Science.gov

Sample records for silica-saturated sodic alkaline

  1. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Yang, Jin-Hui; Sun, Jin-Feng; Zhang, Ji-Heng; Wu, Fu-Yuan

    2016-03-01

    A combined study of zircon U-Pb ages, mineral chemistry, whole-rock elements and Sr-Nd-Hf isotopes was carried out for the Saima alkaline complex in the northeastern China, in order to investigate the source and petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks. The Saima alkaline complex consists of nepheline syenites, quartz-bearing syenites and alkaline volcanic rocks (i.e., phonolite and trachyte), with minor mafic dikes and carbonatitic veins. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS) zircon U-Pb dating gives consistent ages of 230-224 Ma for these rocks, suggesting that they are coeval. All alkaline rocks in the Saima complex are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs) with significant negative Nb, Ta and Ti anomalies. Geochemical data and Sr-Nd-Hf isotopic compositions indicate that the various alkaline rocks were all derived from partial melting of an ancient, re-enriched lithospheric mantle in the garnet stability field, but experienced variable siliceous- or carbonate-rich crustal contamination. Based on petrographic evidence, mineral compositions, and whole-rock geochemical data, two distinct magmatic evolutionary trends are proposed to explain the coeval emplacement of the various rock types within the Saima alkaline complex. The silica-undersaturated rocks (nepheline syenites and phonolites) result from alkali feldspar + apatite + titanite crystal fractionation of an alkaline mafic parental melt combined with assimilation of marine carbonate host rocks. In contrast, the generation of silica-saturated rocks (quartz-bearing syenites and trachytes) may be attributed to subsequent and continued clinopyroxene + apatite + biotite crystal fractionation coupled with assimilation of siliceous sediments.

  2. Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal.

    PubMed

    Liu, Na; Gong, Biao; Jin, Zhiyong; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2015-08-15

    The present study was designed to determine the interactive effect of exogenous melatonin and nitric oxide (NO) on sodic alkaline stress mitigation in tomato seedlings. It was observed that exogenous melatonin treatment elevated NO levels in alkaline-stressed tomato roots. However, exogenous NO had little effects on melatonin levels. Importantly, melatonin-induced NO generation was accompanied by increased tolerance to alkaline stress. Chemical scavenging of NO reduced melatonin-induced alkaline stress tolerance and defense genes' expression. However, inhibition of melatonin biosynthesis had a little effect on NO-induced alkaline stress tolerance. These results strongly suggest that NO, acting as a downstream signal, is involved in the melatonin-induced tomato tolerance to alkaline stress. This process creates a new signaling pathway for improving stress tolerance in plant. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. S-nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L.

    PubMed

    Gong, Biao; Wen, Dan; Wang, Xiufeng; Wei, Min; Yang, Fengjuan; Li, Yan; Shi, Qinghua

    2015-04-01

    S-Nitrosoglutathione reductase (GSNOR) plays an important role in regulating nitric oxide (NO) and S-nitrosothiol (SNO) homeostasis, and is therefore involved in the modulation of processes mediated by reactive nitrogen species (RNS). Although RNS have emerged as a key component in plant response to abiotic stress, knowledge of their regulation by GSNOR under alkaline stress was lacking. In this study, metabolic regulation of NO and SNOs was investigated in tomato plants of the wild type (WT), GSNOR overexpression lines (OE-1/2) and GSNOR suppression lines (AS-1/2) grown under either control conditions or sodic alkaline stress. Phenotype, photosynthesis, reactive oxygen species (ROS) metabolism, Na(+)-K(+) homeostasis and expression of genes encoding ROS scavenging, Na(+) detoxification and programmed cell death (PCD) were also analyzed. Compared with WT lines, OE-1/2 lines were alkaline tolerant, while AS-1/2 lines were alkaline sensitive. In AS-1/2 lines, although genetic expression of Na(+) detoxification was activated by GSNOR-regulated NO and ROS signaling, excess RNS and ROS accumulation also led to serious oxidative stress and induced PCD. In contrast, overexpression of GSNOR significantly increased ROS scavenging efficiency. Thus, it seemed that increasing alkaline tolerance via GSNOR overexpression in tomato was attributed to the regulation of redox signaling including RNS and ROS.

  4. Sensitivity of translation initiation factor eIF1 as a molecular target of salt toxicity to sodic-alkaline stress in the halophytic grass Leymus chinensis.

    PubMed

    Sun, Yan-Lin; Hong, Soon-Kwan

    2013-02-01

    Eukaryotic translation initiation factors (eIFs) have been shown to be critical in the initiation of protein synthesis. Here, we report the cloning and characterization of a novel gene, LceIF1, from a potentially interesting forage grass, Leymus chinensis (Trin.). The expression results show that LceIF1 is expressed in most organisms under normal conditions, but the transcription patterns differ under sodic-saline and sodic-alkaline stresses. Sodic-saline stress induced a persistent decrease, and sodic-alkaline stress induced overexpression of LceIF1. Potassic-saline and alkaline stresses did not cause any changes in expression of eIF1. These results indicate that not only pH but also Na(+) concentration affects overtranscription of LceIF1. The eIF1 transgenic lines showed relatively high eIF1 expression, resulting in potentially higher stress resistance. Combined with eIF1 transcription in transgenic lines, LceIF1 as a molecular target of salt toxicity is believed to help enhance salt tolerance.

  5. Zr and REE mineralization in sodic lujavrite from the Saima alkaline complex, northeastern China: A mineralogical study and comparison with potassic rocks

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Wang, Ru-Cheng; Yang, Jin-Hui; Wu, Fu-Yuan; Zhang, Wen-Lan; Gu, Xiang-Ping; Zhang, Ai-Cheng

    2016-10-01

    The Triassic Saima alkaline complex on the Liaodong Peninsula, northeastern China, consists mainly of potassic phonolite, nepheline syenite, and sodic lujavrite. The lujavrite shows significant Zr-REE mineralization, which is present in the form of early magmatic, Zr-REE-enriched clinopyroxene (30%-40%), titanite (5%), and loparite-(Ce), and late magmatic to hydrothermal wadeite, widespread eudialyte group minerals (5%-10%), and catapleiite. Ultimately, the fractionation of the alkaline magma leads to the crystallization of mosandrite and hezuolinite. Textural relations and compositional variation among the characteristic Zr-REE-bearing minerals record that both Zr and REEs were strongly incompatible in the sodic melt, but that Zr mineralization preceded REE mineralization. The main Zr-REE mineralization in the Saima lujavrite resulted from the high peralkalinity, Na/K ratio and HFSE content, low oxygen fugacity, and the intensive activity of water and volatiles of its evolving magma. The discontinuous and abrupt changes in melt composition and mineral assemblage from the potassic nepheline syenite of the complex to the sodic lujavrite suggest that their magma was derived from different episodes of magmatic activity with different physico-chemical characteristics, rather than from the continuous evolution of a single magmatic event.

  6. Managing land application of coal seam water: A field study of land amendment irrigation using saline-sodic and alkaline water on a Red Vertisol.

    PubMed

    Bennett, J McL; Marchuk, A; Raine, S R; Dalzell, S A; Macfarlane, D C

    2016-12-15

    Coal seam (CS) gas operations coproduce water with gas from confined CS aquifers. This CS water represents a potential agricultural resource if the water is able to be chemically amended to comply with management guidelines. Stoichiometric quantities of sulphur and gypsum amendments can be used to neutralise the alkalinity and reduce the sodicity of CS water respectively. These amendments can either be mixed in-line at a water treatment plant or applied directly to land prior to the application of CS water (a practice termed land amendment irrigation - LAI). This study compared the efficacy of LAI with in-line chemical amendment of CS water and irrigation with non-saline, non-sodic and non-alkaline (good quality) water under field conditions in southern Queensland. Soil chemical properties, soluble Ca, Mg, K, Na, electrical conductivity (EC), pH, chloride and alkalinity, as well as saturated hydraulic conductivity were measured to determine the impact of the irrigation treatments on soil chemical and physical conditions. Irrigation of lucerne pasture using solid-set sprinklers applied a total of 6.7 ML/ha of each treatment irrigation water to the experimental plots over a 10-month period. Alkalinity was neutralised using LAI, with no increase in soil alkalinity observed. Soil sodicity did not exceed threshold electrolyte concentration values under either CS water irrigation treatment. Soil chemical and physical properties were comparable for both LAI and in-line chemical amendment of CS water. Soil saturated hydraulic conductivity was maintained under all irrigation treatments. Results showed that the constrained capacity of the irrigation system was unable to meet crop evapotranspiration demand. This resulted in accumulation of salt within the root-zone under the CS water treatments compared to the good quality water treatment. LAI successfully chemically amended Bowen Basin CS water facilitating its beneficial use for agricultural irrigation. Copyright © 2016

  7. Petrogenesis of coeval sodic and potassic alkaline magmas at Spanish Peaks, Colorado: Magmatism related to the opening of the Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Lord, A. Brooke Hamil; McGregor, Heath; Roden, Michael F.; Salters, Vincent J. M.; Sarafian, Adam; Leahy, Rory

    2016-07-01

    Approximately coeval, relatively primitive (∼5-10% MgO with exception of a trachyandesite) alkaline mafic dikes and sills at or near Spanish Peaks, CO are divided into relatively sodic and potassic varieties on the basis of K2O/Na2O. Many of these dikes are true lamprophyres. In spite of variable alkali element ratios, the alkaline rocks share a number of geochemical similarities: high LIL element contents, high Ba and similar Sr, Nd and Hf isotope ratios near that of Bulk Earth. One important difference is that the potassic rocks are characterized by lower Al2O3 contents, typically less than 12 wt.%, than the sodic dikes/sills which typically have more than 13 wt.% Al2O3, and this difference is independent of MgO content. We attribute the distinct Al2O3 contents to varying pressure during melting: a mica-bearing, Al-poor vein assemblage for the potassic magmas melted at higher pressure than an aluminous amphibole-bearing vein assemblage for the sodic magmas. Remarkable isotopic and trace element similarities with approximately contemporaneous, nearby Rio Grande rift-related basalts in the San Luis Valley, indicate that the magmatism at Spanish Peaks was rift-related, and that lithosphere sources were shared between some rift magmas and those at Spanish Peaks. High Zn/Fe ratios in the Spanish Peaks mafic rocks point to a clinopyroxene- and garnet-rich source such as lithosphere veined by pyroxenite or eclogite. Lithospheric melting was possibly triggered by foundering of cool, dense lithosphere beneath the Rio Grande rift during the initiation of rifting with the potassic parent magmas generated by higher pressure melting of the foundered lithosphere than the sodic parent magmas. This process, caused by gravitational instability of the lithosphere (Elkins-Tanton, 2007) may be common beneath active continental rifts.

  8. Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum.

    PubMed

    Gong, Biao; Li, Xiu; Bloszies, Sean; Wen, Dan; Sun, Shasha; Wei, Min; Li, Yan; Yang, Fengjuan; Shi, Qinghua; Wang, Xiufeng

    2014-06-01

    Nitric oxide (NO) and polyamines (PAs) are two kinds of important signal in mediating plant tolerance to abiotic stress. In this study, we observed that both NO and PAs decreased alkaline stress in tomato plants, which may be a result of their role in regulating nutrient balance and reactive oxygen species (ROS), thereby protecting the photosynthetic system from damage. Further investigation indicated that NO and PAs induced accumulation of each other. Furthermore, the function of PAs could be removed by a NO scavenger, cPTIO. On the other hand, application of MGBG, a PA synthesis inhibitor, did little to abolish the function of NO. To further elucidate the mechanism by which NO and PAs alleviate alkaline stress, the expression of several genes associated with abiotic stress was analyzed by qRT-PCR. NO and PAs significantly upregulated ion transporters such as the plasma membrane Na(+)/H(+) antiporter (SlSOS1), vacuolar Na(+)/H(+) exchanger (SlNHX1 and SlNHX2), and Na(+) transporter and signal components including ROS, MAPK, and Ca(2+) signal pathways, as well as several transcription factors. All of these play important roles in plant adaptation to stress conditions.

  9. The mineralogy of Ba- and Zr-rich alkaline pegmatites from Gordon Butte, Crazy Mountains (Montana, USA): comparisons between potassic and sodic agpaitic pegmatites

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, Anton; Mitchell, Roger

    2002-01-01

    At Gordon Butte (Crazy Mountains, Montana), agpaitic nepheline-syenite pegmatites intrude potassic alkaline rocks (principally, malignites and nepheline microsyenites). All pegmatite veins are composed predominantly of potassium feldspar, nepheline, prismatic aegirine, barytolamprophyllite, wadeite, eudialyte, loparite-(Ce) and altered rinkite ("vudyavrite") embedded in spherulitic and fibrous aegirine. Well-differentiated veins contain "pockets" filled with calcite, fluorapatite, mangan-neptunite, Mn-Ti-enriched prismatic aegirine, calcium catapleiite, and an unidentified Ca-Ti silicate. The potassium feldspar corresponds to Ba-rich sanidine with relatively low Na contents. The nepheline contains low levels of SiO2 and elevated Fe contents. The compositions of nepheline cluster in the lower portion of the Morozewicz-Buerger convergence field, indicating low-temperature crystallization and/or chemical re-equilibration of this mineral. The association of sanidine with nearly stoichiometric nepheline is unusual for agpaitic rocks and probably reflects inhibition of Al/Si ordering in the feldspar by Ba. At least four types of clinopyroxene can be distinguished on the basis of their morphology and composition. All these types correspond to Al- and Ca-poor aegirine (typically <0.6 and 2.6 wt% Al2O3 and CaO, respectively). The overall evolutionary trend of clinopyroxene in the Gordon Butte rocks is from Fe-poor diopside to aegirine-augite in the malignites and nepheline microsyenites, and culminates with the pegmatitic aegirine. This trend is characteristic for potassic alkaline complexes and results from preferential partitioning of Fe2+ into biotite during the magmatic crystallization. Barytolamprophyllite in the pegmatites is primary (as opposed to deuteric); only a few crystals contain a core composed of lamprophyllite. The evolutionary history of the Gordon Butte pegmatites can be subdivided into primary, agpaitic, and deuteric stages. The earliest paragenesis to

  10. Surface features and alteration products of natural zirconolite leached in silica-saturated solutions

    SciTech Connect

    Helean, K.B.; Lutze, W.; Ewing, R.C.

    1999-07-01

    Zirconolite, CaZrTi{sub 2}P{sub 7}, has been proposed as an immobilization phase for the disposition of excess weapons Pu and other actinides (e.g., {sup 235}U). Due to actinide incorporation, zirconolite is expected to sustain {alpha}-decay event damage and become aperiodic (=metamict) over time. The leaching behavior of metamict zirconolite is, therefore, of interest. Because groundwater in a variety of geologic settings contains up to saturation concentrations of silicic acid, H{sub 4}SiO{sub 4}, silica-saturated solutions were used. Natural, metamict (>10{sup 26} {alpha}-decay events per m{sup 3}) zirconolite grains, nominally (Ca,Th)ZrTi{sub 2}O{sub 7} (US National Museum sample No. B20392, Walawada, Sri Lanka) were leached in two separate silica-saturated solutions at 150 C for 60 days. Surface features and alteration products were examined using scanning electron microscopy (SEM) and quantitative energy dispersive X-ray spectroscopy (EDS). Secondary electron (SEI) images of the surfaces of the leached grains from both experiments revealed pores, probably due to the accumulation of He-bubbles from {alpha}-decay events, of approximately 4% as estimated by contrast enhanced gray-scale analysis of digital images. SEI of the zirconolite surface before leaching showed a smooth surface. The pores not only increase the surface area of the metamict zirconolite, but also act as nucleation sites for alteration phase growth. One experiment was conducted in a silica-saturated solution containing approximately 100 ppm P as measured by atomic absorption spectroscopy (AAS). The main alteration phase was euhedral, monoclinic cheralite, (Th,Ca,Ce)(P,Si)O{sub 4} (monazite group). The second experiment was conducted in the absence of P. The main alteration phase was subhedral cubic thorianite, ThO{sub 2}.

  11. Spoil sodicity standards: Reconciling science and regulation

    SciTech Connect

    Munk, L.P.; Romig, D.E.; Coats, M.D.

    1999-07-01

    Sodicity is an important determinant of soil and spoil suitability for mined land reclamation. High levels of exchangeable sodium may cause soil physical degradation and a reduction in the rate of water and air transmission. Productivity losses associated with sodic surface soils re well documented in agricultural soils. State and Federal Spoil suitability guidelines for sodicity were originally developed in the late-1970's from agricultural standards (i.e., Handbook 60; SAR=13) and modified for the purposes of SMCRA. More recent agricultural standards (late-1980's) recognize that relatively high levels of sodicity (e.g., SAR-40) are tolerable in the lower root zone. The new agricultural standards are conditional, and incorporate the full range of factors that affect the severity of the structural standards are conditional, and incorporate the full range of factors that affect the severity of the structural degradation process in determining tolerable sodicity levels. Specifically, prudent sodicity hazard assessments must consider soil texture, salinity, mineralogy, pH, soil-water content, precipitation regime, and plant selection. In general, sodicity hazards are reduced in materials with low pH's, high salinity, non-expanding clay minerals, coarse textures, readily weatherable minerals, low water application rates, and unsaturated flow regimes. These conditions characterize the spoils from many western coal-producing regions suggesting that higher levels of sodicity may be tolerable. The divergence among the modern agricultural and mine reclamation standards suggest that a reevaluation of the sodicity standards is justified, especially in light of the economic burdens associated with sodic spoil mitigation. The authors will present a comprehensive method for the assessment of spoil sodicity hazards that includes both short- and long-term considerations.

  12. The age and petrogenesis of alkaline magmatism in the Ampasindava Peninsula and Nosy Be archipelago, northern Madagascar

    NASA Astrophysics Data System (ADS)

    Cucciniello, C.; Tucker, R. D.; Jourdan, F.; Melluso, L.; Morra, V.

    2016-04-01

    The Ampasindava alkaline province consists of a series of circular and elliptical intrusions, lava flows, dyke swarms and plugs of Cenozoic age emplaced into the Mesozoic-Cenozoic sedimentary rocks of the Antsiranana basin (NW Madagascar) and above the crystalline basement. The magmatism in the Ampasindava region is linked to a NW-SE trending extensional tectonic setting. New 40Ar/39Ar age determinations on feldspar separate of alkali granites and basaltic dykes yielded ages of 18.01 ± 0.36 Ma and 26 ± 7 Ma, respectively. Alkali basalts and basanites, nepheline syenites and phonolites, and silica saturated-to-oversaturated syenites, trachytes, granites and rhyolites are the main outcropping lithologies. These rocks have sodic affinity. The felsic rocks are dominant, and range from peraluminous to peralkaline. The mantle-normalized incompatible element patterns of the mafic lavas match those of Na-alkaline lavas in within-plate rift settings. The patterns are identical in shape and absolute concentrations to those of the Bobaomby (Cap d'Ambre) and Massif d'Ambre primitive volcanic rocks. These geochemical features are broadly compatible with variable degrees of partial melting of incompatible element-enriched mantle sources. The mineralogical and geochemical variations are consistent with fractional crystallization processes involving removal of olivine, feldspar, clinopyroxene, amphibole, Fe-Ti oxides and apatite. Removal of small amount of titanite explains the concave upward lanthanide pattern in the evolved nepheline syenites and phonolites, which are additionally rich in exotic silicates typical of agpaitic magmas (eudialyte, F-disilicates).

  13. Optimal control solutions to sodic soil reclamation

    NASA Astrophysics Data System (ADS)

    Mau, Yair; Porporato, Amilcare

    2016-05-01

    We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. In order to explore the entire range of time-dependent strategies, this task is framed as an optimal control problem, where the amendment rate is the control and the total rehabilitation time is the quantity to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, given by the Gapon equation. We show that the optimal solution is a bang-bang control strategy, where the amendment rate is discontinuously switched along the process from a maximum value to zero. The solution enables a reduction in remediation time of about 50%, compared with the continuous use of good-quality irrigation water. Because of its general structure, the bang-bang solution is also shown to work for the reclamation of other soil conditions, such as saline-sodic soils. The novelty in our modeling approach is the capability of searching the entire "strategy space" for optimal time-dependent protocols. The optimal solutions found for the minimalist model can be then fine-tuned by experiments and numerical simulations, applicable to realistic conditions that include spatial variability and heterogeneities.

  14. The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Petterson, M. G.; Saunders, A. D.; Millar, I. L.; Jenkin, G. R. T.; Toba, T.; Naden, J.; Cook, J. M.

    2009-12-01

    Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase-clinopyroxene-magnetite ± amphibole ± olivine) and trachytes (plagioclase-amphibole-magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent.

  15. Salinity and sodicity of weathered minesoils in Northwestern New Mexico and Northeastern Arizona

    SciTech Connect

    Musslewhite, B.D.; Vinson, J.R.; Johnston, C.R.; Brown, T.H.; Wendt, G.W.; Vance, G.F.

    2009-05-15

    Evolving relationships between electrical conductivity (EC) and sodium adsorption ratio (SAR) in reconstructed soils at surface mines have been insufficiently documented in the literature. Some minesoils (i.e., rootzone material) are classified as saline, sodic, or saline-sodic and are considered unsuitable for revegetation. Weatherable minerals such as calcite and gypsum are common in alkaline minesoils and on dissolution tend to mitigate elevated SAR levels by maintaining or increasing electrolytes in the soil and providing sources of exchangeable calcium and magnesium. Topsoils (i.e., coversoils) contribute to mitigation of sodic conditions when soluble cations are translocated from coversoils into the underlying minesoils. This study evaluated the weathering characteristics of minesoils sites from three surface coal mines in northwestern New Mexico and northeastern Arizona. Minesoils were grouped into 11 classes based on EC and SAR. After 6 to 14 yr, differences between upper and lower halves of the coversoils suggest general increases occurred with EC, SAR, chloride (Cl{sup -}), and sulfate (SO{sub 4}{sup 2-}) with depth. Within the reclaimed minesoils, there were several significant (P < 0.05 or < 0.10) relationships among EC and SAR that related to Minesoil Class. Lower SAR levels with corresponding increases in EC compared to baseline minesoils were more apparent in upper minesoil depths (0-5 and 5-15 cm). Minesoil anion concentrations suggested coversoil leachates and gypsum dissolution influenced EC and SAR chemistry. Over time, chemical changes have increased the apparent stability of the saline and sodic reclaimed minesoils studied thereby reducing risks associated with potential aggregate slaking and clay particle dispersion.

  16. Equilibria between silica-saturated iron silicate slags and molten Cu-As, Cu-Sb, and Cu-Bi Alloys

    NASA Astrophysics Data System (ADS)

    Jimbo, Itaru; Goto, Sakichi; Ogawa, Osamu

    1984-09-01

    The solubilities of copper, arsenic, antimony, and bismuth in silica-saturated iron silicate slag, equilibrated with molten copper which included the corresponding element, were measured at temperatures 1473 and 1523 K under oxygen pressures ranging from 10-1 to 10-7 atm. The results confirm that copper is dissolved as CuO0.5 in silica-saturated fayalite slag. Dissolution of As, Sb, and Bi was found to be dependent upon the oxygen potential, suggesting oxidic rather than atomic dissolution. The data obtained also support models in which these elements exist in the slag mainly as two different types of oxides, but occasionally these oxides coexist with neutral atoms. Based on these models, equations were obtained that related the solubilities of these elements in the slags to the oxygen potential in them. The knowledge obtained in this investigation will be helpful in eliminating deleterious minor elements in copper smelting.

  17. Polybaric evolution of phonolite, trachyte, and rhyolite volcanoes in Eastern Marie Byrd Land, Antarctica: Controls on peralkalinity and silica saturation

    USGS Publications Warehouse

    LeMasurier, W.E.; Futa, K.; Hole, M.; Kawachi, Y.

    2003-01-01

    In the Marie Byrd Land volcanic province, peralkaline and metaluminous trachytes, phonolites, and rhyolites occur in 18 large shield volcanoes that are closely associated in time and space. They are arrayed radially across an 800 km wide structural dome, with the oldest at the crest and the youngest around the flanks. Several lines of evidence suggest that these rocks evolved via open-system, polybaric fractionation. We have used mass balance modeling of major elements together with trace-element data and mineral chemistry to help explain the evolution of this diverse suite of felsic rocks, which appear to have been generated coevally in isolated magma chambers, and erupted close to each other in patterns related to tectonic uplift and extension within the West Antarctic rift system. Isotopic and trace-element data indicate that this occurred with only minimal crustal contamination. We focus on volcanoes of the Executive Committee Range and Mount Murphy, where we find good representation of basalts and felsic rocks within a small area. Our results suggest that the felsic rocks were derived from basaltic magmas that differentiated at multiple levels during their passage to the surface: first to ferrogabbroic compositions near the base of the lithosphere, then to intermediate compositions near the base of the crust, and finally to felsic compositions in mid- to upper crustal reservoirs. The high-pressure history has been largely masked by low-pressure processes. The best indications of a high-pressure history are the mineral phases in cumulate nodules and their correlation with modeling results, with REE anomalies, and with the composition of an unusual gabbroic intrusion. Silica saturation characteristics are believed to have originated in magma chambers near the base of the crust, via fractionation of variable proportions of kaersutite and plagioclase. Development of peralkalinity in felsic rocks took place in upper crustal reservoirs by fractionating a high ratio

  18. Apollo 16 Evolved Lithology Sodic Ferrogabbro

    NASA Technical Reports Server (NTRS)

    Zeigler, Ryan; Jolliff, B. L.; Korotev, R. L.

    2014-01-01

    Evolved lunar igneous lithologies, often referred to as the alkali suite, are a minor but important component of the lunar crust. These evolved samples are incompatible-element rich samples, and are, not surprisingly, most common in the Apollo sites in (or near) the incompatible-element rich region of the Moon known as the Procellarum KREEP Terrane (PKT). The most commonly occurring lithologies are granites (A12, A14, A15, A17), monzogabbro (A14, A15), alkali anorthosites (A12, A14), and KREEP basalts (A15, A17). The Feldspathic Highlands Terrane is not entirely devoid of evolved lithologies, and rare clasts of alkali gabbronorite and sodic ferrogabbro (SFG) have been identified in Apollo 16 station 11 breccias 67915 and 67016. Curiously, nearly all pristine evolved lithologies have been found as small clasts or soil particles, exceptions being KREEP basalts 15382/6 and granitic sample 12013 (which is itself a breccia). Here we reexamine the petrography and geochemistry of two SFG-like particles found in a survey of Apollo 16 2-4 mm particles from the Cayley Plains 62283,7-15 and 62243,10-3 (hereafter 7-15 and 10-3 respectively). We will compare these to previously reported SFG samples, including recent analyses on the type specimen of SFG from lunar breccia 67915.

  19. The Effects of Salinity and Sodicity upon Nodulation and Nitrogen Fixation in Chickpea (Cicer arietinum)

    PubMed Central

    RAO, D. L. N.; GILLER, K. E.; YEO, A. R.; FLOWERS, T. J.

    2002-01-01

    Production of grain legumes is severely reduced in salt‐affected soils because their ability to form and maintain nitrogen‐fixing nodules is impaired by both salinity and sodicity (alkalinity). Genotypes of chickpea, Cicer arietinum, with high nodulation capacity under stress were identified by field screening in a sodic soil in India and subsequently evaluated quantitatively for nitrogen fixation in a glasshouse study in a saline but neutral soil in the UK. In the field, pH 8·9 was the critical upper limit for most genotypes studied but genotypes with high nodulation outperformed all others at pH 9·0–9·2. The threshold limit of soil salinity for shoot growth was at ECe 3 dS m–1, except for the high‐nodulation selection for which it was ECe 6. Nodulation was reduced in all genotypes at salinities above 3 dS m–1 but to a lesser extent in the high‐nodulation selection, which proved inherently superior under both non‐saline and stress conditions. Nitrogen fixation was also much more tolerant of salinity in this selection than in the other genotypes studied. The results show that chickpea genotypes tolerant of salt‐affected soil have better nodulation and support higher rates of symbiotic nitrogen fixation than sensitive genotypes. PMID:12099530

  20. Effect of reclamation on the structure of silty-clay soils irrigated with saline-sodic waters

    NASA Astrophysics Data System (ADS)

    Cucci, Giovanna; Lacolla, Giovanni; Pagliai, Marcello; Vignozzi, Nadia

    2015-01-01

    The objective of the work was to evaluate, by using the micromorphometric method, the effects of reclamation on porosity of two different clay loam soils irrigated with saline-sodic waters. Soil samples of the Ap horizon were put in cylindrical containers and irrigated with 9 types of saline-sodic waters (3 levels of salinity combined with 3 levels of sodicity). After a 4-year period, correction treatments were initiated by addition of calcium sulphate and leaching until electrical conductivity and sodium absorption ratio values of the drainage water matched 3 dS m-1 and 9, respectively. After 2 years of correction treatments, undisturbed soil samples were taken from the surface layer and soil thin sections for porosity measurements. Both soils did not show critical macroporosity values (> 10%, below this threshold a soil is classified as compact). Nevertheless, the soils exhibited a different behaviour: total porosity of the Pachic Haploxeroll soil was not affected by difference in water salinity and alkalinity; on the contrary, the Udertic Ustochrept soil showed a lower porosity associated with higher salt concentration in the irrigation waters. This may be due to the different iron and aluminium sesquioxides content and, as a consequence, a different effect on soil aggregate stability.

  1. Mechanisms of exsolution in sodic pyroxenes

    NASA Astrophysics Data System (ADS)

    Carpenter, Michael A.

    1980-01-01

    The free energy curves for simple binary solid solutions with limited miscibility or atomic ordering have been combined to predict the phase relations and exsolution mechanisms for a system in which both ordering and exsolution are possible. The nature of the ordering process affects which exsolution mechanisms may be used. If the ordering is second (or higher) order in character then continuous mechanisms predominate and a ‘conditional spinodal’ (Alien and Cahn, 1976) can be described which operates between ordered and disordered end members. For a first order case, the ordered phase can only precipitate a disordered phase by nucleation and growth. Microstructures in omphacites observed by transmission electron microscopy include exsolution lamellae and antiphase domains and the relations between them in selected specimens have been used to interpret the exsolution mechanisms which operated under geological conditions. It appears that most omphacites undergo cation ordering, and then remain homogeneous or exsolve a disordered pyroxene by spinodal decomposition. The predominance of continuous mechanisms has been used to indicate that the C2/ c→ P2/ n transformation may be second (or higher) order in character. A possible phase diagram for jadeite-augite is presented. It is based on the idea that there should be limited miscibility between the disordered end members at low temperatures and that the cation ordering at intermediate compositions (omphacite) is superimposed on a solvus. It is adequate to explain many of the observed microstructures and fits with petrographic evidence of broad two phase fields between impure jadeite and omphacite and between omphacite and sodic augite. The effect of adding acmite is analogous to increasing temperature so that the phase relations for jadeite-acmite-augite can also be predicted.

  2. Effect of salinity and sodicity stresses on physiological response and productivity in Helianthus annuus.

    PubMed

    Farghaly, Fatma Aly; Radi, Abeer Ahmed; Abdel-Wahab, Dalia Ahmed; Hamada, Afaf Mohamed

    2016-06-01

    Soil salinity and sodicity (alkalinity) are serious land degradation issues worldwide that are predicted to increase in the future. The objective of the present study is to distinguish the effects of NaCl and Na(2)CO(3) salinity in two concentrations on the growth, lipoxygenase (LOX) activity, membrane integrity, total lipids, yield parameters and fatty acids (FAs) composition of seeds of sunflower cultivar Sakha 53. Plant growth, LOX activity and malondialdehyde (MDA) content were reduced by salts stresses. On the contrary, salinity and alkalinity stress induced stimulatory effects on membrane permeability, leakage of UV-metabolites from leaves and total lipids of sunflower shoots and roots. Crop yield (plant height, head diameter, seed index and number of seeds for each head) that is known as a hallmark of plant stress was decreased by increasing concentrations of NaCl and Na(2)CO(3) in the growth media. Fatty acid methyl esters (FAME) composition of salt-stressed sunflower seeds varied with different levels of NaCl and Na(2)CO(3).

  3. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    PubMed Central

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  4. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  5. Season-long Changes in Infiltration Rates Associated with Irrigation Water Sodicity and pH

    USDA-ARS?s Scientific Manuscript database

    There is increasing need to substitute low quality waters, including saline sodic waters and treated municipal waste water for fresh water when irrigating land in arid and semi-arid regions of the world. In almost all instances low quality waters are more sodic than the fresh waters currently utili...

  6. The petrogenesis of sodic granites in the Niujuanzi area and constraints on the Paleozoic tectonic evolution of the Beishan region, NW China

    NASA Astrophysics Data System (ADS)

    Yu, Jiyuan; Guo, Lin; Li, Jianxing; Li, Yanguang; Smithies, Robert H.; Wingate, Michael T. D.; Meng, Yong; Chen, Shefa

    2016-07-01

    Ordovician to Devonian sodic granites dominate the newly recognized Luotuojuan composite granite in the Lebaquan-Luotuojuan-Niujuanzi region of Beishan, along the southern margin of the Central Asian Orogenic Belt in NW China. The granites include sodic (K2O/Na2O > 0.5) tonalites with low Y (< 7 ppm), Yb (< 0.7 ppm), high Sr/Y (> 68) that formed during at least two events at c. 435 and c. 370-360 Ma. Their compositions are consistent with high-pressure melting of basaltic crust, although relatively non-radiogenic Nd isotope compositions (εNd(t) + 0.9) require some crustal assimilation. The interpretation that these granites reflect melts of a subducted slab (i.e. adakite) is supported by independent local and regional geological evidence for an oceanic subduction-accretion setting, including a long history of calc-alkaline magmatism and the identification of a series of early Paleozoic ophiolite belts. Other sodic granites forming the Luotuojuan composite granite are mainly quartz-diorite and granodiorite formed between c. 391 and c. 360 Ma. These rocks are not adakites, having Sr concentrations and Sr/Y ratios too low and Y and Yb concentrations too high. They are low- to medium-K calc-alkaline rocks more typical of magmas derived through melting in a subduction modified mantle wedge. Compositional changes from sodic to potassic granites, over time frames consistent with subduction processes, suggest at least two separate cycles, or pulses, of hot subduction in the Lebaquan-Luotuojuan-Niujuanzi region. Although early Paleozoic adakites have been inferred to exist elsewhere in the Beishan region, many of the reported adakitic rocks have compositions inconsistent with melting of subducted oceanic lithosphere and so tectonic interpretation of hot subduction might not be valid in these cases. A study of regional granite data also shows not only that adakite magmatism does not extend into the Permian but that if subduction-accretion processes extended into the late

  7. Viability of seed produced on highly sodic coal-mine spoils. Forest Service research note

    SciTech Connect

    Richardson, B.Z.; McDonough, W.T.; Farmer, E.E.

    1984-10-01

    An adapted plant species must not only grow on a particular site, but also produce viable seeds capable of germination and establishment on the site. Ten species of rangeland grasses had been successfully used to revegetate sodic mine spoils at the Decker Coal Mine in southeastern Montana. However, the effect of the sodic spoils on seed viability, and hence the potential for regeneration, was unknown. Seeds produced by these plants were tested for viability and germination.

  8. Distribution of rubidium between sodic sanidine and natural silicic liquid

    USGS Publications Warehouse

    Noble, D.C.; Hedge, C.E.

    1970-01-01

    Phenocrysts of sodic sanidine from twelve upper Cenozoic units of silicic ash-flow tuff and lava from the Western United States contain from 0.25 to 0.45 the Rb present in the associated groundmass materials. The ratios of potassium to rubidium in the sanidines are, on the average, about four times greater than those of the groundmass. Separation of phenocrystic sanidine from salic melts provides an efficient method for raising the Rb content and lowering the K/Rb ratio of the melts, although the amount of differentiation probably is limited by continuous reequilibration of the alkalis between crystal and liquid phases through ion exchange. Syenites of cumulate origin will have appreciably lower Rb contents and higher K/Rb ratios than the melts from which they precipitated. Available data on the distribution of Rb between synthetic biotite and K-sanidine demonstrate that the separation of biotite probably will not deplete salic melts in Rb relative to K. ?? 1970 Springer-Verlag.

  9. Effect of byproducts of flue gas desulfurization on the soluble salts composition and chemical properties of sodic soils.

    PubMed

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2013-01-01

    The byproducts of flue gas desulfurization (BFGD) are a useful external source of Ca(2+) for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II) and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR), pH and electrical conductivity (EC) decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0-40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m(-1) and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising.

  10. Effect of Byproducts of Flue Gas Desulfurization on the Soluble Salts Composition and Chemical Properties of Sodic Soils

    PubMed Central

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2013-01-01

    The byproducts of flue gas desulfurization (BFGD) are a useful external source of Ca2+ for the reclamation of sodic soils because they are comparatively cheap, generally available and have high gypsum content. The ion solution composition of sodic soils also plays an important role in the reclamation process. The effect of BFGD on the soluble salts composition and chemical properties of sodic soils were studied in a soil column experiment. The experiment consisted of four treatments using two different sodic soils (sodic soil I and sodic soil II) and two BFGD rates. After the application of BFGD and leaching, the soil soluble salts were transformed from sodic salts containing Na2CO3 and NaHCO3 to neutral salts containing NaCl and Na2SO4. The sodium adsorption ratio (SAR), pH and electrical conductivity (EC) decreased at all soil depths, and more significantly in the top soil depth. At a depth of 0–40 cm in both sodic soil I and sodic soil II, the SAR, EC and pH were less than 13, 4 dS m−1 and 8.5, respectively. The changes in the chemical properties of the sodic soils reflected the changes in the ion composition of soluble salts. Leaching played a key role in the reclamation process and the reclamation effect was positively associated with the amount of leaching. The soil salts did not accumulate in the top soil layer, but there was a slight increase in the middle and bottom soil depths. The results demonstrate that the reclamation of sodic soils using BFGD is promising. PMID:23936481

  11. Influence of Flue Gas Desulfurization Gypsum Amendments on Heavy Metal Distribution in Reclaimed Sodic Soils

    PubMed Central

    Chen, Qun; Wang, Shujuan; Li, Yan; Zhang, Ning; Zhao, Bo; Zhuo, Yuqun; Chen, Changhe

    2015-01-01

    Abstract Although flue gas desulfurization (FGD) gypsum has become an effective soil amendment for sodic soil reclamation, it carries extra heavy metal contamination into the soil environment. The fate of heavy metals introduced by FGD gypsum in sodic or saline–alkali soils is still unclear. This work aims to investigate the effects of FGD gypsum addition on the heavy metal distributions in a sodic soil. Original soil samples were collected from typical sodic land in north China. Soil column leaching tests were conducted to investigate the influence of FGD gypsum addition on the soil properties, especially on distribution profiles of the heavy metals (Pb, Cd, Cr, As, and Hg) in the soil layers. Results showed that pH, electrical conductivity, and exchangeable sodium percentage in amended soils were significantly reduced from 10.2 to 8.46, 1.8 to 0.2 dS/m, and 18.14% to 1.28%, respectively. As and Hg concentrations in the soils were found to be positively correlated with FGD gypsum added. The amount of Hg in the leachate was positively correlated with FGD gypsum application ratio, whereas a negative correlation was observed between the Pb concentration in the leachate and the FGD gypsum ratio. Results revealed that heavy metal concentrations in soils complied well with Environmental Quality Standard for Soils in China (GB15618-1995). This work helps to understand the fate of FGD gypsum-introduced heavy metals in sodic soils and provides a baseline for further environmental risk assessment associated with applying FGD gypsum for sodic soil remediation. PMID:26064038

  12. Latest Mesozoic-Early Cenozoic Continental Extension and Related Alkaline Magmatism in Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Kadioglu, Y. K.

    2009-04-01

    The Central Anatolian crystalline complex (CACC) in Turkey includes a suite of latest Mesozoic-early Cenozoic plutonic rocks intruding the metamorphic and ophiolitic basement rocks. The intrusive rocks consist of three groups of granitoid, syenitoid, and gabbroids plutons. The granitoid units occur around the periphery of the CACC as large plutonic bodies, whereas the syenitoid assemblages crop out in the inner part of the CACC as small plutons. All the felsic plutons are crosscut by the gabbroid rocks in the region. The alkaline rocks of the CACC change in composition from nordmarkite through pulaskite to lusitanite, and are made of silica-saturated and silica-undersaturated magmas. The silica under-saturated alkaline rocks have gradual contacts with the silica-saturated alkaline rocks and constitute the main component of the alkaline rocks in the CACC. Nepheline, pseudoleucite, cancrinite, nosean, melanite and arfvedsonite are the main typical mineral compositions of the silica-undersaturated alkaline rocks. The leucite- and pseudoleucite-bearing rocks have porphyritic textures intruding the other main subunits of the alkaline rocks at high topographic elevations in the region. They are mostly composed of foid syenite, monzosyenite, monzodiorite and include rare amount of monzogabbro and foidolite. Each subunit has a transitional contact with the others and is crosscut by alkali feldspar foid syenite veins. Felsic dykes intrude the alkaline rock units and fluorite-bearing hydrothermal veins, which manifest themselves as alteration zones. The alkaline rocks have an abundance of xenolithic enclaves but lack any magma mixing-mingling produced enclaves. Normalized elemental patterns of the analyzed alkaline rocks show a slight enrichment in large ion lithophile elements (LILE) and light rare earth elements relatively to high field strength elements (HFSE) and heavy rare earth elements (HREE). The less fluid mobile, LILE and LREE concentration in the alkaline rocks

  13. Runoff and interrill erosion in sodic soils treated with dry PAM and phosphogypsum

    USDA-ARS?s Scientific Manuscript database

    Seal formation at the soil surface during rainstorms reduces rain infiltration and leads to runoff and erosion. An increase in soil sodicity increases soil susceptibility to crusting, runoff, and erosion. Surface application of dissolved polyacrylamide (PAM) mixed with gypsum was found to be very ef...

  14. Pre- and syn-ore zonation in Precambrian uraniferous sodic metasomatities

    SciTech Connect

    Omel'yanenko, B.I.; Mineyeva, I.G.

    1982-04-01

    Uraniferous-sodic metasomatites in Precambrian basement faults, in which a regular change in the mineral composition in vertical section has been established are described. The authors attempt to show that this pattern is controlled by the evolution of the solutions in time and space, and that it is an expression of a verticle metasomatic zonation. (JMT)

  15. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand.

    PubMed

    Goloran, Johnvie B; Chen, Chengrong; Phillips, Ian R; Elser, James J

    2015-10-07

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P < 0.001) between these soil indices and leaf N:P ratios. Shifts from N to P limitation were evident for N-fixing species, while N limitation was consistently experienced by non-N-fixing plant species. In older rehabilitated BRS embankments, soil and plant indices (Ca, Na, pH, EC, ESP and leaf N:P ratios) tended to align with those of the natural ecosystem, suggesting improved rehabilitation performance. These findings highlight that leaf N:P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance.

  16. Shifts in leaf N:P stoichiometry during rehabilitation in highly alkaline bauxite processing residue sand

    PubMed Central

    Goloran, Johnvie B.; Chen, Chengrong; Phillips, Ian R.; Elser, James J.

    2015-01-01

    Large quantities of sodic and alkaline bauxite residue are produced globally as a by-product from alumina refineries. Ecological stoichiometry of key elements [nitrogen (N) and phosphorus (P)] plays a critical role in establishing vegetation cover in bauxite residue sand (BRS). Here we examined how changes in soil chemical properties over time in rehabilitated sodic and alkaline BRS affected leaf N to P stoichiometry of native species used for rehabilitation. Both Ca and soil pH influenced the shifts in leaf N:P ratios of the study species as supported by consistently significant positive relationships (P < 0.001) between these soil indices and leaf N:P ratios. Shifts from N to P limitation were evident for N-fixing species, while N limitation was consistently experienced by non-N-fixing plant species. In older rehabilitated BRS embankments, soil and plant indices (Ca, Na, pH, EC, ESP and leaf N:P ratios) tended to align with those of the natural ecosystem, suggesting improved rehabilitation performance. These findings highlight that leaf N:P stoichiometry can effectively provide a meaningful assessment on understanding nutrient limitation and productivity of native species used for vegetating highly sodic and alkaline BRS, and is a crucial indicator for assessing ecological rehabilitation performance. PMID:26443331

  17. Modeling Soil Sodicity Problems under Dryland and Irrigated Conditions: Case Studies in Argentina and Colombia

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2014-05-01

    Salt-affected soils, both saline and sodic, my develop both under dryland and irrigated conditions, affecting negatively the physical and chemical soil properties, the crop production and the animal and human health.Among the development processes of salt-affected soils, the processes of sodification have been generally received less attention and is less understood than the development of saline soils. Although in both of them, hydrological processes are involved in their development, in the case of sodic soils we have to consider some additional chemical and physicochemical reactions, making more difficult their modeling and prediction. In this contribution we present two case studies: one related to the development of sodic soils in the lowlands of the Argentina Pampas, under dryland conditions and sub-humid temperate climate, with pastures for cattle production; the other deals with the development of sodic soils in the Colombia Cauca Valley, under irrigated conditions and tropical sub-humid climate, in lands used for sugarcane cropping dedicated to sugar and ethanol production. In both cases the development of sodicity in the surface soil is mainly related to the effects of the composition and level of groundwater, affected in the case of Argentina Pampas by the off-site changes in dryland use and management in the upper zones and by the drainage conditions in the lowlands, and in the case of the Cauca Valley, by the on-site irrigation and drainage management in lands with sugarcane. There is shown how the model SALSODIMAR, developed by the main author, based on the balance of water and soluble componentes of both the irrigation water and groundwater under different water and land management conditions, may be adapted for the diagnosis and prediction of both problems, and for the selection of alternatives for their management and amelioration.

  18. Morphological and structural plasticity of grassland species in response to a gradient in saline-sodic soils.

    PubMed

    Huang, Y; Song, Y; Li, G; Drake, P L; Zheng, W; Li, Z; Zhou, D

    2015-11-01

    The abundance and distribution of species can be ascribed to both environmental heterogeneity and stress tolerance, with the latter measure sometimes associated with phenotypic plasticity. Although phenotypic plasticity varies predictably in response to common forms of stress, we lack a mechanistic understanding of the response of species to high saline-sodic soils. We compared the phenotypic plasticity of three pairs of high and low saline-sodic tolerant congeners from the families Poaceae (Leymus chinensis versus L. secalinus), Fabaceae (Lespedeza davurica versus L. bicolor) and Asteraceae (Artemisia mongolica versus A. sieversiana) in a controlled pot experiment in the Songnen grassland, China. The low tolerant species, L. secalinus and A. sieversiana exhibited higher plasticity in response to soil salinity and sodicity than their paired congeners. Highly tolerant species, L. chinensis and A. mongolica, had higher values for several important morphological traits, such as shoot length and total biomass under the high saline-sodic soil treatment than their paired congeners. In contrast, congeners from the family Fabaceae, L. davurica and L. bicolor, did not exhibit significantly different plasticity in response to soil salinity and sodicity. All species held a constant reproductive effort in response to saline-sodic soil stress. The different responses between low and high tolerant species offer an explanation for the distribution patterns of these species in the Songnen grassland. Highly tolerant species showed less morphological plasticity over a range of saline-sodic conditions than their paired congeners, which may manifest as an inability to compete with co-occurring species in locations where saline-sodic soils are absent.

  19. SALINITY AND SODICITY INTERACTIONS OF WEATHERED MINESOILS IN NORTHWESTERN NEW MEXICO AND NORTH EASTERN ARIZONA

    SciTech Connect

    Brent Musslewhite; Song Jin

    2006-05-01

    Weathering characteristics of minesoils and rooting patterns of key shrub and grass species were evaluated at sites reclaimed for 6 to 14 years from three surface coal mine operations in northwestern New Mexico and northeastern Arizona. Non-weathered minesoils were grouped into 11 classifications based on electrical conductivity (EC) and sodium adsorption ratio (SAR). Comparisons of saturated paste extracts, from non-weathered and weathered minesoils show significant (p < 0.05) reductions in SAR levels and increased EC. Weathering increased the apparent stability of saline and sodic minesoils thereby reducing concerns of aggregate slaking and clay particle dispersion. Root density of four-wing saltbush (Atriplex canascens), alkali sacaton (Sporobolus airoides), and Russian wildrye (Psathyrostachys junceus) were nominally affected by increasing EC and SAR levels in minesoil. Results suggest that saline and sodic minesoils can be successfully reclaimed when covered with topsoil and seeded with salt tolerant plant species.

  20. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    USGS Publications Warehouse

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  1. Effect of some amendments on leachate properties of a calcareous saline- sodic soil: A laboratory experiment

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, Najme; Mahmoodabadi, Majid

    2010-05-01

    Soil salinity and sodicity are escalating problems worldwide, especially in Iran since 90 percent of the country is located in arid and semi-arid. Reclamation of sodic soils involves replacement of exchangeable Na by Ca. While some researches have been undertaken in the controllable laboratory conditions using soil column with emphasis on soil properties, the properties of effluent as a measure of soil reclamation remain unstudied. In addition, little attention has been paid to the temporal variability of effluent quality. The objective of this study was to investigate the effect of different amendments consist of gypsum, manure, pistachio residue, and their combination for ameliorating a calcareous saline sodic soil. Temporal variability of effluent properties during reclamation period was studied, as well. A laboratory experiment was conducted to evaluate the effect of different amendments using soil columns. The amendment treatments were: control, manure, pistachio residue, gypsum powder (equivalent of gypsum requirement), manure+gypsum and pistachio residue+gypsum, which were applied once in the beginning of the experiment. The study was performed in 120 days period and totally four irrigation treatments were supplied to each column. After irrigations, the effluent samples were collected every day at the bottom of the soil columns and were analyzed. The results show that for all treatments, cations (e.g. Ca, Mg, Na and K) in the outflow decreased with time, exponentially. Manure treatment resulted in highest rate of Ca, Mg, Na leaching from soil solution, in spite of the control which had the lowest rate. In addition, pistachio residue had the most effect on K leaching. Manure treatment showed the most EC and SAR in the leachate, while gypsum application leads to the least rate of them. The findings of this research reveal different rates of cations leaching from soil profile, which is important in environmental issues. Keywords: Saline sodic soil, Reclamation

  2. Soil and plant responses from land application of saline-sodic waters: Implications of management

    SciTech Connect

    Vance, G.F.; King, L.A.; Ganjegunte, G.K.

    2008-09-15

    Land application of co-produced waters from coalbed natural gas (CBNG) wells is one management option used in the Powder River Basin (PRB) of Wyoming and Montana. Unfortunately the co-produced CBNG waters may be saline and/or sodic. The objective of this study was to examine the effects of irrigation with CBNG waters on soils and plants in the PRB. Soil properties and vegetation responses resulting from 1 to 4 yr of saline sodic water (electrical conductivity (EC) 1.6-4.8 dS m{sup -1} sodium adsorption ratio (SAR), 17-57 mmol L- applications were studied during 2003 and 2004 field seasons on sites (Ustic Torriorthent Haplocambid, Haplargid and Paleargid) representing native range grasslands seeded grass hayfields and alfalfa hayfields. Parameters measured from each irrigated site were compared directly with representative non-irrigated sites. Soil chemical and physical parameters including pH, EC, SAR, exchangeable sodium percent, texture, bulk density, infiltration and Darcy flux rates, were measured at various depth intervals to 120 cm. Mulitple-year applications of saline sodic water produced consistent trends of increased soil EC AND SAR values to depths of 30 cm reduced surface infiltration rates and lowered Darcy flux rates to 120 cm. Significant differences (p {le} 0.05) were determined between irrigated and non-irrigated areas for EC, SAR infiltration rates and Darcy flux (p {le} 0.10) at most sites. Saline sodic CBNG water applications significantly increased native perennial grass biomass production and cover on irrigated as compared with non-irrigated sites; however overall species evenness decreased. Biological effects were variable and complex reflecting site-specific conditions and water and soil management strategies.

  3. Sorption of dissolved organic matter in salt-affected soils: effect of salinity, sodicity and texture.

    PubMed

    Mavi, Manpreet S; Sanderman, Jonathan; Chittleborough, David J; Cox, James W; Marschner, Petra

    2012-10-01

    Loss of dissolved organic matter (DOM) from soils can have negative effects on soil fertility and water quality. It is known that sodicity increases DOM solubility, but the interactive effect of sodicity and salinity on DOM sorption and how this is affected by soil texture is not clear. We investigated the effect of salinity and sodicity on DOM sorption in soils with different clay contents. Four salt solutions with different EC and SAR were prepared using combinations of 1M NaCl and 1M CaCl(2) stock solutions. The soils differing in texture (4, 13, 24 and 40% clay, termed S-4, S-13, S-24 and S-40) were repeatedly leached with these solutions until the desired combination of EC and SAR (EC(1:5) 1 and 5dSm(-1) in combination with SAR <3 or >20) was reached. The sorption of DOC (derived from mature wheat straw) was more strongly affected by SAR than by EC. High SAR (>20) at EC1 significantly decreased sorption in all soils. However, at EC5, high SAR did not significantly reduce DOC sorption most likely because of the high electrolyte concentration of the soil solution. DOC sorption was greatest in S-24 (which had the highest CEC) at all concentrations of DOC added whereas DOC sorption did not differ greatly between S-40 and S-4 or S-13 (which had higher concentrations of Fe/Al than S-40). DOC sorption in salt-affected soil is more strongly controlled by CEC and Fe/Al concentration than by clay concentration per se except in sodic soils where DOC sorption is low due to the high sodium saturation of the exchange complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Seasonal changes in salinity and sodicity of soils irrigated with treated domestic wastewater

    NASA Astrophysics Data System (ADS)

    Lado, Marcos; Ben-Hur, Meni

    2014-05-01

    Semiarid and arid zones are characterized by short wet winters and long dry summers, when most of crop production relies on irrigation. In these areas, treated wastewater (TWW) is a valuable water resource whose use is rapidly expanding. However, the composition of TWW differs from that of freshwater, mainly due to higher salt, sodium and organic matter concentrations. Therefore, its continuous application to the soil could have an impact on soil properties, particularly soil salinity and sodicity. However, these changes could be reverted during the following rainy season, if the amount of rain infiltrating through the soil is enough to leach salts down the profile. In the present study, we analyzed the effects of long-term irrigation with secondary TWW on salinity and sodicity of two contrasting soils under semiarid Mediterranean conditions. Experiments were conducted in two grapefruit orchards, one with a non-calcareous sandy soil (Typic Haploxeralf) and the other with a calcareous clayey soil (Chromic Haploxerert). Two treatments were tested (>7 years): (i) irrigation with freshwater and (ii) irrigation with domestic, secondary TTW. During the duration of the experiment, soil profiles were sampled at regular intervals to a depth of 1.2 m two times each year: i) in spring, before the irrigation season started, and ii) in fall, after irrigation ended and before the rainy season. The results show that, in general, irrigation with TWW increased soil salinity compared with freshwater in the upper 30 cm of the soil profiles. However, leaching by rainwater resulted in similar salinity values in both treatments after the rainy season. Soil sodicity increased with the irrigation with TWW to a depth 1.2 m in the sandy soil and 0.6 m in the clay soil, but in general, these changes did not disappear during the rainy season. It can be concluded that in semiarid regions with >500 mm annual rainfall, the precipitation can be sufficient to prevent long-term salt accumulation in

  5. Desodification from calcareous saline sodic soil through phytoremediation with Phragmites australis (Cav.) Trin. ex Steud. and gypsum.

    PubMed

    Abro, Saeed Akhter; Otho, Aijaz Ali; Bughio, Farooque A; Sahito, Oan Mohammad; Jamali, Abdul Rauf; Mahar, Amanullah

    2017-05-22

    The reclamation of saline sodic soils requires sodium removal and the phytoremediation is one of the proven low-cost, low-risk technologies for reclaiming such soils. However, the role of P. australis in reclaiming saline sodic soil has not been evaluated extensively. The comparative reclaiming role of P. australis and gypsum was evaluated in a column experiment on a sandy clay saline sodic soil with ECe 74.7 dS m(-1), SAR 63.2, Na(+) 361 g kg(-1) and pH 8.46. The gypsum at 100% soil requirement, planting common reed (P. australis) alone, P. australis + gypsum at 50% soil gypsum requirements and leaching (control without plant and gypsum) were four treatments applied. After 11 weeks of incubation, the results showed that all treatments including control significantly reduced pH, EC, exchangeable Na(+) and SAR from the initial values but the control being with least results. The gypsum and P. australis + gypsum were highly effective in salinity (ECe) reduction while, sodicity (SAR) and Na(+) reductions were significantly higher in P. australis + gypsum treatment. The reclamation efficiency in terms of Na(+) (83.4%) and SAR (86.8%) reduction was highest in P. australis + gypsum. It is concluded that phytoremediation is an effective tool to reclaim saline sodic soil.

  6. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China

    USDA-ARS?s Scientific Manuscript database

    Saline-sodic soils are a valuable potential arable land resource, and are widely distributed in the western Songnen Plain of Northeast China. Reclaiming and planting rice is an effective and feasible approach for improving saline-sodic soil and increasing food production. Assessment of the effective...

  7. Biogenic nitric oxide emission from saline sodic soils in a semiarid region, northeastern China: A laboratory study

    NASA Astrophysics Data System (ADS)

    Yu, Junbao; Meixner, Franz X.; Sun, Weidong; Liang, Zhengwei; Chen, Yuan; Mamtimin, Buhalqem; Wang, Guoping; Sun, Zhigao

    2008-12-01

    It is well-known that nitric oxide (NO) is an important component in nitrogen biogeochemical cycling produced through biological process of nitrification and denitrification in soils, but the production and the consumption processes of NO in sodic saline soil are less understood. Through a series of laboratory experiments focusing on NO biogenic emissions from four kinds of saline sodic soils of different land use in western Songnen Plain northestern China, we found that the optimum soil moisture for the maximum NO production and emission were 14.0%, 9.0%, 9.5%, and 18% water-filled pore space (WFPS) for soil samples from natural pasture, man-made pasture, paddy field of saline sodic soil mixed sandy soil, and paddy field of pure saline sodic soil, respectively. For a given moisture, NO fluxes increased exponentially with soil temperature at any given soil moisture. The optimum soil moisture for the maximum NO emission for a certain soil type, however, was constant and independent of soil temperature. The NO consumption processes for different land uses were similar in all studied saline sodic soils since the difference of NO consumption rate constant in these soils was small (ranged from 1.07 × 10-6 to 7.45 × 10-6 m3 kg-1 s-1). The NO emission potential for paddy field soils was about 1.2-2-fold higher than pasture soils. On the basis of laboratory results and field monitoring data of soil water content and soil temperature, the average NO fluxes from these saline sodic soils in the region were estimated to be 1.3-4.9 ng m-2 s-1 for an entire plant growth period. NO fluxes for pastures mainly occurred in the dry season and were about threefold higher than that for paddy fields, which was strongly influenced by field management.

  8. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

    PubMed

    Qadir, M; Oster, J D

    2004-05-05

    Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future

  9. Improving saline-sodic coalbed natural gas water quality using natural zeolites.

    PubMed

    Ganjegunte, Girisha K; Vance, George F; Gregory, Robert W; Urynowicz, Michael A; Surdam, Ronald C

    2011-01-01

    Management of saline-sodic water from the coalbed natural gas (CBNG) industry in the Powder River Basin (PRB) of Wyoming and Montana is a major environmental challenge. Clinoptilolie zeolites mined in Nevada, California, and New Mexico were evaluated for their potential to remove sodium (Na+) from CBNG waters. Based on the exchangeable cation composition, naturally occurring calcium (Ca2+)-rich zeolites from New Mexico were selected for further evaluation. Batch adsorption experiments were conducted to evaluate the potential of the Ca(2+)-rich natural clinoptilolites to remove Na+ from saline-sodic CBNG waters. Batch adsorption experiments indicated that Na+ adsorption capacity ofclinoptilolite ranged from 4.3 (4 x 6 mesh) to 7.98 g kg(-1) (14 x 40 mesh). Among the different adsorption isotherms investigated, the Freundlich Model fitted the data best for smaller-sized (6 x 8, 6 x 14, and 14 x 40 mesh) zeolites. Passing the CBNG water through Ca(2+)-rich zeolite columns reduced the salt content (electrical conductivity [EC]) by 72% with a concurrent reduction in sodium adsorption 10 mmol 1/2 L(-1/2). Zeolite technology appears to be an effective water treatment alternative to industrial membrane treatment for removing Na+ from poor-quality CBNG waters.

  10. Reclamation of highly calcareous saline-sodic soil using low quality water and phosphogypsum

    NASA Astrophysics Data System (ADS)

    Gharaibeh, M. A.; Rusan, M. J.; Eltaif, N. I.; Shunnar, O. F.

    2014-09-01

    The efficiency of two amendments in reclaiming saline sodic soil using moderately saline (EC) and moderate sodium adsorption ratio (SAR) canal water was investigated. Phosphogypsum (PG) and reagent grade calcium chloride were applied to packed sandy loam soil columns and leached with canal water (SAR = 4, and EC = 2.16 dS m-1). Phosphogypsum was mixed with top soil prior to leaching at application rates of 5, 10, 15, 20, 25, 35, 40 Mg ha-1, whereas calcium chloride was dissolved directly in water at equivalent rates of 4.25, 8.5, 12.75, 17.0, 21.25, 29.75, and 34 Mg ha-1, respectively. Both amendments efficiently reduced soil salinity and sodicity. Calcium chloride removed 90 % of the total Na and soluble salts whereas PG removed 79 and 60 %, respectively. Exchangeable sodium percentage was reduced by 90 % in both amendments. Results indicated that during cation exchange reactions most of the sodium was removed when effluent SAR was at maximum. Phosphogypsum has lower total costs than calcium chloride and as an efficient amendment an application of 30 Mg ha-1 and leaching with 4 pore volume (PV) of canal water could be recommended to reclaim the studied soil.

  11. Calcite Dissolution by Brevibacterium sp. SOTI06: A Futuristic Approach for the Reclamation of Calcareous Sodic Soils.

    PubMed

    Tamilselvi, S M; Thiyagarajan, Chitdeshwari; Uthandi, Sivakumar

    2016-01-01

    Assessing the ability of soil microorganisms to dissolute poorly soluble native calcite to supply Ca(2+) is a new area to be explored in reclaiming sodic soils by supplying adequate Ca(2+) and reducing the recurrent sodicity. Hence, the present study aimed to isolate a calcite dissolving bacteria (CDB) from calcareous sodic soils and to understand the mechanism of calcite dissolution. Of the 33 CDB isolates recovered from the calcareous sodic soils of Tamil Nadu (Coimbatore, Ramnad, and Trichy), 11 isolates were screened for calcite dissolution based on titratable acidity. 16S rRNA gene sequence analysis of the three best isolates viz., SORI09, SOTI05, and SOTI06 revealed 99% similarity to Bacillus aryabhattai, 100% to B. megaterium, and 93% to Brevibacterium sp., respectively. Among them, Brevibacterium sp. SOTI06 released more Ca(2+) (3.6 g.l(-1)) by dissolving 18.6% of the native calcite. The spectral data of FTIR also showed reduction in the intensity of calcite (55.36-41.27) by the isolate at a wave number of 1636 cm(-1) which confirmed the dissolution. Besides producing organic acids (gluconic acid and acetic acid), Brevibacterium sp. SOTI06 also produced siderophore (91.6%) and extracellular polysaccharides (EPS, 13.3 μg. ml(-1)) which might have enhanced the calcite dissolution.

  12. Calcite Dissolution by Brevibacterium sp. SOTI06: A Futuristic Approach for the Reclamation of Calcareous Sodic Soils

    PubMed Central

    Tamilselvi, S. M.; Thiyagarajan, Chitdeshwari; Uthandi, Sivakumar

    2016-01-01

    Assessing the ability of soil microorganisms to dissolute poorly soluble native calcite to supply Ca2+ is a new area to be explored in reclaiming sodic soils by supplying adequate Ca2+ and reducing the recurrent sodicity. Hence, the present study aimed to isolate a calcite dissolving bacteria (CDB) from calcareous sodic soils and to understand the mechanism of calcite dissolution. Of the 33 CDB isolates recovered from the calcareous sodic soils of Tamil Nadu (Coimbatore, Ramnad, and Trichy), 11 isolates were screened for calcite dissolution based on titratable acidity. 16S rRNA gene sequence analysis of the three best isolates viz., SORI09, SOTI05, and SOTI06 revealed 99% similarity to Bacillus aryabhattai, 100% to B. megaterium, and 93% to Brevibacterium sp., respectively. Among them, Brevibacterium sp. SOTI06 released more Ca2+ (3.6 g.l−1) by dissolving 18.6% of the native calcite. The spectral data of FTIR also showed reduction in the intensity of calcite (55.36–41.27) by the isolate at a wave number of 1636 cm−1 which confirmed the dissolution. Besides producing organic acids (gluconic acid and acetic acid), Brevibacterium sp. SOTI06 also produced siderophore (91.6%) and extracellular polysaccharides (EPS, 13.3 μg. ml−1) which might have enhanced the calcite dissolution. PMID:28008333

  13. Physical and hydric behavior of sand-bentonite mixtures subjected to salinity and sodicity constraints

    NASA Astrophysics Data System (ADS)

    Mohammed, Benkhelifa; Moulay, Belkhodja; Youcef, Daoud; Philippe, Cambier

    2015-04-01

    Data show that 64% of arid and 97% of those hyper-arid, in world, are located in Africa and Asia. Soils in these regions, predominantly sandy, differ from those of wetlands by properties related to moisture deficiency. Organic matter is less than 1% and cation exchange capacity does not exceed the meq.100 g-1 soil. Therefore, they are vulnerable to physical, chemical and biological degradation phenomena. Algeria is among the countries most affected since 95% of the area is arid and semi-arid. The addition of clay is an ancient technic used locally in Algeria in arid and semi-arid areas to improve water reserve and resistance to wind erosion of sandy soils. The literature reports that sandy soils amended with 10% of their dry weight in bentonite, registers a yield increases ranging from 10 to 40% depending on the crop. If works of the role of clay on the physical, chemical and hydric characteristics of sandy soils are relatively abundant, the effects of this mineral on the edaphic behavior of the substrate and the crops in abiotic conditions of salinity and sodicity remain insufficiently studied. These are related to an accumulation of soluble salts in the rhizosphere. In Algeria, 10 to 15% of irrigated land are affected by salinization. In this work, we studied the physical and hydric evolution of sand-clay mixtures subjected to abiotic stress of salinity and sodicity. Indeed, it is important to understand the scientific basis of clays properties, when they are added to the sand in order to optimize the characteristics of the blends and enhance this traditional amendment technic in the context where it is practiced in Algeria. The first result shows that bentonite modifies completely the physical and hydric properties of clay-sand mixtures. In addition to its beneficial effect on the hydration properties, it allows to attenuate the stress effects of salinity and sodicity observed on the properties of the mixture and the morphological properties of a bioindicator

  14. Salinity management using an anionic polymer in a pecan field with calcareous-sodic soil.

    PubMed

    Ganjegunte, Girisha K; Sheng, Zhuping; Braun, Robert J

    2011-01-01

    Soil salinity and sodicity have long been recognized as the major concerns for irrigated agriculture in the Trans-Pecos Basin, where fields are being flood irrigated with Rio Grande River water that has elevated salinity. Reclamation of these salt-affected lands is difficult due to fine-texture, high shrink-swell soils with low permeability. Conventional practice of subsoiling to improve soil permeability is expensive and has had limited success on the irrigated soils that have appreciable amounts of readily weatherable Ca minerals. If these native Ca sources can be effectively used to counter sodicity, it can improve soil permeability and reduce amelioration costs. This study evaluated the effects of 3 yr of polyacrylamide (PAM) application at 10 mg L concentration during the first irrigation of the season to evaluate soil permeability, in situ Ca mineral dissolution, and leaching of salts from the effective root zone in a pecan field of El Paso County, TX. Results indicated that PAM application improved water movement throughout the effective root zone that resulted in Na leaching. Polymer application significantly decreased CaCO (estimated based on inorganic C analysis) concentrations in the top 45 cm compared with baseline levels, indicating solubilization and redistribution of calcite. The PAM application also reduced soil electrical conductivity (EC) in the top 60 cm (4.64-2.76 dS m) and sodium adsorption ratio (SAR) from 13.1 to 5.7 mmol L in the top 75-cm depths. As evidence of improved soil conditions, pecan nut yields increased by 34% in PAM-treated fields over the control. Results suggested that PAM application helped in effective use of native Ca sources present in soils of the study site and reduced Na by improving soil permeability.

  15. Faunal diversity during rainy season in reclaimed sodic land of Uttar Pradesh, India.

    PubMed

    Singh, S K; Srivastava, S P; Tandon, Pankaj; Azad, B S

    2009-07-01

    Faunal diversity is an indicator of soil amelioration. Estimating the population size or density of an animal species in an area is fundamental to understand its status and demography and to plan for its management and conservation. Considering this, faunal diversity in reclamed sodic land was monitored during rainy season 2000-01 at different locations of district viz., Aligarh, Etah, Fatehpur, Mainpuri and Raebareli in Uttar Pradesh. The Shannon-Weiner species diversity index (H) of different fauna complex of each location was compared with zero years (1995-1996) indexes (before reclamation). Insects diversity index, in reclaimed sodic soil, varied from 3.8178 (Fatehpur: Bariyampur) to 4.623 (Fatehpur: Katoghan), which was 3.028 in zero year at Katoghan in Fatehpur 'H' index of other-arthropods ranged widely from 0.9743 (Etah: Bawali) to 2.0674 (Mainpuri: Pundari). The species diversity index of molluscs registered as high as 1.8637 at Ladhauwa site in Aligarh, which exhibited identical with Saripur site of Raebareli. 'H' index of mammal resulted with the highest (2.19) at Pundari in district Mainpuri. The avifauna and amphibian's indices were recovered maximal at Saripur site of Raebareli and Bariyampur site of Fatehpur respectively. Our result revealed that various fauna enriched with soil reclamation, which is good indicator of restoration of land, primarily due to soil-arthropods and earthworms and its eventual improvement along with succeeding rice-wheat cropping system widespread over there. It clearly shows that soil fauna strongly affects the composition of natural vegetation and we suggest that this knowledge might improve the restoration and conservation of biodiversity.

  16. Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil.

    PubMed

    Xu, Gang; Zhang, You; Sun, Junna; Shao, Hongbo

    2016-10-15

    Little is known about the interactive effects between biochar application and phosphorus (P) fertilization on plant growth and P uptake. For this purpose, five wheat straw biochars (produced at 25°C, 300°C, 400°C, 500°C and 600°C for 4h) with equal P (36mgkg(-1)) amount, with and without additional P fertilization (100mgkg(-1)) were applied in a pot experiment to investigate the growth of Suaeda salsa and their uptake of P from biochar and P fertilization amended saline sodic soil. Soil P fractions, dry matter yield, and plant P concentrations were determined after harvesting 90days. Our results confirmed that relatively lower pyrolysis temperature (<400°C) biochar retained P availability and increased plant growth. The plant P concentration was significantly correlated with NaHCO3-Pi (P<0.05), and NaOH-Pi (P<0.1) during early incubation time (4days) for biochar amended soil. As revealed by statistical analysis, a significant (P<0.05) negative (antagonistic) interaction occurred between biochar and P fertilization on the biomass production and plant P concentration. For plant biomass, the effects size of biochar (B), P, and their interaction followed the order of B×P (0.819)>B (0.569)≈P (0.568) based on the partial Eta squared values whereas the order changed as P (0.782)>B (0.562)>B×P (0.515) for plant P concentration. When biochar and P fertilization applied together, phosphate precipitation/sorption reaction occurred in saline sodic soil which explained the decreased plant P availability and plant yield in saline sodic soil. The negative interaction effects between biochar and P fertilization indicated limited utility value of biochar application in saline sodic soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Simulation and Prediction of Ion Transport in the Reclamation of Sodic Soils with Gypsum Based on the Support Vector Machine

    PubMed Central

    Wang, Jinman; Bai, Zhongke; Yang, Peiling

    2014-01-01

    The effect of gypsum on the physical and chemical characteristics of sodic soils is nonlinear and controlled by multiple factors. The support vector machine (SVM) is able to solve practical problems such as small samples, nonlinearity, high dimensions, and local minima points. This paper reports the use of the SVM regression method to predict changes in the chemical properties of sodic soils under different gypsum application rates in a soil column experiment and to evaluate the effect of gypsum reclamation on sodic soils. The research results show that (1) the SVM soil solute transport model using the Matlab toolbox represents the change in Ca2+ and Na+ in the soil solution and leachate well, with a high prediction accuracy. (2) Using the SVM model to predict the spatial and temporal variations in the soil solute content is feasible and does not require a specific mathematical model. The SVM model can take full advantage of the distribution characteristics of the training sample. (3) The workload of the soil solute transport prediction model based on the SVM is greatly reduced by not having to determine the hydrodynamic dispersion coefficient and retardation coefficient, and the model is thus highly practical. PMID:24757438

  18. The effect of chemical and organic amendments on sodium exchange equilibria in a calcareous sodic soil.

    PubMed

    Ranjbar, Faranak; Jalali, Mohsen

    2015-11-01

    In this study, the reclamation of a calcareous sodic soil with the exchangeable sodium percentage (ESP) value of 26.6% was investigated using the cheap and readily available chemical and organic materials including natural bentonite and zeolite saturated with calcium (Ca2+), waste calcite, three metal oxide nanoparticles functionalized with an acidic extract of potato residues, and potato residues. Chemical amendments were added to the soil at a rate of 2%, while potato residues were applied at the rates of 2 and 4% by weight. The ESP in the amended soils was reduced in the range of 0.9-4.9% compared to the control soil, and the smallest and the largest decline was respectively observed in treatments containing waste calcite and 4% of potato residues. Despite the reduction in ESP, the values of this parameter were not below 15% at the end of a 40-day incubation period. So, the effect of solutions of varying sodium adsorption ratio (SAR) values of 0, 5, 10, 20, 30, 40, and 50 on sodium (Na+) exchange equilibria was evaluated in batch systems. The empirical models (simple linear, Temkin, and Dubinin-Radushkevich) fitted well to experimental data. The relations of quantity to intensity (Q/I) revealed that the potential buffering capacity for Na+ (PBCNa) varied from 0.275 to 0.337 ((cmolc kg(-1)) (mmol L(-1))(-1/2)) in the control soil and amended soils. The relationship between exchangeable sodium ratio (ESR) and SAR was individually determined for the control soil and amended soils. The values of Gapon selectivity coefficient (KG) of Na+ differed from the value suggested by U.S. Salinity Laboratory (USSL). The PHREEQC, a geochemical computer program, was applied to simulate Na+ exchange isotherms by using the mechanistic cation exchange model (CEM) along with Gaines-Thomas selectivity coefficients. The simulation results indicated that Na+ exchange isotherms and Q/I and ESR-SAR relations were influenced by the type of counter anions. The values of K G increased in

  19. Two Generations of Sodic Metasomatism in an Allende Type B CAI

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2015-01-01

    Calcium-Aluminum rich inclusions (CAI) in Allende, along with other chondritic compo-nents, experienced variable amounts and types of alter-ation of their mineralogy and chemistry. In CAIs, one of the principal types of alteration led to the depo-sition of nepheline and sodalite. Here we extend initial obervations of alteration in an Allende CAI, focus-ing on occurences of nepheline and a nepheline-like phase with unusally high Ca (referred to as "calcic nepheline" in this abstract). Detailed petrographic and microchemical observations of alteration phases in an Allende Type B CAI (TS4) show that two separate generations of "nepheline", with very distinct composi-tions, crystallized around the margins and in the interi-or of this CAI. We use observations of micro-faults as potential temporal markers, in order to place constraints on the timing of alteration events in Allende. These observa-tions of micro-faulting that truncate and offset one gen-eration of "nepheline" indicate that some "nepheline" crystallized before incorporation of the CAI into the Allende parent-body. Some of the sodic metasomatism in some Allende CAIs occurred prior to Allende par-ent-body assembly. The earlier generation of "calcic-nepheline" has a very distinctive, calcium-rich compo-sition, and the second generation is low in calcium, and matches the compositions of nephelines found in near-by altered chondrules, and in the Allende matrix.

  20. Predicted Infiltration for Sodic/Saline Soils from Reclaimed Coastal Areas: Sensitivity to Model Parameters

    PubMed Central

    She, Dongli; Yu, Shuang'en; Shao, Guangcheng

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm3. A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ0 was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils. PMID:25197699

  1. Predicted infiltration for sodic/saline soils from reclaimed coastal areas: sensitivity to model parameters.

    PubMed

    Liu, Dongdong; She, Dongli; Yu, Shuang'en; Shao, Guangcheng; Chen, Dan

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm(3). A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ₀ was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils.

  2. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices

    PubMed Central

    Singh, Y.P.; Mishra, V.K.; Singh, Sudhanshu; Sharma, D.K.; Singh, D.; Singh, U.S.; Singh, R.K.; Haefele, S.M.; Ismail, A.M.

    2016-01-01

    Regaining the agricultural potential of sodic soils in the Indo-Gangetic plains necessitates the development of suitable salt tolerant rice varieties to provide an entry for other affordable agronomic and soil manipulation measures. Thus selection of high yielding rice varieties across a range of sodic soils is central. Evaluation of breeding lines through on-station and on-farm farmers’ participatory varietal selection (FPVS) resulted in the identification of a short duration (110–115 days), high yielding and disease resistant salt-tolerant rice genotype ‘CSR-89IR-8’, which was later released as ‘CSR43’ in 2011. Several agronomic traits coupled with good grain quality and market value contributed to commercialization and quick adoption of this variety in the sodic areas of the Indo-Gangetic plains of eastern India. Management practices required for rice production in salt affected soils are evidently different from those in normal soils and practices for a short duration salt tolerant variety differ from those for medium to long duration varieties. Experiments were conducted at the Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station, Lucknow, Uttar Pradesh, India during 2011 and 2013 wet seasons, to test the hypothesis that combining matching management practices (Mmp) with an improved genotype would enhance productivity and profitability of rice in sodic soils. Mmp were developed on-station by optimizing existing best management practices (Bmp) recommended for the region to match the requirements of CSR43. The results revealed that transplanting 4 seedlings hill−1 at a spacing of 15 × 20 cm produced significantly higher yield over other treatments. The highest additional net gain was US$ 3.3 at 90 kg ha−1 N, and the lowest was US$ 0.4 at 150 kg ha−1 N. Above 150 kg ha−1, the additional net gain became negative, indicating decreasing returns from additional N

  3. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices.

    PubMed

    Singh, Y P; Mishra, V K; Singh, Sudhanshu; Sharma, D K; Singh, D; Singh, U S; Singh, R K; Haefele, S M; Ismail, A M

    2016-04-01

    Regaining the agricultural potential of sodic soils in the Indo-Gangetic plains necessitates the development of suitable salt tolerant rice varieties to provide an entry for other affordable agronomic and soil manipulation measures. Thus selection of high yielding rice varieties across a range of sodic soils is central. Evaluation of breeding lines through on-station and on-farm farmers' participatory varietal selection (FPVS) resulted in the identification of a short duration (110-115 days), high yielding and disease resistant salt-tolerant rice genotype 'CSR-89IR-8', which was later released as 'CSR43' in 2011. Several agronomic traits coupled with good grain quality and market value contributed to commercialization and quick adoption of this variety in the sodic areas of the Indo-Gangetic plains of eastern India. Management practices required for rice production in salt affected soils are evidently different from those in normal soils and practices for a short duration salt tolerant variety differ from those for medium to long duration varieties. Experiments were conducted at the Indian Council of Agricultural Research-Central Soil Salinity Research Institute (ICAR-CSSRI), Regional Research Station, Lucknow, Uttar Pradesh, India during 2011 and 2013 wet seasons, to test the hypothesis that combining matching management practices (Mmp) with an improved genotype would enhance productivity and profitability of rice in sodic soils. Mmp were developed on-station by optimizing existing best management practices (Bmp) recommended for the region to match the requirements of CSR43. The results revealed that transplanting 4 seedlings hill(-1) at a spacing of 15 × 20 cm produced significantly higher yield over other treatments. The highest additional net gain was US$ 3.3 at 90 kg ha(-1) N, and the lowest was US$ 0.4 at 150 kg ha(-1) N. Above 150 kg ha(-1), the additional net gain became negative, indicating decreasing returns from additional N. Hence, 150

  4. Dust emission thresholds from sodic playas with varying geochemistry and environmental conditions

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; McKenna Neuman, C.; O'Brien, P.

    2014-12-01

    Sodic playa surfaces can be major sources of dust emission but their erodibility depends on the surface salt crust characteristics. Here we determine dust emission thresholds in a wind tunnel for 22 different crusts with varying concentrations of sodium sulphate and sodium chloride. Crusts mimic those on Sua Pan, in the Makgadikgadi Basin, Botswana, which is one of the biggest dust hot spots in the Southern Hemisphere. Crusts were grown by encouraging capillary processes and subjected to several weeks of diurnal temperature variation to enable the development of hydrated and dehydrated salt crystals, along with low density, 'fluffy' sediment beneath the primary (and in some cases, secondary) crust. Spray on crusts and liquefied crusts were also developed for response comparison. Using laser scanning we tracked surface change and crystal growth, which we link to crust type and evaporation rates. We found that under pre-dawn and early morning Sua Pan conditions, crusts were typically non-emissive, but during mid-day temperature and humidity conditions typical of Sua Pan in August and September (dry and peak dust emission season), several crusts became friable and highly emissive above wind velocities of 7 m/s, which agrees with in-situ field observations. Thenardite capillary crusts were the most emissive, in contrast to supply limited, halite liquefied crusts which were relatively stable. Disturbances, or small crust fractures, common on polygonal surface patterns decreased the dust emission threshold values and enabled emission from more stable crusts. Our study confirms the potential of playa surfaces to emit dust without the presence of saltation, and highlights the sensitivity of emission thresholds to crust geochemistry, evaporation rates and temperature and humidity conditions.

  5. Utilization of composted sugar industry waste (pressmud) to improve properties of sodic soil for rice cultivation.

    PubMed

    Seth, Rashi; Chandra, R; Kumar, Narendra; Tyagi, A K

    2005-07-01

    Sulphitation pressmud (SPM) and its composts were prepared by heap, pit, NADEP and vermicomposting methods and their effects were compared with soil properties and growth, yield and nutrient uptake by rice in a sodic soil under pot conditions. Application of 15 t ha(-1) SPM and its different composts significantly increased the plant height and dry matter accumulation at different intervals, grain and straw yields and N, P and K uptake by the crop over the control. NADEP compost of SPM alone recorded the maximum and significant plant height by 8.5 to 19.3% and plant dry matter by 14.6 to 32.8% over the raw SPM at different intervals. NADEP composts of SPM alone and SPM + rice straw were also found to be superior than raw SPM by recording 34.8 and 27.8% more grain yield respectively. The SPM composts prepared by NADEP and SPM by vermicomposting methods significantly accumulated higher N and K in rice grains and straw, while NADEP compost of SPM and SPM + rice straw recorded more P in grains and straw than raw SPM. Application of SPM and its composts reduced the pH, EC and bulk density of the soil after rice harvesting, though the reductions were not significant in comparison to the control. However, these treatments increased the soil organic C by 33.33 to 69.0%, available N by 41.4 to 74.8%, available P by 47.1 to 97.8%, available K by 11.8 to 59.2% and available S by 10.3 to 90.7% over the control. NADEP composts, in general, were found to be superior than the raw SPM and other composts in residual soil nutrient content after rice crop.

  6. Calculation of stability of sodic phases in high-pressure metapelites and observation of Sambagawa metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Kouketsu, Y.; Enami, M.

    2010-12-01

    P-T pseudosection analyses of high-pressure metapelites from several subduction related regions were carried out by using the computer program Perple_X 07 in order to determine the mineral equilibrium, particularly the stability of sodic phases, in the model system MnO-Na2O-K2O-CaO-FeO-MgO-Al2O3-SiO2-H2O. Metapelites from Sambagawa, Western Alps, New Caledonia, Greece, and South Tianshan were selected for these analyses. Although the occurrence of sodic pyroxene in these metapelite samples is free or very rare, all the samples are considered to have undergone high-pressure metamorphism under blueschist-eclogite facies conditions. The bulk rock compositions of these metapelites have relatively low XNa [=Na/(Al + Na)] values. Therefore, the rare occurrences of sodic pyroxene in these samples are possibly due to their characteristic bulk rock compositions, although this has not been proved yet. The calculation results for the stability of sodic phases under the blueschist and eclogite facies conditions indicate the following. (1) Sodic pyroxene in the studied metapelites is stable only under higher-pressure conditions of P > 2.5 GPa, although its stable P-T range increases toward the lower-pressure side with increasing XNa value of the bulk-rock composition. (2) Paragonite and glaucophane are stable throughout the wide XNa range of bulk-rock compositions of host rocks under the blueschist and quartz-eclogite facies conditions. (3) The stability field of paragonite enlarges with the presence of CO2 in the metamorphic fluid. Thus, the high stability of paragonite and glaucophane in metapelites and the close relationship between the stability of sodic pyroxene and the bulk-rock composition explain why omphacite-bearing metapelites are rarely found. Observations of Sambagawa metapelites were carried out on the basis of these results. In the Besshi region of the Sambagawa belt, quartz grains with a high residual pressure of up to 0.8 GPa extensively occur as inclusions in

  7. Use of mixed solid waste as a soil amendment for saline-sodic soil remediation and oat seedling growth improvement.

    PubMed

    Fan, Yuan; Ge, Tian; Zheng, Yanli; Li, Hua; Cheng, Fangqin

    2016-11-01

    Soil salinization has become a worldwide problem that imposes restrictions on crop production and food quality. This study utilizes a soil column experiment to address the potential of using mixed solid waste (vinegar residue, fly ash, and sewage sludge) as soil amendment to ameliorate saline-sodic soil and enhance crop growth. Mixed solid waste with vinegar residue content ranging from 60-90 %, sewage sludge of 8.7-30 %, and fly ash of 1.3-10 % was added to saline-sodic soil (electrical conductivity (EC1:5) = 1.83 dS m(-1), sodium adsorption ratio (SAR1:5) = 129.3 (mmolc L(-1))(1/2), pH = 9.73) at rates of 0 (control), 130, 260, and 650 kg ha(-1). Results showed that the application of waste amendment significantly reduced SAR, while increasing soil soluble K(+), Ca(2+), and Mg(2+), at a dose of 650 kg ha(-1). The wet stability of macro-aggregates (>1 mm) was improved 90.7-133.7 % when the application rate of amendment was greater than 260 kg ha(-1). The application of this amendment significantly reduced soil pH. Germination rates and plant heights of oats were improved with the increasing rate of application. There was a positive correlation between the percentage of vinegar residue and the K/Na ratio in the soil solutions and roots. These findings suggest that applying a mixed waste amendment (vinegar residue, fly ash, and sewage sludge) could be a cost-effective method for the reclamation of saline-sodic soil and the improvement of the growth of salt-tolerant plants.

  8. Effect of inorganic nitrogenous fertilizer on productivity of recently reclaimed saline sodic soils with and without biofertilizer.

    PubMed

    Mehdi, S M; Sarfraz, M; Shabbir, G; Abbas, G

    2007-07-15

    Saline sodic soils after reclamation become infertile due to leaching of most of the nutrients along with salts from the rooting medium. Microbes can play a vital role in the productivity improvement of such soils. In this study a saline sodic field having EC, 6.5 dS m(-1), pH, 9.1 and gypsum requirement (GR) 3.5 tons acre(-1) was reclaimed by applying gypsum at the rate of 100% GR. Rice and wheat crops were transplanted/sown for three consecutive years. Inorganic nitrogenous fertilizer was used with and without biofertilizers i.e., Biopower (Azospirillum) for rice and diazotroph inoculums for wheat. Nitrogen was applied at the rate of 0, 75% of recommended dose (RD), RD, 125% of RD and 150% of RD. Recommended dose of P without K was applied to all the plots. Biopower significantly improved Paddy and straw yield of rice over inorganic nitrogenous fertilizer. In case of wheat diazotroph inoculum improved grain and straw yield significantly over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for rice and wheat production in recently reclaimed soils. Nitrogen concentration and its uptake by paddy, grain and straw were also increased by biopower and diazotroph inoculum over inorganic nitrogenous fertilizer. Among N fertilizer rates, RD + 25% additional N fertilizer was found to be the best dose for nitrogen concentration and its uptake by paddy, grain and straw. Total soil N, available P and extractable K were increased while salinity/sodicity parameters were decreased with the passage of time. The productivity of the soil was improved more by biofertilizers over inorganic N fertilizers.

  9. Coupled Electrokinetics-Adsorption Technique for Simultaneous Removal of Heavy Metals and Organics from Saline-Sodic Soil

    PubMed Central

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils. PMID:24235885

  10. Restoration of sodic soils involving chemical and biological amendments and phytoremediation by Eucalyptus camaldulensis in a semiarid region.

    PubMed

    Seenivasan, R; Prasath, V; Mohanraj, R

    2015-06-01

    Salt-affected soils in semiarid regions impede the agricultural productivity and degrade the ecosystem health. In South India, several hectares of land are salt-affected, where the evapotranspiration exceeds the annual precipitation. This study is an attempt to ameliorate sodic soils, by an experiment involving chemical treatment (addition of gypsum), organic amendments (decomposed bagasse pith and green manuring with Sesbania rostrata) and phytoremediation by plantation of Eucalyptus camaldulensis. The prime focus is to minimize the use of gypsum and improve the soil health in terms of nutrients, microbial population and enzyme activity in addition to sodicity reclamation. At the end of the third year, a reduction of 10 % in soil pH, 33 % in electrical conductivity and 20 % in exchangeable sodium percentage was achieved compared to the initial values. Three- to fourfold increases in organic carbon content were observed. Significant improvement in the available major and micronutrients of soil, microbial growth and enzyme activity was observed, suggesting phytoremediation by E. camaldulensis as a sustainable option for restoration of similar kind of degraded lands.

  11. Impact of long and short term irrigation of a sodic soil with distillery effluent in combination with bioamendments.

    PubMed

    Kaushik, A; Nisha, R; Jagjeeta, K; Kaushik, C P

    2005-11-01

    The study reports the effects of irrigation of a sodic soil with post methanation effluent (PME) of a distillery. Impact of long term effluent irrigation in the field (10 years) and short term effluent irrigation using different doses of PME in the laboratory (30 days) was studied in combination with three bioamendments i.e. farmyard manure, brassica residues and rice husk. Impact on various soil properties like EC, pH, total organic carbon (TOC), total Kjeldahl nitrogen (TKN), available phosphorus, exchangeable K, Na, Ca, Cl, microbial population and soil enzyme activities were studied. Long term application of PME proved useful in significantly increasing TOC, TKN, K, P and soil enzymatic activities in the soil but tended to build up harmful concentration of Na, that could be chelated by bioamendments. In short terms studies, application of 50% PME along with bioamendments proved to be the most useful in improving the properties of sodic soil and also favoured successful germination and improved seedling growth of pearl millet.

  12. Bacteria in combination with fertilizers promote root and shoot growth of maize in saline-sodic soil

    PubMed Central

    Zafar-ul-Hye, Muhammad; Farooq, Hafiz Muhammad; Hussain, Mubshar

    2015-01-01

    Salinity is the leading abiotic stress hampering maize ( Zea mays L.) growth throughout the world, especially in Pakistan. During salinity stress, the endogenous ethylene level in plants increases, which retards proper root growth and consequent shoot growth of the plants. However, certain bacteria contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which converts 1-aminocyclopropane-1-carboxylic acid (an immediate precursor of ethylene biosynthesis in higher plants) into ammonia and α-ketobutyrate instead of ethylene. In the present study, two Pseudomonas bacterial strains containing ACC-deaminase were tested separately and in combinations with mineral fertilizers to determine their potential to minimize/undo the effects of salinity on maize plants grown under saline-sodic field conditions. The data recorded at 30, 50 and 70 days after sowing revealed that both the Pseudomonas bacterial strains improved root and shoot length, root and shoot fresh weight, and root and shoot dry weight up to 34, 43, 35, 71, 55 and 68%, respectively, when applied without chemical fertilizers: these parameter were enhanced up to 108, 95, 100, 131, 100 and 198%, respectively, when the strains were applied along with chemical fertilizers. It can be concluded that ACC-deaminase Pseudomonas bacterial strains applied alone and in conjunction with mineral fertilizers improved the root and shoot growth of maize seedlings grown in saline-sodic soil. PMID:26221093

  13. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil.

    PubMed

    Lukman, Salihu; Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Bukhari, Alaadin

    2013-01-01

    In situ remediation technologies for contaminated soils are faced with significant technical challenges when the contaminated soil has low permeability. Popular traditional technologies are rendered ineffective due to the difficulty encountered in accessing the contaminants as well as when employed in settings where the soil contains mixed contaminants such as petroleum hydrocarbons, heavy metals, and polar organics. In this study, an integrated in situ remediation technique that couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the efficiency of contaminant removal. For the 21-day period of continuous electrokinetics-adsorption experimental run, efficiency for the removal of Zn, Pb, Cu, Cd, Cr, Hg, phenol, and kerosene was found to reach 26.8, 55.8, 41.0, 34.4, 75.9, 92.49, 100.0, and 49.8%, respectively. The results obtained suggest that integrating adsorption into electrokinetic technology is a promising solution for removal of contaminant mixture from saline-sodic soils.

  14. Bacteria in combination with fertilizers promote root and shoot growth of maize in saline-sodic soil.

    PubMed

    Zafar-Ul-Hye, Muhammad; Farooq, Hafiz Muhammad; Hussain, Mubshar

    2015-03-01

    Salinity is the leading abiotic stress hampering maize ( Zea mays L.) growth throughout the world, especially in Pakistan. During salinity stress, the endogenous ethylene level in plants increases, which retards proper root growth and consequent shoot growth of the plants. However, certain bacteria contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which converts 1-aminocyclopropane-1-carboxylic acid (an immediate precursor of ethylene biosynthesis in higher plants) into ammonia and α-ketobutyrate instead of ethylene. In the present study, two Pseudomonas bacterial strains containing ACC-deaminase were tested separately and in combinations with mineral fertilizers to determine their potential to minimize/undo the effects of salinity on maize plants grown under saline-sodic field conditions. The data recorded at 30, 50 and 70 days after sowing revealed that both the Pseudomonas bacterial strains improved root and shoot length, root and shoot fresh weight, and root and shoot dry weight up to 34, 43, 35, 71, 55 and 68%, respectively, when applied without chemical fertilizers: these parameter were enhanced up to 108, 95, 100, 131, 100 and 198%, respectively, when the strains were applied along with chemical fertilizers. It can be concluded that ACC-deaminase Pseudomonas bacterial strains applied alone and in conjunction with mineral fertilizers improved the root and shoot growth of maize seedlings grown in saline-sodic soil.

  15. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.

  16. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  17. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  18. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  19. Geochemistry and tectonic setting of alkaline volcanic rocks in the Antarctic Peninsula: A review

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.

    1987-06-01

    The numerous Miocene-Recent alkaline volcanic outcrops in the Antarctic Peninsula form a substantial volcanic province, the least well-known part of a major belt of alkaline volcanism that extends between South America and New Zealand. The outcrops consists mainly of aa and pahoehoe lavas and hyaloclastites which locally contain accidental nodules of spinel lherzolite and other mantle-derived lithologies. The province is predominantly basaltic with two major differentiation lineages: (1) a sodic series of olivine and alkali basalt, hawaiite, mugearite, trachy-phonolite and trachyte; and (2) a relatively potassic, highly undersaturated series of basanite, tephrite and phono-tephrite. All the lavas show varying effects of fractionation by crystallization of olivine and clinopyroxene, joined by plagioclase in the hawaiites to trachytes. Fractional crystallization can probably explain most of the chemical variation observed within each outcrop, but variable partial melting is necessary to account for the differences in incompatible element enrichment between the two series, and between the individual outcrops. The degree of partial melting may not have exceeded 3%, as is the case for many other alkaline magmas. The volcanism is an intraplate phenomenon but there is no correlation in timing between the cessation of subduction and the inception of alkaline volcanism. The activity cannot be related to the passage of the coupled Pacific-Antarctic plate over a stationary mantle hot-spot. Although the precise causal relationship with tectonic setting is unknown, regional extension was a prerequisite for giving the magmas rapid access to the surface.

  20. Alkaline battery operational methodology

    SciTech Connect

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  1. Influence of Organic Amendment and Compaction on Nutrient Dynamics in a Saturated Saline-Sodic Soil from the Riparian Zone.

    PubMed

    Miller, J J; Bremer, E; Curtis, T

    2016-07-01

    Cattle grazing in wet riparian pastures may influence nutrient dynamics due to nutrient deposition in feces and urine, soil compaction, and vegetation loss. We conducted a lab incubation study with a saline-sodic riparian soil to study nutrient (N, P, S, Fe, Mn, Cu, and Zn) dynamics in soil pore water using Plant Root Simulator (PRS) probes and release of nutrients into the overlying ponded water during flooding. The treatment factors were organic amendment (manure, roots, and unamended control), compaction (compacted, uncompacted), and burial time (3, 7, and 14 d). Amendment treatment had the greatest impact on nutrient dynamics, followed by burial time, whereas compaction had little impact. The findings generally supported our hypothesis that organic amendments should first increase nitrate loss, then increase Mn mobility, then Fe mobility and associated release of P, and finally increase sulfate loss. Declines in nitrate due to amendment addition were small because nitrate was at low levels in all treatments due to high denitrification potential instead of being released to soil pore water or overlying water. Addition of organic amendment strongly increased Mn and Fe concentrations in overlying water and of adsorbed Fe on PRS probes but only increased Mn on PRS probes on Day 3 due to subsequent displacement from ion exchange membranes. Transport of P to overlying water was increased by organic amendment addition but less so for manure than roots despite higher P on PRS probes. The findings showed that saline-sodic soils in riparian zones are generally a nutrient source for P and are a nutrient sink for N as measured using PRS probes after 3 to 7 d of flooding.

  2. Mineral associations produced by sodic-calcic hydrothermal alteration in the Buffalo Mountain pluton, north-central Nevada

    SciTech Connect

    McBride, D. . Dept. of Geology and Geography)

    1993-03-01

    Sodic-calcic (Na-Ca) hydrothermal alteration is prevalent throughout Mesozoic-age arc igneous rocks in the western US. The middle Jurassic Buffalo Mountain pluton, located in north-central Nevada, contains particularly well developed Na-Ca metasomatism. The Buffalo Mountain pluton is composed of porphyritic syenite, quartz monzonite, small bordering stocks (which account for less than 1% of the pluton), and an extensive felsic dike swarm. Quartz monzonite intruded syenite and constitutes the majority of the surface area. Unaltered porphyritic syenite is composed of perthite, plagioclase, quartz, augite, hornblende, biotite, olivine, magnetite, and other minerals accounting for less than 1% of the rock. Unaltered quartz monzonite is an aggregate of K-feldspar, plagioclase, quartz, biotite, hornblende, and accessory minerals accounting for less than 1% of the rock. The dikes cut both phases of the total intrusive rock body and are closely related in space to zones of Na-Ca alteration. Alteration variably affects all igneous rock types and exists as both fracture-controlled and pervasive Na-Ca alteration. Sodic-calcic alteration resulted in the following mineral reactions: K-feldspar is replaced by chalky-colored plagioclase, and primary mafic minerals react to form pale green diopside or, less commonly, actinolite. Garnet, scapolite, and epidote are often spatially associated with Na-Ca altered rocks. The fact that Na-Ca alteration occurs most commonly in and around dikes suggests that they might have been the source of channel for fluid entry into the surrounding igneous rocks. Further study will seek to constrain the origins and pathways of Na-Ca fluids.

  3. Hydrogeochemistry of Lake Turkana, Kenya: Mass balance and mineral reactions in an alkaline lake

    NASA Astrophysics Data System (ADS)

    Yuretich, Richard F.; Cerling, Thure E.

    1983-06-01

    Lake Turkana, in northwestern Kenya, is a closed-basin, alkaline ( pH = 9.2) lake of moderate salinity ( TDS = 2500 ppm). Principal ions are Na +, HCO -3 and CI -. The lake is essentially polymictic in the northern basin and little compositional variation occurs in surface waters. The Omo River is the principal influent, providing some 80-90% of water input to the lake. Chloride has an apparent accumulation time of about 2500 years after accounting for burial of interstitial water. The bottom sediments are predominantly detrital and fine-grained, yet mineral-water reactions are very important for the geochcmical budget. Ca 2+ is precipitated as calcite; Na + is removed as an exchangeable cation on smectite; Mg 2+ is probably incorporated into a Mg-silicate phase, most likely poorlycrystalline smectite, as it enters the lake water; K + may be used in illite regradation. Cation exchange is a very important process in the mass balance of this lake. Over 40% of incoming Na is removed as an exchangeable cation. After cation exchange and interstitial water burial, Na has a response time of 2650 years, which compares favorably with that of chloride. These processes seem to occur rapidly within the water mass of the lake: other reactions may be important in regulating interstitial water compositions. Several changes occur in the upper 3m of sediment: interstitial-water pH drops to 8.3 and alkalinity increases slightly with depth, SO 2-4 decreases slightly, and amorphous silica saturation is approached. These changes are a response to organic matter oxidation and the dissolution of unstable silicates rather than a reversal of reactions occurring in the lake water. High rates of sedimentation (up to 1 cm per year) may minimize the effects of diffusion between the interstitial waters and the lake water, although burial of interstitial water assumes considerable importance.

  4. Volcanic cycles and setting in the Neoproterozoic III to Ordovician Camaquã Basin succession in southern Brazil: characteristics of post-collisional magmatism

    NASA Astrophysics Data System (ADS)

    Wildner, W.; Lima, E. F.; Nardi, L. V. S.; Sommer, C. A.

    2002-11-01

    The Camaquã Basin comprises a volcano-sedimentary succession, located in southernmost Brazil, and represents a molasse basin formed at the post-collisional stage of the Brasiliano/Pan-African orogenic cycle in the Neoproterozoic III to Ordovician period. This basin is one of the most well-preserved ancient volcano-sedimentary sequences undeformed and unmetamorphic in the world, dominantly developed on a continental setting under subaerial conditions. It is composed of five major stratigraphic units, four of them with a distinct volcanic character from the bottom to the top, as: (1) Maricá; (2) Bom Jardim; (3) Acampamento Velho; (4) Santa Bárbara; and (5) Guaritas Allogroups. A concise sight of geochemical and isotopic rock data is presented, as well as stratigraphic correlation and description of rock structures and textures that lead to the identification of their genetic processes, the aim of this paper, indicating a relation with a coeval plutonism, and volcanism that evolved from high-K calc-alkaline to shoshonitic and ended with a silica-saturated sodic alkaline magmatism, with a crustal component represented by peraluminous granites. Volcanic deposits from bottom to top are made mostly of volcanogenic sedimentary deposits, succeeded by basic to intermediate lava and pyroclastic flows of shoshonitic affinity, followed by intermediate and acid lava flows and ignimbrites of sodic alkaline affinity. The last volcanic event is represented by basalt pahoehoe flows, probably of mildly alkaline sodic affinity.

  5. Alkaline phosphatase: an overview.

    PubMed

    Sharma, Ujjawal; Pal, Deeksha; Prasad, Rajendra

    2014-07-01

    Alkaline phosphatase (ALP; E.C.3.I.3.1.) is an ubiquitous membrane-bound glycoprotein that catalyzes the hydrolysis of phosphate monoesters at basic pH values. Alkaline phosphatase is divided into four isozymes depending upon the site of tissue expression that are Intestinal ALP, Placental ALP, Germ cell ALP and tissue nonspecific alkaline phosphatase or liver/bone/kidney (L/B/K) ALP. The intestinal and placental ALP loci are located near the end of long arm of chromosome 2 and L/B/K ALP is located near the end of the short arm of chromosome 1. Although ALPs are present in many mammalian tissues and have been studied for the last several years still little is known about them. The bone isoenzyme may be involved in mammalian bone calcification and the intestinal isoenzyme is thought to play a role in the transport of phosphate into epithelial cells of the intestine. In this review, we tried to provide an overview about the various forms, structure and functions of alkaline phosphatase with special focus on liver/bone/kidney alkaline phosphatase.

  6. Identification of mega-environments and rice genotypes for general and specific adaptation to saline and alkaline stresses in India.

    PubMed

    Krishnamurthy, S L; Sharma, P C; Sharma, D K; Ravikiran, K T; Singh, Y P; Mishra, V K; Burman, D; Maji, B; Mandal, S; Sarangi, S K; Gautam, R K; Singh, P K; Manohara, K K; Marandi, B C; Padmavathi, G; Vanve, P B; Patil, K D; Thirumeni, S; Verma, O P; Khan, A H; Tiwari, S; Geetha, S; Shakila, M; Gill, R; Yadav, V K; Roy, S K B; Prakash, M; Bonifacio, J; Ismail, Abdelbagi; Gregorio, G B; Singh, Rakesh Kumar

    2017-08-11

    In the present study, a total of 53 promising salt-tolerant genotypes were tested across 18 salt-affected diverse locations for three years. An attempt was made to identify ideal test locations and mega-environments using GGE biplot analysis. The CSSRI sodic environment was the most discriminating location in individual years as well as over the years and could be used to screen out unstable and salt-sensitive genotypes. Genotypes CSR36, CSR-2K-219, and CSR-2K-262 were found ideal across years. Overall, Genotypes CSR-2K-219, CSR-2K-262, and CSR-2K-242 were found superior and stable among all genotypes with higher mean yields. Different sets of genotypes emerged as winners in saline soils but not in sodic soils; however, Genotype CSR-2K-262 was the only genotype that was best under both saline and alkaline environments over the years. The lack of repeatable associations among locations and repeatable mega-environment groupings indicated the complexity of soil salinity. Hence, a multi-location and multi-year evaluation is indispensable for evaluating the test sites as well as identifying genotypes with consistently specific and wider adaptation to particular agro-climatic zones. The genotypes identified in the present study could be used for commercial cultivation across edaphically challenged areas for sustainable production.

  7. [Advances of alkaline amylase production and applications].

    PubMed

    Yang, Haiquan; Liu, Long; Li, Jianghua; Du, Guocheng; Chen, Jian

    2012-04-01

    Alkaline amylase is one of alkaline enzymes with optimum pH in the alkaline range, and it could keep stability and efficiently hydrolyze starch under alkaline conditions. Alkaline amylase finds wide applications in textile, detergent, pharmaceutical, food and other fields. Alkaline amylases could be produced by alkaliphilic microorganisms. In this work, the advances of alkaline amylase production and applications were reviewed.

  8. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  9. Ultra Sodic gedrite and micro-scale metasomatic processes in granulitised kyanite eclogites from the Rhodope UHPM Province, Greece

    NASA Astrophysics Data System (ADS)

    Moulas, Evangelos; Kostopoulos, Dimitrios K.; Connolly, James A. D.; Burg, Jean-Pierre

    2010-05-01

    kyanite shows that the stability of these domains is sensitive to the effective local chemical composition; in addition, analysis of phase relationships demonstrated the existence of the observed assemblages at pressures lower than 1.3GPa. The orthoamphibole identified in the garnet corona is sodic gedrite and classifies amongst the most sodic compositions published in the literature. Sodic gedrite is a phase commonly found in high-temperature metamorphosed rocks. The mechanism responsible for the incorporation of sodium in gedrite is the extensive edenite substitution: [|_|(A)+Si(T)=Na(A)+Al(T)]. Zircon U/Pb geochronology using SHRIMP II revealed an Eocene (42Ma) age for zircon recrystallisation. We suggest that the latter occurred during granulitisation. This age is in agreement with a coeval age obtained for apophyses of the huge Skaloti granitic batholith occurring in the area and is consistent with the evolutionary history of the Rhodope Massif undergoing general exhumation and crustal collapse in Eocene times.

  10. Low temperature synthesis of {tau}-zirconium hydrogenophosphate [{tau}-Zr(HPO{sub 4}){sub 2}] and a new sodic form obtained by ion exchange

    SciTech Connect

    Fernandez-Valverde, Suilma M.; Contreras-Ramirez, Aida; Ordonez-Regil, Eduardo; Fernandez-Garcia, M. Eufemia; Perez-Alvarez, Mario

    2013-02-15

    A new method for the synthesis of 3-D {tau}-zirconium hydrogenophosphate (TZP) was developed using solid-state reactions at low temperature and atmospheric pressure in a nitrogen atmosphere in a two-hour reaction time. The characterization of the compound was performed using X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, differential scanning calorimetric, thermochemical analysis and X-ray photoelectron spectroscopy. A sodic form of the compound obtained by the immersion of TZP in a sodium hydroxide solution was characterized using the same techniques along with neutron activation analysis. The XPS spectra confirm the binding energy value for sodium-oxygen, and the XRD diffraction reveals the formation of a new sodium compound. - Graphical abstract: DRX, XPS and MEB of {tau}-zirconium hydrogenophosphate and its sodic form on the surface of TZP. Highlights: Black-Right-Pointing-Pointer New method for the syntheses of 3-D {tau}-zirconium hydrogenophosphate (TZP). Black-Right-Pointing-Pointer A sodic form of the TZP was obtained by the immersion of TZP in a sodium hydroxide. Black-Right-Pointing-Pointer The sodium compound is only formed on the TZP surface.

  11. Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean.

    PubMed

    Tuyen, D D; Lal, S K; Xu, D H

    2010-07-01

    Salt-affected soils are generally classified into two main categories, sodic (alkaline) and saline. Our previous studies showed that the wild soybean accession JWS156-1 (Glycine soja) from the Kinki area of Japan was tolerant to NaCl salt, and the quantitative trait locus (QTL) for NaCl salt tolerance was located on soybean linkage group N (chromosome 3). Further investigation revealed that the wild soybean accession JWS156-1 also had a higher tolerance to alkaline salt stress. In the present study, an F(6) recombinant inbred line mapping population (n = 112) and an F(2) population (n = 149) derived from crosses between a cultivated soybean cultivar Jackson and JWS156-1 were used to identify QTL for alkaline salt tolerance in soybean. Evaluation of soybean alkaline salt tolerance was carried out based on salt tolerance rating (STR) and leaf chlorophyll content (SPAD value) after treatment with 180 mM NaHCO(3) for about 3 weeks under greenhouse conditions. In both populations, a significant QTL for alkaline salt tolerance was detected on the molecular linkage group D2 (chromosome 17), which accounted for 50.2 and 13.0% of the total variation for STR in the F(6) and the F(2) populations, respectively. The wild soybean contributed to the tolerance allele in the progenies. Our results suggest that QTL for alkaline salt tolerance is different from the QTL for NaCl salt tolerance found previously in this wild soybean genotype. The DNA markers closely associated with the QTLs might be useful for marker-assisted selection to pyramid tolerance genes in soybean for both alkaline and saline stresses.

  12. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  13. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. Copyright © 2015, American Association for the Advancement of Science.

  14. Fresh water leaching of alkaline bauxite residue after sea water neutralization.

    PubMed

    Menzies, Neal W; Fulton, Ian M; Kopittke, Rosemary A; Kopittke, Peter M

    2009-01-01

    Processing of bauxite to extract alumina produces a strongly alkaline waste, bauxite refining residue, which is commonly stored in engineered structures. Once full, these waste dumps must be revegetated. In many alumina refineries, the waste is separated into fine-textured red mud and coarse-textured residue sand (RS). The sand component has physical characteristics that make it a suitable plant growth medium, provided the adverse chemical characteristics can be addressed. Neutralization of the highly saline-sodic RS with sea water lowers pH, reduces Na saturation, and adds plant nutrients. However, sea water-neutralized RS remains saline sodic and needs fresh water leaching before use as a plant growth medium. Columns containing sea water-neutralized RS were leached with 30 m depth-equivalent of fresh water to evaluate the effects of rainfall on the RS and its leachate. Entrained cations were rapidly displaced by the fresh water, lowering salinity to non-plant-limiting levels (< or =0.3 dS m(-1)). The percentage of the effective cation exchange capacity (ECEC) saturated by Na decreased from 71 to 62% due to a reduction in soil solution ionic strength (causing a decrease in the ECEC) and the preferential displacement of Na(+) (and K(+)) from the exchange. Fresh water leaching increased pH (leachate pH increased from 8.0 to 10.1). This pH increase is attributed to the slow dissolution of the Na-containing mineral sodalite. Under the current experimental conditions, the application of 30 m depth-equivalent of leaching reduced the total RS sodalite content by <10%.

  15. Phase equilibria along a basalt-rhyolite mixing line: implications for the origin of calc-alkaline intermediate magmas

    NASA Astrophysics Data System (ADS)

    Ussler, William; Glazner, Allen F.

    1989-02-01

    One-atmosphere, anhydrous phase equilibria determined for alkali basalt/high-silica rhyolite mixtures provide a model for crystallization of natural calc-alkaline mixed magmas. The compositional trend defined by these mixtures mimics the trends of many continental calc-alkaline volcanic suites. As with many naturally occurring suites, the mixtures studied straddle the low-pressure olivine-plagioclase-augite thermal divide. Magma mixing provides a convenient method for magmas to cross this thermal divide in the absence of magnetite crystallization. For the mixtures, Mg-rich olivine (Fo82 87) coexists alone with liquid over an exceptionally large range of temperature and silica content (up to 63 wt% SiO2). This indicates that the Mg-rich olivines found in many andesites and dacites are not necessarily out of equilibrium with the host magma, as is commonly assumed. Such crystals may be either primary phenocrysts, or inherited phenocrysts derived from a mafic magma that mixed with a silicic magma. For the bulk compositions studied, the distribution of Fe and Mg between olivine and liquid ( K D ) is equal to 0.3 and is independent of temperature and composition. This result extends to silicic andesites the applicability of K D arguments for tests of equilibrium between olivine and groundmass and for modeling of fractional crystallization. In contrast, the distribution of calcium and sodium between plagioclase and liquid varies significantly with temperature and composition. Therefore, plagioclase-liquid K D s cannot be used for fractional crystallization modeling or as a test of equilibrium. Calcic plagioclase from a basalt will be close to equilibrium with andesitic mixtures, but sodic plagioclase from a rhyolite will be greatly out of equilibrium. This explains the common observation that calcic plagioclase crystals in hybrid andesites are generally close to textural equilibrium with the surrounding groundmass, but sodic plagioclase crystals generally show remelting

  16. Crystallization Pressures of Alkaline Magmas of the Kula Volcanic Province, Western Turkey

    NASA Astrophysics Data System (ADS)

    Solpuker, U.; Kilinc, A. I.

    2013-12-01

    PProducts of Quaternary sodic alkaline volcanism in western Anatolia is mainly observed around Kula region. The Kula Volcanic Province experienced three episodes of alkaline volcanism. We used the MELTS algorithm to model the evolution path of the Kula magmas by imposing fractional crystallization as a constraint and retrieved the initial system pressure using clinopyroxene geobarometer. We showed that the use of clinopyroxene geobarometer and the MELTS algorithm in combination can be used to estimate the initial water content of magma and the oxygen fugacity of the system. Pressure estimates for the most of the clinopyroxenes are between 12 to 7 kbar. The estimated crystallization temperatures decrease from the first episode to the third episode. The first episode magmas crystallized around Moho but the crystallization depths of the later episode magmas can increase up to 15-20 km below Moho. The calculated crystallization temperatures decrease from the first episode to the third episode. Isobaric fractional crystallization modeling using the MELTS algorithm constrained the fractionation conditions of Kula magmas. The initial water content of the magmas decreases from the first episode (4 wt.%) to third episode (2 wt. %). Under hydrous conditions and oxygen fugacity equals to QFM+2, up to 26 wt % fractional crystallization of olivine, clinopyroxene, spinel and apatite is required to generate the compositional diversity of the KVP magmas.

  17. Exchangeable Sodium Percentage decrease in saline sodic soil after Basic Oxygen Furnace Slag application in a lysimeter trial.

    PubMed

    Pistocchi, Chiara; Ragaglini, Giorgio; Colla, Valentina; Branca, Teresa Annunziata; Tozzini, Cristiano; Romaniello, Lea

    2017-05-10

    The Basic Oxygen Furnace Slag results from the conversion of hot metal into steel. Some properties of this slag, such as the high pH or calcium and magnesium content, makes it suitable for agricultural use as a soil amendment. Slag application to agricultural soils is allowed in some European countries, but to date there is no common regulation in the European Union. In Italy soils in coastal areas are often affected by excess sodium, which has several detrimental effects on the soil structure and crop production. In this study, carried out within an European project, the ability of the Basic Oxygen Furnace Slag to decrease the soil Exchangeable Sodium Percentage of a sodic soil was evaluated. A three-year lysimeter trial with wheat and tomato crops was carried out to assess the effects of two slag doses (D1, 3.5 g kg(-1)year(-1) and D, 2, 7 g kg(-1)year(-1)) on exchangeable cations in comparison with unamended soil. In addition, the accumulation in the topsoil of vanadium and chromium, the two main trace metals present in the Basic Oxygen Furnace Slag, was assessed. After two years, the soil Exchangeable Sodium Percentage was reduced by 40% in D1 and 45% in D2 compared to the control. A concomitant increase in exchangeable bivalent cations (Ca(++) and Mg(++)) was observed. We concluded that bivalent cations supplied with the slag competed with sodium for the sorption sites in the soil. The slag treatments also had a positive effect on tomato yields, which were higher than the control. Conversely the wheat yield was lower in the slag-amended soil, possibly because of the toxicity of vanadium added with the slag. This study showed that Basic Oxygen Furnace Slag decreased the Exchangeable Sodium Percentage, but precautions are needed to avoid the build up of toxic concentrations of trace metals in the soil, especially vanadium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  19. Field-Scale Spatial Variation of Saline-Sodic Soil and Its Relation with Environmental Factors in Western Songnen Plain of China

    PubMed Central

    Yang, Fan; Zhang, Guangxin; Yin, Xiongrui; Liu, Zhijun

    2011-01-01

    The objectives of this study were to investigate the degree of spatial variability and variance structure of salinization parameters using classical and geostatistical method in Songnen Plain of China, which is one of largest saline-sodic areas in the World, and to analyze the relationship between salinization parameters, including soil salinity content (SC), electrical conductivity (EC), sodium adsorption ratio (SAR), and pH, and seven environmental factors by Pearson and stepwise regression analysis. The environmental factors were ground elevation, surface ponding time, surface ponding depth, and soil moistures at four layers (0–10 cm, 10–30 cm, 30–60 cm, and 60–100 cm). The results indicated that SC, EC, and SAR showed great variations, whereas pH exhibited low variations. Four salinization parameters showed strongly spatial autocorrelation resulting from the compound impact of structural factors. The empirical semivariograms in the four parameters could be simulated by spherical and exponential models. The spatial distributions of SC, EC, SAR and pH showed similar patterns, with the coexistence of high salinity and sodicity in the areas with high ground elevation. By Pearson analysis, the soil salinization parameters showed a significant positive relationship with ground elevation, but a negative correlation with surface ponding time, surface ponding depth, and soil moistures. Both correlation and stepwise regression analysis showed that ground elevation is the most important environmental factor for spatial variation of soil sanilization. The results from this research can provide some useful information for explaining mechanism of salinization process and utilization of saline-sodic soils in the Western Songnen Plain. PMID:21556192

  20. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  1. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  2. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  3. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  4. Phytostabilization of gold mine tailings, New Zealand. Part 1: Plant establishment in alkaline saline substrate.

    PubMed

    Mains, D; Craw, D; Rufaut, C G; Smith, C M S

    2006-01-01

    Tailings from the Macraes mine, southern New Zealand, are prone to wind erosion. Use of a vegetation cover for physical stabilization is one potential solution to this environmental problem. This study used field trials contained in lysimeters to 1), test the ability of different plant species to grow in un/amended tailings and 2), provide background information on the nutrient and chemical content of waters in tailings. Barley (Hordeum vulgare), blue lupin (Lupinus angustifolius), and rye corn (Secale cereale) were trialed, using Superphosphate fertilizer and sewage sludge as amendments. Rye corn grew well in fertilizer-amended tailings, but poorly in unamended tailings; barley growth was similar in amended and unamended tailings; blue lupins grew poorly overall The tailings had alkaline pH (7-8.5) and water rapidly (< 1 mo) interacted with the tailings to become strongly saline. Minor acid generation was neutralized by calcite, with associated release of calcium and carbonate ions. Leachate waters were supersaturated with respect to calcite and dolomite. Dissolved sodium concentrations were up to 1000 mg L(-1), but elevated Ca2+ calcium and Mg2+ ensured that sodicity was lower than plant-toxic levels. Rye corn is a potentially useful plant for rapid phytostabilization of tailings, with only minor phosphate amendment required.

  5. Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil.

    PubMed

    Motoki, Akihisa; Sichel, Susanna E; Vargas, Thais; Melo, Dean P; Motoki, Kenji F

    2015-01-01

    This paper presents geochemical behaviour of trace elements of the felsic alkaline rocks of the state of Rio de Janeiro, Brazil, with special attention of fractional crystallization and continental crust assimilation. Fractionation of leucite and K-feldspar increases Rb/K and decreases K2O/(K2O+Na2O). Primitive nepheline syenite magmas have low Zr/TiO2, Sr, and Ba. On the Nb/Y vs. Zr/TiO2 diagram, these rocks are projected on the field of alkaline basalt, basanite, and nephelinite, instead of phonolite. Well-fractionated peralkaline nepheline syenite has high Zr/TiO2 but there are no zircon. The diagrams of silica saturation index (SSI) distinguish the trends originated form fractional crystallization and crustal assimilation. In the field of SSI<-200, Zr/TiO2 and Ba/Sr have negative correlations to SSI in consequence of fractional crystallization. In the field of SSI>-200, they show positive correlations due to continental crust assimilation. Total REEs (Rare Earth Elements) is nearly 10 times that of granitic rocks, but LaN/SmN and LaN/YbN are similar. REE trend is linear and Eu anomaly is irrelevant. The pegmatitic liquid generated by country rock partial melting is SiO2-oversaturated and peraluminous with high Ba, Sr, Ba/Sr, Zr/TiO2, and SSI, with high content of fluids. This model justifies the peraluminous and SiO2-oversaturated composition of the rocks with relevant effects of continental crust assimilation.

  6. Effects of biosolids application on nitrogen dynamics and microbial structure in a saline-sodic soil of the former Lake Texcoco (Mexico).

    PubMed

    Rojas-Oropeza, M; Dendooven, L; Garza-Avendaño, L; Souza, V; Philippot, L; Cabirol, N

    2010-04-01

    The saline-sodic soil of the former Lake Texcoco, a large area exposed to desertification, is a unique environment, but little is known about its microbial ecology. The objective of this study was to examine bacterial community structure, activity, and function when biosolids were added to microcosms. The application rates were such that 0, 66, 132, or 265 mg total Nk g(-1) were added with the biosolids (total C and N content 158 and 11.5 g kg(-1) dry biosolids, respectively). Approximately 60% of the biosolids were mineralized within 90 days. Microbial respiration and to a lesser extent ammonification and nitrification, increased after biosolids application. The rRNA intergenic spacer analysis (RISA) patterns for the biosolids and unamended soil bacterial communities were different, indicating that the microorganisms in the biosolids were distinct from the native population. It appears that the survival of the allochthonous microorganisms was short, presumably due to the adverse soil conditions.

  7. Effect of irrigation water salinity and sodicity and water table position on water table chemistry beneath Atriplex lentiformis and Hordeum marinum

    SciTech Connect

    Browning, L.S.; Bauder, J.W.; Phelps, S.D.

    2006-04-15

    Coal bed methane (CBM) extraction in Montana and Wyoming's Powder River Basin (PRB) produces large quantities of modestly saline-sodic water. This study assessed effects of irrigation water quality and water table position on water chemistry of closed columns, simulating a perched or a shallow water table. The experiment assessed the potential salt loading in areas where shallow or perched water tables prevent leaching or where artificial drainage is not possible. Water tables were established in sand filled PVC columns at 0.38, 0.76, and1.14 m below the surface, after which columns were planted to one of three species, two halophytic Atriplex spp. and Hordeum marinum Huds. (maritime barley), a glycophyte. As results for the two Atriplex ssp. did not differ much, only results from Atriplex lentiformis (Torn) S. Wats. (big saltbush) and H. marinum are presented. Irrigation water representing one of two irrigation sources was used: Powder River (PR) (electrolytic conductivity (EC) = 0.19 Sm{sup -1}, sodium adsorption ratio (SAR) = 3.5) or CBM water (EC = 0.35 Sm-1, SAR = 10.5). Continuous irrigation with CBM and PR water led to salt loading over time, the extent being proportional to the salinity and sodicity of applied water. Water in columns planted to A. lentiformis with water tables maintained at 0.38 m depth had greater EC and SAR values than those with 0.76 and 1.14 m water table positions. Elevated EC and SAR values most likely reflect the shallow rooted nature of A. lentiformis, which resulted in enhanced ET with the water table close to the soil surface.

  8. Examining ash fall sequences in calk-alkaline subduction related volcanism, southern New Mexico

    NASA Astrophysics Data System (ADS)

    Rentz, S. P.; Michelfelder, G.; Salings, E. E.; Sikes, E. R.

    2015-12-01

    The Mogollon-Datil volcanic field (MDVF) is a 40-20 ma cluster of caldera activity in southern New Mexico tied to the subduction of oceanic lithosphere beneath the North American continental plate. The calk-alkaline magmatism of the three calderas in this field (Mogollon, Bursum, and Gila Cliff Dwellings) produced several voluminous regionally dispersed ash flow tuffs. This study will specifically examine the volcanic rocks: Cooney Formation (a compositionally zoned rhyolitic to quartz latite ash flow tuff containing quartz>k-feldspar>plagioclase>biotite, and pumice and lithic fragments. Rb ranges from 213-317ppm, Sr from 104-108ppm, and 87Sr/86Srm from 0.71326-0.71534), Davis Canyon Tuff (a phenocryst poor, high-silica rhyolite ash flow tuff containing sanidine>quartz>sodic plagioclase. Rb ranges from 214-230ppm, Sr from 42.2-63.2ppm, and 87Sr/86Srm from 0.71383-0.71464), and the Shelley Peak Tuff (a compositionally zoned, crystal-rich rhyolite tuff containing sodic plagioclase>minor sanidine>biotite>cpx. Rb ranges from 154-213ppm, Sr from 105-245ppm, and 87Sr/86Srm from 0.70944-0.7112) to further elucidate their petrogenic origins, attempt to determine if they may be of the same magmatic source, and yield data that could help model processes that would generate magma of these particular compositions. This study will examine compositional variation between the Davis Canyon, Shelley Peak and Cooney Tuffs and help with understanding the magma plumbing system during each eruption. More specifically, we will evaluate possible crustal components of these units, along with looking for geochemical signatures of arc or rift related magmatism. We will compare previous geochronology results (K-Ar and U-Pb fission track) and whole rock major and trace element geochemistry to data obtained via 40Ar/39Ar and U/Pb dates and new whole rock Sr, Nd and Pb isotopic ratios.

  9. Alkaline Phosphatase in Normal Infants

    PubMed Central

    Stephen, Joan M. L.; Stephenson, Pearl

    1971-01-01

    Alkaline phosphatase was measured in plasma from children receiving vitamin D supplements in day nurseries in the London area, and from children exposed to sunlight in the West Indies. The distribution of values showed that there was no precise upper limit which could be used in the diagnosis of subclinical vitamin D deficiency. PMID:5576029

  10. Mantle metasomatism and alkaline magmatism

    SciTech Connect

    Morris, E.M.; Pasteris, J.D.

    1987-01-01

    The 24 papers in this volume were presented at the Symposium on Alkalic Rocks and Kimberlites, held at the Geological Society of America South-Central Section meeting, April 15-16, 1985, in Fayetteville, Arkansas. This two-day symposium included a total of 55 papers dealing with mantle metasomatism and the origin of alkaline magmas, kimberlites and related rocks, alkalic rocks in oceanic settings, and alkalic rocks in continental settings. Papers presented at this symposium heightened the awareness that alkaline magmatism may occur in virtually all tectonic and petrologic settings. Two papers deal specifically with data from California sites. These research papers on aspects of alkaline rock petrology contribute to a better insight into the complex diversity of alkalic systems, the mantle processes which precede and accompany alkaline magmatism, and kimberlitic and oceanic systems. Abstracts of all papers presented at the symposium and not published in full in the volume are included in an appendix to show the broad scope of data presented at the meeting.

  11. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  12. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  13. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  14. Alkaline hydrothermal conversion of cellulose to bio-oil: influence of alkalinity on reaction pathway change.

    PubMed

    Yin, Sudong; Mehrotra, Anil K; Tan, Zhongchao

    2011-06-01

    The effects of alkalinity on alkaline hydrothermal conversion (alkaline-HTC) of cellulose to bio-oil were investigated in this study. The results showed that the initial alkalinity greatly influenced the reaction pathways. Under initial strong alkaline conditions with final pH greater than 7, alkaline-HTC only followed the alkaline pathway. However, under initial weak alkaline conditions with final pH of less than 7, acidic as well as alkaline pathways were involved. The main mechanism behind this change of reaction pathways under weak alkaline conditions was that carboxylic acids were first formed from cellulose via the alkaline pathway and then neutralized/acidified the alkaline solutions. Once the pH of the alkaline solutions decreased to less than 7, the acidic instead of the alkaline reaction pathway occurred. This change of the reaction pathways with initial alkalinity partly explained the inconsistent results in the literature of alkaline-HTC bio-oil compositions and yields. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  16. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  17. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil.

    PubMed

    García, I; Mendoza, R

    2012-11-01

    The impact of different defoliation intensities on the ability of Lotus tenuis plants to regrowth, mobilise nutrients and to associate with native AM fungi and Rhizobium in a saline-sodic soil was investigated. After 70 days, plants were subjected to 0, 25, 50, 75 and 100% defoliation and shoot regrowth was assessed at the end of subsequent 35 days. Compared to non-defoliated plants, low or moderate defoliation up to 75% did not affect shoot regrowth. However, 100% treatment affected shoot regrowth and the clipped plants were not able to compensate the growth attained by non-defoliated plants. Root growth was more affected by defoliation than shoot growth. P and N concentrations in shoots and roots increased with increasing defoliation while Na(+) concentration in shoots of non-defoliated and moderately defoliated plants was similar. Non-defoliated and moderately defoliated plants prevented increases of Na(+) concentration in shoots through both reducing Na(+) uptake and Na(+) transport to shoots by accumulating Na(+) in roots. At high defoliation, the salinity tolerance mechanism is altered and Na(+) concentration in shoots was higher than in roots. Reduction in the photosynthetic capacity induced by defoliation neither changed the root length colonised by AM fungi nor arbuscular colonisation but decreased the vesicular colonisation. Spore density did not change, but hyphal density and Rhizobium nodules increased with defoliation. The strategy of the AM symbiont consists in investing most of the C resources to preferentially retain arbuscular colonisation as well as inoculum density in the soil.

  18. Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field.

    PubMed

    Hassan, Tamoor Ul; Bano, Asghari; Naz, Irum

    2017-06-03

    The aim of the study was to determine tolerance of plant growth promoting rhizobacteria (PGPR) in different concentrations of Cu, Cr, Co, Cd, Ni, Mn, and Pb and to evaluate the PGPR-modulated bioavailability of different heavy metals in the rhizosphere soil and wheat tissues, grown in saline sodic soil. Bacillus cereus and Pseudomonas moraviensis were isolated from Cenchrus ciliaris L. growing in the Khewra salt range. Seven-day-old cultures of PGPR were applied on wheat as single inoculum, co-inoculation and carrier-based biofertilizer (using maize straw and sugarcane husk as carrier). At 100 ppm of Cr and Cu, the survival rates of rhizobacteria were decreased by 40%. Single inoculation of PGPR decreased 50% of Co, Ni, Cr and Mn concentrations in the rhizosphere soil. Co-inoculation of PGPR and biofertilizer treatment further augmented the decreases by 15% in Co, Ni, Cr and Mn over single inoculation except Pb and Co where decreases were 40% and 77%, respectively. The maximum decrease in biological concentration factor (BCF) was observed for Cd, Co, Cr, and Mn. P. moraviensis inoculation decreases the biological accumulation coefficient (BAC) as well as translocation factor (TF) for Cd, Cr, Cu Mn, and Ni. The PGPR inoculation minimized the deleterious effects of heavy metals, and the addition of carriers further assisted the PGPR.

  19. Encapsulation of valproic acid and sodic phenytoin in ordered mesoporous SiO 2 solids for the treatment of temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    López, T.; Basaldella, E. I.; Ojeda, M. L.; Manjarrez, J.; Alexander-Katz, R.

    2006-10-01

    Temporal lobe epilepsy is one of the most frequent types of human neurological diseases, and a variety of surgical procedures have been developed for the treatment of intractable cases. An alternative is the use of drug-containing reservoirs based on nanostructured materials of controlled pore sizes in order to deliver the drug without causing secondary effects. Ordered SiO 2 nanostructures were developed as drug reservoirs. The latter were prepared by the sol-gel process using tetraethyl orthosilicate TEOS as precursor to form the "sol" and P123 surfactant as the organic structure-directing agent. In addition to the nontoxic nature of amorphous silica, uniform and tunable pore sizes between 2.5 and 30 nm can be obtained in this way. The aim of this study is to investigate the potential of these materials for the storage and release of drugs in the brain. For that, we loaded valproic acid (VH) and sodic phenytoin (PH) molecules into an ordered mesoporous SiO 2 by impregnation and characterized the drug impregnated SiO 2 by standard physical and spectroscopic techniques to identify the parameters necessary to improve the capacity and quality of the reservoirs. Finally, a study of neurohistopathology of the effects of these reservoirs on brain tissue is presented.

  20. Integrated electrokinetics-adsorption remediation of saline-sodic soils: effects of voltage gradient and contaminant concentration on soil electrical conductivity.

    PubMed

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat; Lukman, Salihu; Bukhari, Alaadin

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R (2) ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors.

  1. Integrated Electrokinetics-Adsorption Remediation of Saline-Sodic Soils: Effects of Voltage Gradient and Contaminant Concentration on Soil Electrical Conductivity

    PubMed Central

    Essa, Mohammed Hussain; Mu'azu, Nuhu Dalhat

    2013-01-01

    In this study, an integrated in situ remediation technique which couples electrokinetics with adsorption, using locally produced granular activated carbon from date palm pits in the treatment zones that are installed directly to bracket the contaminated soils at bench-scale, is investigated. Natural saline-sodic clay soil, spiked with contaminant mixture (kerosene, phenol, Cr, Cd, Cu, Zn, Pb, and Hg), was used in this study to investigate the effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil electrical conductivity. Box-Behnken Design (BBD) was used for the experimental design and response surface methodology (RSM) was employed to model, optimize, and interpret the results obtained using Design-Expert version 8 platform. The total number of experiments conducted was 15 with voltage gradient, polarity reversal rate, and initial contaminant concentration as variables. The main target response discussed in this paper is the soil electrical conductivity due to its importance in electrokinetic remediation process. Responses obtained were fitted to quadratic models whose R 2 ranges from 84.66% to 99.19% with insignificant lack of fit in each case. Among the investigated factors, voltage gradient and initial contaminant concentration were found to be the most significant influential factors. PMID:24459439

  2. Devonian to Early Carboniferous magmatic alkaline activity in the Tafilalt Province, Eastearn Morocco: An Eovariscan episode in the Gondwana margin, north of the West African Craton

    NASA Astrophysics Data System (ADS)

    Pouclet, André; El Hadi, Hassan; Bardintzeff, Jacques-Marie; Benharref, Mohammed; Fekkak, Abdelilah

    2017-05-01

    To the eastern edge of the Moroccan Anti-Atlas, the Tafilalt Province is the repository of a Lower Palaeozoic platform and basin sedimentation constrained by a W-E and NW-SE fault network. During the mid-late Devonian, an extensional tectonic activity, demonstrated by sharp changes in sediment thickness and development of syn-sedimentary faults, was contemporaneous with a significant magmatic activity. A great number of doleritic dykes, sills, and laccoliths intruded sedimentary Silurian to Lower Visean strata. The intrusions were linked to sub-water volcanic activities with spilitic lava flows and pyroclastites during two main pulses in the Famennian-Tournaisian and in the Early Visean. The rocks consist of basaltic dolerites, lamprophyric dolerites and analcite-bearing camptonites, sharing a sodic alkaline magma composition. The magma derived from low partial melting degree of the metasome layer of the lithospheric subcontinental mantle, below the spinel-garnet transition zone. This Tafilalt tectono-magmatic activity was coeval with the Eovariscan phase in the Moroccan Meseta, which was responsible for the opening of Western Meseta basins and their transitional to alkaline volcanic activities in the Late Devonian to Early Carboniferous time.

  3. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  4. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  5. Developments in Alkaline Tin Electrorefining

    NASA Astrophysics Data System (ADS)

    Saba, A. E.; Afifi, S. E.; El Sherief, A. E.

    1988-08-01

    Although alkaline stannate baths for electrorefining of tin have been used for some time, there is still room for improvement The effects of alkali concentration, current density and temperature on the cathodic current efficiency have been studied, and a bath temperature of 75°C is recommended. To avoid unstable conditions in the bath, a special treatment to the anode and application of an auxiliary cathode are necessary. Many of the metallic impurities present in the crude tin anode go into the slimes in the form of hydroxides, but lead impurities can only be tolerated if concentrations are less than one percent.

  6. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  7. Alkaline Water and Longevity: A Murine Study.

    PubMed

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of "deceleration aging factor" as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models.

  8. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  9. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  10. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  11. Biomass production, forage quality, and cation uptake of Quail bush, four-wing saltbush, and seaside barley irrigated with moderately saline-sodic water

    SciTech Connect

    Bauder, J.W.; Browning, L.S.; Phelps, S.D.; Kirkpatrick, A.D.

    2008-07-01

    The study reported here investigated capacity of Atriplex lentiformis (Torr.) S. Wats. (Quail bush), Atriplex X aptera A. Nels. (pro sp.) (Wytana four-wing saltbush), and Hordeum marinum Huds. (seaside barley) to produce biomass and crude protein and take up cations when irrigated with moderately saline-sodic water, in the presence of a shallow water table. Water tables were established at 0.38, 0.76, and 1.14m below the surface in sand-filled columns. The columns were then planted to the study species. Study plants were irrigated for 224 days; irrigation water was supplied every 7 days equal to water lost to evapotranspiration (ET) plus 100mL (the volume of water removed in the most previous soil solution sampling). Water representing one of two irrigation sources was used: Powder River (PR) or coalbed natural gas (CBNG) wastewater. Biomass production did not differ significantly between water quality treatments but did differ significantly among species and water table depth within species. Averaged across water quality treatments, Hordeum marinum produced 79% more biomass than A. lentiformis and 122% more biomass than Atriplex X aptera, but contained only 11% crude protein compared to 16% crude protein in A. lentiformis and 14% crude protein in Atriplex X aptera. Atriplex spp. grown in columns with the water table at 0.38m depth produced more biomass, took up less calcium on a percentage basis, and took up more sodium on a percentage basis than when grown with the water table at a deeper depth. Uptake of cations by Atriplex lentiformis was approximately twice the uptake of cations by Atriplex X aptera and three times that of H. marinum. After 224 days of irrigation, crop growth, and cation uptake, followed by biomass harvest, EC and SAR of shallow groundwater in columns planted to A. lentiformis were less than EC and SAR of shallow ground water in columns planted to either of the other species.

  12. Increasing Interaction of Alkaline Magmas with Lower Crustal Gabbroic Cumulates over the Evolution of Mt. Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Crumpler, L. S.; Schrader, C.

    2010-12-01

    The Mount Taylor Volcanic Field at the southeastern edge of the Colorado Plateau, New Mexico erupted diverse alkaline magmas from ~3.8 to 1.5 Ma (Crumpler, 1980; Perry et al., 1990). The earliest eruptions include high silica topaz rhyolites of Grants Ridge (plagioclase, quartz, biotite) and Si-under saturated basanites and trachytes at Mt Taylor stratovolcano. Mt. Taylor was later constructed of stacks of thick, trachyandesitic to rhyolitic lava flows that were subsequently eroded into a ~4-km across amphitheatre opening toward the southeast. Early Mt. Taylor rhyolitic lavas exposed within the amphitheatre contain quartz, plagioclase, hornblende, and biotite (± sanidine) phenocrysts. Later cone-building trachydacite to trachyandesite lavas are crystal-rich with plagioclase and augite megacrysts (± hornblende, ± quartz) and record an overall trend of decreasing SiO2 with time. The last eruptions ~1.5 Ma from the stratovolcano (Perry et al. 1990) produced thick (>70 m), viscous lava flows that contain up to 50% zoned plagioclase phenocrysts. While SiO2 decreased among the silicic magmas, the degree of silica saturation increased among peripheral basaltic magmas from basanite to ne-normative hawaiite to hy-normative basalts. Evidence of increasing crustal contamination within the basalts includes zoned plagioclase megacrysts, augite and plagioclase cumulate texture xenoliths with accompanying xenocrysts. These textures within the basalts combined with abundant, complex plagioclase among the cone-building silicic magmas imply interaction and mixing with gabbroic cumulate mush in the lower crust beneath Mt. Taylor Volcano. Contemporaneous basanitic to trachytitc volcanism in the northern part of the volcanic field at Mesa Chivato (Crumpler, 1980) was more widely distributed, smaller volume, and produced mainly aphyric magmas. The lower crustal gabbroic cumulates either do not extend northward beneath Mesa Chivato, or they were not accessed by lower magma flux rate

  13. Anosmia in Alkaline Battery Workers

    PubMed Central

    Adams, R. G.; Crabtree, Norman

    1961-01-01

    The sense of smell of 106 alkaline battery workmen exposed at their work to cadmium and nickel dust has been compared with a control group of 84 men matched for age. The battery workers reported significantly more anosmia than the controls (15% to zero) and did less well in the phenol smelling test (27·3% to 4·8%). Cadmium proteinuria was found in 17 of the battery workers, 11 of whom showed virtual anosmia. Figures of recent concentrations of cadmium and nickel in the atmosphere are given. The noses of 85 battery workers and 75 controls were examined. Signs of non-specific chronic irritation were more frequent in the battery workers but no significant relationship was established between this appearance and the presence of anosmia. It is concluded that the anosmia is due to exposure to cadmium or nickel dust or a mixture of the two. PMID:13681418

  14. Closed type alkaline storage battery

    SciTech Connect

    Hayama, H.

    1980-06-10

    The alkaline storage battery employs a metallic hat shaped terminal closure which has a piercing needle as well as a puncturable metallic diaphragm positioned below the piercing needle. The needle is fixed by caulking at its peripheral edge portion to a edge of the closure. A comparatively thick and hard metal plate is placed on the inner surface of the diaphragm and is applied to an open portion of a tubular metallic container which has a battery element. A peripheral edge portion of the closure, the diaphragm and the metallic plate are clamped in airtight relationship through a packing between the caulked end portion and an inner annular step portion of the metallic container of the battery. A lead wire extends from one polarity electrode of the battery element and is connected to a central portion of the metallic plate.

  15. Pediatric reference intervals for alkaline phosphatase.

    PubMed

    Zierk, Jakob; Arzideh, Farhad; Haeckel, Rainer; Cario, Holger; Frühwald, Michael C; Groß, Hans-Jürgen; Gscheidmeier, Thomas; Hoffmann, Reinhard; Krebs, Alexander; Lichtinghagen, Ralf; Neumann, Michael; Ruf, Hans-Georg; Steigerwald, Udo; Streichert, Thomas; Rascher, Wolfgang; Metzler, Markus; Rauh, Manfred

    2017-01-01

    Interpretation of alkaline phosphatase activity in children is challenging due to extensive changes with growth and puberty leading to distinct sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics and seem reasonable for an analyte as closely linked to growth as alkaline phosphatase. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, resulting in limitations when clinical decisions are based on alkaline phosphatase activity. We applied an indirect method to generate percentile charts for alkaline phosphatase activity using clinical laboratory data collected during the clinical care of patients. A total of 361,405 samples from 124,440 patients from six German tertiary care centers and one German laboratory service provider measured between January 2004 and June 2015 were analyzed. Measurement of alkaline phosphatase activity was performed on Roche Cobas analyzers using the IFCC's photometric method. We created percentile charts for alkaline phosphatase activity in girls and boys from birth to 18 years which can be used as reference intervals. Additionally, data tables of age- and sex-specific percentile values allow the incorporation of these results into laboratory information systems. The percentile charts provided enable the appropriate differential diagnosis of changes in alkaline phosphatase activity due to disease and changes due to physiological development. After local validation, integration of the provided percentile charts into result reporting facilitates precise assessment of alkaline phosphatase dynamics in pediatrics.

  16. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  17. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  18. Geochemistry and petrogenesis of late Ediacaran (605-580 Ma) post-collisional alkaline rocks from the Katherina ring complex, south Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Azer, M. K.; Obeid, M. A.; Ren, M.

    2014-10-01

    The Katherina ring complex (KRC) in the central part of south Sinai, Egypt, is a typical ring complex of late Neoproterozoic age (605-580 Ma). It was developed during the final tectono-magmatic stage of the north Arabian-Nubian Shield (ANS) during evolution of the Pan-African crust. The KRC includes Katherina volcanics, subvolcanic bodies, ring dykes and Katherina granitic pluton. The Katherina volcanics represent the earliest stage of the KRC, which was subsequently followed by emplacement of the subvolcanic bodies and ring dykes. The Katherina granitic pluton depicts as the latest evolution stage of the KRC that intruded all the early formed rock units in the concerned area. The Katherina volcanics are essentially composed of rhyolites, ignimbrite, volcanic breccia and tuffs. Mineralogically, the peralkaline rhyolites contain sodic amphiboles and aegirine. The rhyolite whole rock chemistry has acmite-normative character. The subvolcanic bodies of the KRC are represented by peralkaline microgranite and porphyritic quartz syenite. The ring dykes are semicircular in shape and consist mainly of quartz syenite, quartz trachyte and trachybasalt rock types. The Katherina subvolcanic rocks, volcanic rocks as well as the ring dykes are alkaline or/and peralkaline in nature. The alkaline granitic pluton forms the inner core of the KRC, including the high mountainous areas of G. Abbas Pasha, G. Bab, G. Katherina and G. Musa. These mountains are made up of alkaline syenogranite and alkali feldspar granite. The mantle signature recorded in the KRC indicates a juvenile ANS crust partial melting process for the generation of this system. The evolution of the KRC rocks is mainly dominated by crystal fractionation and crustal contamination. Mineral geothermometry points to the high temperature character of the KRC, up to 700-1100 °C.

  19. Multisystemic functions of alkaline phosphatases.

    PubMed

    Buchet, René; Millán, José Luis; Magne, David

    2013-01-01

    Human and mouse alkaline phosphatases (AP) are encoded by a multigene family expressed ubiquitously in multiple tissues. Gene knockout (KO) findings have helped define some of the precise exocytic functions of individual isozymes in bone, teeth, the central nervous system, and in the gut. For instance, deficiency in tissue-nonspecific alkaline phosphatase (TNAP) in mice (Alpl (-/-) mice) and humans leads to hypophosphatasia (HPP), an inborn error of metabolism characterized by epileptic seizures in the most severe cases, caused by abnormal metabolism of pyridoxal-5'-phosphate (the predominant form of vitamin B6) and by hypomineralization of the skeleton and teeth featuring rickets and early loss of teeth in children or osteomalacia and dental problems in adults caused by accumulation of inorganic pyrophosphate (PPi). Enzyme replacement therapy with mineral-targeting TNAP prevented all the manifestations of HPP in mice, and clinical trials with this protein therapeutic are showing promising results in rescuing life-threatening HPP in infants. Conversely, TNAP induction in the vasculature during generalized arterial calcification of infancy (GACI), type II diabetes, obesity, and aging can cause medial vascular calcification. TNAP inhibitors, discussed extensively in this book, are in development to prevent pathological arterial calcification. The brush border enzyme intestinal alkaline phosphatase (IAP) plays an important role in fatty acid (FA) absorption, in protecting gut barrier function, and in determining the composition of the gut microbiota via its ability to dephosphorylate lipopolysaccharide (LPS). Knockout mice (Akp3 (-/-)) deficient in duodenal-specific IAP (dIAP) become obese, and develop hyperlipidemia and hepatic steatosis when fed a high-fat diet (HFD). These changes are accompanied by upregulation in the jejunal-ileal expression of the Akp6 IAP isozyme (global IAP, or gIAP) and concomitant upregulation of FAT/CD36, a phosphorylated fatty acid

  20. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  1. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  2. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  3. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  4. Technetium recovery from high alkaline solution

    SciTech Connect

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  5. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  6. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  7. Characterization and quantification of biochar alkalinity.

    PubMed

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pKa organic structural (0.03-0.34 meq g(-1)), other organic (0-0.92 meq g(-1)), carbonate (0.02-1.5 meq g(-1)), and other inorganic (0-0.26 meq g(-1)) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  9. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  10. Alkaline phosphatase and bone calcium parameters.

    PubMed

    Fauran-Clavel, M J; Oustrin, J

    1986-01-01

    Effects of cadmium, an alkaline phosphatase inhibitor, on the calcium content of rat bone were investigated in vivo by a radioisotopic method. Disturbance of bone metabolism is observed in both the superficial (delta) and slow exchanges (Ve), which are also significantly decreased. The crystallized calcium bone compartment (E) is also strongly affected. It appears that changes in the superficial calcium exchanges cause the observed decrease in the crystallized calcium mass. The slowing of osteogenesis is confirmed by the decrease of serum alkaline phosphatase activity. A statistical examination of the correlation coefficient reveals a close link (P less than 0.01) between serum alkaline phosphatase activity and the influx of superficial calcium (Vo+) and, as a result, the crystallized bone calcium parameters. These results show that cadmium can be used to study the relationship between alkaline phosphatase and calcification. The present observations allow us to consider the possibility that alkaline phosphatase may play a role in determining the calcium content of the crystallized phases in deep bone through its action on the tissue surface.

  11. Petrology of the alkaline rocks of the Macau Volcanic Field, NE Brazil

    NASA Astrophysics Data System (ADS)

    Ngonge, Emmanuel Donald; de Hollanda, Maria Helena Bezerra Maia; Pimentel, Márcio Martins; de Oliveira, Diógenes Custódio

    2016-12-01

    The Macau Volcanic Field (MVF) in the Borborema Province, NE Brazil, contains multiple centres of volcanic activity of Early to Late Cenozoic ages. We present element and Sr-Nd-Pb isotope geochemical data for four of the few most prominent basalt types of this volcanic field: Serrote Preto-type, Serra Aguda-type, Pico do Cabugi-type and Serra Preta-type, in order to assess their magmatic history from source to crystallization and the evolution of the mantle beneath the Borborema Province. The basalts are basically sodic nephelinitic-basanitic-alkali olivine basalts enriched in LILE and in Nb-Ta. The Serra Preta, Cabugi and Serra Aguda types demonstrate compositions close to primitive characteristics with 10% < MgO < 15 wt.% and 200 ppm < Ni < 500 ppm, and experienced limited fractional crystallization of olivine-clinopyroxene-plagioclase-oxides with negligible wall-rock assimilation. Rb/Sr and Ba/Rb constraints support the generation of SiO2-undersaturated magmas from mantle melting of amphibole-bearing peridotites with minor phlogopite. The source for the basanites and alkali basalts is estimated to be a garnet-bearing domain around the lithosphere-asthenosphere boundary (80-93 km deep), while the nephelinites are derived from the adiabatic asthenosphere at 105 km with temperatures of 1480 °C. Their incompatible trace element patterns and Sr-Nd-Pb isotopic compositions are similar to FOZO and EM-type OIB magmas. From the comparison of data with those of the Ceará-Mirim dyke swarm we propose that there is a ubiquitous FOZO reservoir in the SCLM beneath the Borborema Province. This FOZO signature characterized the upwelling asthenosphere during the lithospheric extension and thinning at the opening of the Equatorial Atlantic and is clearly represented in the Mesozoic olivine tholeiites of Ceará-Mirim. The upwelled asthenosphere cooled as a rigid SCLM since the Cretaceous and has preserved its FOZO signature evident in the Macau Cenozoic basalts. The EM signatures

  12. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  13. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    SciTech Connect

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  14. Laser direct write of planar alkaline microbatteries

    NASA Astrophysics Data System (ADS)

    Arnold, C. B.; Kim, H.; Piqué, A.

    We are developing a laser engineering approach to fabricate and optimize alkaline microbatteries in planar geometries. The laser direct-write technique enables multicapability for adding, removing and processing material and provides the ability to pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cells under ambient conditions. The microbattery cells exhibit 1.55-V open-circuit potentials, as expected for the battery chemistry, and show a flat discharge behavior under constant-current loads. High capacities of over 450 μAhcm-2 are obtained for 5-mm2 microbatteries.

  15. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  16. Degradation of halogenated carbons in alkaline alcohol

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiko; Shimokawa, Toshinari

    2002-02-01

    1,1,2-Trichloro-trifluoroethane, 1,2-dibromo-tetrafluoroethane, 2,3,4,6-tetrachlorophenol, 1,2,4-trichlorobenzene, and 2,4,6-trichloroanisole were dissolved in alkaline isopropyl alcohol and irradiated with 60Co gamma rays after purged with pure nitrogen gas. The concentration of the hydroxide ions and the parent molecules decreased with the dose, while that of the halide ions and the organic products, with less halogen atoms than the parent, increased. Chain degradation will occur in alkaline isopropyl alcohol.

  17. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  18. The alkaline diet: is there evidence that an alkaline pH diet benefits health?

    PubMed

    Schwalfenberg, Gerry K

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  19. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  20. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  1. Alkaline Hydrolysis Conversion of Nitrocellulose Fines

    DTIC Science & Technology

    1997-10-01

    The conversion of 1,125,000 pounds of bone-dry nitrocellulose fines into a liquid fertilizer was documented. Alkaline hydrolysis was the conversion... fertilizer . Fertilizer nutrient value was 1.3% nitrogen (N), 8.0% potassium (K2O) and 0.9% phosphorus (P2O5). Conversion met all applicable federal and state safety and environmental regulations.

  2. Kinetics of the alkaline hydrolysis of nitrocellulose.

    PubMed

    Christodoulatos, C; Su, T L; Koutsospyros, A

    2001-01-01

    Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 degrees C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of 4.73 x 10(13). Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems.

  3. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  4. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  5. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    PubMed

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  7. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  8. Alkaline earth metal catalysts for asymmetric reactions.

    PubMed

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  9. Recent Alkaline Lakes: Clues to Understanding the Evolution of Early Planetary Alkaline Oceans and Biogenesis

    NASA Astrophysics Data System (ADS)

    Kempe, S.; Hartmann, J.; Kazmierczak, J.

    2008-09-01

    Abstract New models suggest that terrestrial weathering consumes 0.26GtC/a (72% silicate-, 28% carbonateweathering), equivalent to a loss of one atmospheric C content every 3700a. Rapid weathering leads in volcanic areas to alkaline conditions, illustrated by the crater lake of Niuafo`ou/Tonga and Lake Van/Turkey, the largest soda lake on Earth. Alkaline conditions cause high CaCO3 supersaturation, permineralization of algal mats and growth of stromatolites. Alkaline conditions can nearly depress free [Ca2+] to levels necessary for proteins to function. Therefore early oceans on Earth (and possibly on Mars) should have been alkaline (i.e. "Soda Oceans"). Recent findings of MgSO4 in top soils on Mars may be misleading about the early history of martian oceans.

  10. A method for making an alkaline battery electrode plate

    NASA Technical Reports Server (NTRS)

    Chida, K.; Ezaki, T.

    1983-01-01

    A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.

  11. The sulphate-reduction alkalinity pump tested

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Petrishcheva, Elena

    2016-04-01

    Carbonate precipitation has been suggested to be induced by alkalinity increase during sulphate reduction under anoxic conditions. This mechanism may explain the formation of carbonate deposits in shallow marine environments, either within a redox stratified sediment inhabited by phototrophic microbial mats or in shallow water within the photic zone where sulphidic water is upwelling onto the shelf. The alkalinity pump may work as long as the sulphide is not reoxidized to sulphate, a process that would acidify the surrounding. The alkalinity effect of sulphate reduction was recently tested by Aloisi (2008) for microbial mats using a model approach. He found that sulphate reduction does not significantly increase or even decrease carbonate saturation and is unlikely to have played a significant role through Earth history. The model considers many environmental factors, including the effect of carbonate precipitation itself on the carbonate equilbrium and on the alkalinity. We used a modified version of Aloisi's (2008) model to simulate the saturation states of aragonite, calcite and dolomite without the effects of carbonate precipitation. This is necessary to evaluate the effect of microbial metabolisms exclusively on carbonate saturation, since carbonate precipitation is only the consequence, but not the cause of oversaturation. First results show that the saturation state is increased in the zone of phototrophic CO2 uptake. In contrast, the saturation state is strongly decreased in the zone where dissolved oxygen overlaps with dissolved sulphide. Aerobic sulphide oxidation consumes most of the HS- and dissipates most of the alkalinity produced in the sulphate reduction zone below. Hence, our results are consistent with the findings of Aloisi (2008), and they even more clearly show that sulphate reduction does not induce carbonate precipitation nor contributes to carbonate precipitation in combination with phototrophic CO2 uptake. The alkalinity effect of sulphate

  12. [Leucocyte alkaline phosphatase in normal and pathological pregnancy (author's transl)].

    PubMed

    Stark, K H; Zaki, I; Sobolewski, K

    1981-01-01

    The activities of leucocyte alkaline phosphatase were determined in 511 patients with normal and pathological pregnancy. Mean values were compared and the enzyme followed up, and the conclusion was drawn that leucocyte alkaline phosphatase was no safe indicator of foetal condition. No direct relationship were found to exist between leucocyte alkaline phosphatase, total oestrogens, HSAP, HLAP, HPL, and oxytocinase.

  13. Alkaline-extracted influenza subunit vaccine.

    PubMed Central

    Eckert, E A

    1976-01-01

    Treatment of influenza virus concentrates with alkaline solvents releases a major fraction of the viral structural protein content. As determined by polyacrylamide gel electrophoresis, the surface glycoprotein substructures, hemagglutinin and neuraminidase, are the primary solubilized products. Two forms of hemagglutinin antigen are recovered, a 39S active hemagglutinin and a 23S blocking antigen. Dose-response assays in mice demonstrate that hemagglutination-inhibiting and neuraminidase antibodies are induced. Antibody responses are comparable to those resulting from immunization with inactivated whole virus. On the basis of demonstrated purity, high yields of protective antigens, immunogenic potency, and absence of deleterious reagents, alkaline-extracted influenza protein preparations merit consideration as subunit vaccines for human use. PMID:826484

  14. Inhibition of Alkaline Phosphatase by Several Diuretics

    DTIC Science & Technology

    1980-01-01

    August 20th, 1979) . . Summary , . Acetazolamide, furosemide, ethacrynic acid and chlorothiazide, diuretics of considerable structural diversity, inhibit...Ki is calculated to be 8.4, 7.0, 2.8 and 0.1 mmol/l for acetazolamide, furosemide, ethacrynic acid and chlorothiazide, respectively. Chlorothiazide...is a much more potent inhibitor of alkaline phos- phatase than the other three diuretics. The combination of ethacrynic acid and cysteine, itself an

  15. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  16. Oxidation catalysts on alkaline earth supports

    DOEpatents

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  17. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  18. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  19. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  20. Electrical Resistivity of Alkaline Earth Elements.

    DTIC Science & Technology

    1976-12-01

    CHI CINDAS REPORT 42 December 1976 DTIC Q Prepared for ELECTE 3 DEFENSE SUPPLY AGENCY JUN 0’’ 983 , U. S. Department of Defense 4 Alexandria...OF REPORT A PEOD COVERED Electrical Resistivity of Alkaline Earth Elements State-of-the-Art Report 6. PERFORMING ORG. REPORT NUMBER CINDAS Report 42 7...TASKAREA & WORK UNIT NUMBERS Thermophysical and Electronic Properties Information Analysis Center, CINDAS /Purdue Univ., 2595 Yeager Rd., W. Lafayette, IN

  1. Alkaline phosphatase of Physarum polycephalum is insoluble.

    PubMed

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  2. Electrospinning of an Alkaline Polymer Electrolyte

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Dong, Zexuan; Wu, Yiquan; Anthamatten, Mitchell

    2010-03-01

    The polymer electrolyte membrane is a key component of the low temperature fuel cell to block fuel and electron crossover, while enabling ions to pass and complete the half-cell reactions. Proton exchange membranes (PEMs) are anion-containing polymers, such as Nafion, which offer proton conduction pathways. Alkaline polymer electrolytes utilize hydroxyl anions as charge carriers and are currently being researched as an alternative to PEMs because they may offer the use of inexpensive metal catalysts. However, hydroxyl anion in an alkaline electrolyte has relatively low mobility compared to that of protons in an acid electrolyte; hence a high concentration of OH^- is required to obtain high ionic conductivity. Here, we report the use of an electrospinning process to prepare nonwoven membranes. Polysulfones are first functionalized with varied ionic content of quaternary ammonium functional groups and then are electrospun to get alkaline electrolyte mat. The morphology at various ionic content, mechanical property, and in-plane conductivity of resulting films will be discussed and compared to solvent-cast films of the same material.

  3. Alkaline flooding for enhanced oil recovery

    SciTech Connect

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weight concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.

  4. Mesozoic mafic alkaline magmatism of southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian

    2004-11-01

    More than 100 volcanic necks in central Scania (southern Sweden) are the product of Jurassic continental rift-related mafic alkaline magmatism at the southwest margin of the Baltic Shield. They are mainly basanites, with rarer melanephelinites. Both rock groups display overlapping primitive Mg-numbers, Cr and Ni contents, steep chondrite-normalized rare earth element patterns (LaN /YbN = 17 27) and an overall enrichment in incompatible elements. However, the melanephelinites are more alkaline and have stronger high field strength element enrichment than the basanites. The existence of distinct primary magmas is also indicated by heterogeneity in highly incompatible element ratios (e.g. Zr/Nb, La/Nb). Trace element modelling indicates that the magmas were generated by comparably low degrees of melting of a heterogeneous mantle source. Such a source can best be explained by a metasomatic overprint of the mantle lithosphere by percolating evolved melts. The former existence of such alkaline trace element-enriched melts can be demonstrated by inversion of the trace element content of green-core clinopyroxenes and anorthoclase which occur as xenocrysts in the melanephelinites and are interpreted as being derived from crystallization of evolved mantle melts. Jurassic magmatic activity in Scania was coeval with the generation of nephelinites in the nearby Egersund Basin (Norwegian North Sea). Both Scanian and North Sea alkaline magmas share similar trace element characteristics. Mantle enrichment processes at the southwest margin of the Baltic Shield and the North Sea Basin generated trace element signatures similar to those of ocean island basalts (e.g. low Zr/Nb and La/Nb) but there are no indications of plume activity during the Mesozoic in this area. On the contrary, the short duration of rifting, absence of extensive lithospheric thinning, and low magma volumes argue against a Mesozoic mantle plume. It seems likely that the metasomatic imprint resulted from the

  5. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    PubMed

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique.

  6. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  7. [Variation of alkalinity and its regulation of ABR].

    PubMed

    Su, De-lin; Wang, Jian-long; Huang, Yong-heng; Zhou, Ding

    2006-10-01

    Variation of alkalinity and its relationship with the pH, volatile fatty acid (VFA) and COD along with the different compartments of the ABR were investigated. The experimental results showed that there was a close relationship between variation of alkalinity and VFA concentration along with the ABR compartments. The lowest point of alkalinity and pH value occurred where VFA concentration reached maximum. The effect of alkalinity on the operational performance was through changing pH value. The variation trend of alkalinity and pH along with different compartments was decreased firstly and then increased. The alkalinity should be controlled to guarantee the lowest pH no less than 6.0. The lowest alkalinity should be no less than 800 mg/L when the loading rate (COD) was about 3.7 kg/(m3 x d).

  8. Desialylated alkaline phosphatase: activation by 4-nitrophenol.

    PubMed

    Nayudu, P R

    1984-01-01

    Mouse ileal alkaline phosphatase is a sialyl enzyme (12-14 moles per mole of enzyme). When partially desialylated by treatment with neuraminidase, the enzyme loses most of its activity, associated with reduced apparent Vmax and Km. Part of that loss, however, is recovered as the product 4-nitrophenol's concentration builds up in the cuvette. Experimental results are presented to demonstrate that the activation is due to the binding of 4-nitrophenol as a ligand by the partially desialylated enzyme and that both the loss of activity by sialic acid removal and activation by ligand-binding are correlated with changes in protein conformation.

  9. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    SciTech Connect

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  10. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  11. Response of Desulfovibrio vulgaris to alkaline stress.

    PubMed

    Stolyar, Sergey; He, Qiang; Joachimiak, Marcin P; He, Zhili; Yang, Zamin Koo; Borglin, Sharon E; Joyner, Dominique C; Huang, Katherine; Alm, Eric; Hazen, Terry C; Zhou, Jizhong; Wall, Judy D; Arkin, Adam P; Stahl, David A

    2007-12-01

    The response of exponentially growing Desulfovibrio vulgaris Hildenborough to pH 10 stress was studied using oligonucleotide microarrays and a study set of mutants with genes suggested by microarray data to be involved in the alkaline stress response deleted. The data showed that the response of D. vulgaris to increased pH is generally similar to that of Escherichia coli but is apparently controlled by unique regulatory circuits since the alternative sigma factors (sigma S and sigma E) contributing to this stress response in E. coli appear to be absent in D. vulgaris. Genes previously reported to be up-regulated in E. coli were up-regulated in D. vulgaris; these genes included three ATPase genes and a tryptophan synthase gene. Transcription of chaperone and protease genes (encoding ATP-dependent Clp and La proteases and DnaK) was also elevated in D. vulgaris. As in E. coli, genes involved in flagellum synthesis were down-regulated. The transcriptional data also identified regulators, distinct from sigma S and sigma E, that are likely part of a D. vulgaris Hildenborough-specific stress response system. Characterization of a study set of mutants with genes implicated in alkaline stress response deleted confirmed that there was protective involvement of the sodium/proton antiporter NhaC-2, tryptophanase A, and two putative regulators/histidine kinases (DVU0331 and DVU2580).

  12. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions.

  13. Vitrification for reclaiming spent alkaline batteries.

    PubMed

    Kuo, Yi-Ming; Chang, Juu-En; Jin, Cheng-Han; Lin, Jian-Yu; Chang-Chien, Guo-Ping

    2009-07-01

    The object of this study is to stabilize spent alkaline batteries and to recover useful metals. A blend of dolomite, limestone, and cullet was added to act as a reductant and a glass matrix former in vitrification. Specimens were vitrified using an electrical heating furnace at 1400 degrees C and the output products included slag, ingot, flue gas, and fly ash. The major constituents of the slag were Ca, Mn, and Si, and the results of the toxicity leaching characteristics met the standards in Taiwan. The ingot was a good material for use in production of stainless steel, due to being mainly composed of Fe and Mn. For the fly ash, the high level of Zn makes it economical to recover. The distribution of metals indicated that most of Co, Cr, Cu, Fe, Mn, and Ni moved to the ingot, while Al, Ca, Mg, and Si stayed in the slag; Hg vaporized as gas phase into the flue gas; and Cd, Pb, and Zn were predominately in the fly ash. Recovery efficiency for Fe and Zn was >90% and the results show that vitrification is a promising technology for reclaiming spent alkaline batteries.

  14. Spectroscopic characterization of alkaline earth uranyl carbonates

    NASA Astrophysics Data System (ADS)

    Amayri, Samer; Reich, Tobias; Arnold, Thuro; Geipel, Gerhard; Bernhard, Gert

    2005-02-01

    A series of alkaline uranyl carbonates, M[UO 2(CO 3) 3]· nH 2O ( M=Mg 2, Ca 2, Sr 2, Ba 2, Na 2Ca, and CaMg) was synthesized and characterized by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after nitric acid digestion, X-ray powder diffraction (XRD), and thermal analysis (TGA/DTA). The molecular structure of these compounds was characterized by extended X-ray absorption fine-structure (EXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). Crystalline Ba 2[UO 2(CO 3) 3]·6H 2O was obtained for the first time. The EXAFS analysis showed that this compound consists of (UO 2)(CO 3) 3 clusters similar to the other alkaline earth uranyl carbonates. The average U-Ba distance is 3.90±0.02 Å.Fluorescence wavelengths and life times were measured using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The U-O bond distances determined by EXAFS, TRLFS, XPS, and Raman spectroscopy agree within the experimental uncertainties. The spectroscopic signatures observed could be useful for identifying uranyl carbonate species adsorbed on mineral surfaces.

  15. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  16. Thermodynamic model for an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Verhaert, Ivan; De Paepe, Michel; Mulder, Grietus

    Alkaline fuel cells are low temperature fuel cells for which stationary applications, e.g. cogeneration in buildings, are a promising market. In order to guarantee a long life, water and thermal management has to be done in a careful way. In order to better understand the water, alkali and thermal flows, a two-dimensional model for an Alkaline Fuel Cell is developed using a control volume approach. In each volume the electrochemical reactions together with the mass and energy balance are solved. The model is created in Aspen Custom Modeller, the development environment of Aspen Plus, where special attention is given to the physical flow of hydrogen, water and air in the system. In this way the developed component, the AFC-cell, can be built into stack configurations to understand its effect on the overall performance. The model is validated by experimental data from measured performance by VITO with their Cell Voltage Monitor at a test case, where the AFC-unit is used as a cogeneration unit.

  17. The effect of alkaline agents on retention of EOR chemicals

    SciTech Connect

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  18. Alkalinity and carbon budgets in the Mediterranean Sea

    SciTech Connect

    Copin-Montegut, C. )

    1993-12-01

    The carbon budget of the Mediterranean Sea has never been assessed. This paper reports the results of numerous measurements of pH and alkalinity in the spring of 1991. This concentration in inorganic carbon was deduced from the measurements. The existence of simple relationships between alkalinity and salinity or inorganic carbon and salinity made it possible to assess the budget of alkalinity and carbon in the Mediterranean Sea. 55 refs., 4 figs., 4 tabs.

  19. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  20. Acylglucuronide in alkaline conditions: migration vs. hydrolysis.

    PubMed

    Di Meo, Florent; Steel, Michele; Nicolas, Picard; Marquet, Pierre; Duroux, Jean-Luc; Trouillas, Patrick

    2013-06-01

    This work rationalizes the glucuronidation process (one of the reactions of the phase II metabolism) for drugs having a carboxylic acid moiety. At this stage, acylglucuronides (AG) metabolites are produced, that have largely been reported in the literature for various drugs (e.g., mycophenolic acid (MPA), diclofenac, ibuprofen, phenylacetic acids). The competition between migration and hydrolysis is rationalized by adequate quantum calculations, combing MP2 and density functional theory (DFT) methods. At the molecular scale, the former process is a real rotation of the drug around the glucuconic acid. This chemical-engine provides four different metabolites with various toxicities. Migration definitely appears feasible under alkaline conditions, making proton release from the OH groups. The latter reaction (hydrolysis) releases the free drug, so the competition is of crucial importance to tackle drug action and elimination. From the theoretical data, both migration and hydrolysis appear kinetically and thermodynamically favored, respectively.

  1. Rechargeable alkaline manganese dioxide/zinc batteries

    NASA Astrophysics Data System (ADS)

    Kordesh, K.; Weissenbacher, M.

    The rechargeable alkaline manganese dioxide/zinc MnO 2/Zn) system, long established commercial as a primay battery, has reached a high level of performance as a secondary battery system. The operating principles are presented and the technological achievements are surveyed by referencing the recent publications and patent literature. A review is also given of the improvements obtained with newly formulated cathodes and anodes and specially designed batteries. Supported by modelling of the cathode and anode processes and by statistical evidence during cycling of parallel/series-connected modules, the envisioned performance of the next generation of these batteries is described. The possibility of extending the practical use of the improved rechargeable MnO 2/Zn system beyond the field of small electronics into the area of power tools, and even to kW-sized power sources, is demonstrated. Finally, the commercial development in comparison with other rechargeable battery systems is examined.

  2. Thermodynamics of the alkaline transition in phytocyanins.

    PubMed

    Battistuzzi, Gianantonio; Bellei, Marzia; Dennison, Christopher; Di Rocco, Giulia; Sato, Katsuko; Sola, Marco; Yanagisawa, Sachiko

    2007-08-01

    The thermodynamics of the alkaline transition which influences the spectral and redox properties of the type 1 copper center in phytocyanins has been determined spectroscopically. The proteins investigated include Rhus vernicifera stellacyanin, cucumber basic protein and its Met89Gln variant, and umecyanin, the stellacyanin from horseradish roots, along with its Gln95Met variant. The changes in reaction enthalpy and entropy within the protein series show partial compensatory behavior. Thus, the reaction free energy change (hence the pK (a) value) is rather variable. This indicates that species-dependent differences in reaction thermodynamics, although containing an important contribution from changes in the hydrogen-bonding network of water molecules in the hydration sphere of the protein (which feature enthalpy-entropy compensation), are to a large extent protein-based. The data for axial ligand variants are consistent with the hypothesis of a copper-binding His as the deprotonating residue responsible for this transition.

  3. Inhibition of renal alkaline phosphatase by cimetidine.

    PubMed

    Minai-Tehrani, Dariush; Khodai, Somayeh; Aminnaseri, Somayeh; Minoui, Saeed; Sobhani-Damavadifar, Zahra; Alavi, Sana; Osmani, Raheleh; Ahmadi, Shiva

    2011-08-01

    Alkaline phosphatase (ALP) belongs to hydrolase group of enzymes. It is responsible for removing phosphate groups from many types of molecules, including nucleotides and proteins. Cimetidine (trade name Tagamet) is an antagonist of histamine H2-receptor that inhibits the production of gastric acid. Cimetidine is used for the treatment of gastrointestinal diseases. In this study the inhibitory effect of cimetidine on mouse renal ALP activity was investigated. Our results showed that cimetidine can inhibit ALP by uncompetitive inhibition. In the absence of inhibitor the V(max) and K(m) of the enzyme were found to be 13.7 mmol/mg prot.min and 0.25 mM, respectively. Both the Vmax and Km of the enzyme decreased with increasing cimetidine concentrations (0- 1.2 mM). The Ki and IC(50) of cimetidine were determined to be about 0.5 mM and 0.52 mM, respectively.

  4. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Swette, Larry; Giner, Jose

    1987-09-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  5. Development of an alkaline fuel cell subsystem

    NASA Astrophysics Data System (ADS)

    1987-03-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  6. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  7. Advanced-capability alkaline fuel cell powerplant

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    The alkaline fuel cell powerplant utilized in the Space Shuttle Orbiter has established an excellent performance and reliability record over the past decade. Recent AFC technology programs have demonstrated significant advances in cell durability and power density. These capabilities provide the basis for substantial improvement of the Orbiter powerplant, enabling new mission applications as well as enhancing performance in the Orbiter. Improved durability would extend the powerplant's time between overhaul fivefold, and permit longer-duration missions. The powerplant would also be a strong candidate for lunar/planetary surface power systems. Higher power capability would enable replacement of the Orbiter's auxiliary power units with electric motors, and benefits mass-critical applications such as the National AeroSpace Plane.

  8. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  9. Properties of cathode materials in alkaline cells

    NASA Astrophysics Data System (ADS)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  10. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  11. The Alkaline Dissolution Rate of Calcite.

    PubMed

    Colombani, Jean

    2016-07-07

    Due to the widespread presence of calcium carbonate on Earth, several geochemical systems, among which is the global CO2 cycle, are controlled to a large extent by the dissolution and precipitation of this mineral. For this reason, the dissolution of calcite has been thoroughly investigated for decades. Despite this intense activity, a consensual value of the dissolution rate of calcite has not been found yet. We show here that the inconsistency between the reported values stems mainly from the variability of the chemical and hydrodynamic conditions of measurement. The spreading of the values, when compared in identical conditions, is much less than expected and is interpreted in terms of sample surface topography. This analysis leads us to propose benchmark values of the alkaline dissolution rate of calcite compatible with all the published values, and a method to use them in various chemical and hydrodynamic contexts.

  12. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  13. Alkaline pulping of some eucalypts from Sudan.

    PubMed

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.

  14. The Nickel(111)/Alkaline Electrolyte Interface

    NASA Technical Reports Server (NTRS)

    Wang, Kuilong; Chottiner, G. S.; Scherson, D. A.; Reid, Margaret A.

    1991-01-01

    The electrochemical properties of Ni (111) prepared and characterized in ultra high vacuum, UHV, by surface analytical techniques have been examined in alkaline media by cyclic voltammetry using an UHV-electrochemical cell transfer system designed and built in this laboratory. Prior to the transfer, the Ni(111) surfaces were exposed to saturation coverages of CO in UHV in an attempt to protect the surface from possible contamination with other gases during the transfer. Temperature Programmed Desorption, TPD, of CO-dosed Ni (111) surfaces displaying sharp c(4x2), LEED patterns, subsequently exposed to water-saturated Ar at atmospheric pressure in an auxiliary UHV compatible chamber and finally transferred back to the main UHV chamber, yielded CO2 and water as the only detectable products. This indicates that the CO-dosed surfaces react with water and/or bicarbonate and hydroxide as the most likely products. Based on the integration of the TPD peaks, the combined amounts of H2O and CO2 were found to be on the order of a single monolayer. The reacted c(4x2)CO/Ni(111) layer seems to protect the surface from undergoing spontaneous oxidation in strongly alkaline solutions. This was evidenced by the fact that the open circuit potential observed immediately after contact with deaerated 0.1 M KOH was about 0.38 V vs. DHE, drifting slightly towards more negative values prior to initiating the voltametric scans. The average ratio of the integrated charge obtained in the first positive linear scan in the range of 0.35 to 1.5 V vs. DHE (initiated at the open circuit potential) and the first (and subsequent) linear negative scans in the same solution yielded for various independent runs a value of 3.5 +/- 0.3. Coulometric analysis of the cyclic voltammetry curves indicate that the electrochemically formed oxyhydroxide layer involves a charge equivalent to 3.2 +/- 0.4 layers of Ni metal.

  15. The Nickel(111)/Alkaline Electrolyte Interface

    NASA Technical Reports Server (NTRS)

    Wang, Kuilong; Chottiner, G. S.; Scherson, D. A.; Reid, Margaret A.

    1991-01-01

    The electrochemical properties of Ni (111) prepared and characterized in ultra high vacuum, UHV, by surface analytical techniques have been examined in alkaline media by cyclic voltammetry using an UHV-electrochemical cell transfer system designed and built in this laboratory. Prior to the transfer, the Ni(111) surfaces were exposed to saturation coverages of CO in UHV in an attempt to protect the surface from possible contamination with other gases during the transfer. Temperature Programmed Desorption, TPD, of CO-dosed Ni (111) surfaces displaying sharp c(4x2), LEED patterns, subsequently exposed to water-saturated Ar at atmospheric pressure in an auxiliary UHV compatible chamber and finally transferred back to the main UHV chamber, yielded CO2 and water as the only detectable products. This indicates that the CO-dosed surfaces react with water and/or bicarbonate and hydroxide as the most likely products. Based on the integration of the TPD peaks, the combined amounts of H2O and CO2 were found to be on the order of a single monolayer. The reacted c(4x2)CO/Ni(111) layer seems to protect the surface from undergoing spontaneous oxidation in strongly alkaline solutions. This was evidenced by the fact that the open circuit potential observed immediately after contact with deaerated 0.1 M KOH was about 0.38 V vs. DHE, drifting slightly towards more negative values prior to initiating the voltametric scans. The average ratio of the integrated charge obtained in the first positive linear scan in the range of 0.35 to 1.5 V vs. DHE (initiated at the open circuit potential) and the first (and subsequent) linear negative scans in the same solution yielded for various independent runs a value of 3.5 +/- 0.3. Coulometric analysis of the cyclic voltammetry curves indicate that the electrochemically formed oxyhydroxide layer involves a charge equivalent to 3.2 +/- 0.4 layers of Ni metal.

  16. Intestinal alkaline phosphatase to treat necrotizing enterocolitis.

    PubMed

    Biesterveld, Ben E; Koehler, Shannon M; Heinzerling, Nathan P; Rentea, Rebecca M; Fredrich, Katherine; Welak, Scott R; Gourlay, David M

    2015-06-15

    Intestinal alkaline phosphatase (IAP) activity is decreased in necrotizing enterocolitis (NEC), and IAP supplementation prevents NEC development. It is not known if IAP given after NEC onset can reverse the course of the disease. We hypothesized that enteral IAP given after NEC induction would not reverse intestinal injury. NEC was induced in Sprague-Dawley pups by delivery preterm followed by formula feedings with lipopolysaccharide (LPS) and hypoxia exposure and continued up to 4 d. IAP was added to feeds on day 2 until being sacrificed on day 4. NEC severity was scored based on hematoxylin and eosin-stained terminal ileum sections, and AP activity was measured using a colorimetric assay. IAP and interleukin-6 expression were measured using real time polymerase chain reaction. NEC pups' alkaline phosphatase (AP) activity was decreased to 0.18 U/mg compared with controls of 0.57 U/mg (P < 0.01). Discontinuation of LPS and hypoxia after 2 d increased AP activity to 0.36 U/mg (P < 0.01). IAP supplementation in matched groups did not impact total AP activity or expression. Discontinuing LPS and hypoxia after NEC onset improved intestinal injury scores to 1.14 compared with continued stressors, score 2.25 (P < 0.01). IAP supplementation decreased interleukin-6 expression two-fold (P < 0.05), though did not reverse NEC intestinal damage (P = 0.5). This is the first work to demonstrate that removing the source of NEC improves intestinal damage and increases AP activity. When used as a rescue treatment, IAP decreased intestinal inflammation though did not impact injury making it likely that IAP is best used preventatively to those neonates at risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Alkaline cleaner replacement for printed wiring board fabrication

    SciTech Connect

    Goldammer, S.E.; Pemberton, S.E.; Tucker, D.R.

    1997-04-01

    A replacement alkaline cleaning chemistry was qualified for the copper cleaning process used to support printed wiring board fabrication. The copper cleaning process was used to prepare copper surfaces for enhancing the adhesion of dry film photopolymers (photoresists and solder masks) and acrylic adhesives. The alkaline chemistry was used to remove organic contaminates such as fingerprints.

  18. The Chemistry of Paper Preservation Part 4. Alkaline Paper.

    ERIC Educational Resources Information Center

    Carter, Henry A.

    1997-01-01

    Discusses the problem of the inherent instability of paper due to the presence of acids that catalyze the hydrolytic degradation of cellulose. Focuses on the chemistry involved in the sizing of both acid and alkaline papers and the types of fillers used. Discusses advantages and problems of alkaline papermaking. Contains 48 references. (JRH)

  19. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  20. The Chemistry of Paper Preservation Part 4. Alkaline Paper.

    ERIC Educational Resources Information Center

    Carter, Henry A.

    1997-01-01

    Discusses the problem of the inherent instability of paper due to the presence of acids that catalyze the hydrolytic degradation of cellulose. Focuses on the chemistry involved in the sizing of both acid and alkaline papers and the types of fillers used. Discusses advantages and problems of alkaline papermaking. Contains 48 references. (JRH)

  1. Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses

    PubMed Central

    Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.

    2014-01-01

    In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223

  2. Dynamic model of in-lake alkalinity generation

    SciTech Connect

    Baker, L.A.; Brezonik, P.L.

    1988-01-01

    In-lake alkalinity generation (IAG) is important in regulation of alkalinity in lakes with long residence times, particularly seepage lakes. An IAG model based on input/output modeling concepts is presented that describes budgets for each ion involved in alkalinity regulation by a single differential equation that includes inputs, outputs, and a first-order sink term. These equations are linked to an alkalinity balance equation that includes inputs, outputs, IAG (by sulfate and nitrate reduction), and internal alkalinity consumption (by ammonium assimilation). Calibration using published lake budgets shows that rate constants are generally similar among soft water lakes (k/sub SO/sub 4// approx. 0.5 m/yr; k/sub NO/sub 3// approx. = 1.3 yr/sup -1/; k/sub NH/sub 4// approx. 1.5 yr/sup -1/). Sensitivity analysis shows that predicted alkalinity is sensitive to water residence time, but less sensitive to modest changes in rate constants. The model reflects the homeostatic nature of internal alkalinity generation, in which internal alkalinity production increases with increasing acid input and decreases with decreasing acid inputs of HNO/sub 3/ or H/sub 2/SO/sub 4/.

  3. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids.

    PubMed

    Marino, M G; Kreuer, K D

    2015-02-01

    The alkaline stability of 26 different quaternary ammonium groups (QA) is investigated for temperatures up to 160 °C and NaOH concentrations up to 10 mol L(-1) with the aim to provide a basis for the selection of functional groups for hydroxide exchange membranes in alkaline fuel cells and of ionic-liquid cations stable in basic conditions. Most QAs exhibit unexpectedly high alkaline stability with the exception of aromatic cations. β-Protons are found to be far less susceptible to nucleophilic attack than previously suggested, whereas the presence of benzyl groups, nearby hetero-atoms, or other electron-withdrawing species promote degradation reactions significantly. Cyclic QAs proved to be exceptionally stable, with the piperidine-based 6-azonia-spiro[5.5]undecane featuring the highest half-life at the chosen conditions. Absolute and relative stabilities presented herein stand in contrast to literature data, the differences being ascribed to solvent effects on degradation.

  4. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment.

    PubMed

    Yuan, Zhaoyang; Wen, Yangbing; Kapu, Nuwan Sella

    2017-09-14

    A sequential two-stage pretreatment process comprising alkaline pre-extraction and alkaline hydrogen peroxide pretreatment (AHP) was investigated to convert bamboo carbohydrates into bioethanol. The results showed that mild alkaline pre-extraction using 8% (w/w) sodium hydroxide (NaOH) at 100°C for 180min followed by AHP pretreatment with 4% (w/w) hydrogen peroxide (H2O2) was sufficient to generate a substrate that could be efficiently digested with low enzyme loadings. Moreover, alkali pre-extraction enabled the use of lower H2O2 charges in AHP treatment. Two-stage pretreatment followed by enzymatic hydrolysis with only 9FPU/g cellulose led to the recovery of 87% of the original sugars in the raw feedstock. The use of the pentose-hexose fermenting Saccharomyces cerevisiae SR8u strain enabled the utilization of 95.7% sugars in the hydrolysate to reach 4.6%w/v ethanol titer. The overall process also enabled the recovery of 62.9% lignin and 93.8% silica at high levels of purity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Salt- and alkaline-tolerance are linked in Acacia

    PubMed Central

    Bui, Elisabeth N.; Thornhill, Andrew; Miller, Joseph T.

    2014-01-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific. PMID:25079493

  6. Salt- and alkaline-tolerance are linked in Acacia.

    PubMed

    Bui, Elisabeth N; Thornhill, Andrew; Miller, Joseph T

    2014-07-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific.

  7. Geochemistry and petrogenesis of post-collisional ultrapotassic syenites and granites from southernmost Brazil: the Piquiri Syenite Massif.

    PubMed

    Nardi, Lauro V S; Plá-Cid, Jorge; Bitencourt, Maria de Fátima; Stabel, Larissa Z

    2008-06-01

    The Piquiri Syenite Massif, southernmost Brazil, is part of the post-collisional magmatism related to the Neoproterozoic Brasiliano-Pan-African Orogenic Cycle. The massif is about 12 km in diameter and is composed of syenites, granites, monzonitic rocks and lamprophyres. Diopside-phlogopite, diopside-biotite-augite-calcic-amphibole, are the main ferro-magnesian paragenesis in the syenitic rocks. Syenitic and granitic rocks are co-magmatic and related to an ultrapotassic, silica-saturated magmatism. Their trace element patterns indicate a probable mantle source modified by previous, subduction-related metasomatism. The ultrapotassic granites of this massif were produced by fractional crystallization of syenitic magmas, and may be considered as a particular group of hypersolvus and subsolvus A-type granites. Based upon textural, structural and geochemical data most of the syenitic rocks, particularly the fine-grained types, are considered as crystallized liquids, in spite of the abundance of cumulatic layers, schlieren, and compositional banding. Most of the studied samples are metaluminous, with K2O/Na2O ratios higher than 2. The ultrapotassic syenitic and lamprophyric rocks in the Piquiri massif are interpreted to have been produced from enriched mantle sources, OIB-type, like most of the post-collisional shoshonitic, sodic alkaline and high-K tholeiitic magmatism in southernmost Brazil. The source of the ultrapotassic and lamprophyric magmas is probably the same veined mantle, with abundant phlogopite + apatite + amphibole that reflects a previous subduction-related metasomatism.

  8. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  9. Batteries: from alkaline to zinc-air.

    PubMed

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  10. Microbial Thiocyanate Utilization under Highly Alkaline Conditions

    PubMed Central

    Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs

    2001-01-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS−) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  11. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  12. Alkaline fuel cell with nitride membrane

    NASA Astrophysics Data System (ADS)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  13. Engineering challenges of ocean alkalinity enhancement

    NASA Astrophysics Data System (ADS)

    Kruger, T.; Renforth, P.

    2012-04-01

    The addition of calcium oxide (CaO) to the ocean as a means of enhancing the capacity of the ocean as a carbon sink was first proposed by Haroon Kheshgi in 1995. Calcium oxide is created by heating high purity limestone in a kiln to temperatures of approximately 1000°C. Addition of this material to the ocean draws carbon dioxide out of the atmosphere (approximately 1 tonne of CaO could sequester 1.3 tonnes of CO2). Abiotic carbonate precipitation is inhibited in the surface ocean. This is a carbon and energy expensive process, where approximately 0.8 tonnes of CO2 are produced at a point source for every tonne sequestered. The feasibility of ocean alkalinity enhancement requires capture and storage of the point source of CO2. We present details of a feasibility study of the engineering challenges of Kheshgi's method focusing on the potential scalability and costs of the proposed process. To draw down a PgC per year would require the extraction and processing of ~6Pg of limestone per year, which is similar in scale to the current coal industry. Costs are estimated at ~USD30-40 per tonne of CO2 sequestered through the process, which is favourable to comparative processes. Kheshgi, H. (1995) Energy 20 (9) 915-922

  14. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  15. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  16. Identification of human pulmonary alkaline phosphatase isoenzymes.

    PubMed

    Capelli, A; Cerutti, C G; Lusuardi, M; Donner, C F

    1997-04-01

    An increase of alkaline phosphatase (ALP) activity has been observed in the bronchoalveolar lavage fluid (BALF) of patients affected by pulmonary fibrosis in chronic interstitial lung disorders. To characterize the ALP isoenzymes in such cases, we used gel filtration, agarose gel electrophoresis, heat and amino acid inhibition assays, wheat-germ agglutinin (WGA) precipitation, and an immunoassay specific for the bone-isoform of ALP. Only one anodic band representing a high-molecular-weight isoform of ALP (Mr approximately 2,000 kDa) was observed on electrophoresis of BALF. The inhibition assay results were consistent for a tissue-nonspecific isoenzyme sensitive to a temperature of 56 degrees C (71.9 +/- 2.5% inhibition) and to homoarginine (65.7 +/- 1.9%), and resistant to L-phenylalanine and L-leucine. Less than 13% of ALP activity was heat-stable. After incubation of BALF specimens with glycosyl-phosphatidylinositol-phospholipase D plus Nonidet P-40, or with phosphatidylinositol-phospholipase C alone, an electrophoretic cathodic band (Mr approximately 220 kDa) appeared near the bone band of a standard serum. With the WGA assay, 84.4 +/- 3.3% of ALP precipitated and the band disappeared. After immunoassay for the bone isoform, a mean of less than 5% enzyme activity was measured. We conclude that the ALP found in BALF is a pulmonary isoform of a tissue nonspecific isoenzyme.

  17. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  18. Structural dissection of alkaline-denatured pepsin

    PubMed Central

    Kamatari, Yuji O.; Dobson, Christopher M.; Konno, Takashi

    2003-01-01

    It has been established in a number of studies that the alkaline-denatured state of pepsin (the IP state) is composed of a compact C-terminal lobe and a largely unstructured N-terminal lobe. In the present study, we have investigated the residual structure in the IP state in more detail, using limited proteolysis to isolate and characterize a tightly folded core region from this partially denatured pepsin. The isolated core region corresponds to the 141 C-terminal residues of the pepsin molecule, which in the fully native state forms one of the two lobes of the structure. A comparative study using NMR and CD spectroscopy has revealed, however, that the N-terminal lobe contributes a substantial amount of additional residual structure to the IP state of pepsin. CD spectra indicate in addition that significant nonnative α-helical structure is present in the C-terminal lobe of the structure when the N-terminal lobe of pepsin is either unfolded or removed by proteolysis. This study demonstrates that the structure of pepsin in the IP state is significantly more complex than that of a fully folded C-terminal lobe connected to an unstructured N-terminal lobe. PMID:12649430

  19. Solubility of pllutonium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1993-02-26

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model.

  20. Low pH alkaline chemical formulations

    SciTech Connect

    French, T.R.; Peru, D.A.; Thornton, S.D.

    1989-01-01

    This report describes the development of a surfactant-enhanced alkaline flooding system that is applicable to specific reservoir conditions in Wilmington (California) field. The cost of the chemicals for an ASP (alkali/surfactant/polymer) flood is calculated to be $3.90/bbl of oil produced, with 78% of that cost attributable to polymer. This research included phase behavior tests, oil displacement tests, mineral dissolution tests, and adsorption measurements. It was discovered that consumption of low pH alkalis is low enough in the Wilmington field to be acceptable. In addition, alkali dramatically reduced surfactant adsorption and precipitation. A mixture of NaHCO3 and Na2CO3 was recommended for use as a preflush and in the ASP formulation. Research was also conducted on the synergistic effect that occurs when a mixture of alkali and synthetic surfactant contacts crude oil. It appears that very low IFT is predominantly a result of the activation of the natural surfactants present in the Wilmington oil, and the sustained low IFT is primarily the result of the synthetic surfactant. It also appears that removal of acids from the crude oil by the alkali renders the oil more interfacially reactive to synthetic surfactant. These phenomena help to explain the synergism that results from combining alkali and synthetic surfactant into a single oil recovery formulation. 19 refs., 24 figs., 10 tabs.

  1. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  2. Extracellular alkaline proteinase of Colletotrichum gloeosporioides.

    PubMed

    Dunaevsky, Ya E; Matveeva, A R; Beliakova, G A; Domash, V I; Belozersky, M A

    2007-03-01

    The main proteinase of the filamentous fungus Colletotrichum gloeosporioides causing anthracnoses and serious problems for production and storage of agricultural products has molecular mass of 57 kD and was purified more than 200-fold to homogeneity with the yield of 5%. Maximal activity of the proteinase is at pH 9.0-10.0, and the enzyme is stable at pH 6.0-11.5 (residual activity not less than 70%). The studied enzyme completely kept its activity to 55 degrees C, with a temperature optimum of 45 degrees C. The purified C. gloeosporioides proteinase is stable at alkaline pH values, but rapidly loses its activity at pH values lower than 5.0. Addition of bovine serum albumin stabilizes the enzyme under acidic conditions. Data on inhibitor analysis and substrate specificity of the enzyme allow its classification as a serine proteinase of subtilisin family. It is demonstrated that the extracellular proteinase of C. gloeosporioides specifically effects plant cell wall proteins. It is proposed that the studied proteinase--via hydrolysis of cell wall--provides for penetration of the fungus into the tissues of the host plant.

  3. Alkaline Phosphatase, an Unconventional Immune Protein.

    PubMed

    Rader, Bethany A

    2017-01-01

    Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer's disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.

  4. Alkaline Phosphatase, an Unconventional Immune Protein

    PubMed Central

    Rader, Bethany A.

    2017-01-01

    Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer’s disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont. PMID:28824625

  5. Response of Desulfovibrio vulgaris to Alkaline Stress

    SciTech Connect

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  6. Efficient utilization of licorice root by alkaline extraction.

    PubMed

    Ohno, Hirokazu; Miyoshi, Shozo; Araho, Daisuke; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Tsuda, Tadashi; Sunaga, Katsuyoshi; Amano, Shigeru; Ohkoshi, Emika; Sakagami, Hiroshi; Satoh, Kazue; Yamamoto, Masaji

    2014-01-01

    Compared to studies of water extracts of plants, those utilising alkaline extracts are limited. Both water and alkaline extracts from licorice root were compared regarding their biological activities. Licorice root was successively extracted first with water or alkaline solution (pH 9 or 12), and the alkaline (pH 12.0) extract was further separated into 50% ethanol-soluble and -insoluble fractions. Viable cell number was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Antibacterial activity against Porphyromonas gingivalis 381 was determined by turbidity assay. Cytochrome P-450 (CYP)3A4 activity was measured by β-hydroxylation of testosterone using human recombinant CYP3A4. Radical intensity of superoxide and hydroxyl radicals was determined by electron spin resonance spectroscopy. Alkaline extraction yielded slightly higher amounts of dried materials compared to water extraction. Alkaline extract showed higher anti-HIV and antibacterial activities, and similar magnitudes of CYP3A4 inhibitory and superoxide and hydroxyl radical-scavenging activities, compared to water extract. When alkaline extract was fractionated by 50% ethanol, anti-HIV activity was recovered from the insoluble fraction representing approximately 3% of the alkaline extract, whereas antibacterial activity was concentrated in the soluble fraction rich in glycyrrhizid acid, flavanones and chalcones. All extracts and sub-fractions led to bimodal hormetic dose-response (maximum hormetic response=238%) on the bacterial growth. The present study demonstrated the superiority of alkaline extraction over water extraction for preparing anti-HIV and antibacterial agents at higher yield from licorice root. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  8. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  9. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  10. Copper release in low and high alkaline water.

    PubMed

    D'Antonio, L; Fabbricino, M; Nasso, M; Trifuoggi, M

    2008-04-01

    Copper release in drinking water, caused by electrochemical corrosion of household distribution systems, was investigated. Experiments were developed testing both low and high alkaline water in stagnant conditions. The effect of varying stagnation time was investigated also. Both soluble and insoluble copper compounds, produced by corrosion processes are quantified, using appropriate experimental procedures. On the basis of obtained results, copper concentration in stagnant water is defined as a function of water alkalinity, while total metal release is defined as a function of stagnation length, and is not dependent on water alkalinity.

  11. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Swette, L.; Kackley, N.

    1989-12-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells are being investigated and developed. Candidate support materials were drawn from transition metal carbides, borides, nitrides and oxides which have high conductivity (greater than 1 ohm/cm). Candidate catalyst materials were selected largely from metal oxides of the form ABO sub x (where A = Pb, Cd, Mn, Ti, Zr, La, Sr, Na, and B = Pt, Pd, Ir, Ru, Ni (Co) which were investigated and/or developed for one function only, O2 reduction or O2 evolution. The electrical conductivity requirement for catalysts may be lower, especially if integrated with a higher conductivity support. All candidate materials of acceptable conductivity are subjected to corrosion testing. Materials that survive chemical testing are examined for electrochemical corrosion activity. For more stringent corrosion testing, and for further evaluation of electrocatalysts (which generally show significant O2 evolution at at 1.4 V), samples are held at 1.6 V or 0.6 V for about 100 hours. The surviving materials are then physically and chemically analyzed for signs of degradation. To evaluate the bifunctional oxygen activity of candidate catalysts, Teflon-bonded electrodes are fabricated and tested in a floating electrode configuration. Many of the experimental materials being studied have required development of a customized electrode fabrication procedure. In advanced development, the goal is to reduce the polarization to about 300 to 350 mV. Approximately six support materials and five catalyst materials were identified to date for further development. The test results will be described.

  12. Spectroscopic studies of alkaline activated slag geopolymers

    NASA Astrophysics Data System (ADS)

    Mozgawa, W.; Deja, J.

    2009-04-01

    In the work, results of structural studies of different geopolymers, obtained using a granulated blast furnace slag, are presented. The slag was subjected to an alkaline activation process. As activators, NaOH, Na 2CO 3 and liquid glass were applied. IR and NMR spectroscopy were the main experimental methods used, the results obtained were compared with XRD phase analysis and SEM observations. In the IR spectra of raw slag as well as in the spectra of products of paste hydration, the bands due to the characteristic vibrations of bonds observed in both types of oxygen bridges: Si-O-Si and Si-O-Al, were assigned. These bridges constitute basic structural units, forming tetrahedral geopolymer chains. It was found that the slag composition, mainly SiO 2/Al 2O 3 ratio and modification in oxides concentration, influences the presence of the bands connected with the phases (mainly C-S-H) formed during the hydration in the IR spectra. Additionally, significant effect of amorphous phases share on the spectra shape was established. 29Si and 27Al MAS-NMR spectra of initial slag geopolymers and pastes provided information concerning coordination of both atoms in the structures. It was revealed that the kind of slag geopolymers and the conditions of paste hydration influence connectedness of silicooxygen tetrahedra and coordination number of aluminium atoms. Based on IR spectra, it was also possible to determine the influence of the activator type, activation time and hydration conditions on the products formed. Significant changes were observed for the bands assigned to vibrations of carbonate and hydroxide groups. The changes were also noticed in the case of bands due to vibrations of silicate and aluminosilicate bonds.

  13. The Martian ocean: First acid, then alkaline

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1992-01-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  14. The Martian ocean: First acid, then alkaline

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1992-01-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  15. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1989-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells are being investigated and developed. Candidate support materials were drawn from transition metal carbides, borides, nitrides and oxides which have high conductivity (greater than 1 ohm/cm). Candidate catalyst materials were selected largely from metal oxides of the form ABO sub x (where A = Pb, Cd, Mn, Ti, Zr, La, Sr, Na, and B = Pt, Pd, Ir, Ru, Ni (Co) which were investigated and/or developed for one function only, O2 reduction or O2 evolution. The electrical conductivity requirement for catalysts may be lower, especially if integrated with a higher conductivity support. All candidate materials of acceptable conductivity are subjected to corrosion testing. Materials that survive chemical testing are examined for electrochemical corrosion activity. For more stringent corrosion testing, and for further evaluation of electrocatalysts (which generally show significant O2 evolution at at 1.4 V), samples are held at 1.6 V or 0.6 V for about 100 hours. The surviving materials are then physically and chemically analyzed for signs of degradation. To evaluate the bifunctional oxygen activity of candidate catalysts, Teflon-bonded electrodes are fabricated and tested in a floating electrode configuration. Many of the experimental materials being studied have required development of a customized electrode fabrication procedure. In advanced development, the goal is to reduce the polarization to about 300 to 350 mV. Approximately six support materials and five catalyst materials were identified to date for further development. The test results will be described.

  16. Alkaline decomposition of synthetic jarosite with arsenic

    PubMed Central

    2013-01-01

    The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb2+, Cr6+, As5+, Cd2+, Hg2+). For the present paper, AsO43- was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH-] > 8 × 10-3 mol L-1, the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol-1 was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH-] > 1.90 × 10-2 mol L-1, the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol-1 was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control. PMID:23566061

  17. Alkaline decomposition of synthetic jarosite with arsenic.

    PubMed

    Patiño, Francisco; Flores, Mizraim U; Reyes, Iván A; Reyes, Martín; Hernández, Juan; Rivera, Isauro; Juárez, Julio C

    2013-01-01

    The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb(2+), Cr(6+), As(5+), Cd(2+), Hg(2+)). For the present paper, AsO4 (3-) was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH(-)] > 8 × 10(-3) mol L(-1), the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol(-1) was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH(-)] > 1.90 × 10(-2) mol L(-1), the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol(-1) was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control.

  18. Processes affecting the oceanic distributions of dissolved calcium and alkalinity

    SciTech Connect

    Shiller, A.M.; Gieskes, J.M.

    1980-05-20

    Recent studies of the CO/sub 2/ system have suggested that chemical processes in addition to the dissolution and precipitation of calcium carbonate affect the oceanic calcium and alkalinity distributions. Calcium and alkalinity data from the North Pacific have been examined both by using the simple physical-chemical model of previous workers and by a study involving the broader oceanographic context of these data. The simple model is shown to be an inadequate basis for these studies. Although a proton flux associated with organic decomposition may affect the alkalinity, previously reported deviations of calcium-alkalinity correlations from expected trends appear to be related to boundary processes that have been neglected rather than to this proton flux. The distribution of calcium in the surface waters of the Pacific Ocean is examined.

  19. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  20. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  1. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  2. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  3. Microbial alkaline pectinases and their industrial applications: a review.

    PubMed

    Hoondal, G S; Tiwari, R P; Tewari, R; Dahiya, N; Beg, Q K

    2002-08-01

    The biotechnological potential of pectinolytic enzymes from microorganisms has drawn a great deal of attention from various researchers worldwide as likely biological catalysts in a variety of industrial processes. Alkaline pectinases are among the most important industrial enzymes and are of great significance in the current biotechnological arena with wide-ranging applications in textile processing, degumming of plant bast fibers, treatment of pectic wastewaters, paper making, and coffee and tea fermentations. The present review features the potential applications and uses of microbial alkaline pectinases, the nature of pectin, and the vast range of pectinolytic enzymes that function to mineralize pectic substances present in the environment. It also emphasizes the environmentally friendly applications of microbial alkaline pectinases thereby revealing their underestimated potential. The review intends to explore the potential of these enzymes and to encourage new alkaline pectinase-based industrial technology.

  4. Kinetics of the Fading of Phenolphthalein in Alkaline Solution.

    ERIC Educational Resources Information Center

    Nicholson, Lois

    1989-01-01

    Described is an experiment which illustrates pseudo-first-order kinetics in the fading of a common indicator in an alkaline solution. Included are background information, details of materials used, laboratory procedures, and sample results. (CW)

  5. Improving the alkaline stability of imidazolium cations by substitution.

    PubMed

    Dong, Huilong; Gu, Fenglou; Li, Min; Lin, Bencai; Si, Zhihong; Hou, Tingjun; Yan, Feng; Lee, Shuit-Tong; Li, Youyong

    2014-10-06

    Imidazolium cations are promising candidates for preparing anion-exchange membranes because of their good alkaline stability. Substitution of imidazolium cations is an efficient way to improve their alkaline stability. By combining density functional theory calculations with experimental results, it is found that the LUMO energy correlates with the alkaline stability of imidazolium cations. The results indicate that alkyl groups are the most suitable substituents for the N3 position of imidazolium cations, and the LUMO energies of alkyl-substituted imidazolium cations depend on the electron-donating effect and the hyperconjugation effect. Comparing 1,2-dimethylimidazolium cations (1,2-DMIm+) and 1,3-dimethylimidazolium cations (1,3-DMIm+) with the same substituents reveals that the hyperconjugation effect is more significant in influencing the LUMO energy of 1,3-DMIms. This investigation reveals that LUMO energy is a helpful aid in predicting the alkaline stability of imidazolium cations.

  6. Design considerations and construction techniques for successive alkalinity producing systems

    SciTech Connect

    Skovran, G.A.; Clouser, C.R.

    1998-12-31

    Successive Alkalinity Producing Systems (SAPS) have been utilized for several years for the passive treatment of acid mine drainage. The SAPS technology is an effective method for inducing alkalinity to neutralize acid mine water and promote the precipitation of contaminating metals. Several design considerations and construction techniques are important for proper system function and longevity. This paper discusses SAPS design, water collection and introduction to the SAPS, hydraulics of SAPS, construction, operation and maintenance, and safety, and found that these factors were critical to obtaining maximum alkalinity at several SAPS treatment sites in Southwestern Pennsylvania. Taking care to incorporate these factors into future SAPS will aid effective treatment, reduce maintenance costs, and maximize long term effectiveness of successive alkalinity producing systems.

  7. Regulation of alkaline phosphatase expression in human choriocarcinoma cell lines.

    PubMed Central

    Hamilton, T A; Tin, A W; Sussman, H H

    1979-01-01

    The coincident expression of two structurally distinct isoenzymes of human alkaline phosphatase was demonstrated in two independently derived gestational choriocarcinoma cell lines. These proteins were shown to have enzymatic, antigenic, and physical-chemical properties resembling those of isoenzymes from term placenta and adult liver. The regulation of these isoenzymes has been studied during the exposure of both cell lines to 5-bromodeoxyuridine and dibutyryl cyclic AMP. The responses of the alkaline phosphatase isoenzymes to these agents have also been compared with the response of another protein phenotypic to placenta, the alpha subunit of chorionic gonadotropin. The results show that (i) the separate structural genes coding for placental and liver alkaline phosphatases are regulated in a noncoordinate fashion; (ii) both alkaline phosphatase genes respond independently of the alpha subunit; and (iii) the induction of the placental type isoenzyme occurs via at least two independent pathways. Images PMID:218197

  8. Alkaline mineral water lowers bone resorption even in calcium sufficiency: alkaline mineral water and bone metabolism.

    PubMed

    Wynn, Emma; Krieg, Marc-Antoine; Aeschlimann, Jean-Marc; Burckhardt, Peter

    2009-01-01

    Dietary acid charge enhances bone loss. Bicarbonate or alkali diet decreases bone resorption in humans. We compared the effect of an alkaline mineral water, rich in bicarbonate, with that of an acid one, rich in calcium only, on bone markers, in young women with a normal calcium intake. This study compared water A (per litre: 520 mg Ca, 291 mg HCO(3)(-), 1160 mg SO(4)(-), Potential Renal Acid load (PRAL) +9.2 mEq) with water B (per litre: 547 mg Ca, 2172 mg HCO(3)(-), 9 mg SO(4)(-), PRAL -11.2 mEq). 30 female dieticians aged 26.3 yrs (SD 7.3) were randomized into two groups, followed an identical weighed, balanced diet (965 mg Ca) and drank 1.5 l/d of the assigned water. Changes in blood and urine electrolytes, C-telopeptides (CTX), urinary pH and bicarbonate, and serum PTH were measured after 2 and 4 weeks. The two groups were not different at baseline, and showed a similar increase in urinary calcium excretion. Urinary pH and bicarbonate excretion increased with water B, but not with water A. PTH (p=0.022) and S-CTX (p=0.023) decreased with water B but not with water A. In calcium sufficiency, the acid calcium-rich water had no effect on bone resorption, while the alkaline water rich in bicarbonate led to a significant decrease of PTH and of S-CTX.

  9. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  10. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  11. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  12. Characteristics of plasmalemma alkaline phosphatase of rat mesenteric artery.

    PubMed

    Kwan, C Y

    1983-01-01

    General characteristics of alkaline phosphatase activity of the plasma membrane-enriched fraction isolated from rat mesenteric arteries were investigated. The vascular smooth muscle plasmalemma alkaline phosphatase is a metalloenzyme which is strongly inhibited by chelating agents and this inhibition can be completely overcome by addition of Mg2+ or Ca2+. Zn2+ only partially reactivates the enzyme in the presence of low concentrations of EDTA. The enzymatic hydrolysis of p-nitrophenyl phosphate, beta-glycerophosphate, alpha-glycerophosphate, or 3'-adenosine monophosphate showed an optimal activity in the alkaline region between pH 9 and 11. The alkaline phosphatase activity is distinctly different from the plasmalemma ATPase and 5'-nucleotidase activities with respect to their pH dependence, influence by added divalent metal ions and stability against heat inactivation. Vanadate ion, being structurally similar to the transition state analog of the phosphoryl group, potently inhibits alkaline phosphatase with an apparent Ki of 1.5 microM. The altered alkaline phosphatase activity of vascular smooth muscle in relation to its possible physiological function and pathophysiological manifestation associated with hypertensive disease are discussed.

  13. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    PubMed

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  14. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    PubMed

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The alkalinizing effects of metabolizable bases in the healthy calf.

    PubMed Central

    Naylor, J M; Forsyth, G W

    1986-01-01

    The alkalinizing effect of citrate, acetate, propionate, gluconate, L and DL-lactate were compared in healthy neonatal calves. The calves were infused for a 3.5 hour period with 150 mmol/L solutions of the sodium salts of the various bases. Blood pH, base excess, and metabolite concentrations were measured and the responses compared with sodium bicarbonate and sodium chloride infusion. D-gluconate and D-lactate had poor alkalinizing abilities and accumulated in blood during infusion suggesting that they are poorly metabolized by the calf. Acetate, L-lactate and propionate had alkalinizing effects similar to bicarbonate, although those of acetate had a slightly better alkalinizing effect than L-lactate. Acetate was more effectively metabolized because blood acetate concentrations were lower than L-lactate concentrations. There was a tendency for a small improvement in metabolism of acetate and lactate with age. Sodium citrate infusion produced signs of hypocalcemia, presumably because it removed ionized calcium from the circulation. D-gluconate, D-lactate and citrate are unsuitable for use as alkalinizing agents in intravenous fluids. Propionate, acetate and L-lactate are all good alkalinizing agents in healthy calves but will not be as effective in situations where tissue metabolism is impaired. PMID:3024796

  16. Nitrogen isotope evidence for alkaline lakes on late Archean continents

    NASA Astrophysics Data System (ADS)

    Stüeken, E. E.; Buick, R.; Schauer, A. J.

    2015-02-01

    Nitrogen isotope ratios in ancient sedimentary rocks are generally interpreted as a proxy for metabolic nitrogen pathways and the redox state of the water column. Fractionation processes occurring under anoxic, alkaline conditions during the dissociation of NH4+ to H+ and volatile NH3 are frequently overlooked, although this mechanism imparts large isotopic fractionations. Here we propose that NH3 volatilization is largely responsible for δ15N values of up to + 50 ‰ at high C/N ratios in the late Archean Tumbiana Formation. This sequence of sedimentary rocks represents a system of lakes that formed on subaerial flood basalts and were partly filled by basaltic volcanic ash. Aqueous alteration of volcanic glass followed by evaporative concentration of ions should have led to the development of high alkalinity with a pH of 9 or higher, as in modern analogues. In this sedimentologically unusual setting, nitrogen isotope ratios thus provide indirect evidence for the oldest alkaline lake system in the rock record. These very heavy lacustrine δ15N values contrast markedly with those of Archean marine sedimentary rocks, making a Precambrian "soda ocean" unlikely. Today, alkaline lakes are among the most productive ecosystems on Earth. Some nutrients, in particular molybdenum, are more soluble at high pH, and certain prebiotic reactions would likely have been favored under alkaline conditions in similar settings earlier in Earth's history. Hence alkaline lakes in the Archean could have been significant for the origin and early evolution of life.

  17. Alkaline phosphatase revisited: hydrolysis of alkyl phosphates.

    PubMed

    O'Brien, Patrick J; Herschlag, Daniel

    2002-03-05

    Escherichia coli alkaline phosphatase (AP) is the prototypical two metal ion catalyst with two divalent zinc ions bound approximately 4 A apart in the active site. Studies spanning half a century have elucidated many structural and mechanistic features of this enzyme, rendering it an attractive model for investigating the potent catalytic power of bimetallic centers. Unfortunately, fundamental mechanistic features have been obscured by limitations with the standard assays. These assays generate concentrations of inorganic phosphate (P(i)) in excess of its inhibition constant (K(i) approximately 1 muM). This tight binding by P(i) has affected the majority of published kinetic constants. Furthermore, binding limits k(cat)/K(m) for reaction of p-nitrophenyl phosphate, the most commonly employed substrate. We describe a sensitive (32)P-based assay for hydrolysis of alkyl phosphates that avoids the complication of product inhibition. We have revisited basic mechanistic features of AP with these alkyl phosphate substrates. The results suggest that the chemical step for phosphorylation of the enzyme limits k(cat)/K(m). The pH-rate profile and additional results suggest that the serine nucleophile is active in its anionic form and has a pK(a) of < or = 5.5 in the free enzyme. An inactivating pK(a) of 8.0 is observed for binding of both substrates and inhibitors, and we suggest that this corresponds to ionization of a zinc-coordinated water molecule. Counter to previous suggestions, inorganic phosphate dianion appears to bind to the highly charged AP active site at least as strongly as the trianion. The dependence of k(cat)/K(m) on the pK(a) of the leaving group follows a Brønsted correlation with a slope of beta(lg) = -0.85 +/- 0.1, differing substantially from the previously reported value of -0.2 obtained from data with a less sensitive assay. This steep leaving group dependence is consistent with a largely dissociative transition state for AP-catalyzed hydrolysis of

  18. Acidity and alkalinity in mine drainage: Theoretical considerations

    USGS Publications Warehouse

    Kirby, Carl S.; Cravotta, Charles A.

    2004-01-01

    Acidity, net acidity, and net alkalinity are widely used parameters for the characterization of mine drainage, but these terms are not well defined and are often misunderstood. Incorrect interpretation of acidity, alkalinity, and derivative terms can lead to inadequate treatment design or poor regulatory decisions. We briefly explain derivations of theoretical expressions of three types of alkalinities (caustic, phenolphthalein, and total) and acidities (mineral, CO2, and total). Theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined “CO2- acidity” is closely related to most standard titration methods used for mine drainage with an endpoint pH of 8.3, but it presents numerous interpretation problems, and it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/massaction approach and employing graphs for visualization, we explore the concept of principal components and how to assign acidity contributions to solution species, including aqueous complexes, commonly found in mine drainage. We define a comprehensive theoretical definition of acidity in mine drainage on the basis of aqueous speciation at the sample pH and the capacity of these species to undergo hydrolysis to pH 8.3. This definition indicates the computed acidity in milligrams per liter (mg L-1 ) as CaCO3 (based on pH and analytical concentrations of dissolved FeIII , FeII , Mn, and Al in mg L-1 ): Aciditycomputed = 50. (10(3-pH) + 3.CFeIII/55.8 + 2.CFeII/55.8 + 2.CMn/54.9 + 3.CAl/27.0) underestimates contributions from HSO4 - and H+ , but overestimates the acidity due to Fe3+. These errors tend to approximately cancel each other. We demonstrate that “net alkalinity” is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. We demonstrate that, for most mine-drainage solutions, a

  19. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    PubMed

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Advanced alkaline water electrolysis. Task 2 summary report. Model for alkaline water electrolysis systems

    SciTech Connect

    Yaffe, M.R.; Murray, J.N.

    1980-04-01

    Task 2 involved the establishment of an engineering and economic model for the evaluation of various options in water electrolysis. The mode, verification of the specific coding and four case studies are described. The model was tested by evaluation of a nearly commercial technology, i.e., an 80-kW alkaline electrolyte system, operating at 60/sup 0/C, which delivers approximately 255 SLM, hydrogen for applications such as electrical generation cooling or semiconductor manufacturing. The calculated cost of hydrogen from this installed non-optimized case system with an initial cost to the customer of $87,000 was $6.99/Kg H/sub 2/ ($1.67/100 SCF) on a 20-yr levelized basis using 2.5 cents/kWh power costs. This compares favorably to a levelized average merchant hydrogen cost value of $9.11/Kg H/sub 2/ ($2.17/100 SCF) calculated using the same program.

  1. Alkalinity Enrichment Enhances Net Calcification of a Coral Reef Flat

    NASA Astrophysics Data System (ADS)

    Albright, R.; Caldeira, K.

    2015-12-01

    Ocean acidification is projected to shift reefs from a state of net accretion to one of net dissolution sometime this century. While retrospective studies show large-scale changes in coral calcification over the last several decades, it is not possible to unequivocally link these results to ocean acidification due to confounding factors of temperature and other environmental parameters. Here, we quantified the calcification response of a coral reef flat to alkalinity enrichment to test whether reef calcification increases when ocean chemistry is restored to near pre-industrial conditions. We used sodium hydroxide (NaOH) to increase the total alkalinity of seawater flowing over a reef flat, with the aim of increasing carbonate ion concentrations [CO32-] and the aragonite saturation state (Ωarag) to values that would have been attained under pre-industrial atmospheric pCO2 levels. We developed a dual tracer regression method to estimate alkalinity uptake (i.e., calcification) in response to alkalinity enrichment. This approach uses the change in ratios between a non-conservative tracer (alkalinity) and a conservative tracer (a non-reactive dye, Rhodamine WT) to assess the fraction of added alkalinity that is taken up by the reef as a result of an induced increase in calcification rate. Using this method, we estimate that an average of 17.3% ± 2.3% of the added alkalinity was taken up by the reef community. In providing results from the first seawater chemistry manipulation experiment performed on a natural coral reef community (without artificial confinement), we demonstrate that, upon increase of [CO32-] and Ωarag to near pre-industrial values, reef calcification increases. Thus, we conclude that, the impacts of ocean acidification are already being felt by coral reefs. This work is the culmination of years of work in the Caldeira lab at the Carnegie Institution for Science, involving many people including Jack Silverman, Kenny Schneider, and Jana Maclaren.

  2. Serum alkaline phosphatase screening for vitamin D deficiency states.

    PubMed

    Shaheen, Shehla; Noor, Syed Shahid; Barakzai, Qamaruddin

    2012-07-01

    To determine whether serum vitamin D levels are correlated with serum levels of alkaline phosphatase or not. Cross-sectional, observational study. Multi-centre study, conducted at Liaquat National Hospital and Medical College, National Medical Centre and Medicare Hospital, Karachi, from January to October 2009. Patients attending the Orthopaedic OPDs with complaints of pain in different body regions and serum vitamin D3 levels of ² 30 ng/ml were included in the study. Patients with vitamin D deficiency were further categorized into mild deficiency or insufficiency (vit. D3 = 20-29 ng/ml), moderate deficiency (vit. D3 = 5 - 19 ng/ml) and severe deficiency forms (vit. D3 < 5 ng/ml). Pearson correlation was applied to test the correlation of serum alkaline phosphatase levels with serum vitamin D3 levels. P-value < 0.05 was considered to be significant. Out of 110 samples, 26 had mild (23%), 61 had moderate (55%) and 21 had severe (19.1%) vitamin D deficiencies. All of the patients in the three groups had alkaline phosphatase with in normal limits and the total mean value of the enzyme was 135.97 ± 68.141 U/L. The inter group comparison showed highest values of alkaline phosphatase in the moderate vitamin D deficiency group. The correlation coefficient of alkaline phosphatase and serum vitamin D3 levels was r =0.05 (p =0.593). Serum vitamin D3 levels may not be correlated with increased serum alkaline phosphatase levels. Therefore, alkaline phosphatase may not be used as a screening test to rule out vitamin D deficiency.

  3. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.

    PubMed

    O'Brien, P J; Herschlag, D

    2001-05-15

    Escherichia coli alkaline phosphatase (AP) is a proficient phosphomonoesterase with two Zn(2+) ions in its active site. Sequence homology suggests a distant evolutionary relationship between AP and alkaline phosphodiesterase/nucleotide pyrophosphatase, with conservation of the catalytic metal ions. Furthermore, many other phosphodiesterases, although not evolutionarily related, have a similar active site configuration of divalent metal ions in their active sites. These observations led us to test whether AP could also catalyze the hydrolysis of phosphate diesters. The results described herein demonstrate that AP does have phosphodiesterase activity: the phosphatase and phosphodiesterase activities copurify over several steps; inorganic phosphate, a strong competitive inhibitor of AP, inhibits the phosphodiesterase and phosphatase activities with the same inhibition constant; a point mutation that weakens phosphate binding to AP correspondingly weakens phosphate inhibition of the phosphodiesterase activity; and mutation of active site residues substantially reduces both the mono- and diesterase activities. AP accelerates the rate of phosphate diester hydrolysis by 10(11)-fold relative to the rate of the uncatalyzed reaction [(k(cat)/K(m))/k(w)]. Although this rate enhancement is substantial, it is at least 10(6)-fold less than the rate enhancement for AP-catalyzed phosphate monoester hydrolysis. Mutational analysis suggests that common active site features contribute to hydrolysis of both phosphate monoesters and phosphate diesters. However, mutation of the active site arginine to serine, R166S, decreases the monoesterase activity but not the diesterase activity, suggesting that the interaction of this arginine with the nonbridging oxygen(s) of the phosphate monoester substrate provides a substantial amount of the preferential hydrolysis of phosphate monoesters. The observation of phosphodiesterase activity extends the previous observation that AP has a low level of

  4. Crystal structure of rat intestinal alkaline phosphatase--role of crown domain in mammalian alkaline phosphatases.

    PubMed

    Ghosh, Kaushik; Mazumder Tagore, Debarati; Anumula, Rushith; Lakshmaiah, Basanth; Kumar, P P B S; Singaram, Senthuran; Matan, Thangavelu; Kallipatti, Sanjith; Selvam, Sabariya; Krishnamurthy, Prasad; Ramarao, Manjunath

    2013-11-01

    Intestinal alkaline phosphatases (IAPs) are involved in the cleavage of phosphate prodrugs to liberate the drug for absorption in the intestine. To facilitate in vitro characterization of phosphate prodrugs, we have cloned, expressed, purified and characterized IAPs from rat and cynomolgus monkey (rIAP and cIAP respectively) which are important pre-clinical species for drug metabolism studies. The recombinant rat and monkey enzymes expressed in Sf9 insect cells (IAP-Ic) were found to be glycosylated and active. Expression of rat IAP in Escherichia coli (rIAP-Ec) led to ~200-fold loss of activity that was partially recovered by the addition of external Zn(2+) and Mg(2+) ions. Crystal structures of rIAP-Ec and rIAP-Ic were determined and they provide rationale for the discrepancy in enzyme activities. Rat IAP-Ic retains its activity in presence of both Zn(2+) and Mg(2+) whereas activity of most other alkaline phosphatases (APs) including the cIAP was strongly inhibited by excess Zn(2+). Based on our crystal structure, we hypothesized the residue Q317 in rIAP, present within 7 Å of the Mg(2+) at M3, to be important for this difference in activity. The Q317H rIAP and H317Q cIAP mutants showed reversal in effect of Zn(2+), corroborating the hypothesis. Further analysis of the two structures indicated a close linkage between glycosylation and crown domain stability. A triple mutant of rIAP, where all the three putative N-linked glycosylation sites were mutated showed thermal instability and reduced activity.

  5. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  6. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  7. Characterization of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Malone, Christine C.; Ciszak, Eva; Karr, Laurel J.

    1999-01-01

    A soluble form of human bone alkaline phosphatase has been expressed in a recombinant strain of the methylotrophic yeast Pichia pastoris. We constructed a plasmid containing cDNA encoding for human bone alkaline phosphatase, with the hydrophobic carboxyl terminal portion deleted. Alkaline phosphatase was secreted into the medium to a level of 32mg/L when cultured in shake flasks, and enzyme activity was 12U/mg, as measured by a spectrophotometric assay. By conversion to a fermentation system, a yield of 880mg/L has been achieved with an enzyme activity of 968U/mg. By gel electrophoresis analysis, it appears that greater than 50% of the total protein in the fermentation media is alkaline phosphatase. Although purification procedures are not yet completely optimized, they are expected to include filtration, ion exchange and affinity chromatography. Our presentation will focus on the purification and crystallization results up to the time of the conference. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  8. Synergistic degradation of konjac glucomannan by alkaline and thermal method.

    PubMed

    Jin, Weiping; Mei, Ting; Wang, Yuntao; Xu, Wei; Li, Jing; Zhou, Bin; Li, Bin

    2014-01-01

    The application of konjac glucomannan (KGM) in the food industry is always limited by its high viscosity. Hereby, low-viscosity KGM was prepared by alkaline-thermal degradation method. This process was demonstrated by the changes of average molecular weight and a kinetic model was developed. The results revealed that high alkalinity and high temperature had a synergetic effect on degradation. The structure of hydrolysates was evaluated by periodate oxidation and their fluidly properties were researched by rheology measurements. The degradation was divided into two regimes. The rate of the first regime (within 1h) is higher than that of the second one (last 1h). It is found that alkaline hydrolysis and deacetylation have a synergistic effect on the degradation under high alkalinity (pH 9.2) and low temperature condition (25 °C). Finally, rheology parameters showed alkaline-thermal degradation is a promising way that can be applied in practice to degrade KGM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Escherichia coli alkaline phosphatase. Kinetic studies with the tetrameric enzyme.

    PubMed

    Halford, S E; Schlesinger, M J; Gutfreund, H

    1972-03-01

    1. The stability of the tetrameric form of Escherichia coli alkaline phosphatase was examined by analytical ultracentrifugation. 2. The stopped-flow technique was used to study the hydrolysis of nitrophenyl phosphates by the alkaline phosphatase tetramer at pH7.5 and 8.3. In both cases transient product formation was observed before the steady state was attained. Both transients consisted of the liberation of 1mol of nitrophenol/2mol of enzyme subunits within the dead-time of the apparatus. The steady-state rates were identical with those observed with the dimer under the same conditions. 3. The binding of 2-hydroxy-5-nitrobenzyl phosphonate to the alkaline phosphatase tetramer was studied by the temperature-jump technique. The self-association of two dimers to form the tetramer is linked to a conformation change within the dimer. This accounts for the differences between the transient phases in the reactions of the dimer and the tetramer with substrate. 4. Addition of P(i) to the alkaline phosphatase tetramer caused it to dissociate into dimers. The tetramer is unable to bind this ligand. It is suggested that the tetramer undergoes a compulsory dissociation before the completion of its first turnover with substrate. 5. On the basis of these findings a mechanism is proposed for the involvement of the alkaline phosphatase tetramer in the physiology of E. coli.

  10. Elevated serum level of human alkaline phosphatase in obesity.

    PubMed

    Khan, Abdul Rehman; Awan, Fazli Rabbi; Najam, Syeda Sadia; Islam, Mehboob; Siddique, Tehmina; Zain, Maryam

    2015-11-01

    To investigate a correlation between serum alkaline phosphatase level and body mass index in human subjects. The comparative cross-sectional study was carried out at the National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan, from April 2012 to June 2013. Blood serum alkaline phosphatase levels were estimated and the subjects were divided into three sub-groups on the basis of their body mass. normal weight (<25kg/m2), overweight (25-27kg/m2) and obese (>27kg/m2) subjects. The serum samples were used for the estimation of clinically important biochemical parameters, using commercial kits on clinical chemistry analyser. Of the 197 subjects, 97(49%) were obese and 100(51%) were non-obese. The serum alkaline phosphatase level increased in obese (214±6.4 IU/L) compared to the non-obese subjects (184.5±5 IU/L). Furthermore, a significant linear relationship (r=0.3;p-0.0001) was found between serum alkaline phosphatase and body mass index. Other biochemical variables were not correlated to the body mass index. Over activity and higher amounts of alkaline phosphatase were linked to the development of obesity.

  11. Isonicotinohydrazones as inhibitors of alkaline phosphatase and ecto-5'-nucleotidase.

    PubMed

    Channar, Pervaiz Ali; Shah, Syed Jawad Ali; Hassan, Sidra; Nisa, Zaib Un; Lecka, Joanna; Sévigny, Jean; Bajorath, Jürgen; Saeed, Aamer; Iqbal, Jamshed

    2017-03-01

    A series of isonicotinohydrazide derivatives was synthesized and tested against recombinant human and rat ecto-5'-nucleotidases (h-e5'NT and r-e5'NT) and alkaline phosphatase isozymes including both bovine tissue-non-specific alkaline phosphatase (b-TNAP) and tissue-specific calf intestinal alkaline phosphatase (c-IAP). These enzymes are implicated in vascular calcifications, hypophosphatasia, solid tumors, and cancers, such as colon, lung, breast, pancreas, and ovary. All tested compounds were active against both enzymes. The most potent inhibitor of h-e5'NT was derivative (E)-N'-(1-(3-(4-fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)ethylidene)isonicotinohydrazide (3j), whereas derivative (E)-N'-(4-hydroxy-3-methoxybenzylidene)isonicotinohydrazide (3g) exhibited significant inhibitory activity against r-e5'NT. In addition, the derivative (E)-N'-(4'-chlorobenzylidene)isonicotinohydrazide (3a) was most potent inhibitor against calf intestinal alkaline phosphatase and the derivative (E)-N'-(4-hydroxy-3-methoxybenzylidene)isonicotinohydrazide (3g) was found to be most potent inhibitor of bovine tissue-non-specific alkaline phosphatase. Furthermore, putative binding modes of potent compounds against e5'NT (human and rat e5'NT) and AP (including b-TNAP and c-IAP) were determined computationally. © 2016 John Wiley & Sons A/S.

  12. Pliocene-Quaternary basalts from the Harrat Tufail, western Saudi Arabia: Recycling of ancient oceanic slabs and generation of alkaline intra-plate magma

    NASA Astrophysics Data System (ADS)

    Bakhsh, Rami A.

    2015-12-01

    Harrat Tufail represents a Caenozoic basalt suite at the western margin of the Arabian plate. This rift-related suite includes voluminous Quaternary non-vesicular basalt (with fragments of earlier Pliocene vesicular flow) that forms a cap sheet over Miocene rhyolite and minor vesicular basalt. The contact between rhyolite and the basaltic cap is erosional with remarkable denudations indicating long time gap between the felsic and mafic eruptions. The geochemical data prove alkaline, sodic and low-Ti nature of the olivine basalt cap sheet. The combined whole-rock and mineral spot analyses by the electron microprobe (EMPA) suggest magma generation from low degree of partial melting (∼5%) from spinel- and garnet-lherzolite mantle source. Derivation from a mantle source is supported by low Na content in clinopyroxene (ferroan diopside) whereas high Mg content in ilmenite is an evidence of fractional crystallization trajectory. Accordingly, the Pliocene basaltic cap of Harrat Tufail is a product of mantle melt that originates by recycling in the asthenosphere during subduction of ancient oceanic slab(s). The whole-rock chemistry suggests an ancient ocean island basaltic slab (OIB) whereas the EMPA of Al-rich spinel inclusions in olivine phenocrysts are in favour of a mid-ocean ridge basaltic source (MORB). Calculations of oxygen fugacity based on the composition of co-existing Fe-Ti oxide suggest fluctuation from highly to moderately oxidizing conditions with propagation of crystallization (log10 fO2 from -22.09 to -12.50). Clinopyroxene composition and pressure calculation indicates low-pressure (0.4-2 kbar). Cores of olivine phenocrysts formed at highest temperature (1086-1151 °C) whereas the rims and olivine micro-phenocrysts formed at 712-9-796 °C which is contemporaneous to formation of clinopyroxene at 611-782 °C. Fe-Ti oxides crystallized over a long range (652-992 °C) where it started to form at outer peripheries of olivine phenocrysts and as interstitial

  13. Remarkable isotopic and trace element trends in potassic through sodic Cretaceous plutons of the Yukon-Koyukuk Basin, Alaska, and the nature of the lithosphere beneath the Koyukuk terrane

    USGS Publications Warehouse

    Arth, Joseph G.; Criss, Robert E.; Zmuda, Clara C.; Foley, Nora K.; Patton, W.W.; Miller, T.P.

    1989-01-01

    During the period from 110 to 80 m.y. ago, a 450-km-long magmatic belt was active along the northern margin of Yukon-Koyukuk basin and on eastern Seward Peninsula. The plutons intruded Upper Jurassic(?) and Lower Cretaceous volcanic arc rocks and Cretaceous sedimentary rocks in Yukon-Koyukuk basin and Proterozoic and lower Paleozoic continental rocks in Seward Peninsula. Within Yukon-Koyukuk basin, the plutons vary in composition from calc-alkalic plutons on the east to potassic and ultrapotassic alkalic plutons on the west. Plutons within Yukon-Koyukuk basin were analyzed for trace element and isotopic compositions in order to discern their origin and the nature of the underling lithosphere. Farthest to the east, the calc-alkalic rocks of Indian Mountain pluton are largely tonalite and sodic granodiorite, and have low Rb (average 82 ppm), high Sr (>600 ppm), high chondrite-normalized (cn) Ce/Yb (16–37), low δ18O (+6.5 to +7.1), low initial 87Sr/86Sr (SIR) (0.704), and high initial 143Nd/144Nd (NIR) (0.5126). These rocks resemble those modelled elsewhere as partial melts and subsequent fractionates of basaltic or gabbroic metaigneous rocks, and may be products of melting in the deeper parts of the Late Jurassic(?) and Early Cretaceous volcanic arc. Farthest to the west, the two ultrapotassic bodies of Selawik and Inland Lake are high in Cs (up to 93 ppm), Rb (up to 997 ppm), Sr, Ba, Th, and light rare earth elements, have high (Ce/Yb)cn (30, 27), moderate to low δ18O (+8.4, +6.9), high SIR (0.712, 0.710), and moderate NIR (0.5121–0.5122). These rocks resemble rocks of Australia and elsewhere that were modelled as melts of continental mantle that had been previously enriched in large cations. This mantle may be Paleozoic or older. The farthest west alkalic pluton of Selawik Hills is largely monzonite, quartz monzonite, and granite; has moderate Rb (average 284 ppm), high Sr (>600 ppm), high (Ce/Yb)cn (15–25), moderate δ18O (+8.3 to +8.6), high SIR (0.708

  14. Remarkable isotopic and trace element trends in potassic through sodic Cretaceous plutons of the Yukon-Koyukuk Basin, Alaska, and the nature of the lithosphere beneath the Koyukuk terrane

    NASA Astrophysics Data System (ADS)

    Arth, Joseph G.; Criss, Robert E.; Zmuda, Clara C.; Foley, Nora K.; Patton, W. W., Jr.; Miller, T. P.

    1989-11-01

    During the period from 110 to 80 m.y. ago, a 450-km-long magmatic belt was active along the northern margin of Yukon-Koyukuk basin and on eastern Seward Peninsula. The plutons intruded Upper Jurassic(?) and Lower Cretaceous volcanic arc rocks and Cretaceous sedimentary rocks in Yukon-Koyukuk basin and Proterozoic and lower Paleozoic continental rocks in Seward Peninsula. Within Yukon-Koyukuk basin, the plutons vary in composition from calc-alkalic plutons on the east to potassic and ultrapotassic alkalic plutons on the west. Plutons within Yukon-Koyukuk basin were analyzed for trace element and isotopic compositions in order to discern their origin and the nature of the underling lithosphere. Farthest to the east, the calc-alkalic rocks of Indian Mountain pluton are largely tonalite and sodic granodiorite, and have low Rb (average 82 ppm), high Sr (>600 ppm), high chondrite-normalized (cn) Ce/Yb (16-37), low δ18O (+6.5 to +7.1), low initial 87Sr/86Sr (SIR) (0.704), and high initial 143Nd/144Nd (NIR) (0.5126). These rocks resemble those modelled elsewhere as partial melts and subsequent fractionates of basaltic or gabbroic metaigneous rocks, and may be products of melting in the deeper parts of the Late Jurassic(?) and Early Cretaceous volcanic arc. Farthest to the west, the two ultrapotassic bodies of Selawik and Inland Lake are high in Cs (up to 93 ppm), Rb (up to 997 ppm), Sr, Ba, Th, and light rare earth elements, have high (Ce/Yb)cn (30, 27), moderate to low δ18O (+8.4, +6.9), high SIR (0.712, 0.710), and moderate NIR (0.5121-0.5122). These rocks resemble rocks of Australia and elsewhere that were modelled as melts of continental mantle that had been previously enriched in large cations. This mantle may be Paleozoic or older. The farthest west alkalic pluton of Selawik Hills is largely monzonite, quartz monzonite, and granite; has moderate Rb (average 284 ppm), high Sr (>600 ppm), high (Ce/Yb)cn (15-25), moderate δ18O (+8.3 to +8.6), high SIR (0

  15. Alkaline hydrogen peroxide pretreatment of softwood: hemicellulose degradation pathways.

    PubMed

    Alvarez-Vasco, Carlos; Zhang, Xiao

    2013-12-01

    This study investigated softwood hemicelluloses degradation pathways during alkaline hydrogen peroxide (AHP) pretreatment of Douglas fir. It was found that glucomannan is much more susceptible to alkaline pretreatment than xylan. Organic acids, including lactic, succinic, glycolic and formic acid are the predominant products from glucomannan degradation. At low treatment temperature (90°C), a small amount of formic acid is produced from glucomannan, whereas glucomannan degradation to lactic acid and succinic acid becomes the main reactions at 140°C and 180°C. The addition of H2O2 during alkaline pretreatment of D. fir led to a significant removal of lignin, which subsequently facilitated glucomannan solubilization. However, H2O2 has little direct effect on the glucomannan degradation reaction. The main degradation pathways involved in glucomannan conversion to organics acids are elucidated. The results from this study demonstrate the potential to optimize pretreatment conditions to maximize the value of biomass hemicellulose.

  16. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  17. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  18. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  19. Neutral and alkaline cellulases: Production, engineering, and applications.

    PubMed

    Ben Hmad, Ines; Gargouri, Ali

    2017-08-01

    Neutral and alkaline cellulases from microorganisms constitute a major group of the industrial enzymes and find applications in various industries. Screening is the important ways to get novel cellulases. Most fungal cellulases have acidic pH optima, except some fungi like Humicola insolens species. However, new applications require the use of neutral and alkaline cellulases in food, brewery and wine, animal feed, textile and laundry, pulp and paper industries, agriculture as well in scientific research purposes. Indeed, the demand for these enzymes is growing more rapidly than ever before, and becomes the driving force for research on engineering the cellulolytic enzymes. Here, we present an overview of the biotechnological research for neutral and alkaline cellulases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Delayed upper-airway injury after accidental alkaline ingestion.

    PubMed

    Ryan, Matthew F; Fernandez, Mindy; Laauwe, Karen

    2014-01-01

    A 62-year-old man presented to the emergency department one week after accidentally drinking an alkaline cleaning agent stored in unlabeled bottle. The day of the incident the patient presented to an outside hospital where he was admitted for an upper endoscopy of the esophagus which was found to be negative for acute injury. An initial chest X-ray taken the day of the incident was also found to be normal. After discharge the patient continued to have a sore throat and marked dysphagia which caused him to vomit repeatedly. Moreover, the patient began to develop chest pain with associated shortness of breath. We present a case of delayed airway injury and tracheal thickening and associated chest pain after alkaline ingestion and we discuss herein the pathophysiology and management of alkaline ingestions.

  1. Delayed Upper-Airway Injury after Accidental Alkaline Ingestion

    PubMed Central

    Ryan, Matthew F.

    2014-01-01

    A 62-year-old man presented to the emergency department one week after accidentally drinking an alkaline cleaning agent stored in unlabeled bottle. The day of the incident the patient presented to an outside hospital where he was admitted for an upper endoscopy of the esophagus which was found to be negative for acute injury. An initial chest X-ray taken the day of the incident was also found to be normal. After discharge the patient continued to have a sore throat and marked dysphagia which caused him to vomit repeatedly. Moreover, the patient began to develop chest pain with associated shortness of breath. We present a case of delayed airway injury and tracheal thickening and associated chest pain after alkaline ingestion and we discuss herein the pathophysiology and management of alkaline ingestions. PMID:25013732

  2. Effect of Activators on Strength of Hybrid Alkaline Cement

    NASA Astrophysics Data System (ADS)

    Dwi Pratiwi, Wiwik; Fansuri, Hamzah; Jaya Ekaputri, Januarti; Triwulan

    2017-05-01

    Hybrid alkaline cement is a class of alkaline cement resulted from alkali activation of the medium calcium content of aluminosilicate materials. This paper presents an experimental analysis of alkali activators effect on strength of hybrid alkaline cement produced from 80% fly ash and 20% ordinary Portland cement. Two alkali activators were observed i.e. 5% sodium sulfate and a combination of 5% of sodium sulfate-1.1 M SiO2 of sodium silicate solution. Compressive strength tests were performed on 20mmx 40mm cylinder paste specimens while setting time tests were conducted by Vicat needle. Scanning electron microscopy analysis and measurement of fly ash reaction degree were performed to explain the compressive strength of paste. It is concluded that addition of soluble silicate on the dry mix of hybrid cement-sodium sulfate activator reduce compressive strength and shorten the setting time. Both of activators give relative low fly ash reaction degree.

  3. Metasomatized lithosphere and the origin of alkaline lavas.

    PubMed

    Pilet, Sébastien; Baker, Michael B; Stolper, Edward M

    2008-05-16

    Recycled oceanic crust, with or without sediment, is often invoked as a source component of continental and oceanic alkaline magmas to account for their trace-element and isotopic characteristics. Alternatively, these features have been attributed to sources containing veined, metasomatized lithosphere. In melting experiments on natural amphibole-rich veins at 1.5 gigapascals, we found that partial melts of metasomatic veins can reproduce key major- and trace-element features of oceanic and continental alkaline magmas. Moreover, experiments with hornblendite plus lherzolite showed that reaction of melts of amphibole-rich veins with surrounding lherzolite can explain observed compositional trends from nephelinites to alkali olivine basalts. We conclude that melting of metasomatized lithosphere is a viable alternative to models of alkaline basalt formation by melting of recycled oceanic crust with or without sediment.

  4. Nonlinear optical response in single alkaline niobate nanowires.

    PubMed

    Dutto, F; Raillon, C; Schenk, K; Radenovic, A

    2011-06-08

    We have synthesized and characterized three types of perovskite alkaline niobate nanowires: NaNbO(3), KNbO(3), and LiNbO(3) (XNbO(3)). All three types of nanowires exhibit strong nonlinear response. Confocal imaging has been employed to quantitatively compare the efficiency of synthesized nanowires to generate second harmonic signal and to show that LiNbO(3) nanowires exhibit the strongest nonlinear response. We also investigated the polarization response of the second harmonic generation (SHG) signal in all three types of alkaline nanowires for the two geometries tractable by our optical trapping setup. The SHG signal is highly influenced by the nanowire crystallinity and experimental geometry. We also demonstrate for the first time wave-guiding of SHG signal in all three types of alkaline niobate nanowires. By carefully examining nonlinear properties of (XNbO(3)) nanowires we suggest which type of wires are best suited for the given application.

  5. Alkaline post-treatment for improved sludge anaerobic digestion.

    PubMed

    Li, Huan; Zou, Shuxin; Li, Chenchen; Jin, Yiying

    2013-07-01

    Alkaline post-treatment was tested in order to improve sludge anaerobic digestion. Between the 8th and the 12th hour of a 24-h digestion cycle, 5% of sludge was extracted from a semi-continuous digester with a sludge retention time of 20 days. The sludge was then disintegrated with 0.1 mol/L NaOH and returned to the digester after neutralization. The results showed that alkaline post-treatment increased the level of soluble organic substances in the extracted sludge, particularly of volatile fatty acids and polysaccharides. This process resulted in a 33% enhancement of biogas production in comparison with the control. When the ratio of the recycled sludge was further increased to 10% or 15%, the increment of biogas yield was reduced, due to excessive inactivation of anaerobic bacteria in the digester. Alkaline post-treatment had a minimal impact on the dewaterability of digested sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    NASA Astrophysics Data System (ADS)

    Rao, Alexandra M. F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J. R.

    2014-07-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  7. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    PubMed Central

    Rao, Alexandra M.F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J.R.

    2014-01-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer. PMID:25431515

  8. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    PubMed

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-05

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  9. Design factors and performance efficiencies of successive alkalinity producing systems

    SciTech Connect

    Jage, C.R.; Zipper, C.E.

    1999-07-01

    Successive Alkalinity Producing Systems (SAPS) are passive treatment wetlands that have been used successfully in renovating acidic mine drainage (AMD) for several years. Unfortunately, design parameters and treatment efficiency of these systems vary widely due to a lack of clear, consistent design and construction guidelines. This study is investigating ten operating SAPS systems in Virginia and West Virginia for the purpose of identifying the relationship of design and construction factors to system performance. Influent and effluent water samples were collected for a period of two years or longer by the operators of each system. Each sample was analyzed for pH, alkalinity, acidity, sulfate, total iron, total manganese, and aluminum. The individual systems were also characterized according to system age, size, and construction materials. Residence times for the ten systems ranged from 4.5 hours to 13.31 days. On average, they were able to raise the pH 0.65 units and generate a net alkalinity of 84.84 mg/l as CaCO{sub 3}. Iron and manganese removal did occur in the SAPS cells, but the majority of the removal took place in post-SAPS settling ponds. Net alkalinity generation was positively correlated with residence time and iron removal rates suggesting a synergistic effect. Seasonal variation in alkalinity production was also noted, possibly indicating changes in alkalinity generation rates by dissimilatory sulfate reduction. These data provide the foundation for the development of a user-oriented SAPS design model based solely on influent AMD chemistry and final treatment goals as input parameters.

  10. Study of point defects in alkaline-earth sulfides

    SciTech Connect

    Pandey, R.; Kunz, A.B.; Vail, J.M.

    1988-11-01

    The results of a computer simulation study of point defects including vacancy, interstitial, and F/sup +/ center in alkaline-earth sulfides are presented. The study is based on ICECAP/HADES simulation procedures and uses empirical interionic potentials obtained from the analysis of macroscopic data for these materials. The results predict the dominance of Schottky disorder and suggest that vacancy migration predominates in alkaline-earth sulfides. Furthermore, the calculated F/sup +/ center absorption energy is in good agreement with the experimental data deduced from the optical stimulated studies in these materials.

  11. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  12. Assessment of vagotomy status with postprandial urinary alkaline tide.

    PubMed

    Longkumer, Tialiba; Parthasarathy, G; Kate, Vikram; Ananthakrishnan, N; Koner, B C

    2009-01-01

    This study was carried out to assess whether the postprandial urinary alkaline tide, as a marker for the completeness of vagotomy, is dependent on the nature of the test meal, whether it is affected by proton pump inhibitor therapy, and whether it is reliable. The postprandial urinary alkaline tide (PUAT) pattern was prospectively assessed in three different study groups and one control group of healthy volunteers. The three study groups were as follows; A (n = 20) i.e. the Proton Pump Inhibitor (PPI) Group; B (n = 25) i.e. the Truncal Vagotomy (TV) Group; and C (n = 5) i.e. the Recurrent Ulcer (RU) Group. Urinary pH was measured by a pocket digital pH meter. Postprandial urinary alkaline tide in the control group was significantly higher compared to the fasting levels. Liquid diet did not elicit a significant urinary alkaline tide response. There was a statistically significant fall in both fasting urinary pH (5.34 +/- 0.70 vs. 4.80 +/- 0.61, p = 0.031) and the postprandial alkaline tide (6.99 +/- 0.79 vs. 4.94 +/- 0.63, p = 0.0001) after taking proton pump inhibitors. In the truncal vagotomy and gastrojejunostomy group it was found that there was a significant fall in both the mean fasting (5.28 +/- 0.58, vs. 4.92 +/- 0.66, p = 0.032) and the postprandial urinary pH (6.29 +/- 0.92 vs. 5.09 +/- 0.73, p = 0.0001) following surgery. This study establishes that simple measurement of the urinary pH before and after a standard test meal can be used as an accurate routine test for the completion of vagotomy. It also showed that proton pump inhibitors abolish the alkaline tide and therefore must be discontinued before measuring the alkaline tide. Liquid test meal was not effective in eliciting an alkaline tide as compared to a solid meal.

  13. Advanced technology for extended endurance alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Sheibley, D. W.; Martin, R. A.

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  14. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  15. Immobilization of cesium in alkaline activated fly ash matrix

    NASA Astrophysics Data System (ADS)

    Fernandez-Jimenez, A.; Macphee, D. E.; Lachowski, E. E.; Palomo, A.

    2005-11-01

    The immobilization potential of alkaline activated fly ash (AAFA) matrices for cesium has been investigated. The presence of Cs in the AAFA pastes, prepared using 8M NaOH solution as activator, showed no significant adverse effects on mechanical strength or microstructure, nor were significant quantities of Cs leached following application of the Toxic Characteristic Leaching Procedure (TCLP) and American Nuclear Society (ANS) 16.1 leaching protocols. Microstructural analysis shows Cs associated with the main reaction product in the AAFA suggesting that cesium is chemically bound rather than physically encapsulated. It is proposed that cesium is incorporated into the alkaline aluminosilicate gel, a precursor for zeolite formation.

  16. Surfactant-enhanced low-pH alkaline flooding

    SciTech Connect

    Peru, D.A. and Co., Columbia, MD . Research Div.); Lorenz, P.B. )

    1990-08-01

    This paper reports sodium bicarbonate investigated as a potential alkaline agent in surfactant-enhanced alkaline flooding because it has very little tendency to dissolve silicate minerals. In experiments performed with Wilmington, CA, crude oil and three types of surfactants, the bicarbonate/surfactant combination caused a marked lowering of interfacial tension (IFT). Bicarbonate protected the surfactant against divalent cations and reduced adsorption of surfactant and polymer on various minerals. Coreflood test confirm that sodium bicarbonate plus surfactant can be an effective alternative to the high-pH flooding process.

  17. Factors affecting alkaline nature of rain water in Agra (India).

    PubMed

    Saxena, A; Sharma, S; Kulshrestha, U C; Srivastava, S S

    1991-01-01

    Rain water was collected and analysed from a reference site, Dayalbagh and Taj Ganj, near the Taj Mahal in Agra. The ionic components Ca, Mg, Na, K, NH(4), Pb, Fe, Zn, SO(4), HCO(3), Cl and F were analysed along with pH, alkalinity and conductance. The average pH of rain water at both sites is 7.05. There is a dominance of alkaline components, particularly Ca. The rain water chemistry shows the importance of calcareous soil-derived materials in controlling the pH of rain water.

  18. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  19. Tuning NaYF4 Nanoparticles through Alkaline Earth Doping

    PubMed Central

    Chen, Xian; Peng, Dengfeng; Wang, Feng

    2013-01-01

    Phase and size of lanthanide-doped nanoparticles are the most important characteristics that dictate optical properties of these nanoparticles and affect their technological applications. Herein, we present a systematic study to examine the effect of alkaline earth doping on the formation of NaYF4 upconversion nanoparticles. We show that alkaline earth doping has a dual function of tuning particle size of hexagonal phase NaYF4 nanoparticles and stabilizing cubic phase NaYF4 nanoparticles depending on composition and concentration of the dopant ions. The study described here represents a facile and general strategy to tuning the properties of NaYF4 upconversion nanoparticles. PMID:28348353

  20. The nature and classification of Australian soils affected by sodium

    NASA Astrophysics Data System (ADS)

    Murphy, Brian; Greene, Richard; Harms, Ben

    2017-04-01

    Large areas of Australia are affected by the processes of salinity and sodicity and they are important processes to understand as they can result in the degradation of agricultural lands used for both intensive cropping and extensive grazing practices. Sodic soils are defined as those having ESP of at least 6% in Australia. Northcote and Skene (1972) estimated that of Australia's total area of 770 M ha, 39 M ha was affected by salinity and 193-257 M ha by sodicity. However, in a more recent publication, Rengasamy (2006), quoted the areas of saline and sodic soils as 66 M ha and 340 M ha respectively. The soils affected by sodium in Australia include a large group of contrasting soils (Northcote and Skene 1972). Based on the Australian soil classification, included are: • Alkaline strongly sodic to sodic clay soils with uniform texture profiles - largely Vertosols 666 400 km2 • Alkaline strongly sodic to sodic coarse and medium textured soils with uniform and gradational texture profiles - largely Calcarosols 600 700 km2 • Alkaline strongly sodic to sodic texture contrast soils - largely Sodosols 454 400 km2 • Non-alkaline sodic and strongly sodic neutral texture contrast soils - largely Sodosols 134 700 km2 • Non-alkaline sodic acid texture contrast soils - Sodosols and Kurosols 140 700 km2 Many Australian sodic soils have not developed by the traditional solonetz process of leaching of a solonchak, but rather have developed by the accumulation of sodium on the cation exchange complex in preference to the other exchangeable cations without any recognisable intermediate saline phase occurring. This is especially the case for the sodic, non-alkaline texture contrast soils or Sodosols. The major sodic soil group in WRB is the Solonetz soils. These require the presence of a Natric horizon which has to contain illuviated clay and at least 15% ESP. However, there is provision for Sodic qualifiers with at least 6% ESP for many other reference Soil Groups

  1. Ocean alkalinity and the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Caldeira, K. G.; Rampino, Michael R.

    1988-01-01

    A biogeochemical cycle model resolving ocean carbon and alkalinity content is applied to the Maestrichtian and Danian. The model computes oceanic concentrations and distributions of Ca(2+), Mg(2+), and Sigma-CO2. From these values an atmospheric pCO2 value is calculated, which is used to estimate rates of terrestrial weathering of calcite, dolomite, and calcium and magnesium silicates. Metamorphism of carbonate rocks and the subsequent outgassing of CO2 to the atmosphere are parameterized in terms of carbonate rock reservoir sizes, total land area, and a measure of overall tectonic activity, the sea-floor generation rate. The ocean carbon reservoir computed by the model is used with Deep Sea Drilling Project (DSDP) C-13 data to estimate organic detrital fluxes under a variety of ocean mixing rate assumptions. Using Redfield ratios, the biogenic detrital flux estimate is used to partition the ocean carbon and alkalinity reservoirs between the mixed layer and deep ocean. The calcite flux estimate and carbonate ion concentrations are used to determine the rate of biologically mediated CaCO3 titration. Oceanic productivity was severely limited for approximately 500 kyr following the K/T boundary resulting in significant increases in total ocean alkalinity. As productivity returned to the ocean, excess carbon and alkalinity was removed from the ocean as CaCO3. Model runs indicate that this resulted in a transient imbalance in the other direction. Ocean chemistry returned to near-equilibrium by about 64 mybp.

  2. Alkalinity Analysis. Training Module 5.220.2.77.

    ERIC Educational Resources Information Center

    Bonte, John L.; Davidson, Arnold C.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the acid-base titrimetric procedure for determining the hydroxide, carbonate and bicarbonate alkalinity of a water sample. Included are objectives, an instructor guide, student handouts and transparency masters. A video tape is also…

  3. Extracellular Alkalinization as a Defense Response in Potato Cells

    PubMed Central

    Moroz, Natalia; Fritch, Karen R.; Marcec, Matthew J.; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists (Phytophthora infestans and Spongospora subterranea) and fungi (Verticillium dahliae and Colletotrichum coccodes). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes. PMID:28174578

  4. Extracellular Alkalinization as a Defense Response in Potato Cells.

    PubMed

    Moroz, Natalia; Fritch, Karen R; Marcec, Matthew J; Tripathi, Diwaker; Smertenko, Andrei; Tanaka, Kiwamu

    2017-01-01

    A quantitative and robust bioassay to assess plant defense response is important for studies of disease resistance and also for the early identification of disease during pre- or non-symptomatic phases. An increase in extracellular pH is known to be an early defense response in plants. In this study, we demonstrate extracellular alkalinization as a defense response in potatoes. Using potato suspension cell cultures, we observed an alkalinization response against various pathogen- and plant-derived elicitors in a dose- and time-dependent manner. We also assessed the defense response against a variety of potato pathogens, such as protists (Phytophthora infestans and Spongospora subterranea) and fungi (Verticillium dahliae and Colletotrichum coccodes). Our results show that extracellular pH increases within 30 min in proportion to the number of pathogen spores added. Consistently with the alkalinization effect, the higher transcription level of several defense-related genes and production of reactive oxygen species was observed. Our results demonstrate that the alkalinization response is an effective marker to study early stages of defense response in potatoes.

  5. Mammalian intestinal alkaline phosphatase acts as highly active exopolyphosphatase.

    PubMed

    Lorenz, B; Schröder, H C

    2001-06-11

    Recent results revealed that inorganic polyphosphates (polyP), being energy-rich linear polymers of orthophosphate residues known from bacteria and yeast, also exist in higher eukaryotes. However, the enzymatic basis of their metabolism especially in mammalian cells is still uncertain. Here we demonstrate for the first time that alkaline phosphatase from calf intestine (CIAP) is able to cleave polyP molecules up to a chain length of about 800. The enzyme acts as an exopolyphosphatase degrading polyP in a processive manner. The pH optimum is in the alkaline range. Divalent cations are not required for catalytic activity but inhibit the degradation of polyP. The rate of hydrolysis of short-chain polyP by CIAP is comparable to that of the standard alkaline phosphatase (AP) substrate p-nitrophenyl phosphate. The specific activity of the enzyme decreases with increasing chain length of the polymer both in the alkaline and in the neutral pH range. The K(m) of the enzyme also decreases with increasing chain length. The mammalian tissue non-specific isoform of AP was not able to hydrolyze polyP under the conditions applied while the placental-type AP and the bacterial (Escherichia coli) AP displayed polyP-degrading activity.

  6. Alkaline extraction of phenolic compounds from intact sorghum kernels

    USDA-ARS?s Scientific Manuscript database

    An aqueous sodium hydroxide solution was employed to extract phenolic compounds from whole grain sorghum without decortication or grinding as determined by Oxygen Radical Absorbance Capacity (ORAC). The alkaline extract ORAC values were more stable over 32 days compared to neutralized and freeze dri...

  7. [Granulocyte alkaline phosphatase--a biomarker of chronic benzene exposure].

    PubMed

    Khristeva, V; Meshkov, T

    1994-01-01

    In tracing the cellular population status in the peripheral blood of workers, exposed to benzene, was included and cytochemical determination of the alkaline phosphatase activity in leucocytes. This enzyme is accepted as marker of the neutrophilic granulocytes, as maturation of the cells and their antibacterial activity are parallel to the cytochemical activity of the enzyme. 78 workers from the coke-chemical production from state firm "Kremikovtsi" and 41 workers from the production "Benzene" and "Isopropylbenzene"--Oil Chemical Plant, Burgas are included. The benzene concentrations in the air of the working places in all productions are in the range of 5 to 50 mg/m3. For cytochemical determination of the alkaline phosphatase activity is used the method of L. Kaplow and phosphatase index was calculated. It was established that in 98.4% of all examined the alkaline phosphatase activity is inhibited to different rate, as from 46.5% [61 workers] it is zero. In considerably lower percentage of workers were established and other deviations: leucocytosis or leucopenia, neutropenia, increased percent of band neutrophils and toxic granules. The results of the investigation of the granulocyte population show that from all indices, the activity of granulocyte alkaline phosphatase demonstrates most convincing the early myelotoxic effect of benzene.

  8. Alkaline fuel cells for prime power and energy storage

    NASA Astrophysics Data System (ADS)

    Stedman, J. K.

    Alkaline fuel cell technology and its application to future space missions requiring high power and energy storage are discussed. Energy densities exceeding 100 watthours per pound and power densities approaching 0.5 pounds per kilowatt are calculated for advanced systems. Materials research to allow reversible operation of cells for energy storage and higher temperature operation for peaking power is warranted.

  9. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Astrophysics Data System (ADS)

    Swette, L.; Kackley, N.; McCatty, S. A.

    1991-09-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  10. Alkaline regenerative fuel cell systems for energy storage

    SciTech Connect

    Schubert, F.H.; Reid, M.A.; Martin, R.E.

    1981-01-01

    This paper presents the results of a preliminary design study of a Regenerative Fuel Cell Energy Storage system for application to future low-earth orbit space missions. This high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. 11 refs.

  11. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  12. Oxygen electrodes for rechargeable alkaline fuel cells-II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1989-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  13. The catalytic properties of alkaline phosphatases under various conditions

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Chukhrai, E. S.; Poltorak, O. M.

    2008-11-01

    A comparative study was performed to examine the catalytic properties of alkaline phosphatases from bacteria Escherichia coli and bovine and chicken intestines. The activity of enzyme dimers and tetramers was determined. The activity of the dimer was three or four times higher than that of the tetramer. The maximum activity and affinity for 4-nitrophenylphosphate was observed for the bacterial alkaline phosphatase ( K M = 1.7 × 10-5 M, V max = 1800 μmol/(min mg of protein) for dimers and V max = 420 μmol/(min mg of protein) for tetramers). The Michaelis constants were equal for two animal phosphatases in various buffer media (pH 8.5) ((3.5 ± 0.2) × 10-4 M). Five buffer systems were investigated: tris, carbonate, hepes, borate, and glycine buffers, and the lowest catalytic activity of alkaline phosphatases at equal pH was observed in the borate buffer (for enzyme from bovine intestine, V max = 80 μmol/(min mg of protein)). Cu2+ cations formed a complex with tris-(oxymethyl)-aminomethane ( tris-HCl buffer) and inhibited the intestine alkaline phosphatases by a noncompetitive mechanism.

  14. Alkalinity-salinity relationship in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Cintrón Del Valle, S. M.; Najjar, R.; Herrmann, M.; Goldberger, S.; Stets, E.

    2016-12-01

    Estuaries are a significant source of atmospheric CO2, a major greenhouse gas. However, it is not known whether the Chesapeake Bay, the largest estuary in the United States, is a source or sink of CO2. Extensive pH measurements in the Bay offer the possibility of estimating the air-water CO2 flux if robust relationships between alkalinity, the acid neutralizing capacity of a water body, and salinity can be established. Here we conduct a comprehensive analysis of the alkalinity-salinity relationship in the Chesapeake Bay based on more than 18,000 alkalinity measurements made between 1985 and 2015. It was found that seven segments of the Bay could be grouped into three different linear functions, suggesting that alkalinity is conserved in the Bay and has properties that change depending on the freshwater endmember (the riverine source). The highest freshwater endmember was 1.21 mol m-3 for the Potomac River, the lowest one was 0.41 mol m-3 for the York and Rappahannock Rivers, and an intermediate freshwater endmember was 0.79 mol m-3 for the remaining four segments. For some segments, most notably the Potomac River, the scatter of the data increases with decreasing salinity, which is due, in part, to seasonal and interannual variations in the freshwater endmember.

  15. Field screening of cowpea cultivars for alkaline soil tolerance

    USDA-ARS?s Scientific Manuscript database

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  16. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  17. Oxygen electrodes for rechargeable alkaline fuel cells. II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1990-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature, single-unit, rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  18. Release of bound procyanidins from cranberry pomace by alkaline hydrolysis.

    PubMed

    White, Brittany L; Howard, Luke R; Prior, Ronald L

    2010-07-14

    Procyanidins in plant products are present as extractable or unextractable/bound forms. We optimized alkaline hydrolysis conditions to liberate procyanidins and depolymerize polymers from dried cranberry pomace. Alkaline extracts were neutralized (pH 6-7) and then procyanidins were extracted with ethyl acetate and analyzed by normal phase high performance liquid chromatography. Alkaline hydrolysis resulted in an increase in low molecular weight procyanidins, and the increase was greater at higher temperature, short time combinations. The most procyanidins (DP1-DP3) were extracted at 60 degrees C for 15 min with each concentration of NaOH. When compared to conventional extraction using homogenization with acetone/water/acetic acid (70:29.5:0.5 v/v/v), treatment with NaOH increased procyanidin oligomer extraction by 3.8-14.9-fold, with the greatest increase being DP1 (14.9x) and A-type DP2 (8.4x) procyanidins. Alkaline treatment of the residue remaining after conventional extraction resulted in further procyanidin extraction, indicating that procyanidins are not fully extracted by conventional extraction methods.

  19. Process of treating cellulosic membrane and alkaline with membrane separator

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The improvement of water-soluble cellulose ether membranes for use as separators in concentrated alkaline battery cells is discussed. The process of contacting membranes with an aqueous alkali solution of concentration less than that of the alkali solution to be used in the battery but above that at which the membrane is soluble is described.

  20. Alkalinity and hardness: Critical but elusive concepts in aquaculture

    USDA-ARS?s Scientific Manuscript database

    Total alkalinity and total hardness are familiar variables to those involved in aquatic animal production. Aquaculturists – both scientists and practitioners alike – tend to have some understanding of the two variables and of methods for adjusting their concentrations. The chemistry and the biolog...

  1. Yield performance of cowpea genotypes grown in alkaline soils

    USDA-ARS?s Scientific Manuscript database

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  2. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    DTIC Science & Technology

    2014-07-30

    113 CHAPTER 5 MONO METHOXY POLY( ETHYLENE GLYCOL) GRAFTED BLOCK COPOLYMERS FOR ALKALINE EXCHANGE MEMBRANE...polystyrene-poly( ethylene -co-butylene)-polystyrene (SEBS) copolymer.[37, 42] Chloromethylation of the polystyrene block and trimethylamine...temperature. The same graft and functionalization strategy was applied to poly( ethylene -co- tetrafluoroethylene) (ETFE) film leading to a promising

  3. Transcriptome analysis of Enterococcus faecalis in response to alkaline stress

    PubMed Central

    Ran, Shujun; Liu, Bin; Jiang, Wei; Sun, Zhe; Liang, Jingping

    2015-01-01

    Enterococcus faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing. We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs) for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections. PMID:26300863

  4. Alkalinity Enrichment Enhances Calcification of a Coral Reef Flat

    NASA Astrophysics Data System (ADS)

    Albright, R.; Caldeira, K.

    2016-02-01

    Ocean acidification is projected to shift reefs from a state of net accretion to one of net dissolution sometime this century. While retrospective studies show large-scale changes in coral calcification over the last several decades, determining the contribution of ocean acidification to these changes is difficult due to the confounding factors of temperature and other environmental parameters. Here, we quantified the calcification response of a coral reef flat to alkalinity enrichment to test whether reef calcification increases when ocean chemistry is restored closer to pre-industrial conditions. We used sodium hydroxide (NaOH) to increase the total alkalinity of seawater flowing over a reef flat, with the aim of increasing carbonate ion concentrations [CO32-] and the aragonite saturation state (Ωarag) to values that would have been attained under pre-industrial atmospheric pCO2 levels. We developed a dual tracer regression method to estimate alkalinity uptake (i.e., calcification) in response to alkalinity enrichment. This approach uses the change in ratios between a non-conservative tracer (alkalinity) and a conservative tracer (a non-reactive dye, Rhodamine WT) to assess the fraction of added alkalinity that is taken up by the reef as a result of an induced increase in calcification rate. Using this method, we estimate that an average of 17.3% ± 2.3% of the added alkalinity was taken up by the reef community, inferring a 6.9 ± 0.9% increase in net community calcification. The magnitude of the calcification response is in agreement with the theoretical increase expected from earlier laboratory and mesocosm studies. In providing results from the first seawater chemistry manipulation experiment performed on a natural coral reef community (without artificial confinement), we demonstrate that, upon increase of [CO32-] and Ωarag closer to pre-industrial values, net reef calcification increases. Thus, we conclude that ocean acidification is already impairing

  5. Acidity and Alkalinity in mine drainage: Practical considerations

    USGS Publications Warehouse

    Cravotta, III, Charles A.; Kirby, Carl S.

    2004-01-01

    In this paper, we emphasize that the Standard Method hot peroxide treatment procedure for acidity determination (hot acidity) directly measures net acidity or net alkalinity, but that more than one water-quality measure can be useful as a measure of the severity of acid mine drainage. We demonstrate that the hot acidity is related to the pH, alkalinity, and dissolved concentrations of Fe, Mn, and Al in fresh mine drainage. We show that the hot acidity accurately indicates the potential for pH to decrease to acidic values after complete oxidation of Fe and Mn, and it indicates the excess alkalinity or that required for neutralization of the sample. We show that the hot acidity method gives consistent, interpretable results on fresh or aged samples. Regional data for mine-drainage quality in Pennsylvania indicated the pH of fresh samples was predominantly acidic (pH 2.5 to 4) or near neutral (pH 6 to 7); approximately 25 percent of the samples had intermediate pH values. This bimodal frequency distribution of pH was distinctive for fully oxidized samples; oxidized samples had acidic or near-neutral pH, only. Samples that had nearneutral pH after oxidation had negative hot acidity; samples that had acidic pH after oxidation had positive hot acidity. Samples with comparable pH values had variable hot acidities owing to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. The hot acidity was comparable to net acidity computed on the basis of initial pH and concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity computed from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was comparable to that computed on the basis of aqueous species and FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the hot acidities were comparable for fresh and aged samples. Thus, meaningful “net” acidity can be determined from a measured hot acidity or by

  6. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  7. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  8. Alkaline volcanisms in the Proto-Kuril forearc

    NASA Astrophysics Data System (ADS)

    Yutani, T.; Hirano, N.

    2015-12-01

    The Nemuro Group in the northeasternmost part of Japan represents forearc basin deposits of the Proto-Kuril arc that consist of Upper Cretaceous-Paleocene sedimentary rocks with andesitic volcaniclastics and alkaline lavas. Their occurrence in this setting is unusual because such alkaline lavas and intrusions are not commonly found in forearc environments. Here, we report new petrological and geological data to discuss the nature of magmatic process involved in their petrogenesis. Pillow and massive lava flows represent subaqueous volcanic activity, and the occurrence of inter-pillow sedimentary units indicates their eruption on unconsolidated sediments of the lower Nemuro Group. Sill intrusions with layered structures and thicknesses ranging from 10 to 130 m are also common widely distributed in the Nemuro Group. Major and trace element chemistry and mineralogical data distinguish the analyzed samples as K-rich alkaline rocks with low TiO2 or Nb contents, analogous to island arc-like tholeiites. These K-rich alkaline rocks can be classified into two groups of shoshonites: shoshonites containing olivine phenocrysts and intruding into the lower Nemuro Group (Group 1), and shoshonites with no olivine and making up the middle part of the Nemuro Group (Group 2). Group 1 shoshonites have higher MgO, Cr and Ni contents than those of Group 2. The bulk-rock composition of Group 2, which has lower MgO contents, shows higher SiO2 than that of Group 1. Such compositional differences possibly represent fractional crystallization of magmas between Groups 1 and 2. Based on the limited available data, we conclude that these alkaline rocks intruding into the Nemuro Group represent arc-shoshonites, and that the Group 1 magmas underwent fractional crystallization to produce the Group 2 magmas.

  9. Remediation of Former Manufactured Gas Plant Tars Using Alkaline Flushing

    NASA Astrophysics Data System (ADS)

    Hauswirth, S.; Rylander, S.; Birak, P. S.; Miller, C. T.

    2010-12-01

    The remediation of former manufactured gas plant (FMGP) tars in the subsurface is particularly difficult due to the wetting behavior and high viscosities of these dense non-aqueous liquids (DNAPLs). Alkaline flooding is a technique which has proven effective in improving the recovery of crude oils, which share some characteristics with FMGP tars. For this study, we measured the effect of NaOH solutions on interfacial tension and conducted column experiments to investigate the feasibility of applying this technique to FMGP tars. The pendant drop technique was used to measure interfacial tensions for solutions ranging from 0-1% NaOH. Column experiments were conducted by contaminating sands with tars recovered from a FMGP then flushing the columns with NaOH solutions. A final, 70% v/v ethanol cosolvent flush was conducted to investigate the effectiveness of a two-stage remediation approach. The mass removal of tar, as well as 26 individual PAHs, was measured, along with the aqueous phase mass flux of PAHs after each flushing stage. The interfacial tension was reduced from about 20 mN/m with pure water to a minimum of 0.05 mN/m at a concentration of 0.1% NaOH. In the column experiments, alkaline flushing resulted in a 50% reduction of the residual saturation. Aqueous phase PAH concentrations, however, were similar before and after the alkaline flushing stage. The combination of alkaline and cosolvent flushing resulted in an overall reduction of 95% of the total mass of the 16 EPA PAHs. Final aqueous phase concentrations were reduced significantly for lower molecular weight PAHs, but increased slightly for the higher molecular weight compounds, likely due to their increased mole fraction within the remaining tar. Additional work is being conducted to improve the effectiveness of the alkaline flushing through the use of surfactants and polymers.

  10. On the apparent CO2 absorption by alkaline soils

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, W. F.

    2014-02-01

    Alkaline soils in the Gubantonggut Desert were recently demonstrated socking away large quantities of CO2 in an abiotic form. This demands a better understanding of abiotic CO2 exchange in alkaline sites. Reaction of CO2 with the moisture or dew in the soil was conjectured as a potential mechanism. The main goal of this study is to determine the extent to which the dew deposition modulates Land-Atmosphere CO2 exchange at highly alkaline sites (pH ~ 10). Experiments were conducted at the most barren sites (canopy coverage < 5%) to cut down uncertainty. Dew quantities and soil CO2 fluxes were measured using a micro-lysimeters and an automated flux system (LI-COR, Lincoln, Nebraska, USA), respectively. There is an evident increase of dew deposition in nocturnal colder temperatures and decrease in diurnal warmer temperatures. Variations of soil CO2 flux are almost contrary, but the increase in diurnal warmer temperatures is obscure. It was shown that the accumulation and evaporation of dew in the soil motivates the apparent absorption and release of CO2. It was demonstrated that dew amounts in the soil has an exponential relation with the part in Fc beyond explanations of the worldwide utilized Q10 model. Therefore dew deposition in highly alkaline soils exerted a potential CO2 sink and can partly explain the apparent CO2 absorption. This implied a crucial component in the net ecosystem carbon balance (NECB) at alkaline sites which occupies approximately 5% of the Earth's land surface (7 million km). Further explorations for its mechanisms and representativeness over other arid climate systems have comprehensive perspectives in the quaternary research.

  11. Alkalinity conversion of bauxite refinery residues by neutralization.

    PubMed

    Johnston, M; Clark, M W; McMahon, P; Ward, N

    2010-10-15

    Red mud remains the largest environmental issue for the alumina industry due to its high pH (>13), fine-grained nature (>90% is <10 microm), elevated sodium concentration (>50 g/kg), and soluble alkalinity (approximately 30 g/kg as equivalent CaCO(3)), which reduce the transport and reuse options of red mud. The neutralization of red mud provides potential reuse options because neutralization lowers pH, increases grain-size (e.g., coagulation), and precipitates or converts alkalinity. This paper investigates the geochemistry of 3 treatments of a red mud to affect neutralization and potentially convert materials from a waste material to a resource. This study investigates two commonly used neutralization techniques, a CO(2)-neutralized red mud (CNRM), a Basecon-neutralized red mud (Basecon), and a more novel approach of a CO(2)-neutralization followed by a Basecon-neutralization (Hybrid) to understand the effects that these treatments have on neutralization process. Data indicate that the neutralization techniques form two distinct geochemical groups when discriminated on total alkalinity alone, that is treatments with, and treatments without alkalinity precipitation. However, each treatment has distinct alkalinity speciation (hydroxide-dominant or carbonate/bicarbonate dominant) and residual Ca, Mg and Al in the treatment solution. Similarly, solids produced differ in their reaction pH and ANC, and contrary pH and ANC, a contrary to other studies, Dawsonite was not seen to precipitate during any neutralization. However, despite this approximately 17 g/kg CO(2) was sequestered during CNRM and hybrid neutralizations and all treatments increased either the transport or reuse options of red mud in some way. 2010 Elsevier B.V. All rights reserved.

  12. Direct alkalinity detection with ion-selective chronopotentiometry.

    PubMed

    Afshar, Majid Ghahraman; Crespo, Gastón A; Xie, Xiaojiang; Bakker, Eric

    2014-07-01

    We explore the possibility to directly measure pH and alkalinity in the sample with the same sensor by imposing an outward flux of hydrogen ions from an ion-selective membrane to the sample solution by an applied current. The membrane consists of a polypropylene-supported liquid membrane doped with a hydrogen ionophore (chromoionophore I), ion exchanger (KTFBP), and lipophilic electrolyte (ETH 500). While the sample pH is measured at zero current, alkalinity is assessed by chronopotentiometry at anodic current. Hydrogen ions expelled from the membrane undergo acid-base solution chemistry and protonate available base in the diffusion layer. With time, base species start to be depleted owing to the constant imposed hydrogen ion flux from the membrane, and a local pH change occurs at a transition time. This pH change (potential readout) is correlated to the concentration of the base in solution. As in traditional chronopotentiometry, the observed square root of transition time (τ) was found to be linear in the concentration range of 0.1 mM to 1 mM, using the bases tris(hydroxymethyl)aminomethane, ammonia, carbonate, hydroxide, hydrogen phosphate, and borate. Numerical simulations were used to predict the concentration profiles and the chronopotentiograms, allowing the discussion of possible limitations of the proposed method and its comparison with volumetric titrations of alkalinity. Finally, the P-alkalinity level is measured in a river sample to demonstrate the analytical usefulness of the proposed method. As a result of these preliminary results, we believe that this approach may become useful for the in situ determination of P-alkalinity in a range of matrixes.

  13. Effects of alkaline concentration, temperature, and additives on the strength of alkaline-induced egg white gel.

    PubMed

    Zhao, Yan; Tu, Yonggang; Li, Jianke; Xu, Mingsheng; Yang, Youxian; Nie, Xuliang; Yao, Yao; Du, Huaying

    2014-10-01

    Egg whites can undergo gelation at extreme pH. In this paper, the effects of NaOH concentration (1.5, 2, 2.5, and 3%), temperature (10, 20, 30, and 40°C), and additives (metallic compounds, carbohydrates, stabilizers, and coagulants) on the strength of alkaline-induced egg white gel were investigated. Results showed that NaOH concentration and induced temperature significantly affected the rate of formation and peak strength of the egg white gel. Of the 6 metallic compounds used in this experiment, CuSO₄exhibited the optimal effect on the strength of alkaline-induced egg white gel, followed by MgCl₂, ZnSO4, PbO, and CaCl₂. When CuSO₄concentration was 0.2%, the gel strength increased by 31.92%. The effect of Fe₂(SO₄)₃was negligible. Of the 5 carbohydrate additives, xanthan gum (0.2%) caused the highest increase (54.31%) in the strength of alkaline-induced egg white gel, followed by sodium alginate, glucose, starch, and sucrose. Meanwhile, propylene glycol (0.25%) caused the highest improvement (15.78%) in the strength of alkaline-induced egg white gel among the 3 stabilizing agents and coagulants used, followed by Na₂HPO₄and glucono-δ-lactone. ©2014 Poultry Science Association Inc.

  14. The roles of serum alkaline and bone alkaline phosphatase levels in predicting heterotopic ossification following spinal cord injury.

    PubMed

    Citak, M; Grasmücke, D; Suero, E M; Cruciger, O; Meindl, R; Schildhauer, T A; Aach, M

    2016-05-01

    Retrospective chart review. To analyze the usefulness of serum alkaline phosphatase (AP) and bone alkaline phosphatase (BAP), as well as C-reactive protein (CRP) levels in predicting heterotopic ossification (HO). Department of Spinal Cord Injury and Department of General and Trauma Surgery, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Germany. Between January 2003 and December 2013, 87 patients with HO around the hips met the inclusion criteria and were included in the study. Alkaline phosphatase, CRP and BAP were assessed and interpreted at the time of HO diagnosis and after radiation therapy in all patients. At the time of HO diagnosis, 49 out of 87 patients (49.4%) had elevated alkaline phosphatase levels and 39 out of 87 patients (44.8%) had elevated BAP levels. Elevated CRP values were found in 67 patients (77.0%). Within 3 days after single-dose radiation therapy, elevated AP levels persisted in 38 patients (43.7%) and elevated BAP levels in 28 patients (32.2%). The results obtained show that the determination of CRP, AP and BAP levels may not be considered a reliable screening method for early HO detection, subsequent to spinal cord injury.

  15. The origin of life in alkaline hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.

    2016-12-01

    The origin of life remains one of Science's greatest unresolved questions. The answer will no doubt involve almost all the basic disciplines, including Physics, Chemistry, Astronomy, Geology, and Biology. Chiefly, it is the link between the latter two that must be elucidated: how geochemistry gave rise to biochemistry. Serpentinizing systems such as alkaline hydrothermal vents offer the most robust combination of conditions to have hosted the origin of life on the early Earth, while bearing many parallels to modern living cells. Stark gradients of concentration, pH, oxidation/reduction, and temperature provided the ability to synthesise and concentrate organic products, drive polymerisation reactions, and develop an autotrophic lifestyle independent of foreign sources of organics. In the oxygen-depleted waters of the Hadean, alkaline vents would have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with the relatively acidic CO2-rich waters of the ocean, through interconnected micropores made of thin inorganic walls containing catalytic Fe(Ni)S minerals. Perhaps not coincidentally, the unit cells of these Fe(Ni)S minerals closely resemble the active sites of crucial ancestral bioenergetic enzymes. Meanwhile, differences in pH across the thin barriers produced natural proton gradients similar to those used for carbon fixation in modern archaea and bacteria. At the earliest stages, the problem of the origin of life is the problem of the origin of carbon fixation. I will discuss work over the last decade that suggests several possible hypotheses for how simple one-carbon molecules could have given rise to more complex organics, particularly within a serpentinizing alkaline hydrothermal vent. I will discuss the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria, thought to be the earliest representatives of each domain, to propose a possible ancestral mechanism of CO2 reduction in

  16. Alkaline pH Homeostasis in Bacteria: New Insights

    PubMed Central

    Padan, Etana; Bibi, Eitan; Ito, Masahiro; Krulwich, Terry A.

    2011-01-01

    The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH homeostasis, as shown in pH shift experiments and growth experiments in chemostats at different external pH values. Transcriptome and proteome analyses have recently complemented physiological and genetic studies, revealing numerous adaptations that contribute to alkaline pH homeostasis. These include elevated levels of transporters and enzymes that promote proton capture and retention (e.g. the ATP synthase and monovalent cation/proton antiporters), metabolic changes that lead to increased acid production, and changes in the cell surface layers that contribute to cytoplasmic proton retention. Targeted studies over the past decade have followed up the long-recognized importance of monovalent cations in active pH homeostasis. These studies show the centrality of monovalent cation/proton antiporters in this process while microbial genomics provides information about the constellation of such antiporters in individual strains. A comprehensive phylogenetic analysis of both eukaryotic and prokaryotic genome databases has identified orthologes from bacteria to humans that allow better understanding of the specific functions and physiological roles of the antiporters. Detailed information about the properties of multiple antiporters in individual strains is starting to explain how specific monovalent cation/proton antiporters play dominant roles in alkaline pH homeostasis in cells that have several additional antiporters catalyzing ostensibly similar reactions. New insights into the pH-dependent Na+/H+ antiporter NhaA that plays an important role in Escherichia coli have recently emerged from the determination of the structure

  17. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the...

  18. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the...

  19. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the...

  20. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the...

  1. Interpretation of pH, acidity, and alkalinity in fisheries and aquaculture

    USDA-ARS?s Scientific Manuscript database

    Measurements of pH, acidity, and alkalinity are commonly used to describe water quality. The three variables are interrelated and are sometimes confused. The pH of water is an intensity factor, while the acidity and alkalinity of waters are capacity factors. More precisely, acidity and alkalinity ar...

  2. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  3. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  4. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  5. 40 CFR 721.9680 - Alkaline titania silica gel (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkaline titania silica gel (generic... Specific Chemical Substances § 721.9680 Alkaline titania silica gel (generic name). (a) Chemical substance... alkaline titania silica gel (PMN P-95-529) is subject to reporting under this section for the...

  6. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are...

  7. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are...

  8. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are...

  9. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are applicable to...

  10. 40 CFR 434.40 - Applicability; description of the alkaline mine drainage subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkaline mine drainage subcategory. 434.40 Section 434.40 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.40 Applicability; description of the alkaline mine drainage subcategory. The provisions of this subpart are applicable to...

  11. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  12. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  13. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... publicly owned treatment works resulting from operations in which steel and steel products are immersed...

  14. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... publicly owned treatment works resulting from operations in which steel and steel products are immersed...

  15. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... publicly owned treatment works resulting from operations in which steel and steel products are immersed...

  16. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... publicly owned treatment works resulting from operations in which steel and steel products are immersed...

  17. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... publicly owned treatment works resulting from operations in which steel and steel products are immersed...

  18. Specialties of distributions of alkaline-earth metals in coal

    SciTech Connect

    Fan Jinchuan; Fan Minqiang

    1997-12-31

    Four different ranks of coal have been sampled and separated into different density fractions by Float-Sink. The contents of some trace elements in each density fraction has been analyzed by ICAP. The analyzed data show that the alkaline-earth metals (Be, Sr, and Ba) have their special distributions in coal: Be and Sr may exist in the form of organic matter. Ba often has the highest content in the middle density fraction (1.4--1.5). The relative relationship between ash (or sulfur) and the trace element in a certain type of coal was obtained by using linear regression approach. Results show that there is no significant correlation between the contents of ash or sulfur and those of Be, Sr, and Ba. On the other hand, the linear regression was done among the trace elements of 17 types of coal. The results also show that there is no significant correlation between ash or sulfur and alkaline-earth metals.

  19. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  20. Alkaline protease production by a strain of marine yeasts

    NASA Astrophysics Data System (ADS)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  1. Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures.

    PubMed

    Ito, S; Kobayashi, T; Ara, K; Ozaki, K; Kawai, S; Hatada, Y

    1998-08-01

    The cleaning power of detergents seems to have peaked; all detergents contain similar ingredients and are based on similar detergency mechanisms. To improve detergency, modern types of heavy-duty powder detergents and automatic dishwasher detergents usually contain one or more enzymes, such as protease, amylase, cellulase, and lipase. Alkaliphilic Bacillus strains are often good sources of alkaline extracellular enzymes, the properties of which fulfil the essential requirements for enzymes to be used in detergents. We have isolated numbers of alkaliphilic Bacillus that produce such alkaline detergent enzymes, including cellulase (CMCase), protease, alpha-amylase, and debranching enzymes, and have succeeded in large-scale industrial production of some of these enzymes. Here, we describe the enzymatic properties, genetics, and structures of the detergent enzymes that we have developed.

  2. Repeated probing of Southwestern blots using alkaline phosphatase stripping.

    PubMed

    Jia, Yinshan; Jiang, Daifeng; Jarrett, Harry W

    2010-11-05

    Southwestern blotting is when a DNA sequence is used to probe DNA-binding proteins on an electrophoretic gel blot. It would be highly desirable to be able to probe a blot repeatedly with different DNA sequences. Alkaline phosphatase can remove 5'-phosphoryl groups from DNA and radiolabeled 5'-(32)P-DNA probes are commonly used in Southwestern blotting. Here is shown that once probed, the radioisotope signal on the blot can be effectively removed by brief digestion with alkaline phosphatase, and the blot can then be repeatedly probed at least six times with different DNA probes. This exceeds the repetitions possible with another commonly used method using SDS. The technique can be used with either one-dimensional or multi-dimensional Southwestern blots and does not have a large effect on the phosphorylation state of the blotted proteins. An alternative method using T4 polynucleotide kinase stripping is also introduced but was less well characterized.

  3. Radiolysis of actinides and technetium in alkaline media

    SciTech Connect

    Delegard, C.H., Westinghouse Hanford

    1996-07-10

    The {gamma}-radiolysis of aerated alkaline aqueous solutions of Np(V), Np(VI), Pu(VI), Tc(IV), Tc(V), and TC(VII) was studied in the absence of additives and in the presence of CO{sub 3}{sup 2-}, NO{sub 3}{sup -}, NO{sub 2}{sup -}, EDTA, formate, and other organic compounds. The radiolytic reduction of Np(V), Np(VI), Pu(VI), and TC(VII) under different experimental conditions was examined in detail. The addition of EDTA, formate, and alcohols was found to considerably increase the radiation-chemical reduction yields. The formation of the Np(V) peroxo complex was observed in the {gamma}-radiolysis of alkaline aqueous solutions of Np (VI) in the presence of nitrate.

  4. Alkaline Earth-Olefin Complexes with Secondary Interactions.

    PubMed

    Roşca, Sorin-Claudiu; Dinoi, Chiara; Caytan, Elsa; Dorcet, Vincent; Etienne, Michel; Carpentier, Jean-François; Sarazin, Yann

    2016-05-04

    Strontium and calcium (alkaline earth: Ae) olefin complexes stabilised by secondary Ae⋅⋅⋅F-C and β-agostic Ae⋅⋅⋅H-Si interactions are presented. Olefin coordination onto the alkaline earths is plain in the solid state, and it is thermodynamically favoured over the coordination of THF. The existence of the Ae⋅⋅⋅olefin interactions is corroborated by solution NMR data and DFT computations. The coordination mode of the olefin varies with steric effects and, if enforced, olefin dissociation can be compensated by the other non-covalent interactions, as supported by DFT computations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Repeated probing of Southwestern blots using alkaline phosphatase stripping

    PubMed Central

    Jia, Yinshan; Jiang, Daifeng; Jarrett, Harry W.

    2010-01-01

    Southwestern blotting is when a DNA sequence is used to probe DNA-binding proteins on an electrophoretic gel blot. It would be highly desirable to be able to probe a blot repeatedly with different DNA sequences. Alkaline phosphatase can remove 5′-phosphoryl groups from DNA and radiolabeled 5′-32P-DNA probes are commonly used in Southwestern blotting. Here is shown that once probed, the radioisotope signal on the blot can be effectively removed by brief digestion with alkaline phosphatase, and the blot can then be repeatedly probed at least six times with different DNA probes. This exceeds the repetitions possible with another commonly used method using SDS. The technique can be used with either one-dimensional or multi-dimensional Southwestern blots and does not have a large effect on the phosphorylation state of the blotted proteins. An alternative method using T4 polynucleotide kinase stripping is also introduced but was less well characterized. PMID:20926088

  6. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  7. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    SciTech Connect

    Choe, Yoong-Kee; Henson, Neil J.; Kim, Yu Seung

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  8. A universial gas absorber for sealed alkaline storage batteries

    SciTech Connect

    Tsenter, B.I.; Laurenov, V.M.

    1986-02-01

    The authors describe a universal gas absorber for all types of sealed alkaline storage batteries. The absorber is illustrated and consists of matrix-type nickel-gas cells which are connected in series, have a common gas compartment, and are electrolytically insulated from each other. The gas electrode of the nickel gas cell is bifunctional; it functions in oxygen ionization and in hydrogen ionization. The solid-phase nickel-oxide electrode is a powder-metallurgical design. Absorbers of the present type are universal, both in the sense that they will absorb oxygen, hydrogen, or a mixture of these gases, and in the sense that they can be used for sealed alkaline storage batteries of any type.

  9. Hybrids of chemical derivatives of Escherichia coli alkaline phosphatase.

    PubMed

    Meighen, E; Yue, R

    1975-12-15

    The activities of hybrid dimers of alkaline phosphatase containing two chemically modified subunits have been investigated. One hybrid species was prepared by dissociation and reconstitution of a mixture of two variants produced by chemical modification of the native enzyme with succinic anhydride and tetranitromethane, respectively. The succinyl-nitrotyrosyl hybrid was separated from the other members of the hybrid set by DEAE-Sephadex chromatography and then converted to a succinyl-aminotyrosyl hybrid by reduction of the modified tyrosine residues with sodium dithionite. A comparison of the activities of these two hybrids with the activities of the succinyl, nitrotyrosyl and aminotyrosyl derivatives has shown that either the subunits of alkaline phosphatase function independently or if the subunits turnover alternately in a reciprocating mechanism, then the intrinsic activity of each subunit must be strongly dependent on its partner subunit.

  10. Electrocatalysis of the HER in acid and alkaline media

    SciTech Connect

    Danilovic, Nemanja; Subbaraman, Ram; Strmcnik, Dusan; Stamenkovic, Vojislav; Markovic, Nenad

    2013-01-01

    Trends in the HER are studied on selected metals (M= Cu, Ag, Au, Pt, Ru, Ir, Ti) in acid and alkaline environments. Here, we found that with the exception of Pt, Ir and Au, due to high coverage by spectator species on non-noble metal catalysts, experimentally established positions of Cu , Ag, Ru and Ti in the observed volcano relations are still uncertain. We also found that while in acidic solutions the M-Hupd binding energy most likely is controlling the activity trends, the trends in activity in alkaline solutions are controlled by a delicate balance between two descriptors: the M-Had interaction as well as the energetics required to dissociate water molecules. We confirm the importance of the second descriptor by introducing bifunctional catalysts such as M modified by Ni(OH); e.g. while the latter serves to enhance catalytic decomposition of water, the metal sites are required for collecting and recombining the produced hydrogen intermediates.

  11. A green method of graphene preparation in an alkaline environment.

    PubMed

    Štengl, Václav; Henych, Jiří; Bludská, Jana; Ecorchard, Petra; Kormunda, Martin

    2015-05-01

    We present a new, simple, quick and ecologically friendly method of exfoliating graphite to produce graphene. The method is based on the intercalation of a permanganate M2MnO4 (M=K, Na, Li), which is formed by the reaction of a manganate MMnO4 with an alkali metal hydroxide MOH. The quality of exfoliation and the morphology were determined using X-ray photoelectron spectroscopy, X-ray diffraction and microscopic techniques, including transmission electron microscopy and atomic force microscopy. We observed that a stable graphene suspension could be prepared under strongly alkaline conditions in the presence of permanganate and ultrasound assistance. The use of only an alkaline environment for the direct preparation of graphene from graphite structures has not been previously described or applied. It was found that such a method of preparation leads to surprisingly high yields and a stable product for hydrophilic graphene applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Alkaline replenisher evaluation for printed wiring board evaluation

    SciTech Connect

    Tucker, D.R.; Goldammer, S.E.

    1997-04-01

    MacDermid`s Metex{reg_sign} Ultra Etch FL and modifications to the Ultra Etch FL chemistry were evaluated as replacements of a discontinued replenisher, Ultra Etch Aqueous. Ultra Etch FL with additions of water to lower the total alkalinity and ammonium chloride to maintain the chloride level was found to produce acceptable results and, in fact, had a similar chemical composition to Ultra Etch Aqueous.

  13. Predicting Carbonate Ion Transport in Alkaline Anion Exchange Materials

    DTIC Science & Technology

    2012-01-01

    Schematic of the permeation cell experiment used to measure transient CO2 flux across the polymer electrolyte membrane. Experimental result vs. model trend...Microstructure on Charge Transfer, Mass Transfer, and Electrochemical Reactions in Solid Oxide Fuel Cells ; Part 2. Ion and Water Transport in Alkaline Anion...through the use of the Fuel Cell Technologies Test Station such as the relative humidity and flow rate of the feed gases, the cell temperature, and the

  14. Steady-state superradiance with alkaline-earth-metal atoms

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-03-15

    Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.

  15. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  16. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311-318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm. 51

  17. Space Shuttle Upgrades: Long Life Alkaline Fuel Cell

    NASA Technical Reports Server (NTRS)

    McCurdy, Kerri

    2004-01-01

    NASA has utilized the alkaline fuel cell technology to provide electrical power for manned launch vehicles such as Gemini, Apollo, and the Space Shuttle. The current Shuttle alkaline fuel cells are procured from UTC Fuel Cells, a United Technologies Company. The alkaline fuel cells are very reliable but the operating life is limited to 2600 hours due to voltage degradation of the individual cells. The main limiting factor in the life of the cells is corrosion of the cell's fiberglass/epoxy frame by the aqueous potassium hydroxide electrolyte. To reduce operating costs, the orbiter program office approved the Long Life Alkaline Fuel Cell (LLAFC) program as a shuttle upgrade in 1999 to increase the operating life of the fuel cell powerplant to 5000 hours. The LLAFC program incorporates improving the cell by extending the length of the corrosion path, which reduces the cell frame corrosion. UTCFC performed analysis to understand the fundamental mechanisms that drive the cell frame corrosion. The analysis indicated that the corrosion path started along the bond line between the cathode and the cell frame. Analysis also showed that the oxygen available at the cathode, the catalyst on the electrode, and the electrode substrate all supported or intensified the corrosion. The new cell design essentially doubled the corrosion path to mitigate the problem. A 10-cell stack was tested for 5000 hours during the development phase of this program to verify improved cell performance. A complete 96-cell stack was then tested for 5000 hours during the full manned-space qualification phase of this program. Additional upgrades to the powerplant under this program are: replacing the aluminum body in the pressure regulator with stainless steel to reduce corrosion, improving stack insulator plate with improved resistance to stress failure and improved temperature capability, and replacing separator plate elastomer seals with a more durable material and improved seal retention.

  18. Alkaline phytase from lily pollen: Investigation of biochemical properties.

    PubMed

    Jog, Sonali P; Garchow, Barry G; Mehta, Bakul Dhagat; Murthy, Pushpalatha P N

    2005-08-15

    Phytases catalyze the hydrolysis of phytic acid (InsP6, myo-inositol hexakisphosphate), the most abundant inositol phosphate in cells. In cereal grains and legumes, it constitutes 3-5% of the dry weight of seeds. The inability of humans and monogastric animals such as swine and poultry to absorb complexed InsP6 has led to nutritional and environmental problems. The efficacy of supplemental phytases to address these issues is well established; thus, there is a need for phytases with a range of biochemical and biophysical properties for numerous applications. An alkaline phytase that shows unique catalytic properties was isolated from plant tissues. In this paper, we report on the biochemical properties of an alkaline phytase from pollen grains of Lilium longiflorum. The enzyme exhibits narrow substrate specificity, it hydrolyzed InsP6 and para-nitrophenyl phosphate (pNPP). Alkaline phytase followed Michaelis-Menten kinetics with a K(m) of 81 microM and V(max) of 217 nmol Pi/min/mg with InsP6 and a K(m) of 372 microM and V(max) of 1272 nmol Pi/min/mg with pNPP. The pH optimum was 8.0 with InsP6 as the substrate and 7.0 with pNPP. Alkaline phytase was activated by calcium and inactivated by ethylenediaminetetraacetic acid; however, the enzyme retained a low level of activity even in Ca2+-free medium. Fluoride as well as myo-inositol hexasulfate did not have any inhibitory affect, whereas vanadate inhibited the enzyme. The enzyme was activated by sodium chloride and potassium chloride and inactivated by magnesium chloride; the activation by salts followed the Hofmeister series. The temperature optimum for hydrolysis is 55 degrees C; the enzyme was stable at 55 degrees C for about 30 min. The enzyme has unique properties that suggest the potential to be useful as a feed supplement.

  19. Lithium Isotope Systematics of Rift-related Alkaline Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Halama, R.; McDonough, W. F.; Rudnick, R. L.; Trumbull, R.; Klaudius, J.; Keller, J.; Taubald, H.

    2006-05-01

    Intracontinental alkaline igneous rocks from the Proterozoic Gardar Province (Greenland), the Cretaceous Damaraland Province (Namibia), the Tertiary Kaiserstuhl complex (Germany) and from the Holocene volcano Oldoinyo Lengai (Tanzania) were analyzed to characterize Li isotopic compositions of their mantle sources and to determine the processes affecting δ7Li in alkaline igneous rocks. The inferred mantle Li isotope signatures of the primitive alkaline rocks (δ7Li = +1 to +7) are similar to those of present- day MORB, OIB and carbonatites, and appear to be relatively constant in time and space. Gabbros from the Gardar Province define a relatively small field of Li isotope compositions (δ7Li = +4 to +7). Mineral separates (clinopyroxene, plagioclase) mostly overlap with the whole-rock values, which we interpret to reflect the δ7Li of the mantle sources of the gabbros. Mantle-like δ7Li values are also observed for primitive alkaline rocks from the other regions. Li isotope compositions in more differentiated rocks (syenites, phonolites and rhyolites) are highly variable (+11 to -22 per mil) and reflect a diversity of evolutionary processes that may vary from complex to complex. δ7Li values vary independently of Sr and Nd isotope values and indices of differentiation (e.g. MgO content) or weathering (e.g. LOI). Consistently light δ7Li values (+2 to -22) occur in Gardar syenites associated with a carbonatite. These may be explained by weathering and sub-solidus alteration, as indicated by petrographic observations. Alternatively, fluid-assisted diffusion processes, related to a fenitizing fluid from the carbonatite, may have led to extreme Li isotope fractionation. Whole-rock oxygen isotope analyses will be carried out to evaluate interaction with meteoric water, which would be reflected in a decrease in δ18O compared to magmatic values. The heaviest Li isotopic composition (+11 per mil) was obtained for a rhyolite, probably related to the presence of quartz

  20. Thiomethylation of ketones by sulphide-alkaline solutions and formaldehyde

    SciTech Connect

    Ulendeyeva, A.D.; Samigullin, I.I.; Nasteka, V.I.

    1993-12-31

    An investigation has been made of the thiomethylation of ketones by formaldehyde with mercaptides, sodium sulphide and their mixture. It is possible to regenerate 78-100 rel.% of the sulphide-alkaline solutions under mild conditions (20-50{degrees}C, atmospheric pressure) without feeding a catalyst, with the simultaneous production of ketosulphide concentrate - a less toxic product with properties of practical benefit. 7 refs., 2 figs., 2 tabs.

  1. Transition-state structures for enzymatic and alkaline phosphotriester hydrolysis

    SciTech Connect

    Caldwell, S.R.; Raushel, F.M. ); Weiss, P.M.; Cleland, W.W. )

    1991-07-30

    The primary and secondary {sup 18}O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of ({sup 15}N, phosphoryl-{sup 18}O)-,({sup 15}N, phenolic-{sup 18}O)-, and ({sup 15}N)-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary {sup 18}O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 {plus minus} 0.0001, whereas for compound II they are 1.027{plus minus}0.002 and 1.025 {plus minus} 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a S{sub N}2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary {sup 18}O isotope effects are very small, 1.0020 and 1.0021{plus minus}0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The {sup 18}O isotope effects for the enzymatic hydrolysis of compound II are 1.036{plus minus}0.001 and 1.0181{plus minus}0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary {sup 18}O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction.

  2. Transition-state structures for enzymatic and alkaline phosphotriester hydrolysis.

    PubMed

    Caldwell, S R; Raushel, F M; Weiss, P M; Cleland, W W

    1991-07-30

    The primary and secondary 18O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [15N, phosphoryl-18O]-, [15N, phenolic-18O]-, and [15N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 +/- 0.0001, whereas for compound II they are 1.027 +/- 0.002 and 1.025 +/- 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a SN2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18O isotope effects are very small, 1.0020 and 1.0021 +/- 0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18O isotope effects for the enzymatic hydrolysis of compound II are 1.036 +/- 0.001 and 1.0181 +/- 0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction.

  3. Investigation of aluminum gate CMP in a novel alkaline solution

    NASA Astrophysics Data System (ADS)

    Cuiyue, Feng; Yuling, Liu; Ming, Sun; Wenqian, Zhang; Jin, Zhang; Shuai, Wang

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO2 abrasive) contains 1 wt.% H2O2,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H2O2, 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution.

  4. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  5. Titrimetric determination of hydrogen peroxide in alkaline solution.

    PubMed

    McCurdy, W H; Bell, H F

    1966-07-01

    Direct titration of hydrogen peroxide in alkaline bromide media has been accomplished with sodium hypochlorite. The relative standard deviation is 0.2%. A photometric end-point is recommended for the determination of 0.10-1.0 mequiv of peroxide. Larger samples are evaluated by use of Bordeaux Red as visual indicator. The hypochlorite procedure compares favourably with iodometry and permanganate in the analysis of commercial peroxides.

  6. Surfactant-enhanced alkaline flooding field project. Annual report, Revision

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  7. Space Shuttle Upgrades: Long Life Alkaline Fuel Cell

    NASA Technical Reports Server (NTRS)

    McCurdy, Kerri

    2004-01-01

    NASA has utilized the alkaline fuel cell technology to provide electrical power for manned launch vehicles such as Gemini, Apollo, and the Space Shuttle. The current Shuttle alkaline fuel cells are procured from UTC Fuel Cells, a United Technologies Company. The alkaline fuel cells are very reliable but the operating life is limited to 2600 hours due to voltage degradation of the individual cells. The main limiting factor in the life of the cells is corrosion of the cell's fiberglass/epoxy frame by the aqueous potassium hydroxide electrolyte. To reduce operating costs, the orbiter program office approved the Long Life Alkaline Fuel Cell (LLAFC) program as a shuttle upgrade in 1999 to increase the operating life of the fuel cell powerplant to 5000 hours. The LLAFC program incorporates improving the cell by extending the length of the corrosion path, which reduces the cell frame corrosion. UTCFC performed analysis to understand the fundamental mechanisms that drive the cell frame corrosion. The analysis indicated that the corrosion path started along the bond line between the cathode and the cell frame. Analysis also showed that the oxygen available at the cathode, the catalyst on the electrode, and the electrode substrate all supported or intensified the corrosion. The new cell design essentially doubled the corrosion path to mitigate the problem. A 10-cell stack was tested for 5000 hours during the development phase of this program to verify improved cell performance. A complete 96-cell stack was then tested for 5000 hours during the full manned-space qualification phase of this program. Additional upgrades to the powerplant under this program are: replacing the aluminum body in the pressure regulator with stainless steel to reduce corrosion, improving stack insulator plate with improved resistance to stress failure and improved temperature capability, and replacing separator plate elastomer seals with a more durable material and improved seal retention.

  8. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1990-01-01

    Current/voltage data have been obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consist of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to evaluate fully this approach to corrosion screening.

  9. Microscopic calculation of the compressibility of hydrides of alkaline metals

    NASA Astrophysics Data System (ADS)

    Krymov, V. A.; Fuks, D. L.

    1987-09-01

    Isotherms have been constructed and compressibilities and sound velocities have been calculated for the hydrides of alkaline metals on the basis of the functional theory of the local electron density, within the framework of the pseudopotential method. The expression obtained for the electron density distribution allows one to perform the analysis of the character of the binding forces and to determine the dependence of the degree of ionization on pressure in these compounds.

  10. Ocean Acidification: Coccolithophore's Light Controlled Effect on Alkalinity

    NASA Astrophysics Data System (ADS)

    Dobbins, W.

    2015-12-01

    Coccolithophorids, which play a significant role in the flux of calcite and organic carbon from the photic region to deeper pelagic and benthic zones, are potentially far more useful than siliceous phytoplankton for ocean fertilization projects designed to sequester CO2. However, the production of H+ ions during calcification (HCO3 + Ca+ —> CaCO3 + H+) has resulted in localized acidification around coccolithophore blooms. It has been hypothesized that under the correct light conditions photosynthesis could proceed at a rate such that CO2 is removed in amounts equimolar or greater than the H+ produced by calcification, allowing stable or increasing alkalinity despite ongoing calcification. Previously, this effect had not been demonstrated under laboratory conditions. Fifteen Emiliania huxleyi cultures were separated into equal groups with each receiving: 0, 6, 12, 18, or 24 hours of light each day for 24 days. Daily pH, cell density, and temperature measurements revealed a strong positive correlation between light exposure and pH, and no significant decline in pH in any of the cultures. Alkalinity increases were temperature independent and not strongly correlated with cell density, implying photosynthetic removal of carbon dioxide as the root cause. The average pH across living cultures increased from 7.9 to 8.3 over the first week and changed little for the reminder of the 24-day period. The results demonstrate coccolithophorids can increase alkalinity across a broad range of cell densities, despite the acidification inherent to the calcification process. If the light-alkalinity effect reported here proves scalable to larger cultures, Emiliania huxleyi are a strong candidate for carbon sequestration via targeted ocean fertilization.

  11. Low serum alkaline phosphatase activity in Kikuchi-Fujimoto disease

    PubMed Central

    Inamo, Yasuji

    2017-01-01

    Abstract Various laboratory findings are helpful in making a diagnosis of Kikuchi-Fujimoto disease (KFD); however, they are not specific. We found decreased serum alkaline phosphatase (SAP) activity in children with KFD. The levels of SAP fell in the acute phase and recovered during convalescence. We conclude that low SAP activity is a characteristic of KFD and may be an auxiliary diagnostic marker for the disease. PMID:28248884

  12. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1

    DOE PAGES

    Zhu, Daochen; Zhang, Peipei; Xie, Changxiao; ...

    2017-02-21

    Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability tomore » survive in extreme environments. To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC–MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. In conclusion, GC–MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway

  13. Combination of alkaline phosphatase anti-alkaline phosphatase (APAAP)- and avidin-biotin-alkaline phosphatase complex (ABAP)-techniques for amplification of immunocytochemical staining of human testicular tissue.

    PubMed

    Davidoff, M S; Schulze, W; Holstein, A F

    1991-01-01

    An amplification procedure was developed for the visualization of antigens in human testis using monoclonal antibodies against desmin and vimentin. The technique combines the high sensitive and specific APAAP- and ABAP-methods. Depending on the quality of the antibodies used and the processing of the material prior to the immunocytochemical staining the amplification technique may be applied either as a single APAAP and ABAP- or as a double APAAP and ABAP-combination. Especially after the double amplification reaction a distinct increase of the staining intensity of the vimentin- (in Sertoli cells, myofibroblasts of the lamina propria, and fibroblasts of the interstitium) and desmin- (in myofibroblasts of the lamina propria and smooth muscle cells of the blood vessels) like immunoreactivity was observed. If different diazonium salts were used for the visualization of the alkaline phosphatase activity (e.g. Fast Red TR Salt, Fast Blue BB Salt) desmin- and vimentin-like immunoreactivity can be demonstrated in the same tissue section in a double sequential staining approach. For double staining, the alkaline phosphatase technique may be combined successfully with a technique or a combination that uses peroxidase as a marker.

  14. Alkaline static feed electrolyzer based oxygen generation system

    NASA Technical Reports Server (NTRS)

    Noble, L. D.; Kovach, A. J.; Fortunato, F. A.; Schubert, F. H.; Grigger, D. J.

    1988-01-01

    In preparation for the future deployment of the Space Station, an R and D program was established to demonstrate integrated operation of an alkaline Water Electrolysis System and a fuel cell as an energy storage device. The program's scope was revised when the Space Station Control Board changed the energy storage baseline for the Space Station. The new scope was aimed at the development of an alkaline Static Feed Electrolyzer for use in an Environmental Control/Life Support System as an oxygen generation system. As a result, the program was divided into two phases. The phase 1 effort was directed at the development of the Static Feed Electrolyzer for application in a Regenerative Fuel Cell System. During this phase, the program emphasized incorporation of the Regenerative Fuel Cell System design requirements into the Static Feed Electrolyzer electrochemical module design and the mechanical components design. The mechanical components included a Pressure Control Assembly, a Water Supply Assembly and a Thermal Control Assembly. These designs were completed through manufacturing drawing during Phase 1. The Phase 2 effort was directed at advancing the Alkaline Static Feed Electrolyzer database for an oxygen generation system. This development was aimed at extending the Static Feed Electrolyzer database in areas which may be encountered from initial fabrication through transportation, storage, launch and eventual Space Station startup. During this Phase, the Program emphasized three major areas: materials evaluation, electrochemical module scaling and performance repeatability and Static Feed Electrolyzer operational definition and characterization.

  15. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite.

    PubMed

    Vandamme, Dries; Pohl, Philip I; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick V; Hewson, John C; Muylaert, Koenraad

    2015-11-01

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5mM). Zeta potential measurements suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5mM, flocculation was also observed at a pH of 10. Zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Silicon Improves Maize Photosynthesis in Saline-Alkaline Soils

    PubMed Central

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n), stomatal conductance (g s), transpiration rate (E), and intercellular CO2 concentration (C i) of maize in the field with five levels (0, 45, 90, 150, and 225 kg·ha−1) of Si supplying. Experimental results showed that the values of P n, g s, and C i of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg·ha−1 Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize. PMID:25629083

  17. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    PubMed Central

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-01-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems. PMID:27786262

  18. Difference between Chitosan Hydrogels via Alkaline and Acidic Solvent Systems

    NASA Astrophysics Data System (ADS)

    Nie, Jingyi; Wang, Zhengke; Hu, Qiaoling

    2016-10-01

    Chitosan (CS) has generated considerable interest for its desirable properties and wide applications. Hydrogel has been proven to be a major and vital form in the applications of CS materials. Among various types of CS hydrogels, physical cross-linked CS hydrogels are popular, because they avoided the potential toxicity and sacrifice of intrinsic properties caused by cross-linking or reinforcements. Alkaline solvent system and acidic solvent system are two important solvent systems for the preparation of physical cross-linked CS hydrogels, and also lay the foundations of CS hydrogel-based materials in many aspects. As members of physical cross-linked CS hydrogels, gel material via alkaline solvent system showed significant differences from that via acidic solvent system, but the reasons behind are still unexplored. In the present work, we studied the difference between CS hydrogel via alkaline system and acidic system, in terms of gelation process, hydrogel structure and mechanical property. In-situ/pseudo in-situ studies were carried out, including fluorescent imaging of gelation process, which provided dynamic visualization. Finally, the reasons behind the differences were explained, accompanied by the discussion about design strategy based on gelation behavior of the two systems.

  19. Effects of alkaline treatment for fibroblastic adhesion on titanium

    PubMed Central

    Cuellar-Flores, Miryam; Acosta-Torres, Laura Susana; Martínez-Alvarez, Omar; Sánchez-Trocino, Benjamin; de la Fuente-Hernández, Javier; Garcia-Garduño, Rigoberto; Garcia-Contreras, Rene

    2016-01-01

    Background: The surface energy of titanium (Ti) implants is very important when determining hydrophilicity or hydrophobicity, which is vital in osseointegration. The purpose of this study was to determine how Ti plates with an alkaline treatment (NaOH) affect the adhesion and proliferation of human periodontal ligament fibroblasts (HPLF). Materials and Methods: In vitro experimental study was carried out. Type 1 commercially pure Ti plates were analyzed with atomic force microscopy to evaluate surface roughness. The plates were treated ultrasonically with NaOH at 5 M (pH 13.7) for 45 s. HPLF previously established from periodontal tissue was inoculated on the treated Ti plates. The adhered and proliferated viable cell numbers were determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method for 60 min and 24 h, respectively. The data were analyzed using Kruskal–Wallis tests and multiple comparisons of the Mann–Whitney U-test,P value was fixed at 0.05. Results: The mean roughness values equaled 0.04 μm with an almost flat surface and some grooves. The alkaline treatment of Ti plates caused significantly (P < 0.05) more pronounced HPLF adhesion and proliferation compared to untreated Ti plates. Conclusion: The treatment of Ti plates with NaOH enhances cell adhesion and the proliferation of HPLF cells. Clinically, the alkaline treatment of Ti-based implants could be an option to improve and accelerate osseointegration. PMID:28182066

  20. Endurance test and evaluation of alkaline water electrolysis cells

    NASA Technical Reports Server (NTRS)

    Burke, K. A.; Schubert, F. H.

    1981-01-01

    Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level.

  1. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    DOE PAGES

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; ...

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potential measurementsmore » suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less

  2. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures.

    PubMed

    Saeki, Katsuhisa; Ozaki, Katsuya; Kobayashi, Tohru; Ito, Susumu

    2007-06-01

    Subtilisin-like serine proteases from bacilli have been used in various industrial fields worldwide, particularly in the production of laundry and automatic dishwashing detergents. They belong to family A of the subtilase superfamily, which is composed of three clans, namely, true subtilisins, high-alkaline proteases, and intracellular proteases. We succeeded in the large-scale production of a high-alkaline protease (M-protease) from alkaliphilic Bacillus clausii KSM-K16, and the enzyme has been introduced into compact heavy-duty laundry detergents. We have also succeeded in the industrial-scale production of a new alkaline protease, KP-43, which was originally resistant to chemical oxidants and to surfactants, produced by alkaliphilic Bacillus sp. strain KSM-KP43 and have incorporated it into laundry detergents. KP-43 and related proteases form a new clan, oxidatively stable proteases, in subtilase family A. In this review, we describe the enzymatic properties, gene sequences, and crystal structures of M-protease, KP-43, and related enzymes.

  3. Advanced oxidation of acridine orange by aqueous alkaline iodine.

    PubMed

    Azmat, Rafia; Qamar, Noshab; Naz, Raheela; Khursheed, Anum

    2016-11-01

    The advanced oxidation process is certainly used for the dye waste water treatment. In this continuation a new advanced oxidation via aqueous alkaline iodine was developed for the oxidation of acridine orange (AO) {3, 6 -bis (dimethylamino) acridine zinc chloride double salt}. Oxidation Kinetics of AO by alkaline solution of iodine was investigated spectrophotometrically at λmax 491 nm. The reaction was monitored at various operational parameters like several concentrations of dye and iodine, pH, salt electrolyte and temperature. The initial steps of oxidation kinetics followed fractional order reaction with respect to the dye while depend upon the incremental amount of iodine to certain extent whereas maximum oxidation of AO was achieved at high pH. Decline in the reaction rate in the presence of salt electrolyte suggested the presence of oppositely charged species in the rate determining step. Kinetic data revealed that the de-colorization mechanism involves triodate (I3(-)) species, instead of hypoidate (OI(-)) and hypiodous acid (HOI), in alkaline medium during the photo-excitation of hydrolyzed AO. Alleviated concentration of alkali result in decreasing of rate of reaction, clearly indicate that the iodine species are active oxidizing species instead of OH radical. Activation parameters at elevated temperatures were determined which revealed that highly solvated state of dye complex existed into solution. Reaction mixture was subjected to UV/Visible and GC mass spectrum analysis that proves the secondary consecutive reaction was operative in rate determining step and finally dye complex end into smaller fragments.

  4. Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment.

    PubMed

    Calabrò, Paolo S; Greco, Rosa; Evangelou, Alexandros; Komilis, Dimitrios

    2015-11-01

    The objective of the work was to assess the effect of mild alkaline pretreatment on the anaerobic biodegradability of tomato processing waste (TPW). Experiments were carried out in duplicate BMP bottles using a pretreatment contact time of 4 and 24 h and a 1% and 5% NaOH dosage. The cumulative methane production during a 30 d period was recorded and modelled. The alkaline pretreatment did not significantly affect methane production in any of the treatments in comparison to the control. The average methane production for all runs was 320 NmL/gVS. Based on first order kinetic modelling, the alkaline pretreatment was found to slow down the rate of methanogenesis, mainly in the two reactors with the highest NaOH dosage. The biodegradability of the substrates ranged from 0.75 to 0.82 and from 0.66 to 0.72 based on two different approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. An alkaline phosphatase reporter for use in Clostridium difficile.

    PubMed

    Edwards, Adrianne N; Pascual, Ricardo A; Childress, Kevin O; Nawrocki, Kathryn L; Woods, Emily C; McBride, Shonna M

    2015-04-01

    Clostridium difficile is an anaerobic, Gram-positive pathogen that causes severe gastrointestinal disease in humans and other mammals. C. difficile is notoriously difficult to work with and, until recently, few tools were available for genetic manipulation and molecular analyses. Despite the recent advances in the field, there is no simple or cost-effective technique for measuring gene transcription in C. difficile other than direct transcriptional analyses (e.g., quantitative real-time PCR and RNA-seq), which are time-consuming, expensive and difficult to scale-up. We describe the development of an in vivo reporter assay that can provide qualitative and quantitative measurements of C. difficile gene expression. Using the Enterococcus faecalis alkaline phosphatase gene, phoZ, we measured expression of C. difficile genes using a colorimetric alkaline phosphatase assay. We show that inducible alkaline phosphatase activity correlates directly with native gene expression. The ability to analyze gene expression using a standard reporter is an important and critically needed tool to study gene regulation and design genetic screens for C. difficile and other anaerobic clostridia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Fractionated alkaline rare-metal granites: two examples

    NASA Astrophysics Data System (ADS)

    Liverton, Timothy; Botelho, Nilson F.

    2001-04-01

    Two suites of tin-related alkaline granites are compared: the Seagull-Thirtymile granites of the Yukon, which were emplaced in a cordilleran setting and the Paranã suite of Goiás, which were emplaced in an incipient rift environment. The geochemistry of these two suites is similar and both have evolved small volumes of Li-Rb rich alkali feldspar leucogranites. Both fall partly, but not wholly, within the compositional fields defined for 'A-types' on various tectonic discrimination diagrams. Halogen contents and major element chemistry of Fe-Li micas from the Seagull-Thirtymile suite indicate that these plutons were reduced magmas that evolved magmatic/hydrothermal systems with increasing Cl content in a shallow, at least periodically 'open' system. The most important Sn-granites of the Paranã suite of Goiás were also emplaced at shallow depth and developed extensive greisen in active shear zones, which contrasts with a more passive environment for the Seagull granites. Both of these suites may be classified as low-P 2O 5 alkaline types and they display particularly Fe 2+-rich biotite micas that separate the alkaline plutons from S-type tin granites.

  7. Physiological aspects of alkaline phosphatase in selected cyanobacteria.

    PubMed

    Doonan, B B; Jensen, T E

    1980-01-01

    The alkaline phosphatase of Plectonema boryanum shows a considerable increase in activity following placement of the cells in a phosphate free medium. Five days of phosphate starvation result in a 14-fold increase of alkaline phosphatase activity. Growth in the presence of inhibitors of transcription and translation indicate that the synthesis of the enzyme is de novo. Orthophosphate causes an immediate inhibition of enzyme activity. Enzyme was extracted from P. boryanum with lysozyme or polymyxin B treatment in order to make comparative studies of cell bound and cell free enzyme. Of several enzyme specific inhibitors tested, mercuric chloride was the most effective. Temperature studies showed that the cell bound enzyme was most active at 40 degrees C while the cell free enzyme was most active at 70 degrees C. The pH optimum was 9 for the cell free enzyme, and 8.8 for the cell bound. The enzyme was tested to determine if it could hydrolyse a number of different organic compounds. It hydrolysed p-nitrophenol phosphate 100%, fructose-6-phosphate 45%, beta-glycerol phosphate 25% and other compounds to a lesser degree. Of seventeen other Cyanobacteria tested for alkaline phosphatase, all were positive, and of these eleven were inducible for the enzyme. Ten of the isolates released some of the enzyme into the culture medium. Michaelis constants for the enzyme were also determined.

  8. Microscopic examination of volcanic rocks subjected to alkaline leaching

    NASA Astrophysics Data System (ADS)

    Seidlova, Z.; Prikryl, R.; Sachlova, S.

    2012-04-01

    Volcanic rocks supply one third of crushed stone in the Czech Republic. Some of these rocks significantly contribute to concrete damage by alkali silica reaction (ASR) as has been recognised by previous studies in several concrete constructions (dams, highways, bridges). In recent study, volcanic rocks (basalts, spilites, melaphyres, phonolites, rhyolites, diabases) were subjected to several test procedures aiming to evaluate their ASR potential. The experimental study employed accelerated mortar bar test (following the standard ASTM C1260), chemical test (following the standard ASTM C289), and microscopic techniques (polarising microscopy, scanning electron microscopy combined with energy dispersive analysis). The interaction of cement paste and aggregate under high alkaline solution and increasing temperature conditions takes place during the accelerated mortar bar test. Microscopic techniques applied on mortar bar specimens enabled identification of ASR products (alkali-silica gels). Chemical test quantified ASR potential based on the amount of Si4+ leached into the solution within 24 hours testing period and contemporaneous reduction of alkalinity. Volcanic particles leached in alkaline solution were subjected to microscopic analysis with the aim to find minerals (phases) affecting their ASR potential. ASR of volcanic rocks was found highly variable connected to the mineral composition. The highest degree of ASR was found in connection with melaphyres, rhyolites and one sample of spilite. The main factor influencing ASR of investigated aggregates is regarded in the presence of SiO2-rich phases (e.g. SiO2-rich glass).

  9. Silicon improves maize photosynthesis in saline-alkaline soils.

    PubMed

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n ), stomatal conductance (g s ), transpiration rate (E), and intercellular CO2 concentration (C i ) of maize in the field with five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of Si supplying. Experimental results showed that the values of P n, g s, and C i of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg · ha(-1) Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize.

  10. Mechanism of alcohol-enhanced lucigenin chemiluminescence in alkaline solution.

    PubMed

    Chi, Quan; Chen, Wanying; He, Zhike

    2015-11-01

    The chemiluminescence (CL) of lucigenin (Luc(2+)) can be enhanced by different alcohols in alkaline solution. The effect of different fatty alcohols on the CL of lucigenin was related to the carbon chain length and the number of hydroxyl groups. Glycerol provides the greatest enhancement. UV/Vis absorption spectra and fluorescence spectra showed that N-methylacridone (NMA) was produced in the CL reaction in the presence of different alcohols. The peak of the CL spectrum was located at 470 nm in all cases, indicating that the luminophore was always the excited-state NMA. The quenching of lucigenin CL by superoxide dismutase (SOD) and the electron spin resonance (ESR) results with the spin trap of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrated that superoxide anions (O2 (•-)) were generated from dissolved oxygen in the CL reaction and that glycerol and dihydroxyacetone (DHA) can promote O2 (•-) production by the reduction of dissolved oxygen in alkaline solution. It was assumed that the enhancement provided by different alcohols was related to the solvent effect and reducing capacity. Glycerol and DHA can also reduce Luc(2+) into lucigenin cation radicals (Luc(•+) ), which react with O2 (•-) to produce CL, and glycerol can slowly transform into DHA, which is oxidized quickly in alkaline solution.

  11. Endurance test and evaluation of alkaline water electrolysis cells

    NASA Astrophysics Data System (ADS)

    Burke, K. A.; Schubert, F. H.

    1981-11-01

    Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level.

  12. Melt evolution beneath a rifted craton edge: 40Ar/39Ar geochronology and Sr-Nd-Hf-Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic Shield

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Smart, Katie A.; Stracke, Andreas; Romer, Rolf L.; Prelević, Dejan; van den Bogaard, Paul

    2016-01-01

    A new high-precision 40Ar/39Ar anorthoclase feldspar age of 176.7 ± 0.5 Ma (2-sigma) reveals that small-volume alkaline basaltic magmatism occurred at the rifted SW margin of the Baltic Shield in Scania (southern Sweden), at a time of global plate reorganization associated with the inception of Pangea supercontinent break-up. Our combined elemental and Sr-Nd-Hf-Pb isotope dataset for representative basanite and nephelinite samples (>8 wt.% MgO) from 16 subvolcanic necks of the 30 by 40 km large Jurassic volcanic field suggests magma derivation from a moderately depleted mantle source (87Sr/86Sri = 0.7034-0.7048; εNdi = +4.4 to +5.2; εHfi = +4.7 to +8.1; 206Pb/204Pbi = 18.8-19.5). The mafic alkaline melts segregated from mixed peridotite-pyroxenite mantle with a potential temperature of ∼1400 °C at 2.7-4.2 GPa (∼90-120 km depths), which places ultimate melt generation within the convecting upper mantle, provided that the lithosphere-asthenosphere boundary beneath the southern Baltic Shield margin was at ⩽100 km depth during Mesozoic-Cenozoic rifting. Isotopic shifts and incompatible element enrichment relative to Depleted Mantle reflect involvement of at least 20% recycled oceanic lithosphere component (i.e., pyroxenite) with some minor continent-derived sediment during partial melting of well-stirred convecting upper mantle peridotite. Although pargasitic amphibole-rich metasomatized lithospheric mantle is excluded as the main source of the Jurassic magmas from Scania, hydrous ultramafic veins (i.e., hornblendite) may have caused subtle modifications to the compositions of passing sublithospheric melts. For example, modeling suggests that the more radiogenic Hf (εHfi = +6.3 to +8.1) and Pb (206Pb/204Pbi = 18.9-19.5) isotopic compositions of the more sodic and H2O-rich nephelinites, compared with relatively homogenous basanites (εHfi = +4.7 to +6.1; 206Pb/204Pbi = 18.8-18.9), originate from minor interactions between rising asthenospheric melts and

  13. DNA polymorphism of alkaline phosphatase isozyme genes: Linkage disequilibria between placental and germ-cell alkaline phosphotase alleles

    SciTech Connect

    Beckman, G.; Beckman, L.; Sikstroem, C. ); Millan, J.L. )

    1992-11-01

    The use of human placental alkaline phosphatase (PLAP) cDNA as a probe allows the detection and identification of restriction DNA fragments derived from three homologous genes, i.e., intestinal alkaline phosphatase (AP), germ-cell AP (GCAP), and PLAP. In previous RFLP studies the authors have reported linkage disequilibria between an RsaI and two PstI (a and b) polymorphic restriction sites and electrophoretic types of PLAP. In this report they present evidence that, in spite of the strong correlation with PLAP types, PstI(b) is an RFLP of GCAP. The data indicate close linkage between the PLAP and GCAP loci. 18 refs., 2 figs., 3 tabs.

  14. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    SciTech Connect

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; Fountain, Mackenzie; Ralph, John; Hodge, David B.; Hegg, Eric L.

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10 h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin

  15. Discrimination of alkalinity in granitoid Rocks: A potential TIMS application

    NASA Technical Reports Server (NTRS)

    Ruff, Steven W.

    1995-01-01

    In mineral exploration, the ability to distinguish and map petrochemical variations of magmatic rocks can be a useful reconnaissance tool. Alkalinity is one such petrochemical parameter and is used in the characterization of granitoid rocks. In quartz normative plutonic rocks, alkalinity is related to the composition and abundance of feldspars. Together with quartz abundance, knowledge of feldspar modes allows the classification of these igneous rocks according to the Streckeisen diagram. Alternative classification schemes rely on whole rock geochemistry instead of mineral identifications. The relative ease of obtaining whole rock analyses means that geochemical classifications tend to be favored in exploration geology. But the technique of thermal infrared spectroscopy of rocks yields information on mineralogy and is one that can be applied remotely. The goal of the current work then is to establish whether data from TIMS can be used to distinguish the mineralogical variations that relate to alkalinity. An ideal opportunity to test this thesis arises from the work presented in a paper by Dewitt (1989). This paper contains the results of mapping and analysis of Proterozoic plutonic rocks in north-central Arizona. The map resulting from this work delineates plutons according to alkalinity in an effort to establish a trend or polarity in the regional magmatism. Also contained within this paper are brief descriptions of the mineralogy of half of the region's plutons. This combination of mineralogical and geochemical information was the rationale behind choosing this area as a site for TIMS over flights. A portion of the region centered on the northern Bradshaw Mountains was selected because it contains plutons of all three alkalinity classifications (alkali-calcic, calc-alkalic, and calic) present on DeWitt's map within a relatively small area. The site was flown in August of 1994 and the data received a few days before the writing of this manuscript. Most of this

  16. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; ...

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10more » h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed

  17. Alkaline buffers release EDRF from bovine cultured aortic endothelial cells.

    PubMed Central

    Mitchell, J. A.; de Nucci, G.; Warner, T. D.; Vane, J. R.

    1991-01-01

    1. Release of endothelium-derived relaxing factor (EDRF) and prostacyclin (PGI2) from bovine cultured aortic endothelial cells (EC) was measured by bioassay and radioimmunoassay, respectively. 2. Bradykinin (BK, 3-30 pmol), adenosine diphosphate (ADP, 2-6 nmol) or the sodium ionophore monensin (40-100 nmol) injected through a column of EC released EDRF. L-Arginine free base (FB; 10-20 mumol) or D-arginine FB (10-20 mumol) injected through the column of EC released similar amounts of EDRF and also caused an increase in pH of the Krebs solution perfusing the EC from 7.5-8.0 to 8.6-9.5. Sodium carbonate (Na2CO3) an alkaline buffer which caused the same changes in the pH of the Krebs solution also induced the same release of EDRF. The hydrochloride salts of L- or D-arginine did not cause either release of EDRF when injected through the column of EC or increases in the pH of the Krebs solution. 3. Inhibitors of either diacylglycerol lipase (RHC 80267) or kinase (R59022) inhibited the release of EDRF induced by BK or ADP but potentiated the release induced by L-arginine FB, monensin (40-100 nmol) or alkaline buffer (Na2CO3). R59022 and RHC 80267 infused through the EC increased the basal release of EDRF. 4. When calcium chloride was omitted from the Krebs solution the release of EDRF induced by alkaline buffer (Na2CO3; pH 8.6-9.5) or L-arginine FB (10-20 mumol) was selectively inhibited when compared to that induced by BK (3-30 pmol) or ADP (2-6 nmol). This inhibition was reversed when calcium (2.5 mM) was restored. 5. NG-monomethyl-L-arginine (NMMA; 30 microM) inhibited release of EDRF induced by BK (10-30 pmol) or alkaline buffers (Na2CO3 or D-arginine FB; pH 8.6-9.5). This inhibition was partially reversed by L- but not D-arginine FB or HCl (30-100 microM). 6. Prostacyclin was released when BK (10 pmol), ADP (2 nmol) or arachidonic acid (30 nmol) were injected through the column of EC. However, monensin (40 nmol) or alkaline buffers (pH 8.6-9.5) did not release

  18. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction.

    PubMed

    Zhang, Weimin; Zeng, Guanglin; Pan, Yonggui; Chen, Wenxue; Huang, Wuyang; Chen, Haiming; Li, Yuansong

    2017-09-15

    Soluble dietary fiber (SDF) from the peel of papaya (Carica papaya Linn.) was recovered through alkaline extraction (alkaline-extracted SDF, a-SDF) and ultrasound-assisted alkaline extraction (ultrasound-treated SDF, u-SDF) processes, and the composition, structure and properties of the extracts were compared. The optimal parameters for obtaining the maximum extraction yield of u-SDF were evaluated through response surface methodology. Under optimal conditions, the maximum yield of u-SDF was 36.99%, and u-SDF had a lower total amino acid content but a higher essential amino acid (16.18%) than a-SDF. A monosaccharide analysis indicated that the primary sugars in a-SDF and u-SDF were neutral sugars and pectic saccharides, respectively. An X-ray diffraction analysis confirmed that u-SDF was less crystalline than a-SDF. Moreover, a thermal analysis indicated that u-SDF exhibited higher thermal stability. In addition, u-SDF exhibited higher water-holding, oil-holding and swelling capacities than a-SDF. These results indicate that papaya peel is a potential inexpensive source of natural dietary fiber and a potential functional food ingredient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The treatment of alkaline burns of the skin by neutralization.

    PubMed

    Andrews, Kris; Mowlavi, Arian; Milner, Stephen M

    2003-05-01

    Literature reports dating as far back as 1927 have lured clinicians into the belief that alkaline skin burns are best treated by water dilution and that neutralization attempts should be avoided. Although this belief has never been substantiated, neutralization of an alkaline burn of the skin with acid was thought to increase tissue damage secondary to the exothermic nature of acid-base reactions. The authors proposed that topical treatment of alkaline burns with a weak acid such as 5% acetic acid (i.e., household vinegar) would result in rapid tissue neutralization and reduction of injury in comparison to water irrigation alone. In a rat skin burn model, animals were exposed to an alkaline injury when filter paper (2 cm in diameter) saturated with 2N sodium hydroxide was placed over the volar aspect of the animal for a period of 1 minute. Treatment was initiated 1 minute after injury and included either neutralization with a 5% acetic acid solution (n = 8) or irrigation (n = 8) with water. Skin temperature and pH were monitored using subdermal needle probes until the pH of the skin returned to physiologic values. Punch-biopsy specimens were obtained from the wound edges 24 hours after injury to assess burn depth and leukocyte infiltration, and biopsies were repeated 10 days later to assess wound healing. The authors proposed that neutralization of an alkaline substance with household vinegar (i.e., 5% acetic acid solution) would result in rapid neutralization and thus reduce extent of tissue injury. Animals treated with acetic acid demonstrated a more rapid return to physiologic pH (14.69 +/- 4.06 minutes versus 31.62 +/- 2.83 minutes; p < 0.001), increased depth of dermal retention (0.412 +/- 0.136 mm versus 0.214 +/- 0.044 mm; p = 0.015), decreased leukocyte infiltrate (31.0 +/- 5.1 cells/high-power field versus 51.8 +/- 6.8 cells/high-power field; p < 0.001), and improved epithelial regeneration (4.0 +/- 0.6 cell layers versus 1.7 +/- 0.5 cell layers; p < 0

  20. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    PubMed

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B

    1993-02-01

    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  1. Watershed versus in-lake alkalinity generation: A comparison of rates using input-output studies

    SciTech Connect

    Shaffer, P.W.; Hooper, R.P.; Eshleman, K.N.; Church, M.R.

    1988-01-01

    As a means of assessing the relative contributions of watershed (terrestrial) and in-lake processes to overall lake/watershed alkalinity budgets, alkalinity production rates for watersheds and low-alkalinity lakes were compiled from the literature and compared. Analysis of data indicates that for low-alkalinity systems, areal alkalinity production rates for watersheds and lakes are approximately equal. The relationship suggests that watershed area to lake area ratio can be used as a convenient estimator of the relative importance of watershed and in-lake sources of alkalinity for drainage lake systems. For precipitation-dominated seepage lakes and other systems where hydrology limits soil-water contact, hydrologic flow paths and residence times can be of overriding importance in determining alkalinity sources. For regions dominated by drainage lakes with high watershed area to lake area ratios (such as the Northeastern U.S.), however, alkalinity budgets are dominated by watershed processes. Omission of in-lake alkalinity consideration for most lakes in such regions would have little impact on computed alkalinity budgets or on predicted response to changes in acidic-deposition loadings.

  2. Transcriptome profiling reveals the genetic basis of alkalinity tolerance in wheat.

    PubMed

    Meng, Chen; Quan, Tai-Yong; Li, Zhong-Yi; Cui, Kang-Li; Yan, Li; Liang, Yu; Dai, Jiu-Lan; Xia, Guang-Min; Liu, Shu-Wei

    2017-01-05

    Soil alkalinity shows significant constraints to crop productivity; however, much less attention has been paid to analyze the effect of soil alkalinity on plant growth and development. Shanrong No. 4 (SR4) is an alkalinity tolerant bread wheat cultivar selected from an asymmetric somatic hybridization between the bread wheat cultivar Jinan 177 (JN177) and tall wheatgrass (Thinopyrum ponticum), which is a suitable material for studying alkalinity tolerant associate genes. The growth of SR4 plant seedlings was less inhibited than that of JN177 when exposed to alkalinity stress conditions. The root cytosolic Na(+)/K(+) ratio in alkalinity stressed SR4 was lower than in JN177, while alkalinity stressed SR4 contained higher level of nutrient elements than in JN177. SR4 plant seedlings accumulated less malondialdehyde (MDA) and reactive oxygen species (ROS), it also showed higher activity of ROS scavenging enzymes than JN177 under alkalinity stress. The root intracellular pH decreased in both alkalinity stressed JN177 and SR4, however, it was much lower in SR4 than in JN177 under alkalinity stress. The transcriptomes of SR4 and JN177 seedlings exposed to alkalinity stress were analyzed by digital gene expression tag profiling method. Alkalinity stress conditions up- and down-regulated a large number of genes in the seedling roots that play the functions in the categories of transcription regulation, signal transduction and protein modification. SR4 expresses a superior tolerance to alkaline stress conditions which is due to its strong absorbing ability for nutrient ions, a strong regulating ability for intracellular and rhizosphere pH and a more active ROS scavenging ability.

  3. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.

  4. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform

  5. Electrochemical behavior of immobilized hemoglobin in alkaline solution

    NASA Astrophysics Data System (ADS)

    Jović-Jovičić, Nataša; Mojović, Zorica; Mojović, Miloš; Banković, Predrag; Ajduković, Marija; Milutinović-Nikolić, Aleksandra; Jovanović, Dušan

    2017-04-01

    Glassy carbon electrode was modified with different synthesized hybrid clay-based materials and tested in alkaline solution with and without H2O2. The hybrid materials were obtained by immobilizing hemoglobin (Hb) on acid activated (AA) clay, or on AA clay modified with different sodium dodecyl sulfate (SDS) loadings. The obtained materials were characterized using DR UV-vis and ESR spectroscopy, elemental analysis, and SEM. The characterization confirmed higher degree of hemoglobin incorporation in the presence of SDS. The presence of SDS on the surface of clay particles resulted in the partial oxidation/denaturation of hemoglobin and formation of hemichrome. Cyclic voltammetry was used for the investigation of the electrochemical behavior of immobilized hemoglobin in alkaline solution. Two cathodic peaks at -0.45 V and -0.70 V were recorded and ascribed to the reduction of heme Fe(III)/Fe(II), and formation of HbFe(I) - highly reduced form of hemoglobin - respectively. The latter peak reflects hemoglobin denaturation. The presence of H2O2 in the alkaline solution increased current intensities corresponding to both peaks (-0.45 V and -0.7 V). Linear response of peak current intensity vs. H2O2 concentration was monitored for all investigated samples within different H2O2 concentration ranges. The AA-SDS1.0-Hb electrode exhibited the highest current response with linear regression equation in the following form: I(μA) = 7.99 + 1.056 × [H2O2] (mM) (R = 0.996). The limit of detection of 28 μM was estimated using the 3 sigma method. Different modified electrodes exhibited different degrees of denaturation resistance. The obtained values of Michaelis-Menten constant indicated that prolonged cycling in the presence of SDS increases protein denaturation.

  6. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    PubMed Central

    2013-01-01

    Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor) and alkali loading based on biomass solids (g alkali/g dry biomass) have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass) governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline pretreatment technology

  7. Golgi Alkalinization by the Papillomavirus E5 Oncoprotein

    PubMed Central

    Schapiro, Florencia; Sparkowski, Jason; Adduci, Alex; Suprynowicz, Frank; Schlegel, Richard; Grinstein, Sergio

    2000-01-01

    The E5 oncoprotein of bovine papillomavirus type I is a small, hydrophobic polypeptide localized predominantly in the Golgi complex. E5-mediated transformation is often associated with activation of the PDGF receptor (PDGF-R). However, some E5 mutants fail to induce PDGF-R phosphorylation yet retain transforming activity, suggesting an additional mechanism of action. Since E5 also interacts with the 16-kD pore-forming subunit of the vacuolar H+-ATPase (V-ATPase), the oncoprotein could conceivably interfere with the pH homeostasis of the Golgi complex. A pH-sensitive, fluorescent bacterial toxin was used to label this organelle and Golgi pH (pHG) was measured by ratio imaging. Whereas pHG of untreated cells was acidic (6.5), no acidification was detected in E5-transfected cells (pH ∼7.0). The Golgi buffering power and the rate of H+ leakage were found to be comparable in control and transfected cells. Instead, the E5-induced pH differential was attributed to impairment of V-ATPase activity, even though the amount of ATPase present in the Golgi complex was unaltered. Mutations that abolished binding of E5 to the 16-kD subunit or that targeted the oncoprotein to the endoplasmic reticulum abrogated Golgi alkalinization and cellular transformation. Moreover, transformation-competent E5 mutants that were defective for PDGF-R activation alkalinized the Golgi lumen. Neither transformation by sis nor src, two oncoproteins in the PDGF-R signaling pathway, affected pHG. We conclude that alkalinization of the Golgi complex represents a new biological activity of the E5 oncoprotein that correlates with cellular transformation. PMID:10648563

  8. Evaluation of high solids alkaline pretreatment of rice straw.

    PubMed

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M; Jenkins, Bryan M; VanderGheynst, Jean S

    2010-11-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H(2)O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H(2)O/g straw by hydrated lime (Ca(OH)(2)). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held constant at 95 degrees C for lime pretreatment and 55 degrees C for NaOH pretreatment. The range of delignification was 13.1% to 27.0% for lime pretreatments and was 8.6% to 23.1% for NaOH pretreatments. Both alkaline loading and reaction time had significant positive effects (p < 0.001) on delignification under the design conditions, but only alkaline loading had a significant positive effect on enzymatic hydrolysis. Treatment at higher temperature also improved delignification; delignification with water alone ranged from 9.9% to 14.5% for pretreatment at 95 degrees C, but there was little effect observed at 55 degrees C. Post-pretreatment washing of biomass was not necessary for subsequent enzymatic hydrolysis. Maximum glucose yields were 176.3 mg/g dried biomass (48.5% conversion efficiency of total glucose) in lime-pretreated and unwashed biomass and were 142.3 mg/g dried biomass (39.2% conversion efficiency of total glucose) in NaOH-pretreated and unwashed biomass.

  9. Osseous plate alkaline phosphatase is anchored by GPI.

    PubMed

    Pizauro, J M; Ciancaglini, P; Leone, F A

    1994-02-01

    Alkaline phosphatase activity was released up to 100% from the membrane by using 0.1 U of phosphatidylinositol-specific phospholipase C from B. thuringiensis. The M(r) of solubilized enzyme was 145,000 by Sephacryl S-300 gel filtration and 66,000 by SDS-PAGE, suggesting a dimeric structure. Solubilization of the membrane-bound enzyme with phospholipase C did not destroy its ability to hydrolyze p-nitrophenyl phosphate (PNPP) (264.3 mumol min-1 mg-1),ATP (42.0 mumol min-1 mg-1) and pyrophosphate (28.4 mumol min-1 mg-1). The hydrolysis of ATP and PNPP by solubilized enzyme exhibited "Michaelian" kinetics with K0.5 = 70 and 979 microM, respectively. For pyrophosphate, K0.5 was 128 microM and site-site interactions were observed (n = 1.4). Magnesium ions were stimulatory (Kd = 1.5 mM) but zinc ions were powerful non-competitive inhibitors (Kd = 6.2 microM) of solubilized enzyme. Treatment of solubilized alkaline phosphatase with Chellex 100 reduced the original PNPPase activity to 5%. Cobalt (K0.5 = 10.1 microM), magnesium (K0.5 = 29.5 microM) and manganese ions (K0.5 = 5 microM) restored the activity of the apoenzyme with positive cooperativity, suggesting that phosphatidylinositol-specific phospholipase C-solubilized alkaline phosphatase is a metalloenzyme. The stimulation of the apoenzyme by calcium ions (K0.5 = 653 microM) was lower than that observed for the other ions (26%) and exhibited site-site interactions (n = 0.7). Zinc ions had no effect on the apoenzyme of the solubilized enzyme.

  10. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform

  11. Evaluation of High Solids Alkaline Pretreatment of Rice Straw

    PubMed Central

    Cheng, Yu-Shen; Zheng, Yi; Yu, Chao Wei; Dooley, Todd M.; Jenkins, Bryan M.

    2010-01-01

    Fresh-harvested, air-dried rice straw was pretreated at a water content of 5 g H2O/g straw using sodium hydroxide (NaOH) and compared to pretreatment at 10 g H2O/g straw by hydrated lime (Ca(OH)2). Full factorial experiments including parallel wash-only treatments were completed with both sources of alkali. The experiments were designed to measure the effects of alkaline loading and pretreatment time on delignification and sugar yield upon enzymatic hydrolysis. Reaction temperature was held constant at 95°C for lime pretreatment and 55°C for NaOH pretreatment. The range of delignification was 13.1% to 27.0% for lime pretreatments and was 8.6% to 23.1% for NaOH pretreatments. Both alkaline loading and reaction time had significant positive effects (p < 0.001) on delignification under the design conditions, but only alkaline loading had a significant positive effect on enzymatic hydrolysis. Treatment at higher temperature also improved delignification; delignification with water alone ranged from 9.9% to 14.5% for pretreatment at 95°C, but there was little effect observed at 55°C. Post-pretreatment washing of biomass was not necessary for subsequent enzymatic hydrolysis. Maximum glucose yields were 176.3 mg/g dried biomass (48.5% conversion efficiency of total glucose) in lime-pretreated and unwashed biomass and were 142.3 mg/g dried biomass (39.2% conversion efficiency of total glucose) in NaOH-pretreated and unwashed biomass. PMID:20440580

  12. Alkaline unwinding flow cytometry assay to measure nucleotide excision repair.

    PubMed

    Thyagarajan, Bharat; Anderson, Kristin E; Lessard, Christopher J; Veltri, Gregory; Jacobs, David R; Folsom, Aaron R; Gross, Myron D

    2007-03-01

    Nucleotide excision repair (NER), one of the DNA repair pathways, is the primary mechanism for repair of bulky adducts caused by physical and chemical agents, such as UV radiation, cisplatin and 4-nitroquinolones. Variations in DNA repair may be a significant risk factor for several cancers, but its measurement in epidemiological studies has been hindered by the high variability, complexity and laborious nature of currently available assays. An alkaline unwinding flow cytometric assay using UV-C radiation as a DNA-damaging agent was adapted for measurement of NER-mediated breaks. This assay was based on the principle of alkaline unwinding of strand breaks in double-stranded DNA to yield single-stranded DNA with the number of strand breaks being proportional to the amount of DNA damage. This assay measured 50,000 events per sample with several samples being analyzed per specimen, thereby providing very reliable measurements, which can be performed on a large-scale basis. Using area under the curve (AUC) to quantitate amount of NER-mediated breaks, this assay was able to detect increased NER-mediated breaks with increasing doses of UV-C radiation. The assay detected NER-mediated breaks in lymphocytes from normal donors and not in xeroderma pigmentosum lymphoblastoid cell lines indicating specificity for the detection of NER-mediated breaks. The assay measured NER-mediated breaks within G(1), S and G(2)/M phases of the cell cycle; thereby decreasing variability in measurements of NER-mediated breaks due to differences in cell cycle phases. Intraindividual variability for AUC after 120 min of repair was 15% with interindividual variability being approximately 43% for cells in the G(1) phase, indicating substantial between-subject variation and relatively low within-subject variation. Thus, the alkaline unwinding flow cytometry-based assay provides a high-throughput method for the specific measurement of NER-mediated breaks in lymphocytes.

  13. phoD Alkaline Phosphatase Gene Diversity in Soil

    PubMed Central

    Kertesz, Michael A.; Bünemann, Else K.

    2015-01-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples. PMID:26253682

  14. Predicting Carbonate Species Ionic Conductivity in Alkaline Anion Exchange Membranes

    DTIC Science & Technology

    2012-06-01

    anion exchange membranes. Andrew M. Kiss, Timothy D . Myles, Kyle N. Grew, Aldo A. Peracchio, George J. Nelson, and Wilson K. S. Chiu University of...Alkaline Anion Exchange Membranes Andrew M. Kiss1, Timothy D . Myles1, Kyle N. Grew2, Aldo A. Peracchio1, George J. Nelson1, and Wilson K. S. Chiu1* 1...Vol. 301, 93-106, 2007. 16. Satterfleld,M.B., Benziger,J.B., J. Phys. Chem. B, Vol. 112,12, 3693 -3704, 2008. 17. Motupally,S., Becker,A.J

  15. Performance of alkaline battery cells used in emergency locator transmitters

    SciTech Connect

    Haynes, G.A.; Sokol, S.; Motley, W.R. III; McClelland, E.L.

    1984-03-01

    The characteristics of battery power supplies for emergency locator transmitters (ELT's) were investigated by testing alkaline zinc/manganese dioxide cells of the type typically used in ELT's. Cells from four manufacturers were tested. The cells were subjected to simulated environmental and load conditions representative of those required for survival and operation. The objective of the study was to evaluate battery cell characteristics that may contribute to ELT malfunctions and limitations. Experimental results from the battery cell study are discussed, and an evaluation of ELT performance while operating under a representative worst-case environmental condition is presented.

  16. Probable levetiracetam-related serum alkaline phosphatase elevation

    PubMed Central

    2012-01-01

    Background Levetiracetam (LEV) is an antiepileptic drug with a favorable tolerability and safety profile with little or no effect on liver function. Case presentation Here, we reported an epileptic pediatric patient who developed a significant elevation in serum alkaline phosphatase level (ALP) during LEV monotherapy. Moreover, the serum ALP level was surprisingly decreased to normal after LEV discontinuation. The Naranjo Adverse Drug Reaction Probability Scale score was 6, indicating firstly LEV was a probable cause for the increased serum ALP. Conclusions Cautious usage and concerns of the LEV-associated potential ALP elevation should be considered when levetiracetam is prescribed to epilepsy patients, especially pediatric patients. PMID:22994584

  17. Performance of alkaline battery cells used in emergency locator transmitters

    NASA Technical Reports Server (NTRS)

    Haynes, G. A.; Sokol, S.; Motley, W. R., III; Mcclelland, E. L.

    1984-01-01

    The characteristics of battery power supplies for emergency locator transmitters (ELT's) were investigated by testing alkaline zinc/manganese dioxide cells of the type typically used in ELT's. Cells from four manufacturers were tested. The cells were subjected to simulated environmental and load conditions representative of those required for survival and operation. Battery cell characteristics that may contribute to ELT malfunctions and limitations were evaluated. Experimental results from the battery cell study are discussed, and an evaluation of ELT performance while operating under a representative worst-case environmental condition is presented.

  18. A new type of auxiliary electrode for alkaline zinc cells

    NASA Astrophysics Data System (ADS)

    Skowronski, J. M.; Reksc, Wl.; Jurewicz, K.

    1988-07-01

    Auxiliary electrodes having a low hydrogen overpotential were prepared by electrodepositing active nickel onto chemically-metallized polypropylene fiber. They effectively overcame the problem of zinc anode shape change in alkaline electrolyte by dissolving residual zinc, which remained on the anode plates due to passivation and exhaustion of cathode capacity. Residual discharge with such an auxiliary electrode restores the balance of charge efficiencies. Polypropylene-nickel auxiliary electrodes with a very long lifespan can be made in various shapes and sizes. Their polarization curves and the effect they have on the zinc anode discharge process are both illustrated.

  19. Recent developments on IME-alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Vandenborre, H.; Baetsle, L. H.; Hebel, W.; Leysen, R.; Nackaerts, H.; Spaepen, G.

    Demonstration on a laboratory scale is reported for the substitution of the conventional asbestos diaphragm in alkaline water electrolysis processes by thin sheets of polyantimonic acid and polysulfone. The membranes investigated withstand concentrated KOH solutions at up to 120 C, and have the necessary ion-conducting and gas-separating properties. It was also found that, by increasing the amount of polyantimonic acid in the membrane, electrolyte concentration can be lowered from 30 percent to 5 percent (by weight) without major effect on the cell voltage.

  20. A description of alkaline phosphatases from marine organisms

    NASA Astrophysics Data System (ADS)

    Tian, Jiyuan; Jia, Hongbing; Yu, Juan

    2016-07-01

    Alkaline phosphatases (APs) are non-specific phosphohydrolases, and they are widely used in clinical diagnostics and biological studies. APs are widespread in nature and exhibit different structural formulations. Based on the diversity of biogenetic sources, APs exhibit temperature-propensity traits, and they are classified as psychrophilic, mesophilic, and thermophilic. In this article, the characteristics of psychrophilic APs from marine organisms were described, accompanied by a simple description of APs from other organisms. This review will facilitate better utilization of marine APs in the biotechnology field.

  1. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x

  2. Spectrophotometric studies on alkaline isomerization of spinach ferredoxin.

    PubMed

    Hasumi, H; Nagata, E; Nakamura, S

    1985-10-01

    The gross protein structure, the microenvironment of the iron-sulfur cluster, and the effect of neutral salts on the molecular structure of spinach ferredoxin were studied by CD and absorption spectroscopy in the alkaline pH range. In the pH range of 7-11, the existence of reversible isomerization which consisted of at least two proton dissociation processes was indicated by the statical CD and absorption spectra. The CD changes in the visible and far-UV regions were dramatic upon elevation of the pH from neutral to alkaline, indicating a significant alteration of the microenvironment of the cluster and a decrease in the ordered secondary structures. The absorption change in the visible region due to pH elevation was small but clearly observed with a high signal-to-noise ratio. The numbers of protons involved in the respective processes and the apparent pK values obtained from the pH-dependence of the CD changes were in good agreement with those obtained from the pH-dependence of the absorption changes in the visible region. In addition, the rate constants obtained from the time courses of the CD and absorption changes agreed with one another. By the addition of 1 M NaCl, the CD and absorption spectra at alkaline pH were reversed almost to those at neutral pH without significant pH change. On the other hand, above pH 11, ferredoxin was found to be irreversibly denatured. Based on analyses of the statical CD and absorption spectra and of the time courses of the CD changes, the probable mechanism of the isomerization was considered to be as follows: (Formula: see text) where H stands for a proton, N-form for native ferredoxin at neutral pH, N*-form for alkaline ferredoxin below pH 11 which still has the iron-sulfur cluster but with disordered secondary structures of the polypeptide chain, and D-form for completely denatured ferredoxin above pH 11. These results lead to the conclusions that (1) the interaction between the protein moiety and the iron-sulfur cluster is

  3. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    SciTech Connect

    Pivovar, B.

    2012-02-01

    A workshop addressing the current state-of-the-art in alkaline membrane fuel cells (AMFCs) was held May 8-9, 2011, at the Crystal Gateway Marriott in Arlington, Virginia. This workshop was the second of its kind, with the first being held December 11-13, 2006, in Phoenix, Arizona. The 2011 workshop and associated workshop report were created to assess the current state of AMFC technology (taking into account recent advances), investigate the performance potential of AMFC systems across all possible power ranges and applications, and identify the key research needs for commercial competitiveness in a variety of areas.

  4. Phosphotyrosine as a substrate of acid and alkaline phosphatases.

    PubMed

    Apostoł, I; Kuciel, R; Wasylewska, E; Ostrowski, W S

    1985-01-01

    A new spectrophotometric method for following dephosphorylation of phosphotyrosine has been described. The absorption spectra of phosphotyrosine and tyrosine were plotted over the pH range from 3 to 9. The change in absorbance accompanying the conversion of phosphotyrosine to tyrosine was the greatest at 286 nm. The difference absorption coefficients were calculated for several pH values. Dephosphorylation of phosphotyrosine by acid phosphatases from human prostate gland, from wheat germ and potatoes obeys the Michaelis-Menten equation, whereas alkaline phosphatases calf intestine and E. coli are inhibited by excess of substrate.

  5. A rapid alkaline extraction procedure for screening recombinant plasmid DNA.

    PubMed Central

    Birnboim, H C; Doly, J

    1979-01-01

    A procedure for extracting plasmid DNA from bacterial cells is described. The method is simple enough to permit the analysis by gel electrophoresis of 100 or more clones per day yet yields plasmid DNA which is pure enough to be digestible by restriction enzymes. The principle of the method is selective alkaline denaturation of high molecular weight chromosomal DNA while covalently closed circular DNA remains double-stranded. Adequate pH control is accomplished without using a pH meter. Upon neutralization, chromosomal DNA renatures to form an insoluble clot, leaving plasmid DNA in the supernatant. Large and small plasmid DNAs have been extracted by this method. Images PMID:388356

  6. Quantum computing with alkaline-Earth-metal atoms.

    PubMed

    Daley, Andrew J; Boyd, Martin M; Ye, Jun; Zoller, Peter

    2008-10-24

    We present a complete scheme for quantum information processing using the unique features of alkaline-earth-metal atoms. We show how two completely independent lattices can be formed for the 1S0 and 3P0 states, with one used as a storage lattice for qubits encoded on the nuclear spin, and the other as a transport lattice to move qubits and perform gate operations. We discuss how the 3P2 level can be used for addressing of individual qubits, and how collisional losses from metastable states can be used to perform gates via a lossy blockade mechanism.

  7. Stress-life interrelationships associated with alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Martin, Ronald E.; Stedman, James K.

    1987-01-01

    A review is presented concerning the interrelationships between applied stress and the expected service life of alkaline fuel cells. Only the physical, chemical, and electrochemical phenomena that take place within the fuel cell stack portion of an overall fuel cell system will be discussed. A brief review will be given covering the significant improvements in performance and life over the past two decades as well as summarizing the more recent advances in understanding which can be used to predict the performance and life characteristics of fuel cell systems that have yet to be built.

  8. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchi; Shao, Rong; Chen, Song; He, Xuemei; Qiao, Jinli; Zhang, Jiujun

    2015-10-01

    The past two decades have witnessed many efforts to develop radiation-grafted alkaline membranes for alkaline PEM fuel cell applications, as such membranes have certain advantages over other kinds of alkaline membranes, including well-controlled composition, functionality, and other promising properties. To facilitate research and development in this area, the present paper reviews radiation-grafted alkaline membranes. We examine their synthesis/fabrication/characterization, membrane material selection, and theoretical approaches for fundamental understanding. We also present detailed examinations of their application in fuel cell in terms of the working principles of the radiation grafting process, the fabrication of MEAs using radiation-grafted membranes, the membranes' corresponding performance in alkaline PEM fuel cells, as well as performance optimization. The paper also summarizes the challenges and mitigation strategies for radiation-grafted alkaline membranes and their application in PEM fuel cells, presenting an overall picture of the technology as it presently stands.

  9. A Constructed Alkaline Consortium and Its Dynamics in Treating Alkaline Black Liquor with Very High Pollution Load

    PubMed Central

    Yang, Chunyu; Cao, Guangchun; Li, Yang; Zhang, Xiaojun; Ren, Hongyan; Wang, Xia; Feng, Jinhui; Zhao, Liping; Xu, Ping

    2008-01-01

    Background Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD) pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor. Findings Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs) using random amplified polymorphic DNA-PCR profiles (RAPD). Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l−1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l−1 (27.3%) CODcr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE) and gas chromatography/mass spectrometry (GC/MS) analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions. Conclusions/Significance Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor treatment

  10. Electrocatalysis of the HER in acid and alkaline media

    DOE PAGES

    Danilovic, Nemanja; Subbaraman, Ram; Strmcnik, Dusan; ...

    2013-01-01

    Trends in the HER are studied on selected metals (M= Cu, Ag, Au, Pt, Ru, Ir, Ti) in acid and alkaline environments. Here, we found that with the exception of Pt, Ir and Au, due to high coverage by spectator species on non-noble metal catalysts, experimentally established positions of Cu , Ag, Ru and Ti in the observed volcano relations are still uncertain. We also found that while in acidic solutions the M-Hupd binding energy most likely is controlling the activity trends, the trends in activity in alkaline solutions are controlled by a delicate balance between two descriptors: the M-Hadmore » interaction as well as the energetics required to dissociate water molecules. We confirm the importance of the second descriptor by introducing bifunctional catalysts such as M modified by Ni(OH); e.g. while the latter serves to enhance catalytic decomposition of water, the metal sites are required for collecting and recombining the produced hydrogen intermediates.« less

  11. Specific Immunoassays for Placental Alkaline Phosphatase As a Tumor Marker

    PubMed Central

    Stinghen, Sérvio T.; Moura, Juliana F.; Zancanella, Patrícia; Rodrigues, Giovanna A.; Pianovski, Mara A.; Lalli, Enzo; Arnold, Dodie L.; Minozzo, João C.; Callefe, Luis G.; Ribeiro, Raul C.; Figueiredo, Bonald C.

    2006-01-01

    Human placental (hPLAP) and germ cell (PLAP-like) alkaline phosphatases are polymorphic and heat-stable enzymes. This study was designed to develop specific immunoassays for quantifying hPLAP and PLAP-like enzyme activity (EA) in sera of cancer patients, pregnant women, or smokers. Polyclonal sheep anti-hPLAP antibodies were purified by affinity chromatography with whole hPLAP protein (ICA-PLAP assay) or a synthetic peptide (aa 57–71) of hPLAP (ICA-PEP assay); the working range was 0.1–11 U/L and cutoff value was 0.2 U/L EA for nonsmokers. The intra- and interassay coefficients of variation were 3.7%–6.5% (ICA-PLAP assay) and 9.0%–9.9% (ICA-PEP assay). An insignificant cross-reactivity was noted for high levels of unheated intestinal alkaline phosphatase in ICA-PEP assay. A positive correlation between the regression of tumor size and EA was noted in a child with embryonal carcinoma. It can be concluded that ICA-PEP assay is more specific than ICA-PLAP, which is still useful to detect other PLAP/PLAP-like phenotypes. PMID:17489017

  12. Prebiotic Synthesis of Protobiopolymers Under Alkaline Ocean Conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Bermejo, Marta; Rivas, Luis A.; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH4. At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.

  13. High-risk biodegradable waste processing by alkaline hydrolysis.

    PubMed

    Kalambura, Sanja; Voća, Neven; Krička, Tajana; Sindrak, Zoran; Spehar, Ana; Kalambura, Dejan

    2011-09-01

    Biodegradable waste is by definition degraded by other living organisms. Every day, meat industry produces large amounts of a specific type of biodegradable waste called slaughterhouse waste. Traditionally in Europe, this waste is recycled in rendering plants which produce meat and bone meal and fat. However, feeding animals with meat and bone meal has been banned since the outbreaks of bovine spongiform encephalopathy (BSE). In consequence, new slaughterhouse waste processing technologies have been developed, and animal wastes have now been used for energy production. Certain parts of this waste, such as brains and spinal cord, are deemed high-risk substances, because they may be infected with prions. Their treatment is therefore possible only in strictly controlled conditions. One of the methods which seems to bear acceptable health risk is alkaline hydrolysis. This paper presents the results of an alkaline hydrolysis efficiency study. It also proposes reuse of the obtained material as organic fertiliser, as is suggested by the analytical comparison between meat and bone meal and hydrolysate.

  14. Photo-catalytic polymerization of catechin molecules in alkaline aqueous.

    PubMed

    Liang, Ji-Yuan; Wu, Jun-Yun; Yang, Ming-Yeh; Hu, Anren; Chen, Liang-Yü

    2016-12-01

    Polyphenols are associated with a wide range of physiological properties. Catechin is a flavan-3-ol with five phenolic hydroxyl groups. After blue light illumination, the transparent solution of catechin became yellowish. The effects of visible light illumination (400-800nm) were investigated on molecular structures and antioxidant capacities of catechin. Under the neutral or alkaline aqueous with the illumination of blue light, the photolysis and polymerization of catechin were observed in this study. A chromogenic catechin dimer was separated and identified as a proanthocyanidin by the chromatographic technique and mass spectrometry. For quantitative evaluation, the signal intensities of the catechin and the photochemical product show a negative correlation in the liquid chromatograms. The oligomer of flavan-3-ols (catechin dimer) is suggested as a dimeric B type proanthocyanidin, which has the molecular formula C30H26O12 and 578.14g/mol in exact mass. The mass spectrum of catechin dimer had characteristic ion signals in m/z 577, 560, 439Da. However, the total phenolic contents and scavenging O2(-) activity of catechin treated by blue light illumination are not changed significantly at the neutral or alkaline aqueous. Our results of photocatalytic oligomers of catechin provide a novel way to explain the sensory changes of green tea and a biochemical mechanism under the irradiation environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Corrosion testing of candidates for the alkaline fuel cell cathode

    NASA Technical Reports Server (NTRS)

    Singer, Joseph; Fielder, William L.

    1989-01-01

    Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.

  16. Biochemical Stabilization of Glucagon at Alkaline pH

    PubMed Central

    Jackson, Melanie A.; Castle, Jessica R.; El Youssef, Joseph; Bakhtiani, Parkash A.; Bergstrom, Colin P.; Carroll, Julie M.; Breen, Matthew E.; Leonard, Gerald L.; David, Larry L.; Roberts, Charles T.; Ward, W. Kenneth

    2014-01-01

    Abstract Background: For patients with type 1 diabetes mellitus, a bihormonal artificial endocrine pancreas system utilizing glucagon and insulin has been found to stabilize glycemic control. However, commercially available formulations of glucagon cannot currently be used in such systems because of physical instability characterized by aggregation and chemical degradation. Storing glucagon at pH 10 blocks protein aggregation but results in chemical degradation. Reductions in pH minimize chemical degradation, but even small reductions increase protein aggregation. We hypothesized that common pharmaceutical excipients accompanied by a new excipient would inhibit glucagon aggregation at an alkaline pH. Methods and Results: As measured by tryptophan intrinsic fluorescence shift and optical density at 630 nm, protein aggregation was indeed minimized when glucagon was formulated with curcumin and albumin. This formulation also reduced chemical degradation, measured by liquid chromatography with mass spectrometry. Biological activity was retained after aging for 7 days in an in vitro cell-based bioassay and also in Yorkshire swine. Conclusions: Based on these findings, a formulation of glucagon stabilized with curcumin, polysorbate-80, l-methionine, and albumin at alkaline pH in glycine buffer may be suitable for extended use in a portable pump in the setting of a bihormonal artificial endocrine pancreas. PMID:24968220

  17. Comparing alkaline and thermal disintegration characteristics for mechanically dewatered sludge.

    PubMed

    Tunçal, Tolga

    2011-10-01

    Thermal drying is one of the advanced technologies ultimately providing an alternative method of sludge disposal. In this study, the drying kinetics of mechanically dewatered sludge (MDS) after alkaline and thermal disintegration have been studied. In addition, the effect of total organic carbon (TOC) on specific resistance to filtration and sludge bound water content were also investigated on freshly collected sludge samples. The combined effect of pH and TOC on the thermal sludge drying rate for MDS was modelled using the two-factorial experimental design method. Statistical assessment of the obtained results proposed that sludge drying potential has increased exponentially for both increasing temperature and lime dosage. Execution of curve fitting algorithms also implied that drying profiles for raw and alkaline-disintegrated sludge were well fitted to the Henderson and Pabis model. The activation energy of MDS decreased from 28.716 to 11.390 kJ mol(-1) after disintegration. Consequently, the unit power requirement for thermal drying decreased remarkably from 706 to 281 W g(-1) H2O.

  18. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars

    NASA Astrophysics Data System (ADS)

    McSween, H. Y.; Ruff, S. W.; Morris, R. V.; Bell, J. F.; Herkenhoff, K.; Gellert, R.; Stockstill, K. R.; Tornabene, L. L.; Squyres, S. W.; Crisp, J. A.; Christensen, P. R.; McCoy, T. J.; Mittlefehldt, D. W.; Schmidt, M.

    2006-09-01

    Irvine, Backstay, and Wishstone are the type specimens for three classes of fine-grained or fragmental, relatively unaltered rocks with distinctive thermal emission spectra, found as float on the flanks of the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt, trachybasalt, and tephrite, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. The texture of Wishstone is consistent with a pyroclastic origin, whereas Irvine and Backstay are lavas or possibly dike rocks. Chemical compositions of these rocks plot on or near liquid lines of descent for most elements calculated for Adirondack class rocks (olivine-rich basalts from the Gusev plains) at various pressures from 0.1 to 1.0 GPa. We infer that Wishstone-, Backstay-, and Irvine-class magmas may have formed by fractionation of primitive, oxidized basaltic magma similar to Adirondack-class rocks. The compositions of all these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. The fact that differentiated volcanic rocks were not encountered on the plains prior to ascending Husband Hill may suggest a local magma source for volcanism beneath Gusev crater.

  19. Mobilization of Manufactured Gas Plant Tar with Alkaline Flushing Solutions

    PubMed Central

    Hauswirth, Scott C.; Birak, Pamela Schultz; Rylander, Seth C.; Miller, Cass T.

    2011-01-01

    This experimental study investigates the use of alkaline and alkaline-polymer solutions for the mobilization of former manufactured gas plant (FMGP) tars. Tar-aqueous interfacial tensions (IFTs) and contact angles were measured, and column flushing experiments were conducted. NaOH solutions (0.01–1 wt.%) were found to significantly reduce tar-aqueous IFT. Contact angles indicated a shift to strongly water-wet, then to tar-wet conditions as NaOH concentration increased. Column experiments were conducted with flushing solutions containing 0.2, 0.35, and 0.5% NaOH, both with and without xanthan gum (XG). Between 10 and 44% of the residual tar was removed by solutions containing only NaOH, while solutions containing both NaOH and XG removed 81–93% of the tar with final tar saturations as low as 0.018. The mechanism responsible for the tar removal is likely a combination of reduced IFT, a favorable viscosity ratio, and tar bank formation. Such an approach may have practical applications and would be significantly less expensive than surfactant-based methods. PMID:22091957

  20. Endurance Test and Evaluation of Alkaline Water Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.

    1985-01-01

    The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.

  1. Bacterial colonization of a fumigated alkaline saline soil.

    PubMed

    Bello-López, Juan M; Domínguez-Mendoza, Cristina A; de León-Lorenzana, Arit S; Delgado-Balbuena, Laura; Navarro-Noya, Yendi E; Gómez-Acata, Selene; Rodríguez-Valentín, Analine; Ruíz-Valdiviezo, Victor M; Luna-Guido, Marco; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc

    2014-07-01

    After chloroform fumigating an arable soil, the relative abundance of phylotypes belonging to only two phyla (Actinobacteria and Firmicutes) and two orders [Actinomycetales and Bacillales (mostly Bacillus)] increased in a subsequent aerobic incubation, while it decreased for a wide range of bacterial groups. It remained to be seen if similar bacterial groups were affected when an extreme alkaline saline soil was fumigated. Soil with electrolytic conductivity between 139 and 157 dS m(-1), and pH 10.0 and 10.3 was fumigated and the bacterial community structure determined after 0, 1, 5 and 10 days by analysis of the 16S rRNA gene, while an unfumigated soil served as control. The relative abundance of the Firmicutes increased in the fumigated soil (52.8%) compared to the unfumigated soil (34.2%), while that of the Bacteroidetes decreased from 16.2% in the unfumigated soil to 8.8% in the fumigated soil. Fumigation increased the relative abundance of the genus Bacillus from 14.7% in the unfumigated soil to 25.7%. It was found that phylotypes belonging to the Firmicutes, mostly of the genus Bacillus, were dominant in colonizing the fumigated alkaline saline as found in the arable soil, while the relative abundance of a wide range of bacterial groups decreased.

  2. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2000-12-01

    This document summarizes progress on the Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2000 through September 30, 2000. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid will also be determined, as will the removal of arsenic, a known poison for NOX selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), First Energy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the second reporting period for the subject Cooperative Agreement. During this period, the first of four short-term sorbent injection tests were conducted at the First Energy Bruce Mansfield Plant. This test determined the effectiveness of dolomite injection through out-of-service burners as a means of controlling sulfuric acid emissions from this unit. The tests showed that dolomite injection could achieve up to 95% sulfuric acid removal. Balance of plant impacts on furnace slagging and fouling, air heater fouling, ash loss-on-ignition, and the flue gas desulfurization system were also determined. These results are presented and discussed in this report.

  3. Degradation modes of alkaline fuel cells and their components

    NASA Astrophysics Data System (ADS)

    Tomantschger, Klaus; Findlay, Robert; Hanson, Michael; Kordesch, Karl; Srinivasan, Supramaniam

    The performance and life-limiting parameters of multilayer polytetrafluoroethylene (PTFE) bonded carbon air cathodes and hydrogen anodes, developed at the Institute for Hydrogen Systems (IHS) for use in low temperature alkaline electrolyte fuel cells (AFC) and batteries, were investigated. Scanning electron microscopy (SEM), X-ray energy spectroscopy (XES), electron spectroscopy for chemical analysis (ESCA), microcalorimetry and intrusion porosimetry techniques in conjunction with electrochemical testing methods were used to characterize electrode components, electrodes and alkaline fuel cells. The lifetime of air cathodes is mainly limited by carbon corrosion and structural degradation, while that of hydrogen anodes is frequently limited by electrocatalyst problems and structural degradation. The PTFE binder was also found to degrade in both the cathodes and the anodes. The internal resistance, which was found to generally increase in AFCs in particular between the cathode and the current collector, can be minimized by the proper choice of materials. Temperature cycling of AFCs may result in mechanical problems; however, these problems can be overcome by using AFC components with compatible thermal expansion coefficients.

  4. Improved alkaline hydrogen/air fuel cells for transportation applications

    SciTech Connect

    McBreen, J; Kissel, G; Kordesch, K V; Kulesa, F; Taylor, E J; Gannon, E; Srinivasan, S

    1980-01-01

    Considerable progress has been made in the last few years on improvement of alkaline air electrodes for air depolarized chlor-alkali cells. Some of these electrodes from Union Carbide Corporation have been evaluated at Brookhaven National Laboratory in alkaline hydrogen/air fuel cells. In initial tests with 289 cm/sup 2/ electrodes, power densities of 100 mW/cm/sup 2/ were obtained at 0.65 V. This compares with power densities of 27 mW/cm/sup 2/ obtained by Kordesch in his vehicle fuel cell in the late sixties. Further improvements in the air electrode flow field yielded power densities of 126 mW/cm/sup 2/ at 0.65 V at an operating temperature of 70/sup 0/C. At 30/sup 0/C, nearly 60% of this power could be obtained at 0.65 V. The 289 cm/sup 2/ cells were units in a 16-cell 0.5 kW module. This module yielded similar power densities, and its power/weight and power/volume are sufficiently attractive for it to be considered as a building block for a fuel cell power plant in a fuel cell/battery hybrid vehicle.

  5. Enhanced Thermostability of a Fungal Alkaline Protease by Different Additives

    PubMed Central

    Nirmal, Nilesh P.; Laxman, R. Seeta

    2014-01-01

    A fungal strain (Conidiobolus brefeldianus MTCC 5184) isolated from plant detritus secreted a high activity alkaline protease. Thermostability studies of the fungal alkaline protease (FAP) revealed that the protease is stable up to 50°C with 40% residual activity after one hour. Effect of various additives such as sugars, sugar alcohols, polyols, and salts, on the thermostability of FAP was evaluated. Among the additives tested, glycerol, mannitol, xylitol, sorbitol, and trehalose were found to be very effective in increasing the stability of FAP, which was found to be concentration dependent. Fivefold increase in residual activity of FAP was observed in the presence of trehalose (50%) and sorbitol (50%) at 50°C for 4 h, compared to FAP without additive. Other additives like calcium at 20 mM and 10–15% ammonium sulphate showed lower stability improvement than trehalose and sorbitol. NaCl, MgCl2, K2HPO4, and glycine were found to be poor stabilizers and showed only a marginal improvement. PEG 6000 did not show any increase in stability but was found to be slightly inhibitory. PMID:25105022

  6. Intestinal alkaline phosphatase: novel functions and protective effects.

    PubMed

    Lallès, Jean-Paul

    2014-02-01

    Important protective roles of intestinal alkaline phosphatase (IAP)--including regulation of intestinal surface pH, absorption of lipids, detoxification of free nucleotides and bacterial lipopolysaccharide, attenuation of intestinal inflammation, and possible modulation of the gut microbiota--have been reviewed recently. IAP is modulated by numerous nutritional factors. The present review highlights new findings on the properties of IAP and extends the list of its protective functions. Critical assessment of data suggests that some IAP properties are a direct result of dephosphorylation of proinflammatory moieties, while others (e.g., gut barrier protection and microbiota shaping) may be secondary to IAP-mediated downregulation of inflammation. IAP and tissue-nonspecific alkaline phosphatase isoforms characterize the small intestine and the colon, respectively. Gastrointestinal administration of exogenous IAP ameliorates gut inflammation and favors gut tissue regeneration, whereas enteral and systemic IAP administration attenuates systemic inflammation only. Finally, the IAP gene family has a strong evolutionary link to food-driven changes in gastrointestinal tract anatomy and microbiota composition. Therefore, stimulation of IAP activity by dietary intervention is a goal for preserving gut homeostasis and health by minimizing low-grade inflammation. © 2013 International Life Sciences Institute.

  7. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    SciTech Connect

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  8. [Behavior of serum alkaline during pregnancy. II. Pathological pregnancy].

    PubMed

    Stark, K H; Nabel, H J; Kyank, H; Neumayer, E; Dässler, C G; Töwe, J

    1976-01-01

    832 estimations of heat stable alkaline phosphatase (HSAP) and of heat alkaline phosphatase (HLAP) were carried out simultaneously in late pregnant women at 25th to the 42nd weeks of pregnancy. 147 of them delivered children with normal birth-weight. All these women suffered from pre-eclampsia, hypertension or any kind of superimposed pre-eclampsia. 110 other pregnant women with or without symptoms of pre-eclampsia gave birth to small for dates babies. In addition, the values of these patients were compared with 372 estimations of the same enzymes carried out in 120 patients with normal pregnancy and outcome of normal weighted children. The site of the values of every group showed no typical correlation to the course and outcome of their pregnancy. Regarding four special criterions it was possible to give a good prediction by serial determinations for the weight of the newborn in 80 per cent of the cases. A correlation between the urinary excretion of total oestrogens as well as HLAP and the values of HSAP was to be found only in some groups of patients.

  9. [DNA degradation during standard alkaline of thermal denaturation].

    PubMed

    Drozhdeniuk, A P; Sulimova, G E; Vaniushin, B F

    1976-01-01

    Essential degradation 8 DNA (up to 10 per cent) with liberation of acid-soluble fragments takes place on the standard alkaline (0,01 M sodium phosphate, pH 12, 60 degrees, 15 min) or thermal (0.06 M sodium phosphate buffer, pH 6.8, 102 degrees C, 15 min) denaturation. This degradation is more or less selective: fraction of low molecular weight fragments, isolated by hydroxyapatite cromatography and eluted by 0.06 M sodium phosphate buffer, pH 6.8 is rich in adenine and thymine and contains about 2 times less 5-methylcytosine than the total wheat germ DNA. The degree of degradation of DNA on thermal denaturation is higher than on alkaline degradation. Therefore while studying reassociation of various DNA, one and the same standard method of DNA denaturation should be used. Besides, both the level of DNA degradation and the nature of the resulting products (fragments) should be taken into account.

  10. Possible functions of alkaline phosphatase in dental mineralization: cadmium effects.

    PubMed

    Wöltgens, J H; Lyaruu, D M; Bervoets, T J

    1991-06-01

    In mineralizing dental tissues the non-specific alkaline phosphatase, using paranitrophenylphosphate (p-NPP) as substrate, is also capable of splitting inorganic pyrophosphate (PPi). In contrast to the p-NPP-ase part of the enzyme, the PPi-ase part requires Zn2+ as a cofactor for its hydrolytic activity. The PPi-ase activity of the enzyme can be inhibited by cadmium ions (Cd2+), perhaps by replacing Zn2+ from the active site of the enzyme molecule. In addition to splitting PPi, the PPi-ase part of the enzyme may also be involved in the phosphorylation process of yet undetermined organic macromolecules. Cd2+ inhibits this phosphorylation process. Inhibition of the PPi-ase activity can also be accomplished by ascorbic acid known for its capacity to complex bivalent cations. Ascorbic acid may accordingly also remove Zn2+ from the active site of the PPi-ase. It is suggested that in developing dental tissues alkaline phosphatase is not only associated with the transport of phosphate ions towards the mineralization front, but is also involved in the phosphorylation of organic macromolecules, a process activated the PPi-ase part of the enzyme.

  11. Interfacial activity in alkaline flooding enhanced oil recovery

    SciTech Connect

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical species in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.

  12. Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals

    NASA Astrophysics Data System (ADS)

    Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.

    2016-05-01

    Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.

  13. Isozymes of bovine intestinal alkaline phosphatase. Characterization and functional studies

    SciTech Connect

    Besman, M.J.A.

    1986-01-01

    The membrane-associated alkaline phosphatases of calf and adult bovine small intestines have been isolated to homogeneity by a novel method developed to purify large quantities of enzyme. Chromatofocusing revealed the existence of two isozymes in calf tissue while only one form was present in the adult. The three amphiphilic metallo protein dimers were characterized as to total amino acid and carbohydrate content, zinc stoichiometries and mode of carbohydrate linkage. The molecular relationship between the three enzymes was defined by tryptic peptide HPLC-mapping and N-terminal sequencing, and demonstrated the existence of two calf isozymes of unique primary sequence, only one of which is expressed in the adult animal. In the presence of protease inhibitors, two new, higher M/sub r/ species (66,000 and 62,000 daltons vs 60,000 daltons) of adult bovine alkaline phosphatase were demonstrated by electrophoresis of /sup 32/P/sub i/-labeled tissue, probing gels by autoradiography and Western blotting. The in vivo enzyme was isolated using a modified, rapid procedure; the two higher M/sub r/ species copurified.

  14. Effect of alkaline pretreatment on delignification of wheat straw.

    PubMed

    Asghar, Umar; Irfan, Muhammad; Iram, Mehvish; Huma, Zile; Nelofer, Rubina; Nadeem, Muhammad; Syed, Quratulain

    2015-01-01

    This study was conducted to analyse structural changes through scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) after alkaline pretreatment of wheat straw for optimum steaming period. During the study, 2 mm size of substrate was soaked in 2.5% NaOH for 1 h at room temperature and then autoclaved at 121°C for various steaming time (30, 60, 90 and 120 min). Results revealed that residence time of 90 min at 121°C has strong effect on substrate, achieving a maximum cellulose content of 83%, delignification of 81% and hemicellulose content of 10.5%. Further SEM and FTIR spectroscopy confirmed structural modification caused by alkaline pretreatment in substrate. Maximum saccharification yield of 52.93% was achieved with 0.5% enzyme concentration using 2.5% substrate concentration for 8 h of incubation at 50°C. This result indicates that the above-mentioned pretreatment conditions create accessible areas for enzymatic hydrolysis.

  15. Characterization of Schistosome Tegumental Alkaline Phosphatase (SmAP)

    PubMed Central

    Bhardwaj, Rita; Skelly, Patrick J.

    2011-01-01

    Schistosomes are parasitic platyhelminths that currently infect over 200 million people globally. The parasites can live for years in a putatively hostile environment - the blood of vertebrates. We have hypothesized that the unusual schistosome tegument (outer-covering) plays a role in protecting parasites in the blood; by impeding host immunological signaling pathways we suggest that tegumental molecules help create an immunologically privileged environment for schistosomes. In this work, we clone and characterize a schistosome alkaline phosphatase (SmAP), a predicted ∼60 kDa glycoprotein that has high sequence conservation with members of the alkaline phosphatase protein family. The SmAP gene is most highly expressed in intravascular parasite life stages. Using immunofluorescence and immuno-electron microscopy, we confirm that SmAP is expressed at the host/parasite interface and in internal tissues. The ability of living parasites to cleave exogenous adenosine monophosphate (AMP) and generate adenosine is very largely abolished when SmAP gene expression is suppressed following RNAi treatment targeting the gene. These results lend support to the hypothesis that schistosome surface enzymes such as SmAP could dampen host immune responses against the parasites by generating immunosuppressants such as adenosine to promote their survival. This notion does not rule out other potential functions for the adenosine generated e.g. in parasite nutrition. PMID:21483710

  16. Ferromagnetism in ZnO doped with alkaline elements

    NASA Astrophysics Data System (ADS)

    Wang, Yiren; Piao, Jingyuan; Xin, Guozhong; Lu, Yunhao; Ao, Zhimin; Bao, Nina; Ding, Jun; Li, Sean; Yi, Jiabao

    We have observed room temperature ferromagnetism (RTFM) in ZnO doped with alkaline elements Using first-principles calculations we found the magnetization in these systems is originated from the O2p hole states around Zn vacancies. Calculations indicate that the formation energy of Zn vacancies alone is rather high while further investigation indicates the formation can be much stabilized by the alkaline dopants in the form of defect complexes. By calculating the formation energy of concerned defects and complexes, we found the role of the dopants that under a certain doping concentration: Zn vacancy, substitutional and interstitial dopants can form a defect complex, which can lower formation energy, therefore stabilizing Zn vacancies. Moreover K dopants have shown unique functions on the ferromagnetism since the substitutional K can induce magnetic moments to the system by forming partial zinc vacancy via lattice distortion. Hence K doped ZnO can be magnetic at low doping concentrations. Experimentally, Li, Na doped ZnO films and K doped ZnO nanorods with different doping levels are synthesized, RTFM can be observed in all these systems. The magnetization is found to be greatly influenced by the doping concentrations. The experimental results have shown good consistence with our theoretical calculations. Our studies can inspire the defect induced ferromagnetism as a new route for the fabrication of new diluted magnetic semiconductors.

  17. Efficiency of alkaline hydrolysis method in environment protection.

    PubMed

    Kricka, Tajana; Toth, Ivan; Kalambura, Sanja; Jovicić, Nives

    2014-06-01

    Development of new technologies for the efficient use of proteins of animal origin, apart from heat treatment in rendering facilities that was used to date, has become the primary goal of the integral waste management system. The emergence of bovine spongiform encephalopathy in Europe and in the World in the 1990s opened up new questions regarding medical safety and use of meat bone meal in the animal feed, which is produced by processing animal waste. Animal waste is divided into three categories, out of which the first category is high-risk waste. Alkaline hydrolysis is alternative method for management of animal by-products not intended for human diet and imposes itself as one of the solutions for disposal of high-risk proteins. The paper will present the analyses of animal by-products not intended for human diet treated in laboratory reactor for alkaline hydrolysis, as one of the two recognized methods in EU for the disposal of this type of material and use in fertilization.

  18. Biological impacts of enhanced alkalinity in Carcinus maenas.

    PubMed

    Cripps, Gemma; Widdicombe, Stephen; Spicer, John I; Findlay, Helen S

    2013-06-15

    Further steps are needed to establish feasible alleviation strategies that are able to reduce the impacts of ocean acidification, whilst ensuring minimal biological side-effects in the process. Whilst there is a growing body of literature on the biological impacts of many other carbon dioxide reduction techniques, seemingly little is known about enhanced alkalinity. For this reason, we investigated the potential physiological impacts of using chemical sequestration as an alleviation strategy. In a controlled experiment, Carcinus maenas were acutely exposed to concentrations of Ca(OH)2 that would be required to reverse the decline in ocean surface pH and return it to pre-industrial levels. Acute exposure significantly affected all individuals' acid-base balance resulting in slight respiratory alkalosis and hyperkalemia, which was strongest in mature females. Although the trigger for both of these responses is currently unclear, this study has shown that alkalinity addition does alter acid-base balance in this comparatively robust crustacean species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Alkaline niobate nanowires as opto-mechanical probes

    NASA Astrophysics Data System (ADS)

    Dutto, Fabrizia; Radenovic, Aleksandra

    2012-10-01

    Perovskite alkaline niobate (XNbO3) nanowires are attracting lots of attention having a variety of interesting properties such as significant nonlinear optical response, pronounced birefringence, considerable piezoelectric, pyroelectric, photorefractive, and photocatalytic response, as well as superior mechanical and chemical stability. Their ability to efficiently generate second harmonic signals (SHG) and their birefringence allow the use of these nanostructures as local mechano-optical probes for single molecule detection. To assess which type of nanowires is suitable for specific application, we performed a comparative study on the nonlinear optical response of the different types of chemically synthesized alkaline niobate nanowires: sodium niobate (NaNbO3), potassium niobate (KNbO3) and lithium niobate (LiNbO3) nanowires. An optical trap setup has been used to demonstrate the possibility to steadily trap the nanowires, their ability to generate high second harmonic signals, to waveguide this signal and to be rotated under a highly focused laser beam with changing polarization. Different applications are suggested for the three materials, such as LiNbO3 nanowires as imaging markers, while KNbO3 and NaNbO3 nanowires for trapping and torque experiments and NaNbO3 nanowires to waveguide SHG light. Functionalization of the XNbO3 nanowires has been studied and successfully implemented. This is a first crucial step toward their use in biomedical imaging and single molecule applications.

  20. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    SciTech Connect

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.