for silicic acid condensation. When these nanospheres are directly deposited on graphite electrodes, chemically modified anionic peroxidase shows direct electron transfer at 0 mV vs Ag|AgCl. Microgravimetric measurements as well as SEM images demonstrate that negatively charged peroxidase is also entrapped when silica precipitates at gold electrodes are modified with a self-assembled monolayer of poly(ethylenimine). Electrostatic interactions may play a crucial role for efficient enzyme entrapment and silica condensation at the PEI template monolayer. The in-situ biomimetically synthesized peroxidase nanospheres are catalytically active, enabling direct bioelectrocatalysis at 0 mV vs Ag|AgCl with long-term stability.

  12. Reversible assembly of tunable nanoporous materials from "hairy" silica nanoparticles.

    PubMed

    Khabibullin, Amir; Fullwood, Emily; Kolbay, Patrick; Zharov, Ilya

    2014-10-01

    Membranes with 1-100 nm nanopores are widely used in water purification and in biotechnology, but are prone to blockage and fouling. Reversibly assembled nanoporous membranes may be advantageous due to recyclability, cleaning, and retentate recovery, as well as the ability to tune the pore size. We report the preparation and characterization of size-selective nanoporous membranes with controlled thickness, area, and pore size via reversible assembly of polymer brush-grafted ("hairy") silica nanoparticles. We describe membranes reversibly assembled from silica particles grafted with (1) polymer brushes carrying acidic and basic groups, and (2) polymer brushes carrying neutral groups. The former are stable in most organic solvents and easily disassemble in water, whereas the latter are water-stable and disassemble in organic solvents.

  13. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    SciTech Connect

    Munaweera, Imalka; Balkus, Kenneth J. Jr. E-mail: Anthony.DiPasqua@unthsc.edu; Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J. E-mail: Anthony.DiPasqua@unthsc.edu

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, {sup 1}H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  14. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    NASA Astrophysics Data System (ADS)

    Munaweera, Imalka; Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J.; Balkus, Kenneth J., Jr.

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, 1H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  15. Monodisperse Mesoporous Carbon Nanoparticles from Polymer/Silica Self-Aggregates and Their Electrocatalytic Activities.

    PubMed

    Huang, Xiaoxi; Zhou, Li-Jing; Voiry, Damien; Chhowalla, Manish; Zou, Xiaoxin; Asefa, Tewodros

    2016-07-27

    In our quest to make various chemical processes sustainable, the development of facile synthetic routes and inexpensive catalysts can play a central role. Herein we report the synthesis of monodisperse, polyaniline (PANI)-derived mesoporous carbon nanoparticles (PAMCs) that can serve as efficient metal-free electrocatalysts for the hydrogen peroxide reduction reaction (HPRR) as well as the oxygen reduction reaction (ORR) in fuel cells. The materials are synthesized by polymerization of aniline with the aid of (NH4)2S2O8 as oxidant and colloidal silica nanoparticles as templates, then carbonization of the resulting PANI/silica composite material at different high temperatures, and finally removal of the silica templates from the carbonized products. The PAMC materials that are synthesized under optimized synthetic conditions possess monodisperse mesoporous carbon nanoparticles with an average size of 128 ± 12 nm and an average pore size of ca. 12 nm. Compared with Co3O4, a commonly used electrocatalyst for HPRR, these materials show much better catalytic activity for this reaction. In addition, unlike Co3O4, the PAMCs remain relatively stable during the reaction, under both basic and acidic conditions. The nanoparticles also show good electrocatalytic activity toward ORR. Based on the experimental results, PAMCs' excellent electrocatalytic activity is attributed partly to their heteroatom dopants and/or intrinsic defect sites created by vacancies in their structures and partly to their high porosity and surface area. The reported synthetic method is equally applicable to other polymeric precursors (e.g., polypyrrole (PPY)), which also produces monodisperse, mesoporous carbon nanoparticles in the same way. The resulting materials are potentially useful not only for electrocatalysis of HPRR and ORR in fuel cells but also for other applications where high surface area, small sized, nanostructured carbon materials are generally useful for (e.g., adsorption

  16. Monodisperse Mesoporous Carbon Nanoparticles from Polymer/Silica Self-Aggregates and Their Electrocatalytic Activities.

    PubMed

    Huang, Xiaoxi; Zhou, Li-Jing; Voiry, Damien; Chhowalla, Manish; Zou, Xiaoxin; Asefa, Tewodros

    2016-07-27

    In our quest to make various chemical processes sustainable, the development of facile synthetic routes and inexpensive catalysts can play a central role. Herein we report the synthesis of monodisperse, polyaniline (PANI)-derived mesoporous carbon nanoparticles (PAMCs) that can serve as efficient metal-free electrocatalysts for the hydrogen peroxide reduction reaction (HPRR) as well as the oxygen reduction reaction (ORR) in fuel cells. The materials are synthesized by polymerization of aniline with the aid of (NH4)2S2O8 as oxidant and colloidal silica nanoparticles as templates, then carbonization of the resulting PANI/silica composite material at different high temperatures, and finally removal of the silica templates from the carbonized products. The PAMC materials that are synthesized under optimized synthetic conditions possess monodisperse mesoporous carbon nanoparticles with an average size of 128 ± 12 nm and an average pore size of ca. 12 nm. Compared with Co3O4, a commonly used electrocatalyst for HPRR, these materials show much better catalytic activity for this reaction. In addition, unlike Co3O4, the PAMCs remain relatively stable during the reaction, under both basic and acidic conditions. The nanoparticles also show good electrocatalytic activity toward ORR. Based on the experimental results, PAMCs' excellent electrocatalytic activity is attributed partly to their heteroatom dopants and/or intrinsic defect sites created by vacancies in their structures and partly to their high porosity and surface area. The reported synthetic method is equally applicable to other polymeric precursors (e.g., polypyrrole (PPY)), which also produces monodisperse, mesoporous carbon nanoparticles in the same way. The resulting materials are potentially useful not only for electrocatalysis of HPRR and ORR in fuel cells but also for other applications where high surface area, small sized, nanostructured carbon materials are generally useful for (e.g., adsorption

  17. Synthesis and Characterization of Bionanoparticle-Silica Composites and Mesoporous Silica with Large Pores

    SciTech Connect

    Niu, Z.; Yang, L.; Kabisatpathy, S.; He, J.; Lee, A.; Ron, J.; Sikha, G.; Popov, B.N.; Emrick, T.; Russell, T. P.; Wang. Q.

    2009-03-24

    A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N{sub 2} adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica, was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.

  18. Preparation, characterization and FE-simulation of the reinforcement of polycaprolactone with PEGylated silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Moussaif, N.; Viejo, I.; Bielsa, J. M.; Crespo, C.; Irusta, S.; Yagüe, C.; Meier, J. G.

    2012-09-01

    We recently published the preparation and characterization of polycaprolactone (PCL) nanocomposites with a 45% increased modulus reinforced with only 4 wt% PEGylated silica (polyethylene-glycol/SiO2) nanoparticles obtained by melt-extrusion [1]. The achieved reinforcement is related to an excellent dispersion of the nanoparticles due to the polyethylene-glycol graft of the nanoparticles which was obtained by a simple one-pot synthesis. X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR) analyses identified the location of the PEG at the PCL/silica interface. However, the extension of the interface could not be resolved. In an attempt to describe the effect of the interface on the reinforcement we applied several analytical micromechanical models. Models considering core-shell systems fitted the experimental data well and gave estimations of the modulus and extension of the interphase. However, different sets of parameters gave equally good representations. In an alternative approach, 3D representative volume elements (RVE) of the composite with spherical nanoparticles including the shell were built-up from the morphological data to carry out computational micromechanics based on finite elements (FE). The interphase was modeled in the RVE. Both approaches demonstrated the need of an interphase extension of roughly twice the radius of the particle. The FEM approach estimates the interface-modulus much higher than the analytical models.

  19. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles.

    PubMed

    Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu

    2014-08-13

    In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.

  20. Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption

    NASA Astrophysics Data System (ADS)

    Ma, Zhiya; Guan, Yueping; Liu, Huizhou

    2006-06-01

    Superparamagnetic silica-coated magnetite (Fe 3O 4) nanoparticles with immobilized metal affinity ligands were prepared for protein adsorption. First, magnetite nanoparticles were synthesized by co-precipitating Fe 2+ and Fe 3+ in an ammonia solution. Then silica was coated on the Fe 3O 4 nanoparticles using a sol-gel method to obtain magnetic silica nanoparticles. The condensation product of 3-Glycidoxypropyltrimethoxysilane (GLYMO) and iminodiacetic acid (IDA) was immobilized on them and after charged with Cu 2+, the magnetic silica nanoparticles with immobilized Cu 2+ were applied for the adsorption of bovine serum albumin (BSA). Scanning electron micrograph showed that the magnetic silica nanoparticles with an average size of 190 nm were well dispersed without aggregation. X-ray diffraction showed the spinel structure for the magnetite particles coated with silica. Magnetic measurement revealed the magnetic silica nanoparticles were superparamagnetic and the saturation magnetization was about 15.0 emu/g. Protein adsorption results showed that the nanoparticles had high adsorption capacity for BSA (73 mg/g) and low nonspecific adsorption. The regeneration of these nanoparticles was also studied.

  1. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles.

    PubMed

    Schütz, Irene; Lopez-Hernandez, Tania; Gao, Qi; Puchkov, Dmytro; Jabs, Sabrina; Nordmeyer, Daniel; Schmudde, Madlen; Rühl, Eckart; Graf, Christina M; Haucke, Volker

    2016-07-01

    Nanoparticles (NPs) are widely used as components of drugs or cosmetics and hold great promise for biomedicine, yet their effects on cell physiology remain poorly understood. Here we demonstrate that clathrin-independent dynamin 2-mediated caveolar uptake of surface-functionalized silica nanoparticles (SiNPs) impairs cell viability due to lysosomal dysfunction. We show that internalized SiNPs accumulate in lysosomes resulting in inhibition of autophagy-mediated protein turnover and impaired degradation of internalized epidermal growth factor, whereas endosomal recycling proceeds unperturbed. This phenotype is caused by perturbed delivery of cargo via autophagosomes and late endosomes to SiNP-filled cathepsin B/L-containing lysosomes rather than elevated lysosomal pH or altered mTOR activity. Given the importance of autophagy and lysosomal protein degradation for cellular proteostasis and clearance of aggregated proteins, these results raise the question of beneficial use of NPs in biomedicine and beyond. PMID:27226546

  2. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles.

    PubMed

    Schütz, Irene; Lopez-Hernandez, Tania; Gao, Qi; Puchkov, Dmytro; Jabs, Sabrina; Nordmeyer, Daniel; Schmudde, Madlen; Rühl, Eckart; Graf, Christina M; Haucke, Volker

    2016-07-01

    Nanoparticles (NPs) are widely used as components of drugs or cosmetics and hold great promise for biomedicine, yet their effects on cell physiology remain poorly understood. Here we demonstrate that clathrin-independent dynamin 2-mediated caveolar uptake of surface-functionalized silica nanoparticles (SiNPs) impairs cell viability due to lysosomal dysfunction. We show that internalized SiNPs accumulate in lysosomes resulting in inhibition of autophagy-mediated protein turnover and impaired degradation of internalized epidermal growth factor, whereas endosomal recycling proceeds unperturbed. This phenotype is caused by perturbed delivery of cargo via autophagosomes and late endosomes to SiNP-filled cathepsin B/L-containing lysosomes rather than elevated lysosomal pH or altered mTOR activity. Given the importance of autophagy and lysosomal protein degradation for cellular proteostasis and clearance of aggregated proteins, these results raise the question of beneficial use of NPs in biomedicine and beyond.

  3. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles

    PubMed Central

    Galagudza, Michael; Korolev, Dmitry; Postnov, Viktor; Naumisheva, Elena; Grigorova, Yulia; Uskov, Ivan; Shlyakhto, Eugene

    2012-01-01

    Pharmacological agents suggested for infarct size limitation have serious side effects when used at cardioprotective doses which hinders their translation into clinical practice. The solution to the problem might be direct delivery of cardioprotective drugs into ischemic-reperfused myocardium. In this study, we explored the potential of silica nanoparticles for passive delivery of adenosine, a prototype cardioprotective agent, into ischemic-reperfused heart tissue. In addition, the biodegradation of silica nanoparticles was studied both in vitro and in vivo. Immobilization of adenosine on the surface of silica nanoparticles resulted in enhancement of adenosine-mediated infarct size limitation in the rat model. Furthermore, the hypotensive effect of adenosine was attenuated after its adsorption on silica nanoparticles. We conclude that silica nanoparticles are biocompatible materials that might potentially be used as carriers for heart-targeted drug delivery. PMID:22619519

  4. Observation of blue phase in chiral nematic liquid crystal and its stabilization by silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, Arshdeep; Malik, Praveen; Jayoti, Divya

    2016-01-01

    In the present work, we report the blue phase (BP) in a binary mixture of cholesteryl nonanoate (CN) and N-(4-ethoxybenzylidene)-4-butylaniline (EBBA). The mixture exhibits BP over a temperature range of 2.3 K at optimum composition (50:50) of liquid crystals (LCs). The effect of silica nanoparticles (SNPs) doping on thermal stability of BPs has also been demonstrated and nearly 6 K wide BP temperature range was achieved at 0.5 wt.% of SNPs. A porous type texture was also observed during the BP formation process in the doped samples.

  5. Microwave attenuation of multiwalled carbon nanotube-fused silica composites

    SciTech Connect

    Xiang Changshu; Pan Yubai; Liu Xuejian; Sun Xingwei; Shi Xiaomei; Guo Jingkun

    2005-09-19

    Multiwalled carbon nanotubes (MWCNTs) were used to convert radome materials to microwave absorbing materials. Dense MWCNT-fused silica composites were prepared by hot-pressing technique. The composites exhibit high complex permittivities at X-band frequencies, depending on the content of MWCNTs. The value of the loss tangent increases three orders over pure fused silica only by incorporating 2.5 vol % MWCNTs into the composites. The average magnitude of microwave transmission reaches -33 dB at 11-12 GHz in the 10 vol % MWCNT-fused silica composites, which indicates the composites have excellent microwave attenuation properties. The attenuation properties mainly originate from the electric loss of MWCNTs by the motion of conducting electrons.

  6. Nanoparticle release from dental composites.

    PubMed

    Van Landuyt, K L; Hellack, B; Van Meerbeek, B; Peumans, M; Hoet, P; Wiemann, M; Kuhlbusch, T A J; Asbach, C

    2014-01-01

    Dental composites typically contain high amounts (up to 60 vol.%) of nanosized filler particles. There is a current concern that dental personnel (and patients) may inhale nanosized dust particles (<100 nm) during abrasive procedures to shape, finish or remove restorations but, so far, whether airborne nanoparticles are released has never been investigated. In this study, composite dust was analyzed in real work conditions. Exposure measurements of dust in a dental clinic revealed high peak concentrations of nanoparticles in the breathing zone of both dentist and patient, especially during aesthetic treatments or treatments of worn teeth with composite build-ups. Further laboratory assessment confirmed that all tested composites released very high concentrations of airborne particles in the nanorange (>10(6)cm(-3)). The median diameter of airborne composite dust varied between 38 and 70 nm. Electron microscopic and energy dispersive X-ray analysis confirmed that the airborne particles originated from the composite, and revealed that the dust particles consisted of filler particles or resin or both. Though composite dust exhibited no significant oxidative reactivity, more toxicological research is needed. To conclude, on manipulation with the bur, dental composites release high concentrations of nanoparticles that may enter deeply into the lungs.

  7. Optimization of protocell of silica nanoparticles using 3² factorial designs.

    PubMed

    Kaur, Gunjeet; Rath, Goutam; Heer, Hemraj; Goyal, Amit K

    2012-03-01

    The purpose of the research is to carry out systemic optimization of protocells (liposomes entrapped with silica particles). Optimization was carried out using 3(2) factorial designs for the selection of the optimized protocell composition with reference to particle size distribution and zetapotential. This design was carried out to study the effect of independent variables such as molar ratio of phosphatidylcholine to cholesterol and concentration of silica nanoparticles. A total of nine formulations of protocells were prepared and analyzed using Design expert® software from Stat-Ease, Inc. (Version 8.0.4.1 trial 2010) for the selection of the optimized combination. Contour plots were constructed with independent variables like size and potential. Protocell with 7:3 ratio of phosphatidyl choline to cholesterol and 0.5 mg/ml of silica nanoparticles demonstrated better colloidal behaviors. The findings obtained from the software corresponding to independent variables demonstrated accurate means for the optimization of the pharmaceutical formulations. PMID:22173376

  8. Amphiphilic silica nanoparticles as pseudostationary phase for capillary electrophoresis separation.

    PubMed

    Li, Hui; Ding, Guo-Sheng; Chen, Jie; Tang, An-Na

    2010-11-19

    Amphiphilic silica nanoparticles surface-functionalized by 3-aminopropyltriethoxysilane (APTES) and octyltriethoxylsilane (OTES) were successfully prepared and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR) and thermogravimetry (TG) techniques. The potential use of these bifunctionalized nanoparticles as pseudostationary phases (PSPs) in capillary electrophoresis (CE) for the separation of charged and neutral compounds was evaluated in terms of their suitability. As expected, fast separation of representative aromatic acids was fulfilled with high separation efficiency, because they migrate in the same direction with the electroosmotic flow (EOF) under optimum experimental conditions. Using a buffer solution of 30mmol/L phosphate (pH 3.0) in the presence of 0.5mg/mL of the synthesized bifunctionalized nanoparticles, the investigated basic compounds were baseline-resolved with symmetrical peaks. Due to the existence of amino groups on the surface of nanoparticles, "silanol effect" that occurs between positively charged basic analytes and the silanols on the inner surface of capillary was greatly suppressed. Furthermore, the separation systems also exhibited reversed-phase (RP) behavior when neutral analytes were tested. PMID:20961550

  9. Silica nanoparticles for cell imaging and intracellular sensing

    NASA Astrophysics Data System (ADS)

    Korzeniowska, B.; Nooney, R.; Wencel, D.; McDonagh, C.

    2013-11-01

    There is increasing interest in the use of nanoparticles (NPs) for biomedical applications. In particular, nanobiophotonic approaches using fluorescence offers the potential of high sensitivity and selectivity in applications such as cell imaging and intracellular sensing. In this review, we focus primarily on the use of fluorescent silica NPs for these applications and, in so doing, aim to enhance and complement the key recent review articles on these topics. We summarize the main synthetic approaches, namely the Stöber and microemulsion processes, and, in this context, we deal with issues in relation to both covalent and physical incorporation of different types of dyes in the particles. The important issue of NP functionalization for conjugation to biomolecules is discussed and strategies published in the recent literature are highlighted and evaluated. We cite recent examples of the use of fluorescent silica NPs for cell imaging in the areas of cancer, stem cell and infectious disease research, and we review the current literature on the use of silica NPs for intracellular sensing of oxygen, pH and ionic species. We include a short final section which seeks to identify the main challenges and obstacles in relation to the potential widespread use of these particles for in vivo diagnostics and therapeutics.

  10. Size-dependent interaction of silica nanoparticles with different surfactants in aqueous solution.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2012-06-26

    The size-dependent interaction of anionic silica nanoparticles with ionic (anionic and cationic) and nonionic surfactants has been studied using small-angle neutron scattering (SANS). The surfactants used are anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB), and nonionic decaoxyethylene n-dodecylether (C(12)E(10)). The measurements have been carried out for three different sizes of silica nanoparticles (8, 16, and 26 nm) at fixed concentrations (1 wt % each) of nanoparticles and surfactants. It is found that irrespective of the size of the nanoparticles there is no significant interaction evolved between like-charged nanoparticles and the SDS micelles leading to any structural changes. However, the strong attraction of oppositely charged DTAB micelles with silica nanoparticles results in the aggregation of nanoparticles. The number of micelles mediating the nanoparticle aggregation increases with the size of the nanoparticle. The aggregates are characterized by fractal structure where the fractal dimension is found to be constant (D ≈ 2.3) independent of the size of the nanoparticles and consistent with diffusion-limited-aggregation-type fractal morphology in these systems. In the case of nonionic surfactant C(12)E(10), micelles interact with the individual silica nanoparticles. The number of adsorbed micelles per nanoparticle increases drastically whereas the percentage of adsorbed micelles on nanoparticles decreases with the increase in the size of the nanoparticles. PMID:22655980

  11. Silica nanoparticles separation from water: aggregation by cetyltrimethylammonium bromide (CTAB).

    PubMed

    Liu, Y; Tourbin, M; Lachaize, S; Guiraud, P

    2013-07-01

    Nanoparticles will inevitably be found in industrial and domestic wastes in the near future and as a consequence soon in water resources. Due to their ultra-small size, nanoparticles may not only have new hazards for environment and human health, but also cause low separation efficiency by classical water treatments processes. Thus, it would be an important challenge to develop a specific treatment with suitable additives for recovery of nanoparticles from waters. For this propose, this paper presents aggregation of silica nanoparticles (Klebosol 30R50 (75nm) and 30R25 (30nm)) by cationic surfactant cetyltrimethylammonium bromide (CTAB). Different mechanisms such as charge neutralization, "depletion flocculation" or "volume-restriction", and "hydrophobic effect" between hydrocarbon tails of CTAB have been proposed to explicate aggregation results. One important finding is that for different volume concentrations between 0.05% and 0.51% of 30R50 suspensions, the same critical coagulation concentration was observed at CTAB=0.1mM, suggesting the optimized quantity of CTAB during the separation process for nanoparticles of about 75nm. Furthermore, very small quantities of CTAB (0.01mM) can make 30R25 nanosilica aggregated due to the "hydrophobic effect". It is then possible to minimize the sludge and allow the separation process as "greener" as possible by studying this case. It has also shown that aggregation mechanisms can be different for very small particles so that a special attention has to be paid to the treatment of nanoparticles contained in water and wastewaters.

  12. Bifunctional hairy silica nanoparticles as high-performance additives for lubricant

    PubMed Central

    Sui, Tianyi; Song, Baoyu; Wen, Yu-ho; Zhang, Feng

    2016-01-01

    Bifunctional hairy silica nanoparticles (BHSNs), which are silica nanoparticles covered with alkyl and amino organic chains, were prepared as high-performance additives for lubricants. Compared with hairy silica nanoparticles covered by a single type of organic chain, binary hairy silica nanoparticles exhibit the advantages of both types of organic chains, which exhibit excellent compatibility with lubricants and adsorbability to metal surfaces. Nanoparticles with different ratios of amino and alkyl ligands were investigated. In comparison to an untreated lubricant, BHSNs reduce the friction coefficient and wear scar diameter by 40% and 60%, respectively. The wear mechanism of BHSNs was investigated, and the protective and filling effect of the nanoparticles improved because of collaboration of amino and alkyl ligands. PMID:26936117

  13. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    NASA Astrophysics Data System (ADS)

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  14. In Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence

    PubMed Central

    Bossinger, Olaf; von Mikecz, Anna

    2009-01-01

    While expectations and applications of nanotechnologies grow exponentially, little is known about interactions of engineered nanoparticles with multicellular organisms. Here we propose the transparent roundworm Caenorhabditis elegans as a simple but anatomically and biologically well defined animal model that allows for whole organism analyses of nanoparticle-bio-interactions. Microscopic techniques showed that fluorescently labelled nanoparticles are efficiently taken up by the worms during feeding, and translocate to primary organs such as epithelial cells of the intestine, as well as secondary organs belonging to the reproductive tract. The life span of nanoparticle-fed Caenorhabditis elegans remained unchanged, whereas a reduction of progeny production was observed in silica-nanoparticle exposed worms versus untreated controls. This reduction was accompanied by a significant increase of the ‘bag of worms’ phenotype that is characterized by failed egg-laying and usually occurs in aged wild type worms. Experimental exclusion of developmental defects suggests that silica-nanoparticles induce an age-related degeneration of reproductive organs, and thus set a research platform for both, detailed elucidation of molecular mechanisms and high throughput screening of different nanomaterials by analyses of progeny production. PMID:19672302

  15. Thermo-mechanical properties of high aspect ratio silica nanofiber filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Ren, Liyun

    The optimization of thermo-mechanical properties of polymer composites at low filler loadings is of great interest in both engineering and scientific fields. There have been several studies on high aspect ratio fillers as novel reinforcement phase for polymeric materials. However, facile synthesis method of high aspect ratio nanofillers is limited. In this study, a scalable synthesis method of high aspect ratio silica nanofibers is going to be presented. I will also demonstrate that the inclusion of high aspect ratio silica nanofibers in epoxy results in a significant improvement of epoxy thermo-mechanical properties at low filler loadings. With silica nanofiber concentration of 2.8% by volume, the Young's modulus, ultimate tensile strength and fracture toughness of epoxy increased ~23, ~28 and ~50%, respectively, compared to unfilled epoxy. At silica nanofiber volume concentration of 8.77%, the thermal expansion coefficient decreased by ˜40% and the thermal conductivity was improved by ˜95% at room temperature. In the current study, the influence of nano-sized silica filler aspect ratio on mechanical and thermal behavior of epoxy nanocomposites were studied by comparing silica nanofibers to spherical silica nanoparticles (with aspect ratio of one) at various filler loadings. The significant reinforcement of composite stiffness is attributed to the variation of the local stress state in epoxy due to the high aspect ratio of the silica nanofiber and the introduction of a tremendous amount of interfacial area between the nanofillers and the epoxy matrix. The fracture mechanisms of silica nanofiber filled epoxy were also investigated. The existence of high aspect ratio silica nanofiber promotes fracture energy dissipation by crack deflection, crack pinning as well as debonding with fiber pull-out leading to enhanced fracture toughness. High aspect ratio fillers also provide significant reduction of photon scattering due to formation of a continuous fiber network

  16. New porous polycaprolactone-silica composites for bone regeneration.

    PubMed

    Plazas Bonilla, Clara E; Trujillo, Sara; Demirdögen, Bermali; Perilla, Jairo E; Murat Elcin, Y; Gómez Ribelles, José L

    2014-07-01

    Polycaprolactone porous membranes were obtained by freeze extraction of dioxane from polycaprolactone-dioxane solid solutions. Porosities as high as 90% with interconnected structures were obtained by this technique. A silica phase was synthesized inside the pores of the polymer membrane by sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica precursor and catalyzed in acidic and basic conditions. Two different morphologies of the inorganic phase were obtained depending on the type of catalyst. In acid catalyzed sol-gel reaction, a homogeneous layer of silica was deposited on the pores, and discrete microspheres were synthesized on the pore walls when a basic catalyst was used. The morphology of the inorganic phase influenced the mechanical and thermal behavior, as well as the hydrophilic character of the composites. Bioactivity of the porous materials was tested in vitro by measuring the deposition of hydroxyapatite on the surfaces of the porous composite membranes. Polycaprolactone/silica composites revealed a superior bioactivity performance compared with that of the pure polymer; evidenced by the characteristic cauliflower structures on the material surface, increase in weight and Ca/P ratio of the hydroxyapatite layer. Also, the acid catalyzed composites presented better bioactivity than the base catalyzed composites, evidencing the importance in the morphology of the silica phase.

  17. Near infrared dye indocyanine green doped silica nanoparticles for biological imaging.

    PubMed

    Quan, Bo; Choi, Kihwan; Kim, Young-Hwa; Kang, Keon Wook; Chung, Doo Soo

    2012-09-15

    Indocyanine green (ICG) is an FDA-approved near infrared (NIR) fluorescent dye used in clinical imaging. However, its applications remain limited due to its short half-life, nonspecific plasma binding, optical instability, and poor aqueous stability. Dye doped silica nanoparticles provide an effective barrier in keeping the dye away from the surrounding environment, but ICG cannot be encapsulated into silica easily by conventional methods. In this study, ICG molecules ion-paired with a cationic polymer polyethylenimine (PEI) were successfully encapsulated into a silica matrix to form ICG doped silica nanoparticles by using the Stöber method. Pairing with PEI reduced self-quenching of fluorescence by preventing the aggregation of ICG molecules in silica nanoparticles. Dye leakage was also reduced to the level of 3-6% loss in 5 days. NIR fluorescence images of ICG doped silica NPs below a 2.0 cm thick porcine muscle sample illuminated by NIR light were obtained.

  18. Microwave-driven enzyme deactivation using imidazolium salt-presenting silica nanoparticles.

    PubMed

    Okada, Hiroshi; Tanaka, Kazuo; Chujo, Yoshiki

    2014-10-01

    Thermal enzyme deactivation by the imidazolium-presenting silica nanoparticles with the microwave irradiation is presented in this manuscript. The modified nanoparticles were synthesized, and it was observed that the modified nanoparticles can be a heat source in the buffer under the weak-power microwave irradiation. Finally, based on the heat-generating ability of these nanoparticles, deactivation of glutathione reductase and alkaline phosphatase with the modified nanoparticles were demonstrated. PMID:25223957

  19. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation

    PubMed Central

    Kim, Ki Joo; Joe, Young Ae; Kim, Min Kyoung; Lee, Su Jin; Ryu, Yeon Hee; Cho, Dong-Woo; Rhie, Jong Won

    2015-01-01

    Background Silicon dioxide composites have been found to enhance the mechanical properties of scaffolds and to support growth of human adipose tissue-derived stem cells (hADSCs) both in vitro and in vivo. Silica (silicon dioxide alone) exists as differently sized particles when suspended in culture medium, but it is not clear whether particle size influences the beneficial effect of silicon dioxide on hADSCs. In this study, we examined the effect of different sized particles on growth and mitogen-activated protein kinase signaling in hADSCs. Methods Silica gel was prepared by a chemical reaction using hydrochloric acid and sodium silicate, washed, sterilized, and suspended in serum-free culture medium for 48 hours, and then sequentially filtered through a 0.22 μm filter (filtrate containing nanoparticles smaller than 220 nm; silica NPs). hADSCs were incubated with silica NPs or 3 μm silica microparticles (MPs), examined by transmission electron microscopy, and assayed for cell proliferation, apoptosis, and mitogen-activated protein kinase signaling. Results Eighty-nine percent of the silica NPs were around 50–120 nm in size. When hADSCs were treated with the study particles, silica NPs were observed in endocytosed vacuoles in the cytosol of hADSCs, but silica MPs showed no cell entry. Silica NPs increased the proliferation of hADSCs, but silica MPs had no significant effect in this regard. Instead, silica MPs induced slight apoptosis. Silica NPs increased phosphorylation of extracellular signal-related kinase (ERK)1/2, while silica MPs increased phosphorylation of p38. Silica NPs had no effect on phosphorylation of Janus kinase or p38. Pretreatment with PD98059, a MEK inhibitor, prevented the ERK1/2 phosphorylation and proliferation induced by silica NPs. Conclusion Scaffolds containing silicon dioxide for tissue engineering may enhance cell growth through ERK1/2 activation only when NPs around 50–120 nm in size are included, and single component silica

  20. Synthesis of hybrid inorganic/organic nitric oxide-releasing silica nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Carpenter, Alexis Wells

    Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to <7 days. An alternative strategy for increasing NO release duration involved directly stabilizing the N-diazeniumdiolate using O2-protecting groups. O2-Methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 μmol NO/mg and an NO release half-life of 23 d. Doping the MOM-Pip/NO-modified particles into resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered

  1. Experimental Investigation of Mechanical and Thermal Properties of Silica Nanoparticle-Reinforced Poly(acrylamide) Nanocomposite Hydrogels

    PubMed Central

    O’Brien, Victor; Chang, Andrew; Blanco, Matthew; Zabalegui, Aitor; Lee, Hohyun; Asuri, Prashanth

    2015-01-01

    Current studies investigating properties of nanoparticle-reinforced polymers have shown that nanocomposites often exhibit improved properties compared to neat polymers. However, over two decades of research, using both experimental studies and modeling analyses, has not fully elucidated the mechanistic underpinnings behind these enhancements. Moreover, few studies have focused on developing an understanding among two or more polymer properties affected by incorporation of nanomaterials. In our study, we investigated the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparticles. Both nanoparticle concentration and size affected hydrogel properties, with similar trends in enhancements observed for elastic modulus and thermal diffusivity. We also observed significantly lower swellability for hydrogel nanocomposites relative to neat hydrogels, consistent with previous work suggesting that nanoparticles can mediate pseudo crosslinking within polymer networks. Collectively, these results indicate the ability to develop next-generation composite materials with enhanced mechanical and thermal properties by increasing the average crosslinking density using nanoparticles. PMID:26301505

  2. Thermal stability of bimetallic Au/Fe nanoparticles in silica matrix

    SciTech Connect

    Pannu, Compesh Singh, Udai B. Hooda, Sonu Kabiraj, D. Avasthi, D. K.

    2014-04-24

    Thin silica film containing Au and Fe bimetallic nanoparticles were prepared by atom beam cosputtering. The samples were annealed at different temperatures from 400 to 800° C to study the thermal stability of bimetallic nanoparticles using X ray diffraction. It is observed that at 800° C strong structural rearrangement took place leading to thermal decomposition of bimetallic nanoparticles.

  3. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.

    PubMed

    Braun, Katharina; Pochert, Alexander; Lindén, Mika; Davoudi, Mina; Schmidtchen, Artur; Nordström, Randi; Malmsten, Martin

    2016-08-01

    Membrane interactions are critical for the successful use of mesoporous silica nanoparticles as delivery systems for antimicrobial peptides (AMPs). In order to elucidate these, we here investigate effects of nanoparticle charge and porosity on AMP loading and release, as well as consequences of this for membrane interactions and antimicrobial effects. Anionic mesoporous silica particles were found to incorporate considerable amounts of the cationic AMP LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES (LL-37), whereas loading is much lower for non-porous or positively charged silica nanoparticles. Due to preferential pore localization, anionic mesoporous particles, but not the other particles, protect LL-37 from degradation by infection-related proteases. For anionic mesoporous nanoparticles, membrane disruption is mediated almost exclusively by peptide release. In contrast, non-porous silica particles build up a resilient LL-37 surface coating due to their higher negative surface charge, and display largely particle-mediated membrane interactions and antimicrobial effects. For positively charged mesoporous silica nanoparticles, LL-37 incorporation promotes the membrane binding and disruption displayed by the particles in the absence of peptide, but also causes toxicity against human erythrocytes. Thus, the use of mesoporous silica nanoparticles as AMP delivery systems requires consideration of membrane interactions and selectivity of both free peptide and the peptide-loaded nanoparticles, the latter critically dependent on nanoparticle properties. PMID:27174622

  4. Stable Radiolabeling of Sulfur-Functionalized Silica Nanoparticles with Copper-64.

    PubMed

    Shaffer, Travis M; Harmsen, Stefan; Khwaja, Emaad; Kircher, Moritz F; Drain, Charles Michael; Grimm, Jan

    2016-09-14

    Nanoparticles labeled with radiometals enable whole-body nuclear imaging and therapy. Though chelating agents are commonly used to radiolabel biomolecules, nanoparticles offer the advantage of attaching a radiometal directly to the nanoparticle itself without the need of such agents. We previously demonstrated that direct radiolabeling of silica nanoparticles with hard, oxophilic ions, such as the positron emitters zirconium-89 and gallium-68, is remarkably efficient. However, softer radiometals, such as the widely employed copper-64, do not stably bind to the silica matrix and quickly dissociate under physiological conditions. Here, we overcome this limitation through the use of silica nanoparticles functionalized with a soft electron-donating thiol group to allow stable attachment of copper-64. This approach significantly improves the stability of copper-64 labeled thiol-functionalized silica nanoparticles relative to native silica nanoparticles, thereby enabling in vivo PET imaging, and may be translated to other softer radiometals with affinity for sulfur. The presented approach expands the application of silica nanoparticles as a platform for facile radiolabeling with both hard and soft radiometal ions. PMID:27464258

  5. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.

    PubMed

    Braun, Katharina; Pochert, Alexander; Lindén, Mika; Davoudi, Mina; Schmidtchen, Artur; Nordström, Randi; Malmsten, Martin

    2016-08-01

    Membrane interactions are critical for the successful use of mesoporous silica nanoparticles as delivery systems for antimicrobial peptides (AMPs). In order to elucidate these, we here investigate effects of nanoparticle charge and porosity on AMP loading and release, as well as consequences of this for membrane interactions and antimicrobial effects. Anionic mesoporous silica particles were found to incorporate considerable amounts of the cationic AMP LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES (LL-37), whereas loading is much lower for non-porous or positively charged silica nanoparticles. Due to preferential pore localization, anionic mesoporous particles, but not the other particles, protect LL-37 from degradation by infection-related proteases. For anionic mesoporous nanoparticles, membrane disruption is mediated almost exclusively by peptide release. In contrast, non-porous silica particles build up a resilient LL-37 surface coating due to their higher negative surface charge, and display largely particle-mediated membrane interactions and antimicrobial effects. For positively charged mesoporous silica nanoparticles, LL-37 incorporation promotes the membrane binding and disruption displayed by the particles in the absence of peptide, but also causes toxicity against human erythrocytes. Thus, the use of mesoporous silica nanoparticles as AMP delivery systems requires consideration of membrane interactions and selectivity of both free peptide and the peptide-loaded nanoparticles, the latter critically dependent on nanoparticle properties.

  6. Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Hsu, S.; Sekine, Y.; Kempf, S.; Juhasz, A.; Horanyi, M.; Moragas-Klostermeyer, G.; Srama, R.

    2013-12-01

    Silica nanoparticles as indicator of hydrothermal activities at Enceladus ocean floor F. Postberg, H.-W. Hsu, Y. Sekine, S. Kempf, A. Juhasz, M. Horanyi, G. Moragas-Klostermeyer, R. Srama Silica serves as a unique indicator of hydrothermal activities on Earth as well as on Mars. Here we report the Cassini Cosmic Dust Analyser (CDA) observation of nanosilica particles from the Saturnian system. Based on their interaction with the solar wind electromagnetic fields, these charged nanosilica particles, so-called stream particles, are found to be originated in Saturn's E ring, indicating Enceladus being their ultimate source. CDA stream particle mass spectra reveal a metal-free but silicon-rich composition that is only plausible for nearly pure silica particles. The size range derived from our measurements confines the size of these particles to a radius of 2 - 8 nm. The unique properties of nano-grains with the observed composition and size are a well-known phenomenon on Earth and their formation requires specific hydrothermal rock-water interactions. The observation of Saturnian nanosilica particles thus serves as an evidence of hydrothermal activities at the interface of Enceladus subsurface ocean and its rocky core. Considering plasma erosion as the major mechanism of releasing embedded nanosilica particles from their carriers, the much larger E ring ice grains, our dynamical model and CDA observation provide a lower limit on the average nanosilica concentration in E ring grains. Together with dedicated hydrothermal experiments (Sekine at al., 2013) this can be translated into constraints on the hydrothermal activities on Enceladus. Measurements and experiments both point at dissolved silica concentrations at the ocean floor in the order of 1 - 3 mMol. The hydrothermal reactions likely take place with a pristine, chondritic rock composition at temperature higher than 130°C (Sekine at al. 2013). Colloidal nano-silica forms upon supersaturation during cooling of the

  7. Recent advances in the rational design of silica-based nanoparticles for gene therapy.

    PubMed

    Niut, Yuting; Popatt, Amirali; Yu, Meihua; Karmakar, Surajit; Gu, Wenyi; Yu, Chengzhong

    2012-10-01

    Gene therapy has attracted much attention in modern society and provides a promising approach for treating genetic disorders, diseases and cancers. Safe and effective vectors are vital tools to deliver genetic molecules to cells. This review summarizes recent advances in the rational design of silica-based nanoparticles and their applications in gene therapy. An overview of different types of genetic agents available for gene therapy is provided. The engineering of various silica nanoparticles is described, which can be used as versatile complexation tools for genetic agents and advanced gene therapy. Several challenges are raised and future research directions in the area of gene therapy using silica-based nanoparticles are proposed.

  8. Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting.

    PubMed

    Khung, Yit Lung; Narducci, Dario

    2015-12-01

    In the past decade, zwitterionic-based anti-biofouling layers had gained much focus as a serious alternative to traditional polyhydrophilic films such as PEG. In the area of assembling silica nanoparticles with stealth properties, the incorporation of zwitterionic surface film remains fairly new but considering that silica nanoparticles had been widely demonstrated as useful biointerfacing nanodevice, zwitterionic film grafting on silica nanoparticle holds much potential in the future. This review will discuss on the conceivable functional chemistry approaches, some of which are potentially suitable for the assembly of such stealth systems.

  9. Effect of acid and temperature on the discontinuous shear thickening phenomenon of silica nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Li, Shuangbing; Wang, Jixiao; Cai, Wei; Zhao, Song; Wang, Zhi; Wang, Shichang

    2016-08-01

    The discontinuous shear thickening (DST) phenomenon of silica nanoparticle suspensions was investigated in this article. First, the non-aggregated silica nanoparticles were synthesized and characterized. The results indicate that the silica nanoparticles are spherical particles with a narrow size distribution with a diameter of approximately 90 nm. Next, the influence of nitric acid concentration and temperature on the DST phenomenon of shear thickening fluids (STFs) was investigated. The results indicate that the concentrated fluids with nitric acid concentration below 8.50 mmol/L and at a temperature below 40 °C exhibit a readily noticeable DST phenomenon.

  10. Breakable mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A; Robinet, Eric; De Cola, Luisa

    2016-04-01

    "Pop goes the particle". Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.

  11. Breakable mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A; Robinet, Eric; De Cola, Luisa

    2016-04-01

    "Pop goes the particle". Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. PMID:26974603

  12. Externally Controlled Nanomachines on Mesoporous Silica Nanoparticles for Biomedical Applications.

    PubMed

    Rühle, Bastian; Saint-Cricq, Philippe; Zink, Jeffrey I

    2016-06-17

    Many machines (including nanomachines) consist of a solid support with moving parts that can undergo large amplitude motion to carry out specific tasks. In this Minireview, we will describe nanomachines that are supported on mesoporous silica nanoparticles that are typically 50-100 nanometers in diameter and have an array of open, readily accessible pores with an average width of a few nanometers. For triggering a large amplitude motion of the moving parts, we will focus primarily on external stimuli such as heat or light. As for the specific task the machines are carrying out, this Minireview will focus on the controlled release of pharmaceutically active agents in biomedical applications. We will discuss examples of how nanomachines can be used for remotely controlled cargo release and how existing machines that were originally designed to respond to internal physiological stimuli could be reconfigured to respond to external stimuli instead.

  13. Hydrogen and oxygen adsorption stoichiometries on silica supported ruthenium nanoparticles

    SciTech Connect

    Berthoud, Romain; Delichere, Pierre; Gajan, David; Lukens, Wayne; Pelzer, Katrin; Basset, Jean-Marie; Candy, Jean-Pierre; Coperet, Christophe

    2008-12-01

    Treatment under H{sub 2} at 300 C of Ru(COD)(COT) dispersed on silica yields 2 nm ruthenium nanoparticles, [Ru{sub p}/SiO{sub 2}], according to EXAFS, HRTEM and XPS. H{sub 2} adsorption measurements on [Ru{sub p}/SiO{sub 2}] in the absence of O{sub 2} show that Ru particles adsorb up to ca. 2 H per surface ruthenium atoms (2H/Ru{sub s}) on various samples; this technique can therefore be used to measure the dispersion of Ru particles. In contrast, O{sub 2} adsorption on [Ru{sub p}/SiO{sub 2}] leads to a partial oxidation of the bulk at 25 C, to RuO{sub 2} at 200 C and to sintering upon further reduction under H{sub 2}, showing that O{sub 2} adsorption cannot be used to measure the dispersion of Ru particles.

  14. Porous thin films of functionalized mesoporous silica nanoparticles.

    PubMed

    Kobler, Johannes; Bein, Thomas

    2008-11-25

    The synthesis of extremely small mesoporous silica nanoparticles via a specific co-condensation process with phenyl groups is demonstrated. The suspensions are ideally suited for the production of nanoscale thin films by spin-coating. Thanks to the small particle size and the resulting low surface roughness, the films show excellent optical qualities and exhibit good diffusion properties and a highly accessible pore system. The availability of such homogeneous porous thin films made it possible to use ellipsometric porosimetry (EP) as a convenient method to determine the effective porosity of the films on their original support without destroying it. It was possible to record sorption isotherms of the thin films with ellipsometry and to correlate the data with nitrogen sorption data of dried powders of the same material. The thin films showed very low refractive indices of around 1.2. PMID:19206399

  15. Rapid Imaging of Latent Fingerprints Using Biocompatible Fluorescent Silica Nanoparticles.

    PubMed

    Kim, Young-Jae; Jung, Hak-Sung; Lim, Joohyun; Ryu, Seung-Jin; Lee, Jin-Kyu

    2016-08-16

    Fluorescent silica nanoparticles (FSNPs) are synthesized through the Stöber method by incorporating silane-modified organic dye molecules. The modified fluorescent organic dye molecule is able to be prepared by allylation and hydrosilylation reactions. The optical properties of as-prepared FSNPs are shown the similar optical properties of PR254A (allylated Pigment Red 254) and have outstanding photostability. The polyvinylpyrrolidone (PVP) is introduced onto the surface of FSNP to enhance the binding affinity of PVP-coated FSNP for latent fingerprints (LFPs) detection. The simple preparation and easy control of surface properties of FSNPs show potential as a fluorescent labeling material for enhanced latent fingerprint detection on hydrophilic and hydrophobic substrates in forensic science for individual identification. PMID:27452188

  16. PEG-templated mesoporous silica nanoparticles exclusively target cancer cells

    NASA Astrophysics Data System (ADS)

    Morelli, Catia; Maris, Pamela; Sisci, Diego; Perrotta, Enrico; Brunelli, Elvira; Perrotta, Ida; Panno, Maria Luisa; Tagarelli, Antonio; Versace, Carlo; Casula, Maria Francesca; Testa, Flaviano; Andò, Sebastiano; Nagy, Janos B.; Pasqua, Luigi

    2011-08-01

    Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae-mediated, endocytosis. Moreover, internalized particles seem to be mostly exocytosed from cells within 96 h. Finally, cisplatin (Cp) loaded MSN-FOL were tested on cancerous FR-positive (HeLa) or normal FR-negative (HEK293) cells. A strong growth arrest was observed only in HeLa cells treated with MSN-FOL-Cp. The results presented here show that our mesoporous nanoparticles do not enter cells unless opportunely functionalized, suggesting that they could represent a promising vehicle for drug targeting applications.Mesoporous silica nanoparticles (MSNs) have been proposed as DNA and drug delivery carriers, as well as efficient tools for fluorescent cell tracking. The major limitation is that MSNs enter cells regardless of a target-specific functionalization. Here we show that non functionalized MSNs, synthesized using a PEG surfactant-based interfacial synthesis procedure, do not enter cells, while a highly specific, receptor mediated, cellular internalization of folic acid (FOL) grafted MSNs (MSN-FOL), occurs exclusively in folate receptor (FR) expressing cells. Neither the classical clathrin pathway nor macropinocytosis is involved in the MSN endocytic process, while fluorescent MSNs (MSN-FITC) enter cells through aspecific, caveolae

  17. Incorporation of Ln-Doped LaPO4 Nanocrystals as Luminescent Markers in Silica Nanoparticles.

    PubMed

    van Hest, Jacobine J H A; Blab, Gerhard A; Gerritsen, Hans C; Donega, Celso de Mello; Meijerink, Andries

    2016-12-01

    Lanthanide ions are promising for the labeling of silica nanoparticles with a specific luminescent fingerprint due to their sharp line emission at characteristic wavelengths. With the increasing use of silica nanoparticles in consumer products, it is important to label silica nanoparticles in order to trace the biodistribution, both in the environment and living organisms.In this work, we synthesized LaPO4 nanocrystals (NCs) with sizes ranging from 4 to 8 nm doped with europium or cerium and terbium. After silica growth using an inverse micelle method, monodisperse silica spheres were obtained with a single LaPO4 NC in the center. We demonstrate that the size of the silica spheres can be tuned in the 25-55 nm range by addition of small volumes of methanol during the silica growth reaction. Both the LaPO4 core and silica nanocrystal showed sharp line emission characteristic for europium and terbium providing unique optical labels in silica nanoparticles of variable sizes. PMID:27209405

  18. Sol-Gel processing of silica nanoparticles and their applications.

    PubMed

    Singh, Lok P; Bhattacharyya, Sriman K; Kumar, Rahul; Mishra, Geetika; Sharma, Usha; Singh, Garima; Ahalawat, Saurabh

    2014-11-01

    Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized. PMID:25466691

  19. Breakable mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Cabrera, Ingrid; Ruiz-Carretero, Amparo; Prasetyanto, Eko A.; Robinet, Eric; de Cola, Luisa

    2016-03-01

    ``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery.``Pop goes the particle''. Here we report on the preparation of redox responsive mesoporous organo-silica nanoparticles containing disulfide (S-S) bridges (ss-NPs) that, even upon the exohedral grafting of targeting ligands, retained their ability to undergo structural degradation, and increase their local release activity when exposed to a reducing agent. This degradation could be observed also inside glioma C6 cancer cells. Moreover, when anticancer drug-loaded pristine and derivatized ss-NPs were fed to glioma C6 cells, the responsive hybrids were more effective in their cytotoxic action compared to non-breakable particles. The possibility of tailoring the surface functionalization of this hybrid, yet preserving its self-destructive behavior and enhanced drug delivery properties, paves the way for the development of effective biodegradable materials for in vivo targeted drug delivery. Electronic supplementary information (ESI) available: Full experimental procedures, additional SEM and TEM images of particles, complete UV-Vis and PL-monitored characterization of the breakdown of

  20. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance.

    PubMed

    Wang, Feng; Guo, Chen; Yang, Liang-rong; Liu, Chun-Zhao

    2010-12-01

    Newly large-pore magnetic mesoporous silica nanoparticles (MMSNPs) with wormhole framework structures were synthesized for the first time by using tetraethyl orthosilicate as the silica source and amine-terminated Jeffamine surfactants as template. Iminodiacerate was attached on these MMSNPs through a silane-coupling agent and chelated with Cu(2+). The Cu(2+)-chelated MMSNPs (MMSNPs-CPTS-IDA-Cu(2+)) showed higher adsorption capacity of 98.1 mg g(-1)-particles and activity recovery of 92.5% for laccase via metal affinity adsorption in comparison with MMSNPs via physical adsorption. The Michaelis constant (K(m)) and catalytic constant (k(cat)) of laccase immobilized on the MMSNPs-CPTS-IDA-Cu(2+) were 3.28 mM and 155.4 min(-1), respectively. Storage stability and temperature endurance of the immobilized laccase on MMSNPs-CPTS-IDA-Cu(2+) increased significantly, and the immobilized laccase retained 86.6% of its initial activity after 10 successive batch reactions operated with magnetic separation.

  1. Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator.

    PubMed

    Kang, Kiho; Choi, Jinsub; Nam, Joong Hee; Lee, Sang Cheon; Kim, Kyung Ja; Lee, Sang-Won; Chang, Jeong Ho

    2009-01-15

    The work describes a simple and convenient process for highly efficient and direct DNA separation with functionalized silica-coated magnetic nanoparticles. Iron oxide magnetic nanoparticles and silica-coated magnetic nanoparticles were prepared uniformly, and the silica coating thickness could be easily controlled in a range from 10 to 50 nm by changing the concentration of silica precursor (TEOS) including controlled magnetic strength and particle size. A change in the surface modification on the nanoparticles was introduced by aminosilanization to enhance the selective DNA separation resulting from electrostatic interaction. The efficiency of the DNA separation was explored via the function of the amino-group numbers, particle size, the amount of the nanoparticles used, and the concentration of NaCl salt. The DNA adsorption yields were high in terms of the amount of triamino-functionalized nanoparticles used, and the average particle size was 25 nm. The adsorption efficiency of aminofunctionalized nanoparticles was the 4-5 times (80-100%) higher compared to silica-coated nanoparticles only (10-20%). DNA desorption efficiency showed an optimum level of over 0.7 M of the NaCl concentration. To elucidate the agglomeration of nanoparticles after electrostatic DNA binding, the Guinier plots were calculated from small-angle X-ray diffractions in a comparison of the results of energy diffraction TEM and confocal laser scanning microscopy. Additionally, the direct separation of human genomic DNA was achieved from human saliva and whole blood with high efficiency.

  2. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A.

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  3. In situ transmission electron microscopy of solid-liquid phase transition of silica encapsulated bismuth nanoparticles.

    PubMed

    Hu, Jianjun; Hong, Yan; Muratore, Chris; Su, Ming; Voevodin, Andrey A

    2011-09-01

    The solid-liquid phase transition of silica encapsulated bismuth nanoparticles was studied by in situ transmission electron microscopy (TEM). The nanoparticles were prepared by a two-step chemical synthesis process involving thermal decomposition of organometallic precursors for nucleating bismuth and a sol-gel process for growing silica. The microstructural and chemical analyses of the nanoparticles were performed using high-resolution TEM, Z-contrast imaging, focused ion beam milling, and X-ray energy dispersive spectroscopy. Solid-liquid-solid phase transitions of the nanoparticles were directly recorded by electron diffractions and TEM images. The silica encapsulation of the nanoparticles prevented agglomeration and allowed particles to preserve their original volume upon melting, which is desirable for applications of phase change nanoparticles with consistently repeatable thermal properties.

  4. Nano-Web Cobalt Modified Silica Nanoparticles Catalysts for Water Oxidation and MB Oxidative Degradation.

    PubMed

    Wang, Li; Chen, Qiuyun; Li, Chenghao; Fang, Fang

    2016-05-01

    Dioxygen generating materials, using water as oxygen source, can be used as catalysts in hypoxic environments. Cobalt(II) modified silica (SiO2@NPCo) nanoparticles were synthesized through coordination of cobalt(II) ions with nitrogen atoms from 2-acetylpyridine modified silica (SiO2@NP). The SiO2@NPCo nanoparticles further reacted with 1,3,5-benzenetricarboxylic acids, forming porous nano-web nanoparticles (SiO2@NPCoCOOH). The synthesized SiO2@NPCoCOOH nanoparticles were demonstrated as better white LED light driven photochemical catalysts for oxidation of water than individual nanoparticles (SiO2@NPCo). Moreover, the SiO2@NPCoCOOH/water system could decrease the content of methylene blue (MB) in solution and therefore, the nanoweb cobalt(II) modified silica nanoparticles can be environmentally friendly catalysts for oxidative degradation of MB, using water as the oxygen source. PMID:27483932

  5. Nano-Web Cobalt Modified Silica Nanoparticles Catalysts for Water Oxidation and MB Oxidative Degradation.

    PubMed

    Wang, Li; Chen, Qiuyun; Li, Chenghao; Fang, Fang

    2016-05-01

    Dioxygen generating materials, using water as oxygen source, can be used as catalysts in hypoxic environments. Cobalt(II) modified silica (SiO2@NPCo) nanoparticles were synthesized through coordination of cobalt(II) ions with nitrogen atoms from 2-acetylpyridine modified silica (SiO2@NP). The SiO2@NPCo nanoparticles further reacted with 1,3,5-benzenetricarboxylic acids, forming porous nano-web nanoparticles (SiO2@NPCoCOOH). The synthesized SiO2@NPCoCOOH nanoparticles were demonstrated as better white LED light driven photochemical catalysts for oxidation of water than individual nanoparticles (SiO2@NPCo). Moreover, the SiO2@NPCoCOOH/water system could decrease the content of methylene blue (MB) in solution and therefore, the nanoweb cobalt(II) modified silica nanoparticles can be environmentally friendly catalysts for oxidative degradation of MB, using water as the oxygen source.

  6. Biomimetic synthesis of chiral erbium-doped silver/peptide/silica core-shell nanoparticles (ESPN).

    PubMed

    Mantion, Alexandre; Graf, Philipp; Florea, Ileana; Haase, Andrea; Thünemann, Andreas F; Mašić, Admir; Ersen, Ovidiu; Rabu, Pierre; Meier, Wolfgang; Luch, Andreas; Taubert, Andreas

    2011-12-01

    Peptide-modified silver nanoparticles have been coated with an erbium-doped silica layer using a method inspired by silica biomineralization. Electron microscopy and small-angle X-ray scattering confirm the presence of an Ag/peptide core and silica shell. The erbium is present as small Er(2)O(3) particles in and on the silica shell. Raman, IR, UV-Vis, and circular dichroism spectroscopies show that the peptide is still present after shell formation and the nanoparticles conserve a chiral plasmon resonance. Magnetic measurements find a paramagnetic behavior. In vitro tests using a macrophage cell line model show that the resulting multicomponent nanoparticles have a low toxicity for macrophages, even on partial dissolution of the silica shell.

  7. Ball milling synthesis of silica nanoparticle from rice husk ash for drug delivery application.

    PubMed

    Salavati-Niasari, Masoud; Javidi, Jaber; Dadkhah, Mahnaz

    2013-07-01

    Silica nanoparticles were synthesized from rice husk ash at room temperature by using high energy planetary ball mill. The milling time and mill rotational speed were varied in four levels. The morphology of the synthesized powders was investigated by the FE-SEM and TEM image as well as XRD patterns. The results have revealed that the nano-sized amorphous silica particles are formed after about 6 h ball milling and they are spherical in shape. The average particle size of the silica powders is found to be around 70 nm which decreases with increasing ball milling time or mill rotational speed. The as-synthesized silica nanoparticles were subsequently employed as drug carrier to investigate in vitro release behavior of Penicillin-G in simulated body fluid. UV-Vis spectroscopy was used to determine the amount of Penicillin-G released from the carrier. Penicillin-G release profile from silica nanoparticles exhibited a delayed release effect. PMID:22931308

  8. Polystyrene-Core-Silica-Shell Hybrid Particles Containing Gold and Magnetic Nanoparticles.

    PubMed

    Tian, Jia; Vana, Philipp

    2016-02-18

    Polystyrene-core-silica-shell hybrid particles were synthesized by combining the self-assembly of nanoparticles and the polymer with a silica coating strategy. The core-shell hybrid particles are composed of gold-nanoparticle-decorated polystyrene (PS-AuNP) colloids as the core and silica particles as the shell. PS-AuNP colloids were generated by the self-assembly of the PS-grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the "free" PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core-shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high-temperature catalysis and as nanoreactors.

  9. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups

    PubMed Central

    Ekkapongpisit, Maneerat; Giovia, Antonino; Follo, Carlo; Caputo, Giuseppe; Isidoro, Ciro

    2012-01-01

    Background and methods Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10–30 nm versus 50 nm), type of material (mesoporous silica versus polystyrene), and surface charge functionalization (none, amine groups, or carboxyl groups) on biocompatibility, uptake, compartmentalization, and intracellular retention of fluorescently labeled nanoparticles in cultured human ovarian cancer cells. We also investigated the involvement of caveolae in the mechanism of uptake of nanoparticles. Results We found that mesoporous silica nanoparticles entered via caveolae-mediated endocytosis and reached the lysosomes; however, while the 50 nm nanoparticles permanently resided within these organelles, the 10 nm nanoparticles soon relocated in the cytoplasm. Naked 10 nm mesoporous silica nanoparticles showed the highest and 50 nm carboxyl-modified mesoporous silica nanoparticles the lowest uptake rates, respectively. Polystyrene nanoparticle uptake also occurred via a caveolae-independent pathway, and was negatively affected by serum. The 30 nm carboxyl-modified polystyrene nanoparticles did not localize in lysosomes and were not toxic, while the 50 nm amine-modified polystyrene nanoparticles accumulated within lysosomes and eventually caused cell death. Ovarian cancer cells expressing caveolin-1 were more likely to endocytose these nanoparticles. Conclusion These data highlight the importance of considering both the physicochemical characteristics (ie, material, size and surface charge on chemical groups) of nanoparticles and the biochemical composition of the cell membrane when choosing the most suitable nanotheranostics for targeting cancer cells. PMID:22904626

  10. Scattering of ultrasonic shock waves in suspensions of silica nanoparticles.

    PubMed

    Baudoin, Michael; Thomas, Jean-Louis; Coulouvrat, François; Chanéac, Corinne

    2011-03-01

    Experiments are carried out to assess, for the first time, the validity of a generalized Burgers' equation, introduced first by Davidson [J. Acoust. Soc. Am. 54, 1331-1342 (1973)] to compute the nonlinear propagation of finite amplitude acoustical waves in suspensions of "rigid" particles. Silica nanoparticles of two sizes (33 and 69 nm) have been synthesized in a water-ethanol mixture and precisely characterized via electron microscopy. An acoustical beam of high amplitude is generated at 1 MHz inside a water tank, leading to the formation of acoustical shock waves through nonlinear steepening. The signal is then measured after propagation in a cylinder containing either a reference solution or suspensions of nanoparticles. In this way, a "nonlinear attenuation" is obtained and compared to the numerical solution of a generalized Burgers' equation adapted to the case of hydrosols. An excellent agreement (corresponding to an error on the particles size estimation of 3 nm) is achieved in the frequency range from 1 to 40 MHz. Both visco-inertial and thermal scattering are significant in the present case, whereas thermal effects can generally be neglected for most hydrosols. This is due to the value of the specific heat ratio of water-ethanol mixture which significantly differs from unity.

  11. Engineered silica nanoparticles as additives in lubricant oils

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, Teresa; Fernández González, Alfonso; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E.; Badía-Laíño, Rosana

    2015-10-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol-gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives.

  12. Quantification of Internalized Silica Nanoparticles via STED Microscopy

    PubMed Central

    Peuschel, Henrike; Ruckelshausen, Thomas; Cavelius, Christian; Kraegeloh, Annette

    2015-01-01

    The development of safe engineered nanoparticles (NPs) requires a detailed understanding of their interaction mechanisms on a cellular level. Therefore, quantification of NP internalization is crucial to predict the potential impact of intracellular NP doses, providing essential information for risk assessment as well as for drug delivery applications. In this study, the internalization of 25 nm and 85 nm silica nanoparticles (SNPs) in alveolar type II cells (A549) was quantified by application of super-resolution STED (stimulated emission depletion) microscopy. Cells were exposed to equal particle number concentrations (9.2 × 1010 particles mL−1) of each particle size and the sedimentation of particles during exposure was taken into account. Microscopy images revealed that particles of both sizes entered the cells after 5 h incubation in serum supplemented and serum-free medium. According to the in vitro sedimentation, diffusion, and dosimetry (ISDD) model 20–27% of the particles sedimented. In comparison, 102-103 NPs per cell were detected intracellularly serum-containing medium. Furthermore, in the presence of serum, no cytotoxicity was induced by the SNPs. In serum-free medium, large agglomerates of both particle sizes covered the cells whereas only high concentrations (≥ 3.8 × 1012 particles mL−1) of the smaller particles induced cytotoxicity. PMID:26125028

  13. Silica Nanoparticles Effects on Blood Coagulation Proteins and Platelets

    PubMed Central

    Gryshchuk, Volodymyr; Galagan, Natalya

    2016-01-01

    Interaction of nanoparticles with the blood coagulation is important prior to their using as the drug carriers or therapeutic agents. The aim of present work was studying of the primary effects of silica nanoparticles (SiNPs) on haemostasis in vitro. We studied the effect of SiNPs on blood coagulation directly estimating the activation of prothrombin and factor X and to verify any possible effect of SiNPs on human platelets. It was shown that SiNPs shortened coagulation time in APTT and PT tests and increased the activation of factor X induced by RVV possibly due to the sorption of intrinsic pathway factors on their surface. SiNPs inhibited the aggregation of platelet rich plasma induced by ADP but in the same time partially activated platelets as it was shown using flow cytometry. The possibility of SiNPs usage in nanomedicine is strongly dependant on their final concentration in bloodstream and the size of the particles that are used. However SiNPs are extremely promising as the haemostatic agents for preventing the blood loss after damage. PMID:26881078

  14. Fabrication of autofluorescent porous silica nanoparticles for redox-responsive drug release.

    PubMed

    Cao, Na; Zhao, Yanbao; Sang, Bin; Wang, Zhihua; Cao, Liuqin; Sun, Lei; Zou, Xueyan

    2016-12-01

    Porous silica nanoparticles were prepared by emulsion-condensation route. The silica nanoparticles with diameter of 50nm have both accessible center-radial large pore channels (19.9nm) and small pore size of 3.5nm. The hierarchical porous structure endows them large pore volume for loading drugs and sustained release property. The silica nanoparticles were further modified with glucose-oxidized glutathione. The formulated Schiff base and disulfide bonds render the silica nanoparticles auto-fluorescent and redox-responsive properties. The cleavage of disulfide bonds caused by reactive thiols facilitates aminomethylbenzoic acid (AMA) release. The release of drug leads to the loss of fluorescence, which would be used to monitor the drug delivery and carrier distribution. PMID:27612720

  15. Nucleic acid-mesoporous silica nanoparticle conjugates for keypad lock security operation.

    PubMed

    Pu, Fang; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang

    2013-03-21

    We fabricated a keypad lock system based on mesoporous silica nanoparticle (MSN)-nucleic acid conjugates. DNA strand displacement triggered the release of guest molecules entrapped within the pores of MSNs through logic-based control.

  16. Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Z. X.; Huang, Y. Z.; Shi, S. G.; Tang, S. H.; Li, D. H.; Chen, X. L.

    2014-07-01

    In this work, we develop novel mesoporous silica composite nanoparticles (hm-SiO2(AlC4Pc)@Pd) for the co-delivery of photosensitizer (PS) tetra-substituted carboxyl aluminum phthalocyanine (AlC4Pc) and small Pd nanosheets as a potential dual carrier system to combine photodynamic therapy (PDT) with photothermal therapy (PTT). In the nanocomposite, PS AlC4Pc was covalently conjugated to a mesoporous silica network, and small Pd nanosheets were coated onto the surface of mesoporous silica by both coordination and electrostatic interaction. Since small Pd nanosheets and AlC4Pc display matched maximum absorptions in the 600-800 nm near-infrared (NIR) region, the fabricated hm-SiO2(AlC4Pc)@Pd nanocomposites can generate both singlet oxygen and heat upon 660 nm single continuous wavelength (CW) laser irradiation. In vitro results indicated that the cell-killing efficacy by simultaneous PDT/PTT treatment using hm-SiO2(AlC4Pc)@Pd was higher than PDT or PTT treatment alone after exposure to a 660 nm CW-NIR laser.

  17. Modular plasmonic antennas built of ultrathin silica-shell silver-core nanoparticles.

    PubMed

    Zohar, Nir; Haran, Gilad

    2014-07-01

    Dimers of metallic nanoparticles can serve as antennas to locally enhance optical fields through plasmonic excitations. Such dimeric structures can be particularly useful for sensing applications using surface-enhanced Raman scattering (SERS). It has been challenging to devise a synthetic scheme that facilitates creating dimer antennas from different types of particles, at the same time allowing control over the size of the gap between the particles and enabling the introduction of any molecule into the gap. We describe here a method that answers to this challenge. We first introduce a recipe for the creation of a silica shell as thin as 1 nm on silver particles. Analyte molecules are attached to the silica shell, and finally, the silica-shell silver-core particles, whose surface is negatively charged, are mixed with positively charged bare silver particles to create dimers. A demonstration of SERS from individual dimers with gaps of 1.4 and 3.7 nm paves the way to systematic studies of the effect of gap size and composition on plasmonic enhancement.

  18. Synthesis and characterization of functionalized silica/SPES composite membranes

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Sharma, Prem Prakash; Kulshrestha, Vaibhav

    2015-06-01

    Mesoporous silica (MCM-41) has been synthesized via sol gel route. Sulfonation of MCM-41 has been done. Synthesized Sulfonated MCM-41 (S-MCM-41) has been incorporated within SPES (sulfonated poly ether sulfone) polymer matrix to prepare composite membranes. Various concentration of S-MCM-41 has been incorporated into SPES i.e. 1, 2, 5, 10 and 20 wt% to synthesize membranes of different wt% of mesoporous silica. FTIR and XRD of MCM-41 and S-MCM-41 were done to confirm the chemical and structural properties. AFM and UTM are used to find out morphology and mechanical properties of the composites. The water uptake and ionic conductivity of the composite membranes increases with MCM content in composite membrane. Mechanical stability of the membrane also found to be increases with MCM content.

  19. Age hardening of 6061/alumina-silica fiber composite

    SciTech Connect

    Khangaonkar, P.R.; Shamsul, J.B.; Azmi, R.

    1994-12-31

    Continuous alumina-silica fiber (Altex of Sumitomo) which yields high performance composites with some aluminium alloys was tried for squeeze cast 6061 based composites with volume fractions of 0.5 and 0.32, and the matrix microhardness and resistivity changes during age hardening were studied. The matrix in the composites hardened much more than the unreinforced alloy. Microhardness increases of up to 70 VPN above the solution treated condition at various aging temperatures were observed. The resistivity variation indicated an appreciable state of internal stress which continued to persist even when hardness fell by overaging. Energy dispersive X-ray analysis indicated that the regions close to the fibers had a higher silicon content than the matrix, and amorphous silica in the fiber may have a role in the formation of an enriched layer which may help the bonding and strength in the composite.

  20. Investigation of internal microstructure and thermo-responsive properties of composite PNIPAM/silica microcapsules.

    PubMed

    Cejková, Jitka; Hanus, Jaroslav; Stepánek, Frantisek

    2010-06-15

    Composite microcapsules consisting of a thermo-responsive hydrogel poly-N-isopropylacrylamide (PNIPAM) and coated by silica (SiO(2)) nanoparticles have been synthesized by the inverse Pickering emulsion polymerization method. The composite capsules, whose mean diameter is in the 25-86 microm range in the expanded state, were characterized by static light scattering, atomic force microscopy (AFM), scanning electron microscopy (SEM), and laser scanning confocal microscopy (LSCM). It is reported that the hydrogel surface is uniformly covered by a monolayer of silica nanoparticles and that depending on the capsule size and degree of polymer cross-linking, either hollow-core or partially-filled hydrogel-core microcapsules can be created. Equilibrium thermo-responsive behavior of the composite microcapsules is investigated and it is found that after heating the particles above the lower critical solution temperature (LCST) of PNIPAM, the shrinkage ratio V/V(max) varies from 0.8 to 0.4 for a cross-linking ratio from 0.6% to 9% on a mass basis. Dynamic temperature cycling studies reveal no hysteresis in the shrinking and recovery phases, but a small measurable dependence of the asymptotic shrinkage ratio V/V(max) on the rate of temperature change exists. The composite capsules are stable under long-term storage in both dried and hydrated states and easily re-dispersible in water. PMID:20304409

  1. Holographic Recording in Methacrylate Photopolymer Film Codoped with Benzyl n-Butyl Phthalate and Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Naito, Takahiro; Tomita, Yasuo

    2006-06-01

    Transmission volume holograms recorded in methacrylate photopolymer films codoped with benzyl n-butyl phthalate (BBP) and silica nanoparticles are studied. It is found that BBP, which is a well-known plasticizer, can be directly mixed with methacrylate monomer and that a refractive index modulation as high as ˜0.006 is recorded with a BBP concentration of 36 vol %. It is also found that the additional dispersion of silica nanoparticles substantially suppresses polymerization shrinkage without increasing optical scattering loss.

  2. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications.

    PubMed

    Tao, Yu; Ju, Enguo; Ren, Jinsong; Qu, Xiaogang

    2015-02-11

    Bifunctionalized mesoporous silica-supported gold nanoparticles as oxidase and peroxidase mimics for antibacterial applications are demonstrated. For the first time, these mesoporous silica-supported gold nanoparticles are applied as oxidase and peroxidase mimics. Taking advantage of their prominent enzyme activities, the MSN-AuNPs show excellent antibacterial properties against both Gram-negative and Gram-positive bacteria. Furthermore, MSN-AuNPs also exhibit outstanding performance in biofilm elimination . PMID:25655182

  3. Silica nanoparticle stabilization of liquid crystalline lipid dispersions: impact on enzymatic digestion and drug solubilization.

    PubMed

    Bhatt, Achal B; Barnes, Timothy J; Prestidge, Clive A

    2015-01-01

    The high internal surface area and drug solubilizing capacity of liquid crystal lipids makes them promising oral drug delivery systems. Pluronic F127 is typically used to disperse highly viscous cubic liquid crystal lipids into cubosomes; however, such copolymers alter the internal structure and provide little control over enzymatic digestion. This study aimed to use hydrophilic silica nanoparticles to stabilize glyceryl monooleate (GMO) cubosomes prepared by ultrasonication. We investigate the influence of silica nanoparticles size and concentration on the physical (colloidal) and chemical (enzymatic digestion) stability, as well as in vitro solubilization of cinnarizine as a poorly soluble model drug. Silica stabilized nanostructured liquid crystal dispersions (120 nm to150 nm in diameter and zeta potentials of-30 mV to -60 mV) were successfully prepared with excellent long-term stability (<10% size change after 30 days). Silica stabilized GMO cubosomes demonstrated reduced enzymatic digestion compared to pluronic F127 stabilized cubosomes. This reduced digestion was attributed to a combination of adsorbed silica nanoparticles acting as a physical barrier and excess dispersed silica adsorbing/scavenging the lipase enzyme. Under simulated intestinal digestion conditions, silica stabilized GMO cubosomes showed a greater solubilization capacity for cinnarizine, which precipitated in non-crystalline form, in comparison to pure drug suspensions or pluronic F127 stabilized GMO cubosomes. Silica nanoparticle stabilized GMO liquid crystal dispersions are a promising oral delivery vehicle.

  4. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  5. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2

    SciTech Connect

    Ahmad, Javed; Ahamed, Maqusood; Akhtar, Mohd Javed; Alrokayan, Salman A.; Siddiqui, Maqsood A.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2012-03-01

    Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 μg/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion of glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ► We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ► Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ► Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ► Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ► ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.

  6. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model.

    PubMed

    Duan, Junchao; Yu, Yongbo; Li, Yang; Yu, Yang; Sun, Zhiwei

    2013-07-01

    Environmental exposure to nanomaterials is inevitable as nanomaterials become part of our daily life, and as a result, nanotoxicity research is gaining attention. However, most investigators focus on the evaluation of overall toxicity instead of a certain organism system. In this regard, the evaluation of cardiovascular effects of silica nanoparticles was preformed in vitro and in vivo. It's worth noting that silica nanoparticles induced cytotoxicity as well as oxidative stress and apoptosis. ROS and apoptosis were considered as major factor to endothelial cells dysfunction, involved in several molecular mechanisms of cardiovascular diseases. In vivo study, mortality, malformation, heart rate and whole-embryo cellular death were measured in zebrafish embryos. Results showed that silica nanoparticles induced pericardia toxicity and caused bradycardia. We also examined the expression of cardiovascular-related proteins in embryos by western blot analysis. Silica nanoparticles inhibited the expression of p-VEGFR2 and p-ERK1/2 as well as the downregulation of MEF2C and NKX2.5, revealed that silica nanoparticles could inhibit the angiogenesis and disturb the heart formation and development. In summary, our results suggest that exposure to silica nanoparticles is a possible risk factor to cardiovascular system.

  7. Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

    PubMed Central

    Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor

    2013-01-01

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052

  8. Improvement of thermal stability of polypropylene using DOPO-immobilized silica nanoparticles

    PubMed Central

    Dong, Quanxiao; Ding, Yanfen; Wen, Bin; Wang, Feng; Dong, Huicong; Zhang, Shimin

    2014-01-01

    After the surface silylation with 3-methacryloxypropyltrimethoxysilane, silica nanoparticles were further modified by 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). The immobilization of DOPO on silica nanoparticles was confirmed by Fourier transform infrared spectroscopy, UV–visible spectroscopy, magic angle spinning nuclear magnetic resonance, and thermogravimetric analysis. By incorporating the DOPO-immobilized silica nanoparticles (5 wt%) into polypropylene matrix, the thermal oxidative stability exhibited an improvement of 62 °C for the half weight loss temperature, while that was only 26 °C increment with incorporation of virgin silica nanoparticles (5 wt%). Apparent activation energies of the polymer nanocomposites were estimated via Flynn–Wall–Ozawa method. It was found that the incorporation of DOPO-immobilized silica nanoparticles improved activation energies of the degradation reaction. Based on the results, it was speculated that DOPO-immobilized silica nanoparticles could inhibit the degradation of polypropylene and catalyze the formation of carbonaceous char on the surface. Thus, thermal stability was significantly improved. PMID:24729654

  9. Tuning the observability of surface plasmon in silica-gold raspberry shaped nanoparticles using cuprous oxide shell.

    PubMed

    Tyagi, Himanshu; Mohapatra, Jeotikanta; Kushwaha, Ajay; Aslam, Mohammed

    2013-12-11

    A raspberry shaped silica-gold nanoparticle system has been coated with a cuprous oxide shell using a simple wet chemical approach. The optical properties of such particles depend on thin dielectric shell material, and we calculate far-field scattering and extinction of cuprous oxide coated silica-gold composite. In accordance with our theoretical findings, for ultrasmall gold nanoparticles (AuNPs < 5 nm) attached over silica, the localized surface plasmon resonance (LSPR) peak is completely suppressed after Cu2O coating. The cloaking (nonobservability) of the LSPR peak in extinction spectra has been explained via calculation of contribution from absorbance (<10%) and scattering (>90%) in the composite nanostructure. For larger particles (>5 nm), the traditional red-shift of the plasmon peak (from 532 to 588 nm) is still significant due to the large dielectric constant (approx. 8.0 @ 600 nm) of cuprous oxide (Cu2O) coating. A complete and controlled suppression of LSPR in small sized gold nanoparticles due to high dielectric refractory oxide shell could play a significant role in plasmon derived applications.

  10. Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release

    NASA Astrophysics Data System (ADS)

    Du, Pengcheng; Zhao, Xubo; Zeng, Jin; Guo, Jinshan; Liu, Peng

    2015-08-01

    Fluorescent core/shell composite has been fabricated by the layer-by-layer (LbL) assembly of the fluorescein isothiocyanate modified chitosan (CS-FITC) and sodium alginate (AL) onto the carboxyl modified mesoporous silica nanoparticles (MSN-COOH), followed by PEGylation. It exhibits stability in high salt-concentration media and the pH responsive fluorescent feature can be used for cell imaging. Furthermore, the modified MSN cores can enhance the DOX loading capacity and the multifunctional polyelectrolyte shell can adjust the drug release upon the media pH, showing a low leakage quantity at the neutral environment but significantly enhanced release at lower pH media mimicking the tumor environments. Therefore, the biocompatible fluorescent polyelectrolyte coated mesoporous silica nanoparticles (MSN-LBL-PEG) offer promise for tumor therapy.

  11. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-03-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures.

  12. The synthesis and application of two mesoporous silica nanoparticles as drug delivery system with different shape

    NASA Astrophysics Data System (ADS)

    Wang, Jiayi; Wang, Zhuyuan; Chen, Hui; Zong, Shenfei; Cui, Yiping

    2015-05-01

    Mesoporous silica nanospheres(MSNSs) have been obtained utilizing the conventional reverse micelles synthesis method while the mesoporous silica nanorods(MSNRs) have been acquired by means of changing certain parameters. Afterwards, the prepared mesoporous silica nanospheres and nanorods were used as drug carriers to load and release the classical cancer therapeutic drug—DOX. According to the absorption spectra, the encapsulation efficiency of the mesoporous silica nanospheres is almost as high as that of the nanospheres. Different from the familiar encapsulation efficiency, the release characteristic curves of the mesoporous silica nanospheres and nanorods possessed certain differences during the release process. Finally incellular fluorescence imaging was achieved to observe the endocytosis of the mesoporous silica materials. Our results show that although both of the two kinds of nanoparticles possess favourable properties for loading and releasing drugs, the mesoporous silica nanospheres perform better in dispersity and controlled release than the nanorods, which probably endow them the potential as incellular drug delivery system.

  13. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800

  14. Wettability alteration properties of fluorinated silica nanoparticles in liquid-loaded pores: An atomistic simulation

    NASA Astrophysics Data System (ADS)

    Sepehrinia, Kazem; Mohammadi, Aliasghar

    2016-05-01

    Control over the wettability of reservoir rocks is of crucial importance for enhancing oil and gas recovery. In order to develop chemicals for controlling the wettability of reservoir rocks, we present a study of functionalized silica nanoparticles as candidates for wettability alteration and improved gas recovery applications. In this paper, properties of fluorinated silica nanoparticles were investigated in water or decane-loaded pores of mineral silica using molecular dynamics simulation. Trifluoromethyl groups as water and oil repellents were placed on the nanoparticles. Simulating a pore in the presence of trapped water or decane molecules leads to liquid bridging for both of the liquids. Adsorption of nanoparticles on the pore wall reduces the density of liquid molecules adjacent to the wall. The density of liquid molecules around the nanoparticles decreases significantly with increasing the number of trifluoromethyl groups on the nanoparticles' surfaces. An increased hydrophobicity of the pore wall was observed in the presence of adsorbed fluorinated silica nanoparticles. Also, it is observed that increasing the number of the trifluoromethyl groups results in weakening of liquid bridges. Moreover, the free energy of adsorption on mineral surface was evaluated to be more favorable than that of aggregation of nanoparticles, which suggests nanoparticles adsorb preferably on mineral surface.

  15. Magnetic mesoporous silica nanoparticles for potential delivery of chemotherapeutic drugs and hyperthermia.

    PubMed

    Tao, Cuilian; Zhu, Yufang

    2014-11-01

    Magnetic mesoporous silica (MMS) nanoparticles with controllable magnetization have been synthesized by encapsulating Fe3O4 nanoparticles in a mesoporous silica matrix. The structure, magnetic heating capacity and drug delivery ability of MMS nanoparticles were evaluated. The results showed that MMS nanoparticles had an average particle size of 150 nm and showed low cytotoxicity and efficient cell uptake ability. MMS nanoparticles exhibited a sustained drug release in the medium of pH 5.0, but a very slow release in the medium of pH 7.4. On the other hand, MMS nanoparticles could controllably generate heat to reach the hyperthermia temperature within a short time upon exposure to an alternating magnetic field due to the superparamagnetic behavior and controllable magnetization. Therefore, MMS nanoparticles could provide a promising multifunctional platform for the combination of chemotherapy and hyperthermia for cancer therapy. PMID:25190592

  16. Size dependent fractal aggregation mediated through surfactant in silica nanoparticle solution

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2012-06-01

    Small-angle neutron scattering (SANS) has been used to study aggregation of anionic silica nanoparticles in presence of cationic surfactant (DTAB) in aqueous solution. The measurements were carried out for different sizes of nanoparticles (8.2, 16.4 and 26.4 nm) at fixed (1 wt%) nanoparticles and surfactant concentration. It is found that the adsorption of surfactant micelles on the silica nanoparticles leads to the aggregation of nanoparticles, which is characterized by a fractal structure. The number of adsorbed micelles on nanoparticle increases from 7 to 152 with the increase in the size of the nanoparticle from 8.2 to 26.4 nm, whereas interestingly the fractal dimension remains same. The aggregate morphology in these systems is expected to be governed by the diffusion limited aggregation.

  17. Z-scan study on the nonlinear refractive index of copper nanocluster composite silica glass

    SciTech Connect

    Battaglin, G.; Calvelli, P.; Cattaruzza, E.; Gonella, F.; Polloni, R.; Mattei, G.; Mazzoldi, P.

    2001-06-18

    We used the Z-scan technique for measuring the nonlinear refractive index n{sub 2} of a thin composite film formed by copper nanoparticles embedded in silica glass. By varying the number of pulses of the laser shot, we evidenced heating effects induced by the laser during measurements. We were able to estimate the nonthermal refractive-index value, n{sub 2}=(3.0{+-}0.3){times}10{sup {minus}12}cm{sup 2}/W. {copyright} 2001 American Institute of Physics.

  18. Anti-Adhesive Behaviors between Solid Hydrate and Liquid Aqueous Phase Induced by Hydrophobic Silica Nanoparticles.

    PubMed

    Min, Juwon; Baek, Seungjun; Somasundaran, P; Lee, Jae W

    2016-09-20

    This study introduces an "anti-adhesive force" at the interface of solid hydrate and liquid solution phases. The force was induced by the presence of hydrophobic silica nanoparticles or one of the common anti-agglomerants (AAs), sorbitan monolaurate (Span 20), at the interface. The anti-adhesive force, which is defined as the maximum pushing force that does not induce the formation of a capillary bridge between the cyclopentane (CP) hydrate particle and the aqueous solution, was measured using a microbalance. Both hydrophobic silica nanoparticles and Span 20 can inhibit adhesion between the CP hydrate probe and the aqueous phase because silica nanoparticles have an aggregative property at the interface, and Span 20 enables the hydrate surface to be wetted with oil. Adding water-soluble sodium dodecyl sulfate (SDS) to the nanoparticle system cannot affect the aggregative property or the distribution of silica nanoparticles at the interface and, thus, cannot change the anti-adhesive effect. However, the combined system of Span 20 and SDS dramatically reduces the interfacial tension: emulsion drops were formed at the interface without any energy input and were adsorbed on the CP hydrate surface, which can cause the growth of hydrate particles. Silica nanoparticles have a good anti-adhesive performance with a relatively smaller dosage and are less influenced by the presence of molecular surfactants; consequently, these nanoparticles may have a good potential for hydrate inhibition as AAs. PMID:27564571

  19. Surface functionalized mesoporous silica nanoparticles for intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Vivero-Escoto, Juan Luis

    Mesoporous silica nanoparticles (MSNs) are a highly promising platform for intracellular controlled release of drugs and biomolecules. Despite that the application of MSNs in the field of intracellular drug delivery is still at its infancy very exciting breakthroughs have been achieved in the last years. A general review of the most recent progress in this area of research is presented, including a description of the latest findings on the pathways of entry into live mammalian cells together with the intracellular trafficking, a summary on the contribution of MSNs to the development of site-specific drug delivery systems, a report on the biocompatibility of this material in vitro andin vivo, and a discussion on the most recent breakthroughs in the synthesis and application of stimuli-responsive mesoporous silica-based delivery vehicles. A gold nanoparticles (AuNPs)-capped MSNs-based intracellular photoinduced drug delivery system (PR-AuNPs-MSNs) for the controlled release of anticancer drug inside of human fibroblast and liver cells was synthesized and characterized. We found that the mesoporous channels of MSNs could be efficiently capped by the photoresponsive AuNPs without leaking the toxic drug, paclitaxel, inside of human cells. Furthermore, we demonstrated that the cargo-release property of this PR-AuNPs-MSNs system could be easily photo-controlled under mild and biocompatible conditions in vitro. In collaboration with Renato Mortera (a visiting student from Italy), a MSNs based intracellular delivery system for controlled release of cell membrane impermeable cysteine was developed. A large amount of cysteine molecules were covalently attached to the silica surface of MSNs through cleavable disulfide linkers. These cysteine-containing nanoparticles were efficiently endocytosed by human cervical cancer cells HeLa. These materials exhibit 450 times higher cell growth inhibition capability than that of the conventional N-acetylcysteine prodrug. The ability to

  20. A comparative photophysicochemical study of phthalocyanines encapsulated in core-shell silica nanoparticles.

    PubMed

    Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello

    2015-02-25

    This work presents the synthesis and characterization of a new zinc phthalocyanine complex tetrasubstituted with 3-carboxyphenoxy in the peripheral position. The photophysical properties of the new complex are compared with those of phthalocyanines tetra substituted with 3-carboxyphenoxy or 4-carboxyphenoxy at non-peripheral positions. Three phthalocyanine complexes were encapsulated within silica matrix to form a core shell and the hybrid nanoparticles particles obtained were spherical and mono dispersed. When encapsulated within the silica shell nanoparticles, phthalocyanines showed improved triplet quantum yields and singlet oxygen quantum yields than surface grafted derivatives. The improvements observed could be attributed to the protection provided for the phthalocyanine complexes by the silica matrix.

  1. A reversible light-operated nanovalve on mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Tarn, Derrick; Ferris, Daniel P.; Barnes, Jonathan C.; Ambrogio, Michael W.; Stoddart, J. Fraser; Zink, Jeffrey I.

    2014-02-01

    Two azobenzene α-cyclodextrin based nanovalves are designed, synthesized and assembled on mesoporous silica nanoparticles. Under aqueous conditions, the cyclodextrin cap is tightly bound to the azobenzene moiety and capable of holding back loaded cargo molecules. Upon irradiation with a near-UV light laser, trans to cis-photoisomerization of azobenzene initiates a dethreading process, which causes the cyclodextrin cap to unbind followed by the release of cargo. The addition of a bulky stopper to the end of the stalk allows this design to be reversible; complete dethreading of cyclodextrin as a result of unbinding with azobenzene is prevented as a consequence of steric interference. As a result, thermal relaxation of cis- to trans-azobenzene allows for the rebinding of cyclodextrin and resealing of the nanopores, a process which entraps the remaining cargo. Two stalks were designed with different lengths and tested with alizarin red S and propidium iodide. No cargo release was observed prior to light irradiation, and the system was capable of multiuse. On/off control was also demonstrated by monitoring the release of cargo when the light stimulus was applied and removed, respectively.Two azobenzene α-cyclodextrin based nanovalves are designed, synthesized and assembled on mesoporous silica nanoparticles. Under aqueous conditions, the cyclodextrin cap is tightly bound to the azobenzene moiety and capable of holding back loaded cargo molecules. Upon irradiation with a near-UV light laser, trans to cis-photoisomerization of azobenzene initiates a dethreading process, which causes the cyclodextrin cap to unbind followed by the release of cargo. The addition of a bulky stopper to the end of the stalk allows this design to be reversible; complete dethreading of cyclodextrin as a result of unbinding with azobenzene is prevented as a consequence of steric interference. As a result, thermal relaxation of cis- to trans-azobenzene allows for the rebinding of cyclodextrin and

  2. Interfacial Effect on Confined Crystallization of Poly(ethylene oxide)/Silica Composites

    NASA Astrophysics Data System (ADS)

    Su, Yunlan; Zhao, Weiwei; Gao, Xia; Xu, Jianjun; Wang, Dujin

    The impact of nanoconfinement introduced by nanoparticles on polymer crystallization has attracted extensive attention because it plays the decisive role in the ultimate properties of polymer nanocomposites. In this study, interfacial and spatial confinement effects of silica (SiO2) nanoparticles on the crystallization behaviors of poly(ethylene oxide) (PEO)/SiO2 composites were systematically investigated by changing the size and concentration of SiO2 in PEO matrix. The composites with high silica loadings exhibit two crystallization peaks of PEO as determined by differential scanning calorimetry (DSC). The first peak at 7-43 °C is related to the bulk PEO, while the second peak at -20 to -30 °C is attributed to the restricted PEO segments. Three-layer (amorphous, interfacial and bulk) model is proposed to interpret the confined crystallization of PEO/SiO2 composites, which is supported by the results of thermogravimetric analysis (TGA) and solid-state 1H nuclear magnetic resonance (NMR). In amorphous layer, most PEO segments are directly adsorbed on SiO2 surface via hydrogen bonding. The interfacial PEO layer, which is nonuniform, is composed of crystallizable loops and tails extending from amorphous layer. National Natural Science Foundation of China (NSFC) under Contract 21274156.

  3. Processing pathway dependence of amorphous silica nanoparticle toxicity - colloidal versus pyrolytic

    PubMed Central

    Zhang, Haiyuan; Dunphy, Darren R.; Jiang, Xingmao; Meng, Huan; Sun, Bingbing; Tarn, Derrick; Xue, Min; Wang, Xiang; Lin, Sijie; Ji, Zhaoxia; Li, Ruibin; Garcia, Fred L.; Yang, Jing; Kirk, Martin L.; Xia, Tian; Zink, Jeffrey I; Nel, Andre; Brinker, C. Jeffrey

    2012-01-01

    We have developed structure/toxicity relationships for amorphous silica nanoparticles (NPs) synthesized through low temperature, colloidal (e.g. Stöber silica) or high temperature pyrolysis (e.g. fumed silica) routes. Through combined spectroscopic and physical analyses, we have determined the state of aggregation, hydroxyl concentration, relative proportion of strained and unstrained siloxane rings, and potential to generate hydroxyl radicals for Stöber and fumed silica NPs with comparable primary particle sizes (16-nm in diameter). Based on erythrocyte hemolytic assays and assessment of the viability and ATP levels in epithelial and macrophage cells, we discovered for fumed silica an important toxicity relationship to post-synthesis thermal annealing or environmental exposure, whereas colloidal silicas were essentially non-toxic under identical treatment conditions. Specifically, we find for fumed silica a positive correlation of toxicity with hydroxyl concentration and its potential to generate reactive oxygen species (ROS) and cause red blood cell hemolysis. We propose fumed silica toxicity stems from its intrinsic population of strained three-membered rings (3MRs) along with its chain-like aggregation and hydroxyl content. Hydrogen-bonding and electrostatic interactions of the silanol surfaces of fumed silica aggregates with the extracellular plasma membrane cause membrane perturbations sensed by the Nalp3 inflammasome, whose subsequent activation leads to secretion of the cytokine IL-1β. Hydroxyl radicals generated by the strained 3MRs in fumed silica but largely absent in colloidal silicas may contribute to the inflammasome activation. Formation of colloidal silica into aggregates mimicking those of fumed silica had no effect on cell viability or hemolysis. This study emphasizes that not all amorphous silica is created equal and that the unusual toxicity of fumed silica compared to colloidal silica derives from its framework and surface chemistry along

  4. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    SciTech Connect

    Kaur, Navjot Chudasama, Bhupendra

    2015-05-15

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe{sub 3}O{sub 4}) nanoparticles and their coating with SiO{sub 2} is reported. Fe{sub 3}O{sub 4} nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.

  5. Synthesis of superparamagnetic silica-coated magnetite nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kaur, Navjot; Chudasama, Bhupendra

    2015-05-01

    Multifunctional superparamagnetic iron oxide nanoparticles (SPIONs) coated with silica are widely researched for biomedical applications such as magnetic resonance imaging, tissue repair, cell separation, hyperthermia, drug delivery, etc. In this article synthesis of magnetite (Fe3O4) nanoparticles and their coating with SiO2 is reported. Fe3O4 nanoparticles were synthesized by chemical co-precipitation and it was coated with silica by hydrolysis and condensation of tetraethylorthosilicate. XRD, FTIR, TEM and VSM techniques were used to characterize bare and coated nanoparticles. Results indicated that the average size of SPIONS was 8.4 nm. X-ray diffraction patterns of silica coated SPIONS were identical to that of SPIONS confirming the inner spinal structure of SPIONS. FTIR results confirmed the binding of silica with the magnetite and the formation of the silica shell around the magnetite core. Magnetic properties of SPIONS and silica coated SPIONS are determined by VSM. They are superparamagnetic. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated magnetite-silica core-shell nanostructures with tailored morphology and excellent magnetic properties.

  6. Hyaluronan degrading silica nanoparticles for skin cancer therapy

    NASA Astrophysics Data System (ADS)

    Scodeller, P.; Catalano, P. N.; Salguero, N.; Duran, H.; Wolosiuk, A.; Soler-Illia, G. J. A. A.

    2013-09-01

    We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human melanoma bearing mice and compared with the non-immobilized enzyme, on the basis of equal enzymatic activity. Alcian Blue staining of A375 tumors indicated large overexpression of hyaluronan. At the end of the experiment, tumor volume reduction with SiNP-immobilized Hyal was significantly enhanced compared to non-immobilized Hyal. Field emission scanning electron microscopy (FE-SEM) images together with energy dispersive X-ray spectroscopy (EDS) spectra confirmed the presence of SiNP on the tumor. We mean a proof of concept: this extracellular matrix (ECM) degrading enzyme, immobilized on SiNP, is a more effective local adjuvant of cancer drugs than the non-immobilized enzyme. This could prove useful in future therapies using other or a combination of ECM degrading enzymes.We report the first nanoformulation of Hyaluronidase (Hyal) and its enhanced adjuvant effect over the free enzyme. Hyaluronic acid (HA) degrading enzyme Hyal was immobilized on 250 nm silica nanoparticles (SiNP) maintaining specific activity of the enzyme via the layer-by-layer self-assembly technique. This process was characterized by dynamic light scattering (DLS), zeta potential, infrared and UV-Vis spectroscopy, transmission electron microscopy (TEM) and enzymatic activity measurements. The nanoparticles were tested in vivo as adjuvants of carboplatin (CP), peritumorally injected in A375 human

  7. Switching Characteristics of Silica Nanoparticle-Doped Dual-Mode Liquid Crystal Device

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Yen; Lai, Chien-Cheng; Huang, Yi-Jen; Chen, Jian-Hong

    2010-02-01

    We investigate the switching characteristics of a silica nanoparticle-doped dual-mode liquid crystal (LC) display. In the multistable mode, aggregated silica networks impede the relaxation of LCs and increase the response time of the cell. A low-frequency AC pulse voltage rotates LCs and breaks aggregated silica networks. The breaking of silica networks accelerates the relaxation of LCs and hence decreases the response time of the cell. The low-frequency AC pulse voltage gives the cell a fast response time of ˜23 ms, which is ˜4% of our previous result.

  8. Silica nanoparticles coencapsulating gadolinium oxide and horseradish peroxidase for imaging and therapeutic applications.

    PubMed

    Gupta, Nikesh; Shrivastava, Anju; Sharma, Rakesh K

    2012-01-01

    Mesoporous silica nanoparticles coencapsulating gadolinium oxide and horseradish peroxidase (HRP) have been synthesized in the aqueous core of sodium bis-(2-ethylhexyl) sulfosuccinate (AOT)-hexane-water reverse micelle. The average diameter of these silica particles is around 25 nm and the particles are spherical and highly monodispersed as depicted using transmission electron microscopy. The entrapment efficiency of HRP was found to be as high as 95%. Practically, the entrapped enzyme shows zero leachability up to 90 days. The enzyme entrapped in these silica nanoparticles follows Michaelis-Menten kinetics. Peroxidase entrapped in silica nanoparticles shows higher stability towards temperature and pH change as compared to free enzymes. The gadolinium oxide-doped silica nanoparticles are paramagnetic as observed from the nuclear magnetic resonance line-broadening effect on the proton spectrum of the surrounding water molecule. The entrapped enzyme, HRP, has been used to convert a benign prodrug, indole-3-acetic acid (IAA), to a toxic oxidized product and its toxic effect has been tested on cancerous cell lines through thiazolyl blue tetrazolium blue (MTT) assay. In vitro studies on different cancerous cell lines show that the enzyme has been entrapped and retains its activity inside the silica nanoparticles. IAA alone has no cytotoxic effect and it becomes active only after oxidative decarboxylation by HRP.

  9. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation

    PubMed Central

    Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules. PMID:26599084

  10. Effect of catalyst concentration on size, morphology and optical properties of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Arora, Ekta; Ritu, Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Today, nanomaterials play a key role in various fields such as electronics, aerospace, pharmaceuticals and biomedical because of their unique physical, chemical and biological properties which are different from bulk materials. Nano sized silica particles have gained the prominent position in scientific research and have wide applications. The sol-gel method is the best method to synthesize silica nanoparticles because of its potential to produce monodispersed with narrow size distribution at mild conditions. The silica nanoparticles were obtained by hydrolysis of tetraethyl orthosilicate (TEOS) in ethanol act as solvent. The synthesized nanoparticles were characterized by Field Emission Scanning electron Microscope (FE-SEM), UV Spectrometer. The smallest size of silica particles is around 150nm examined by using FE-SEM. The optical properties and band structure was analyzed using UV-visible spectroscopy which is found to be increase by reducing the size of particles. Concentration effect of catalyst on the size, morphology and optical properties were analyzed.

  11. Double-Layer Magnetic Nanoparticle-Embedded Silica Particles for Efficient Bio-Separation.

    PubMed

    Kyeong, San; Jeong, Cheolhwan; Kang, Homan; Cho, Hong-Jun; Park, Sung-Jun; Yang, Jin-Kyoung; Kim, Sehoon; Kim, Hyung-Mo; Jun, Bong-Hyun; Lee, Yoon-Sik

    2015-01-01

    Superparamagnetic Fe3O4 nanoparticles (NPs) based nanomaterials have been exploited in various biotechnology fields including biomolecule separation. However, slow accumulation of Fe3O4 NPs by magnets may limit broad applications of Fe3O4 NP-based nanomaterials. In this study, we report fabrication of Fe3O4 NPs double-layered silica nanoparticles (DL MNPs) with a silica core and highly packed Fe3O4 NPs layers. The DL MNPs had a superparamagnetic property and efficient accumulation kinetics under an external magnetic field. Moreover, the magnetic field-exposed DL MNPs show quantitative accumulation, whereas Fe3O4 NPs single-layered silica nanoparticles (SL MNPs) and silica-coated Fe3O4 NPs produced a saturated plateau under full recovery of the NPs. DL MNPs are promising nanomaterials with great potential to separate and analyze biomolecules. PMID:26599084

  12. Switchable pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a switchable surfactant.

    PubMed

    Jiang, Jianzhong; Zhu, Yue; Cui, Zhenggang; Binks, Bernard P

    2013-11-18

    Back and forth: The CO2 /N2 trigger of a switchable surfactant (neutral amidine/cationic amidinium) was transferred to mineral nanoparticles through in situ hydrophobization in water. Switchable oil-in-water Pickering emulsions that entail a CO2 /N2 trigger were obtained by using negatively charged silica nanoparticles and a trace amount of the switchable surfactant as the stabilizer.

  13. On-chip evaluation of platelet adhesion and aggregation upon exposure to mesoporous silica nanoparticles.

    PubMed

    Kim, Donghyuk; Finkenstaedt-Quinn, Solaire; Hurley, Katie R; Buchman, Joseph T; Haynes, Christy L

    2014-03-01

    Mesoporous silica nanoparticles are promising drug delivery agents; however, their interaction with various in vivo biological components is still under investigation. In this work, the impact of sub-50 nm diameter mesoporous silica nanoparticles on platelet function is investigated using a microfluidic platform to model blood vessel characteristics. Platelet adhesion and aggregation in the presence of mesoporous silica nanoparticles is investigated, controlling whether or not platelets are activated ahead of nanoparticle exposure. The results indicate that nanoparticles slightly compromise platelet adhesion to endothelial cells at low nanoparticle doses, but that high nanoparticle doses significantly increase the number of platelet adhesion events, leading to higher probability for uncontrolled platelet actions (e.g. clot formation in vivo). High nanoparticle doses also induced platelet aggregation. While platelet activation and aggregation occurred, in no case did nanoparticle exposure result in significant loss of platelet viability; as such, this work clearly demonstrates that aspects besides viability, such as cellular adhesion and interaction with other cell types, have to be considered in the context of nanotoxicology. This simple and highly adaptable analytical platform will be useful for further nanotoxicity studies involving other nanoparticle and cell types.

  14. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used. PMID:25892589

  15. Interference sources in ATP bioluminescence assay of silica nanoparticle toxicity to activated sludge.

    PubMed

    Sibag, Mark; Kim, Seung Hwan; Kim, Choah; Kim, Hee Jun; Cho, Jinwoo

    2015-06-01

    ATP measurement provides an overview of the general state of microbial activity, and thus it has proven useful for the evaluation of nanoparticle toxicity in activated sludge. ATP bioluminescence assay, however, is susceptible to interference by the components of activated sludge other than biomass. This paper presents the interference identified specific to the use of this assay after activated sludge respiration inhibition test of silica nanoparticles (OECD 209). We observed a high degree of interference (90%) in the presence of 100 mg/L silica nanoparticles and a low level of ATP being measured (0.01 μM); and 30% interference by the synthetic medium regardless of silica nanoparticle concentration and ATP level in the samples. ATP measurement in activated sludge with different MLSS concentrations revealed interference of high biomass content. In conclusion, silica nanoparticles, synthetic medium and activated sludge samples themselves interfere with ATP bioluminescence; this will need to be considered in the evaluation of silica nanoparticle toxicity to activated sludge when this type of assay is used.

  16. Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine

    NASA Astrophysics Data System (ADS)

    Ambrogio, Michael William

    Nanotechnology has emerged as one of humanity's most promising prospects for addressing a plethora of significant challenges facing society. One of these challenges is the effective treatment of cancer, and while cancer treatment has enjoyed many significant advances over the past several years, it is by no means perfect, and still suffers from many drawbacks. For example, although there are several drugs on the market that can kill cancer tissue quite effectively, these drugs are often non-selective, resulting in a large amount of healthy tissue being killed as well. When healthy tissue is destroyed, it results in many of the horrendous side-effects that we typically associate with cancer treatment, such as hair loss and extreme nausea. The use of selective drug delivery vehicles has the potential to reduce these side effects significantly, since they are able to deliver drugs directly to the tumor site, leaving healthy tissue intact. As a result, the use of sophisticated delivery platforms - mechanized silica nanoparticles (MSNPs) in particular - has attracted attention during the past decade, with researchers shifting their focus towards devising ways to deliver therapeutic and / or diagnostic agents, and away from developing new drug candidates. The advancement of these MSNP delivery systems is featured in this Dissertation, and highlights the fabrication of several new MSNPs, as well as biological experiments that have been initiated on these systems.

  17. Toxic effects of silica nanoparticles on zebrafish embryos and larvae.

    PubMed

    Duan, Junchao; Yu, Yongbo; Shi, Huiqin; Tian, Linwei; Guo, Caixia; Huang, Peili; Zhou, Xianqing; Peng, Shuangqing; Sun, Zhiwei

    2013-01-01

    Silica nanoparticles (SiNPs) have been widely used in biomedical and biotechnological applications. Environmental exposure to nanomaterials is inevitable as they become part of our daily life. Therefore, it is necessary to investigate the possible toxic effects of SiNPs exposure. In this study, zebrafish embryos were treated with SiNPs (25, 50, 100, 200 µg/mL) during 4-96 hours post fertilization (hpf). Mortality, hatching rate, malformation and whole-embryo cellular death were detected. We also measured the larval behavior to analyze whether SiNPs had adverse effects on larvae locomotor activity. The results showed that as the exposure dosages increasing, the hatching rate of zebrafish embryos was decreased while the mortality and cell death were increased. Exposure to SiNPs caused embryonic malformations, including pericardial edema, yolk sac edema, tail and head malformation. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lower dose (25 and 50 µg/mL SiNPs) produced substantial hyperactivity while the higher doses (100 and 200 µg/mL SiNPs) elicited remarkably hypoactivity in dark periods. In summary, our data indicated that SiNPs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior. PMID:24058598

  18. Dual surface plasmon resonances in Ni nanoparticles in silica

    SciTech Connect

    Majhi, Jayanta K.; Kuiri, Probodh K.

    2015-06-24

    We report the observations of two broad absorption bands (at ∼3.5 and ∼6.0 eV) in the optical absorption (OA) spectra of Ni nanoparticles (NPs) in silica. For the calculations of the OA spectra, Maxwell-Garnett type effective medium theory has been used with NP radii in the range of 1 – 50 nm. The peak positions of both the OA bands have been found to shift towards higher energy (blue-shift) with decrease in NP radius. In addition, the OA spectra are found to more sensitive for smaller NPs as compare to larger NPs. These observations are argued as due to the confinement of the mean free path of free electrons in Ni NPs. Based on this, we conclude that the observed OA bands are due to the surface plasmon resonance (SPR) absorptions irrespective of the satisfaction of the criteria of the SPR conditions, thus resolving the unclear understanding of the appearance of two absorption bands in Ni NPs.

  19. Gold, palladium, and gold-palladium alloy nanoshells on silica nanoparticle cores.

    PubMed

    Kim, Jun-Hyun; Bryan, William W; Chung, Hae-Won; Park, Chan Young; Jacobson, Allan J; Lee, T Randall

    2009-05-01

    The synthesis of gold, palladium, and gold-palladium alloy nanoshells (approximately 15-20 nm thickness) was accomplished by the reduction of gold and palladium ions onto dielectric silica core particles (approximately 100 nm in diameter) seeded with small gold nanoparticles (approximately 2-3 nm in diameter). The size, morphology, elemental composition, and optical properties of the nanoshells were characterized using field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, and ultraviolet-visible spectroscopy. The results demonstrate the successful growth of gold, palladium, and gold-palladium alloy nanoshells, where the optical properties systematically vary with the relative content of gold and palladium. The alloy nanoshells are being prepared for use in applications that stand to benefit from photoenhanced catalysis. PMID:20355892

  20. Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics

    PubMed Central

    Alwi, Rudolf; Telenkov, Sergey; Mandelis, Andreas; Leshuk, Timothy; Gu, Frank; Oladepo, Sulayman; Michaelian, Kirk

    2012-01-01

    In this study, we report for the first time the use of silica-coated superparamagnetic iron oxide nanoparticles (SPION) as contrast agents in biomedical photoacoustic imaging. Using frequency-domain photoacoustic correlation (the photoacoustic radar), we investigated the effects of nanoparticle size, concentration and biological media (e.g. serum, sheep blood) on the photoacoustic response in turbid media. Maximum detection depth and the minimum measurable SPION concentration were determined experimentally. The nanoparticle-induced optical contrast ex vivo in dense muscular tissues (avian pectus and murine quadricept) was evaluated and the strong potential of silica-coated SPION as a possible photoacoustic contrast agents was demonstrated. PMID:23082291

  1. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    NASA Astrophysics Data System (ADS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-10-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION.

  2. Characterizing structural and vibrational properties of nanoparticles embedded in silica with XAS, SAXS and auxiliary techniques

    SciTech Connect

    Araujo, Leandro L.; Kluth, Patrick; Giulian, Raquel; Sprouster, David J.; Ridgway, Mark C.; Johannessen, Bernt; Foran, Garry J.; Cookson, David J.

    2009-01-29

    Synchrotron-based techniques were combined with conventional analysis methods to probe in detail the structural and vibrational properties of nanoparticles grown in a silica matrix by ion implantation and thermal annealing, as well as the evolution of such properties as a function of nanoparticle size. This original approach was successfully applied for several elemental nanoparticles (Au, Co, Cu, Ge, Pt) and the outcomes for Ge are reported here, illustrating the power of this combined methodology. The thorough analysis of XANES, EXAFS, SAXS, TEM and Raman data for Ge nanoparticles with mean diameters between 4 and 9 nm revealed that the peculiar properties of embedded Ge nanoparticles, like the existence of amorphous Ge layers between the silica matrix and the crystalline nanoparticle core, are strongly dependent on particle size and mainly governed by the variation in the surface area-to-volume ratio. Such detailed information provides valuable input for the efficient planning of technological applications.

  3. Codelivery of anticancer drugs and siRNA by mesoporous silica nanoparticles.

    PubMed

    Hanafi-Bojd, Mohammad Yahya; Ansari, Legha; Malaekeh-Nikouei, Bizhan

    2016-09-01

    The most common method for cancer treatment is chemotherapy. Multidrug resistance (MDR) is one of the major obstacles in chemotherapeutic treatment of many human cancers. One strategy to overcome this challenge is the delivery of anticancer drugs and siRNA simultaneously using nanoparticles. Mesoporous silica nanoparticles are one of the most popular nanoparticles for cargo delivery because of their intrinsic porosity. This paper highlights recent advances in codelivery of chemotherapeutic and siRNA with mesoporous silica nanoparticles for cancer therapy. In addition, synthesis and functionalization approaches of these nanoparticles are summarized. This review presents insight into the utilization of nanoparticles and combination therapy to achieve more promising results in chemotherapy. PMID:27582236

  4. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2014-04-01

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0-5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4.

  5. Preparation and characterization of poly (ethylene glycol)-coated Stoeber silica nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul; Xu, Hao; Yan, Fei; Monson, Eric E.; Tang, Wei; Schneider, Randy; Philbert, Martin A.

    2002-06-01

    Monodisperse, spherical, polyethylene glycol (PEG)-coated silica nanoparticles have been prepared in the size range of 50-350 nm, and their size distribution were characterized by SEM and multi-angle static light scattering experiments. The chemical binding of PEG to the silica nanoparticles was confirmed by IR spectroscopy. The biocompatibility of these PEGylated nanoparticles was also studied by non-specific protein binding tests and in-vivo toxicology studies in live animals. These silica nanoparticles, as a matrix for encapsulation of certain reagents, have been used for the fabrication of intracellular sensors and have potential for applications to in vivo diagnosis, analysis and measurements, due to their small physical size and their biocompatibility, both stemming from the specialized PEG coating.

  6. Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation.

    PubMed

    Fuertes, Gustavo; Sánchez-Muñoz, Orlando L; Pedrueza, Esteban; Abderrafi, Kamal; Salgado, Jesús; Jiménez, Ernesto

    2011-03-15

    Here we report on the triggering of antibacterial activity by a new type of silver nanoparticle coated with porous silica, Ag@silica, irradiated at their surface plasmon resonant frequency. The nanoparticles are able to bind readily to the surface of bacterial cells, although this does not affect bacterial growth since the silica shell largely attenuates the intrinsic toxicity of silver. However, upon simultaneous exposure to light corresponding to the absorption band of the nanoparticles, bacterial death is enhanced selectively on the irradiated zone. Because of the low power density used for the treatments, we discard thermal effects as the cause of cell killing. Instead, we propose that the increase in toxicity is due to the enhanced electromagnetic field in the proximity of the nanoparticles, which indirectly, most likely through induced photochemical reactions, is able to cause cell death.

  7. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution

    PubMed Central

    Lee, Haisung; Sung, Dongkyung; Kim, Jinhoon; Kim, Byung-Tae; Wang, Tuntun; An, Seong Soo A; Seo, Soo-Won; Yi, Dong Kee

    2015-01-01

    In this study, fluorescent dye-conjugated magnetic resonance (MR) imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice. PMID:26357472

  8. SANS study of interaction of silica nanoparticles with BSA protein and their resultant structure

    SciTech Connect

    Yadav, Indresh Aswal, V. K.; Kohlbrecher, J.

    2014-04-24

    Small angle neutron scattering (SANS) has been carried out to study the interaction of anionic silica nanoparticles (88 Å) with globular protein Bovine Serum Albumin (BSA) (M.W. 66.4 kD) in aqueous solution. The measurements have been carried out on fixed concentration (1 wt %) of Ludox silica nanoparticles with varying concentration of BSA (0–5 wt %) at pH7. Results show that silica nanoparticles and BSA coexist as individual entities at low concentration of BSA where electrostatic repulsive interactions between them prevent their aggregation. However, as the concentration of BSA increases (≥ 0.5 wt %), it induces the attractive depletion interaction among nanoparticles leading to finally their aggregation at higher BSA concentration (2 wt %). The aggregates are found to be governed by the diffusion limited aggregation (DLA) morphology of fractal nature having fractal dimension about 2.4.

  9. A New Class of Silica Crosslinked Micellar Core-Shell /nanoparticles."

    SciTech Connect

    Huo, Qisheng; Liu, Jun; Wang, Li Q.; Jiang, Yingbing; Lambert, Timothy N.; Fang, Erica

    2006-05-17

    Micellar nanoparticles made of surfactants and polymers have attracted wide attention in the materials and biomedical community for controlled drug delivery, molecular imaging and sensing; however, their long-term stability remains a topic of intense study. Here we report a new class of robust, ultrafine (10nm) silica core-shell nanoparticles formed from silica crosslinked, individual block copolymer micelles. Compared with pure polymer micelles, the new core-shell nanoparticles have significantly improved stability and do not break down during dilution. They also achieve much higher loading capacity for a wide range of chemicals, with the entrapped molecules slowly released over a much longer period of time. A wide range of functional groups can be easily incorporated through co-condensation with the silica matrix. The potential to deliver hydrophobic agents into cancer cells has been demonstrated. Because of their unique properties, these novel core-shell nanoparticles could potentially provide a new nanomedicine platform for imaging, detection and treatment.

  10. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles.

    PubMed

    Hetrick, Evan M; Shin, Jae Ho; Paul, Heather S; Schoenfisch, Mark H

    2009-05-01

    The ability of nitric oxide (NO)-releasing silica nanoparticles to kill biofilm-based microbial cells is reported. Biofilms of Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans were formed in vitro and exposed to NO-releasing silica nanoparticles. Replicative viability experiments revealed that >or= 99% of cells from each type of biofilm were killed via NO release, with the greatest efficacy (>or= 99.999% killing) against gram-negative P. aeruginosa and E. coli biofilms. Cytotoxicity testing demonstrated that the highest dose of NO-releasing silica nanoparticles inhibited fibroblast proliferation to a lesser extent than clinical concentrations of currently administered antiseptics (e.g., chlorhexidine) with proven wound-healing benefits. This study demonstrates the promise of employing nanoparticles for delivering an antimicrobial agent to microbial biofilms.

  11. Resolving Interparticle Heterogeneities in Composition and Hydrogenation Performance between Individual Supported Silver on Silica Catalysts

    PubMed Central

    2015-01-01

    Supported metal nanoparticle catalysts are commonly obtained through deposition of metal precursors onto the support using incipient wetness impregnation. Typically, empirical relations between metal nanoparticle structure and catalytic performance are inferred from ensemble averaged data in combination with high-resolution electron microscopy. This approach clearly underestimates the importance of heterogeneities present in a supported metal catalyst batch. Here we show for the first time how incipient wetness impregnation leads to 10-fold variations in silver loading between individual submillimeter-sized silica support granules. This heterogeneity has a profound impact on the catalytic performance, with 100-fold variations in hydrogenation performance at the same level. In a straightforward fashion, optical microscopy interlinks single support particle level catalytic measurements to structural and compositional information. These detailed correlations reveal the optimal silver loading. A thorough consideration of catalyst heterogeneity and the impact thereof on the catalytic performance is indispensable in the development of catalysts. PMID:26618052

  12. Supramolecular Complex Antioxidant Consisting of Vitamins C, E and Hydrophilic-Hydrophobic Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.

    Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins’ content. The antioxidant remained active during long-term storage under standard conditions.

  13. Supramolecular Complex Antioxidant Consisting of Vitamins C, E and Hydrophilic-Hydrophobic Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Laguta, I. V.; Kuzema, P. O.; Stavinskaya, O. N.; Kazakova, O. A.

    Samples with varied amount of surface trimethylsilyl groups were obtained via gas-phase chemical modification of silica nanoparticles. The biocompatibility tests conducted in erythrocyte suspension have shown that hydrophobization of silica decreases its damaging effect to the cells. Being wettable in aqueous media, partially silylated silicas have higher affinity to hydrophobic bioactive molecules in comparison with the initial silica. Novel antioxidant consisting of vitamins C and E and silica with 40% of surface trimethylsilyl groups was formulated. It was found that supramolecular complexes are formed on the silica surface due to the affinity of water- and fat-soluble antioxidants to hydrophilic silanol and hydrophobic trimethylsilyl groups, respectively. Test reactions (total phenolic index determination, DPPH test) and in vitro studies (spectral analysis of erythrocyte suspensions undergoing UV irradiation) revealed the correlation between antioxidant activity of the complex antioxidant and the vitamins' content. The antioxidant remained active during long-term storage under standard conditions.

  14. Tailored silica-antibiotic nanoparticles: overcoming bacterial resistance with low cytotoxicity.

    PubMed

    Capeletti, Larissa Brentano; de Oliveira, Luciane França; Gonçalves, Kaliandra de Almeida; de Oliveira, Jessica Fernanda Affonso; Saito, Ângela; Kobarg, Jörg; dos Santos, João Henrique Zimnoch; Cardoso, Mateus Borba

    2014-07-01

    New and more aggressive antibiotic resistant bacteria arise at an alarming rate and represent an ever-growing challenge to global health care systems. Consequently, the development of new antimicrobial agents is required to overcome the inefficiency of conventional antibiotics and bypass treatment limitations related to these pathologies. In this study, we present a synthesis protocol, which was able to entrap tetracycline antibiotic into silica nanospheres. Bactericidal efficacy of these structures was tested against bacteria that were susceptible and resistant to antibiotics. For nonresistant bacteria, our composite had bactericidal efficiency comparable to that of free-tetracycline. On the other hand, the synthesized composites were able to avoid bacterial growth of resistant bacteria while free-tetracycline has shown no significant bactericidal effect. Finally, we have investigated the cytotoxicity of these nanoparticles against mammalian cells to check any possible poisoning effect. It was found that these nanospheres are not apoptosis-inducers and only a reduction on the cell replication rate was seen when compared to the control without nanoparticles.

  15. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-01

    Fumed silica nanoparticles (FSNPs), were incorporated for the first time into a polymethacrylate monolithic column containing glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in order to develop a new monolithic column for hydrophilic interaction high performance liquid chromatography (HILIC). When compared to poly(GMM-EDMA) monolithic column without FSNPs, the same monolithic column with incorporated FSNPs yielded important effects on HILIC separations. The effects of monomers and FSNPs content of the polymerization mixture on the performance of the monolithic column were examined in details, and the optimized stationary phase was investigated over a wide range of mobile phase composition with polar acidic, weakly basic and neutral analytes including hydroxy benzoic acids, nucleotides, nucleosides, dimethylformamide, formamide and thiourea. The retention of these analytes was mainly controlled by hydrophilic interactions with the FSNPs and electrostatic repulsion from the negatively charged silica surface in the case of hydroxy benzoic acids and nucleotides. The electrostatic repulsion was minimized by decreasing the pH of the aqueous component of the mobile phase, which in turn enhanced the retention of acidic solutes. Nucleotides were best separated using step gradient elution at decreasing pH as well as ACN concentration in the mobile phase. Improved peak shape and faster analysis of nucleosides were attained by a fast linear gradient elution with a shallow decrease in the ACN content of the ACN-rich mobile phase. The run-to-run and column-to-column reproducibility were satisfactory. The percent relative standard deviations (%RSDs) for the retention times of tested solutes were lower than 2.5% under isocratic conditions and lower than 3.5 under gradient conditions. PMID:27059399

  16. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography.

    PubMed

    Aydoğan, Cemil; El Rassi, Ziad

    2016-05-01

    Fumed silica nanoparticles (FSNPs), were incorporated for the first time into a polymethacrylate monolithic column containing glyceryl monomethacrylate (GMM) and ethylene dimethacrylate (EDMA) in order to develop a new monolithic column for hydrophilic interaction high performance liquid chromatography (HILIC). When compared to poly(GMM-EDMA) monolithic column without FSNPs, the same monolithic column with incorporated FSNPs yielded important effects on HILIC separations. The effects of monomers and FSNPs content of the polymerization mixture on the performance of the monolithic column were examined in details, and the optimized stationary phase was investigated over a wide range of mobile phase composition with polar acidic, weakly basic and neutral analytes including hydroxy benzoic acids, nucleotides, nucleosides, dimethylformamide, formamide and thiourea. The retention of these analytes was mainly controlled by hydrophilic interactions with the FSNPs and electrostatic repulsion from the negatively charged silica surface in the case of hydroxy benzoic acids and nucleotides. The electrostatic repulsion was minimized by decreasing the pH of the aqueous component of the mobile phase, which in turn enhanced the retention of acidic solutes. Nucleotides were best separated using step gradient elution at decreasing pH as well as ACN concentration in the mobile phase. Improved peak shape and faster analysis of nucleosides were attained by a fast linear gradient elution with a shallow decrease in the ACN content of the ACN-rich mobile phase. The run-to-run and column-to-column reproducibility were satisfactory. The percent relative standard deviations (%RSDs) for the retention times of tested solutes were lower than 2.5% under isocratic conditions and lower than 3.5 under gradient conditions.

  17. Stöber synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays.

    PubMed

    Rossi, Liane M; Shi, Lifang; Quina, Frank H; Rosenzweig, Zeev

    2005-05-10

    We have developed a simple method to prepare bright and photostable luminescent silica nanoparticles of different sizes and narrow size distribution in high yield. The method is based on the use of Stöber synthesis in the presence of a fluorophore to form bright silica nanoparticles. Unlike micro-emulsion-based methods often used to prepare luminescent silica particles, the Stöber method is a one-pot synthesis that is carried out at room temperature under alkaline conditions in ethanol:water mixtures and avoids the use of potentially toxic organic solvents and surfactants. Our luminescent particles contained the transition metal complex tris(1,10-phenanthroline) ruthenium(II) chloride, [Ru(phen)3]Cl2. They showed higher photostability and a longer fluorescence lifetime compared to free Ru(phen)3 solutions. Leakage of dye molecules from the silica particles was negligible, which was attributed to strong electrostatic attractions between the positively charged ruthenium complex and the negatively charged silica. To demonstrate the utility of the highly luminescent silica nanoparticles in bioassays, we further modified their surface with streptavidin and demonstrated their binding to biotinylated glass slides. The study showed that digital counting of the luminescent nanoparticles could be used as an attractive alternative to detection techniques involving analogue luminescence detection in bioanalytical assays.

  18. Effect of silica nanoparticles on reinforcement of poly(phenylene ether) based thermoplastic elastomer.

    PubMed

    Gupta, Samik; Maiti, Parnasree; Krishnamoorthy, Kumar; Krishnamurthy, Raja; Menon, Ashok; Bhowmick, Anil K

    2008-04-01

    Reinforcement of a novel poly(phenylene ether) (PPE) based thermoplastic elastomer (TPE), i.e., styrene-ethylene-butylene-styrene (SEBS)/ethylene vinyl acetate (EVA) and PPE-polystyrene (PS), was studied to develop a reinforced thermoplastic elastomer or thermoplastic vulcanizate (TPV). An effort was made to reinforce selectively the elastomeric dispersed phase of EVA by silica nanoparticles and silica sol-gel precursors, like alkoxy orthosilanes, using twin-screw extrusion and injection molding processes. Improvement of tensile strength and percent elongation at break was observed both with silica nanoparticles and tetraethoxy orthosilane (TEOS). Addition of TEOS transformed the dispersed EVA lamellar morphology into semispherical domains as a consequence of possible crosslinking. Soxhlet extraction was done on the silica and TEOS reinforced materials. The insoluble residues collected from both the silica and TEOS reinforced samples were analyzed in detail using both morphological and spectroscopic studies. This extensive study also provided an in-depth conceptual understanding of the PPE based TPE behavior upon reinforcement with silica nanoparticles and silica sol-gel precursors and the effect of reinforcement on recycling behavior.

  19. High-aluminum-affinity silica is a nanoparticle that seeds secondary aluminosilicate formation.

    PubMed

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m(2) g(-1) and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates.

  20. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    NASA Astrophysics Data System (ADS)

    Francés, A. B.; Navarro Bañón, M. V.

    2014-08-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction.

  1. Novel Dental Composites Reinforced with Zirconia-Silica Ceramic Nanofibers

    PubMed Central

    Guo, Guangqing; Fan, Yuwei; Zhang, Jian-Feng; Hagan, Joseph; Xu, Xiaoming

    2011-01-01

    Objective To fabricate and characterize dental composites reinforced with various amounts of zirconia-silica (ZS) or zirconia-yttria-silica (ZYS) ceramic nanofibers. Methods Control composites (70 wt% glass particle filler, no nanofibers) and experimental composites (2.5, 5.0, and 7.5 wt% ZS or ZYS nanofibers replacing glass particle filler) were prepared by blending 29 wt% dental resin monomers, 70 wt% filler, and 1.0 wt% initiator, and polymerized by either heat or dental curing light. Flexural strength (FS), flexural modulus (FM), energy at break (EAB), and fracture toughness (FT) were tested after the specimens were stored in 37 °C deionized water for 24 h, 3 months, or 6 months. Degree of conversion (DC) of monomers in composites was measured using Fourier transformed near-infrared (FT-NIR) spectroscopy. Fractured surfaces were observed by field-emission scanning electron microscope (FE-SEM). The data were analyzed using ANOVA with Tukey’s Honestly Significant Differences test used for post hoc analysis. Results Reinforcement of dental composites with ZS or ZYS nanofibers (2.5% or 5.0%) can significantly increase the FS, FM and EAB of dental composites over the control. Further increase the content of ZS nanofiber (7.5%), however, decreases these properties (although they are still higher than those of the control). Addition of nanofibers did not decrease the long-term mechanical properties of these composites. All ZS reinforced composites (containing 2.5%, 5.0% and 7.5% ZS nanofibers) exhibit significantly higher fracture toughness than the control. The DC of the composites decreases with ZS nanofiber content. Significance Incorporation of ceramic nanofibers in dental composites can significantly improve their mechanical properties and fracture toughness and thus may extend their service life. PMID:22153326

  2. Adsorption Behavior of Low-Concentration Imidazolium-Based Ionic Liquid Surfactant on Silica Nanoparticles.

    PubMed

    Liu, Yan; Qiao, Longjiao; Xiang, Yinping; Guo, Rong

    2016-03-22

    The adsorption behavior of imidazolium-based ionic liquid surfactant ([C12mim]Br) on silica nanoparticles (NPs) has been studied with turbidity, isothermal titration microcalorimetry, fluorescence spectroscopy, and dynamic light scattering (DLS) measurements. Both the electrostatic attraction and the hydrogen bonding interaction between silica NP and [C12mim]Br play crucial roles during [C12mim]Br monomers binding to silica NPs at low surfactant concentration, and the hydrophobic effect leads to formation of micelle-like aggregates on silica NP surfaces with the further increase of surfactant concentration. Furthermore, it is found that sodium halide salts favor the adsorption of [C12mim]Br on silica NP surfaces by decreasing the electrostatic repulsions. Anions with more hydrophobicity and the ability to form hydrogen bonding have more pronounced effect. Compared with DTAB, [C12mim]Br has much stronger binding ability with silica NPs at pH 7.0. More interestingly, [C12mim]Br can still form micelle-like aggregates on silica NP surfaces, but DTAB cannot at pH 2.0. The hydrogen bonding between the imidazolium ring and silica NPs is the principal contributor to these observations. Our results will contribute to the elucidation of silica NP/cationic surfactant interaction from molecular scale and the widely applications of silica NP/surfactant systems in practice.

  3. Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation.

    PubMed

    Xia, Zhiwei; Lin, Zian; Xiao, Yun; Wang, Ling; Zheng, Jiangnan; Yang, Huanghao; Chen, Guonan

    2013-09-15

    Surface imprinting over nanostructured matrices is an effective solution to overcome template removal and achieve high binding capacity. In this work, a facile method was developed for synthesis of polydopamine-coated molecularly imprinted silica nanoparticles (PDA-coated MIP silica NPs) based on self-polymerization of dopamine (DA) on the surface of silica NPs in the presence of template protein. Transmission electronic microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) showed that PDA layers were successfully attached on the surface of silica NPs and the corresponding thickness was about 5nm, which enabled the MIP silica NPs to have fast binding kinetics and high binding capacity. Under the aqueous media, the imprinted silica NPs showed much higher binding affinity toward template than non-imprinted (NIP) silica NPs. The protein recognition properties were examined by single-protein or competitive batch rebinding experiments and rebinding kinetics study, validating that the imprinted silica NPs have high selectivity for the template. The resultant BHb-MIP silica NPs could not only selectively separate BHb from the protein mixture, but also specifically deplete high-abundance BHb from cattle whole blood. In addition, the stability and regeneration were also investigated, which indicated that the imprinted silica NPs had excellent reusability. PMID:23567631

  4. Highly efficient antibody immobilization with multimeric protein Gs coupled magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Choi, H. K.; Chang, J. H.

    2011-10-01

    This work reports the immobilization of monomeric, dimeric and trimer protein Gs onto silica magnetic nanoparticles for self-oriented antibody immobilization. To achieve this, we initially prepared the silica-coated magnetic nanoparticle having about 170 nm diameters. The surface of the silica coated magnetic nanoparticles was modified with 3- aminopropyl-trimethoxysilane (APTMS) to chemically link to multimeric protein Gs. The conjugation of amino groups on the SiO2-MNPs to cysteine tagged in multimeric protein Gs was performed using a sulfo-SMCC coupling procedure. The binding efficiencies of monomer, dimer and trimer were 77 %, 67 % and 55 % respectively. However, the efficiencies of antibody immobilization were 70 %, 83 % and 95 % for monomeric, dimeric and trimeric protein G, respectively. To prove the enhancement of accessibility by using multimeric protein G, FITC labeled goat-anti-mouse IgG was treated to mouse IgG immobilized magnetic silica nanoparticles through multimeric protein G. FITC labeled goat anti-mouse IgGs were more easily bound to mouse IgG immobilized by trimeric protein G than others. Finally protein G bound silica magnetic nanoparticles were utilized to develop highly sensitive immunoassay to detect hepatitis B antigen.

  5. Comprehensive Mechanism Analysis of Mesoporous-Silica-Nanoparticle-Induced Cancer Immunotherapy.

    PubMed

    Wang, Xiupeng; Li, Xia; Yoshiyuki, Kazuko; Watanabe, Yohei; Sogo, Yu; Ohno, Tadao; Tsuji, Noriko M; Ito, Atsuo

    2016-05-01

    A plain mesoporous silica nanoparticle without any immunomodulatory molecules significantly enhances anticancer immunity in vivo. Comprehensive mechanism of mesoporous-silica-nanoparticle-induced cancer immunotherapy is analyzed in this paper. The mesoporous silica nanoparticle promotes both Th1 and Th2 immune responses, as it accelerates lymphocytes proliferation, stimulates IFN-γ, IL-2, IL-4, and IL-10 cytokine secretion by lymphocytes ex vivo, and increases IgG, IgG1, IgG2a, IgM, and IgA antibody titers in mice serum compared with those of alum and adjuvant-free groups. Moreover, the mesoporous silica nanoparticle enhances effector memory CD4(+) and CD8(+) T cell populations in three most important immune organs (bone marrow, lymph node, and spleen) of mice compared with those of alum and adjuvant-free groups three months after adjuvant injection. The present study paves the way for the application of mesoporous silica nanoparticle as immunoadjuvant for cancer immunotherapy. PMID:26987867

  6. Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine.

    PubMed

    Mukhametshina, Alsu R; Fedorenko, Svetlana V; Zueva, Irina V; Petrov, Konstantin A; Masson, Patrick; Nizameev, Irek R; Mustafina, Asiya R; Sinyashin, Oleg G

    2016-03-15

    This work highlights the H-function of Tb(III)-doped silica nanoparticles in aqueous solutions of acetic acid as a route to sense acetylcholinesterase-catalyzed hydrolysis of acetylcholine (ACh). The H-function results from H(+)-induced quenching of Tb(III)-centered luminescence due to protonation of Tb(III) complexes located close to silica/water interface. The H-function can be turned on/switched off by the concentration of complexes within core or nanoparticle shell zones, by the silica surface decoration and adsorption of both organic and inorganic cations on silica surface. Results indicate the optimal synthetic procedure for making nanoparticles capable of sensing acetic acid produced by enzymatic hydrolysis of acetylcholine. The H-function of nanoparticles was determined at various concentrations of ACh and AChE. The measurements show experimental conditions for fitting the H-function to Michaelis-Menten kinetics. Results confirm that reliable fluorescent monitoring AChE-catalyzed hydrolysis of ACh is possible through the H-function properties of Tb(III)-doped silica nanoparticles.

  7. Comprehensive Mechanism Analysis of Mesoporous-Silica-Nanoparticle-Induced Cancer Immunotherapy.

    PubMed

    Wang, Xiupeng; Li, Xia; Yoshiyuki, Kazuko; Watanabe, Yohei; Sogo, Yu; Ohno, Tadao; Tsuji, Noriko M; Ito, Atsuo

    2016-05-01

    A plain mesoporous silica nanoparticle without any immunomodulatory molecules significantly enhances anticancer immunity in vivo. Comprehensive mechanism of mesoporous-silica-nanoparticle-induced cancer immunotherapy is analyzed in this paper. The mesoporous silica nanoparticle promotes both Th1 and Th2 immune responses, as it accelerates lymphocytes proliferation, stimulates IFN-γ, IL-2, IL-4, and IL-10 cytokine secretion by lymphocytes ex vivo, and increases IgG, IgG1, IgG2a, IgM, and IgA antibody titers in mice serum compared with those of alum and adjuvant-free groups. Moreover, the mesoporous silica nanoparticle enhances effector memory CD4(+) and CD8(+) T cell populations in three most important immune organs (bone marrow, lymph node, and spleen) of mice compared with those of alum and adjuvant-free groups three months after adjuvant injection. The present study paves the way for the application of mesoporous silica nanoparticle as immunoadjuvant for cancer immunotherapy.

  8. Preparation, characterization, and in vivo evaluation of tanshinone IIA solid dispersions with silica nanoparticles

    PubMed Central

    Jiang, Yan-rong; Zhang, Zhen-hai; Liu, Qi-yuan; Hu, Shao-ying; Chen, Xiao-yun; Jia, Xiao-bin

    2013-01-01

    We prepared solid dispersions (SDs) of tanshinone IIA (TSIIA) with silica nanoparticles, which function as dispersing carriers, using a spray-drying method and evaluated their in vitro dissolution and in vivo performance. The extent of TSIIA dissolution in the silica nanoparticles/TSIIA system (weight ratio, 5:1) was approximately 92% higher than that of the pure drug after 60 minutes. However, increasing the content of silica nanoparticles from 5:1 to 7:1 in this system did not significantly increase the rate or extent of TSIIA dissolution. The physicochemical properties of SDs were investigated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and Fourier transforms infrared spectroscopy. Studying the stability of the SDs of TSIIA revealed that the drug content of the formulation and dissolution behavior was unchanged under the applied storage conditions. In vivo tests showed that SDs of the silica nanoparticles/TSIIA had a significantly larger area under the concentration-time curve, which was 1.27 times more than that of TSIIA (P < 0.01). Additionally, the values of maximum plasma concentration and the time to reach maximum plasma concentration of the SDs were higher than those of TSIIA and the physical mixing system. Based on these results, we conclude that the silica nanoparticle based SDs achieved complete dissolution, increased absorption rate, maintained drug stability, and showed improved oral bioavailability compared to TSIIA alone. PMID:23836971

  9. Luminescent silica nanoparticles for sensing acetylcholinesterase-catalyzed hydrolysis of acetylcholine.

    PubMed

    Mukhametshina, Alsu R; Fedorenko, Svetlana V; Zueva, Irina V; Petrov, Konstantin A; Masson, Patrick; Nizameev, Irek R; Mustafina, Asiya R; Sinyashin, Oleg G

    2016-03-15

    This work highlights the H-function of Tb(III)-doped silica nanoparticles in aqueous solutions of acetic acid as a route to sense acetylcholinesterase-catalyzed hydrolysis of acetylcholine (ACh). The H-function results from H(+)-induced quenching of Tb(III)-centered luminescence due to protonation of Tb(III) complexes located close to silica/water interface. The H-function can be turned on/switched off by the concentration of complexes within core or nanoparticle shell zones, by the silica surface decoration and adsorption of both organic and inorganic cations on silica surface. Results indicate the optimal synthetic procedure for making nanoparticles capable of sensing acetic acid produced by enzymatic hydrolysis of acetylcholine. The H-function of nanoparticles was determined at various concentrations of ACh and AChE. The measurements show experimental conditions for fitting the H-function to Michaelis-Menten kinetics. Results confirm that reliable fluorescent monitoring AChE-catalyzed hydrolysis of ACh is possible through the H-function properties of Tb(III)-doped silica nanoparticles. PMID:26516688

  10. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    PubMed

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis.

  11. Electrostatic self-assembly of PEG copolymers onto porous silica nanoparticles.

    PubMed

    Thierry, Benjamin; Zimmer, Lucie; McNiven, Scott; Finnie, Kim; Barbé, Christophe; Griesser, Hans J

    2008-08-01

    A critical requirement toward the clinical use of nanocarriers in drug delivery applications is the development of optimal biointerfacial engineering procedures designed to resist biologically nonspecific adsorption events. Minimization of opsonization increases blood residence time and improves the ability to target solid tumors. We report the electrostatic self-assembly of polyethyleneimine-polyethylene glycol (PEI-PEG) copolymers onto porous silica nanoparticles. PEI-PEG copolymers were synthesized and their adsorption by self-assembly onto silica surfaces were investigated to achieve a better understanding of structure-activity relationships. Quartz-crystal microbalance (QCM) study confirmed the rapid and stable adsorption of the copolymers onto silica-coated QCM sensors driven by strong electrostatic interactions. XPS and FT-IR spectroscopy were used to analyze the coated surfaces, which indicated the presence of dense PEG layers on the silica nanoparticles. Dynamic light scattering was used to optimize the coating procedure. Monodisperse dispersions of the PEGylated nanoparticles were obtained in high yields and the thin PEG layers provided excellent colloidal stability. In vitro protein adsorption tests using 5% serum demonstrated the ability of the self-assembled copolymer layers to resist biologically nonspecific fouling and to prevent aggregation of the nanoparticles in physiological environments. These results demonstrate that the electrostatic self-assembly of PEG copolymers onto silica nanoparticles used as drug nanocarriers is a robust and efficient procedure, providing excellent control of their biointerfacial properties.

  12. Uptake of bright fluorophore core-silica shell nanoparticles by biological systems

    PubMed Central

    Zane, Andrew; McCracken, Christie; Knight, Deborah A; Young, Tanya; Lutton, Anthony D; Olesik, John W; Waldman, W James; Dutta, Prabir K

    2015-01-01

    Nanoparticles are used in a variety of consumer applications. Silica nanoparticles in particular are common, including as a component of foods. There are concerns that ingested nano-silica particles can cross the intestinal epithelium, enter the circulation, and accumulate in tissues and organs. Thus, tracking these particles is of interest, and fluorescence spectroscopic methods are well-suited for this purpose. However, nanosilica is not fluorescent. In this article, we focus on core-silica shell nanoparticles, using fluorescent Rhodamine 6G, Rhodamine 800, or CdSe/CdS/ZnS quantum dots as the core. These stable fluorophore/silica nanoparticles had surface characteristics similar to those of commercial silica particles. Thus, they were used as model particles to examine internalization by cultured cells, including an epithelial cell line relevant to the gastrointestinal tract. Finally, these particles were administered to mice by gavage, and their presence in various organs, including stomach, small intestine, cecum, colon, kidney, lung, brain, and spleen, was examined. By combining confocal fluorescence microscopy with inductively coupled plasma mass spectrometry, the presence of nanoparticles, rather than their dissolved form, was established in liver tissues. PMID:25759579

  13. Polyvinylpyrrolidone molecular weight controls silica shell thickness on Au nanoparticles with diglycerylsilane as precursor.

    PubMed

    Vanderkooy, Alan; Brook, Michael A

    2012-08-01

    Several strategies have been described for the preparation of silica-encapsulated gold nanoparticles (SiO(2)-AuNP), which typically suffer from an initial interface between gold and silica that is difficult to control, and layer thicknesses that are very sensitive to minor changes in silane concentration and incubation time. The silica shell thicknesses are normally equal to or larger than the gold particles themselves, which is disadvantageous when the particles are to be used for biodiagnostic applications. We present a facile and reproducible method to produce very thin silica shells (3-5 nm) on gold nanoparticles: the process is highly tolerant to changes in reaction conditions. The method utilized polyvinylpyrrolidone (PVP) of specific molecular weights to form the interface between gold and silica. The method further requires a nontraditional silica precursor, diglycerylsilane, which efficiently undergoes sol-gel processing at neutrality. Under these conditions, higher molecular weight PVP leads to thicker silica shells: PVP acts as the locus for silica growth into an interpenetrating organic-inorganic hybrid structure.

  14. Silica nanoparticles for micro-particle imaging velocimetry: fluorosurfactant improves nanoparticle stability and brightness of immobilized iridium(III) complexes.

    PubMed

    Lewis, David J; Dore, Valentina; Rogers, Nicola J; Mole, Thomas K; Nash, Gerard B; Angeli, Panagiota; Pikramenou, Zoe

    2013-11-26

    To establish highly luminescent nanoparticles for monitoring fluid flows, we examined the preparation of silica nanoparticles based on immobilization of a cyclometalated iridium(III) complex and an examination of the photophysical studies provided a good insight into the Ir(III) microenvironment in order to reveal the most suitable silica nanoparticles for micro particle imaging velocimetry (μ-PIV) studies. Iridium complexes covalently incorporated at the surface of preformed silica nanoparticles, [Ir-4]@Si500-Z, using a fluorinated polymer during their preparation, demonstrated better stability than those without the polymer, [Ir-4]@Si500, as well as an increase in steady state photoluminescence intensity (and therefore particle brightness) and lifetimes which are increased by 7-fold compared with nanoparticles with the same metal complex attached covalently throughout their core, [Ir-4]⊂Si500. Screening of the nanoparticles in fluid flows using epi-luminescence microscopy also confirm that the brightest, and therefore most suitable particles for microparticle imaging velocimetry (μ-PIV) measurements are those with the Ir(III) complex immobilized at the surface with fluorosurfactant, that is [Ir-4]@Si500-Z. μ-PIV studies demonstrate the suitability of these nanoparticles as nanotracers in microchannels.

  15. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria

    NASA Astrophysics Data System (ADS)

    Guo, Yanyan; Rogelj, Snezna; Zhang, Peng

    2010-02-01

    A new type of photosensitizer, made from Rose Bengal (RB)-decorated silica (SiO2-NH2-RB) nanoparticles, was developed to inactivate gram-positive bacteria, including Methicillin-resistant Staphylococcus aureus (MRSA), with high efficiency through photodynamic action. The nanoparticles were characterized microscopically and spectroscopically to confirm their structures. The characterization of singlet oxygen generated by RB, both free and immobilized on a nanoparticle surface, was performed in the presence of anthracene-9,10-dipropionic acid. The capability of SiO2-NH2-RB nanoparticles to inactivate bacteria was tested in vitro on both gram-positive and gram-negative bacteria. The results showed that RB-decorated silica nanoparticles can inactivate MRSA and Staphylococcus epidermidis (both gram-positive) very effectively (up to eight-orders-of-magnitude reduction). Photosensitizers of such design should have good potential as antibacterial agents through a photodynamic mechanism.

  16. Anisotropic magnetic porous assemblies of oxide nanoparticles interconnected via silica bridges for catalytic application.

    PubMed

    Wacker, Josias B; Parashar, Virendra K; Gijs, Martin A M

    2011-04-19

    We report the microfluidic chip-based assembly of colloidal silanol-functionalized silica nanoparticles using monodisperse water-in-oil droplets as templates. The nanoparticles are linked via silica bridges, thereby forming superstructures that range from doublets to porous spherical or rod-like micro-objects. Adding magnetite nanoparticles to the colloid generates micro-objects that can be magnetically manipulated. We functionalized such magnetic porous assemblies with horseradish peroxidase and demonstrate the catalytic binding of fluorescent dye-labeled tyramide over the complete effective surface of the superstructure. Such nanoparticle assemblies permit easy manipulation and recovery after a heterogeneous catalytic process while providing a large surface similar to that of the individual nanoparticles. PMID:21417232

  17. SnO{sub 2} nanoparticles embedded in silica by ion implantation followed by thermal oxidation

    SciTech Connect

    Tagliente, M. A.; Massaro, M.; Bello, V.; Pellegrini, G.; Mattei, G.; Mazzoldi, P.

    2009-11-15

    Nanoparticles of tin dioxide embedded in silica matrix were synthesized by ion implanting a Sn{sup +} ion beam in a silica slide and by annealing in oxidizing atmosphere at 800 deg. C. A detailed structural and optical characterization was performed by using glancing incidence x-ray diffraction, transmission electron microscopy, optical absorption, and photoluminescence spectroscopies. Metallic tetragonal beta-tin crystalline nanoparticles were formed in the as-implanted sample. The annealing in oxidizing atmosphere promotes the total oxidation of the tin nanoparticles with a preferential migration of the nanoparticles toward the surface of the matrix. A broad blue-violet emission band peaked at 388 nm was observed in the photoluminescence spectra of both the as-implanted and annealed samples, which was attributed to the Sn-related oxygen deficiency center defects and the SnO{sub 2} nanoparticles, respectively.

  18. Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure To Increase Stability And Surface Reactivity Of Nano-crystalline Ceria

    SciTech Connect

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Varga, Tamas; Thevuthasan, Suntharampillai

    2014-01-21

    The mixed oxidation state (3+/4+) of ceria nanoparticles of smaller sizes make them attractive materials for their catalytic antioxidant biological properties. However the unmodified smaller ceria nanoparticles are limited in their use due to particles agglomeration and reduced surface chemical reactivity in the solutions used to disperse the nanoparticles. This work describes an effort to stabilize small ceria nanoparticles, retaining their desired activity, on a larger stable silica support. The ceria nanoparticles attached to silica was synthesized by a solution synthesis technique in which the surface functional groups of silica nanoparticles were found to be essential for the formation of smaller ceria nanoparticles. The surface chemical and vibrational spectroscopy analysis revealed cerium–silicate (Ce-O-Si) covalent bond linkage between silica and cerium oxide nanoparticles. The colloidal properties (agglomerate particle size and suspension stability) of ceria attached to silica was significantly improved due to inherent physico-chemical characteristics of silica against random collision and gravitation settling as opposed to unmodified ceria nanoparticles in solution. The bio-catalytic activity of ceria nanoparticles in the 3+ oxidation state was not found to be limited by attachment to the silica support as measured by free radical scavenging activity in different biological media conditions.

  19. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation

    PubMed Central

    Nemmar, Abderrahim; Albarwani, Sulayma; Beegam, Sumaya; Yuvaraju, Priya; Yasin, Javed; Attoub, Samir; Ali, Badreldin H

    2014-01-01

    Amorphous silica nanoparticles (SiNPs) are being used in biomedical, pharmaceutical, and many other industrial applications entailing human exposure. However, their potential vascular and systemic pathophysiologic effects are not fully understood. Here, we investigated the acute (24 hours) systemic toxicity of intraperitoneally administered 50 nm and 500 nm SiNPs in mice (0.5 mg/kg). Both sizes of SiNPs induced a platelet proaggregatory effect in pial venules and increased plasma concentration of plasminogen activator inhibitor-1. Elevated plasma levels of von Willebrand factor and fibrinogen and a decrease in the number of circulating platelets were only seen following the administration of 50 nm SiNPs. The direct addition of SiNPs to untreated mouse blood significantly induced in vitro platelet aggregation in a dose-dependent fashion, and these effects were more pronounced with 50 nm SiNPs. Both sizes of SiNPs increased lactate dehydrogenase activity and interleukin 1β concentration. However, tumor necrosis factor α concentration was only increased after the administration of 50 nm SiNPs. Nevertheless, plasma markers of oxidative stress, including 8-isoprostane, thiobarbituric acid reactive substances, catalase, and glutathione S-transferase, were not affected by SiNPs. The in vitro exposure of human umbilical vein endothelial cells to SiNPs showed a reduced cellular viability, and more potency was seen with 50 nm SiNPs. Both sizes of SiNPs caused a decrease in endothelium-dependent relaxation of isolated small mesenteric arteries. We conclude that amorphous SiNPs cause systemic inflammation and coagulation events, and alter vascular reactivity. Overall, the effects observed with 50 nm SiNPs were more pronounced than those with 500 nm SiNPs. These findings provide new insight into the deleterious effect of amorphous SiNPs on vascular homeostasis. PMID:24936130

  20. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles

    NASA Astrophysics Data System (ADS)

    Fan, Jianquan; Fang, Gang; Wang, Xiaodan; Zeng, Fang; Xiang, Yufei; Wu, Shuizhu

    2011-11-01

    A targeted anticancer prodrug system was fabricated with 180 nm mesoporous silica nanoparticles (MSNs) as carriers. The anticancer drug doxorubicin (DOX) was conjugated to the particles through an acid-sensitive carboxylic hydrazone linker which is cleavable under acidic conditions. Moreover, folic acid (FA) was covalently conjugated to the particle surface as the targeting ligand for folate receptors (FRs) overexpressed in some cancer cells. The in vitro release profiles of DOX from the MSN-based prodrug systems showed a strong dependence on the environmental pH values. The fluorescent dye FITC was incorporated in the MSNs so as to trace the cellular uptake on a fluorescence microscope. Cellular uptakes by HeLa, A549 and L929 cell lines were tested for FA-conjugated MSNs and plain MSNs respectively, and a much more efficient uptake by FR-positive cancer cells (HeLa) can be achieved by conjugation of folic acid onto the particles because of the folate-receptor-mediated endocytosis. The cytotoxicities for the FA-conjugated MSN prodrug, the plain MSN prodrug and free DOX against three cell lines were determined, and the result indicates that the FA-conjugated MSN prodrug exhibits higher cytotoxicity to FR-positive cells, and reduced cytotoxicity to FR-negative cells. Thus, with 180 nm MSNs as the carriers for the prodrug system, good drug loading, selective targeting and sustained release of drug molecules within targeted cancer cells can be realized. This study may provide useful insights for designing and improving the applicability of MSNs in targeted anticancer prodrug systems.

  1. In vitro toxicity of silica nanoparticles in human lung cancer cells

    SciTech Connect

    Lin Weisheng; Huang Yuewern; Zhou Xiaodong; Ma Yinfa . E-mail: yinfa@umr.edu

    2006-12-15

    The cytotoxicity of 15-nm and 46-nm silica nanoparticles was investigated by using crystalline silica (Min-U-Sil 5) as a positive control in cultured human bronchoalveolar carcinoma-derived cells. Exposure to 15-nm or 46-nm SiO{sub 2} nanoparticles for 48 h at dosage levels between 10 and 100 {mu}g/ml decreased cell viability in a dose-dependent manner. Both SiO{sub 2} nanoparticles were more cytotoxic than Min-U-Sil 5; however, the cytotoxicities of 15-nm and 46-nm silica nanoparticles were not significantly different. The 15-nm SiO{sub 2} nanoparticles were used to determine time-dependent cytotoxicity and oxidative stress responses. Cell viability decreased significantly as a function of both nanoparticle dosage (10-100 {mu}g/ml) and exposure time (24 h, 48 h, and 72 h). Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species (ROS), glutathione, malondialdehyde, and lactate dehydrogenase, were quantitatively assessed. Exposure to SiO{sub 2} nanoparticles increased ROS levels and reduced glutathione levels. The increased production of malondialdehyde and lactate dehydrogenase release from the cells indicated lipid peroxidation and membrane damage. In summary, exposure to SiO{sub 2} nanoparticles results in a dose-dependent cytotoxicity in cultural human bronchoalveolar carcinoma-derived cells that is closely correlated to increased oxidative stress.

  2. Particle size distributions of polyaniline-silica colloidal composites

    SciTech Connect

    Gill, M.; Armes, S.P. ); Fairhurst, D. ); Emmett, S.N. ); Idzorek, G.; Pigott, T. )

    1992-09-01

    We have characterized a new polyaniline-silica composite colloid by various particle sizing techniques. Our transmission electron microscopy studies have confirmed for the first time an unusual raspberry morphology, with the small silica particles held together by the polyaniline [open quotes]binder[close quotes]. These particles have average diameters in the size range 150-500 nm. Charge-velocity analysis experiments indicated a number-average particle diameter of 300 [plus minus] 80 nm, but only poor statistics were obtained (172 particles counted). Photon correlation spectroscopy studies suggested an intensity-average particle diameter of 380 nm. Disk centrifuge photosedimentometry (DCP) turned out to be our preferred sizing technique for the polyaniline-silica colloids, since it was both quick and reliable and, more importantly, produced the true particle size distribution (PSD) curve with excellent statistics. The DCP data indicated a weight-average and number-average particle diameter of 330 [plus minus] 70 nm and 280 [plus minus] 70 nm, respectively, and moreover confirmed the PSD to be both broad and unimodal. Finally, these colloidal composites were sized using the Malvern Aerosizer. Using this instrument in conjunction with a nebulizer attachment (which allowed particle sizing of the [open quotes]wet[close quotes] dispersion) rather than in the conventional [open quotes]dry powder[close quotes] mode, we obtained particle size data which were in reasonable agreement with the DCP results. 31 refs., 5 figs., 1 tab.

  3. Rapid synthesis of ordered hexagonal mesoporous silica and their incorporation with Ag nanoparticles by solution plasma

    SciTech Connect

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang Yul

    2012-10-15

    Graphical abstract: Overall reactions of mesoporous silica and AgNPs-incorporated mesoporous silica syntheses by solution plasma process (SPP). Highlights: ► SPP for rapid synthesis of mesoporous silica. ► SPP for rapid synthesis of mesoporous silica and AgNPs incorporation. ► Higher surface area and larger pore diameter of mesoporous silica synthesized by SPP. -- Abstract: Rapid synthesis of silica with ordered hexagonal mesopore arrangement was obtained using solution plasma process (SPP) by discharging the mixture of P123 triblock copolymer/TEOS in acid solution. SPP, moreover, was utilized for Ag nanoparticles (AgNPs) incorporation in silica framework as one-batch process using silver nitrate (AgNO{sub 3}) solution as precursor. The turbid silicate gel was clearly observed after discharge for 1 min and the white precipitate formed at 3 min. The mesopore with hexagonal arrangement and AgNPs were observed in mesoporous silica. Two regions of X-ray diffraction patterns (2θ < 2° and 2θ = 35–90°) corresponded to the mesoporous silica and Ag nanocrystal characteristics. Comparing with mesoporous silica prepared by a conventional sol–gel route, surface area and pore diameter of mesoporous silica prepared by solution plasma were observed to be larger. In addition, the increase in Ag loading resulted in the decrease in surface area with insignificant variation in the pore diameter of mesoporous silica. SPP could be successfully utilized not only to enhance gelation time but also to increase surface area and pore diameter of mesoporous silica.

  4. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint.

    PubMed

    Duan, Junchao; Yu, Yongbo; Li, Yang; Yu, Yang; Li, Yanbo; Zhou, Xianqing; Huang, Peili; Sun, Zhiwei

    2013-01-01

    Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH) release were observed in human umbilical vein endothelial cells (HUVECs) as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS) generation caused oxidative damage followed by the production of malondialdehyde (MDA) as well as the inhibition of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP) decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM) were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR) via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.

  5. A silica-based magnetic platform decorated with mixed ligand gold nanoparticles: a recyclable catalyst for esterification reactions.

    PubMed

    Ertem, Elif; Murillo-Cremaes, Nerea; Carney, Randy Patrick; Laromaine, Anna; Janeček, Emma-Rose; Roig, Anna; Stellacci, Francesco

    2016-04-25

    A novel and convenient synthetic strategy for the preparation of magnetically responsive silica nanospheres decorated with mixed ligand protected gold nanoparticles is described. Gold nanoparticles are attached to the silica surface via stable amide bond formation. The hierarchical nanospheres show promising results as reusable and efficient catalysts for esterification reactions and they can be recovered through a simple magnetic separation.

  6. Submicrometer-sized Pickering emulsions stabilized by silica nanoparticles with adsorbed oleic acid.

    PubMed

    Sadeghpour, Amin; Pirolt, Franz; Glatter, Otto

    2013-05-21

    Oil-water Pickering emulsions of about 200 nm were stabilized by nanosized hydrophilic silica after a simple surface treatment method. We have modified the aqueous silica nanoparticle dispersions by simple adsorption of oleic acid to their surfaces, improving the hydrophobicity of the particles while maintaining their charge and stability. The adsorption was monitored by small-angle X-ray scattering and electrophoretic measurements to estimate the interparticle interactions and surface charges. The effect of various parameters, such as nanoparticle concentration, amount of oleic acid, ionic strength, and pH, on the droplets' size and stability was investigated by dynamic light scattering. Furthermore, the ability of these modified silica nanoparticles to stabilize long-chain alkanes, liquid paraffin, and liquid-crystalline phases was examined.

  7. Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: intracellular accumulation and stimuli responsive doxorubicin release.

    PubMed

    Hakeem, Abdul; Zahid, Fouzia; Duan, Ruixue; Asif, Muhammad; Zhang, Tianchi; Zhang, Zhenyu; Cheng, Yong; Lou, Xiaoding; Xia, Fan

    2016-03-01

    Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay.

  8. Reactions of methyl radicals with silica supported silver nanoparticles in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zidki, Tomer; Hänel, Andreas; Bar-Ziv, Ronen

    2016-07-01

    Silica supported silver nanoparticles (Ag°-SiO2-NCs, NCs=nanocomposites) suspended in aqueous solutions are efficient catalysts for the dimerization of methyl radicals to produce ethane, while bare silica is quite inert towards the interaction with methyl radicals. In the presence of small amounts of ethanol adsorbed on the SiO2 surface, the reaction path with methyl radicals is changed and methane is formed as the major product.

  9. Water-Dispersible, Multifunctional, Magnetic, Luminescent Silica-Encapsulated Composite Nanotubes

    SciTech Connect

    Sutter, E.; Wong, S.; Zhou, H.; Chen, J.; Sutter, E.; Feygenson, M.; Aronson, M.C.

    2010-02-05

    A multifunctional one-dimensional nanostructure incorporating both CdSe quantum dots (QDs) and Fe{sub 3}O{sub 4} nanoparticles (NPs) within a SiO{sub 2}-nanotube matrix is successfully synthesized based on the self-assembly of preformed functional NPs, allowing for control over the size and amount of NPs contained within the composite nanostructures. This specific nanostructure is distinctive because both the favorable photoluminescent and magnetic properties of QD and NP building blocks are incorporated and retained within the final silica-based composite, thus rendering it susceptible to both magnetic guidance and optical tracking. Moreover, the resulting hydrophilic nanocomposites are found to easily enter into the interiors of HeLa cells without damage, thereby highlighting their capability not only as fluorescent probes but also as possible drug-delivery vehicles of interest in nanobiotechnology.

  10. Cellulose conjugated FITC-labelled mesoporous silica nanoparticles: intracellular accumulation and stimuli responsive doxorubicin release

    NASA Astrophysics Data System (ADS)

    Hakeem, Abdul; Zahid, Fouzia; Duan, Ruixue; Asif, Muhammad; Zhang, Tianchi; Zhang, Zhenyu; Cheng, Yong; Lou, Xiaoding; Xia, Fan

    2016-02-01

    Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay.Herein, we design novel cellulose conjugated mesoporous silica nanoparticle (CLS-MSP) based nanotherapeutics for stimuli responsive intracellular doxorubicin (DOX) delivery. DOX molecules are entrapped in pores of the fabricated mesoporous silica nanoparticles (MSPs) while cellulose is used as an encapsulating material through esterification on the outlet of the pores of the MSPs to avoid premature DOX release under physiological conditions. In in vitro studies, stimuli responsive DOX release is successfully achieved from DOX loaded cellulose conjugated mesoporous silica nanoparticles (DOX/CLS-MSPs) by pH and cellulase triggers. Intracellular accumulation of DOX/CLS-MSPs in human liver cancer cells (HepG2 cells) is investigated through confocal microscope magnification. Cell viability of HepG2 cells is determined as the percentage of the cells incubated with DOX/CLS-MSPs compared with that of non-incubated cells through an MTT assay. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08753h

  11. Anomalous increase in the magnetorheological properties of magnetic fluid induced by silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Desai, Rucha; Upadhyay, R. V.

    2014-12-01

    Magnetorheological properties are experimentally investigated in aqueous magnetic fluid containing spherical silica nanoparticles. A bi-dispersed system is prepared using aqueous suspension of silica nanoparticles and aqueous magnetic fluid. Both these fluids exhibit Newtonian viscosity with nominal values of 1.3 and 5.8 mPa\\cdot s at 20 °C. Three different samples are prepared by varying silica and magnetic fluid concentrations and keeping the total volume constant. The addition of silica nanoparticles leads to enhancement of the magnetic field induced viscosity up to the order 107 Pa\\cdot s. The magnetic field induced viscosity is analyzed using the structural viscosity model. Magnetic field induced static and dynamic yield stress values to reveal the existence of field induced clustering. An attempt is made to explain this yielding behavior using chain-like and micromechanical models. It is found that high silica fraction leads to the formation of chain-like structure. At low silica fraction, chains overlap and result into layer aggregates, which are responsible for the anomalous increase in the magnetorheological properties. This is further confirmed using magnetic field microscopic chain formations.

  12. Facile route for preparation of silver nanoparticle-coated precipitated silica

    NASA Astrophysics Data System (ADS)

    Quang, Dang Viet; Sarawade, Pradip B.; Hilonga, Askwar; Park, Sung Dae; Kim, Jong-Kil; Kim, Hee Taik

    2011-02-01

    In this research, a facile route was used to prepare silver nanoparticle-coated precipitated silica using sodium silicate, a cheap precursor. Precipitated silica (PS) was synthesized by dropping 8% H2SO4 into a mixed solution of sodium silicate 24% (Na2O·3.4SiO2) and NaCl 4%; under constant stirring. The precipitated silica was then modified by simultaneous addition of 3-aminopropyltriethoxysilane (3-APTES) and 8% H2SO4. The resulting material was aged at 80 °C for 1 h to produce amino-functionalized precipitated silica (AFPS). Silver nanoparticle-coated precipitated silica (Ag-NPS) was synthesized by adding silver nitrate (AgNO3). The synthesis procedure also involved mixing for 2 h and dropping 0.05 M sodium borohydride (NaBH4). The final products, namely, PS, AFPS, and Ag-NPS were characterized using BET analyzer, FE-SEM, TEM and XRD. Silver nanoparticles with an average size ranging from 18 to 25 nm were found mostly coated on the exterior layer of the precipitated silica. The synthesis method reported in this work is facile and might be used for large-scale industrial production of inexpensive Ag-NPS.

  13. Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles.

    PubMed

    Li, Xiaoyu; Du, Xin; He, Junhui

    2010-08-17

    Novel mesoporous silica nanoparticles of peculiar shapes were synthesized, from which hierarchically porous silica coatings were fabricated on glass substrates via layer-by-layer (LbL) assembly, followed by calcination. These porous silica coatings were highly transparent and superhydrophilic. The maximum transmittance reached as high as 94%, whereas that of the glass substrate is 91%. The time for a droplet to spread lower than 5 degrees decreased to as short as 0.25 s. After the coating surface was treated with a low surface energy material, the surface became superhydrophobic (water contract angle >150 degrees) with a very low sliding angle of <1 degree. Compared with MCM-41-type mesoporous silica nanoparticles, the coatings fabricated using the novel mesoporous silica nanoparticles possess much better self-cleaning property. We used scanning (SEM) and transmission (TEM) electron microscopy to observe the morphology and structure of nanoparticles and surfaces. Transmission spectra and their change with time were characterized by UV-vis spectrophotometer. We studied the surface wettability by a contact angle/interface system. The influence of mesopores on the transmittance and wetting properties of coatings was discussed on the basis of experimental observations.

  14. Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties

    PubMed Central

    Kostiv, Uliana; Šlouf, Miroslav; Macková, Hana; Zhigunov, Alexander; Engstová, Hana; Smolková, Katarína; Ježek, Petr

    2015-01-01

    Summary NaYF4:Yb3+/Er3+ nanoparticles were synthesized by thermal decomposition of lanthanide trifluoroacetates using oleylamine (OM) as both solvent and surface binding ligand. The effect of reaction temperature and time on the properties of the particles was investigated. The nanoparticles were characterized by transmission electron microscopy (TEM), electron diffraction (ED), energy dispersive spectroscopy (EDX), dynamic light scattering (DLS), thermogravimetric analysis (TGA), elemental analysis and X-ray diffraction (XRD) to determine morphology, size, polydispersity, crystal structure and elemental composition of the nanocrystals. TEM microscopy revealed that the morphology of the nanoparticles could be fine-tuned by modifying of the synthetic conditions. A cubic-to-hexagonal phase transition of the NaYF4:Yb3+/Er3+ nanoparticles at temperatures above 300 °C was confirmed by both ED and XRD. Upconversion luminescence under excitation at 980 nm was observed in the luminescence spectra of OM–NaYF4:Yb3+/Er3+ nanoparticles. Finally, the OM–NaYF4:Yb3+/Er3+ nanoparticles were coated with a silica shell to enable further functionalization and increase biocompatibility and stability in aqueous media, preventing particle aggregation. PMID:26734520

  15. Removal of mercury from aqueous solution using mesoporous silica nanoparticles modified with polyamide receptor.

    PubMed

    He, Chunsheng; Ren, Long; Zhu, Weiping; Xu, Yufang; Qian, Xuhong

    2015-11-15

    Based on the principle of supramolecular recognition and fluorescent chemical sensors, a novel kind of material for the separation of toxic heavy metal ions was designed and synthesized. Mesoporous silica nanoparticles MCM-41 with high surface areas and large ordered pores were used as the supporting matrix. Poly-amide derivative, was grafted to the mesoporous silica nanoparticles for extracting and separating trace Hg(2+) from aqueous solution, with a short adsorption time (t=3min) and a wide range of pH application (pH 3-11). The separation material could also extract trace mercury from Traditional Chinese Medicine, and has no influence on their effective components. PMID:26232282

  16. In situ synthesis of porous silica nanoparticles for covalent immobilization of enzymes

    NASA Astrophysics Data System (ADS)

    Yang, Xiaowei; Cai, Zhengwei; Ye, Zhangmei; Chen, Sheng; Yang, Yu; Wang, Haifang; Liu, Yuanfang; Cao, Aoneng

    2012-01-01

    A simple method is used to covalently encapsulate enzymes in silica nanoparticles. The encapsulation is highlighted by the high enzyme loading and porous channels that provide efficient diffusion for small substrate and product molecules while preventing protease degradation.A simple method is used to covalently encapsulate enzymes in silica nanoparticles. The encapsulation is highlighted by the high enzyme loading and porous channels that provide efficient diffusion for small substrate and product molecules while preventing protease degradation. Electronic supplementary information (ESI) available: Experimental procedures and the result of the surface-grafted catalase control experiment. See DOI: 10.1039/c1nr11153a

  17. Catalyst-free synthesis of sodium amide nanoparticles encapsulated in silica gel

    NASA Astrophysics Data System (ADS)

    Ogilvie, Alexander D.; Makepeace, Joshua W.; Hore, Katie; Ramirez-Cuesta, Anibal J.; Apperley, David C.; Mitchels, John M.; Edwards, Peter P.; Sartbaeva, Asel

    2013-12-01

    Crystalline sodium amide nanoparticles encapsulated in an amorphous silica framework were formed by ammoniation of a precursor material, silica gel loaded with metallic sodium, under mild conditions and without catalysis. This ammoniation was performed in situ on TOSCA beamline at ISIS, RAL, using anhydrous gaseous ammonia. The resulting material exhibits no pyrophoricity and much reduced air- and moisture-sensitivity compared to the bulk amide. The nanoparticles formed will offer a greatly increased surface area for chemical reactions where amide is currently used as an important ingredient for industrial applications. We anticipate that this method of sodium amide production will have a diversity of applications.

  18. Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation

    NASA Astrophysics Data System (ADS)

    Wan, Jiaqi; Meng, Xiangxi; Liu, Enzhong; Chen, Kezheng

    2010-06-01

    Bifunctional nanoprobes with both magnetic and optical contrast have been developed for ultra-sensitive brain tumor imaging at the cellular level. The nanoprobes were synthesized by simultaneously incorporating a magnetite nanoparticle cluster and fluorescence dyes into silica encapsulation by a sol-gel approach under ultrasonic treatment. The nanoprobes maintain superparamagnetic behavior at room temperature and possess enhanced transverse relaxivity and good photostability. As a glioma targeting ligand, chlorotoxin was covalently bonded to the surface of the nanoprobes. In vitro cellular uptake assays demonstrated that the nanoprobes were highly specific, taken up by human U251-MG glioma cells via receptor-mediated endocytosis. The labeled glioma cells were readily detectable by both MR imager and confocal laser scanning microscopy.

  19. A simple route to disperse silver nanoparticles on the surfaces of silica nanofibers with excellent photocatalytic properties

    SciTech Connect

    Wang, Xin; Fan, Huiqing; Ren, Pengrong; Yu, Huawa; Li, Jin

    2012-07-15

    Graphical abstract: The SiO{sub 2}/Ag composite nanofibers have been prepared by electrospinning and thermal decomposition of hybrid nanofibers, which exhibit a good catalytic property in reducing the methyl orange dye. Highlights: ► Hydrochloric acid was used as the catalyst of tetraethyl orthosilicate. ► Silver nanoparticles are obtained by pyrolysis of silver chloride. ► PVP–silica hybrid can disperse silver chloride and thus preventing the aggregation of silver nanoparticles. ► The catalytic activity of SiO{sub 2}/Ag composite nanofibers is much larger than that of SiO{sub 2} nanofibers. -- Abstract: In this work, monodispersed silver nanoparticles decorated SiO{sub 2} nanofibers were synthesized by electrospinning method, followed by thermal treatment at 600 °C. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) were used to characterize the composite nanofibers. Accordingly, the detailed formation mechanism of SiO{sub 2}/Ag composite nanofibers was discussed. Furthermore, an excellent catalytic activity of SiO{sub 2}/Ag composite fibers was observed by a degradation reaction of methyl orange (MO) dye.

  20. Self-organized patterning through the dynamic segregation of DNA and silica nanoparticles

    PubMed Central

    Joksimovic, Rastko; Watanabe, Shun; Riemer, Sven; Gradzielski, Michael; Yoshikawa, Kenichi

    2014-01-01

    Exotic pattern formation as a result of drying of an aqueous solution containing DNA and silica nanoparticles is reported. The pattern due to segregation was found to critically depend on the relative ratio of nanoparticles and DNA, as revealed by polarization microscopy, scanning electron microscopy, and fluorescence microscopy. The blurred radial pattern that is usually observed in the drying of a colloidal solution was shown to be vividly sharpened in the presence of DNA. Uniquely curved, crescent-shaped micrometer-scale domains are generated in regions that are rich in nanoparticles. The characteristic segregated patterns observed in the present study are interpreted in terms of a large aspect ratio between the persistence length (∼50 nm) and the diameter (∼2 nm) of double-stranded DNA, and the relatively small silica nanoparticles (radius: 5 nm). PMID:24413900

  1. Observations on size confinement effect in B-C-N nanoparticles embedded in mesoporous silica channels

    SciTech Connect

    Tripathi, Neeti; Yamashita, Masaru; Akai, Tomoko; Uchida, Takeyuki

    2014-07-07

    Fluorescent B-C-N/silica nanoparticles were synthesized by solution impregnation method. Effect of B-C-N particle size on the optical properties was investigated by varying the silica pore sizes. Formation of B-C-N nanoparticles within the mesoporous matrix is confirmed by x-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. Furthermore, a remarkable blue-shift in emission peak centres with decreasing pore size in conjugation with band gap modification, ascribed to the size confinement effect. A detailed analysis of experimental results by theoretically defined confinement models demonstrates that the B-C-N nanoparticles in the size range of 3–13 nm falls within the confinement regime. This work demonstrated the experimental evidence of the size confinement effect in smaller size B-C-N nanoparticles.

  2. Photoluminescence of cellulose acetate and silica sphere composite

    NASA Astrophysics Data System (ADS)

    Kang, Kwang-Sun

    2014-08-01

    Strong blue and green light emission has been observed from the cellulose acetate (CA) and silica sphere composite. Two different amounts of silica spheres were mixed in the CA solution to fabricate large area super-hydrophobic films. The silica spheres and CA solution ratios were 0.07:4.0 (SSCA-A) and 0.14:4.0 (SSCA-B). The milky color solution of SSCA-A and SSCA-B slowly turned to light yellow and red, respectively, with the time passed. The colors became intense yellow and red for the SSCA-A and SSCA-B, respectively, after 38 days. FTIR spectra show more absorption at 3478 cm-1 corresponding sbnd OH stretching vibration, at 2963 cm-1 caused by sbnd CH stretching vibration, at 1746 and 1713 cm-1 representing the Cdbnd O stretching vibration, and at 1100 cm-1 corresponding sbnd Rsbnd OH and Sisbnd Osbnd Si stretching vibration for CA and silica. Therefore, aged SSCA-A and SSCA-B have more sbnd OH, sbnd CH, sbnd Cdbnd O, and Sisbnd Osbnd Si groups than pure CA. UV-visible spectra show the absorption peaks at 410 nm for both SSCA-A and SSCA-B. Photoluminescence (PL) peaks were shifted toward longer wavelength with the increase of the excitation wavelength and became maximum at approximately 470 nm with excitation wavelength at 400 nm for the SSCA-A. There were two maximum luminescence peaks at 470 and 530 nm with the excitation wavelength at 400 and 470 nm, respectively, for the SSCA-B. The luminescence peak shift was due to the multiple emission center proved by the different excitation energy.

  3. Effect of the size of silica nanoparticles on wettability and surface chemistry of sol-gel superhydrophobic and oleophobic nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Lakshmi, R. V.; Bera, Parthasarathi; Anandan, C.; Basu, Bharathibai J.

    2014-11-01

    Superhydrophobic sol-gel nanocomposite coatings have been fabricated by incorporating silica nanoparticles with different particle sizes separately in an acid-catalyzed sol of methyltriethoxysilane (MTEOS). Water contact angle (WCA) of the coatings increased with increase in the concentration of silica nanoparticles in both the cases. The coatings became superhydrophobic at an optimum silica concentration. The water repellency was further improved by the addition of fluoroalkylsilane (FAS). The optimum silica concentration was found to depend on the size of silica nanoparticles and FAS content and the coatings exhibited WCA of about 160° and water sliding angle (WSA) of <2°. FAS addition also improved the oleophobicity of the coatings. The coatings exhibited oil-repellency with a lubricant oil contact angle of 126° and ethylene glycol contact angle of 153.3°. Surface morphology of the coatings analyzed using field emission scanning electron microscopy (FESEM) showed a rough surface with microscale bumps and nanoscale pores. XPS was used to study the surface composition of the coatings. The superhydrophobic property of the coatings was due to the synergistic effect of surface chemistry and surface microstructure and can be explained using Cassie-Baxter model.

  4. Amorphous silica nanoparticles enhance cross-presentation in murine dendritic cells

    SciTech Connect

    Hirai, Toshiro; Yoshioka, Yasuo; Takahashi, Hideki; Ichihashi, Ko-ichi; Yoshida, Tokuyuki; Tochigi, Saeko; Nagano, Kazuya; Abe, Yasuhiro; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silica nanoparticles enhanced cross-presentation. Black-Right-Pointing-Pointer Silica nanoparticles induced endosomal release of exogenous antigens. Black-Right-Pointing-Pointer Silica nanoparticle-induced cross-presentation was mediated by scavenger receptors. Black-Right-Pointing-Pointer Surface-modification may enable the manufacture of safer silica nanoparticles. -- Abstract: Nanomaterials (NMs) exhibit unique physicochemical properties and innovative functions, and they are increasingly being used in a wide variety of fields. Ensuring the safety of NMs is now an urgent task. Recently, we reported that amorphous silica nanoparticles (nSPs), one of the most widely used NMs, enhance antigen-specific cellular immune responses and may therefore aggravate immune diseases. Thus, to ensure the design of safer nSPs, investigations into the effect of nSPs on antigen presentation in dendritic cells, which are central orchestrators of the adaptive immune response, are now needed. Here, we show that nSPs with diameters of 70 and 100 nm enhanced exogenous antigen entry into the cytosol from endosomes and induced cross-presentation, whereas submicron-sized silica particles (>100 nm) did not. Furthermore, we show that surface modification of nSPs suppressed cross-presentation. Although further studies are required to investigate whether surface-modified nSPs suppress immune-modulating effects in vivo, the current results indicate that appropriate regulation of the characteristics of nSPs, such as size and surface properties, will be critical for the design of safer nSPs.

  5. Effects of silica nanoparticles on copper nanowire dispersions in aqueous PVA solutions

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hak; Song, Hyeong Yong; Hyun, Kyu

    2016-05-01

    In this study, the effects of adding silica nanoparticles to PVA/CuNW suspensions were investigated rheologically, in particular, by small and large amplitude oscillatory shear (SAOS and LAOS) test. Interesting, the SAOS test showed the complex viscosities of CuNW/silica based PVA matrix were smaller than those of PVA/CuNW without silica. These phenomena show that nano-sized silica affects the dispersion of CuNW in aqueous PVA, which suggests small particles can prevent CuNW aggregation. Nonlinearity (third relative intensity ≡ I 3/1) was calculated from LAOS test results using Fourier Transform rheology (FT-rheology) and nonlinear linear viscoelastic ratio (NLR) value was calculated using the nonlinear parameter Q and complex modulus G*. Nonlinearity ( I 3/1) results showed more CuNW aggregation in PVA/CuNW without silica than in PVA/CuNW with silica. NLR (= [ Q 0( ϕ)/ Q 0(0)]/[ G*( ϕ)/ G*(0)]) results revealed an optimum concentration ratio of silica to CuNW to achieve a well-dispersed state. Degree of dispersion was assessed through the simple optical method. SAOS and LAOS test, and dried film morphologies showed nano-sized silica can improve CuNW dispersion in aqueous PVA solutions.

  6. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection.

    PubMed

    Shi, Yupeng; Zhang, Heng; Yue, Zhenfeng; Zhang, Zhaomin; Teng, Kar-Seng; Li, Mei-Jin; Yi, Changqing; Yang, Mengsu

    2013-09-20

    Advances in the controlled assembly of nanoscale building blocks have resulted in functional devices which can find applications in electronics, biomedical imaging, drug delivery etc. In this study, novel covalent nanohybrid materials based upon [Ru(bpy)3](2+)-doped silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs), which could be conditioned as OFF-ON probes for glutathione (GSH) detection, were designed and assembled in sequence, with the disulfide bonds as the bridging elements. The structural and optical properties of the nanohybrid architectures were characterized using transmission electron microscopy, UV-vis spectroscopy and fluorescence spectroscopy, respectively. Zeta potential measurements, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were employed to monitor the reaction processes of the SiNPs-S-S-COOH and SiNPs-S-S-AuNPs synthesis. It was found that the covalent nanohybrid architectures were fluorescently dark (OFF state), indicating that SiNPs were effectively quenched by AuNPs. The fluorescence of the OFF-ON probe was resumed (ON state) when the bridge of the disulfide bond was cleaved by reducing reagents such as GSH. This work provides a new platform and strategy for GSH detection using covalent nanohybrid materials.

  7. Nanoparticle-based PARACEST agents: the quenching effect of silica nanoparticles on the CEST signal from surface-conjugated chelates.

    PubMed

    Evbuomwan, Osasere M; Merritt, Matthew E; Kiefer, Garry E; Dean Sherry, A

    2012-01-01

    Silica nanoparticles of average diameter 53 ± 3 nm were prepared using standard water-in-oil microemulsion methods. After conversion of the surface Si-OH groups to amino groups for further conjugation, the PARACEST agent, EuDOTA-(gly)₄ (-) was coupled to the amines via one or more side-chain carboxyl groups in an attempt to trap water molecules in the inner-sphere of the complex. Fluorescence and ICP analyses showed that approximately 1200 Eu(3+) complexes were attached to each silica nanoparticle, leaving behind excess protonated amino groups. CEST spectra of the modified silica nanoparticles showed that attachment of the EuDOTA-(gly)₄ (-) to the surface of the nanoparticles did not result in a decrease in water exchange kinetics as anticipated, but rather resulted in a complete elimination of the normal Eu(3+) -bound water exchange peak and broadening of the bulk water signal. This observation was traced to catalysis of proton exchange from the Eu(3+) -bound water molecule by excess positively charged amino groups on the surface of the nanoparticles.

  8. Template synthesis of precisely monodisperse silica nanoparticles within self-assembled organometallic spheres

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Sato, Sota; Fujita, Makoto

    2010-01-01

    One of the key challenges in materials science is to control the size and shape of inorganic nanoparticles with a high degree of precision, as these parameters have a significant influence on the nanoparticles' properties and potential applications. Here, we describe the preparation of highly monodisperse silica nanoparticles smaller than 5 nm in diameter by using self-assembled, hollow, spherical compounds as `endo-templates'. These coordination complexes with pendant sugar groups lining their interiors-assembled from 12 metal ions and 24 bis-pyridyl ligands containing glucose substituents-acted as structurally well-defined templates for the sol-gel condensation of alkoxysilanes. The polydispersities of the silica nanoparticles made with this method approached unity, with Mw/Mn < 1.01. The component ligands are modified easily, which enables an accurate expansion of the coordination complex and the subsequent control of the monodisperse silica nanoparticles that span molecular weights of 5,000 to 31,000 Da (corresponding to 2-4 nm in diameter). This method could be applicable to the preparation of other inorganic nanoparticles.

  9. Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines.

    PubMed

    Foldbjerg, Rasmus; Wang, Jing; Beer, Christiane; Thorsen, Kasper; Sutherland, Duncan S; Autrup, Herman

    2013-06-25

    Much of the concerns regarding engineered nanoparticle (NP) toxicity are based on knowledge from previous studies on particles in ambient air or occupational situations. E.g., the effects of exposure to silica dust particles have been studied intensely due to the carcinogenicity of crystalline silica. However, the increasing usage of engineered amorphous silica NPs has emphasized the need for further mechanistic insight to predict the consequences of exposure to the amorphous type of silica NPs. The present study focused on the in vitro biological effects following exposure to well-dispersed, BSA-stabilized, amorphous silica NPs whereas unmodified silica NPs where included for reasons of comparison. The cytotoxicity of the silica NPs was investigated in six different cell lines (A549, THP-1, CaCo-2, ASB-XIV, J-774A.1, and Colon-26) selected to explore the significance of organ and species sensitivity in vitro. Viability data demonstrated that macrophages were most sensitive to silica NP and interestingly, murine cell lines were generally found to be more sensitive than comparable human cell lines. Further studies were conducted in the human epithelial lung cell line, A549, to explore the molecular mechanism of silica toxicity. Generation of reactive oxygen species, one of the proposed toxicological mechanisms of NPs, was investigated in A549 cells by the dichlorofluorescin (DCF) assay to be significantly induced at NP concentrations above 113 μg/mL. However, induction of oxidative stress related pathways was not found after silica NP exposure for 24 h in gene array studies conducted in A549 cells at a relatively low NP concentration (EC20). Up-regulated genes (more than 2-fold) were primarily related to lipid metabolism and biosynthesis whereas down-regulated genes included several processes such as transcription, cell junction, extra cellular matrix (ECM)-receptor interaction and others. Thus, gene expression data proposes that several cellular processes other

  10. Magnetic properties of Ni nanoparticles embedded in silica matrix (KIT-6) synthesized via novel chemical route

    SciTech Connect

    Dalavi, Shankar B.; Panda, Rabi N.; Raja, M. Manivel

    2015-06-24

    Thermally stable Ni nanoparticles have been embedded in mesoporous silica matrix (KIT-6) via novel chemical reduction method by using superhydride as reducing agent. X-ray diffraction (XRD) study confirms that pure and embedded Ni nanoparticles crystallize in face centered cubic (fcc) structure. Crystallite sizes of pure Ni, 4 wt% and 8 wt% Ni in silica were estimated to be 6.0 nm, 10.4 nm and 10.5 nm, respectively. Morphology and dispersion of Ni in silica matrix were studied by scanning electron microscopy (SEM). Magnetic study shows enhancement of magnetic moments of Ni nanoparticles embedded in silica matrix compared with that of pure Ni. The result has been interpreted on the basis of size reduction and magnetic exchange effects. Saturation magnetization values for pure Ni, 4 wt% and 8 wt% Ni in silica were found to be 15.77 emu/g, 5.08 emu/g and 2.00 emu/g whereas coercivity values were 33.72 Oe, 92.47 Oe and 64.70 Oe, respectively. We anticipate that the observed magnetic properties may find application as soft magnetic materials.

  11. Preparation of silver nanoparticle containing silica micro beads and investigation of their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Quang, Dang Viet; Sarawade, Pradip B.; Hilonga, Askwar; Kim, Jong-Kil; Chai, Young Gyu; Kim, Sang Hoon; Ryu, Jae-Yong; Kim, Hee Taik

    2011-05-01

    Silver nanoparticle containing silica micro beads (Ag-NPBs) were successfully prepared by using sodium silicate, a cheap precursor, involving chemical reductive method. First, silica gel was synthesized and crushed into micro beads which have sizes ranging from 0.5 to 1 mm. Silica micro beads were then modified with 3-aminopropyltriethoxysilane to graft amino functional groups onto their surface. Silver ions were loaded onto the surface of the modified silica and reduced to silver crystal by adding NaBH 4. The presence of silver nanoparticles as well as structure of materials was characterized with FT-IR, XRD, BET, FE-SEM, TEM, UV-vis spectrophotometer, and optical microscope. Silver nanoparticles with an average size about 5 nm were found in the pore and on the surface of amino functionalized silica beads. Ag-NPBs samples were tested for their antibacterial activity against Escherichia coli ( E. coli). The antibacterial activity was examined by both zone inhibition and test tube test method. Biological results indicated that the synthesized materials have an excellent antibacterial performance against E. coli which was completely inhibited after 5 min contact with Ag-NPBs.

  12. The preparation of polypyrrole surfaces in the presence of mesoporous silica nanoparticles and their biomedical applications

    NASA Astrophysics Data System (ADS)

    Cho, Youngnam; Ben Borgens, Richard

    2010-05-01

    The deposition of carboxylic acid-terminated conducting polymer into two- or three-dimensional structures made up of colloidal particles has been successfully completed. This was accomplished using electrochemical deposition of ordered arrays of mesoporous silica nanoparticles (MSNs) as a template. Subsequent removal of the template yielded a porous polypyrrole surface. The co-polymerization of pyrrole with carboxylic acid-terminated pyrrole derivatives overcame the limitations of a lack of reactive functional groups—by facilitating the direct coupling of the film with biomolecules or drugs on the surface. Such Ppy films were characterized by several techniques: (1) scanning electron microscope (SEM) to evaluate surface topography, (2) x-ray photoelectron spectroscopy (XPS) to assess the chemical composition of the films, (3) four-point probe to measure the conductivity, and cyclic voltammogram to observe surface electroactivity. To assay the biological effectiveness of this preparation, we used phase-contrast light microscopy to compare neurite outgrowth from PC 12 cells grown on Ppy films in the presence and absence of electrical stimulation. These electrically functional, biocompatible composites show promise as novel neural implants that would deliver specific biologically active molecules in a highly localized manner to damaged or otherwise vulnerable cells such as found in the nervous system.

  13. Silica shell/gold core nanoparticles: correlating shell thickness with the plasmonic red shift upon aggregation.

    PubMed

    Vanderkooy, Alan; Chen, Yang; Gonzaga, Ferdinand; Brook, Michael A

    2011-10-01

    Differences in the wavelengths of the surface plasmon band of gold nanoparticles (AuNP)--before and after particle aggregation--are widely used in bioanalytical assays. However, the gold surfaces in such bioassays can suffer from exchange and desorption of noncovalently bound ligands and from nonspecific adsorption of biomolecules. Silica shells on the surfaces of the gold can extend the available surface chemistries for bioconjugation and potentially avoid these issues. Therefore, silica was grown on gold surfaces using either hydrolysis/condensation of tetraethyl orthosilicate 1 under basic conditions or diglyceroxysilane 2 at neutral pH. The former precursor permitted slow, controlled growth of shells from about 1.7 to 4.3 nm thickness. By contrast, 3-4 nm thick silica shells formed within an hour using diglyceroxysilane; thinner or thicker shells were not readily available. Within the range of shell thicknesses synthesized, the presence of a silica shell on the gold nanoparticle did not significantly affect the absorbance maximum (~5 nm) of unaggregated particles. However, the change in absorbance wavelength upon aggregation of the particles was highly dependent on the thickness of the shell. With silica shells coating the AuNP, there was a significant decrease in the absorbance maximum of the aggregated particles, from ~578 to ~536 nm, as the shell thicknesses increased from ~1.7 to ~4.3 nm, because of increased distance between adjacent gold cores. These studies provide guidance for the development of colorimetric assays using silica-coated AuNP.

  14. Aggregation-based detection of M. smegmatis using D-arabinose-functionalized fluorescent silica nanoparticles.

    PubMed

    Jayawardana, Kalana W; Wijesundera, Samurdhi A; Yan, Mingdi

    2015-11-14

    Fluorescein-doped silica nanoparticles (FSNPs) functionalized with D-arabinose (Ara) showed strong interactions with Mycobacterium smegmatis (M. smegmatis) and caused the bacteria to aggregate. This aggregate formation was used as a means to detect M. smegmatis at the concentration of 10(4) CFU per mL. PMID:26379182

  15. Impregnated silica nanoparticles for the reactive removal of sulphur mustard from solutions.

    PubMed

    Singh, Beer; Saxena, Amit; Nigam, Anil Kumar; Ganesan, Kumaran; Pandey, Pratibha

    2009-01-30

    High surface area (887.3m(2)/g) silica nanoparticles were synthesized using aerogel route and thereafter, characterized by N(2)-Brunauer-Emmet-Teller (BET), SEM and TEM techniques. The data indicated the formation of nanoparticles of silica in the size range of 24-75 nm with mesoporous characteristics. Later, these were impregnated with reactive chemicals such as N-chloro compounds, oxaziridines, polyoxometalates, etc., which have already been proven to be effective against sulphur mustard (HD). Thus, developed novel mesoporous reactive sorbents were tested for their self-decontaminating feature by conducting studies on kinetics of adsorptive removal of HD from solution. Trichloroisocyanuric acid impregnated silica nanoparticles (10%, w/w)-based system was found to be the best with least half-life value (t(1/2)=2.8 min) among prepared systems to remove and detoxify HD into nontoxic degradation products. Hydrolysis, dehydrohalogenation and oxidation reactions were found to be the route of degradation of HD over prepared sorbents. The study also inferred that 10% loading of impregnants over high surface area and low density silica nanoparticles enhances the rate of reaction kinetics and seems to be useful in the field of heterogeneous reaction kinetics.

  16. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  17. Liver injury induced by thirty- and fifty-nanometer-diameter silica nanoparticles.

    PubMed

    Isoda, Katsuhiro; Tetsuka, Eriko; Shimizu, Yoshimi; Saitoh, Kanae; Ishida, Isao; Tezuka, Masakatsu

    2013-01-01

    Nano-size silica material is a promising reagent for disease diagnosis, cosmetics, and the food industry. For the successful application of nanoparticle materials in bioscience, evaluation of nano-size material toxicity is important. We previously found that nano-size silica particles caused acute liver failure in mice. However, the hepatotoxicity of nanosilica particles with the diameter of 70 nm or less is unknown. Here, we investigated the relationship between particle size and toxicity using nanosilica particles with diameters of 30, 50, and 70 nm (SP30, SP50, and SP70, respectively). We observed dose-dependent increases in hepatic injury following administration of SP50 and SP30, with SP30 causing greater acute liver injury than that seen with SP50. Smaller silica nanoparticles induced liver injury even at proportionally lower dose levels. Furthermore, we investigated the combinatorial toxicity of SP30 in the presence of chemically induced liver injury (including that caused by carbon tetrachloride, paraquat, cisplatin, and acetaminophen). We observed that particles of the smallest size tested (SP30) synergized with chemical substances in causing liver injury. These data suggest that the size (diameter) of the silica nanoparticles affects the severity of nanoparticle-induced liver injury, a finding that will be useful for future investigations in nanotechnology and nanotoxicology.

  18. Aggregation-based detection of M. smegmatis using D-arabinose-functionalized fluorescent silica nanoparticles.

    PubMed

    Jayawardana, Kalana W; Wijesundera, Samurdhi A; Yan, Mingdi

    2015-11-14

    Fluorescein-doped silica nanoparticles (FSNPs) functionalized with D-arabinose (Ara) showed strong interactions with Mycobacterium smegmatis (M. smegmatis) and caused the bacteria to aggregate. This aggregate formation was used as a means to detect M. smegmatis at the concentration of 10(4) CFU per mL.

  19. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  20. A dielectric study on colloidal silica nanoparticle Layer-by-Layer assemblies on polycarbonate.

    PubMed

    Carosio, Federico; Banet, Laurent; Freebody, Nicola; Reading, Martin; Agnel, Serge; Castellon, Jerome; Vaughan, Alun S; Malucelli, Giulio

    2013-10-15

    This study focuses on the dielectrical characterization of polycarbonate films coated with silica nanoparticle bilayers assembled through the Layer-by-Layer (LbL) technique. This is the first attempt of dielectric characterization performed on LbL-treated plastic substrates. To this aim, LbL coatings consisting of oppositely charged colloidal silica have been built on a polymeric substrate (polycarbonate). Then, dielectric features such as space charge accumulation, electrical voltage breakdown, and resistance to corona discharge (through laser ablation) have demonstrated that the colloidal silica nanoparticle assemblies can influence the nature of the trapped space charges and affect the resistance of polycarbonate to corona discharge, changing the distribution of the laser energy on impact.

  1. On the incorporation of Rhodamine B and 2‧,7‧-dichlorofluorescein dyes in silica: Synthesis of fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Gomes, Elis C. C.; de Carvalho, Idalina M. M.; Diógenes, Izaura C. N.; de Sousa, Eduardo H. S.; Longhinotti, Elisane

    2014-05-01

    The present paper reports the incorporation of 2‧,7‧-dichlorofluorescein (DCF) and Rhodamine B (RhB) dyes in silica nanoparticles by using the Stöber's method with some modifications. Based on infrared and electronic spectroscopies, these dyes were successfully incorporated resulting in fluorescent nanomaterials of an average size of 80 nm. A composite fluorescent nanomaterial containing both dyes was also synthesized and showed the occurrence of Förster resonant energy transfer process (FRET) with the average distance between the donor (DCF) and acceptor (RhB) of 3.6 nm. Furthermore, these fluorescent nanoparticles were modified with folic acid producing nanomaterials whose Zeta potential values were in the range of -2 to -13 mV. These values are consistent with the low dispersivity observed by TEM micrographs. Altogether, these suitable properties can lead to the development of nanomaterials for cancer bioimaging and drug release.

  2. Gas phase condensation of superparamagnetic iron oxide-silica nanoparticles - control of the intraparticle phase distribution

    NASA Astrophysics Data System (ADS)

    Stötzel, C.; Kurland, H.-D.; Grabow, J.; Müller, F. A.

    2015-04-01

    Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis.Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs

  3. Plackett-Burman experimental design for bacterial cellulose-silica composites synthesis.

    PubMed

    Guzun, Anicuta Stoica; Stroescu, Marta; Jinga, Sorin Ion; Voicu, Georgeta; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2014-09-01

    Bacterial cellulose-silica hybrid composites were prepared starting from wet bacterial cellulose (BC) membranes using Stöber reaction. The structure and surface morphology of hybrid composites were examined by FTIR and SEM. The SEM pictures revealed that the silica particles are attached to BC fibrils and are well dispersed in the BC matrix. The influence of silica particles upon BC crystallinity was studied using XRD analysis. Thermogravimetric (TG) analysis showed that the composites are stable up to 300°C. A Plackett-Burman design was applied in order to investigate the influence of process parameters upon silica particle sizes and silica content of BC-silica composites. The statistical model predicted that it is possible for silica particles size to vary the synthesis parameters in order to obtain silica particles deposed on BC membranes in the range from 34.5 to 500 nm, the significant parameters being ammonia concentration, reaction time and temperature. The silica content also varies depending on process parameters, the statistical model predicting that the most influential parameters are water-tetraethoxysilane (TEOS) ratio and reaction temperature. The antimicrobial behavior on Staphylococcus aureus of BC-silica composites functionalized with usnic acid (UA) was also studied, in order to create improved surfaces with antiadherence and anti-biofilm properties.

  4. The influence of applied silica nanoparticles on a bio-renewable castor oil based polyurethane nanocomposite and its physicochemical properties.

    PubMed

    Seeni Meera, Kamal Mohamed; Murali Sankar, Rajavelu; Paul, Jaya; Jaisankar, Sellamuthu N; Mandal, Asit Baran

    2014-05-28

    Novel bio-renewable castor oil based polyurethane (PU)-silica nanocomposite films were prepared using castor oil, 1,6-hexamethylene diisocyanate and dibutyltin dilaurate in tetrahydrofuran at room temperature. ATR-FTIR spectra confirm the formation of polyurethane and the presence of silica nanoparticles in the polyurethane matrix. The increase of Si nanoparticle content shifts the peak position of N-H and C[double bond, length as m-dash]O (both hydrogen and non-hydrogen bonded) groups present in the polyurethane structure. Furthermore, Raman spectra confirmed the urethane-amide interaction present in the polyurethane-silica nanocomposites. (29)Si CP/MAS NMR spectra evidence the formation and the presence of completely condensed SiO2 species in the polyurethane nanocomposite films. The incorporation of silica nanoparticles increases the thermal stability of the above-mentioned polyurethane films, which can be seen from the increase in activation energy (Ea) values of the degradation process. The Ea values at two stages (Tmax1 and Tmax2) of the degradation process are 133, 139 and 157, 166 kJ mol(-1) for PU control and PU-5AMS (5 wt% amine modified silica nanoparticles), respectively. DSC results prove the interfacial interaction present between silica nanoparticles and the polyurethane hard segment, which decreases the melting temperature. Optical transmittance of the polyurethane films decreased with increasing silica content due to the scattering at the interfaces between the silica nanoparticles and polyurethane. It is interesting to note that the presence of silica nanoparticles gives reinforcement to polyurethane film, thereby increasing the storage modulus up to 24% for PU-5AMS. FE-SEM and HR-TEM images confirm the presence of silica nanoparticles in the polyurethane matrix.

  5. Nanoconfinement of pyrene in mesostructured silica nanoparticles for trace detection of TNT in the aqueous phase

    NASA Astrophysics Data System (ADS)

    Beyazkilic, Pinar; Yildirim, Adem; Bayindir, Mehmet

    2014-11-01

    This article describes the preparation of pyrene confined mesostructured silica nanoparticles for the trace detection of trinitrotoluene (TNT) in the aqueous phase. Pyrene confined mesostructured silica nanoparticles were prepared using a facile one-pot method where pyrene molecules were first encapsulated in the hydrophobic parts of cetyltrimethylammonium micelles and then silica polymerized around these micelles. The resulting hybrid particles have sizes of around 75 nm with fairly good size distribution. Also, they are highly dispersible and colloidally stable in water. More importantly, they exhibit bright and highly stable pyrene excimer emission. We demonstrated that excimer emission of the particles exhibits a rapid, sensitive and visual quenching response against TNT. The detection limit for TNT was determined to be 12 nM. Furthermore, excimer emission of pyrene shows significantly high selectivity for TNT.This article describes the preparation of pyrene confined mesostructured silica nanoparticles for the trace detection of trinitrotoluene (TNT) in the aqueous phase. Pyrene confined mesostructured silica nanoparticles were prepared using a facile one-pot method where pyrene molecules were first encapsulated in the hydrophobic parts of cetyltrimethylammonium micelles and then silica polymerized around these micelles. The resulting hybrid particles have sizes of around 75 nm with fairly good size distribution. Also, they are highly dispersible and colloidally stable in water. More importantly, they exhibit bright and highly stable pyrene excimer emission. We demonstrated that excimer emission of the particles exhibits a rapid, sensitive and visual quenching response against TNT. The detection limit for TNT was determined to be 12 nM. Furthermore, excimer emission of pyrene shows significantly high selectivity for TNT. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c4nr05514d

  6. High-Aluminum-Affinity Silica Is a Nanoparticle That Seeds Secondary Aluminosilicate Formation

    PubMed Central

    Jugdaohsingh, Ravin; Brown, Andy; Dietzel, Martin; Powell, Jonathan J.

    2013-01-01

    Despite the importance and abundance of aluminosilicates throughout our natural surroundings, their formation at neutral pH is, surprisingly, a matter of considerable debate. From our experiments in dilute aluminum and silica containing solutions (pH ~ 7) we previously identified a silica polymer with an extraordinarily high affinity for aluminium ions (high-aluminum-affinity silica polymer, HSP). Here, further characterization shows that HSP is a colloid of approximately 2.4 nm in diameter with a mean specific surface area of about 1,000 m2 g-1 and it competes effectively with transferrin for Al(III) binding. Aluminum binding to HSP strongly inhibited its decomposition whilst the reaction rate constant for the formation of the β-silicomolybdic acid complex indicated a diameter between 3.6 and 4.1 nm for these aluminum-containing nanoparticles. Similarly, high resolution microscopic analysis of the air dried aluminum-containing silica colloid solution revealed 3.9 ± 1.3 nm sized crystalline Al-rich silica nanoparticles (ASP) with an estimated Al:Si ratio of between 2 and 3 which is close to the range of secondary aluminosilicates such as imogolite. Thus the high-aluminum-affinity silica polymer is a nanoparticle that seeds early aluminosilicate formation through highly competitive binding of Al(III) ions. In niche environments, especially in vivo, this may serve as an alternative mechanism to polyhydroxy Al(III) species binding monomeric silica to form early phase, non-toxic aluminosilicates. PMID:24349573

  7. Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion.

    PubMed

    Yamada, Hironori; Urata, Chihiro; Higashitamori, Sayuri; Aoyama, Yuko; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2014-03-12

    Mesoporous silica nanoparticles are promising materials for various applications, such as drug delivery and catalysis, but the functional roles of surfactants in the formation and preparation of mesostructured silica nanoparticles (MSN-as) remain to be seen. It was confirmed that the molar ratio of cationic surfactants to Si of alkoxysilanes (Surf/Si) can affect the degree of mesostructure formation (i.e., whether the mesochannels formed inside the nanoparticles actually pass through the outer surface of the particles), the particle diameter, and the dispersibility of MSN-as. Wormhole-like mesostructures formed with low Surf/Si ratios; however, the mesopores did not pass through the outer surface of the particles completely. At high Surf/Si ratios, the mesostructures extended. The particle diameter was 100 nm or larger at low Surf/Si ratios, and the primary particle diameter decreased as the Surf/Si ratio increased. This was because the surfactants enhanced the dispersity of the alkoxysilanes in water and the hydrolysis rate of the alkoxysilanes became faster, leading to an increased nucleation as compared to the particle growth. Moreover, primary particles aggregated at low Surf/Si ratios because of the hydrophobic interactions among the surfactants that were not involved in the mesostructure formation but were adsorbed onto the nanoparticles. At high Surf/Si ratios, the surfactant micelles were adsorbed on the surface of primary particles (admicelles), resulting in the dispersion of the particles due to electrostatic repulsion. In particular, molar ratios of 0.13 or higher were quite effective for the preparation of highly dispersed MSN-as. Surfactants played important roles in the mesostructure formation, decreasing the particle diameters, and the dispersibility of the particles. All of these factors were considerably affected by the Surf/Si ratio. The results suggested novel opportunities to control various colloidal mesostructured nanoparticles from the

  8. Growth of gold nanoparticles at gelatin-silica bio-interfaces

    NASA Astrophysics Data System (ADS)

    Bensaid, Imen; Masse, Sylvie; Selmane, Mohamed; Fessi, Shemseddine; Coradin, Thibaud

    2016-01-01

    The growth of gold nanoparticles via chemical reduction of HAuCl4 dispersed in gelatin-silicate mixtures was studied. Gelatin leads to densely packed nanoparticles whereas open colloidal aggregates with tight boundaries are formed within silica. Within the bio-hybrid systems, gold species are located within the gelatin-silicate particles and/or within the gelatin phase, depending on the preparation conditions. These various localizations and their impact on the final nanoparticle structure are discussed considering attractive and repulsive electrostatic interactions existing between the three components. These data suggest that bio-hybrid systems are interesting and versatile interfaces to study crystallization processes in confined environments.

  9. Aerosol Droplet Delivery of Mesoporous Silica Nanoparticles: A Strategy for Respiratory-Based Therapeutics

    PubMed Central

    Li, Xueting; Xue, Min; Raabe, Otto G.; Aaron, Holly L.; Eisen, Ellen A.; Evans, James E.; Hayes, Fred A.; Inaga, Sumire; Tagmout, Abderrahmane; Takeuchi, Minoru; Vulpe, Chris; Zink, Jeffrey I.; Risbud, Subhash H.; Pinkerton, Kent E.

    2015-01-01

    A highly versatile nanoplatform that couples mesoporous silica nanoparticles (MSN) with an aerosol technology to achieve direct nanoscale delivery to the respiratory tract is described. This novel method can deposit MSN nanoparticles throughout the entire respiratory tract, including nasal, tracheobronchial and pulmonary regions using a water-based aerosol. This delivery method was successfully tested in mice by inhalation. The MSN nanoparticles used have the potential for carrying and delivering therapeutic agents to highly specific target sites of the respiratory tract. The approach provides a critical foundation for developing therapeutic treatment protocols for a wide range of diseases where aerosol delivery to the respiratory system would be desirable. PMID:25819886

  10. Nanoscale confinement and interfacial effects on the dynamics and glass transition/crystallinity of thin adsorbed films on silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Madathingal, Rajesh Raman

    The research investigated in this dissertation has focused on understanding the structure-property-function relationships of polymer nanocomposites. The properties of composite systems are dictated by the properties of their components, typically fillers in a polymer matrix. In nanocomposites, the polymer near an interface has significantly different properties compared with the bulk polymer, and the contribution of the adsorbed polymer to composite properties becomes increasingly important as the filler size decreases. Despite many reports of highly favorable properties, the behavior of polymer nanocomposites is not generally predictable, and thus requires a better understanding of the interfacial region. The ability to tailor the filler/matrix interaction and an understanding of the impact of the interface on macroscopic properties are keys in the design of nanocomposite properties. In this original work the surface of silica nanoparticles was tailored by: (a) Changing the number of sites for polymer attachment by varying the surface silanols and, (b) By varying the size/curvature of nanoparticles. The effect of surface tailoring on the dynamic properties after the adsorption of two model polymers, amorphous polymethyl methacrylate (PMMA) and semicrystalline polyethylene oxide (PEO) was observed. The interphase layer of polymers adsorbed to silica surfaces is affected by the surface silanol density as well as the relative size of the polymer compared with the size of the adsorbing substrate. The non-equilibrium adsorption of PMMA onto individual colloidal Stober silica (SiO2) particles, where Rparticle (100nm) > RPMMA (˜6.5nm) was compared with the adsorption onto fumed silica, where Rparticle (7nm) ˜ RPMMA (6.5nm) < Raggregate (˜1000nm), both as a function of silanol density [SiOH] and hydrophobility. In the former case, TEM images showed that the PMMA adsorbed onto individual nanoparticles, so that the number of PMMA chains/bead could be calculated, whereas

  11. Study of Mesoporous Silica Nanoparticles' (MSNs) intracellular trafficking and their application as drug delivery vehicles

    NASA Astrophysics Data System (ADS)

    Yanes, Rolando Eduardo

    Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed

  12. Gold nanoparticle cluster-plasmon-enhanced fluorescent silica core-shell nanoparticles for X-ray computed tomography-fluorescence dual-mode imaging of tumors.

    PubMed

    Hayashi, Koichiro; Nakamura, Michihiro; Miki, Hirokazu; Ozaki, Shuji; Abe, Masahiro; Matsumoto, Toshio; Ishimura, Kazunori

    2013-06-11

    Owing to the surface plasmon resonance-enhanced electromagnetic field, clustered gold nanoparticles-fluorescent silica core-shell nanoparticles became excited within the therapeutic window and fluoresced strongly in this window. The nanoparticles enabled tumor detection using fluorescence imaging and X-ray computed tomography.

  13. The shape and size effects of polycation functionalized silica nanoparticles on gene transfection.

    PubMed

    Lin, Xinyi; Zhao, Nana; Yan, Peng; Hu, Hao; Xu, Fu-Jian

    2015-01-01

    Silica nanoparticles are attractive candidates for the development of safe and efficient non-viral gene carriers, owing to their controlled morphologies, potential of facile surface modification and excellent biocompatibility as well as in vivo biodegradability. Conversely, the size and shape of nanoparticles are considered to have an intense influence on their interaction with cells and biological systems, but the effects of particle size and shape on gene transfection are poorly understood. In this work, a series of novel gene carriers were designed employing polycation modified silica nanoparticles with five different morphologies, while keeping uniform zeta potential and surface functionality. Then the effects of particle size and shape of these five different carriers on gene transfection were investigated. The morphology of silica nanoparticles is demonstrated to play an important role in gene transfection, especially when the amount of polycation is low. Chiral nanorods with larger aspect ratio were found to fabricate the most efficient gene carriers with compromised cytotoxicity. It was also noted that hollow nanosphere-based carriers exhibited better gene transfection performance than did solid counterparts. These results may provide new strategies to develop promising gene carriers and useful information for the application of nanoparticles in biomedical areas. PMID:25219349

  14. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    NASA Astrophysics Data System (ADS)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  15. Dye-Doped Silica Nanoparticle Labels/Protein Microarray for Detection of Protein Biomarkers

    SciTech Connect

    Wu, Hong; Huo, Qisheng; Varnum, Susan M.; Liu, Guodong; Wang, Jun; Nie, Zimin; Liu, Jun; Lin, Yuehe

    2008-10-20

    Biomarkers serve as indicators of biological and pathological processes, or physiological and pharmacological responses to a drug treatment. Interleukin-6 (IL-6), a biomarker with its important biological and pathological functions, has been studied for decades. Conventional fluorescence immunoassay has been widely used for analysis of biomakers like IL-6. However, single fluorophore labeling shows its limitations of low intensity and poor stability. We report a dye-encapsulated silica nanoparticle as a label, with the advantages of high fluorescence intensity, photostability, and biocompatibility, in conjunction with microarray technology for sensitive immunoassay of IL-6 on a microarray format. The tris (2,2’-bipyridyl)ruthenium (II)chloride hexahydrate (Rubpy) dye incorporated into silica nanoparticles using a simple one-step microemulsion synthesis step. The nanoparticles are uniform in size with a diameter of 50 nm. The microarray fluorescent immunoassay approach based on dye-doped silica nanoparticle labels has high sensitivity for practical applications with a limit of detection for IL-6 down to 0.1 ng mL-1. The calibration curve is linear over the range from 0.1 ng mL-1 to 10 ng mL-1. Furthermore, results illustrated that the assay is highly specific for IL-6 in the presence of range of cytokines or proteins. The RuDS dye-labeled nanoparticles in connection with protein microarrays show the promise for clinical diagnosis of biomarkers.

  16. Dye-Doped Silica Nanoparticle Labels/Protein Microarray for Detection of Protein Biomarkers

    PubMed Central

    Wu, Hong; Huo, Qisheng; Varnum, Susan; Wang, Jun; Liu, Guodong; Nie, Zimin; Liu, Jun; Lin, Yuehe

    2008-01-01

    We report a dye-encapsulated silica nanoparticle as a label, with the advantages of high fluorescence intensity, photostability, and biocompatibility, in conjunction with microarray technology for sensitive immunoassay of a biomarker, Interleukin-6 (IL-6), on a microarray format. The tris (2,2’-bipyridyl)ruthenium (II)chloride hexahydrate (Rubpy) dye was incorporated into silica nanoparticles using a simple one-step microemulsion synthesis. In this synthesis process, Igepal CA520 was used as the surfactant, therefore, no requirement of cosolvent during the synthesis and the particle size was reduced comparing to the commonly used Triton surfactant system. The nanoparticles are uniform in size with a diameter of 50 nm. The microarray fluorescent immunoassay approach based on dye-doped silica nanoparticle labels has high sensitivity for practical applications with a limit of detection for IL-6 down to 0.1 ng mL−1. The calibration curve is linear over the range from 0.1 ng mL−1 to 10 ng mL−1. Furthermore, results illustrated that the assay is highly specific for IL-6 in the presence of range of cytokines or proteins. The RuDS dye-labeled nanoparticles in connection with protein microarrays show the promise for clinical diagnosis of biomarkers. PMID:18936832

  17. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles

    SciTech Connect

    Park, Margriet V.D.Z. Annema, Wijtske; Salvati, Anna; Lesniak, Anna; Elsaesser, Andreas; Barnes, Clifford; McKerr, George; Howard, C. Vyvyan; Lynch, Iseult; Dawson, Kenneth A.; Piersma, Aldert H.; Jong, Wim H. de

    2009-10-01

    While research into the potential toxic properties of nanomaterials is now increasing, the area of developmental toxicity has remained relatively uninvestigated. The embryonic stem cell test is an in vitro screening assay used to investigate the embryotoxic potential of chemicals by determining their ability to inhibit differentiation of embryonic stem cells into spontaneously contracting cardiomyocytes. Four well characterized silica nanoparticles of various sizes were used to investigate whether nanomaterials are capable of inhibition of differentiation in the embryonic stem cell test. Nanoparticle size distributions and dispersion characteristics were determined before and during incubation in the stem cell culture medium by means of transmission electron microscopy (TEM) and dynamic light scattering. Mouse embryonic stem cells were exposed to silica nanoparticles at concentrations ranging from 1 to 100 {mu}g/ml. The embryonic stem cell test detected a concentration dependent inhibition of differentiation of stem cells into contracting cardiomyocytes by two silica nanoparticles of primary size 10 (TEM 11) and 30 (TEM 34) nm while two other particles of primary size 80 (TEM 34) and 400 (TEM 248) nm had no effect up to the highest concentration tested. Inhibition of differentiation of stem cells occurred below cytotoxic concentrations, indicating a specific effect of the particles on the differentiation of the embryonic stem cells. The impaired differentiation of stem cells by such widely used particles warrants further investigation into the potential of these nanoparticles to migrate into the uterus, placenta and embryo and their possible effects on embryogenesis.

  18. Predictable Heating and Positive MRI Contrast from a Mesoporous Silica-Coated Iron Oxide Nanoparticle.

    PubMed

    Hurley, Katie R; Ring, Hattie L; Etheridge, Michael; Zhang, Jinjin; Gao, Zhe; Shao, Qi; Klein, Nathan D; Szlag, Victoria M; Chung, Connie; Reineke, Theresa M; Garwood, Michael; Bischof, John C; Haynes, Christy L

    2016-07-01

    Iron oxide nanoparticles have great potential as diagnostic and therapeutic agents in cancer and other diseases; however, biological aggregation severely limits their function in vivo. Aggregates can cause poor biodistribution, reduced heating capability, and can confound their visualization and quantification by magnetic resonance imaging (MRI). Herein, we demonstrate that the incorporation of a functionalized mesoporous silica shell can prevent aggregation and enable the practical use of high-heating, high-contrast iron oxide nanoparticles in vitro and in vivo. Unmodified and mesoporous silica-coated iron oxide nanoparticles were characterized in biologically relevant environments including phosphate buffered saline, simulated body fluid, whole mouse blood, lymph node carcinoma of prostate (LNCaP) cells, and after direct injection into LNCaP prostate cancer tumors in nude mice. Once coated, iron oxide nanoparticles maintained colloidal stability along with high heating and relaxivity behaviors (SARFe = 204 W/g Fe at 190 kHz and 20 kA/m and r1 = 6.9 mM(-1) s(-1) at 1.4 T). Colloidal stability and minimal nonspecific cell uptake allowed for effective heating in salt and agarose suspensions and strong signal enhancement in MR imaging in vivo. These results show that (1) aggregation can lower the heating and imaging performance of magnetic nanoparticles and (2) a coating of functionalized mesoporous silica can mitigate this issue, potentially improving clinical planning and practical use. PMID:26991550

  19. Aqueous route to facile, efficient and functional silica coating of metal nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Shah, Kwok Wei; Sreethawong, Thammanoon; Liu, Shu-Hua; Zhang, Shuang-Yuan; Tan, Li Sirh; Han, Ming-Yong

    2014-09-01

    Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields.Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also

  20. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance.

    PubMed

    Jia, Lejiao; Li, Zhenyu; Shen, Jingyi; Zheng, Dandan; Tian, Xiaona; Guo, Hejian; Chang, Ping

    2015-07-15

    The objective of the study is to fabricate multifunctional mesoporous silica nanoparticles for achieving co-delivery of conventional antitumor drug paclitaxel (PTX) and the multidrug resistance reversal agent tetrandrine (TET) expecting to overcome multidrug resistance of MCF-7/ADR cells. The nanoparticles were facile to prepare by self-assemble in situ drug loading approach. Namely, PTX and TET were solubilized in the cetyltrimethylammonium bromide (CTAB) micelles and simultaneously silica resources hydrolyze and condense to form nanoparticles. The obtained nanoparticles, denoted as PTX/TET-CTAB@MSN, exhibited pH-responsive release property with more easily released in the weak acidic environment. Studies on cellular uptake of nanoparticles demonstrated TET could markedly increase intracellular accumulation of nanoparticles. Furthermore, the PTX/TET-CTAB@MSN suppressed tumor cells growth more efficiently than only delivery of PTX (PTX-CTAB@MSN) or the free PTX. Moreover, the nanoparticle loading drugs with a PTX/TET molar ratio of 4.4:1 completely reversed the resistance of MCF-7/ADR cells to PTX and the resistance reversion index was 72.3. Mechanism research showed that both TET and CTAB could arrest MCF-7/ADR cells at G1 phase; and besides PTX arrested cells at G2 phase. This nanocarrier might have important potential in clinical implications for co-delivery of multiple drugs to overcome MDR. PMID:25956050

  1. Multifunctional mesoporous silica nanoparticles mediated co-delivery of paclitaxel and tetrandrine for overcoming multidrug resistance.

    PubMed

    Jia, Lejiao; Li, Zhenyu; Shen, Jingyi; Zheng, Dandan; Tian, Xiaona; Guo, Hejian; Chang, Ping

    2015-07-15

    The objective of the study is to fabricate multifunctional mesoporous silica nanoparticles for achieving co-delivery of conventional antitumor drug paclitaxel (PTX) and the multidrug resistance reversal agent tetrandrine (TET) expecting to overcome multidrug resistance of MCF-7/ADR cells. The nanoparticles were facile to prepare by self-assemble in situ drug loading approach. Namely, PTX and TET were solubilized in the cetyltrimethylammonium bromide (CTAB) micelles and simultaneously silica resources hydrolyze and condense to form nanoparticles. The obtained nanoparticles, denoted as PTX/TET-CTAB@MSN, exhibited pH-responsive release property with more easily released in the weak acidic environment. Studies on cellular uptake of nanoparticles demonstrated TET could markedly increase intracellular accumulation of nanoparticles. Furthermore, the PTX/TET-CTAB@MSN suppressed tumor cells growth more efficiently than only delivery of PTX (PTX-CTAB@MSN) or the free PTX. Moreover, the nanoparticle loading drugs with a PTX/TET molar ratio of 4.4:1 completely reversed the resistance of MCF-7/ADR cells to PTX and the resistance reversion index was 72.3. Mechanism research showed that both TET and CTAB could arrest MCF-7/ADR cells at G1 phase; and besides PTX arrested cells at G2 phase. This nanocarrier might have important potential in clinical implications for co-delivery of multiple drugs to overcome MDR.

  2. Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method

    SciTech Connect

    Lee, Byunghwan; Zhu, Haoguo; Zhang, Zongtao; Overbury, Steven {Steve} H; Dai, Sheng

    2004-01-01

    Catalytic activities of gold strongly depend on its particle size. It is necessary to have homogeneous distributions of small gold nanoparticles with diameters between 2 and 5 nm for excellent catalytic activities. In this study, gold-containing mesoporous silica materials were prepared by a co-synthesis method. The essence of this sol-gel co-synthesis method is to combine together neutral surfactant template synthesis of mesoporous silica materials with the introduction of metal ions via bifunctional silane ligands, so that the formation of mesostructures and metal-ion doping occur simultaneously. The formation of gold nanoparticles with size less than 5 nm inside mesoporous materials (HMS, MSU, and PMO) has been achieved by this co-synthesis sol-gel process. In addition, the effects of post-treatments, such as calcination and reduction, on pore structures and nanoparticle size distributions were also investigated.

  3. Novel light emissive yttrium-based nanoparticles and composites

    NASA Astrophysics Data System (ADS)

    Hill, Laura Burka

    Yttrium-based inorganic optical materials generally are of practical interest for three applications: solid state lighting/displays, lasers, and scintillators. Solid-state lighting is particularly desirable commercially for its efficiency and lifetime compared to traditional incandescent alternatives. This type of lighting technology is of increasing interest as incandescent light bulbs are being gradually phased-out due to government regulations on maximum wattage of these devices. Additionally, shortcomings in the current state of the art have driven the need for a more thermally stable material for use in this area. In this dissertation, we develop and characterize a novel composite material consisting of optically active yttrium-based nanoparticles doped into silica sol-gels. For lighting and display applications, low-cost, low-temperature synthesis methods for materials that meet or exceed the quality of the materials currently on the market are highly desirable. During the course of this work, we discuss the characterization of yttrium-based nanoparticles with respect to their incorporation in a sol-gel matrix composite. We then prepared these composite materials using a variety of methods and assess their quality according to a set of selection criteria and for lighting/display applications. Novel light-emitting composites consisting of Ce:YAG or Eu:Y2O 3 (yttria) nanoparticles in an inorganic medium were successfully developed and characterized. The optical properties of the nanoparticles were maintained when incorporated into the sol-gel medium and were shown to be comparable with the current state of the art. Comparison was made between the nanoparticle emission and the composite emission and, in the case of the Ce:YAG, the CIE coordinates, showing no change between the emission intensities or peak locations. We successfully demonstrated the conversion of fluoride-based particles into Y2O3 during sol-gel processing and demonstrated that no reaction took

  4. Functionalization and Characterization of Metal Oxide Coatings of Stainless Steel and Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Slaney, Anne Margaret

    The development of tolerogens, fabricated devices eliciting tolerance toward incompatible donor ABO antigens in implant patients, is the ultimate goal of this project. This would permit ABO incompatible organ transplants, increase the donor pool for patients, increase efficiency in the use of available organs, reduce waitlist times and reduce mortality rates of patients. Stainless steel stents and silica nanoparticles were chosen as platforms for the stationary and circulating tolerogens. Stainless steel was coated with silica by solgel dip-coating, electrodeposition, and atomic layer deposition (ALD). The coatings were evaluated by CV, EIS, SEM, AFM, VASE, FTIR, XPS, and AES. Of the silica films, those deposited by ALD provided superior insulating, conformal, and thin coatings. These silica ALD films outperformed even titania ALD films upon stressing. Silica ALD films were subsequently functionalized with mixtures of silane derivatives of poly(ethylene glycol) (PEG), to prevent nonspecific protein binding, and monosaccharides (MS) or trisaccharide and tetrasaccharide (TS) antigens. Functionalizations were characterized by FTIR, XPS and UV-Vis following enzyme-linked lectin assays (ELLAs) or enzyme-linked immunosorbent assays (ELISAs). Effective functionalization allowing biological availability and activity even after incubation in blood plasma was confirmed. Microarray microscope slides were similarly developed with all ABO antigen subtypes, characterized by ToF-SIMS and ELISA, and proved useful in detecting antibodies in human blood samples. Silica nanoparticles, including fluorescent and magnetic varieties, in a range of sizes were prepared by sol-gel synthesis. The nanoparticles were evaluated by SEM, DLS, zeta potential measurements, fluorescence imaging, flow cytometry, two-photon excitation fluorescence correlation spectroscopy and TEM. Different dye incorporation methods were used for effective detection of NPs, and additional silica layers improved

  5. Effect of composition on thermal conductivity of silica insulation media.

    PubMed

    Park, Sung; Kwon, Young-Pil; Kwon, Hyuk-Chon; Lee, Hae-Weon; Lee, Jae Chun

    2008-10-01

    Nano-sized fumed silica-based insulation media were prepared by adding TiO2 powders and ceramic fibers as opacifiers and structural integrity improvers, respectively. The high temperature thermal conductivities of the fumed silica-based insulation media were investigated using different types of TiO2 opacifier and by varying its content. The opacifying effects of nanostructured TiO2 powders produced by homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial TiO2 powder. The nanostructured HPPLT TiO2 powder with a mean particle size of 1.8 microm was more effective to reduce radiative heat transfer than the commercial one with a similar mean particle size. The insulation samples with the HPPLT TiO2 powder showed about 46% lower thermal conductivity at temperatures of about 820 degrees C than those with the commercial one. This interesting result might be due to the more effective radiation scattering efficiency of the nanostructured HPPLT TiO2 powder which has better gap filling and coating capability in nano-sized composite compacts.

  6. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells

    SciTech Connect

    Kunzmann, Andrea; Andersson, Britta; Vogt, Carmen; Feliu, Neus; Ye Fei; Gabrielsson, Susanne; Toprak, Muhammet S.; Buerki-Thurnherr, Tina; Laurent, Sophie; Vahter, Marie; Krug, Harald; Muhammed, Mamoun; Scheynius, Annika; Fadeel, Bengt

    2011-06-01

    Engineered nanoparticles are being considered for a wide range of biomedical applications, from magnetic resonance imaging to 'smart' drug delivery systems. The development of novel nanomaterials for biomedical applications must be accompanied by careful scrutiny of their biocompatibility. In this regard, particular attention should be paid to the possible interactions between nanoparticles and cells of the immune system, our primary defense system against foreign invasion. On the other hand, labeling of immune cells serves as an ideal tool for visualization, diagnosis or treatment of inflammatory processes, which requires the efficient internalization of the nanoparticles into the cells of interest. Here, we compare novel monodispersed silica-coated iron oxide nanoparticles with commercially available dextran-coated iron oxide nanoparticles. The silica-coated iron oxide nanoparticles displayed excellent magnetic properties. Furthermore, they were non-toxic to primary human monocyte-derived macrophages at all doses tested whereas dose-dependent toxicity of the smaller silica-coated nanoparticles (30 nm and 50 nm) was observed for primary monocyte-derived dendritic cells, but not for the similarly small dextran-coated iron oxide nanoparticles. No macrophage or dendritic cell secretion of pro-inflammatory cytokines was observed upon administration of nanoparticles. The silica-coated iron oxide nanoparticles were taken up to a significantly higher degree when compared to the dextran-coated nanoparticles, irrespective of size. Cellular internalization of the silica-coated nanoparticles was through an active, actin cytoskeleton-dependent process. We conclude that these novel silica-coated iron oxide nanoparticles are promising materials for medical imaging, cell tracking and other biomedical applications.

  7. Size-dependent toxicity of silica nano-particles to Chlorella kessleri.

    PubMed

    Fujiwara, Kitao; Suematsu, Hitoshi; Kiyomiya, Emiko; Aoki, Motohide; Sato, Mamiko; Moritoki, Nobuko

    2008-08-01

    SiO(2) nano-particles were found to exhibit size-dependent toxicity toward the alga, Chlorella kessleri. Small SiO(2) nano-particles exhibit stronger toxicity: 50% inhibitory concentrations (IC(50)) value for 5 nm = 0.8 +/- 0.6%, 26 nm = 7.1 +/- 2.8%, and 78 nm = 9.1 +/- 4.7%. Enlargement of the cell body was observed by flow cytometry, which is due to the presence of structures that obstructed cell division. Optical and transmission microscopes were used to observe coagulated cells with incomplete division. Although the physiological effect of SiO(2) nano-particles was not clear, SiO(2) nano-particles are toxic, at least for algae in aquatic media. Under the transmission electron microscope, several amorphous structures appeared in the cells that were exposed to 5-nm silica nano-particles. PMID:18584432

  8. Size-Tunable and Functional Core-Shell Structured Silica Nanoparticles for Drug Release

    SciTech Connect

    Chi, Fangli; Guo, Ya Nan; Liu, Jun; Liu, Yunling; Huo, Qisheng

    2010-02-18

    Size-tunable silica cross-linked micellar core-shell nanoparticles (SCMCSNs) were successfully synthesized from a Pluronic nonionic surfactant (F127) template system with organic swelling agents such as 1,3,5-trimethylbenzene (TMB) and octanoic acid at room temperature. The size and morphology of SCMCSNs were directly evidenced by TEM imaging and DLS measurements (up to ~90 nm). Pyrene and coumarin 153 (C153) were used as fluorescent probe molecules to investigate the effect and location of swelling agent molecules. Papaverine as a model drug was used to measure the loading capacity and release property of nanoparticles. The swelling agents can enlarge the nanoparticle size and improve the drug loading capacity of nanoparticles. Moreover, the carboxylic acid group of fatty acid can adjust the release behavior of the nanoparticles.

  9. Two-dimensional self-assemblies of silica nanoparticles formed using the "bubble deposition technique".

    PubMed

    Zhang, Xinfeng; Tang, Guolei; Yang, Shihe; Benattar, Jean-Jacques

    2010-11-16

    Two-dimensional silica nanoparticle assemblies were obtained by deposition of bubble made from a surfactant solution containing nanoparticles onto hydrophobic silicon substrate. The morphologies of the nanoparticle assemblies can be finely controlled by several experimental parameters, including surfactant concentration, nanoparticle concentration, and deposition time. Monolayer of nanoparticles with surface coverage of about 100% can be obtained under appropriate conditions. The method can also be applied to another hydrophobic substrate, HMDS (hexamethyldisilazane)-modified silicon substrate. Furthermore, it can be applied directly to lithography patterned substrates, meaning a high compatibility with the well-developed conventional top-down approaches to nanodevices. This bubble deposition technique is expected to be a promising method in the field of nano-object assembly and organization and has great application potentials.

  10. Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis.

    PubMed

    Schaller, Jörg; Brackhage, Carsten; Paasch, Silvia; Brunner, Eike; Bäucker, Ernst; Dudel, E Gert

    2013-01-01

    Silicon is described as beneficial for grasses by enhancing yield and fitness via a considerable contribution to pathogen, drought, and pest resistance. Silicic acid is the predominant form for uptake and transport within the plant and will precipitate in leaves. But it is unknown whether polymeric nanosilicon compounds in its synthetic form, with an increasing concentration in aquatic environments, can be suitable for plant nutrition. Therefore, we investigated the uptake, transport, and deposition of silicic acid/silica within plants using synthetic nanosilica. Our results show a significant difference in silicon (Si) content within the different tissues of Phragmites australis. The nanosilica had been dissolved prior to the uptake by plants. The chemical form of Si during uptake was not traceable. A significant enhancement in the condensation state of the silica was found from root to leaves especially from culm to leaf tips visible by the increasing content of Q(4)-groups in the NMR spectra. We conclude that synthetic nanosilica has the same quality as source for the beneficial element Si like natural silica. Since the condensation state is described to control silica solubility, we suggest that different condensation states within the plant may result in different remobilization of silicon during decomposition of the plant material. PMID:23178503

  11. Phase behavior of poly(sulfobetaine methacrylate)-grafted silica nanoparticles and their stability in protein solutions.

    PubMed

    Dong, Zhixin; Mao, Jun; Yang, Muquan; Wang, Dapeng; Bo, Shuqin; Ji, Xiangling

    2011-12-20

    Biocompatible and zwitterionic poly(sulfobetaine methacrylate) (PSBMA) was grafted onto the surface of initiator-modified silica nanoparticles via surface-initiated atom transfer radical polymerization. The resultant samples were characterized via nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. Their molecular weights and molecular weight distributions were determined via gel permeation chromatography after the removal of silica by etching. Moreover, the phase behavior of these polyzwitterionic-grafted silica nanoparticles in aqueous solutions and stability in protein/PBS solutions were systematically investigated. Dynamic light scattering and UV-visible spectroscopy results indicate that the silica-g-PSBMA nanoparticles exhibit an upper critical solution temperature (UCST) in aqueous solutions, which can be controlled by varying the PSBMA molecular weight, ionic strength, silica-g-PSBMA nanoparticle concentration, and solvent polarity. The UCSTs shift toward high temperatures with increasing PSBMA molecular weight and silica-g-PSBMA nanoparticle concentration. However, increasing the ionic strength and solvent polarity leads to a lowering of the UCSTs. The silica-g-PSBMA nanoparticles are stable for at least 72 h in both negative and positive protein/PBS solutions at 37 °C. The current study is crucial for the translation of polyzwitterionic solution behavior to surfaces to exploit their diverse properties in the development of new, smart, and responsive coatings. PMID:22124164

  12. Preparation and characterization of silica nanoparticulate polyacrylonitrile composite and porous nanofibers

    NASA Astrophysics Data System (ADS)

    Ji, Liwen; Saquing, Carl; Khan, Saad A.; Zhang, Xiangwu

    2008-02-01

    In this study, polyacrylonitrile (PAN) composite nanofibers containing different amounts of silica nanoparticulates have been obtained via electrospinning. The surface morphology, thermal properties and crystal structure of PAN/silica nanofibers are characterized using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, wide-angle x-ray diffraction (WAXD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results indicate that the addition of silica nanoparticulates affects the structure and properties of the nanofibers. In addition to PAN/silica composite nanofibers, porous PAN nanofibers have been prepared by selective removal of the silica component from PAN/silica composite nanofibers using hydrofluoric (HF) acid. ATR-FTIR and thermal gravimetric analysis (TGA) experiments validate the removal of silica nanoparticulates by HF acid, whereas SEM and TEM results reveal that the porous nanofibers obtained from composite fibers with higher silica contents exhibited more nonuniform surface morphology. The Brunauer-Emmett-Teller (BET) surface area of porous PAN nanofibers made from PAN/silica (5 wt%) composite precursors is higher than that of pure nonporous PAN nanofibers.

  13. The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds.

    PubMed

    Ding, Yaping; Yao, Qingqing; Li, Wei; Schubert, Dirk W; Boccaccini, Aldo R; Roether, Judith A

    2015-12-01

    PHB/PCL/sol-gel derived silica hybrid scaffolds (P5S1S) and PHB/PCL/fumed silica composite scaffolds (P5S1N) with a 5:1 organic/inorganic ratio were fabricated through a combination of electrospinning and sol-gel methods and dispersion electrospinning, respectively. In contrast to the silica nanoparticle aggregates appearing on the fiber surface of P5S1N, smooth and uniform fibers were obtained for P5S1S. The fiber diameter distribution, tensile strength, thermal gravimetric analysis (TGA), and cellular behavior of both types of scaffolds were characterized and studied. The tensile strength results and TGA indicated that the interfacial interaction between the organic and the inorganic phase was enhanced in P5S1S over the nanocomposite scaffolds, and cells exhibited significantly higher alkaline phosphate activity (ALP) for P5S1S, which makes P5S1S hybrid scaffolds candidate materials for bone tissue engineering applications. PMID:26364089

  14. Hemopexin as biomarkers for analyzing the biological responses associated with exposure to silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Higashisaka, Kazuma; Yoshioka, Yasuo; Yamashita, Kohei; Morishita, Yuki; Pan, Huiyan; Ogura, Toshinobu; Nagano, Takashi; Kunieda, Akiyoshi; Nagano, Kazuya; Abe, Yasuhiro; Kamada, Haruhiko; Tsunoda, Shin-ichi; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Tsutsumi, Yasuo

    2012-10-01

    Practical uses of nanomaterials are rapidly spreading to a wide variety of fields. However, potential harmful effects of nanomaterials are raising concerns about their safety. Therefore, it is important that a risk assessment system is developed so that the safety of nanomaterials can be evaluated or predicted. Here, we attempted to identify novel biomarkers of nanomaterial-induced health effects by a comprehensive screen of plasma proteins using two-dimensional differential in gel electrophoresis (2D-DIGE) analysis. Initially, we used 2D-DIGE to analyze changes in the level of plasma proteins in mice after intravenous injection via tail veins of 0.8 mg/mouse silica nanoparticles with diameters of 70 nm (nSP70) or saline as controls. By quantitative image analysis, protein spots representing >2.0-fold alteration in expression were found and identified by mass spectrometry. Among these proteins, we focused on hemopexin as a potential biomarker. The levels of hemopexin in the plasma increased as the silica particle size decreased. In addition, the production of hemopexin depended on the characteristics of the nanomaterials. These results suggested that hemopexin could be an additional biomarker for analyzing the biological responses associated with exposure to silica nanoparticles. We believe that this study will contribute to the development of biomarkers to ensure the safety of silica nanoparticles.

  15. Altered Gene Transcription in Human Cells Treated with Ludox® Silica Nanoparticles

    PubMed Central

    Fede, Caterina; Millino, Caterina; Pacchioni, Beniamina; Celegato, Barbara; Compagnin, Chiara; Martini, Paolo; Selvestrel, Francesco; Mancin, Fabrizio; Celotti, Lucia; Lanfranchi, Gerolamo; Mognato, Maddalena; Cagnin, Stefano

    2014-01-01

    Silica (SiO2) nanoparticles (NPs) have found extensive applications in industrial manufacturing, biomedical and biotechnological fields. Therefore, the increasing exposure to such ultrafine particles requires studies to characterize their potential cytotoxic effects in order to provide exhaustive information to assess the impact of nanomaterials on human health. The understanding of the biological processes involved in the development and maintenance of a variety of pathologies is improved by genome-wide approaches, and in this context, gene set analysis has emerged as a fundamental tool for the interpretation of the results. In this work we show how the use of a combination of gene-by-gene and gene set analyses can enhance the interpretation of results of in vitro treatment of A549 cells with Ludox® colloidal amorphous silica nanoparticles. By gene-by-gene and gene set analyses, we evidenced a specific cell response in relation to NPs size and elapsed time after treatment, with the smaller NPs (SM30) having higher impact on inflammatory and apoptosis processes than the bigger ones. Apoptotic process appeared to be activated by the up-regulation of the initiator genes TNFa and IL1b and by ATM. Moreover, our analyses evidenced that cell treatment with Ludox® silica nanoparticles activated the matrix metalloproteinase genes MMP1, MMP10 and MMP9. The information derived from this study can be informative about the cytotoxicity of Ludox® and other similar colloidal amorphous silica NPs prepared by solution processes. PMID:25170680

  16. Interference of silica nanoparticles with the traditional Limulus amebocyte lysate gel clot assay.

    PubMed

    Kucki, Melanie; Cavelius, Christian; Kraegeloh, Annette

    2014-04-01

    Endotoxin contaminations of engineered nanomaterials can be responsible for observed biological responses, especially for misleading results in in vitro test systems, as well as in vivo studies. Therefore, endotoxin testing of nanomaterials is necessary to benchmark their influence on cells. Here, we tested the traditional Limulus amebocyte lysate gel clot assay for the detection of endotoxins in nanoparticle suspensions with a focus on possible interference of the particles with the test system. We systematically investigated the effects of nanomaterials made of, or covered by, the same material. Different types of bare or PEGylated silica nanoparticles, as well as iron oxide-silica core shell nanoparticles, were tested. Detailed inhibition/enhancement controls revealed enhanced activity in the Limulus coagulation cascade for all particles with bare silica surface. In comparison, PEGylation led to a lower degree of enhancement. These results indicate that the protein-particle interactions are the basis for the observed inhibition and enhancement effects. The enhancement activity of a particle type was positively related to the calculated particle surface area. For most silica particles tested, a dilution of the sample within the maximum valid dilution was sufficient to overcome non-valid enhancement, enabling semi-quantification of the endotoxin contamination. PMID:23884096

  17. Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method

    PubMed Central

    2013-01-01

    Silica powder at nanoscale was obtained by heat treatment of Vietnamese rice husk following the sol–gel method. The rice husk ash (RHA) is synthesized using rice husk which was thermally treated at optimal condition at 600°C for 4 h. The silica from RHA was extracted using sodium hydroxide solution to produce a sodium silicate solution and then precipitated by adding H2SO4 at pH = 4 in the mixture of water/butanol with cationic presence. In order to identify the optimal condition for producing the homogenous silica nanoparticles, the effects of surfactant surface coverage, aging temperature, and aging time were investigated. By analysis of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, the silica product obtained was amorphous and the uniformity of the nanosized sample was observed at an average size of 3 nm, and the BET result showed that the highest specific surface of the sample was about 340 m2/g. The results obtained in the mentioned method prove that the rice husk from agricultural wastes can be used for the production of silica nanoparticles. PMID:23388152

  18. Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica

    PubMed Central

    Ahmed, Khalil; Nizami, Shaikh Sirajuddin; Riza, Nudrat Zahid

    2013-01-01

    A research has been carried out to develop natural rubber (NR) hybrid composites reinforced with marble sludge (MS)/Silica and MS/rice husk derived silica (RHS). The primary aim of this development is to scrutinize the cure characteristics, mechanical and swelling properties of such hybrid composite. The use of both industrial and agricultural waste such as marble sludge and rice husk derived silica has the primary advantage of being eco-friendly, low cost and easily available as compared to other expensive fillers. The results from this study showed that the performance of NR hybrid composites with MS/Silica and MS/RHS as fillers is extremely better in mechanical and swelling properties as compared with the case where MS used as single filler. The study suggests that the use of recently developed silica and marble sludge as industrial and agricultural waste is accomplished to provide a probable cost effective, industrially prospective, and attractive replacement to the in general purpose used fillers like china clay, calcium carbonate, and talc. PMID:25685484

  19. Gold Nanoparticle Coated Silica Nanorods for Sensitive Visual Detection of microRNA on a Lateral Flow Strip Biosensor.

    PubMed

    Takalkar, Sunitha; Xu, Hui; Chen, Jiao; Baryeh, Kwaku; Qiu, Wanwei; Zhao, Julia X; Liu, And Guodong

    2016-01-01

    We present a rapid and highly sensitive approach for visual detection of microRNA (miRNA) using a gold nanoparticles coated silica nanorod label and lateral flow strip biosensor. Gold nanoparticles were decorated on the silica nanorod surface by a seeding and growth procedure. A single strand DNA probe was immobilized on the gold nanoparticles-silica nanorod surface by a self-assembling process, and the formed DNA-gold nanoparticles-silica nanorod conjugate was used to construct the lateral flow nucleic acid biosensor for detecting miRNA. The captured gold nanoparticles-silica nanorods by sandwich-type hybridization reactions (DNA-RNA-DNA) on the test zone of the lateral flow nucleic acid biosensor produced the characteristic color bands, enabling visual detection of miRNA. After systematic optimization, the new lateral flow nucleic acid biosensor was capable of detecting 10 pM of the miRNA target without instrumentation, which is six times lower than that obtained with the gold nanoparticle-based lateral flow nucleic acid biosensor. The gold nanoparticles coated silica nanorod thus provides a new and sensitive nanolabel for visual detection of biological molecules on the lateral flow biosensor. PMID:27302581

  20. Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels

    SciTech Connect

    Wang, Jun; Liu, Guodong; Wu, Hong; Lin, Yuehe

    2008-03-03

    We present a poly(guanine)-functionalized silica nanoparticle (NP) label-based electrochemical immunoassay for sensitively detecting 2,4,6-trinitrotoluene (TNT). This immunoassay takes advantage of magnetic bead–based platform for competitive displacement immunoreactions and separation, and use electroactive nanoparticles as labels for signal amplification. For this assay, anti-TNT-coated magnetic beads interacted with TNT analog-conjugated poly(guanine)-silica NPs and formed analog-anti-TNT immunocomplexes on magnetic beads. The immunocomplexes coated magnetic beads were exposed to TNT samples, which resulted in displacing the analog conjugated poly(guanine) silica NPs into solution by TNT. In contrast, there are no guanine residues releasing into the solution in the absence of TNT. The reaction solution was then separated from the magnetic beads and transferred to the electrode surface for electrochemical measurements of guanine oxidation with Ru(bpy)32+ as mediator. The sensitivity of this TNT assay was greatly enhanced through dual signal amplifications: 1) a large amount of guanine residues on silica nanoparticles is introduced into the test solution by displacement immunoreactions and 2) a Ru(bpy)32+-induced guanine catalytic oxidation further enhances the electrochemical signal. Some experimental parameters for the nanoparticle label-based electrochemical immunoassay were studied and the performance of this assay was evaluated. The method is found to be very sensitive and the detection limit of this assay is ~ 0.1 ng mL-1 TNT. The electrochemical immunoassay based on the poly[guanine]-functionalized silica NP label offers a new approach for sensitive detection of explosives.

  1. The Developmental Toxicity of Complex Silica-Embedded Nickel Nanoparticles Is Determined by Their Physicochemical Properties

    PubMed Central

    Mahoney, Sharlee; Najera, Michelle; Bai, Qing; Burton, Edward A.; Veser, Götz

    2016-01-01

    Complex engineered nanomaterials (CENs) are a rapidly developing class of structurally and compositionally complex materials that are expected to dominate the next generation of functional nanomaterials. The development of methods enabling rapid assessment of the toxicity risk associated with this type of nanomaterial is therefore critically important. We evaluated the toxicity of three differently structured nickel-silica nanomaterials as prototypical CENs: simple, surface-deposited Ni-SiO2 and hollow and non-hollow core-shell Ni@SiO2 materials (i.e., ~1–2 nm Ni nanoparticles embedded into porous silica shells with and without a central cavity, respectively). Zebrafish embryos were exposed to these CENs, and morphological (survival and malformations) and physiological (larval motility) endpoints were coupled with thorough characterization of physiochemical characteristics (including agglomeration, settling and nickel ion dissolution) to determine how toxicity differed between these CENs and equivalent quantities of Ni2+ salt (based on total Ni). Exposure to Ni2+ ions strongly compromised zebrafish larva viability, and surviving larvae showed severe malformations. In contrast, exposure to the equivalent amount of Ni CEN did not result in these abnormalities. Interestingly, exposure to Ni-SiO2 and hollow Ni@SiO2 provoked abnormalities of zebrafish larval motor function, indicating developmental toxicity, while non-hollow Ni@SiO2 showed no toxicity. Correlating these observations with physicochemical characterization of the CENs suggests that the toxicity of the Ni-SiO2 and hollow Ni@SiO2 material may result partly from an increased effective exposure at the bottom of the well due to rapid settling. Overall, our data suggest that embedding nickel NPs in a porous silica matrix may be a straightforward way to mitigate their toxicity without compromising their functional properties. At the same time, our results also indicate that it is critical to consider

  2. The Developmental Toxicity of Complex Silica-Embedded Nickel Nanoparticles Is Determined by Their Physicochemical Properties.

    PubMed

    Mahoney, Sharlee; Najera, Michelle; Bai, Qing; Burton, Edward A; Veser, Götz

    2016-01-01

    Complex engineered nanomaterials (CENs) are a rapidly developing class of structurally and compositionally complex materials that are expected to dominate the next generation of functional nanomaterials. The development of methods enabling rapid assessment of the toxicity risk associated with this type of nanomaterial is therefore critically important. We evaluated the toxicity of three differently structured nickel-silica nanomaterials as prototypical CENs: simple, surface-deposited Ni-SiO2 and hollow and non-hollow core-shell Ni@SiO2 materials (i.e., ~1-2 nm Ni nanoparticles embedded into porous silica shells with and without a central cavity, respectively). Zebrafish embryos were exposed to these CENs, and morphological (survival and malformations) and physiological (larval motility) endpoints were coupled with thorough characterization of physiochemical characteristics (including agglomeration, settling and nickel ion dissolution) to determine how toxicity differed between these CENs and equivalent quantities of Ni2+ salt (based on total Ni). Exposure to Ni2+ ions strongly compromised zebrafish larva viability, and surviving larvae showed severe malformations. In contrast, exposure to the equivalent amount of Ni CEN did not result in these abnormalities. Interestingly, exposure to Ni-SiO2 and hollow Ni@SiO2 provoked abnormalities of zebrafish larval motor function, indicating developmental toxicity, while non-hollow Ni@SiO2 showed no toxicity. Correlating these observations with physicochemical characterization of the CENs suggests that the toxicity of the Ni-SiO2 and hollow Ni@SiO2 material may result partly from an increased effective exposure at the bottom of the well due to rapid settling. Overall, our data suggest that embedding nickel NPs in a porous silica matrix may be a straightforward way to mitigate their toxicity without compromising their functional properties. At the same time, our results also indicate that it is critical to consider modification

  3. Silica Nanoparticles Induce Oxidative Stress and Autophagy but Not Apoptosis in the MRC-5 Cell Line

    PubMed Central

    Petrache Voicu, Sorina Nicoleta; Dinu, Diana; Sima, Cornelia; Hermenean, Anca; Ardelean, Aurel; Codrici, Elena; Stan, Miruna Silvia; Zărnescu, Otilia; Dinischiotu, Anca

    2015-01-01

    This study evaluated the in vitro effects of 62.5 µg/mL silica nanoparticles (SiO2 NPs) on MRC-5 human lung fibroblast cells for 24, 48 and 72 h. The nanoparticles’ morphology, composition, and structure were investigated using high resolution transmission electron microscopy, selected area electron diffraction and X-ray diffraction. Our study showed a decreased cell viability and the induction of cellular oxidative stress as evidenced by an increased level of reactive oxygen species (ROS), carbonyl groups, and advanced oxidation protein products after 24, 48, and 72 h, as well as a decreased concentration of glutathione (GSH) and protein sulfhydryl groups. The protein expression of Hsp27, Hsp60, and Hsp90 decreased at all time intervals, while the level of protein Hsp70 remained unchanged during the exposure. Similarly, the expression of p53, MDM2 and Bcl-2 was significantly decreased for all time intervals, while the expression of Bax, a marker for apoptosis, was insignificantly downregulated. These results correlated with the increase of pro-caspase 3 expression. The role of autophagy in cellular response to SiO2 NPs was demonstrated by a fluorescence-labeled method and by an increased level of LC3-II/LC3-I ratio. Taken together, our data suggested that SiO2 NPs induced ROS-mediated autophagy in MRC-5 cells as a possible mechanism of cell survival. PMID:26690408

  4. Mapping the nanomechanical properties of graphene suspended on silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Osváth, Z.; Gergely-Fülöp, E.; Deák, A.; Hwang, C.; Biró, L. P.

    2016-09-01

    Using nanoparticles to impart extrinsic rippling in graphene is a relatively new method to induce strain and to tailor the properties of graphene. Here we study the structure and elastic properties of graphene grown by chemical vapour deposition and transferred onto a continuous layer of SiO2 nanoparticles with diameters of around 25 nm, prepared by Langmuir-Blodgett technique on Si substrate. We show that the transferred graphene follows only roughly the morphology induced by nanoparticles. The graphene membrane parts bridging the nanoparticles are suspended and their adhesion to the AFM tip is larger compared to that of supported graphene parts. These suspended graphene regions can be deformed with forces of the order of 10 nN. The elastic modulus of graphene was determined from indentation measurements performed on suspended membrane regions with diameters in the 100 nm range.

  5. Precise quantification of silica and ceria nanoparticle uptake revealed by 3D fluorescence microscopy

    PubMed Central

    Torrano, Adriano A

    2014-01-01

    Summary Particle_in_Cell-3D is a powerful method to quantify the cellular uptake of nanoparticles. It combines the advantages of confocal fluorescence microscopy with fast and precise semi-automatic image analysis. In this work we present how this method was applied to investigate the impact of 310 nm silica nanoparticles on human vascular endothelial cells (HUVEC) in comparison to a cancer cell line derived from the cervix carcinoma (HeLa). The absolute number of intracellular silica nanoparticles within the first 24 h was determined and shown to be cell type-dependent. As a second case study, Particle_in_Cell-3D was used to assess the uptake kinetics of 8 nm and 30 nm ceria nanoparticles interacting with human microvascular endothelial cells (HMEC-1). These small nanoparticles formed agglomerates in biological medium, and the particles that were in effective contact with cells had a mean diameter of 417 nm and 316 nm, respectively. A significant particle size-dependent effect was observed after 48 h of interaction, and the number of intracellular particles was more than four times larger for the 316 nm agglomerates. Interestingly, our results show that for both particle sizes there is a maximum dose of intracellular nanoparticles at about 24 h. One of the causes for such an interesting and unusual uptake behavior could be cell division. PMID:25383274

  6. Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence

    SciTech Connect

    Dawi, E. A.; Mink, M. P.; Vredenberg, A. M.; Habraken, F. H. P. M.; Rizza, G.

    2009-04-01

    Irradiation with swift heavy ions of spherical Au nanoparticles confined within a silica matrix shapes them into prolate nanorods and nanowires whose principal axes are aligned along the beam direction. In the present paper, we investigate the role that is played by the initial nanoparticle size and concentration in this so-called ion-shaping mechanism. We have produced silica films wherein Au nanoparticles with average diameters of 15, 30, and 45 nm were embedded within a single plane and have irradiated these films at 300 K at normal incidence with 18, 25, and 54 MeV Ag ions. We demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned. The values of these critical fluences depend both on the ion energy and the initial nanoparticle size. Moreover, we show that 45 nm Au particles are not deformed when irradiated with 18 MeV Ag ions, such that this value corresponds to an energy threshold for the deformation process. As far as the influence of the nanoparticle concentration on the shaping characteristics is concerned, we have found that above the critical irradiation fluence, the deformation effect becomes very sensitive to the initial concentration of the nanoparticles.

  7. Multivalent linkers for improved covalent binding of oligonucleotides to dye-doped silica nanoparticles.

    PubMed

    Kelleher, S M; Nooney, R I; Flynn, S P; Clancy, E; Burke, M; Daly, S; Smith, T J; Daniels, S; McDonagh, C

    2015-09-11

    This paper describes the fabrication of oligonucleotide-coated Cy5-doped silica nanoparticles using a combination of multivalent linkers and their use in surface-based DNA sandwich hybridization assays. Dipodal silane is introduced as a means to fabricate amine-coated silica nanoparticles and its advantages compared to monopodal silanes are discussed. The use of dipodal silane in conjunction with three different polymer linkers (oxidized dextran, linear and 8-arm polyethylene glycol (PEG)) to immobilize single-stranded DNA to Cy5-doped nanoparticles is investigated and dynamic light scattering measurements and Fourier transform infrared spectroscopy are used to follow the progression of the functionalization of the nanoparticles. We observe a significant improvement in the binding stability of the single-stranded DNA when the dipodal silane and 8-arm PEG are used in combination, when compared to alternative conjugation strategies. Both 8mer and 22mer oligonucleotides are securely conjugated to the high-brightness nanoparticles and their availability to hybridize with a complementary strand is confirmed using solution-based DNA hybridization experiments. In addition, a full surface-based sandwich assay demonstrates the potential these nanoparticles have in the detection of less than 500 femtomolar of a DNA analogue of micro RNA, miR-451. PMID:26294441

  8. Experimental and analytical study of ionic self-assembly of silica and titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Simpson, Brian; Banks, Will; Kim, Vincent; Seredinski, Andrew; Wilson, Katy; Mazilu, Irina; Mazilu, Dan

    2013-03-01

    Using the ionically self-assembled monolayers (ISAM) technique we investigate the time dependence of the surface coverage of thin films that consist of alternating layers of silica or titania nanoparticles deposited on polymer substrates. We conduct experiments in order to investigate the significant observable factors that affected the quality of the coatings including the dipping time, pH, and the molarity of the silica, titania, and PDDA solutions. Using SEM micrographs, we analyzed the surface coverage and compared it to analytical results obtained using a cooperative sequential adsorption model.

  9. Core-Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultra-large Cavity for Protein Delivery.

    PubMed

    Xu, Chun; Yu, Meihua; Noonan, Owen; Zhang, Jun; Song, Hao; Zhang, Hongwei; Lei, Chang; Niu, Yuting; Huang, Xiaodan; Yang, Yannan; Yu, Chengzhong

    2015-11-25

    A new type of monodispersed mesoporous silica nanoparticles with a core-cone structure (MSN-CC) has been synthesized. The large cone-shaped pores are formed by silica lamellae closely packed encircling a spherical core, showing a structure similar to the flower dahlia. MSN-CC has a large pore size of 45 nm and a high pore volume of 2.59 cm(3) g(-1). MSN-CC demonstrates a high loading capacity of large proteins and successfully delivers active β-galactosidase into cells, showing their potential as efficient nanocarriers for the cellular delivery of proteins with large molecular weights. PMID:26426420

  10. Synthesis, characterization, and biodistribution studies of (99m)Tc-labeled SBA-16 mesoporous silica nanoparticles.

    PubMed

    de Barros, André Luís Branco; de Oliveira Ferraz, Karina Silva; Dantas, Thais Cristina Soares; Andrade, Gracielle Ferreira; Cardoso, Valbert Nascimento; Sousa, Edésia Martins Barros de

    2015-11-01

    Along with anti-cancer drug delivery researches, many efforts have been done to develop new tracers for diagnostic applications. Based on advances in molecular imaging, nanoparticles can be used to visualize, characterize and measure biological process at molecular and cellular level. Therefore, the purpose of this study was to synthesize, characterize and radiolabeled mesoporous silica nanoparticles (MSNs) for in vivo applications. The nanoparticles were synthesized, functionalized with 3-aminopropyltriethoxysilane (APTES) and then, anchored with diethylenetriaminepentaacetic acid (DTPA). Particles were physicochemical characterized by elemental analysis (CHN), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and zeta potential, and were morphologically characterized by scanning electron microscopy (SEM), low-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. Results indicate that functionalization process was successfully achieved. Next, functionalized silica nanoparticles were radiolabeled with technetium-99m showing high radiochemical yields and high radiolabeled stability. These findings allow the use of the particles for in vivo applications. Biodistribution and scintigraphic images were carried out in healthy mice in order to determine the fate of the particles. Results from in vivo experiments showed high uptake by liver, as expected due to phagocytosis. However, particles also showed a significant uptake in the lungs, indicated by high lung-to-non-target tissue ratio. In summary, taking into account the great potential of these silica mesoporous structures to carry molecules this platform could be a good strategy for theranostic purposes.

  11. Synthesis, characterization, and biodistribution studies of (99m)Tc-labeled SBA-16 mesoporous silica nanoparticles.

    PubMed

    de Barros, André Luís Branco; de Oliveira Ferraz, Karina Silva; Dantas, Thais Cristina Soares; Andrade, Gracielle Ferreira; Cardoso, Valbert Nascimento; Sousa, Edésia Martins Barros de

    2015-11-01

    Along with anti-cancer drug delivery researches, many efforts have been done to develop new tracers for diagnostic applications. Based on advances in molecular imaging, nanoparticles can be used to visualize, characterize and measure biological process at molecular and cellular level. Therefore, the purpose of this study was to synthesize, characterize and radiolabeled mesoporous silica nanoparticles (MSNs) for in vivo applications. The nanoparticles were synthesized, functionalized with 3-aminopropyltriethoxysilane (APTES) and then, anchored with diethylenetriaminepentaacetic acid (DTPA). Particles were physicochemical characterized by elemental analysis (CHN), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and zeta potential, and were morphologically characterized by scanning electron microscopy (SEM), low-angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. Results indicate that functionalization process was successfully achieved. Next, functionalized silica nanoparticles were radiolabeled with technetium-99m showing high radiochemical yields and high radiolabeled stability. These findings allow the use of the particles for in vivo applications. Biodistribution and scintigraphic images were carried out in healthy mice in order to determine the fate of the particles. Results from in vivo experiments showed high uptake by liver, as expected due to phagocytosis. However, particles also showed a significant uptake in the lungs, indicated by high lung-to-non-target tissue ratio. In summary, taking into account the great potential of these silica mesoporous structures to carry molecules this platform could be a good strategy for theranostic purposes. PMID:26249579

  12. Diamino moiety functionalized silica nanoparticles as pseudostationary phase in capillary electrochromatography separation of plant auxins.

    PubMed

    Li, Hui; Ding, Guo-Sheng; Yue, Chun-Yue; Tang, An-Na

    2012-07-01

    A novel and simple method for the preparation of silica nanoparticles having surface-functionalized diamino moiety (dASNPs) was reported in our paper and characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and thermogravimetry techniques. To test this method practically, in this contribution we describe the enhanced separation of four plant auxins - indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), 2,4-dichlorophenoxyacetic acid (dCPAA), and 2-(1-naphthyl) acetic acid (NAA) - by capillary electrochromatography using diamino moiety functionalized silica nanoparticles as pseudostationary phase (PSP) in the running buffer. The effect of pH, buffer concentration, and diamino moiety functionalized silica nanoparticles concentration on the selectivity of separation was investigated. A combination of the nanoparticles and running buffer reversed the electroosmotic direction making possible the rapid and efficient separation of the auxins from the auxins migrated in the same direction with the EOF under optimum experimental conditions. A good resolution of four auxins was obtained within 5.5 min under optimum experimental conditions. The precision (RSD, n = 5) was in the range of 0.72-0.91% and 1.89-2.23% for migration time and peak area response, respectively. The detection limits were 0.48, 0.44, 0.46, and 0.42 μM for NAA, IBA, IAA, and dCPAA, respectively. Furthermore, the method was successfully tested for the determination of IAA in the grapes. PMID:22806467

  13. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Heidegger, Simon; Gössl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole

    2016-01-14

    Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications. PMID:26659601

  14. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery.

    PubMed

    Heidegger, Simon; Gössl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole

    2016-01-14

    Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.

  15. Aggregation-Induced Emission Luminogen-Embedded Silica Nanoparticles Containing DNA Aptamers for Targeted Cell Imaging.

    PubMed

    Wang, Xiaoyan; Song, Panshu; Peng, Lu; Tong, Aijun; Xiang, Yu

    2016-01-13

    Conventional fluorophores usually undergo aggregation-caused quenching (ACQ), which limits the loading amount of these fluorophores in nanoparticles for bright fluorescence imaging. On the contrary, fluorophores with aggregation-induced emission (AIE) characteristics are strongly fluorescent in their aggregate states and have been an ideal platform for developing highly fluorescent nanomaterials, such as fluorescent silica nanoparticles (FSNPs). In this work, AIE luminogens based on salicylaldehyde hydrazones were embedded in silica nanoparticles through a facile noncovalent approach, which afforded AIE-FSNPs emitting much brighter fluorescence than that of some commercial fluorescein-doped silica and polystyrene nanoparticles. These AIE-FSNPs displaying multiple fluorescence colors were fabricated by a general method, and they underwent much less fluorescence variation due to environmental pH changes compared with fluorescein-hybridized FSNPs. In addition, a DNA aptamer specific to nucleolin was functionalized on the surface of AIE-FSNPs for targeted cell imaging. Fluorescent microscopy and flow cytometry studies both revealed highly selective fluorescence staining of MCF-7 (a cancer cell line with nucleolin overexpression) over MCF-10A (normal) cells by the aptamer-functionalized AIE-FSNPs. The fluorescence imaging in different color channels was achieved using AIE-FSNPs containing each of the AIE luminogens, as well as photoactivatable fluorescent imaging of target cells by the caged AIE fluorophore. PMID:26653325

  16. Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles

    SciTech Connect

    Trewyn, Brian G.

    2006-01-01

    The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the

  17. Selective functionalization of mesoporous silica nanoparticles with ibuprofen and Gd(III) chelates: a new probe for potential theranostic applications.

    PubMed

    Carniato, Fabio; Muñoz-Úbeda, Mónica; Tei, Lorenzo; Botta, Mauro

    2015-11-01

    Organo-modified mesoporous silica nanoparticles, loaded with ibuprofen into the pores and functionalized on the external surface with a stable Gd(iii)-DOTA-monoamide chelate, were prepared and explored as potential theranostic probes.

  18. Facile growth of well-dispersed and ultra-small MoS2 nanodots in ordered mesoporous silica nanoparticles.

    PubMed

    Wang, Yi; Wang, Shanshan; Li, Chengyi; Qian, Min; Bu, Juan; Wang, Jianxin; Huang, Rongqin

    2016-08-11

    A facile one-step solvothermal method was developed for the homogeneously confined growth of ultra-small (∼1.5 nm) and monodispersed 2H phase MoS2 nanodots into mesoporous silica nanoparticles (MSNs). PMID:27387440

  19. Coated Silica Nanoparticles in Nakhla Iddingsite Veins: Implications for Water-Rock Interaction Within the Martian Crust

    NASA Astrophysics Data System (ADS)

    Lee, M. R.; MacLaren, I.; Kovacs, A.; Tomkinson, T.; Mark, D. F.; Hallis, L.; Smith, C. L.

    2014-09-01

    Silica nanoparticles coated with iron hydroxide and smectite are a major constituent of ‘iddingsite’ veins in the Nakhla meteorite. This unexpected discovery has important implications for understanding water-rock interaction in the martian crust.

  20. Facile growth of well-dispersed and ultra-small MoS2 nanodots in ordered mesoporous silica nanoparticles.

    PubMed

    Wang, Yi; Wang, Shanshan; Li, Chengyi; Qian, Min; Bu, Juan; Wang, Jianxin; Huang, Rongqin

    2016-08-11

    A facile one-step solvothermal method was developed for the homogeneously confined growth of ultra-small (∼1.5 nm) and monodispersed 2H phase MoS2 nanodots into mesoporous silica nanoparticles (MSNs).

  1. Charge separation across the silica nanoparticle/water interface

    SciTech Connect

    Dimitrijevic, N.M.; Henglein, A.; Meisel, D.

    1999-08-26

    Aqueous suspensions of silica particles at high concentrations were irradiated with a short pulse of electrons in the presence of scavengers of OH radicals. The scavengers were chosen to minimize their adsorption on the particle surface. It was found that essentially no holes cross the particle/water interface to generate OH radicals. All of the holes that are originally generated by the ionizing radiation in the silica remain in the particle; even at the smallest size used (7-nm diameter). This is contrasted with electrons, which were earlier shown to escape the particles into the water, even at much larger particle sizes. Implications to removal of pollutants and to management of radioactive materials are often cited as motivation for these studies.

  2. Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish

    PubMed Central

    Yi, Hongyang; Wang, Zhuyao; Li, Xiaojiao; Yin, Min; Wang, Lihua; Aldalbahi, Ali; El-Sayed, Nahed Nasser; Wang, Hui; Chen, Nan; Fan, Chunhai; Song, Haiyun

    2016-01-01

    Many types of biocompatible nanomaterials have proven of low cytotoxicity and hold great promise for various applications in nanomedicine. Whereas they generally do not cause apparent organ toxicity or tissue damage in adult animals, it is yet to determine their biological consequences in more general contexts. In this study, we investigate how silica nanoparticles (NPs) affect cellular activities and functions under several physiological or pathological conditions. Although silica NPs are generally regarded as “inert” nanocarriers and widely employed in biomedical studies, we find that they actively affect Wnt signaling in various types of cell lines, diminishing its anti-adipogenic effect in preadipocytes and pro-invasive effect in breast cancer cells, and more significantly, impair Wnt-regulated embryonic development in Zebrafish. We further demonstrate that intracellular silica NPs block Wnt signal transduction in a way resembling signaling molecules. Specifically, silica NPs target the Dvl protein, a key component of Wnt signaling cascade, for lysosomal degradation. As Wnt signaling play significant roles in embryonic development and adipogenesis, the observed physiological effects beyond toxicity imply potential risk of obesity, or developmental defects in somitogenesis and osteogenesis upon exposure to silica NPs. In addition, given the clinical implications of Wnt signaling in tumorigenesis and cancer metastasis, our work also establishes for the first time a molecular link between nanomaterials and the Wnt signaling pathway, which opens new door for novel applications of unmodified silica NPs in targeted therapy for cancers and other critical illness. PMID:27570552

  3. Amine modification of nonporous silica nanoparticles reduces inflammatory response following intratracheal instillation in murine lungs.

    PubMed

    Morris, Angie S; Adamcakova-Dodd, Andrea; Lehman, Sean E; Wongrakpanich, Amaraporn; Thorne, Peter S; Larsen, Sarah C; Salem, Aliasger K

    2016-01-22

    Amorphous silica nanoparticles (NPs) possess unique material properties that make them ideal for many different applications. However, the impact of these materials on human and environmental health needs to be established. We investigated nonporous silica NPs both bare and modified with amine functional groups (3-aminopropyltriethoxysilane (APTES)) in order to evaluate the effect of surface chemistry on biocompatibility. In vitro data showed there to be little to no cytotoxicity in a human lung cancer epithelial cell line (A549) for bare silica NPs and amine-functionalized NPs using doses based on both mass concentration (below 200μg/mL) and exposed total surface area (below 14m(2)/L). To assess lung inflammation, C57BL/6 mice were administered bare or amine-functionalized silica NPs via intra-tracheal instillation. Two doses (0.1 and 0.5mg NPs/mouse) were tested using the in vivo model. At the higher dose used, bare silica NPs elicited a significantly higher inflammatory response, as evidence by increased neutrophils and total protein in bronchoalveolar lavage (BAL) fluid compared to amine-functionalized NPs. From this study, we conclude that functionalization of nonporous silica NPs with APTES molecules reduces murine lung inflammation and improves the overall biocompatibility of the nanomaterial. PMID:26562768

  4. Silica Nanoparticles Target a Wnt Signal Transducer for Degradation and Impair Embryonic Development in Zebrafish.

    PubMed

    Yi, Hongyang; Wang, Zhuyao; Li, Xiaojiao; Yin, Min; Wang, Lihua; Aldalbahi, Ali; El-Sayed, Nahed Nasser; Wang, Hui; Chen, Nan; Fan, Chunhai; Song, Haiyun

    2016-01-01

    Many types of biocompatible nanomaterials have proven of low cytotoxicity and hold great promise for various applications in nanomedicine. Whereas they generally do not cause apparent organ toxicity or tissue damage in adult animals, it is yet to determine their biological consequences in more general contexts. In this study, we investigate how silica nanoparticles (NPs) affect cellular activities and functions under several physiological or pathological conditions. Although silica NPs are generally regarded as "inert" nanocarriers and widely employed in biomedical studies, we find that they actively affect Wnt signaling in various types of cell lines, diminishing its anti-adipogenic effect in preadipocytes and pro-invasive effect in breast cancer cells, and more significantly, impair Wnt-regulated embryonic development in Zebrafish. We further demonstrate that intracellular silica NPs block Wnt signal transduction in a way resembling signaling molecules. Specifically, silica NPs target the Dvl protein, a key component of Wnt signaling cascade, for lysosomal degradation. As Wnt signaling play significant roles in embryonic development and adipogenesis, the observed physiological effects beyond toxicity imply potential risk of obesity, or developmental defects in somitogenesis and osteogenesis upon exposure to silica NPs. In addition, given the clinical implications of Wnt signaling in tumorigenesis and cancer metastasis, our work also establishes for the first time a molecular link between nanomaterials and the Wnt signaling pathway, which opens new door for novel applications of unmodified silica NPs in targeted therapy for cancers and other critical illness. PMID:27570552

  5. Nanoparticle composites for printed electronics

    NASA Astrophysics Data System (ADS)

    Männl, U.; van den Berg, C.; Magunje, B.; Härting, M.; Britton, D. T.; Jones, S.; van Staden, M. J.; Scriba, M. R.

    2014-03-01

    Printed Electronics is a rapidly developing sector in the electronics industry, in which nanostructured materials are playing an increasingly important role. In particular, inks containing dispersions of semiconducting nanoparticles, can form nanocomposite materials with unique electronic properties when cured. In this study we have extended on our previous studies of functional nanoparticle electronic inks, with the development of a solvent-based silicon ink for printed electronics which is compatible with existing silver inks, and with the investigation of other metal nanoparticle based inks. It is shown that both solvent-based and water-based inks can be used for both silver conductors and semiconducting silicon, and that qualitatively there is no difference in the electronic properties of the materials printed with a soluble polymer binder to when an acrylic binder is used.

  6. Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES

    NASA Astrophysics Data System (ADS)

    Jia, Shanshan; Liu, Ming; Wu, Yiqiang; Luo, Sha; Qing, Yan; Chen, Haibo

    2016-11-01

    In this study, an efficient, facile method has been developed for fabricating superhydrophobic surfaces on wood substrates using silica nanoparticles modified by VTES. The as-prepared superhydrophobic wood surface had a water contact angle of 154° and water slide angle close to 0°. Simultaneously, this superhydrophobic wood showed highly durable and robust wear resistance when having undergone a long period of sandpaper abrasion or being scratched by a knife. Even under extreme conditions of boiling water, the superhydrophobicity of the as-prepared wood composite was preserved. Characterizations by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy showed that a typical and tough hierarchical micro/nanostructure was created on the wood substrate and vinyltriethoxysilane contributed to preventing the agglomeration of silica nanoparticles and serving as low-surface-free-energy substances. This superhydrophobic wood was easy to fabricate, mechanically resistant and exhibited long-term stability. Therefore, it is considered to be of significant importance in the industrial production of functional wood, especially for outdoor applications.

  7. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides

    EPA Science Inventory

    One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this...

  8. Fabrication, Light Emission, and Magnetism of Silica Nanoparticles Hybridized with AIE Luminogens and Inorganic Nanostructures

    NASA Astrophysics Data System (ADS)

    Faisal, Mahtab

    Much research efforts have been devoted in developing new synthetic approaches for fluorescent silica nanoparticles (FSNPs) due to their potential high-technological applications. However, light emissions from most of the FSNPs prepared so far have been rather weak. This is due to the emission quenching caused by the aggregation of fluorophores in the solid state. We have observed a novel phenomenon of aggregation-induced emission (AIE): a series of propeller-shaped molecules such as tetraphenylethene (TPE) and silole are induced to emit efficiently by aggregate formation. Thus, they are ideal fluorophors for the construction of FSNPs and my thesis work focuses on the synthesis of silica nanoparticles containing these luminogens and magnetic nanostructures. Highly emissive FSNPs with core-shell structures are fabricated by surfactant-free sol-gel reactions of tetraphenylethene- (TPE) and silole-functionalized siloxanes followed by the reactions with tetraethoxysilane. The FSNPs are uniformly sized, surface-charged and colloidally stable. The diameters of the FSNPs are tunable in the range of 45--295 nm by changing the reaction conditions. Whereas their TPE and silole precursors are non-emissive, the FSNPs emit strong visible lights, thanks to the novel aggregation-induced emission characteristics of the TPE and silole aggregates in the hybrid nanoparticles. The FSNPs pose no toxicity to living cells and can be utilized to selectively image cytoplasm of HeLa cells. Applying the same tool in the presence of citrate-coated magnetite nanoparticles, uniform magnetic fluorescent silica nanoparticles (MFSNPs) with smooth surfaces are fabricated. These particles exhibit appreciable surface charges and hence good colloidal stability. They are superparamagnetic, exhibiting no hysteresis at room temperature. UV irradiation of a suspension of MFSNPs in ethanol gives strong blue and green emissions. The MFSNPs can selectively stain the cytoplasmic regions of the living cells

  9. Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.

    2012-11-01

    The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.

  10. Functionalized Silica Nanoparticles As an Alternative Platform for Targeted Drug-Delivery of Water Insoluble Drugs.

    PubMed

    de Oliveira, Luciane França; Bouchmella, Karim; Gonçalves, Kaliandra de Almeida; Bettini, Jefferson; Kobarg, Jörg; Cardoso, Mateus Borba

    2016-04-01

    The selective action of drugs in tumor cells is a major problem in cancer therapy. Most chemotherapy drugs act nonspecifically and damage both cancer and healthy cells causing various side effects. In this study, the preparation of a selective drug delivery system, which is able to act as a carrier for hydrophobic and anticancer drugs is reported. Amino-functionalized silica nanoparticles loaded with curcumin were successfully synthesized via sol-gel approach and duly characterized. Thereafter, the targeting ligand, folate, was covalently attached to amino groups of nanoparticle surface through amide bond formation. The cytotoxic effect of nanoparticles on prostate cancer cells line was evaluated and compared to normal cells line (prostate epithelial cell). Cytotoxicity experiments demonstrated that folate-functionalized nanoparticles were significantly cytotoxic to tumor cells, whereas normal cells were much less affected by the presence of these structures.

  11. Functionalized Silica Nanoparticles As an Alternative Platform for Targeted Drug-Delivery of Water Insoluble Drugs.

    PubMed

    de Oliveira, Luciane França; Bouchmella, Karim; Gonçalves, Kaliandra de Almeida; Bettini, Jefferson; Kobarg, Jörg; Cardoso, Mateus Borba

    2016-04-01

    The selective action of drugs in tumor cells is a major problem in cancer therapy. Most chemotherapy drugs act nonspecifically and damage both cancer and healthy cells causing various side effects. In this study, the preparation of a selective drug delivery system, which is able to act as a carrier for hydrophobic and anticancer drugs is reported. Amino-functionalized silica nanoparticles loaded with curcumin were successfully synthesized via sol-gel approach and duly characterized. Thereafter, the targeting ligand, folate, was covalently attached to amino groups of nanoparticle surface through amide bond formation. The cytotoxic effect of nanoparticles on prostate cancer cells line was evaluated and compared to normal cells line (prostate epithelial cell). Cytotoxicity experiments demonstrated that folate-functionalized nanoparticles were significantly cytotoxic to tumor cells, whereas normal cells were much less affected by the presence of these structures. PMID:26930039

  12. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area.

    PubMed

    Van Hoecke, Karen; De Schamphelaere, Karel A C; Van der Meeren, Paul; Lucas, Stéphane; Janssen, Colin R

    2008-09-01

    To date, (eco)toxicological information on industrial nanoparticles is very limited. In the present study, the hypothesis that the ecotoxicity of nanoparticles (NPs) is related to their surface area and not to their mass was tested using a freshwater green algal species. Particle diameter and morphology were assessed using light scattering and electron microscopy techniques. To assess the toxicity of silica (SiO2) nanoparticles, the growth inhibition of the alga Pseudokirchneriella subcapitata when exposed to stable silica suspensions was monitored. Commercial LUDOX suspensions of nanoparticles with 12.5 and 27.0 nm diameter were found to be toxic, with 72-h 20% effect concentrations for growth rate (E(r)C20) values +/- standard deviation (n = 5) of 20.0 +/- 5.0 and 28.8 +/- 3.2 mg/L, respectively. The toxicity was attributable to the solid nanospheres, because no aggregation was observed and dissolution of the nanoparticles was negligible. When expressing the concentration as a surface area, the difference in toxicity was not significant. In the latter case, 72-h E(r)C20 values +/- standard deviation (n = 5) were 4.7 +/- 1.2 and 3.9 +/- 0.4 m2/L. Silica bulk material was found to be nontoxic up to 1 g/L. In an additional experiment with 100 mg/L of 12.5 and 27.0 nm SiO2 NPs, the interaction between the nanoparticles and algal cells was studied using transmission electron microscopy. Although the particles clearly adhered to the outer cell surface, no evidence was found for particle uptake. PMID:19086319

  13. Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities

    PubMed Central

    Biffi, Stefania; Petrizza, Luca; Garrovo, Chiara; Rampazzo, Enrico; Andolfi, Laura; Giustetto, Pierangela; Nikolov, Ivaylo; Kurdi, Gabor; Danailov, Miltcho Boyanov; Zauli, Giorgio; Secchiero, Paola; Prodi, Luca

    2016-01-01

    Purpose The aim of the present study was to develop nanoprobes with theranostic features, including – at the same time – photoacoustic, near-infrared (NIR) optical imaging, and photothermal properties, in a versatile and stable core–shell silica-polyethylene glycol (PEG) nanoparticle architecture. Materials and methods We synthesized core–shell silica-PEG nanoparticles by a one-pot direct micelles approach. Fluorescence emission and photoacoustic and photothermal properties were obtained at the same time by appropriate doping with triethoxysilane-derivatized cyanine 5.5 (Cy5.5) and cyanine 7 (Cy7) dyes. The performances of these nanoprobes were measured in vitro, using nanoparticle suspensions in phosphate-buffered saline and blood, dedicated phantoms, and after incubation with MDA-MB-231 cells. Results We obtained core–shell silica-PEG nanoparticles endowed with very high colloidal stability in water and in biological environment, with absorption and fluorescence emission in the NIR field. The presence of Cy5.5 and Cy7 dyes made it possible to reach a more reproducible and higher doping regime, producing fluorescence emission at a single excitation wavelength in two different channels, owing to the energy transfer processes within the nanoparticle. The nanoarchitecture and the presence of both Cy5.5 and Cy7 dyes provided a favorable agreement between fluorescence emission and quenching, to achieve optical imaging and photoacoustic and photothermal properties. Conclusion We obtained rationally designed nanoparticles with outstanding stability in biological environment. At appropriate doping regimes, the presence of Cy5.5 and Cy7 dyes allowed us to tune fluorescence emission in the NIR for optical imaging and to exploit quenching processes for photoacoustic and photothermal capabilities. These nanostructures are promising in vivo theranostic tools for the near future. PMID:27703352

  14. Methods for Preparing Nanoparticle-Containing Thermoplastic Composite Laminates

    NASA Technical Reports Server (NTRS)

    Gruber, Mark B. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor)

    2016-01-01

    High quality thermoplastic composites and composite laminates containing nanoparticles and/or nanofibers, and methods of producing such composites and laminates are disclosed. The composites comprise a thermoplastic polymer and a plurality of nanoparticles, and may include a fibrous structural reinforcement. The composite laminates are formed from a plurality of nanoparticle-containing composite layers and may be fused to one another via an automated process.

  15. Photophysical studies of newly derivatized mono substituted phthalocyanines grafted onto silica nanoparticles via click chemistry.

    PubMed

    Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello

    2015-04-01

    This work reports on the synthesis, characterization and photophysical studies of newly derived phthalocyanine complexes and the phthalocyanine-silica nanoparticles conjugates. The derived phthalocyanine complexes have one terminal alkyne group. The derived phthalocyanine complexes showed improved photophysical properties (ФF, ФT, ΦΔ and τT) compared to the respective phthalocyanine complexes from which they were derived. The derived phthalocyanine complexes were conjugated to the surface of an azide functionalized silica nanoparticles via copper (1) catalyzed cyclo-addition reaction. All the conjugates showed lower triplet quantum yields ranging from 0.37 to 0.44 compared to the free phthalocyanine complexes. The triplet lifetimes ranged from 352 to 484 μs for the conjugates and from 341 to 366 μs for the free phthalocyanine complexes.

  16. Photophysical studies of newly derivatized mono substituted phthalocyanines grafted onto silica nanoparticles via click chemistry.

    PubMed

    Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello

    2015-04-01

    This work reports on the synthesis, characterization and photophysical studies of newly derived phthalocyanine complexes and the phthalocyanine-silica nanoparticles conjugates. The derived phthalocyanine complexes have one terminal alkyne group. The derived phthalocyanine complexes showed improved photophysical properties (ФF, ФT, ΦΔ and τT) compared to the respective phthalocyanine complexes from which they were derived. The derived phthalocyanine complexes were conjugated to the surface of an azide functionalized silica nanoparticles via copper (1) catalyzed cyclo-addition reaction. All the conjugates showed lower triplet quantum yields ranging from 0.37 to 0.44 compared to the free phthalocyanine complexes. The triplet lifetimes ranged from 352 to 484 μs for the conjugates and from 341 to 366 μs for the free phthalocyanine complexes. PMID:25615674

  17. Photophysical studies of newly derivatized mono substituted phthalocyanines grafted onto silica nanoparticles via click chemistry

    NASA Astrophysics Data System (ADS)

    Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello

    2015-04-01

    This work reports on the synthesis, characterization and photophysical studies of newly derived phthalocyanine complexes and the phthalocyanine-silica nanoparticles conjugates. The derived phthalocyanine complexes have one terminal alkyne group. The derived phthalocyanine complexes showed improved photophysical properties (ФF, ФT, ΦΔ and τT) compared to the respective phthalocyanine complexes from which they were derived. The derived phthalocyanine complexes were conjugated to the surface of an azide functionalized silica nanoparticles via copper (1) catalyzed cyclo-addition reaction. All the conjugates showed lower triplet quantum yields ranging from 0.37 to 0.44 compared to the free phthalocyanine complexes. The triplet lifetimes ranged from 352 to 484 μs for the conjugates and from 341 to 366 μs for the free phthalocyanine complexes.

  18. Surface functionalization of silica nanoparticles with cysteine: a low-fouling zwitterionic surface.

    PubMed

    Rosen, Joshua E; Gu, Frank X

    2011-09-01

    Herein, we report on the functionalization of silica nanoparticles with a small molecule, the amino acid cysteine, in order to create a low-fouling zwitterionic surface for nanomedicine applications. The cysteine functionalization was shown to impart the particles with excellent stability in both salt and single-protein solutions of lysozyme (positively charged) and bovine serum albumin (negatively charged). Bare silica particles precipitated immediately in a lysozyme solution, while cysteine-functionalized particles were stable for 20 h. Furthermore, the particles displayed excellent long-term stability in solutions of human serum showing no aggregation over a period of 14 days. The functionalized particles also possess multiple reactive surface groups for further coupling reactions. We believe that the surface functionalization schemes described in this report represent a versatile and effective method of stabilizing nanoparticle systems in biological media for their use in a variety of therapeutic and diagnostic applications. PMID:21761888

  19. Encapsulation of FRET-based glucose and maltose biosensors to develop functionalized silica nanoparticles.

    PubMed

    Faccio, G; Bannwarth, M B; Schulenburg, C; Steffen, V; Jankowska, D; Pohl, M; Rossi, R M; Maniura-Weber, K; Boesel, L F; Richter, M

    2016-06-20

    Silicate nanoparticles with immobilized FRET-based biosensors were developed for the detection of glucose and maltose. Immobilization of the protein biosensor in the nanoparticle was achieved through specific interaction between the hexa-histidine tag of the protein and a calcium-silicate complex of the silica matrix. Encapsulation of the biosensors preserved the affinity for the respective sugar. Compared to the free biosensors, encapsulation had a stabilizing effect on the biosensor towards chemical and thermal denaturation. The demonstrated immobilization strategy for specific sensing proteins paves the way towards the development of protein-inorganic nanostructures for application in metabolite analyses. PMID:26811852

  20. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles.

    PubMed

    Souris, Jeffrey S; Lee, Chia-Hung; Cheng, Shih-Hsun; Chen, Chin-Tu; Yang, Chung-Shi; Ho, Ja-an A; Mou, Chung-Yuan; Lo, Leu-Wei

    2010-07-01

    Nanoparticle-assisted drug delivery has been emerging as an active research area in recent years. The in vivo biodistribution of nanoparticle and its following mechanisms of biodegradation and/or excretion determine the feasibility and applicability of such a nano-delivery platform in the practical clinical translation. In this work we report the synthesis of the highly positive charge, near-infrared fluorescent mesoporous silica nanoparticles (MSNs) that demonstrate rapid hepatobiliary excretion, for use as traceable drug delivery platforms of high capacity. MSNs were incorporated with near-infrared fluorescent dye indocyanine green (ICG) via covalent or ionic bonding, to derive comparable constructs of significantly different net surface charge. In vivo fluorescence imaging and subsequent inductively coupled plasma-mass spectroscopy of harvested tissues, urine, and feces revealed markedly different uptake and elimination behaviors between the two conjugations; with more highly charged moieties (+34.4 mV at pH 7.4) being quickly excreted from the liver into the gastrointestinal tract, while less charged moieties (-17.6 mV at pH 7.4) remained sequestered within the liver. Taken together, these findings suggest that charge-dependent adsorption of serum proteins greatly facilitates the hepatobiliary excretion of silica nanoparticles, and that nanoparticle residence time in vivo can be regulated by manipulation of surface charge.

  1. Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles.

    PubMed

    Idros, Noorhayati; Ho, Man Yi; Pivnenko, Mike; Qasim, Malik M; Xu, Hua; Gu, Zhongze; Chu, Daping

    2015-01-01

    This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine-TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10-12 to 10-4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range. PMID:26046595

  2. Fluorescent Cy5 silica nanoparticles for cancer cell imaging

    NASA Astrophysics Data System (ADS)

    O'Connell, Claire; Nooney, Robert I.; Glynn, MacDara; Ducree, Jens; McDonagh, Colette

    2015-08-01

    Cancer is a leading cause of death worldwide, with metastasis responsible for the majority of cancer-related deaths. Circulating tumour cells (CTCs) play a central role in metastasis. Fluorescent silica particles (NPs), of diameter ~50 nm which contain a large concentration of Cy5 dye molecules and are extremely bright, have been developed to detect these rare CTCs. Due to this brightness, the particles have superior performance compared to single Cy5 dye molecule labels, for detecting cancer cells. Fluorescence measurements show that the NPs are almost 100 times brighter than the free dye. They do not photo bleach as readily and, due to the biocompatible silica surface, they can be chemically modified, layer-by-layer, in order to bind to cells. The choice of these chemical layers, in particular the NP to antibody linker, along with the incubation period and type of media used in the incubation, has a strong influence on the specific binding abilities of the NPs. In this work, NPs have been shown to selectively bind to the MCF-7 cell line by targeting epithelial cellular adhesion molecule (EpCAM) present on the MCF-7 cell membrane by conjugating anti-EpCAM antibody to the NP surface. Results have shown a high signal to noise ratio for this cell line in comparison to a HeLa control line. NP attachment to cells was verified qualitatively with the use of fluorescence microscopy and quantitatively using image analysis methods. Once the system has been optimised, other dyes will be doped into the silica NPs and their use in multiplexing will be investigated.

  3. Neoglycoenzyme-Gated Mesoporous Silica Nanoparticles: Toward the Design of Nanodevices for Pulsatile Programmed Sequential Delivery.

    PubMed

    Díez, Paula; Sánchez, Alfredo; de la Torre, Cristina; Gamella, María; Martínez-Ruíz, Paloma; Aznar, Elena; Martínez-Máñez, Ramón; Pingarrón, José M; Villalonga, Reynaldo

    2016-03-01

    We report herein the design of a stimulus-programmed pulsatile delivery system for sequential cargo release based on the use of a lactose-modified esterase as a capping agent in phenylboronic acid functionalized mesoporous silica nanoparticles. The dual-release mechanism was based on the distinct stability of the cyclic boronic acid esters formed with lactose residues and the long naturally occurring glycosylation chains in the modified neoglycoenzyme. Cargo delivery in succession was achieved using glucose and ethyl butyrate as triggers.

  4. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater.

    PubMed

    Li, Dien; Egodawatte, Shani; Kaplan, Daniel I; Larsen, Sarah C; Serkiz, Steven M; Seaman, John C

    2016-11-01

    U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), (13)C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100-200nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production.

  5. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater.

    PubMed

    Li, Dien; Egodawatte, Shani; Kaplan, Daniel I; Larsen, Sarah C; Serkiz, Steven M; Seaman, John C

    2016-11-01

    U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), (13)C cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100-200nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of ∼3.0nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production. PMID:27341378

  6. Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Ogneva, Irina V.; Buravkov, Sergey V.; Shubenkov, Alexander N.; Buravkova, Ludmila B.

    2014-06-01

    Silica-based nanoparticles (NPs) pose great potential for medical and biological applications; however, their interactions with living cells have not been investigated in full. The objective of this study was to analyze the mechanical characteristics of mesenchymal stem cells when cultured in the presence of silica (Si) and silica-boron (SiB) nanoparticles. Cell stiffness was measured using atomic force microscopy; F-actin structure was evaluated using TRITC-phalloidin by confocal microscopy. The obtained data suggested that the cell stiffness increased within the following line: `Control' - `Si' - `SiB' (either after 1-h cultivation or 24-h incubation). Moreover, the cell stiffness was found to be higher after 1-h cultivation as compared to 24-h cultivation. This result shows that there is a two-phase process of particle diffusion into cells and that the particles interact directly with the membrane and, further, with the submembranous cytoskeleton. Conversely, the intensity of phalloidin fluorescence dropped within the same line: Control - Si - SiB. It could be suggested that the effects of silica-based particles may result in structural reorganization of cortical cytoskeleton with subsequent stiffness increase and concomitant F-actin content decrease (for example, in recruitment of additional actin-binding proteins within membrane and regrouping of actin filaments).

  7. Mechanical characteristics of mesenchymal stem cells under impact of silica-based nanoparticles

    PubMed Central

    2014-01-01

    Silica-based nanoparticles (NPs) pose great potential for medical and biological applications; however, their interactions with living cells have not been investigated in full. The objective of this study was to analyze the mechanical characteristics of mesenchymal stem cells when cultured in the presence of silica (Si) and silica-boron (SiB) nanoparticles. Cell stiffness was measured using atomic force microscopy; F-actin structure was evaluated using TRITC-phalloidin by confocal microscopy. The obtained data suggested that the cell stiffness increased within the following line: ‘Control’ - ‘Si’ - ‘SiB’ (either after 1-h cultivation or 24-h incubation). Moreover, the cell stiffness was found to be higher after 1-h cultivation as compared to 24-h cultivation. This result shows that there is a two-phase process of particle diffusion into cells and that the particles interact directly with the membrane and, further, with the submembranous cytoskeleton. Conversely, the intensity of phalloidin fluorescence dropped within the same line: Control - Si - SiB. It could be suggested that the effects of silica-based particles may result in structural reorganization of cortical cytoskeleton with subsequent stiffness increase and concomitant F-actin content decrease (for example, in recruitment of additional actin-binding proteins within membrane and regrouping of actin filaments). PMID:24948901

  8. Organically Modified Silica Nanoparticles Interaction with Macrophage Cells: Assessment of Cell Viability on the Basis of Physicochemical Properties.

    PubMed

    Kumar, Dhiraj; Mutreja, Isha; Keshvan, Prashant C; Bhat, Madhusudan; Dinda, Amit K; Mitra, Susmita

    2015-11-01

    Silica nanoparticles have drawn a lot of attention for nanomedicine application, and this is attributed to their biocompatibility and ease of surface functionalization. However, successful utilization of these inorganic systems for biomedical application depends on their physicochemical properties. This study, therefore, discusses in vitro toxicity of organically modified silica nanoparticles on the basis of size, shape, and surface properties of silica nanoparticles. Spherical- and oval-shaped nanoparticles having hydroxyl and amine groups were synthesized in Tween 80 micelles using different organosilanes. Nanoparticles of similar size and morphology were considered for comparative assessment. "As-prepared" nanoparticles were characterized in terms of size, shape, and surface properties using ZetaSizer, transmission electron microscopy, and Fourier transform infrared to establish the above parameters. In vitro analysis in terms of nanoparticle-based toxicity was performed on J-774 (macrophage) cell line using propidium iodide-4',6-diamidino-2-phenylindol and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Fluorescent dye-entrapped nanoparticles were used to visualize the uptake of the nanoparticles by macrophage cells. Results from cell studies suggested low levels of toxicity for different nanoparticle formulations studied, therefore are suitable for nanocarrier application for poorly soluble molecules. On the contrary, the nanoparticles of similar size and shape, having amine groups and low net negative charge, do not exhibit any in vitro cytotoxicity.

  9. Simple route to enhanced photocatalytic activity of p25 titanium dioxide nanoparticles by silica addition.

    PubMed

    Jafry, Huma R; Liga, Michael V; Li, Qilin; Barron, Andrew R

    2011-02-15

    Silica doped TiO2(P25) nanoparticles are tested for its photocatalytic activity in the degradation of bacteriophage MS2. During our studies it was found that treatment of TiO2(P25) in the glass flasks sealed with silicone grease resulted in a significant improvement in the catalytic activity of the titania. Further improvement can be made by the purposeful reaction of TiO2(P25) with 2.5 wt % silica. This non in situ method of incorporating silica to TiO2(P25) nanoparticles is tested for their role in killing of viruses, and it is found that the rate constant is three times higher to kill viruses with the addition of silica. BET measurements show no significant change/increase in the surface area of silica doped TiO2(P25)-SiO2, compared to the undoped TiO2(P25). Further studies show that the addition of silica increases the adsorption of viruses onto the catalyst. There is a significant difference in the activity of the TiO2(P25)-SiO2 samples in the presence of methanol, supporting the notion that hydroxide radical (HO·) is responsible for the antiviral action. The TiO2(P25)-SiO2 either produces more HO· than non silica-doped material, or the enhanced adsorption of MS2 to the catalyst results in greater exposure to the HO·, or both mechanisms may work in concert. XPS studies suggest the formation of silica species on the surface of the TiO2(P25), while UV-visible spectroscopy suggests that the presence of the silica results in a small increase in the measured band gap. We suggest that the enhanced catalytic activity is a result of increased adsorption and/or band bending which can occur at the interface within TiO2(P25)-SiO2. One result of this would be a reduction of the electron-hole recombination, the formation of a greater concentration of OH·, and hence an improved catalytic performance.

  10. A new high-throughput method utilizing porous silica-based nano-composites for the determination of partition coefficients of drug candidates.

    PubMed

    Yu, Chih H; Tam, Kin; Tsang, Shik C

    2011-09-01

    We show that highly porous silica-based nanoparticles prepared via micro-emulsion and sol-gel techniques are stable colloids in aqueous solution. By incorporating a magnetic core into the porous silica nano-composite, it is found that the material can be rapidly separated (precipitated) upon exposure to an external magnetic field. Alternatively, the porous silica nanoparticles without magnetic cores can be equally separated from solution by applying a high-speed centrifugation. Using these silica-based nanostructures a new high-throughput method for the determination of partition coefficient for water/n-octanol is hereby described. First, a tiny quantity of n-octanol phase is pre-absorbed in the porous silica nano-composite colloids, which allows an establishment of interface at nano-scale between the adsorbed n-octanol with the bulk aqueous phase. Organic compounds added to the mixture can therefore undergo a rapid partition between the two phases. The concentration of drug compound in the supernatant in a small vial can be determined by UV-visible absorption spectroscopy. With the adaptation of a robotic liquid handler, a high-throughput technology for the determination of partition coefficients of drug candidates can be employed for drug screening in the industry based on these nano-separation skills. The experimental results clearly suggest that this new method can provide partition coefficient values of potential drug candidates comparable to the conventional shake-flask method but requires much shorter analytical time and lesser quantity of chemicals.

  11. Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating.

    PubMed

    Li, Fang; Du, Miao; Zheng, Qiang

    2016-02-23

    Artificial superamphiphobic surfaces, which could repel both water and low surface tension organic liquids, have been limited to particular kinds of materials or surfaces thus far. In this work, a kind of microscale porous coating was developed. Taking dopamine and hydrophilic fumed silica nanoparticles as initial building blocks, microscale porous coating was constructed via ice templation. Polydopamine bound silica nanoparticles together to form a porous structure network and rendered the coating to have potential for further postfunctionalization. After two-step CVD, the microscale porous coating changes from superhydrophilic to superamphiphobic, exhibiting super-repellency to droplets with surface tension of 73-23 mN/m. The influences of concentration of initial dopamine, hydrophilic fumed silica nanoparticles, and dry conditions on the formation of the porous structure have been studied to optimize the conditions. Coatings with different pore sizes and pore heights have been fabricated to discover the relationship between the structure parameters and the repellency of the porous coatings. Only with optimal pore size and pore height can the porous coating display superamphiphobicity. Compared with nanoscale, the microscale structure favors the achievement of superamphiphobicity. Given the outstanding adhesive ability of polydopamine, the superamphiphobic coatings have been successfully applied to various materials including artificial materials and natural materials. PMID:26828414

  12. Improvements of physical, mechanical and biodegradation properties of polybutadiene rubber insulators by chitosan and silica nanoparticles.

    PubMed

    Saboktakin, Amin; Saboktakin, Mohammadreza

    2016-10-01

    1,4-cis-Polybutadiene rubber(1,4-cis pBR) as an insulation material is developing that will provide superior thermal insulation properties, flexibility, toughness by natural polymers such as chitosan(CS) and silica nanoparticles. This material is widely used in the insulation industries specially architecture. This research concerns physical, mechanical properties and also biodegradation of 1,4-cis pBR, which to be composed with the natural polymers such as CS. Silica nanoparticles were used as filler to improve the physical and mechanical properties of 1,4-cis pBR. To evaluating its physical and mechanical properties, stretching and bending and impact tests were used and the results show some improvement in these properties. Our observations show that temperature plays an important role as main factor in order to improve the mechanical properties of nanocomposites. Similar improvements in tensile modulus and strength have been observed for 1,4-cis pBR/CS-silica nanoparticles.

  13. Nitroxide polymer brushes grafted onto silica nanoparticles as cathodes for organic radical batteries

    NASA Astrophysics Data System (ADS)

    Lin, Hsiao-Chien; Li, Chia-Chen; Lee, Jyh-Tsung

    2011-10-01

    Nitroxide polymer brushes grafted on silica nanoparticles as binder-free cathodes for organic radical batteries have been investigated. Scanning electron microscopy, transmission electron microscopy, infrared spectroscopy and electron spin resonance confirm that the nitroxide polymer brushes are successfully grafted onto silica nanoparticles via surface-initiated atom transfer radical polymerization. The thermogravimetric analysis results indicate that the onset decomposition temperature of these nitroxide polymer brushes is found to be ca. 201 °C. The grafting density of the nitroxide polymer brushes grafted on silica nanoparticles is 0.74-1.01 chains nm-2. The results of the electrochemical quartz crystal microbalance indicate that the non-crosslinking nitroxide polymer brushes prevent the polymer from dissolving into organic electrolytes. Furthermore, the electrochemical results show that the discharge capacity of the polymer brushes is 84.9-111.1 mAh g-1 at 10 C and the cells with the nitroxide polymer brush electrodes have a very good cycle-life performance of 96.3% retention after 300 cycles.

  14. Voltage/pH-Driven Mechanized Silica Nanoparticles for the Multimodal Controlled Release of Drugs.

    PubMed

    Wang, Ting; Sun, GuangPing; Wang, MingDong; Zhou, BaoJing; Fu, JiaJun

    2015-09-30

    The major challenges of current drug delivery systems for combination chemotherapy focus on how to efficiently transport drugs to target sites and release multiple drugs in a programmed manner. Herein, we report a novel multidrug delivery system, MSNPs 1, based on mechanized silica nanoparticles, which were constructed through functionalization of mesoporous silica nanoparticles with the acid-cleavable intermediate linkages and the monoferrocene functionalized β-cyclodextrin (Fc-β-CD) as supramolecular nanovalves. MSNPs 1 achieved zero premature release in the physiological pH solution and realized two different release modalities. In modality 1, MSNPs 1 released the encapsulated drugs gemcitabine (GEM) and doxorubicin (DOX) in sequence when they were successively applied to voltage and acid stimuli. The release time and dosage of GEM were precisely controlled via external voltage. The subsequent acid-triggered release of DOX was attributed to breakage of the intermediate linkages containing ketal groups. Modality 2 is the concurrent release of these two drugs directly upon acid exposure. Furthermore, the cell viability experiments demonstrated that MSNPs 1 had an improved cytotoxicity to MCF7 cells in comparison with single DOX- or GEM-loaded mechanized silica nanoparticles. We envisage that MSNPs 1 will play an important role in research and development for a new generation of controlled-release drug delivery system. PMID:26345470

  15. Inside-out disruption of silica/gold core-shell nanoparticles by pulsed laser irradiation.

    PubMed

    Prasad, V; Mikhailovsky, A; Zasadzinski, J A

    2005-08-01

    Near-infrared (NIR) femtosecond laser irradiation of metallodielectric core-shell silica-gold (SiO(2)-Au) nanoparticles can induce extreme local heating prior to the rapid dissipation of energy caused by the large surface area/volume ratio of nanometer-scale objects. At low pulse intensities, the dielectric silica core is removed, leaving an incomplete gold shell behind. The gold shells with water inside and out still efficiently absorb NIR light from subsequent pulses, showing that a complete shell is not necessary for absorption. At higher pulse intensities, the gold shell itself is melted and disrupted, leading to smaller, approximately 20-nm gold nanoparticles. Spectroscopic measurements show that this disruption is accompanied by optical hole burning of the peak at 730 nm and formation of a new peak at 530 nm. The silica removal and gold shell disruption confirms significant temperature rise of the core-shall nanoparticle. However, the entire process leads to minimal heating of the bulk solution due to the low net energy input. PMID:16042490

  16. Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating.

    PubMed

    Li, Fang; Du, Miao; Zheng, Qiang

    2016-02-23

    Artificial superamphiphobic surfaces, which could repel both water and low surface tension organic liquids, have been limited to particular kinds of materials or surfaces thus far. In this work, a kind of microscale porous coating was developed. Taking dopamine and hydrophilic fumed silica nanoparticles as initial building blocks, microscale porous coating was constructed via ice templation. Polydopamine bound silica nanoparticles together to form a porous structure network and rendered the coating to have potential for further postfunctionalization. After two-step CVD, the microscale porous coating changes from superhydrophilic to superamphiphobic, exhibiting super-repellency to droplets with surface tension of 73-23 mN/m. The influences of concentration of initial dopamine, hydrophilic fumed silica nanoparticles, and dry conditions on the formation of the porous structure have been studied to optimize the conditions. Coatings with different pore sizes and pore heights have been fabricated to discover the relationship between the structure parameters and the repellency of the porous coatings. Only with optimal pore size and pore height can the porous coating display superamphiphobicity. Compared with nanoscale, the microscale structure favors the achievement of superamphiphobicity. Given the outstanding adhesive ability of polydopamine, the superamphiphobic coatings have been successfully applied to various materials including artificial materials and natural materials.

  17. Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles.

    PubMed

    Slomberg, Danielle L; Lu, Yuan; Broadnax, Angela D; Hunter, Rebecca A; Carpenter, Alexis W; Schoenfisch, Mark H

    2013-10-01

    Nitric oxide (NO), a reactive free radical, has proven effective in eradicating bacterial biofilms with reduced risk of fostering antibacterial resistance. Herein, we evaluated the efficacy of NO-releasing silica nanoparticles against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus biofilms as a function of particle size and shape. Three sizes of NO-releasing silica nanoparticles (i.e., 14, 50, and 150 nm) with identical total NO release (∼0.3 μmol/mg) were utilized to study antibiofilm eradication as a function of size. To observe the role of particle shape on biofilm killing, we varied the aspect ratio of the NO-releasing silica particles from 1 to 8 while maintaining constant particle volume (∼0.02 μm(3)) and NO-release totals (∼0.7 μmol/mg). Nitric oxide-releasing particles with decreased size and increased aspect ratio were more effective against both P. aeruginosa and S. aureus biofilms, with the Gram-negative species exhibiting the greatest susceptibility to NO. To further understand the influence of these nanoparticle properties on NO-mediated antibacterial activity, we visualized intracellular NO concentrations and cell death with confocal microscopy. Smaller NO-releasing particles (14 nm) exhibited better NO delivery and enhanced bacteria killing compared to the larger (50 and 150 nm) particles. Likewise, the rod-like NO-releasing particles proved more effective than spherical particles in delivering NO and inducing greater antibacterial action throughout the biofilm.

  18. Improvements of physical, mechanical and biodegradation properties of polybutadiene rubber insulators by chitosan and silica nanoparticles.

    PubMed

    Saboktakin, Amin; Saboktakin, Mohammadreza

    2016-10-01

    1,4-cis-Polybutadiene rubber(1,4-cis pBR) as an insulation material is developing that will provide superior thermal insulation properties, flexibility, toughness by natural polymers such as chitosan(CS) and silica nanoparticles. This material is widely used in the insulation industries specially architecture. This research concerns physical, mechanical properties and also biodegradation of 1,4-cis pBR, which to be composed with the natural polymers such as CS. Silica nanoparticles were used as filler to improve the physical and mechanical properties of 1,4-cis pBR. To evaluating its physical and mechanical properties, stretching and bending and impact tests were used and the results show some improvement in these properties. Our observations show that temperature plays an important role as main factor in order to improve the mechanical properties of nanocomposites. Similar improvements in tensile modulus and strength have been observed for 1,4-cis pBR/CS-silica nanoparticles. PMID:27353394

  19. The Influence of Silica Nanoparticles on Ionic Liquid Behavior: A Clear Difference between Adsorption and Confinement

    PubMed Central

    Wang, Yaxing; Li, Cheng; Guo, Xiaojing; Wu, Guozhong

    2013-01-01

    The phase behaviors of ionic liquids (ILs) confined in nanospace and adsorbed on outer surface of nanoparticles are expected to be different from those of the bulk. Anomalous phase behaviors of room temperature ionic liquid tributylhexadecylphosphonium bromide (P44416Br) confined in ordered mesoporous silica nanoparticles with average pore size 3.7 nm and adsorbed on outer surface of the same silica nanoparticles were reported. It was revealed that the melting points (Tm) of confined and adsorbed ILs depressed significantly in comparison with the bulk one. The Tm depressions for confined and adsorbed ILs are 8 °C and 14 °C, respectively. For comparison with the phase behavior of confined P44416Br, 1-butyl-3-methylimidazolium bromide (BmimBr) was entrapped within silica nanopores, we observed an enhancement of 50 °C in Tm under otherwise similar conditions. The XRD analysis indicates the formation of crystalline-like phase under confinement, in contrast to the amorphous phase in adsorbed IL. It was confirmed that the behavior of IL has clear difference. Moreover, the complex π-π stacking and H-bonding do not exist in the newly proposed phosphonium-based IL in comparison with the widely studied imidazolium-based IL. The opposite change in melting point of P44416Br@SiO2 and BmimBr@SiO2 indicates that the cationic species plays an important role in the variation of melting point. PMID:24145752

  20. Iron Nanoparticles-Encapsulating Silica Microspheres for Arterial Embolization Hyperthermia

    NASA Astrophysics Data System (ADS)

    Li, Z.; Kawashita, M.

    2011-10-01

    We attempted to prepare α-Fe-encapsulating silica (αFeSi) microspheres by a sol-gel process using tetramethoxysilane (TMOS) in water-in-oil emulsion. The effect of preparation conditions on the structure, magnetic and heating properties of resultant products were investigated. Oil phase consisted of kerosene with 32 wt% of surfactants (sorbitan monooleate / sorbitan monostearate in 3:1 weight ratio). Water phase consisted of TMOS, ethanol (CH2CH3OH), water and iron nitrate (Fe(NO3)3·9H2O) with TMOS / CH2CH3OH/H2O/Fe3+ in 1:7.4:16.2:0.4~1.2 molar ratio. Fe3+-containing silica gel (FeSiG) microspheres 5 to 30 μm in size were successfully obtained by adding the water phase into the oil phase at 60 °C under stirring of 1500 rpm for 100 min. αFeSi microspheres was obtained by heating the FeSiG microspheres at 850°C in argon atmosphere. The obtained αFeSi microspheres have a saturation magnetization (Ms) up to 21 emu g-1 and a coercive force (Hc) of 133 Oe. The in vitro heating generation was evaluated under an alternating current (AC) magnetic field of 300 Oe and 100 kHz.

  1. Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata

    PubMed Central

    Strout, Greg; Russell, Scott D.; Pulsifer, Drew P.; Erten, Sema; Lakhtakia, Akhlesh; Lee, David W.

    2013-01-01

    Background and Aims Blue-green iridescence in the tropical rainforest understorey sedge Mapania caudata creates structural coloration in its leaves through a novel photonic mechanism. Known structures in plants producing iridescent blues consist of altered cellulose layering within cell walls and in special bodies, and thylakoid membranes in specialized plastids. This study was undertaken in order to determine the origin of leaf iridescence in this plant with particular attention to nano-scale components contributing to this coloration. Methods Adaxial walls of leaf epidermal cells were characterized using high-pressure-frozen freeze-substituted specimens, which retain their native dimensions during observations using transmission and scanning microscopy, accompanied by energy-dispersive X-ray spectroscopy to identify the role of biogenic silica in wall-based iridescence. Biogenic silica was experimentally removed using aqueous Na2CO3 and optical properties were compared using spectral reflectance. Key Results and Conclusions Blue iridescence is produced in the adaxial epidermal cell wall, which contains helicoid lamellae. The blue iridescence from cell surfaces is left-circularly polarized. The position of the silica granules is entrained by the helicoid microfibrillar layers, and granules accumulate at a uniform position within the helicoids, contributing to the structure that produces the blue iridescence, as part of the unit cell responsible for 2 ° Bragg scatter. Removal of silica from the walls eliminated the blue colour. Addition of silica nanoparticles on existing cellulosic lamellae is a novel mechanism for adding structural colour in organisms. PMID:23960046

  2. Gadolinium-doped silica nanoparticles encapsulating indocyanine green for near infrared and magnetic resonance imaging.

    PubMed

    Sharma, Parvesh; Bengtsson, Niclas E; Walter, Glenn A; Sohn, Han-Byul; Zhou, Guangyin; Iwakuma, Nobutaka; Zeng, Huadong; Grobmyer, Stephen R; Scott, Edward W; Moudgil, Brij M

    2012-09-24

    Clinical applications of the indocyanine green (ICG) dye, the only near infrared (NIR) imaging dye approved by the Food and Drug Administration (FDA) in the USA, are limited due to rapid protein binding, fast clearance, and instability in physiologically relevant conditions. Encapsulating ICG in silica particles can enhance its photostability, minimize photobleaching, increase the signal-to-noise (S/N) ratio and enable in vivo studies. Furthermore, a combined magnetic resonance (MR) and NIR imaging particulate can integrate the advantage of high-resolution 3D anatomical imaging with high-sensitivity deep-tissue in-vivo fluorescent imaging. In this report, a novel synthesis technique that can achieve these goals is presented. A reverse-microemulsion-based synthesis protocol is employed to produce 25 nm ICG-doped silica nanoparticles (NPs). The encapsulation of ICG is achieved by manipulating coulombic attractions with bivalent ions and aminated silanes and carrying out silica synthesis in salt-catalyzed, mildly basic pH conditions using dioctyl sulfosuccinate (AOT)/heptane/water microemulsion system. Furthermore, paramagnetic properties are imparted by chelating paramagnetic Gd to the ICG-doped silica NPs. Aqueous ICG-dye-doped silica NPs show increased photostability (over a week) and minimal photobleaching as compared to the dye alone. The MR and optical imaging capabilities of these particles are demonstrated through phantom, in vitro and in vivo experiments. The described particles have the potential to act as theranostic agents by combining photodynamic therapy through the absorption of NIR irradiated light.

  3. Anti-amyloid compounds protect from silica nanoparticle-induced neurotoxicity in the nematode C. elegans

    PubMed Central

    Scharf, Andrea; Gührs, Karl-Heinz; von Mikecz, Anna

    2016-01-01

    Abstract Identifying nanomaterial-bio-interactions are imperative due to the broad introduction of nanoparticle (NP) applications and their distribution. Here, we demonstrate that silica NPs effect widespread protein aggregation in the soil nematode Caenorhabditis elegans ranging from induction of amyloid in nucleoli of intestinal cells to facilitation of protein aggregation in body wall muscles and axons of neural cells. Proteomic screening revealed that exposure of adult C. elegans with silica NPs promotes segregation of proteins belonging to the gene ontology (GO) group of “protein folding, proteolysis and stress response” to an SDS-resistant aggregome network. Candidate proteins in this group include chaperones, heat shock proteins and subunits of the 26S proteasome which are all decisively involved in protein homeostasis. The pathway of protein homeostasis was validated as a major target of silica NPs by behavioral phenotyping, as inhibitors of amyloid formation rescued NP-induced defects of locomotory patterns and egg laying. The analysis of a reporter worm for serotonergic neural cells revealed that silica NP-induced protein aggregation likewise occurs in axons of HSN neurons, where presynaptic accumulation of serotonin, e.g. disturbed axonal transport reduces the capacity for neurotransmission and egg laying. The results suggest that in C. elegans silica NPs promote a cascade of events including disturbance of protein homeostasis, widespread protein aggregation and inhibition of serotonergic neurotransmission which can be interrupted by compounds preventing amyloid fibrillation. PMID:26444998

  4. Expanding the Versatility of Mesoporous Silica Nanoparticles towards Drug Delivery for In-vitro, In-vivo and Clinical Applications

    NASA Astrophysics Data System (ADS)

    Ferris, Daniel Patrick

    The work covered in this thesis focuses on research developments in the mesoporous silica nanoparticle platform as a drug delivery vehicle for containment and controlled release of therapeutic agents to inhibit disease. Mesoporous silica is a very versatile material with a very robust structure that is easily modified both internally and externally to change its physical properties. Once modified, the silica nanoparticies can be loaded with therapeutic agents that can be isolated from interacting with their surroundings until an on command delivery signal is received. In this dissertation, first, application of a noninvasive externally controlled means of activation such as light activation and magnetically based heating have been investigated and achieved. Next, by altering the structure of rotaxanes based on azobenzene, steps towards a self-sealing light activated full rotaxane system have been developed. Then, through the manipulation of the particle structure as well as the internal pore environment of silica particle, the interaction between guest drug molecules and the particles has been better understood towards optimizing drug loading and release efficiency. Finally, surface modification of silica nanoparticles with biomolcules has been achieved and observed to increase the efficacy of the silica nanoparticle system in the cellular environment. A combination of all these areas of research results in the advancement of the mesoporous silica nanoparticle drug delivery system towards utilization within living organisms.

  5. Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Kinsey, Erin; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems Ashley R. Pales, Erin Kinsey, Chunyan Li, Linlin Mu, Lingyun Bai, Heather Clifford, and Christophe J. G. Darnault Department of Environmental Engineering and Earth Sciences, Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Clemson University, Clemson, SC, USA Nanofluids are suspensions of nanometer sized particles in any fluid base, where the nanoparticles effect the properties of the fluid base. Commonly, nanofluids are water based, however, other bases such as ethylene-glycol, glycerol, and propylene-glycol, have been researched to understand the rheological properties of the nanofluids. This work aims to understand the fundamental rheological properties of silica nanoparticles in brine based and brine-surfactant based nanofluids with temperature variations. This was done by using variable weight percent of silica nanoparticles from 0.001% to 0.1%. Five percent brine was used to create the brine based nanofluids; and 5% brine with 2CMC of Tween 20 nonionic surfactant (Sigma-Aldrich) was used to create the brine-surfactant nanofluid. Rheological behaviors, such as shear rate, shear stress, and viscosity, were compared between these nanofluids at 20C and at 60C across the varied nanoparticle wt%. The goal of this work is to provide a fundamental basis for future applied testing for enhanced oil recovery. It is hypothesized that the addition of surfactant will have a positive impact on nanofluid properties that will be useful for enhance oil recovery. Differences have been observed in preliminary data analysis of the rheological properties between these two nanofluids indicating that the surfactant is having the hypothesized effect.

  6. Bioavailability of Silica, Titanium Dioxide, and Zinc Oxide Nanoparticles in Rats.

    PubMed

    Kim, Mi-Kyung; Lee, Jeong-A; Jo, Mi-Rae; Choi, Soo-Jin

    2016-06-01

    Inorganic nanoparticles have been widely applied to various industrial fields and biological applications. However, the question as to whether nanoparticles are more efficiently absorbed into the systemic circulation than bulk-sized materials remains to be unclear. In the present study, the physico-chemical and dissolution properties of the most extensively developed inorganic nanoparticles, such as silica (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO), were analyzed, as compared with bulk-sized particles. Furthermore, the bioavailability of nanoparticles versus their bulk counterparts was evaluated in rats after a single oral administration and intravenous injection, respectively. The results demonstrated that all bulk materials had slightly higher crystallinity than nanoparticles, however, their dissolution properties were not affected by particle size. No significant difference in oral absorption and bioavailability of both SiO2 and TiO2 was found between nano- and bulk-sized materials, while bulk ZnO particles were more bioavailable in the body than ZnO nanoparticles. These finding will provide critical information to apply nanoparticles with high efficiency as well as to predict their toxicity potential. PMID:27427756

  7. Interaction of lysozyme protein with different sized silica nanoparticles and their resultant structures

    NASA Astrophysics Data System (ADS)

    Yadav, Indresh; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    The interaction of model protein-lysozyme with three different sized anionic silica nanoparticles has been studied by UV-vis spectroscopy, dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The surface area and curvature of the nanoparticles change with size, which significantly influence their interaction with protein. The lysozyme adsorbs on the surface of the nanoparticles due to electrostatic attraction and leads to the phase transformation from one phase (clear) to two-phase (turbid) of the nanoparticle-protein system. The dominance of lysozyme induced short-range attraction over long-range electrostatic repulsion between nanoparticles is responsible for phase transformation and modeled by the two-Yukawa potential. The magnitude of the attractive interaction increases with the size of the nanoparticles as a result the phase transformation commences relatively at lower concentration of lysozyme. The structure of the nanoparticle-protein system in two-phase is characterized by the diffusion limited aggregate type of mass fractal morphology.

  8. Bioavailability of Silica, Titanium Dioxide, and Zinc Oxide Nanoparticles in Rats.

    PubMed

    Kim, Mi-Kyung; Lee, Jeong-A; Jo, Mi-Rae; Choi, Soo-Jin

    2016-06-01

    Inorganic nanoparticles have been widely applied to various industrial fields and biological applications. However, the question as to whether nanoparticles are more efficiently absorbed into the systemic circulation than bulk-sized materials remains to be unclear. In the present study, the physico-chemical and dissolution properties of the most extensively developed inorganic nanoparticles, such as silica (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO), were analyzed, as compared with bulk-sized particles. Furthermore, the bioavailability of nanoparticles versus their bulk counterparts was evaluated in rats after a single oral administration and intravenous injection, respectively. The results demonstrated that all bulk materials had slightly higher crystallinity than nanoparticles, however, their dissolution properties were not affected by particle size. No significant difference in oral absorption and bioavailability of both SiO2 and TiO2 was found between nano- and bulk-sized materials, while bulk ZnO particles were more bioavailable in the body than ZnO nanoparticles. These finding will provide critical information to apply nanoparticles with high efficiency as well as to predict their toxicity potential.

  9. Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns.

    PubMed

    Sun, Peide; Shijirbaatar, Altantuya; Fang, Jing; Owens, Gary; Lin, Daohui; Zhang, Keke

    2015-02-01

    As part of ongoing risk assessments of ZnO nanoparticles (nZnO) in the natural environment, transport behaviors of nZnO in soil need investigation. This work comparatively studied the transport and retention behavior of nZnO in silica sand versus soil, where the effect of input concentration (C₀=34~430 mgL(-1)) and ionic strength (IS=1~50 mM) were investigated. In silica sand, nZnO were highly mobile, especially at low C₀ and the efflux of nZnO generally decreased with increasing C₀ at all tested IS. Conversely, at low C₀, n ZnO were almost entirely immobile in soil and the efflux of nZnO increased with C₀ at all tested IS. In both media, the retention profiles (RPs) were generally hyper-exponentially shaped suggesting nZnO easily deposited near the column inlet. As indicated by DLVO calculations, previously deposited nZnO on the silica sand surface acted as new deposition sites due to the lower energy barrier (Φmax) between nZnO-nZnO than between nZnO-silica sand. However, previously deposited nZnO in soil could enhance Φmax between the soil surface and nZnO which resulted in unfavorable sites for nZnO deposition. The two-site kinetic attachment model provided good descriptions for the breakthrough curves of nZnO. Detachment was more significant than attachment in silica sand (k₁d>k₁a), whereas soil surface attachment of nZnO were strong and irreversible (k₁a>k₁d). The straining interaction parameter (k₂str) increased with increasing C0 in silica sand, but decreased with C0 in soil. Such differences were mainly responsible for the various transport behaviors of nZnO in silica sand and soil.

  10. Immunogold labeling reveals subcellular localisation of silica nanoparticles in a human blood-brain barrier model

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Anguissola, Sergio; O'Neill, Tiina; Dawson, Kenneth A.

    2015-05-01

    Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles.Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles. Electronic supplementary information (ESI) available: Nanoparticle characterisation data, preservation of cellular structures, staining controls, optimisation of size amplification via the silver enhancement, and more imaging results from anti-clathrin and anti-caveolin 1

  11. Compaction of DNA with Lipid Modified Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Savarala, Sushma; Wunder, Stephanie L.; Ilies, Marc

    2012-02-01

    There is an increasing interest in modified inorganic nanoparticles, polymers or hybrid polymer-inorganic nanoparticles for use in DNA transfection, rather than viral vectors or liposomes. Adsorption of the DNA to the nanoparticles prevents enzymatic degradation of the DNA, although the reason for this protection is not completely understood. In order to compact the negatively charged DNA, a positively charged surface is required, and for transfection applications, the nanosystems must remain stable in suspension. It is also useful to minimize the amount of cytotoxic cationic lipid needed for DNA compaction in delivery applications. Here we investigate the colloidal stability of supported lipid bilayers (SLBs) composed of mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 14:0 PC) and 1,2-dimyristoyl-3-trimethylammonium-propane (DMTAP, 14:0 TAP), and their ability to compact plasmid DNA. Ionic strengths and DMPC/DMTAP ratios that resulted in SLB formation, no excess small unilamellar vesicles (SUVs) in the suspensions, and colloidal stability, were determined. DNA/SLB/lipid ratios that resulted in compaction were then investigated.

  12. Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: in vitro and in vivo evaluation.

    PubMed

    Maulvi, Furqan A; Mangukiya, Mayurkumar A; Patel, Prachi A; Vaidya, Rutvi J; Koli, Akshay R; Ranch, Ketan M; Shah, Dinesh O

    2016-06-01

    Ketotifen an anti-allergic drug delivered via eye drops has major limitations, including poor ocular bioavailability and poor patient compliance. The objective of the research work was to fabricate ketotifen loaded microemulsion laden hydrogels and silica shell nanoparticle-laden (prepared from microemulsion using octyltrimethoxysilane) hydrogels to achieve extended ocular drug delivery. The porous silica shell membrane was synthesized at the liquid interface of microemulsion, which facilitates the prolongation of drug release duration from hydrogels. Drug encapsulated microemulsion and silica shell nanoparticles were dispersed separately in pre-monomer mixture, and fabricated to hydrogel. For comparison, hydrogel with direct drug entrapment was also fabricated. Significant loss in transmittance and physical properties was observed in hydrogels with direct drug entrapment. While, microemulsion and silica shell nanoparticle-laden hydrogels did not show significant effect on transmittance and physical properties. The in vitro drug release data showed extended release of ketotifen from hydrogels in following order: direct loadingsilica shell nanoparticles. The results of cytotoxicity and animal study confirmed the safety of hydrogels. The in vivo pharmacokinetic study showed extended ketotifen release for more than 10 days. The results demonstrated the translational potential of silica shell nanoparticles for extended drug delivery without compromising the critical lens properties. PMID:27178036

  13. Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications.

    PubMed

    Xu, Hao; Yan, Fei; Monson, Eric E; Kopelman, Raoul

    2003-09-15

    Monodisperse, spherical, polyethylene glycol (PEG)-coated silica nanoparticles have been prepared at room temperature and characterized for the purpose of biomedical applications. The particles were synthesized by the hydrolysis of tetramethyl orthosilicate (TMOS) in alcohol media under catalysis by ammonia, and their size can range from about 50-350 nm in diameter. We studied the particle size and size distribution using a scanning electron microscope (SEM) and an asymmetric field-flow fractionation (AFFF) multiangle static light-scattering instrument. The chemical and/or physical binding of PEG to the silica nanoparticles was studied by infrared spectroscopy, and the weight percentage of PEG attached to the particles was quantified. The PEG-coated silica nanoparticles showed enhanced colloidal stability when redispersed into aqueous solutions from the dried state as a result of the steric stabilization function of the PEG polymer grafted on the surface of particles. A nonspecific protein-binding test was also carried out to show that the PEG coating can help reduce the protein adsorption onto the surface of the particles, relating to the biocompatibility of these PEG-coated particles. Also, the inclusion of magnetic nanoparticles into the silica particles was shown as an example of the possible applications of PEG-coated silica particles. These silica nanoparticles, as a matrix for encapsulation of certain reagents, have potential for applications to in vivo diagnosis, analysis, and measurements inside intact biologic systems.

  14. Sonochemical deposition of platinum nanoparticles on polymer beads and their transfer on the pore surface of a silica matrix.

    PubMed

    Chave, Tony; Grunenwald, Anthony; Ayral, André; Lacroix-Desmazes, Patrick; Nikitenko, Sergey I

    2013-04-01

    This study reported the sonochemical deposition of platinum on the surface of polystyrene beads (PSBs) and the transfer of obtained Pt nanoparticles into a porous silica matrix using the PSB as a sacrificial template. Platinum nanoparticle deposition was ensured by the sonochemical reduction of Pt(IV) at room temperature in latex solutions containing polystyrene beads in the presence of formic acid under Ar or under Ar/CO atmosphere without any additives. After ultrasonic treatments for few hours, well dispersed Pt nanoparticles within the range of 3-5 nm deposited on PSB were obtained in both studied conditions. Samples were then mixed with TEOS, dried, and heated at 450°C to ensure the PSB removal from the silica matrix. TEM and SEM results clearly show that final silica pore size is within the same order of magnitude than initial PSB. Finally, platinum decorated silica matrix with chosen pore sizes was successfully prepared.

  15. Nanoparticle Vesicles with Controllable Surface Topographies through Block Copolymer-Mediated Self-Assembly of Silica Nanospheres.

    PubMed

    Zhou, Shujun; Sugawara-Narutaki, Ayae; Tsuboike, Sachio; Wang, Junzheng; Shimojima, Atsushi; Okubo, Tatsuya

    2015-12-01

    Silica nanoparticle vesicles (NPVs) with encapsulating capability and surface permeability are highly attractive in nanocatalysis, biosensing, and drug delivery systems. Herein, we report the facile fabrication of silica NPVs composed of a monolayer of silica nanospheres (SNSs, ca. 15 nm in diameter) through the block copolymer-mediated self-assembly of SNSs. The silica NPVs gain different surface topographies, such as raspberry- and brain coral-like topographies, under controlled heat treatment conditions. The vesicular assembly of SNSs is successful with a series of poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) block copolymers, and the size of NPVs can be tuned by changing their molecular weight. The polymer is easily extracted from the NPVs with their colloidal dispersibility and structural integrity intact. The polymer-free silica NPVs further serve as a reaction vessel and host for functional materials such as tin oxide nanoparticles.

  16. Dynamic gold nanoparticle, polymer-based composites

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent; Junghans, Ann; Hayden, Steven; Majeski, Jaroslaw; CINT, Lujan Team

    2014-03-01

    Artificial polymer-based biomembranes may serve as a foundational architecture for the integration and spatial organization of metal nanoparticles forming functional nanocomposites. Nonionic triblock copolymer (PEO-PPO-PEO), lipid-based gels, containing Au nanoparticles (NPs) can be prepared by either external doping of the preformed nanoparticles or by in-situ reduction of Au 3+. Neutron reflectivity on quartz supported thin films of the Au NP -doped polymer-based biomembranes was used to determine the location of the Au. The nanoparticles were found to preferentially reside within the ethylene oxide chains located at the interface of the bulk water channels and the amphiphile bilayers. The embedded Au nanoparticles can act as localized heat sinks, inducing changes in the polymer conformation. The collective, thermally-triggered expansion and contraction of the EO chains modulate the mesophase structure of the gels. Synchrotron X-ray scattering (SAXS) was used to monitor mesophase structure as a function of both temperature and photo-irradiation. These studies represent a first step towards designingexternally-responsive polymer-nanoparticle composites.

  17. The influence of molybdenum disulfide nanoplatelets on the dispersion of nano silica in natural rubber composites

    NASA Astrophysics Data System (ADS)

    Weng, Peijin; Wei, Qiuyan; Tang, Zhenghai; Lin, Tengfei; Guo, Baochun

    2015-12-01

    The dispersion of nanofiller in polymer composites is critical in governing the ultimate performances. Present study aimed to improve the dispersion of silica in elastomeric materials based on natural rubber (NR) composites using the nanoplatelets of molybdenum disulfide (MoS2), a graphene-like layered inorganic. NR latex was co-coagulated with MoS2 suspension to form NR/MoS2 compounds (1∼5 phr). Then silica (30 phr) was incorporated into NR/MoS2 compounds, followed by curing with sulfur, to obtained NR/MoS2/silica composites. The dispersion state of silica in the composites was examined by TEM and the effects of MoS2 on the performance of the composites were investigated. It was found that a small amount of MoS2 nanoplatelets significantly improved the silica dispersion. Consequently, the static and dynamic mechanical properties of the crosslinked natural rubber materials were greatly enhanced. The improved dispersion of silica is associated with charge transfer interaction, giving rise to electrostatic repulsion among silica.

  18. Unraveling the Dynamics of Aminopolymer/Silica Composites

    DOE PAGESBeta

    Carrillo, Jan-Michael Y.; Sakwa-Novak, Miles A.; Holewinski, Adam; Potter, Matthew E.; Rother, Gernot; Jones, Christopher W.; Sumpter, Bobby G.

    2016-02-25

    Branched poly(ethylenimine) (PEI) encapsulated within mesoporous silica (SBA-15), has proven to be an eective sorbent for developing carbon capture technologies. However, the structure-property correlations which govern their adsorptive properties is not well understood. By combining coarse-grained molecular dynamics simulations and neutron scattering experiments we are able to construct, and validate, a detailed model of the dynamics and morphology of the conned polymer within the mesoporous support. By varying the simulation properties we are able to probe, for the rst time, the direct relationship between the structure of the polymer and the non-monotonic dynamics of the polymer as a function ofmore » monomer concentration within an adsorbing cylindrical pore. Overall the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting enhanced carbon dioxide adsorption.« less

  19. Synthesis of palladium nanoparticles on organically modified silica: application to design of a solid-state electrochemiluminescence sensor for highly sensitive determination of imipramine.

    PubMed

    Safavi, Afsaneh; Banazadeh, Alireza; Sedaghati, Fatemeh

    2013-09-24

    Organically modified silica substrate containing amine and vinyl functional groups were used for reduction and stabilization of palladium nanoparticles. Uniform spherical nanoparticles of palladium with average diameter of 10 nm were formed on silica substrate by direct contact of the substrate with an aqueous solution of palladium precursor, without the addition of any chemical reducer. Moreover, a sensitive and selective solid state electrochemiluminescence sensor was fabricated for the determination of imipramine, based on Ru(bpy)3(2+)-palladium nanoparticles doped carbon ionic liquid electrode. In this process, imipramine acts as a co-reactant for Ru(bpy)3(2+). It is believed that the enhancement of the electrochemiluminescence signal in the presence of palladium nanoparticles in the composite is due to palladium catalytic effect on electrochemical and also chemical process involved in formation of Ru(byp)3(2+)*. In addition, the results confirmed that, the rigid composite electrode shows the characteristic of microelectrode arrays. The proposed method was applied to the determination of imipramine in tablets and urine samples. The electrochemiluminescence intensity showed good linearity with the imipramine concentration from 1-100 pM, with a detection limit of 0.1 pM.

  20. An electrochemiluminescence sensor based on a Ru(bpy)3(2+)-silica-chitosan/nanogold composite film.

    PubMed

    Cai, Zhi-min; Wu, Yan-fang; Huang, Yun-he; Li, Qiu-ping; Chen, Xiao-mei; Chen, Xi

    2012-05-30

    Chitosan, a cationic polysaccharide containing amino and hydroxyl groups, was used to fabricate an electrochemiluminescence (ECL) sensor. In the sensor construction, a glassy carbon electrode (GCE) was first coated by a chitosan film which embedded gold nanoparticles, and then the film was modified by introducing carboxyl groups on the surface, which were used to immobilize tris(2,2'-bipyridyl)ruthenium(II) doped amino-functional silica nanoparticles (NH(2)-RuSiNPs) through amido links. The successful modification was confirmed by scanning electronic microscopy and cyclic voltammetry. A binding model between the chitosan/nanogold composite film and NH(2)-RuSiNPs was also proposed, in which the amido link was the dominant bonding, accompanied with hydrogen bond interaction. ECL studies revealed that the sensor had very good response to different concentrations of 2-(dibutylamino) ethanol. This sensor was also applied in methamphetamine determination.

  1. Generation of a mesoporous silica MSU shell onto solid core silica nanoparticles using a simple two-step sol-gel process.

    PubMed

    Allouche, Joachim; Dupin, Jean-Charles; Gonbeau, Danielle

    2011-07-14

    Silica core-shell nanoparticles with a MSU shell have been synthesized using several non-ionic poly(ethylene oxide) based surfactants via a two step sol-gel method. The materials exhibit a typical worm-hole pore structure and tunable pore diameters between 2.4 nm and 5.8 nm.

  2. SnxTi1-xO2 solid-solution-nanoparticle embedded mesoporous silica (SBA-15) hybrid as an engineered photocatalyst with enhanced activity.

    PubMed

    Srinivasan, N R; Bandyopadhyaya, Rajdip

    2016-01-01

    Synthesis of hybrids of a porous host-material (with well-dispersed embedded nanoparticles inside the pore), wherein each nanoparticle has precisely controlled properties (size and composition) poses a generic challenge. To this end, a new strategy is proposed to form SnxTi1-xO2 solid-solution-nanoparticles inside the pores of sphere-like mesoporous silica (SBA-15), with different percentages of Sn in the nanoparticle (varying from 5 to 50 at%), for enhanced photocatalysis. X-ray diffraction confirms the formation of solid-solution nanoparticles in the porous silica hybrid, while the location of nanoparticles and elemental composition are identified using electron microscopy. The hybrid with 5 at% of Sn (Sn0.05Ti0.95O2-sphere-like SBA-15) shows the maximum photocatalytic activity for degradation of rhodamine-B dye (first order rate constant for degradation, k = 1.86 h(-1)), compared to both pure TiO2-sphere-like SBA-15 (k = 1.38 h(-1)) or pure SnO2-sphere-like SBA-15 (k = 0.14 h(-1)) or other hybrids in this series. XPS and PL spectra suggest the formation of more oxygen vacancies during the replacement of Ti(4+) with Sn(4+). Electrochemical studies reveal that there is a reduction of charge transfer resistance from 910 kΩ cm(-2) for TiO2-sphere-like SBA-15, to 332 kΩ cm(-2) for Sn0.05Ti0.95O2-sphere-like SBA-15. These results imply that the enhancement in photocatalytic performance is as a result of delay in recombination of charge carriers. Therefore, the approach followed in the present work to form solid-solution nanoparticles inside a porous host without causing pore blockage, would be a promising route towards increasing reaction rates in catalytic applications of hybrid materials.

  3. In Vivo Integ