Science.gov

Sample records for silicate melt pockets

  1. Tin in silicate melts

    NASA Astrophysics Data System (ADS)

    Paparoni, Guido

    An experimental technique that uses Re metal capsules as containers for tin-bearing systems has been developed and successfully used in the study of the compositional dependence of SnO2 solubility in silicate melts. These experiments have been performed in the absence of an aqueous fluid phase and oxygen fugacity (fO2) has been established by the addition of tin-metal to SnO2. This approach solves three long-standing problems in the study of SnO 2 solubility in silicate melts: (1) Alloying of noble-metal crucibles and corrosion of ceramic crucibles is avoided; (2) fO 2 is established by direct contact of a metal-oxide oxygen buffer; (3) Gaseous SnO is not lost to the furnace atmosphere. The Re-capsule technique, combined with evacuated silica-tube experiments, has been applied to the study of the system SnO-SiO2 at pressures of 1 atm and 10 kbar. SnO2 solubilities of up to 95 wt% SnO are reported. The system SnO-SiO2 is found to be a pseudo-binary of the ternary system Sn°-SnO2-SiO2. A revised phase diagram for the system SnO-SiO2 at a pressure ≈1 atm is provided, and a new phase diagram for the system SnOSiO2 at a pressure = 10 kbar has been constructed. These results are used to suggest the topology of the ternary system Sn°-SnO2SiO2. The Re-capsule technique has also been applied to the study of the subaluminous haplogranite system (SiO2NaAlSi3O8-KAlSi 3O8) at T = 1100°C, P = 10 kbar and fO 2 at Sn°-SnO2. Solubilities span the range of 41 to 80 wt% SnO. In the haplogranite system, the solubility of SnO2 increases with the proportion of normative SiO2, and SnO is found to expand the stability field of SiO2. In the feldspar join, Na-based melts dissolve a larger proportion of SnO than K-based melts. This effect is lost as SiO2 is progressively added to the feldspar join. Small amounts of F (1 wt%) are found to increase the solubility of SnO 2 by an equivalent 15 wt% normative quartz as shown with the Spor Mountain rhyolite. A comparison of SnO2 solubilities

  2. Metal-sulfide melt non-interconnectivity in silicates, even at high pressure, high temperature, and high melt fractions

    SciTech Connect

    Minarik, W.G.; Ryerson, F.J.

    1996-01-01

    The authors have investigated the textural microstructure of iron-nickel-sulfur melts in contact with olivine, pyroxene, and the modified-spinel polymorph of olivine. The experiments were conducted at 1,500 C and pressures ranging from 1 to 17 GPa. For compositions more metal-rich than the monosulfide, including the eutectic composition, the metal sulfide melt has a dihedral angle greater than 60{degree} and does not form an interconnected grain-edge fluid. Increasing pressure does not measurably alter the dihedral angles. Textural evolution results in coarsening of the sulfide melt pockets, resulting in large pockets surrounded by many silicate grains and separated from one another by melt-free grain edges. Chemical communication between these large pockets is limited to lattice and grain-boundary diffusion. Due to the large interfacial energy between sulfide melt and silicates, sulfide melts are unable to separate from solid silicate via grain-boundary percolation and remain stranded in isolated melt pockets. Sulfide melt in excess of the critical melt fraction (5--25%) will develop a transient interconnectivity as sulfide collects into larger melt pockets and interconnectivity is pinched off. Efficient separation of core-forming sulfide melts from silicate requires either melting of the silicate matrix or a very large fraction of metal-sulfide melt (perhaps as large as 40%).

  3. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  4. Partitioning coefficients between olivine and silicate melts

    NASA Astrophysics Data System (ADS)

    Bédard, J. H.

    2005-08-01

    Variation of Nernst partition coefficients ( D) between olivine and silicate melts cannot be neglected when modeling partial melting and fractional crystallization. Published natural and experimental olivine/liquidD data were examined for covariation with pressure, temperature, olivine forsterite content, and melt SiO 2, H 2O, MgO and MgO/MgO + FeO total. Values of olivine/liquidD generally increase with decreasing temperature and melt MgO content, and with increasing melt SiO 2 content, but generally show poor correlations with other variables. Multi-element olivine/liquidD profiles calculated from regressions of D REE-Sc-Y vs. melt MgO content are compared to results of the Lattice Strain Model to link melt MgO and: D0 (the strain compensated partition coefficient), EM3+ (Young's Modulus), and r0 (the size of the M site). Ln D0 varies linearly with Ln MgO in the melt; EM3+ varies linearly with melt MgO, with a dog-leg at ca. 1.5% MgO; and r0 remains constant at 0.807 Å. These equations are then used to calculate olivine/liquidD for these elements using the Lattice Strain Model. These empirical parameterizations of olivine/liquidD variations yield results comparable to experimental or natural partitioning data, and can easily be integrated into existing trace element modeling algorithms. The olivine/liquidD data suggest that basaltic melts in equilibrium with pure olivine may acquire small negative Ta-Hf-Zr-Ti anomalies, but that negative Nb anomalies are unlikely to develop. Misfits between results of the Lattice Strain Model and most light rare earth and large ion lithophile partitioning data suggest that kinetic effects may limit the lower value of D for extremely incompatible elements in natural situations characterized by high cooling/crystallization rates.

  5. Influence of Silicate Melt Composition on Metal/Silicate Partitioning of W, Ge, Ga and Ni

    NASA Technical Reports Server (NTRS)

    Singletary, S. J.; Domanik, K.; Drake, M. J.

    2005-01-01

    The depletion of the siderophile elements in the Earth's upper mantle relative to the chondritic meteorites is a geochemical imprint of core segregation. Therefore, metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle. The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. Several recent studies have shown the importance of silicate melt composition on the partitioning of siderophile elements between silicate and metallic liquids. It has been demonstrated that many elements display increased solubility in less polymerized (mafic) melts. However, the importance of silicate melt composition was believed to be minor compared to the influence of oxygen fugacity until studies showed that melt composition is an important factor at high pressures and temperatures. It was found that melt composition is also important for partitioning of high valency siderophile elements. Atmospheric experiments were conducted, varying only silicate melt composition, to assess the importance of silicate melt composition for the partitioning of W, Co and Ga and found that the valence of the dissolving species plays an important role in determining the effect of composition on solubility. In this study, we extend the data set to higher pressures and investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid.

  6. An Equation of State for Silicate Melts Under Compression

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Karato, S.

    2011-12-01

    Density of silicate melts at elevated pressures and temperatures (i.e., equation of state) is critical to our understanding of melting processes such as the generation and differentiation of silicate melts in Earth and is a key parameter to the thermodynamic and dynamic models of melting at high pressures. In the past, equations of state of silicate melts were often treated in analogy with that of crystalline solids for which the change in internal energy due to the change in inter-atomic distance plays an important role. However, liquids are different from solids in their ability to change structures, which implies the importance of entropy contribution to compression in addition to the internal energy contribution. This results in the distinct compressional properties of liquids such as (1) Liquids have much smaller bulk moduli than solids and do not follow the Birch's law of corresponding state (the relationship between bulk modulus and density) as opposed to solids; (2) The Grüneisen parameter increases with increasing pressure for (non-metallic) liquids but decreases for solids. In this work, we propose a new equation of state for multi-component silicate melts based on the hard sphere mixture model of a liquid to account for the role of entropic contribution. We assign a hard sphere for each cation species that moves in the liquid except for the volume occupied by other spheres. The geometrical arrangements of these spheres give the entropic contribution to compression, while the Columbic attraction between the spheres and the uniformly distributed oxygen background provides the internal energy contribution to compression. We calibrate the equation of state for the SiO2-Al2O3-FeO-MgO-CaO 5-component melts. The effective size of a hard sphere for each component is determined. The temperature and volume dependencies of sphere diameters are also included in the model in order to explain the melt density data at high pressures. We have also investigated the

  7. Experimental study of the electrolysis of silicate melts

    NASA Technical Reports Server (NTRS)

    Keller, R.; Larimer, K. T.

    1991-01-01

    To produce oxygen from lunar resources, it may be feasible to melt and electrolyze local silicate ores. This possibility was explored experimentally with synthesized melts of appropriate compositions. Platinum electrodes were employed at a melt temperature of 1425 C. When silicon components of the melt were reduced, the platinum cathode degraded rapidly, which prompted the substitution of a graphite cathode substrate. Discrete particles containing iron or titanium were found in the solidified electrolyte after three hours of electrolysis. Electrolyte conductivities did not decrease substantially, but the escape of gas bubbles, in some cases, appeared to be hindered by high viscosity of the melt.

  8. Conductimetric determination of decomposition of silicate melts

    NASA Technical Reports Server (NTRS)

    Kroeger, C.; Lieck, K.

    1986-01-01

    A description of a procedure is given to detect decomposition of silicate systems in the liquid state by conductivity measurements. Onset of decomposition can be determined from the temperature curves of resistances measured on two pairs of electrodes, one above the other. Degree of decomposition can be estimated from temperature and concentration dependency of conductivity of phase boundaries. This procedure was tested with systems PbO-B2O3 and PbO-B2O3-SiO2.

  9. Activity composition relationships in silicate melts

    SciTech Connect

    Glazner, A.F.

    1990-01-01

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  10. Carbon dioxide in silicate melts: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Guillot, Bertrand; Sator, Nicolas

    2011-04-01

    We have performed a series of molecular dynamics simulations aimed at the evaluation of the solubility of CO 2 in silicate melts of natural composition (from felsic to ultramafic). In making in contact within the simulation cell a supercritical CO 2 phase with a silicate melt of a given composition, we have been able to evaluate (i) the solubility of CO 2 in the P- T range 1473-2273 K and 20-150 kbar, (ii) the density change experienced by the CO 2-bearing melt, (iii) the respective concentrations of CO 2 and CO32- species in the melt, (iv) the lifetime and the diffusivity of these species and (v) the structure of the melt around the carbonate groups. The main results are the following: (1) The solubility of CO 2 increases markedly with the pressure in the three investigated melts (a rhyolite, a mid-ocean ridge basalt and a kimberlite) from about ˜2 wt% CO 2 at 20 kbar to ˜25 wt% at 100 kbar and 2273 K. The solubility is found to be weakly dependent on the melt composition (as far as the present compositions are concerned) and it is only at very high pressure (above ˜100 kbar) that a clear hierarchy between solubilities occurs (rhyolite < MORB < kimberlite). Furthermore at a given pressure the calculated solubility is negatively correlated with the temperature. (2) In CO 2-saturated melts, the proportion of carbonate ions (CO32-) is positively correlated with the pressure at isothermal condition and is negatively correlated with the temperature at isobaric condition (and vice versa for molecular CO 2). Furthermore, at fixed ( P, T) conditions the proportion of carbonate ions is higher in CO 2-undersaturated melts than in the CO 2-saturated melt. Although the proportion of molecular CO 2 decreases when the degree of depolymerization of the melt increases, it is still significant in CO 2-saturated basic and ultrabasic compositions at high temperatures. This finding is at variance with experimental data on CO 2-bearing glasses which show no evidence of molecular CO

  11. Ab-Initio Study of Incongruent Melting in Silicates

    NASA Astrophysics Data System (ADS)

    Pinilla, C.; Stixrude, L. P.

    2014-12-01

    Knowledge of the multi-component thermodynamics and phase equilibria of silicate melts at Earth's interior conditions are key to understand the chemical and thermal evolution of the planet. Yet they remain poorly constrained with a wide uncertainty on the eutectic composition and temperature. In this work we present results from ab-initio molecular dynamics in combination with the two-phase coexistance method to study properties of a system of MgSiO3 liquid coexisting with crystalline MgO at conditions of the deep lower mantle. During incongruent melting the crystal may either grow via partial freezing of the liquid or shrink via partial melting at a given temperature and pressure. The melting process can be studied using the two-phases method where liquid and solid are in contact at a given temperature and pressure and so under thermodynamic equilibrium. We characterise the composition and densities of the resultant solid and liquid phases, provide chemical potentials of the liquid phase and study the structural and dynamical properties of the melt. In addition, we discuss the performance of alternative computational methods applied to the study of incongruent melting in silicate systems where long simulation times and a large number of atoms are usually needed. Finally, we discuss the implication of our findings for the evolution of the Earth's interior.

  12. Osmium Solubility in Silicate Melts: New Efforts and New Results

    NASA Technical Reports Server (NTRS)

    Borisov, A.; Walker, R. J.

    1998-01-01

    In a recent paper, Borisov and Palme reported the first experimental results on the partitioning of Os between metal (Ni-rich OsNi alloys) and silicate melt of anorthite-diopside eutectic composition at 1400 C and 1 atm total pressure and and at function of O2 from 10(exp -8) to 10(exp -12) atm. Experiments were done by equilibrating OsNi metal loops with silicate melt. Metal and glass were analyzed separately by INAA. D(sup 0s) ranged from 10(exp 6) to 10(exp 7), which is inconsistent with core/ mantle equilibrium for HSEs and favors the late veneer hypothesis. Unfortunately, there was practically no function of O2 dependence of Os partitioning, and the scatter of experimental results was quite serious, so the formation of Os nuggets was suspected. This new set of experiments was specifically designed to avoid of at least minimize the nugget problem

  13. Sulfide and sulfate saturation in hydrous silicate melts

    NASA Technical Reports Server (NTRS)

    Carroll, M. R.; Rutherford, M. J.

    1985-01-01

    A series of hydrothermal experiments was performed over a wide range of pressures, temperatures, oxygen fugacities, and melt FeO content, in order to examine the effects of physical changes on sulfur solubility in fractionated hydrous silicate melts. On the basis of the experimental results, it is concluded that upper crustal oxidation-reduction reactions and crystal fractionation processes may exert considerable influence on the amount of sulfur contained in magmas erupted at the surface. The application of the experimental results to investigations of volatile transport and volcanic degassing processes on the earth, Venus, and Mars is discussed

  14. Experimental study of chlorine behavior in hydrous silicic melts

    SciTech Connect

    Metrich, N. ); Rutherford, M.J. )

    1992-02-01

    Chlorine solubility in silicate melts has been investigated at 830-850 {plus minus} 5C and at pressures ranging from 50 to 200 MPa, using both natural (pantellerite, rhyolite, phonolite) and synthetic (SiO{sub 2}-Al{sub 2}O{sub 3}-K{sub 2}O-Na{sub 2}O) compositions and a stated H{sub 2}O-NaCl-KCl fluid phase near 4 molal. At 100 MPa, Cl contents in pantelleritic melts reach a solubility plateau at initial aqueous phase molality near 2. This plateau coincides with a large immiscibility gap between aqueous and chloride-rich fluids. With the coexisting Cl-saturated aqueous phase, Cl ranges from 2,720 {plus minus} 120 ppm in rhyolite to 8,960 {plus minus} 85 ppm in pantellerite and reaches 6,270 {plus minus} 170 ppm in phonolite, at 100 MPa. Between 50 and 200 MPa, the Cl content in pantelleritic melt decreases from 9,640 {plus minus} 200 ppm to 5,040 {plus minus} 150 ppm. Although Cl solubility increases with increasing FeO{sup *} in high SiO{sub 2} melts, it is mainly controlled by the Al/Si and (Na + K)/Al molar ratios of the melt with a minimum at Na + K/Al = 1 in a series of synthetic rhyolitic to pantelleritic melts. The experimental results suggest that chlorine occurs as alkali-chloride complexes in high SiO{sub 2} melts. They also indicate that Cl is concentrated in the aqueous fluids in equilibrium with SiO{sub 2}-rich melts, the exact value of D depending on melt composition and melt chlorine concentration. Volcanic degassing will create chlorine-rich hydrothermal fluids and decrease chlorine melt content.

  15. Mg-perovskite/silicate melt and magnesiowuestite/silicate melt partition coefficients for KLB-1 at 250 Kbars

    NASA Technical Reports Server (NTRS)

    Drake, Michael J.; Rubie, David C.; Mcfarlane, Elisabeth A.

    1992-01-01

    The partitioning of elements amongst lower mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. Because of the technical difficulty in carrying out such measurements, only one direct set of measurements was reported previously, and these results as well as interpretations based on them have generated controversy. Here we report what are to our knowledge only the second set of directly measured trace element partition coefficients for a natural system (KLB-1).

  16. S-Isotope Fractionation between Fluid and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Fiege, A.; Holtz, F.; Shimizu, N.; Behrens, H.; Mandeville, C. W.; Simon, A. C.

    2013-12-01

    Large amounts of sulfur (S) can be released from silicate melts during volcanic eruption. Degassing of magma can lead to S-isotope fractionation between fluid and melt. However, experimental data on fluid-melt S-isotope fractionation are scarce and no data exist for silicate melts at temperatures (T) > 1000°C. Recent advances in in situ S-isotope analyses using secondary ion mass spectroscopy (SIMS) enable determinations of the isotopic composition in silicate glasses with low S content [1] and allow us to investigate experimentally fluid-melt S-isotope fractionation effects in magmatic systems. Isothermal decompression experiments were conducted in internally heated pressure vessels (IHPV). Volatile-bearing (~3 to ~8 wt% H2O, 140 to 2700 ppm S, 0 to 1000 ppm Cl) andesitic and basaltic glasses were synthesized at ~1040°C, ~500 MPa and log(fO2) = QFM to QFM+4 (QFM: quartz-magnetite-fayalite buffer). The decompression experiments were carried out at T = 1030 to 1200°C and similar fO2. Pressure (P) was released continuously from ~400 MPa to 150, 100 or 70 MPa with rates (r) ranging from 0.001 to 0.2 MPa/s. The samples were either rapidly quenched after decompression or annealed for various times (tA) at final conditions (1 to 72 h) before quenching. The volatile-bearing starting glasses and the partially degassed experimental glasses were analyzed by electron microprobe (e.g. Cl-, S-content), IR-spectroscopy (H2O content) and SIMS (δ34S). The gas-melt isotope fractionation factors (αg-m) were estimated following Holloway and Blank [2] and utilizing mass balance calculations. The results show that αg-m remains constant within error over the investigated range of r and tA, reflecting fluid-melt equilibrium fractionation of S isotopes for given T and fO2. Data obtained for oxidizing conditions (~QFM+4) are in agreement with observations in arc magmas [3] and close to what is predicted by previous theoretical and experimental data [4; 5; 6]; e.g. a α(SO2 gas - SO42

  17. Lunar highland melt rocks - Chemistry, petrology and silicate mineralogy

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Papike, J. J.

    1980-01-01

    A selected suite containing several of the largest samples of lunar highland melt rocks includes impact melt specimens (anorthositic gabbro, low-K Fra Mauro) and volcanic specimens (intermediate-K Fra Mauro). Although previous assumptions of LKFM volcanism have fallen into disfavor, no fatal arguments against this hypothesis have been presented, and the evidence of a possibly 'inherited igneous' olivine-plagioclase cosaturation provides cause for keeping a volcanic LKFM hypothesis viable. Comparisons of silicate mineralogy with melt rock compositions provide information on the specimen's composition and cooling history. Plagioclase-rock compositions can be matched to the experimentally determined equilibria for appropriate samples to identify melt rocks with refractory anorthitic clasts. Olivine-rock compositions indicate that melt rock vitrophyres precipitate anomalously Fe-rich olivine; the cause of this anomaly is not immediately evident. The Al-Ti and Ca-Fe-Mg zonation in pyroxene provide information on relative cooling rates of highland melt rocks, but Cr- and Al-content (where Al-rich low-Ca pyroxene cores are preserved in rapidly cooled samples) can be correlated with composition of the host rock.

  18. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain < 1 vol. % of the mineral). They exhibit significant variation in orthopyroxene contents, which varies from 25 to 10 vol. %. Some of the xenoliths are more impoverished in orthopyroxene and have dunitic compositions. The ortho- and clinopyroxene exhibit mg# similar to that of olivine, and typically are low aluminous (Al < 0.10 atom pfu in ortho-, and < 0.20 atom pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg

  19. The solubility of gold in silicate melts: First results

    NASA Technical Reports Server (NTRS)

    Borisov, A.; Palme, H.; Spettel, B.

    1993-01-01

    The effects of oxygen fugacity and temperature on the solubility of Au in silicate melts were determined. Pd-Au alloys were equilibrated with silicate of anorthite-diopside eutectic composition at different T-fO2 conditions. The behavior of Au was found to be similar to that of Pd reported recently. Au solubilities for alloys with 30 to 40 at. percent Au decrease at 1400 C from 12 ppm in air to 160 ppb at a log fO2 = -8.7. The slope of the log(Me-solubility) vs. log(fO2) curve is close to 1/4 for Au and the simultaneously determined Pd suggesting a formal valence of Au and Pd of 1+. Near the IW buffer Pd and Au solubilities become even less dependent on fO2 perhaps reflecting the presence of some metallic Au and Pd.

  20. Nitrogen Partitioning Between Reduced Silicate Melts and Metallic Iron Alloys

    NASA Astrophysics Data System (ADS)

    Armstrong, L. S.; Falksen, E.; Von Der Handt, A.; Hirschmann, M. M.

    2014-12-01

    Solubility and partitioning of elements during early planetary history is critical in understanding element concentrations and distribution in the terrestrial planets. Nitrogen is the most depleted element in the bulk silicate Earth relative to CI chondrites [1], which may be explained by its high pressure behavior under reduced conditions relevant to planetary accretion and differentiation. Under oxidized conditions N dissolves in silicate melts as N2, but as fO2 decreases N-H species become the dominant form of dissolved N and the solubility increases [2-7]. DNmetal/melt (the N partition coefficient between metal and melt) is affected by pressure, fO2, fH2, and metal composition [3-5] but with less than 20 published experiments over a wide pressure range, these dependencies have been poorly constrained. Here we present new N-bearing experiments on graphite-saturated silicate melts in equilibrium with Fe-rich metallic melts. Experiments were performed at 1.2 GPa and 1400 ˚C in a piston cylinder apparatus, with N added as Si3N4, FexN, and urea [(NH2)2CO] to basaltic starting compositions. Glassy and metallic run products were gold coated and analyzed by EMPA. Detection limits and standard errors in N concentrations were improved (e.g. better than 1% for > 0.4 wt% N) relative to previous studies [2-5] by fitting non-linear backgrounds to wavelength-scans on standards and unknowns. Preliminary experiments with fO2 of IW-2 to IW-4 produced glasses with a maximum of 0.6 wt% N and metals with a maximum of 1.1 wt% N. DNmetal/melt are comparable to values at a similar pressure determined in the LH-DAC [5]. Further experiments will explore the effects of fO2 and H content on DN and N solubility. References: [1] Halliday (2013) GCA 105, 146-171. [2] Libourel et al. (2003) GCA 67, 4123-4135. [3] Kadik et al. (2011) Geochem. Int. 49, 429-438. [4] Kadik et al. (2013) PEPI 214, 14-24. [5] Roskosz et al. (2013) GCA 121, 15-28. [6] Stanley et al. (2014) GCA 129, 54-76. [7

  1. Transport properties of silicate melts at high pressure

    NASA Astrophysics Data System (ADS)

    Lesher, C. E.; Gaudio, S. J.; Clark, A. N.; O'Dwyer-Brown, L.

    2012-12-01

    It is well appreciated that the transport properties (e.g., diffusion, viscosity) of silicate melts are intimately linked by melt structure and the time scales of structural relaxation. These linkages have been explored exten-sively at low pressure, but our understanding is more limited for high-pressure conditions relevant to the Earth's deep interior. Transport property models based on free-volume, activation energy and/or configurational entropy have merits, but their validity in extrapolation is uncertain. Moreover, the structural implications at high pressure are conflicting and lack experimental support. We examine these issues and review theoretical efforts to model transport properties at high pressure, as well as, those constraints provided by laboratory experiments and simulations. We emphasis the need to consider the properties of melt not only for high-pressure superheated conditions, but also for supercooled conditions in the vicinity of the glass transition. For example, the time scales for density relaxation traversing the glass transition at high pressure can be monitored using in situ X-ray miroctomography/absorption and ex vivo by the Archimedes' method combined with spectroscopy. These approaches are amenable to both strong and fragile liquids. Taken together with superliquidus data, we can greatly improve the interpolation of melt properties within the melting interval for refractory mantle compositions.

  2. Experimental study of the electrolysis of silicate melts

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1992-01-01

    Melting and electrolyzing lunar silicates yields oxygen gas and potentially can be practiced in situ to produce oxygen. With the present experiments conducted with simulant oxides at 1425-1480 C, it was ascertained that oxygen can be obtained anodically at feasible rates and current efficiencies. An electrolysis cell was operated with platinum anodes in a sealed vessel, and the production of gas was monitored. In these electrolysis experiments, stability of anodes remained a problem, and iron and silicon did not reduce readily into the liquid silver cathode.

  3. Spherulite Crystallization Induces Fe-Redox Redistribution in Silicic Melt

    SciTech Connect

    Castro, J.; Cottrell, E; Tuffen, H; Logan, A; Kelley, K

    2009-01-01

    Rhyolitic obsidians from Krafla volcano, Iceland, record the interaction between mobile hydrous species liberated during crystal growth and the reduction of ferric iron in the silicate melt. We performed synchrotron {mu}-FTIR and {mu}-XANES measurements along a transect extending from a spherulite into optically distinct colorless and brown glass zones. Measurements show that the colorless glass is enriched in OH groups and depleted in ferric iron, while the brown glass shows the opposite relationship. The color shift between brown and clear glass is sharp, suggesting that the colorless glass zone was produced by a redox front that originated from the spherulite margin and moved through surrounding melt during crystallization. We conclude that the most likely reducing agent is hydrogen, produced by magnetite crystallization within the spherulite. The Krafla obsidians dramatically capture redox disequilibrium on the micoscale and highlight the importance of hydrous fluid liberation and late-stage crystallization to the redox signature of glassy lavas.

  4. Experimental determination of the solubility of iridium in silicate melts: Preliminary results

    NASA Technical Reports Server (NTRS)

    Borisov, Alexander; Dingwell, Donald B.; Oneill, Hugh ST.C.; Palme, Herbert

    1992-01-01

    Little is known of the geochemical behavior of iridium. Normally this element is taken to be chalcophile and/or siderophile so that during planetary differentiation processes, e.g., core formation, iridium is extracted from silicate phases into metallic phases. Experimental determination of the metal/silicate partition coefficient of iridium is difficult simply because it is so large. Also there are no data on the solubility behavior of iridium in silicate melts. With information on the solubility of iridium in silicate melts it is possible, in combination with experimental data for Fe-Ir alloys, to calculate the partition coefficient between a metallic phase and a silicate melt.

  5. Anionic constitution of 1-atmosphere silicate melts: implications for the structure of igneous melts.

    PubMed

    Virgo, D; Mysen, B O; Kushiro, I

    1980-06-20

    A structural model is proposed for the polymeric units in silicate melts quenched at 1 atmosphere. The anionic units that have been identified by the use of Raman spectroscopy are SiO(4)(4-) monomers, Si(2)O(7)(6-) dimers, SiO(3)(2-) chains or rings, Si(2)O(5)(2-) sheets, and SiO(2) three-dimensional units. The coexisting anionic species are related to specific ranges of the ratio of nonbridging oxygens to tetrahedrally coordinated cations (NBO/Si). In melts with 2.0 < NBO/Si < approximately 4.0, the equilibrium is of the type [See equation in the PDF file]. In melts with NBO/Si approximately 1.0 to 2.0, the equilibrium anionic species are given by [See equation in the PDF file]. In alkali-silicate melts with NBO/Si <~ 1.3 and in aluminosilicate melts with NBO/T < 1.0, where T is (Si + Al), the anionic species in equilibrium are given by [See equation in the PDF file]. In multicomponent melts with compositions corresponding to those of the major igneous rocks, the anionic species are TO(2), T(2)O(5), T(2)O(6), and TO(4), and the coexisting polymeric units are determined by the second and third of these disproportionation reactions.

  6. Studying regimes of convective heat transfer in the production of high-temperature silicate melts

    NASA Astrophysics Data System (ADS)

    Volokitin, O. G.; Sheremet, M. A.; Shekhovtsov, V. V.; Bondareva, N. S.; Kuzmin, V. I.

    2016-09-01

    The article presents the results of theoretical and experimental studies of the production of high-temperature silicate melts using the energy of low-temperature plasma in a conceptually new setup. A mathematical model of unsteady regimes of convective heat and mass transfer is developed and numerically implemented under the assumption of non-Newtonian nature of flow in the melting furnace with plasma-chemical synthesis of high-temperature silicate melts. Experiments on melting silicate containing materials were carried out using the energy of low-temperature plasma. The dependence of dynamic viscosity of various silicate materials (basalt, ash, waste of oil shale) was found experimentally.

  7. Oriented crystallographic textures of olivine in quenched silicate melt spherules

    NASA Astrophysics Data System (ADS)

    Isobe, H.

    2015-12-01

    external and internal textures of silicate melt spherules.

  8. Effect of silicate structure on thermodynamic properties of calcium silicate melts: Quantitative analysis of Raman spectra

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyun

    2013-05-01

    The distribution of silicate anionic species (Qn units, n=0, 1, 2, 3) and the chemical speciation of oxygen in CaO-SiO2-MO (M=Mn and Mg) slags were investigated by micro-Raman spectroscopic analysis. Furthermore, the thermochemical properties were evaluated using a concentration of free oxygen and a degree of polymerization. A good linear relationship was obtained between sulfide capacity and concentration of free oxygen in the CaO-SiO2 (-MnO) melts at 1500 to 1600 °C. However, even though there was more abundant free oxygen in the CaO-SiO2-MgO system than in the CaO-SiO2 system, the sulfide capacity of the former was lower than the latter, indicating that the sulfur dissolution behavior in the silicate melts cannot be simply explained by the content of free oxygen, because the composition dependency of the stability ratio of oxygen and sulfide ions should be taken into account. The excess free energy of CaO, MgO and MnO linearly decreased as the ln (Q3/Q2) increased. The effect of the degree of polymerization on the excess free energy of mixing of MgO-containing slag was larger than that of MnO-containing slag, which was explained by the difference of the ionization potential between Mn2+ and Mg2+ ions.

  9. Metal/Silicate Partitioning of W, Ge, Ga and Ni: Dependence on Silicate Melt Composition

    NASA Astrophysics Data System (ADS)

    Singletary, S.; Drake, M. J.

    2004-12-01

    Metal/silicate partition coefficients (Dm/s) for siderophile elements are essential to investigations of core formation when used in conjunction with the pattern of elemental abundances in the Earth's mantle (Drake and Righter, 2002; Jones and Drake, 1986; Righter et al. 1997). The partitioning of siderophile elements is controlled by temperature, pressure, oxygen fugacity, and by the compositions of the metal and silicate phases. In this work, we investigate the role of silicate melt composition on the partitioning of the siderophile elements W, Ge, Ga and Ni between metallic and silicate liquid. Experiments were performed in the Experimental Geochemistry Laboratory at the University of Arizona utilizing a non-end loaded piston cylinder apparatus with a barium carbonate pressure medium. Starting materials were created by combining the mafic and silicic compositions of Jaeger and Drake (2000) with Fe powder (~25 wt% of the total mixture) to achieve metal saturation. Small amounts of W, Ge, Ga2O3 and NiO powder (less than 2 wt% each) were also added to the starting compositions. The experiments were contained in a graphite capsule and performed with temperature and pressure fixed at 1400ºC and 1.5 GPa. Experimental run products were analyzed with the University of Arizona Cameca SX50 electron microprobe with four wavelength dispersive spectrometers and a PAP ZAF correction program. All experiments in our set are saturated with metal and silicate liquid, indicating that oxygen fugacity is below IW. Several of the runs also contain a gallium-rich spinel as an additional saturating phase. Quench phases are also present in the silicate liquid in all runs. The experimentally produced liquids have nbo/t values (calculated using the method of Mills, 1993) that range from 1.10 to 2.97. These values are higher than those calculated for the liquids in the Jaeger and Drake (2000) study. The higher nbo/t values are due to uptake of Fe by the melt. The initial silicate

  10. Metal/Silicate Partitioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition

    NASA Technical Reports Server (NTRS)

    Bailey, Edward; Drake, Michael J.

    2004-01-01

    The distinctive pattern of element concentrations in the upper mantle provides essential evidence in our attempts to understand the accretion and differentiation of the Earth (e.g., Drake and Righter, 2002; Jones and Drake, 1986; Righter et al., 1997; Wanke 1981). Core formation is best investigated through use of metal/silicate partition coefficients for siderophile elements. The variables influencing partition coefficients are temperature, pressure, the major element compositions of the silicate and metal phases, and oxygen fugacity. Examples of studies investigating the effects of these variables on partitioning behavior are: composition of the metal phase by Capobianco et al. (1999) and Righter et al. (1997); silicate melt composition by Watson (1976), Walter and Thibault (1995), Hillgren et al. (1996), Jana and Walker (1997), and Jaeger and Drake (2000); and oxygen fugacity by Capobianco et al. (1999), and Walter and Thibault (1995). Here we address the relative influences of silicate melt composition, pressure and temperature.

  11. Reinterpretation of reduction potential measurements done by linear sweep voltammetry in silicate melts

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Haskin, L. A.; Keedy, C. R.

    1991-01-01

    The equilibrium concentrations of Ni between silicate melt and Pt were determined experimentally as a function of oxygen fugacity. The results demonstrate that metallic species derived in linear sweep voltammetry experiments in silicate melts are diffusing into Pt electrodes and not into the melt, as was concluded by previoius studies. This requires reinterpretation of previous linear sweep voltammetry results and recalculation and correction of reported reduction potentials. This paper reports these corrected reduction potentials. Also reported are the activity coefficients for Ni in synthetic basalt and diopsidic melts and for Co in diopsidic melt.

  12. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle.

    PubMed

    Matsukage, Kyoko N; Jing, Zhicheng; Karato, Shun-ichiro

    2005-11-24

    The chemical evolution of the Earth and the terrestrial planets is largely controlled by the density of silicate melts. If melt density is higher than that of the surrounding solid, incompatible elements dissolved in the melt will be sequestered in the deep mantle. Previous studies on dry (water-free) melts showed that the density of silicate melts can be higher than that of surrounding solids under deep mantle conditions. However, melts formed under deep mantle conditions are also likely to contain some water, which will reduce the melt density. Here we present data constraining the density of hydrous silicate melt at the conditions of approximately 410 km depth. We show that the water in the silicate melt is more compressible than the other components, and therefore the effect of water in reducing melt density is markedly diminished under high-pressure conditions. Our study indicates that there is a range of conditions under which a (hydrous) melt could be trapped at the 410-km boundary and hence incompatible elements could be sequestered in the deep mantle, although these conditions are sensitive to melt composition as well as the composition of the surrounding mantle.

  13. New surveys of the Chesapeake Bay impact structure suggest melt pockets and target-structure effect

    USGS Publications Warehouse

    Shah, A.K.; Brozena, J.; Vogt, P.; Daniels, D.; Plescia, J.

    2005-01-01

    We present high-resolution gravity and magnetic field survey results over the 85-km-diameter Chesapeake Bay impact structure. Whereas a continuous melt sheet is anticipated at a crater this size, shallow-source magnetic field anomalies of ???100 nT instead suggest that impact melt pooled in kilometer-scaled pockets surrounding the base of a central peak. A central anomaly of ???300 nT may represent additional melt or rock that underwent shock-induced remagnetization. Models predict that the total volume of the melt ranges from ???0.4 to 10 km3, a quantity that is several orders of magnitude smaller than expected for an impact structure this size. However, this volume is within predictions given a transient crater of diameter of 20-40 km for a target covered with water and sedimentary deposits such that melt fragments were widely dispersed at the time of impact. Gravity data delineate a gently sloping inner basin and a central peak via a contrast between crystalline and sedimentary rock. Both features are ovoid, oriented parallel to larger preimpact basement structures. Conceptual models suggest how lateral differences in rock strength due to these preimpact structures helped to shape the crater's morphology during transient-crater modification. ?? 2005 Geological Society of America.

  14. The effects of sulfide composition on the solubility of sulfur in coexisting silicate melts

    NASA Astrophysics Data System (ADS)

    Smythe, Duane; Wood, Bernard; Kiseeva, Ekaterina

    2016-04-01

    The extent to which sulfur dissolves in silicate melts saturated in an immiscible sulfide phase is a fundamental question in igneous petrology and plays a primary role in the generation of magmatic ore deposits, volcanic degassing and planetary differentiation. Terrestrial sulfide melts often contain over 20 weight percent Ni + Cu, however, most experimental studies investigating sulfur solubility in silicate melt have been primarily concerned with the effects of silicate melt composition, and pure FeS has been use as the immiscible sulfide melt (O'Neill and Mavrogenes, 2002; Li and Ripley, 2005). To investigation of the effects of sulfide composition, in addition to those of temperature, pressure and silicate melt composition, on sulfur solubility in silicate melts, we have carried out a series of experiments done at pressures between 1.5 and 3 GPa and temperatures from 1400 to 1800C over a range of compositions of both the silicate and sulfide melt. We find that the solubility of sulfur in silicate melts drops significantly with the substitution of Ni and Cu for Fe in the immiscible sulfide melt, decreasing by approximately 40% at mole fractions of NiS + Cu2S of 0.4. Combining our results with those from the previous studies investigating sulfur solubility in silicate melts we have also found that solubility increases with increasing temperature and decreases pressure. These results show that without considering the composition of the immiscible sulfide phase the sulfur content of silicate melts can be significantly overestimated. This may serve to explain the relatively low sulfur concentrations in MORB melts, which previous models predict to be undersaturated in a sulfide phase despite showing chemical and textural evidence for sulfide saturation. Li, C. & Ripley, E. M. (2005). Empirical equations to predict the sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. Mineralium Deposita 40, 218-230. O'Neill, H. S. C

  15. Complexation of Sr in aqueous fluids equilibrated with silicate melts: effect of melt and fluid composition

    NASA Astrophysics Data System (ADS)

    Borchert, Manuela; Wilke, Max; Schmidt, Christian; Kvashnina, Kristina

    2010-05-01

    At crustal conditions, the fluid-melt partitioning of Sr is mainly controlled by the salinity of the fluid and the composition of the melt (Borchert et al., 2010). The data show a sharp increase in the Sr partition coefficient with the alumina saturation index (ASI) to a maximum of 0.3 at an ASI of 1.05. Because fluid-melt partitioning of a given element depends on its complexation in the fluid and its incorporation in the melt, these data imply a change in the Sr speciation at least one of the two phases. For silicate melts, Kohn et al. (1990) found only small changes in the first coordination shell of Sr in a suite of melts with various degrees of polymerization, and argued that incorporation of Sr in the melt should not play a major role in controlling Sr partitioning. For the aqueous fluid, Bai and Koster van Groos (1999) and Webster et al. (1989) suggested a control of the Sr partition coefficient by SrCl2 complexes based on the correlation between partition coefficient and Cl concentration in the fluid after quenching. Both hypotheses cannot explain our partitioning data. Thus, new information on Sr complexation is required. Here, we studied the complexation of Sr in peraluminous or peralkaline melt dissolved in aqueous fluids in-situ at elevated PT conditions using hydrothermal diamond-anvil cells (HDAC) and X-ray absorption near edge structure (XANES) spectroscopy. The starting materials were peraluminous or peralkaline glass and H2O or a chloridic solution. The glass was doped with high concentrations of 5000 or 10000 ppm Sr. We used bulk compositions with 10 to 15 wt.% glass to ensure that the melt was completely dissolved in the fluid at high PT conditions. For qualitative evaluation, we analyzed the starting glasses and various crystalline compounds and standard solutions. The experiments were performed at beamline ID26 at ESRF (Grenoble, France) using a high resolution emission spectrometer and Si(311) monochromator crystals for high resolution and Si

  16. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.

    2013-12-01

    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder

  17. Water solubility in rhyolitic silicate melts at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ryan, Amy; Russell, Kelly; Nichols, Alexander; Porritt, Lucy; Friedlander, Elizabeth

    2014-05-01

    temperatures, though slight, produces a marked change in maximum run product porosity from 50 to 70% through the temperature series, illuminating the effect of retrograde solubility at conduit- and surface-relevant pressures. The readiness of a rhyolitic silicate melt not only to produce more bubbles at higher temperatures, but also to resorb existing bubbles during cooling has important implications for magmatic fragmentation, flow of lava, and welding processes.

  18. Occurrence of Siliceous Impact Melt in Netschaëvo IIE? A FIB-TEM Study

    NASA Astrophysics Data System (ADS)

    Hamann, C.; Van Roosbroek, N.; Greshake, A.; Pittarello, L.; Hecht, L.; Debaille, V.; Wirth, R.; Claeys, Ph.

    2015-07-01

    A silicate inclusion in a sample of the Netschaëvo IIE iron meteorite was studied with FIB-TEM. We present petrographic features indicating that this inclusion is quenched impact melt and suggest that Netschaëvo is an impact melt breccia.

  19. Sulfur Saturation Limits in Silicate Melts and their Implications for Core Formation Scenarios for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2002-01-01

    This study explores the controls of temperature, pressure, and silicate melt composition on S solubility in silicate liquids. The solubility of S in FeO-containing silicate melts in equilibrium with metal sulfide increases significantly with increasing temperature but decreases with increasing pressure. The silicate melt structure also exercises a control on S solubility. Increasing the degree of polymerization of the silicate melt structure lowers the S solubility in the silicate liquid. The new set of experimental data is used to expand the model of Mavrogenes and O'Neill(1999) for S solubility in silicate liquids by incorporating the influence of the silicate melt structure. The expected S solubility in the ascending magma is calculated using the expanded model. Because the negative pressure dependence of S solubility is more influential than the positive temperature dependence, decompression and adiabatic ascent of a formerly S-saturated silicate magma will lead to S undersaturation. A primitive magma that is S-saturated in its source region will, therefore, become S-undersaturated as it ascends to shallower depth. In order to precipitate magmatic sulfides, the magma must first cool and undergo fractional crystallization to reach S saturation. The S content in a metallic liquid that is in equilibrium with a magma ocean that contains approx. 200 ppm S (i.e., Earth's bulk mantle S content) ranges from 5.5 to 12 wt% S. This range of S values encompasses the amount of S (9 to 12 wt%) that would be present in the outer core if S is the light element. Thus, the Earth's proto-mantle could be in equilibrium (in terms of the preserved S abundance) with a core-forming metallic phase.

  20. Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid

    NASA Astrophysics Data System (ADS)

    Mathez, Edmond A.; Webster, James D.

    2005-03-01

    The partitioning behavior of Cl among apatite, mafic silicate melt, and aqueous fluid and of F between apatite and melt have been determined in experiments conducted at 1066 to 1150 °C and 199-205 MPa. The value of D Clapatite/melt (wt. fraction of Cl in apatite/Cl in melt) ≈0.8 for silicate melt containing less than ˜3.8 wt.% Cl. At higher melt Cl contents, small increases in melt Cl concentration are accompanied by large increases in apatite Cl concentration, forcing D Clapatite/melt to increase as well. Melt containing less than 3.8% Cl coexists with water-rich vapor; that containing more Cl coexists with saline fluid, the salinity of which increases rapidly with small increases in melt Cl content, analogous to the dependency of apatite composition on melt Cl content. This behavior is due to the fact that the solubility of Cl in silicate melt depends strongly on the composition of the melt, particularly its Mg, Ca, Fe, and Si contents. Once the melt becomes "saturated" in Cl, additional Cl must be accommodated by coexisting fluid, apatite, or other phases rather than the melt itself. Because Cl solubility depends on composition, the Cl concentration at which D Clapatite/melt and D Clfluid/melt begin to increase also depends on composition. The experiments reveal that D Fapatite/melt ≈3.4. In contrast to Cl, the concentration of F in silicate melt is only weakly dependent on composition (mainly on melt Ca contents), so D Fapatite/melt is constant for a wide range of composition. The experimental data demonstrate that the fluids present in the waning stages of the solidification of the Stillwater and Bushveld complexes were highly saline. The Cl-rich apatite in these bodies crystallized from interstitial melt with high Cl/(F + OH) ratio. The latter was generated by the combined processes of fractional crystallization and dehydration by its reaction with the relatively large mass of initially anhydrous pyroxene through which it percolated.

  1. The effect of melt composition on the partitioning of oxidized sulfur between silicate melts and magmatic volatiles

    NASA Astrophysics Data System (ADS)

    Zajacz, Zoltán

    2015-06-01

    Experiments were conducted at 500 MPa and 1240 °C in a piston cylinder apparatus to assess the effect of melt composition on the melt/volatile partition coefficient of sulfur (DSmelt/volatile) , which was used as a measure of the silicate melt's capacity to dissolve oxidized sulfur species. Iron-free, three- and four-component silicate melts were equilibrated with H2O-S fluids with sulfur concentrations ⩽2 mol% at an oxygen fugacity imposed by the Re-ReO2 buffer (1.4 log units above the Ni-NiO buffer). At these conditions, SO2 (S4+) is predicted to be the dominant sulfur species in the volatile phase and sulfate (S6+) is the dominant sulfur species in the silicate melt. The values of DSmelt /volatile were calculated by mass balance. The results show that DSmelt /volatile values increase exponentially with decreasing the degree of polymerization of the silicate melt structure. For example, in calcium-aluminosilicate melts, DSmelt /volatile changes from 0.005 to 0.3 as the degree of melt polymerization changes from the equivalent of a rhyolite to the equivalent of a basalt. At a constant degree of melt polymerization, DSmelt /volatile in equilibrium with sodium-aluminosilicate (NAS) melts is more than an order of magnitude higher than in equilibrium with calcium-aluminosilicate (CAS) melts, and more than two orders of magnitude higher than in equilibrium with magnesium-aluminosilicate (MAS) melts. The value of DSmelt /volatile changes from 0.014 in MAS glasses to 3.4 in NAS glasses for the most depolymerized compositions in each series. Potassium has a similar effect on sulfate dissolution to that of Na. The variation of DSmelt /volatile in equilibrium with various calcium-sodium aluminosilicate (CNAS), magnesium-sodium aluminosilicate (MNAS) and magnesium-potassium aluminosilicate (MKAS) melts indicates that alkalis are only available for sulfate complexation when they are present in excess compared to the required amount to charge balance for the Si4+ to Al3

  2. Iron isotopic fractionation factor between magnetite and hydrous silicic melt

    NASA Astrophysics Data System (ADS)

    Huang, F.; Lundstrom, C. C.

    2006-12-01

    A "thermal migration" experiment was conducted in the piston cylinder to investigate the changes in composition of a wet andesitic bulk composition in a temperature gradient at 0.5 GPa. A homogeneous andesite powder (AGV-1 containing 4 wt.% H2O was sealed in a AuPd double capsule with the hot end at 950°C and the bottom end 350°C for 66 days. The charge changes from 100% melt at the top to the progressively more crystalline with the sequential appearance of apatite, magnetite, amphibole, biotite, plagioclase, quartz, and K-feldspar. We microdrilled 5 samples along the temperature gradient and analyzed these for Fe isotope ratios by double spike MC-ICP-MS at UIUC. Results show that the 100% melt area is depleted in heavy Fe isotopes relative to all more crystalline portions of the experiment (4 samples) with the offset in {δ}^{56/54}FeIRMM of about 1.7‰. This does not appear to reflect Fe loss in the experiment as the Fe content and isotopes mass balance and no detectable Fe was found in the capsule after the experiment. Instead the offset is interpreted to reflect the combination of diffusive fractionation of Fe moving by diffusion and possible equilibrium fractionations between melt and magnetite that occurs throughout the crystalline portion of the experiment. However, both the isotopic fractionation factor between magnetite and melt and the effect of diffusion on Fe isotopes remains unknown. We are currently investigating Fe isotopic fractionation factor between magnetite and melt and effects of melt diffusion on Fe isotopes. To assess diffusion, we will microdrill and analyze melt-melt diffusion couples from Lundstrom(G-Cubed, 2003). To assess magnetite-melt fractionation, we have begun piston cylinder experiments at 0.5 GPa and 800°C using a starting material synthesized based on the melt composition within the thermal migration experiment. Initial experiments produce a layer of 100% melt on top of a 2-phase mush of magnetite-melt. This will allow

  3. Hydrogen isotope fractionation and redox-controlled solution mechanisms in silicate-COH melt + fluid systems

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn

    2015-11-01

    The behavior of volatiles in silicate-COH melts and fluids and hydrogen isotope fractionation between melt and fluid were determined experimentally to advance our understanding of the role of volatiles in magmatic processes. Experiments were conducted in situ while the samples were at the desired temperature and pressure to 825°C and ~1.6 GPa and with variable redox conditions. Under oxidizing conditions, melt and fluid comprised CO2, CO3, HCO3, OH, H2O, and silicate components, whereas under reducing conditions, the species were CH4, H2, H2O, and silicate components. Temperature-dependent hydrogen isotope exchange among structural entities within coexisting fluids and melts yields ΔH values near 14 and 24 kJ/mol and -5 and -1 kJ/mol under oxidizing and reducing conditions, respectively. This temperature (and probably pressure)-dependent D/H fractionation is because of interaction between D and H and silicate and C-bearing species in silicate-saturated fluids and in COH fluid-saturated melts. The temperature- and pressure-dependent D/H fractionation factors suggest that partial melts in the presence of COH volatiles in the upper mantle can have δD values 100% or more lighter relative to coexisting silicate-saturated fluid. This effect is greater under oxidizing than under reducing conditions. It is suggested that δD variations of upper mantle mid-ocean ridge basalt (MORB) sources, inferred from the δD of MORB magmatic rocks, can be explained by variations in redox conditions during melting. Lower δD values of the MORB magma reflect more reducing conditions in the mantle source.

  4. Carbon-dioxide-rich silicate melt in the Earth's upper mantle.

    PubMed

    Dasgupta, Rajdeep; Mallik, Ananya; Tsuno, Kyusei; Withers, Anthony C; Hirth, Greg; Hirschmann, Marc M

    2013-01-10

    The onset of melting in the Earth's upper mantle influences the thermal evolution of the planet, fluxes of key volatiles to the exosphere, and geochemical and geophysical properties of the mantle. Although carbonatitic melt could be stable 250 km or less beneath mid-oceanic ridges, owing to the small fraction (∼0.03 wt%) its effects on the mantle properties are unclear. Geophysical measurements, however, suggest that melts of greater volume may be present at ∼200 km (refs 3-5) but large melt fractions are thought to be restricted to shallower depths. Here we present experiments on carbonated peridotites over 2-5 GPa that constrain the location and the slope of the onset of silicate melting in the mantle. We find that the pressure-temperature slope of carbonated silicate melting is steeper than the solidus of volatile-free peridotite and that silicate melting of dry peridotite + CO(2) beneath ridges commences at ∼180 km. Accounting for the effect of 50-200 p.p.m. H(2)O on freezing point depression, the onset of silicate melting for a sub-ridge mantle with ∼100 p.p.m. CO(2) becomes as deep as ∼220-300 km. We suggest that, on a global scale, carbonated silicate melt generation at a redox front ∼250-200 km deep, with destabilization of metal and majorite in the upwelling mantle, explains the oceanic low-velocity zone and the electrical conductivity structure of the mantle. In locally oxidized domains, deeper carbonated silicate melt may contribute to the seismic X-discontinuity. Furthermore, our results, along with the electrical conductivity of molten carbonated peridotite and that of the oceanic upper mantle, suggest that mantle at depth is CO(2)-rich but H(2)O-poor. Finally, carbonated silicate melts restrict the stability of carbonatite in the Earth's deep upper mantle, and the inventory of carbon, H(2)O and other highly incompatible elements at ridges becomes controlled by the flux of the former.

  5. Termochemical Models For Slags and Silicate Melts, Review and Perspectives

    NASA Astrophysics Data System (ADS)

    Ottonello, G.

    Thermochemical models devoted to the comprehension of reactive and mixing properties of silicate melts and slags may be roughly grouped into four main classes: 1) fictive chemical; 2) quasi chemical; 3) fictive structural; 4) polymeric. In the first class we may group the fictive regular mixture approach of Ghiorso and Carmichael [1,2]and its extensions [3-5]and the subregular model of Berman and Brown [6]. To the second class belong the modified quasi chemical approach of Pelton and coworkers [7,8] , and the Kapoor - Froberg cellular model and its extensions [9-11]. The third class has much to share with the second one (and indeed the cellular model could be ascribed to this class as well). To this class belong the "central surround model" of Sastri and Lahiri [12] , the associated solution models of Bjorkman [13], Hastie and coworkers [14]and Goel and coworkers [15], the two sublattice model of Hillert and coworkers [16]and the polynomial expansions of Hoch and Arpshofen [17] . The fourth class encompasses the models of Masson[18-20] , Toop-Samis [21,22]and its extensions [23-25] . The phylosophy beyond each one of the four classes is basically different. Benefits and drawbacks are present in any of them, and applications are often limited to simple systems (or to sufficiently complex systems, in the case of arbitrary deconvolutions of type 1) and to limited P-T ranges. The crucial aspects of the various models will be outlined to some extent. It will be shown that, often, model conflictuality is only appartent and that, in some cases, model failure is unperceived by acritical utilizers. New perspectives in the future research devoted to the comprehension of melt reactivity in compositionally complex systems, with special enphasis on the solubility of gaseous components and unmixing, will be finally discussed. References: [1] Ghiorso M.S. and Carmichael I.S.E. (1980) Contrib. Mineral. Petrol., 71, 323-342. [2] Ghiorso M.S., Carmichael I.S.E., Rivers M.L. and Sack

  6. Energetics of silicate melts from thermal diffusion studies

    SciTech Connect

    Walker, D.

    1992-07-01

    Efforts are reported in the following areas: laboratory equipment (multianvils for high P/T work, pressure media, SERC/DL sychrotron), liquid-state thermal diffusion (silicate liquids, O isotopic fractionation, volatiles, tektites, polymetallic sulfide liquids, carbonate liquids, aqueous sulfate solutions), and liquid-state isothermal diffusion (self-diffusion, basalt-rhyolite interdiffusion, selective contamination, chemical diffusion).

  7. Partitioning of chromium between silicate crystals and melts

    NASA Technical Reports Server (NTRS)

    Huebner, J. S.; Lipin, B. R.; Wiggins, L. B.

    1976-01-01

    Experiments were performed determining the distribution of chromium between olivine, pyroxenes, and melt at oxygen fugacity values near those of lunar rocks for a wide range of bulk compositions. The range of values of D-Cr (wt% of Cr2O3 in crystals/Cr2O3 in melt) is 0.6-1.3 for olivine and 1.6-3.5 for pyroxene; this ratio shows no obvious dependence on any experimental parameter.

  8. Silicate-COH melt and fluid structure, their physicochemical properties, and partitioning of nominally refractory oxides between melts and fluids

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn O.

    2012-09-01

    Structural characterization of silicate melts and aqueous fluids equilibrated at pressures and temperatures corresponding to the Earth's interior requires measurements in-situ while the samples are at the pressure and temperature of interest. To this end, structure and structure-property relations of melts and coexisting fluids in silicate-COH systems have been determined at temperatures up to 1000 °C and at pressures to ~ 2.0 GPa. The water component of silicate-H2O systems shows aqueous fluids, supercritical fluids, and hydrous melts to comprise molecular H2O (H2O0) and OH-groups, bonded to Si4+ and likely Al3+. The abundance-ratio, OH/H2O0, is positively correlated with temperature. The extent of hydrogen bonding diminishes with temperature and cannot be detected at above ~ 450 °C and ~ 0.4 GPa. Its ∆H is near 10 kJ/mol for water dissolved in hydrous melt as compared with ≥ 20 kJ/mol for pure H2O. Hydrogen bonding cannot, therefore, be the cause of property behavior in hydrous magmatic systems because the temperature in hydrous magmatic systems exceeds 600 °C. In SiO2-H2O fluid, silicate solute comprises Q0 and Q1 species with a ∆H of the polymerization reaction of ~ 15 kJ/mol assuming no pressure effect. In the Qn-notations, the value of n indicates the number of bridging oxygen in a silicate or aluminosilicate polymeric species. In chemically more complex alkali aluminosilicate systems, the silicate speciation in melts, in aqueous fluid, and in supercritical fluids comprises the same Q-species, but their abundance and proportions differ with the more polymerized species dominant in melt. Silicate-water interaction in the fluids, melts and supercritical fluids is described with the expression, 12Q3 + 13H2O ⇋ 2Q2 + 6Q1 + 4Q0 with ∆H = 400-450 kJ/mol. The solubility of geochemically important trace elements such as, for example, HFSE in silicate-saturated aqueous fluid under deep crustal and upper mantle pressure and temperature conditions is orders

  9. CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS

    SciTech Connect

    Visscher, Channon; Fegley, Bruce Jr.

    2013-04-10

    In the giant impact theory for lunar origin, the Moon forms from material ejected by the impact into an Earth-orbiting disk. Here we report the initial results from a silicate melt-vapor equilibrium chemistry model for such impact-generated planetary debris disks. In order to simulate the chemical behavior of a two-phase (melt+vapor) disk, we calculate the temperature-dependent pressure and chemical composition of vapor in equilibrium with molten silicate from 2000 to 4000 K. We consider the elements O, Na, K, Fe, Si, Mg, Ca, Al, Ti, and Zn for a range of bulk silicate compositions (Earth, Moon, Mars, eucrite parent body, angrites, and ureilites). In general, the disk atmosphere is dominated by Na, Zn, and O{sub 2} at lower temperatures (<3000 K) and SiO, O{sub 2}, and O at higher temperatures. The high-temperature chemistry is consistent for any silicate melt composition, and we thus expect abundant SiO, O{sub 2}, and O to be a common feature of hot, impact-generated debris disks. In addition, the saturated silicate vapor is highly oxidizing, with oxygen fugacity (f{sub O{sub 2}}) values (and hence H{sub 2}O/H{sub 2} and CO{sub 2}/CO ratios) several orders of magnitude higher than those in a solar-composition gas. High f{sub O{sub 2}} values in the disk atmosphere are found for any silicate composition because oxygen is the most abundant element in rock. We thus expect high oxygen fugacity to be a ubiquitous feature of any silicate melt-vapor disk produced via collisions between rocky planets.

  10. Pt, Au, Pd and Ru Partitioning Between Mineral and Silicate Melts: The Role of Metal Nanonuggets

    NASA Technical Reports Server (NTRS)

    Malavergne, V.; Charon, E.; Jones, J.; Agranier, A.; Campbell, A.

    2012-01-01

    The partition coefficients of Pt and other Pt Group Elements (PGE) between metal and silicate D(sub Metal-Silicate) and also between silicate minerals and silicate melts D(sub Metal-Silicate) are among the most challenging coefficients to obtain precisely. The PGE are highly siderophile elements (HSE) with D(sub Metal-Silicate) >10(exp 3) due to the fact that their concentrations in silicates are very low (ppb to ppt range). Therefore, the analytical difficulty is increased by the possible presence of HSE-rich-nuggets in reduced silicate melts during experiments). These tiny HSE nuggets complicate the interpretation of measured HSE concentrations. If the HSE micro-nuggets are just sample artifacts, then their contributions should be removed before calculations of the final concentration. On the other hand, if they are produced during the quench, then they should be included in the analysis. We still don't understand the mechanism of nugget formation well. Are they formed during the quench by precipitation from precursor species dissolved homogeneously in the melts, or are they precipitated in situ at high temperature due to oversaturation? As these elements are important tracers of early planetary processes such as core formation, it is important to take up this analytical and experimental challenge. In the case of the Earth for example, chondritic relative abundances of the HSE in some mantle xenoliths have led to the concept of the "late veneer" as a source of volatiles (such as water) and siderophiles in the silicate Earth. Silicate crystal/liquid fractionation is responsible for most, if not all, the HSE variation in the martian meteorite suites (SNC) and Pt is the element least affected by these fractionations. Therefore, in terms of reconstructing mantle HSE abundances for Mars, Pt becomes a very important player. In the present study, we have performed high temperature experiments under various redox conditions in order to determine the abundances of Pt, Au

  11. Atomistic insight into viscosity and density of silicate melts under pressure.

    PubMed

    Wang, Yanbin; Sakamaki, Tatsuya; Skinner, Lawrie B; Jing, Zhicheng; Yu, Tony; Kono, Yoshio; Park, Changyong; Shen, Guoyin; Rivers, Mark L; Sutton, Stephen R

    2014-01-01

    A defining characteristic of silicate melts is the degree of polymerization (tetrahedral connectivity), which dictates viscosity and affects compressibility. While viscosity of depolymerized silicate melts increases with pressure consistent with the free-volume theory, isothermal viscosity of polymerized melts decreases with pressure up to ~3-5 GPa, above which it turns over to normal (positive) pressure dependence. Here we show that the viscosity turnover in polymerized liquids corresponds to the tetrahedral packing limit, below which the structure is compressed through tightening of the inter-tetrahedral bond angle, resulting in high compressibility, continual breakup of tetrahedral connectivity and viscosity decrease with increasing pressure. Above the turnover pressure, silicon and aluminium coordination increases to allow further packing, with increasing viscosity and density. These structural responses prescribe the distribution of melt viscosity and density with depth and play an important role in magma transport in terrestrial planetary interiors.

  12. Activity composition relationships in silicate melts. Final report

    SciTech Connect

    Glazner, A.F.

    1990-12-31

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  13. Melt inclusion evidence of second immiscibility within a magma derived non-silicate phase (Mt Vesuvius)

    NASA Astrophysics Data System (ADS)

    Fulignati, P.; Kamenetsky, V.; Marianelli, P.; Sbrana, A.

    2003-04-01

    Processes of melt immiscibility occurring during late magmatic differentiation play important role in the generation of many magmatic-hydrothermal ore deposits and may activate and control the style of volcanic eruptions. The exsolution of a non-silicate, volatile-rich phase from the phonolitic magma occurred at the peripheral parts of the 79AD Vesuvius magma chamber. The results of our work suggest that this immiscible phase can further experience another unmixing event that occurs in essentially "post-magmatic" environment. Heating/cooling experiments were carried out on the cogenetic multiphase (clear daughter crystals + vapour bubble(s) + interstial liquid) inclusions, hosted in K-feldspar of cognate felsic xenoliths, representative of rocks in the peripheral parts of the magma chamber. During heating, solid phases begin to dissolve at about 150^oC and melt completely at 530^oC. These low temperatures of melting argue for a non-silicate composition of daughter minerals, and thus bulk inclusion content. The remaining vapour bubble dissolves at 880^oC. During subsequent cooling, vapour bubble nucleates at 785^oC and increases in size. Unmixing of at least two melt phases occurs instantaneously at 500^oC in all studied inclusions. Globules of one melt float freely in the matrix of another melt, change their shape and size, coalesce and split apart continuously down to 100--150^oC. The movements of globules slow down with decreasing temperature until final solidification at 40--50^oC. The similarity of observed phase transformations inside inclusions suggests their homogeneous trapping at magmatic temperatures. By analogy with results of the study of xenoliths from the Vesuvius 472AD eruption (Fulignati et al., 2001) we interpret unmixed phases as globules of the Na-K chloride melt set in the matrix of Ca-carbonate melt. We infer that immiscibility between low viscosity, highly fugitive non-silicate melts may significantly influence partitioning of metals

  14. Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Liu, Xingcheng; Xiong, Xiaolin; Audétat, Andreas; Li, Yuan; Song, Maoshuang; Li, Li; Sun, Weidong; Ding, Xing

    2014-01-01

    Previously published Cu partition coefficients (DCu) between silicate minerals and melts cover a wide range and have resulted in large uncertainties in model calculations of Cu behavior during mantle melting. In order to obtain true DCumineral/melt values, this study used Pt95Cu05 alloy capsules as the source of Cu to experimentally determine the DCu between olivine (ol), orthopyroxene (opx), clinopyroxene (cpx), spinel (spl), garnet (grt) and hydrous silicate melts at upper mantle conditions. Three synthetic silicate compositions, a Komatiite, a MORB and a Di70An30, were used to produce these minerals and melts. The experiments were conducted in piston cylinder presses at 1.0-3.5 GPa, 1150-1300 °C and oxygen fugacities (fO2) of from ∼2 log units below to ∼5 log units above fayalite-magnetite-quartz (FMQ). The compositions of minerals and quenched melts in the run products were measured with EMP and LA-ICP-MS. Attainment of equilibrium is verified by reproducible DCu values obtained at similar experimental conditions but different durations. The results show that DCu for ol/, opx/, spl/ and possibly cpx/melt increase with increasing fO2 when fO2 > FMQ + 1.2, while DCu for cpx/ and spl/melt also increase with increasing Na2O in cpx and Fe2O3 in spinel, respectively. In the investigated P-T-fO2 conditions, the DCumineral/melt values are 0.04-0.14 for ol, 0.04-0.09 for opx, 0.02-0.23 for cpx, 0.19-0.77 for spl and 0.03-0.05 for grt. These results confirm that Cu is highly incompatible (DCu < ∼0.2) in all the silicate minerals and oxides of the upper mantle with the exception of the high-Fe spinel, in which Cu is moderately incompatible (DCu = 0.4-0.8) and thus Cu will be enriched in the derived melts during mantle partial melting and magmatic differentiation if sulfide is absent. These experimental DCu values are used to assess the controls on Cu behavior during mantle melting. The model results suggest that MORBs and most arc basalts must form by sulfide

  15. Veins in Silicates of IIE Iron Mont Dieu II: Melt Migration Caused by Impact?

    NASA Astrophysics Data System (ADS)

    Van Roosbroek, N.; Debaille, V.; Pittarello, L.; Hecht, L.; Claeys, Ph.

    2014-09-01

    Mont Dieu II is a ~450kg meteorite classified as IIE iron. The primitive silicate inclusions can be linked to the H-chondrites. Thick metal veins with angular clasts crosscut these inclusions and could point to an impact-melt migration formation.

  16. The evolution of immiscible silicate and fluoride melts: Implications for REE ore-genesis

    NASA Astrophysics Data System (ADS)

    Vasyukova, O.; Williams-Jones, A. E.

    2016-01-01

    The Mid-Proterozoic peralkaline Strange Lake pluton (Québec-Labrador, Canada) exhibits extreme enrichment in high field strength elements (HFSE), including the rare earth elements (REE), particularly in pegmatites. On the basis of a study of melt inclusions, we proposed recently that fluoride-silicate melt immiscibility played an important and perhaps dominant role in concentrating the REE within the pluton. Here we present further evidence for silicate-fluoride immiscibility at Strange Lake from a sample of the hypersolvus granite, which contains an inclusion composed largely of REE and HFSE minerals. The inclusion (∼5 cm in diameter) comprises a narrow rim containing chevkinite-(Ce) and zircon in a fluorite matrix, a core of fluorbritholite-(Ce) and bastnäsite-(Ce) and a transition zone between the rim and the core consisting of a fine-grained intergrowth of bastnäsite-(Ce), gagarinite-(Y) and fluorite. We propose that the inclusion formed as a result of silicate-fluoride immiscibility, which occurred early in the emplacement history of the Strange Lake pluton, and that it represents the fluoride melt. After separation of the two melts, the boundary between them acted as a locus of crystallisation, where crystals formed repeatedly due to heterogeneous (surface catalysed) nucleation. Zircon crystallised shortly after melt phase separation, and was followed by the growth of perthite together with arfvedsonite and quartz. As a result, the silicate melt surrounding the fluoride inclusion became enriched in volatiles that facilitated crystallisation of progressively larger crystals in the inclusion; large crystals of arfvedsonite and perthite were succeeded by even larger crystals of quartz. Massive crystallisation of chevkinite-(Ce) followed, forming the rim of the inclusion. The fluoride melt, which constituted the matrix to the silicate minerals and chevkinite-(Ce), crystallised after chevkinite-(Ce), forming fluorbritholite-(Ce) and fluorite. Aqueous fluid

  17. Melt inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts: Applications to skarn genesis at Mount Vesuvius

    NASA Astrophysics Data System (ADS)

    Fulignati, Paolo; Kamenetsky, Vadim S.; Marianelli, Paola; Sbrana, Alessandro; Mernagh, Terrence P.

    2001-11-01

    Foid-bearing syenites and endoskarn xenoliths of the A.D. 472 Vesuvius eruption represent the magma chamber carbonate wall-rock interface. Melt inclusions hosted in crystals from these rocks offer a rare opportunity to depict the formation and the composition of metasomatic skarn-forming fluids at the peripheral part of a growing K-alkaline magma chamber disrupted by an explosive eruption. Four principal types of melt inclusions represent highly differentiated phonolite (type 1), hydrosaline melt (type 3), unmixed silicate salt melts (type 2), and a complex chloride-carbonate melt with minor sulfates (type 4). The high-temperature (700 800 °C) magmatic-derived hydrosaline melt is considered to be the main metasomatic agent for the skarn-forming reactions. The interaction between this melt (fluid) and carbonate wall rocks produces a Na-K-Ca carbonate-chloride melt that shows immiscibility between carbonate and chloride constituents at ˜700 °C in 1 atm experiments. This unmixing can be viewed as a possible mechanism for the origin of carbonatites associated with intrusion-related skarn systems.

  18. Experimental calibration of a new oxybarometer for silicic magmas based on the partitioning of vanadium between magnetite and silicate melt

    NASA Astrophysics Data System (ADS)

    Arató, Róbert; Audétat, Andreas

    2016-04-01

    Oxygen fugacity is an important parameter in magmatic systems that affects the stability of mineral phases and fluid species. However, there is no well-established method to reconstruct the oxygen fugacity of slowly cooled magmas such as granite, for example, because existing oxybarometers (e.g., magnetite-ilmenite method) are susceptible to re-equilibration processes during slow cooling and thus lead to erroneous results when applied for granitic rocks. In this study, we aim at developing an oxybarometer that is based on the partitioning of vanadium (a redox-sensitive element) between magnetite inclusions and silicate melt inclusions preserved in quartz phenocrysts, where they were protected from subsolidus alteration and can be measured as entities by LA-ICP-MS. In the first - experimental - part of this study we investigated the effects of temperature (800-950 ° C), pressure (1-2 kbar), oxygen fugacity (from ΔFMQ+0.7 to ΔFMQ+4.0), magnetite composition, and melt composition on the partition coefficient of vanadium between magnetite and melt (DVmgt-melt). The experiments were carried out in cold-seal pressure vessels and the starting material was a mixture of V-doped haplogranite glasses or natural obsidian powder with variable aluminum saturation index (ASI), and synthetic, V-free magnetite of 10-20 μm grain size. The vanadium partition coefficient was found to depend strongly on oxygen fugacity, and to lesser (but still considerable) degrees on melt composition and temperature. A more than 1.5 log unit decrease in DVmgt-melt values with increasing oxygen fugacity can be explained by a change of the dominant valence state of V in the silicate melt. For a given oxygen fugacity buffer DVmgt-melt decreases with increasing temperature, but this reflects mostly the change in absolute fO2 values while the net temperature effect is in fact positive. DVmgt-melt depends significantly on melt composition, resulting in higher D-values with increasing aluminum

  19. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    NASA Astrophysics Data System (ADS)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    Although silicate melts comprise only a minor volume fraction of the present day Earth, they play a critical role on the Earth's geochemical and geodynamical evolution. Their physical properties, namely the density, are a key control on many magmatic processes, including magma chamber dynamics and volcanic eruptions, melt extraction from residual rocks during partial melting, as well as crystal settling and melt migration. However, the quantitative modeling of these processes has been long limited by the scarcity of data on the density and compressibility of volatile-bearing silicate melts at relevant pressure and temperature conditions. In the last decade, new experimental designs namely combining large volume presses and synchrotron-based techniques have opened the possibility for determining in situ the density of a wide range of dry and volatile-bearing (H2O and CO2) silicate melt compositions at high pressure-high temperature conditions. In this contribution we will illustrate some of these progresses with focus on recent results on the density of dry and hydrous felsic and intermediate melt compositions (rhyolite, phonolite and andesite melts) at crustal and upper mantle conditions (up to 4 GPa and 2000 K). The new data on felsic-intermediate melts has been combined with in situ data on (ultra)mafic systems and ambient pressure dilatometry and sound velocity data to calibrate a continuous, predictive density model for hydrous and CO2-bearing silicate melts with applications to magmatic processes down to the conditions of the mantle transition zone (up to 2773 K and 22 GPa). The calibration dataset consist of more than 370 density measurements on high-pressure and/or water-and CO2-bearing melts and it is formulated in terms of the partial molar properties of the oxide components. The model predicts the density of volatile-bearing liquids to within 42 kg/m3 in the calibration interval and the model extrapolations up to 3000 K and 100 GPa are in good agreement

  20. Experimental fragmentation of crystal- and vesicle-bearing silicic melts

    NASA Astrophysics Data System (ADS)

    Martel, Caroline; Dingwell, Donald; Spieler, Oliver; Pichavant, Michel; Wilke, Max

    2001-07-01

    We experimentally investigate the effect of crystals on the fragmentation behavior of a three-phase (melt+gas+crystals) system under rapid decompression. Starting materials are cylinders of hydrated haplogranite melts containing alumina crystals that are placed at 6-30 MPa and 600-800°C in a fragmentation bomb for foaming. Subsequently, these bubble- and crystal-bearing melts are rapidly decompressed (within <1 s) to room pressure and temperature and the fragmented particles are recovered for analysis. We investigated the influence of the crystal size ( 70-350 µm in diameter), the crystal content (20-95 vol.%), and the magnitude of the decompression (6-30 MPa) on the fragment sizes. Crystals down to 70 µm in diameter have a strong influence on the fragment size distribution by defining fragments made of single crystals. Increasing the crystal content in the starting material leads to an increase of the average size of the fragments. Increasing the magnitude of the decompression generates finer fragments. Fragmentation threshold or dynamic tensile strength ranges from 10 MPa for crystal-poor samples up to >30 MPa for phenocryst- and microlite-bearing samples.

  1. Redox Equilibria of Chromium in Calcium Silicate Base Melts

    NASA Astrophysics Data System (ADS)

    Mirzayousef-Jadid, A.-M.; Schwerdtfeger, Klaus

    2009-08-01

    The oxidation state of chromium has been determined at 1600 °C in CaO-SiO2-CrO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93, and 1.10, and 0.15 to 3.00 pct Cr2O3 (initial). A few experiments were also carried out with CaO-SiO2-Al2O3-CrO x melts at 1430 °C. The slag samples were equilibrated with gas phases of controlled oxygen pressure. Two techniques were applied to determine the oxidation state: thermogravimetry and quenching of the samples with subsequent wet chemical analysis. In the low-oxygen pressure range, the chromium is mainly divalent. In the high-oxygen pressure range, it is trivalent and hexavalent. It was found that the Cr3+/Cr2+ and Cr6+/Cr3+ ratios depend on oxygen pressure at a constant CaO/SiO2 ratio and a constant content of total chromium, according to the ideal law of mass action. According to the respective chemical reactions, these ratios change proportional to p_{{{text{O}}2 }}{}^{1/4} or p_{{{text{O}}_{ 2} }}{}^{3/4}, respectively. They also increase with increasing basicity. The data are used to compute the fractions of the different ions in the melt. There is a certain range of oxygen pressure in which all three valence states, Cr2+, Cr3+, and Cr6+, coexist. The color of the solidified slag samples is described and is explained with the help of transmission spectra.

  2. Polyamide-layered silicate nanocomposites by melt processing

    NASA Astrophysics Data System (ADS)

    Fornes, Timothy Dean

    Polyamide-layered silicate nanocomposites based on nylon 6, 11, and 12 and organically modified montmorillonites (organoclay) were prepared by twin screw extrusion. Carefully designed component structure-nanocomposite morphology and property investigations on these materials were executed to understand why nylon 6 readily exfoliates organoclay. The polyamide structure strongly influences the extent of clay platelet delamination and level of property enhancement, as determined by X-ray, transmission electron microscopy and stress-strain analyses. High molecular weight nylon 6 materials lead to better organoclay exfoliation and greater nanocomposite moduli and yield strengths than lower molecular weight materials; this is attributed to higher levels of shear stress imparted on the clay by the higher viscosity polymer. The ratio of amide to methylene units in the repeat structure of nylon 6 appears to affect the polymer-organoclay affinity since a large increase in aliphatic content, i.e., nylon 6 versus nylon 12, results in less organoclay dispersion and lower reinforcing efficiency. The structure of the organoclay is also critical for producing well-exfoliated nylon 6 nanocomposites. Alkyl ammonium surfactants that cover less montmorillonite surface in the organoclay are more effective at exfoliating clay and generating improved nanocomposite stiffness and strength; such surfactants facilitate more desirable polyamide-silicate interactions, yet maintain sufficient organoclay gallery spacings needed both to overcome the cohesive forces between neighboring platelets and to facilitate polymer intercalation. The source of sodium montmorillonite used to form the organoclay is also important. The superior properties observed in nylon 6 nanocomposites may be explained by conventional ideas of reinforcement as predicted by composite theories like those of Halpin-Tsai or Mori-Tanaka. Based on good agreement between experimental nanocomposite moduli and model predictions it

  3. Understanding Vesuvius magmatic processes: Evidence from primitive silicate-melt inclusions in medieval scoria clinopyroxenes (Terzigno formation)

    USGS Publications Warehouse

    Lima, A.; Belkin, H.E.; Torok, K.

    1999-01-01

    Microthermometric investigations of silicate-melt inclusions and electron microprobe analyses were conducted on experimentally homogenized silicate-melt inclusions and on the host clinopyroxenes from 4 scoria samples of different layers from the Mt. Somma-Vesuvius medieval eruption (Formazione di Terzigno, 893 A.D.). The temperature of homogenization, considered the minimum trapping temperature, ranges from 1190 to 1260??5 ??C for all clinopyroxene-hosted silicate melt inclusions. The major and minor-element compositional trends shown by Terzigno scoria and matrix glass chemical analysis are largely compatible with fractional crystallization of clinopyroxene and Fe-Ti oxides. Sulfur contents of the homogenized silicate-melt inclusions in clinopyroxene phenocrysts compared with that in the host scoria show that S has been significantly degassed in the erupted products; whereas, Cl has about the same abundance in the inclusions and in host scoria. Fluorine is low (infrequently up to 800 ppm) in the silicate-melt inclusions compared to 2400 ppm in the bulk scoria. Electron microprobe analyses of silicate-melt inclusions show that they have primitive magma compositions (Mg# = 75-91). The composition of the host clinopyroxene phenocrysts varies from typical plinian-related (Mg#???85) to non-plinian related (Mg#???85). The mixed source of the host clinopyroxenes and primitive nature of the silicate-melt inclusions implies that these phenocrysts, in part, may be residual and/or have a polygenetic origin. The similar variation trends of major and minor-elements between homogenized silicate-melt inclusions from the Terzigno scoria, and silicate-melt inclusions in olivine and diopside phenocrysts from plinian eruptions (Marianelli et al., 1995) suggest that the trapped inclusions represent melts similar to those that supplied the plinian and sub-plinian magma chambers. These geochemical characteristics suggest that the Vesuvius magmatic system retained a vestige of the most

  4. Density of Hydrous Ultramafic Silicate Melt under the Earth's Deep Upper Mantle Conditions

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Matsukage, K. N.; Karato, S.

    2005-12-01

    Density of silicate melts is a critical material property in our understanding of geochemical evolution of the Earth. Previous studies (e.g., Agee & Walker 1993; Suzuki et al., 1995) showed that the density of dry silicate melts can be higher than that of surrounding solids under deep upper mantle conditions. However, melts formed under such conditions likely contain some water (Bercovici & Karato, 2003), which will reduce the melt density. In this study, we performed sink/float experiments between 10 and 14GPa and at 2173K to determine the density of hydrous ultramafic silicate melts, using a Kawai-type multianvil apparatus. We choose a target melt composition based on the experimental study by Litasov & Ohtani (2002). With this chemical composition, olivine reacts with the melt above the liquidus, so we used diamond as the density marker. However, diamond is much denser than a melt with a typical mantle like Fe/Mg ratio. Therefore in this study we determined the density of melts with high Fe contents, and from the relation between Fe content and melt density, we inferred the melt density with Earth-like Fe/Mg. Four Fe-rich compositions with 5wt% water and different iron content were chosen as starting materials. Density crossovers between melts and diamond were observed for all compositions. The densities of four melts at 14GPa and 2173K were calculated using the Birch-Murnaghan equation of state. The pressure derivative of isothermal bulk modulus (Kt') of the melts was estimated to be around 4. The density of mantle melt with mantle value of content and 5wt% water at 14GPa, 2173K was extrapolated to be ~3.42±0.4g/cm3. We compared our density results for hydrous melts with previous results on dry melts and found that water is more compressible than other components in melt. The estimated partial molar volume of water at 14GPa and 2173K is ~8±2cm3/mol, which is significantly lower than the value at low pressures. The conditions under which the density crossover

  5. Nanoscale Origin of the Dichotimous Viscosity-Pressure Behavior in Silicate Melts

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Sakamaki, T.; Skiner, L.; Jing, Z.; Yu, T.; Kono, Y.; Park, C.; Shen, G.; Rivers, M. L.; Sutton, S. R.

    2013-12-01

    A defining characteristic of silicate melts is the degree of polymerization (tetrahedral connectivity), which dictates physical properties such as viscosity and density. While viscosity of depolymerized silicate melts increases with pressure consistent with free volume theory, isothermal viscosity of polymerized melts decreases with pressure up to ~3 - 5 GPa, above which it turns over to normal (positive) pressure dependence. We conducted high-pressure melt structure studies along the jadeite (Jd) - diopside (Di) join, using a Paris-Edinburgh Press at the HPCAT beamline 16-BM-B and measured Jd melt density using a DIA type apparatus based on x-ray absorption at GSECARS beamline 13-BM-D. Structures of polymerized (Jd and Jd50Di50) and depolymerized (Di) melts show distinct responses to pressure. For Jd melt, T-O, T-T bond lengths (where T denotes tetrahedrally coordinated Al and Si) and T-O-T angle all exhibit rapid, sometimes non-linear decrease with increasing pressure to ~3 GPa. For Di melt, these parameters vary linearly with pressure and change very little. Molecular dynamics calculations, constrained by the x-ray structural data, were employed to examine details of structural evolution in polymerized and depolymerized liquids. A structural model is developed to link structural evolution to changes in melt properties, such as density and viscosity, with pressure. We show that the pressure of the viscosity turnover corresponds to the tetrahedral packing limit, below which the structure is compressed through tightening of the inter-tetrahedral bond angle, resulting in continual breakup of tetrahedral connectivity and viscosity decrease. Above the turnover pressure, Si and Al coordination increases to allow further packing, with increasing viscosity. This structural response prescribes the distribution of melt viscosity and density with depth, and may be the main controlling factor for magma transport rates in terrestrial planetary interiors.

  6. Entropy and structure of silicate glasses and melts

    USGS Publications Warehouse

    Richet, P.; Robie, R.A.; Hemingway, B.S.

    1993-01-01

    Low-temperature adiabatic Cp measurements have been made on NaAlSi2O6, MgSiO3, Ca3Al2Si3O12 and Ca1.5Mg1.5Al2Si3O12 glasses. Above about 50 K, these and previous data show that the heat capacity is an additive function of composition to within ??1% throughout the investigated glassforming part of the system CaO-MgO-Al2O3-SiO2. In view of the determining role of oxygen coordination polyhedra on the low-temperature entropy, this is interpreted as indicating that Si and Al are tetrahedrally coordinated in all these glasses, in agreement with structural data; whereas Ca and Mg remain octahedrally coordinated. In contrast, heat capacities and entropies are not additive functions of composition for alkali aluminosilicates, indicating increases in the coordination numbers of alkali elements from about six to nine when alumina is introduced. A thermochemical consequence of additivity of vibrational entropies of glasses is that entropies of mixing are essentially configurational for calcium and magnesium aluminosilicate melts. For alkali-bearing liquids, it is probable that vibrational entropies contribute significantly to entropies of mixing. At very low temperatures, the additive nature of the heat capacity with composition is less well followed, likely as a result of specific differences in medium-range order. ?? 1993.

  7. Redox Equilibrium of Niobium in Calcium Silicate Base Melts

    NASA Astrophysics Data System (ADS)

    Mirzayousef-Jadid, A.-M.; Schwerdtfeger, Klaus

    2010-10-01

    The oxidation state of niobium has been determined at 1873 K (1600 °C) in CaO-SiO2-NbO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93 and 1.10, and 5.72 to 11.44 pct Nb2O5 (initial). The slag samples were equilibrated with gas phases of controlled oxygen pressure, then quenched to room temperature and analyzed chemically. The niobium is mainly pentavalent with small amounts in the tetravalent state. It was found that the Nb5+/Nb4+ ratio increases with oxygen pressure at a constant CaO/SiO2 ratio and constant content of total niobium, closely according to the ideal law of mass action, which is proportional to {text{p}}_{{{text{O}}2 }}^{1/4} . The ratio also increases with total niobium content, and it seems to have a maximum at a basicity of about 0.93. The color of the solidified slag samples is described and is explained with the help of transmission spectra.

  8. Phase relations and melting of carbonated peridotite between 10 and 20 GPa: a proxy for alkali- and CO2-rich silicate melts in the deep mantle

    NASA Astrophysics Data System (ADS)

    Ghosh, Sujoy; Litasov, Konstantin; Ohtani, Eiji

    2014-02-01

    We determined the melting phase relations, melt compositions, and melting reactions of carbonated peridotite on two carbonate-bearing peridotite compositions (ACP: alkali-rich peridotite + 5.0 wt % CO2 and PERC: fertile peridotite + 2.5 wt % CO2) at 10-20 GPa and 1,500-2,100 °C and constrain isopleths of the CO2 contents in the silicate melts in the deep mantle. At 10-20 GPa, near-solidus (ACP: 1,400-1,630 °C) carbonatitic melts with < 10 wt % SiO2 and > 40 wt % CO2 gradually change to carbonated silicate melts with > 25 wt % SiO2 and < 25 wt % CO2 between 1,480 and 1,670 °C in the presence of residual majorite garnet, olivine/wadsleyite, and clinoenstatite/clinopyroxene. With increasing degrees of melting, the melt composition changes to an alkali- and CO2-rich silicate melt (Mg# = 83.7-91.6; ~ 26-36 wt % MgO; ~ 24-43 wt % SiO2; ~ 4-13 wt % CaO; ~ 0.6-3.1 wt % Na2O; and ~ 0.5-3.2 wt % K2O; ~ 6.4-38.4 wt % CO2). The temperature of the first appearance of CO2-rich silicate melt at 10-20 GPa is ~ 440-470 °C lower than the solidus of volatile-free peridotite. Garnet + wadsleyite + clinoenstatite + carbonatitic melt controls initial carbonated silicate melting at a pressure < 15 GPa, whereas garnet + wadsleyite/ringwoodite + carbonatitic melt dominates at pressure > 15 GPa. Similar to hydrous peridotite, majorite garnet is a liquidus phase in carbonated peridotites (ACP and PERC) at 10-20 GPa. The liquidus is likely to be at ~ 2,050 °C or higher at pressures of the present study, which gives a melting interval of more than 670 °C in carbonated peridotite systems. Alkali-rich carbonated silicate melts may thus be produced through partial melting of carbonated peridotite to 20 GPa at near mantle adiabat or even at plume temperature. These alkali- and CO2-rich silicate melts can percolate upward and may react with volatile-rich materials accumulate at the top of transition zone near 410-km depth. If these refertilized domains migrate upward and convect out of the

  9. Silicate melt inclusions and glasses in lunar soil fragments from the Luna 16 core sample

    USGS Publications Warehouse

    Roedder, E.; Weiblen, P.W.

    1972-01-01

    More than 2000 fragments were studied microscopically, and electron microprobe analyses were made of 39 selected areas, from a few square mm of polished surface, through 75- to 425-??m fragments of lunar soil from two samples of the Luna 16 core. The silicate melt inclusions and glasses differ in important details from those observed earlier in the Apollo samples. Melt inclusions in olivine contain epitaxially oriented daughter crystals, but also show a similar epitaxy around the outside of the crystals not observed in previous lunar samples. Melt inclusions in ilmenite suggest trapping at successive stages in a differentiation sequence. There is abundant evidence for late-stage silicate liquid immiscibility, with melt compositions similar but not identical to those from Apollo 11 and 12. A comparison of the alkali ratio of any given bulk rock analysis with that of its late-stage, high-silica melt shows gross differences for different rocks. This is pertinent to understanding late-stage differentiation processes. Glass fragments and spherules exhibit a wide range of crystallization textures, reflecting their wide range of compositions and cooling histories. No significant differences were found between the two portions of core examined (Zones A and D). ?? 1972.

  10. Molybdenum Valence in Basaltic Silicate Melts: Effects of Temperature and Pressure

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Choi, Y.; Pando, K.

    2011-01-01

    The metal-silicate partitioning behavior of molybdenum has been used as a test for equilibrium core formation hypotheses [for example, 1-6]. However, current models that apply experimental data to equilibrium core-mantle differentiation infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Molybdenum, a multi-valent element with a valence transition near the fO2 of interest for core formation (approx.IW-2) will be sensitive to changes in fO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo(6+) can be either octahedrally or tetrahedrally coordinated. Here we present X-ray absorption near edge structure (XANES) measurements of Mo valence in basaltic run products at a range of P, T, and fO2 and further quantify the valence transition of Mo.

  11. Velocity of a freely rising gas bubble in a soda-lime silicate glass melt

    NASA Technical Reports Server (NTRS)

    Hornyak, E. J.; Weinberg, M. C.

    1984-01-01

    A comparison is conducted between measured velocities for the buoyant rise of single bubbles of varying size and composition, in a soda-lime silicate glass melt, with the steady state velocities predicted by the Stokes and Hadamard-Rybczynski formulas. In all cases, the data are noted to fit the Hadamard-Rybczynski expression for steady state rise speed considerably better than the Stokes formula.

  12. Application of mean-field model of polymer melt intercalation in organo-silicates for nanocomposites.

    PubMed

    Meneghetti, Paulo; Qutubuddin, Syed

    2005-08-15

    The mean-field, lattice-based model of polymer melt intercalation in organically-modified layered silicates (OLS) originally developed by Vaia and Giannelis was applied for different polymers such as poly(methyl methacrylate) (PMMA), polypropylene (PP), and poly(ethylene oxide) (PEO). The nature of each polymer controls significantly the intercalation of the system. The internal energy change caused by the interaction of polymer, surfactant and clay is the strongest factor in determining the equilibrium structure of the nanocomposite system.

  13. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    USGS Publications Warehouse

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  14. The role of Iron on the dissolution of Sulfur in hydrous silicate melts

    NASA Astrophysics Data System (ADS)

    Klimm, K.; Kohn, S. C.; Botcharnikov, R. E.

    2012-04-01

    It is well established that the sulfur solubility in silicate melts is a function of fO2 and melt compositions [1]. At high fO2, S6+ is dominant and more soluble in natural silicate melts than S2-, which is dominant at low fO2. Primitive melt compositions such as basalt can contain an order of magnitude more sulfur than more evolved melt compositions such as rhyolite. The compositional control on the sulfur solubility is yet not fully understood but a positive correlation with FeO has often been observed. Thus, determining the S2-- and S6+-speciesincorporated in the silicate glass structure is crucial to unravel the sulfur dissolution mechanism in silicate melts. Together with solubility measurements such information is essential to quantify the sulfide and sulfate capacity of silicate melts and to understand the sulfur flux in subduction zones. Here we present Raman and XANES measurements on experimentally equilibrated sulfur-bearing, hydrous silicate glasses, including soda-lime (SLG), K2Si4O9 (KSG), albite and trondhjemite (TROND) compositions. A series of SLG and KSG glasses, doped with small quantities of Fe, were also studied in order to determine the effect of Fe/S on the S solubility. The experiments were performed in internally heated and cold seal pressure vessels at 200 MPa, 1000 and 850 ° C and fO2 ranging from logfO2 = QFM-2.4 to QFM+4. The systematic correlation of features in Raman and XANES spectra allows the identification of at least four different S-species in the glasses depending on fO2 and Fe/S of the system. In Fe-free melts S is dissolved as SH-, H2S and/or SO42- depending on the prevailing fO2. S2- is more soluble than S6+.The total sulfur solubility depends on the degree of polymerisation of the melt and increases with increasing NBO/T. This correlation is much more pronounced for SH- and H2S than for SO42-. Adding Fe results in the formation of Fe-S-complexes at the expense of SH- and H2S, which are still observed up to Fe/S ~ 2.6. The S

  15. Oxygen isotope partitioning between immiscible silicate melts with H2O, P and S

    NASA Astrophysics Data System (ADS)

    Lester, Gregory W.; Kyser, T. K.; Clark, Alan H.

    2013-05-01

    Differences between the δ18O values of immiscible Si- and Fe-rich melts in the systems Fe2SiO4-Fe3O4-KAlSi2O6-SiO2, Fe3O4-KAlSi2O6-SiO2, and Fe3O4-Fe2O3-KAlSi2O6-SiO2, with H2O, H2O + P or H2O + S have been determined in isothermal, isobaric experiments at 1100 and 1200 °C and 200 MPa. The Δ18O values for conjugate Fe2SiO4-Fe3O4-KAlSi2O6-SiO2 + H2O and, Fe3O4-KAlSi2O6-SiO2·KAlSi2O6-SiO2 + H2O melts are only 0.4-0.6‰ and do not differ significantly from those for anhydrous melts of similar composition. The Δ18O values for melts with added H2O + P or S are more variable, ranging from 0.0 to 0.8‰. Partitioning of 18O between the immiscible melts is 0.6-1‰ less than the partitioning reported for melt-mineral and mineral-mineral pairs. The partitioning of 18O in the network modifier-bearing immiscible melts is not controlled by the relative degree of polymerization in the melts or fO2. The upper limit of the range of Δ18O values (<1‰), and the variation in the δ18O values of conjugate melts that occurs with the inclusion of network modifying constituents, suggest that in some cases, oxygen isotope ratios might be useful to distinguish lithologies evolved from coexisting immiscible silicate melts, from lithologies that have evolved by crystal fractionation only.

  16. Selective Oxidation/Reduction and Impact Melting in Experimental Metal-Silicate Craters

    NASA Astrophysics Data System (ADS)

    Rowan, L. R.; Horz, F.; Zolensky, M.

    1996-03-01

    We have produced thin veneers of crystalline to frothy projectile residues (where the projectiles varied from dunite, diopside, orthoclase or basalt cylinders) within small cm-sized craters formed in metal targets (where the targets varied from 1100 Al, Cu, SS304 or Mo). The morphology and mixing of the silicate residue with metal spherules is similar to that described in many natural impact melts including lunar samples, terrestrial impact crater melts and tektites, and shock features in some meteorites. Textural and chemical analysis suggests that local regions of these residues experienced high temperature gradients, fast rates of nucleation and crystal growth and minimal, but selective oxidation/reduction. Such inferences should help decipher the heterogeneous evolution of impact melts in terrestrial and extraterrestrial samples.

  17. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts

    NASA Astrophysics Data System (ADS)

    Gervasoni, Fernanda; Klemme, Stephan; Rocha-Júnior, Eduardo R. V.; Berndt, Jasper

    2016-03-01

    The importance of zircon in geochemical and geochronological studies, and its presence not only in aluminous but also in alkaline rocks, prompted us to think about a new zircon saturation model that can be applied in a wide range of compositions. Therefore, we performed zircon crystallization experiments in a range of compositions and at high temperatures, extending the original zircon saturation model proposed by Watson and Harrison (Earth Planet Sci Lett 64:295-304, 1983) and Boehnke et al. (Chem Geol 351:324-334, 2013). We used our new data and the data from previous studies in peraluminous melts, to describe the solubility of zircon in alkaline and aluminous melts. To this effect, we devised a new compositional parameter called G [ {( {3 \\cdot {{Al}}2 {{O}}3 + {{SiO}}2 )/({{Na}}2 {{O}} + {{K}}2 {{O}} + {{CaO}} + {{MgO}} + {{FeO}}} )} ] (molar proportions), which enables to describe the zircon saturation behaviour in a wide range of rock compositions. Furthermore, we propose a new zircon saturation model, which depends basically on temperature and melt composition, given by (with 1σ errors): ln [ {{Zr}} ] = ( {4.29 ± 0.34} ) - ( {1.35 ± 0.10} ) \\cdot ln G + ( {0.0056 ± 0.0002} ) \\cdot T( °C ) where [Zr] is the Zr concentration of the melt in µg/g, G is the new parameter representing melt composition and T is the temperature in degrees Celsius. The advantages of the new model are its straightforward use, with the G parameter being calculated directly from the molar proportions converted from electron microprobe measurements, the temperature calculated given in degrees Celsius and its applicability in a wider range of rocks compositions. Our results confirm the high zircon solubility in peralkaline rocks and its dependence on composition and temperature. Our new model may be applied in all intermediate to felsic melts from peraluminous to peralkaline compositions.

  18. Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Stechern, André; Ludwig, Thomas; Konzett, Jürgen; Pawley, Alison; Ruzié-Hamilton, Lorraine; Clay, Patricia L.; Burgess, Ray; Ballentine, Christopher J.

    2017-04-01

    Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H2O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H2O (DCl ol/melt = 1.6 ± 0.9 × 10-4) to 0.33 (6) wt% H2O (DCl ol/melt = 2.2 ± 1.1 × 10-4). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H2O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with ( R 2 = 0.99): DF^{ol/melt} = 3.6± 0.4 × 10^{-3} × X_{H}_{2O}( wt %) + 6 ± 0.4× 10^{-4}. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth

  19. Silicate-natrocarbonatite liquid immiscibility in 1917 eruption combeite-wollastonite nephelinite, Oldoinyo Lengai Volcano, Tanzania: Melt inclusion study

    NASA Astrophysics Data System (ADS)

    Sharygin, Victor V.; Kamenetsky, Vadim S.; Zaitsev, Anatoly N.; Kamenetsky, Maya B.

    2012-11-01

    Primary silicate-melt and carbonate-salt inclusions occur in the phenocrysts (nepheline, fluorapatite, wollastonite, clinopyroxene) in the 1917 eruption combeite-wollastonite nephelinite at Oldoinyo Lengai. Silicate-melt inclusions in nepheline clearly show liquid immiscibility phenomena expressed in the presence of carbonate globules in silicate glass. The coexistence of inclusions with markedly different proportions of silicate glass + vapor-carbonate globule in the core of nepheline phenocrysts, the presence of carbonate-salt inclusions in fluorapatite and our heating experiments strongly suggest that their entrapment began at temperatures higher than 1130 °C in an intermediate chamber when initial carbonated nephelinite melt was heterogeneous and represented a mixture of immiscible liquids. Silicate-natrocarbonatite melt immiscibility took place at high temperature and immiscible nephelinite and carbonatite liquids coexisted over a wide temperature range from ≥ 1130 °C to 600 °C. Homogenization of a carbonate globule (dissolution of the gas bubble in carbonate melt) at 900-940 °C indicates that after separation from silicate magma the natrocarbonatite represented homogeneous liquid in the 900-1130 °C temperature range, whereas below these temperatures immiscible melts of different composition and fluid phase have separated from it. The bulk composition of homogeneous natrocarbonatite melt may be estimated as ≈ 20% CaF2, 40-60% (Na,K)2CO3 and 20-40% CaCO3 based on the coexistence of nyerereite, calcite and fluorite and the rapid phase transition (carbonate aggregate → carbonate liquid) at 550-570 °C observed in vapor-carbonate globules of nepheline-hosted silicate-melt inclusions and on the Na2CO3-CaCO3-CaF2 phase diagram. Silicate glasses of nepheline-hosted immiscible inclusions drastically differ from host nephelinite in the abundance of major and trace elements. They are high peralkaline ((Na + K)/Al — up to 9.5) and virtually free of water (H2

  20. Parameterized Lattice Strain Models for REE Partitioning between Amphibole and Silicate Melt

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Liang, Y.; Sun, C.; Jackson, C.; Saal, A. E.

    2015-12-01

    The distribution of REE between amphibole and silicate melt is important for understanding a variety of igneous processes involving amphibole. In general, amphibole-melt REE partition coefficients (DREE) depend on pressure (P), temperature (T), and compositions of amphibole and melt. A previous study parameterized the DREE in amphibole-melt solely as a function of melt composition [1]. Here, we use published REE partitioning data between amphibole and basaltic melt, the lattice strain model [2], and non-linear least squares regression method to parameterize key partitioning parameters in the lattice strain model (D0, r0, and E) as a function of P, T, and both amphibole and melt compositions. We focus on experimental data obtained by LA-ICP-MS and ion probe, and experiments close to equilibrium. Amphiboles and coexisting melts from the 38 experiments that we compiled span a wide range of compositions with the Mg# of amphibole and melt ranging from 36 to 100 and 15 to 99, respectively. Two models, which give nearly identical results, are explored in this study. In the first model, D0 is a function of T and amphibole composition: it negatively correlates with T and MgM1,2,3 content in amphibole, and positively correlates with TiM1,2,3 content in amphibole. In the second model, D0 is solely a function of the melt composition: it negatively correlates with the mole fraction of Ca in the melt. Interestingly, r0 and E are both constant and identical between the two models, suggesting D0 in the two models are equivalent. The latter allows us to develop a new thermometer for amphibole-melt equilibria. As an independent test, we compared model-derived temperatures with those reported in the phase equilibrium experiments. The predicted temperatures are within ±41°C on average of the reported temperatures, adding confidence to our parameterizations of D0. Our two parameterized lattice strain models can be used to model REE fractionation between amphibole and basaltic melts

  1. Empirical models relating viscosity and tracer diffusion in magmatic silicate melts

    NASA Astrophysics Data System (ADS)

    Mungall, James E.

    2002-01-01

    The Adam-Gibbs equations describing relaxation in silicate melts are applied to diffusion of trace components of multicomponent liquids. The Adam-Gibbs theory is used as a starting point to derive an explicit relation between viscosity and diffusion including non-Arrhenian temperature dependence. The general form of the equation is Diη = Aiexp{Δ( scEi)/ TSc}, where D is diffusivity, η is melt viscosity, T is absolute temperature, Δ( scEi) is the difference between the products of activation energies and local configurational entropies for viscous and diffusive relaxation, Ai is a constant that depends on the characteristics of the diffusing solute particles, and Sc is configurational entropy of the melt. The general equation will be impractical for most predictive purposes due to the paucity of configurational entropy data for silicate melts. Under most magmatic conditions the proposed non-Arrhenian behaviour can be neglected, allowing the general equation to be simplified to a generalized form of the Eyring equation to describe diffusion of solutes that interact weakly with the melt structure: Diη/ T = Qiexp{Δ Ei/ RT}, where Qi and Δ Ei depend on the characteristics of the solute and the melt structure. If the diffusing solute interacts strongly with the melt structure or is a network-forming cation itself, then Δ Ei = 0, and the relation between viscosity and diffusion has the functional form of the classic Eyring and Stokes-Einstein equations; Diη/ T = Qi. If the diffusing solute can make diffusive jumps without requiring cooperative rearrangement of the melt structure, the diffusivity is entirely decoupled from melt viscosity and should be Arrhenian, i.e., Di = Qiexp{ Bi/ T}. A dataset of 594 published diffusivities in melts ranging from the system CAS through diopside, basalt, andesite, anhydrous rhyolite, hydrous rhyolite, and peralkaline rhyolite to albite, orthoclase, and jadeite is compared with the model equations. Alkali diffusion is completely

  2. Melt migration in a silicate liquid-olivine system: An experimental test of compaction theory

    SciTech Connect

    Riley, G.N. Jr.; Kohlstedt, D.L. ); Richter, F.M. )

    1990-11-01

    To investigate the kinetics of porous flow in partially molten peridotite, a melt migration couple - formed from a disc of fine-grained olivine plus {approximately}15% of a synthetic K-Al silicate glass and a disc of polycrystalline olivine - was heated at 1,255C under a confining pressure of 300 MPa for 2 hr. Driven by capillary forces, silicate liquid in the source disc infiltrates along three-grain junctions into the sink disc. To analyze the resulting melt migration profile in terms of compaction theory, the equations developed by McKenzie (1984) to describe porous flow of a liquid in a deformable matrix were modified by replacing the buoyancy force term with a capillary force term. The governing equations were then solved numerically with the governing equations were then solved numerically with the initial and boundary conditions specified by the experimental design. Comparison of the melt migration profile obtained from the experiment with those generated by numerical simulation demonstrates that compaction theory provides a good description of the experimental results provided that the permeability of these solid-liquid materials increases linearly with increasing liquid fraction.

  3. High-temperature apparatus for chaotic mixing of natural silicate melts.

    PubMed

    Morgavi, D; Petrelli, M; Vetere, F P; González-García, D; Perugini, D

    2015-10-01

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10(6) Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.

  4. High-temperature apparatus for chaotic mixing of natural silicate melts

    SciTech Connect

    Morgavi, D.; Petrelli, M.; Vetere, F. P.; González-García, D.; Perugini, D.

    2015-10-15

    A unique high-temperature apparatus was developed to trigger chaotic mixing at high-temperature (up to 1800 °C). This new apparatus, which we term Chaotic Magma Mixing Apparatus (COMMA), is designed to carry out experiments with high-temperature and high-viscosity (up to 10{sup 6} Pa s) natural silicate melts. This instrument allows us to follow in time and space the evolution of the mixing process and the associated modulation of chemical composition. This is essential to understand the dynamics of magma mixing and related chemical exchanges. The COMMA device is tested by mixing natural melts from Aeolian Islands (Italy). The experiment was performed at 1180 °C using shoshonite and rhyolite melts, resulting in a viscosity ratio of more than three orders of magnitude. This viscosity ratio is close to the maximum possible ratio of viscosity between high-temperature natural silicate melts. Results indicate that the generated mixing structures are topologically identical to those observed in natural volcanic rocks highlighting the enormous potential of the COMMA to replicate, as a first approximation, the same mixing patterns observed in the natural environment. COMMA can be used to investigate in detail the space and time development of magma mixing providing information about this fundamental petrological and volcanological process that would be impossible to investigate by direct observations. Among the potentials of this new experimental device is the construction of empirical relationships relating the mixing time, obtained through experimental time series, and chemical exchanges between the melts to constrain the mixing-to-eruption time of volcanic systems, a fundamental topic in volcanic hazard assessment.

  5. Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt.

    PubMed

    Joachim, Bastian; Stechern, André; Ludwig, Thomas; Konzett, Jürgen; Pawley, Alison; Ruzié-Hamilton, Lorraine; Clay, Patricia L; Burgess, Ray; Ballentine, Christopher J

    2017-01-01

    Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H2O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H2O (DCl(ol/melt) = 1.6 ± 0.9 × 10(-4)) to 0.33 (6) wt% H2O (DCl(ol/melt) = 2.2 ± 1.1 × 10(-4)). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H2O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with (R(2) = 0.99): [Formula: see text]. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth's mantle minerals and silicate melt

  6. The formation of nuggets of highly siderophile elements in quenched silicate melts at high temperatures: Before or during the silicate quench?

    NASA Astrophysics Data System (ADS)

    Malavergne, V.; Charon, E.; Jones, J.; Cordier, P.; Righter, K.; Deldicque, D.; Hennet, L.

    2016-01-01

    The Highly Siderophile Elements (HSE) are powerful tracers of planetary differentiation. Despite the importance of their partitioning between silicate and metal for the understanding of planetary core formation, especially for the Earth and Mars, there is still a huge discrepancy between conclusions based on different high temperature (HT) experimental studies. These disagreements may be due to the presence of HSE micro and nanonuggets in HT experiments. The formation of these nuggets is still interpreted in different ways. One hypothesis is that these HSE nuggets formed during the quench of the silicate melt, while another hypothesis supposes that these nuggets formed before the quench and represented artefacts of HT experiments. The goal of this work is to clarify whether the presence of HSE nuggets in silicate melts is linked to a quench effect or not. Understanding the formation of these HSE nuggets represents thus a necessary step towards the resolution of the Earth's core formation scenarios. We performed new HT experiments (1275-2000 °C) at different oxygen fugacities (fO2), between ambient air up to ∼5 log units below the Iron-Wüstite buffer [IW-5], for two different silicate compositions (synthetic martian and terrestrial basalts) mixed with a metallic mixture of Pt-Au-Pd-Ru. Our 1275-1600 °C experiments were contained in either olivine, diopside or graphite crucible; experiments at 2000 °C were performed using a levitation method, so no capsule was necessary. Our samples contained quenched silicate melts, minerals (olivine, pyroxene, spinel depending on the run), a two-phase metallic bead and nano and micro-nuggets of HSE. Our samples underwent fine textural, structural and analytical characterizations. The distribution of the nuggets was not homogeneous throughout the quenched silicate melt. HSE nuggets were present within crystals. Dendritic textures from the quenched silicate melt formed around HSE nuggets, which could be crystallized, showing

  7. Experimental Constraints on the Solubility and Partitioning of Carbon between Metallic and Silicate Melt in a Shallow Magma Ocean

    NASA Astrophysics Data System (ADS)

    Chi, Han

    The budget and origin of carbon in Earth and other terrestrial planets are debated and one of the key unknowns is the behavior and fate of carbon during early planetary processes including accretion, core formation, and magma ocean crystallization. Here we determine, experimentally, the solubility of carbon in coexisting Fe-Ni alloy melt and basaltic silicate melt in shallow magma ocean conditions, i.e., at 1-3 GPa, 1500-1800 °C. Oxygen fugacity of the experiments, estimated based on Fe (in metallic alloy melt)-FeO (in silicate melt) equilibrium, varied from IW-0.37 and IW-1.02, where IW refers to the oxygen fugacity imposed by the coexistence of iron and wustite. Four different starting mixes, each with 7:3 silicate:metal mass ratio, with silicate melt NBO/T (estimated proportion of non-bridging oxygen with respect to tetrahedral cations) ranging from 0.81 to 1.54 were studied. Concentrations of carbon in the alloy melt were determined using electron microprobe whereas carbon contents of quenched basaltic glasses were determined using secondary ionization mass spectrometry (SIMS). Identification of carbon and hydrogen-bearing species in silicate glasses was performed using Raman spectroscopy. Our results show that carbon in the metallic melt varies between 4.39 and 7.43 wt.% and increases with increasing temperature and modestly with increasing pressure. Carbon concentration in the silicate melts, on the other hand, varies from 11+/-1 ppm to 111+/-7 ppm and is negatively correlated with pressure but positively correlated with temperature, the NBO/T (non-bridging per tetrahydron, an index of the depolymerization of the silicate melt), the oxygen fugacity and the water content of the silicate melts. Raman and FT-IR results show that at our experimental conditions, carbon in silicate melt is dissolved as hydrogenated species, in addition to . The calculated carbon partition coefficient varies from 510+/-53 to 5369+/-217 and varies systematically as a function of P

  8. Aubrite basalt vitrophyres: The missing basaltic component and high-sulfur silicate melts

    NASA Astrophysics Data System (ADS)

    Fogel, Robert A.

    2005-03-01

    Aubrite basalt vitrophyres (ABVs) are clastic inclusions found in enstatite chondrites and aubrites. Three have been discovered so far; PAI from the Parsa EH3 chondrite, KTI from the Khor Temiki aubrite and L87I from the LEW 87007 aubrite. Their significance stems from the fact that their parental melts were formed from source materials similar to E chondrites; therefore, they provide an opportunity to study the process of aubrite formation from an E chondrite-like protolith. KTI, PAI and L87I contain the FeO-poor highly reduced assemblage: forsterite + enstatite + silicate glass + kamacite + troilite. Additionally, KTI and PAI contain alabandite while L87I contains diopside. ABV glass contents are: 51 vol% for KTI; 30 vol% for PAI and 13 vol% for L87I. The ABVs are, thus, representative of the different stages of crystallization of a reduced precursor basalt similar to that which gave rise to the aubrites. The chemistry of all three ABVs can be projected onto the system forsterite-albite-silica. This system is where the bulk compositions of E chondrites fall. The melting relations in this system outline the melting of aubrite parental liquids. ABV bulk compositions lie along the enstatite-forsterite reaction boundary and are generally distinct from E chondrite bulk compositions. Analysis of the forsterite-albite-silica system, and the loci of ABV bulk compositions relative to that of the enstatite chondrites shows that the ABVs can be derived by partial melting of an E chondrite protolith. The L87I vitrophyre is more oxidizing than KTI and PAI. This was determined by its: higher enstatite and forsterite FeO content, lack of alabandite, low kamacite Si content and low Ti in troilite. Forsterites enclosed in enstatite display a solid trend of anticorrelated MnO and FeO; contrary to the positive correlation found for olivines in most gecochemical settings. This anticorrelation can be explained by an oxidizing or reducing event that occurred to the L87I parental melt

  9. Partitioning of protactinium, uranium, thorium and other trace elements between columbite and hydrous silicate melt

    NASA Astrophysics Data System (ADS)

    Huang, F.; Schmidt, M. W.; Günther, D.; Eikenberg, J.

    2009-12-01

    U-series disequilibria are a unique powerful tool to constrain the time-scales and processes of magmatism in mid-ocean ridge, intra-plate, and convergent margin settings. 235U-231Pa is one of the important parent-daughter pairs (231Pa half life = 33 kyr) because protactinium is normally much more incompatible than U during magmatism and thus the ubiquitously observed 231Pa excess in young igneous rocks most likely reflects melting processes. However, because of the extreme incompatibility of protactinium in most silicate minerals (mineral/meltDPa < 10-5), it is quite challenging to experimentally investigate partition coefficient of Pa. Furthermore, it is unclear whether Pa is always +5 or possibly more reduced at natural magmatic conditions, in particular in a reduced mantle. This significantly limits our understanding of the chemical behavior of Pa and applications of U-series disequilibrium data to the study of magmatism. Columbite (Mn(Nb,Ta)2O6) is a mineral with Nb5+ and Ta5+ as major elements, and occurs in per-aluminous granites and pegmatites. Because protactinium is expected to be +5 charged at crustal oxygen fugacities, and Pa5+ has an ionic radius close to Nb5+ and Ta5+, Nb and Ta have been used as proxy elements to constrain partitioning of Pa between minerals and melt using lattice strain modeling. Nb and Ta are strongly compatible in columbite (columbite/meltDNb-Ta ~ 10), and lattice strain modeling based on physical characteristics of the Nb-Ta site where Pa should be incorporated predicts that columbite/meltDPa5+ should be around 0.2, high enough to be experimentally determined at the permissible Pa doping level of 10 ppm (bulk). Experiments were run in a piston cylinder apparatus at 0.5 GPa and 1115 oC using Pt double capsules with NNO or FMQ as external fO2 buffers. The starting material is a hydrous per-aluminous granitic composition, doped with Pa solution in the Paul Scherrer Institute and also contains other trace elements including U, Th, REE

  10. Io: Generation of Silicate Magma by Shear Melting at the Base of a Basaltic Lithosphere

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1985-01-01

    Tidal theory and observational evidence indicates that about 1 w/sq. m. of energy is released at the surface of Io. In order to place limits on how much tidal energy can be dissipated within a rigid lithosphere, depth-temperature profiles were calculated for different lithosphere thickness assuming that the tidal energy was dissipated uniformly throughout the lithosphere. Thus a thick lithosphere implies that a significant fraction of the tidal energy is dissipated below the depth where solidus temperatures are reached. One possibility is that Io has a crust consisting of a low melting temperature fraction such as basalt, overlying a mantle of a high melting temperature fraction such as peridotite. Thus, if the lithosphere of Io is thicker than 30 km, as appears probable, then high rates of silicate volcanism are implied and a significant fraction of the tidal energy must be dissipated by viscous deformation rather than rigid flexure.

  11. Viscosity of Carbonate-Silicate Melts Using Ultra-High Resolution Falling Sphere Viscometry

    NASA Astrophysics Data System (ADS)

    Hummer, D. R.; Kavner, A.; Manning, C. E.; Park, C.; Kono, Y.; Kenney-Benson, C.

    2014-12-01

    Carbonatites are carbon-rich magmas that participate in the deep-Earth carbon cycle, and may be precursors to many types of terrestrial magmatism. [1] Viscosity is a crucial parameter in determining migration rates and behavior of melts from the upper mantle to Earth's surface, but very little is known about the viscosity of carbonate-silicate liquids at conditions relevant to Earth's interior. To examine the viscosity of carbonate-silicate liquids as a function of composition, we performed in situ falling sphere viscosity experiments using a high speed X-ray camera and Paris-Edinburgh press at the HPCAT beamline (Advanced Photon Source, Argonne National Laboratory). Mixtures from the CaCO3-CaSiO3 (calcite-wollastonite) binary system were used to simulate mantle silicate carbonatites. Samples were loaded using the experimental setup of Yamada et al [2], held at 3 GPa, and heated until the sample was fully molten (between 1350-1650 oC). The high speed camera recorded the falling rate of a platinum sphere placed near the top of the sample chamber, enabling the calculation of terminal velocity and hence viscosity. Results indicate that pure CaCO3 at upper mantle conditions has a very low viscosity of ~0.006 Pa-s, only a little higher than that of water. This viscosity is 2-6 times lower than that of potassium carbonates at similar pressures (2.5-4.0 GPa) but at somewhat lower temperatures (800-1200 oC). [3] Our measured viscosity as a function of increasing silicate content increases along a log-linear trend, reaching 0.256 Pa-s for CaSiO3 liquid. This heavy dependence of viscosity on composition has implications for melt migration processes at different depths, suggesting either viscosity-driven or porosity-driven migration depending on both extent of melting and carbonate content. [1] Dasgupta, R. et al. (2013) Nature 493, 211-215. [2] Yamada, A. et al. (2011) Rev. Sci. Instr. 82, 015103. [3] Dobson, D. et al. (1996) Earth Plan. Sci. Lett. 143, 207-215.

  12. Spin crossover and iron-rich silicate melt in the Earth's deep mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Hirose, K.; Nomura, R.; Ozawa, H.; Tateno, S.; Hernlund, J. W.

    2010-12-01

    The volume difference between a silicate solid and its melt diminishes at high pressure, and the possibility that a melt sufficiently enriched in iron might then become more dense than solids at the pressures in the interior of the Earth and other terrestrial bodies has long been a source of considerable speculation. The occurrence of such dense silicate melts in the Earth's lowermost mantle would carry important consequences for its physical and chemical evolution and could provide a unifying model for explaining a variety of observed features in the core-mantle boundary (CMB) region [e.g., Labrosse et al., 2007 Nature]. Recent theoretical calculations [Stixrude et al., 2009 EPSL] combined with estimates of Fe partitioning between (Mg,Fe)SiO3 perovskite and melt at shallower mantle conditions suggest that melt is more dense than solids at pressures in the Earth's deepest mantle, consistent with analysis of shockwave experiments. Here we extend measurements of Fe partitioning in (Mg0.89Fe0.11)2 SiO4 bulk composition over the entire mantle pressure range, by a combination of laser-heated diamond-anvil cell experiments and chemical analyses of recovered samples using field-emission-type electron microprobe (FE-EPMA). The results demonstrate that the Fe-Mg distribution coefficient KD = ([FePv]/[MgPv]) / ([Femelt]/[Mgmelt]) between perovskite and melt is about 0.25 up to 75 GPa, consistent with earlier data found at 25 GPa in Al-free or -depleted peridotite materials using multi-anvil apparatus. On the other hand, the KD suddenly dropped to 0.07±0.02 at 76 GPa, resulting in strong Fe-enrichment in melts. It was almost constant at 0.06-0.08 at higher pressures to 159 GPa. The value did not change practically across the perovskite to post-perovskite phase transition. Additional x-ray emission spectroscopy measurements on (Mg0.95Fe0.05)SiO3 glass indicate the loss of spin around 60-70 GPa, suggesting that the observed change in Fe partitioning could be explained by a

  13. A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zajacz, Zoltán; Halter, Werner; Malfait, Wim J.; Bachmann, Olivier; Bodnar, Robert J.; Hirschmann, Marc M.; Mandeville, Charles W.; Morizet, Yann; Müntener, Othmar; Ulmer, Peter; Webster, James D.

    2005-12-01

    A new approach was developed to measure the water content of silicate glasses using Raman spectroscopy, which is independent of the glass matrix composition and structure. Contrary to previous studies, the compositional range of our studied silicate glasses was not restricted to rhyolites, but included andesitic, basaltic and phonolitic glasses. We used 21 glasses with known water contents for calibration. To reduce the uncertainties caused by the baseline removal and correct for the influence of the glass composition on the spectra, we developed the following strategy: (1) application of a frequency-dependent intensity correction of the Raman spectra; (2) normalization of the water peak using the broad T-O and T-O-T vibration band at 850-1250 cm-1 wavenumbers (instead of the low wavenumber T-O-T broad band, which appeared to be highly sensitive to the FeO content and the degree of polymerization of the melt); (3) normalization of the integrated Si-O band area by the total number of tetrahedral cations and the position of the band maximum. The calibration line shows a ±0.4 wt% uncertainty at one relative standard deviation in the range of 0.8-9.5 wt% water and a wide range of natural melt compositions. This method provides a simple, quick, broadly available and cost-effective way for a quantitative determination of the water content of silicate glasses. Application to silicate melt inclusions yielded data in good agreement with SIMS data.

  14. VOLATILECALC: A silicate melt-H2O-CO2 solution model written in Visual Basic for excel

    USGS Publications Warehouse

    Newman, S.; Lowenstern, J. B.

    2002-01-01

    We present solution models for the rhyolite-H2O-CO2 and basalt-H2O-CO2 systems at magmatic temperatures and pressures below ~ 5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within MicrosoftR Excel (Office'98 and 2000). The series of macros, entitled VOLATILECALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H2O and CO2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H2O and CO2 vapors at magmatic temperatures. The basalt-H2O-CO2 macros in VOLATILECALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar. ?? 2002 Elsevier Science Ltd. All rights reserved.

  15. Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1-atm

    NASA Astrophysics Data System (ADS)

    Namur, Olivier; Charlier, Bernard; Toplis, Michael J.; Vander Auwera, Jacqueline

    2012-01-01

    Many models for plagioclase-melt equilibria have been proposed over the past 30 years, but the focus is increasingly on the effects of water content and pressure. However, many geological and petrological applications concern low pressure and low water systems, such as the differentiation of large terrestrial basaltic magma chambers, and lunar and asteroidal magmatism. There is, therefore, a justified need to quantify the influence of anhydrous liquid composition on the composition of equilibrium plagioclase at 1-atm. With this in mind, a database of over 500 experimentally determined plagioclase-liquid pairs has been created. The selected low pressure, anhydrous, experiments include both natural and synthetic liquids, whose compositions range from basalt to rhyolite. Four equations are proposed, derived from this data. The first is based on a thermodynamically inspired formalism, explicitly integrating the effect of temperature. This equation uses free energies and activities of crystalline anorthite available from the literature. For the activity of anorthite in the liquid phase, it is found that current models of the activity of individual oxides are insufficient to account for the experimental results. We have therefore derived an empirical expression for the variation of anorthite activity in the liquid as a function of melt composition, based upon inversion of the experimental data. Using this expression allows the calculation of plagioclase composition with a relative error less than 10%. However, in light of the fact that temperature is not necessarily known for many petrological applications, an alternative set of T-independent equations is also proposed. For this entirely empirical approach, the database has been divided into three compositional groups, treated independently for regression purposes: mafic-ultramafic, alkali-rich mafic-ultramafic, and intermediate-felsic. This separation into distinct subgroups was found to be necessary to maintain errors

  16. Experimental evidence for high noble gas solubilities in silicate melts under mantle pressures

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard C.; Keppler, Hans

    2002-02-01

    The solubilities of Ar and Xe in Fe-free synthetic haplogranitic and tholeiitic melts were experimentally determined in the pressure range of 1-11 GPa and at temperatures between 1500 and 2000°C. Experiments were performed in a piston cylinder apparatus (1-3 GPa) and in a multi-anvil apparatus (2-11 GPa). The noble gas concentrations in the quenched glasses were determined with electron microprobe. As a function of pressure, Ar solubility increases linearly up to about 4-5 GPa where it reaches about 4.0 and 0.8 wt% for the haplogranitic and tholeiitic melt, respectively. At higher pressure the amount of dissolved Ar remains constant, suggesting that some threshold concentration is reached. The Xe solubility in tholeiite melt exhibits a very similar pattern. It increases linearly up to about 6 GPa, where a threshold concentration of 0.8 wt% is reached. A further increase of pressure up to 11 GPa does not result in changes in Xe solubility. The leveling off in noble gas solubility at high pressures may imply that the interstitial sites in the melt structure, suitable for the accommodation of noble gas atoms, are fully occupied. Indeed, the experimental data can be successfully reproduced with the Langmuir isotherm, implying a solubility model in which the gas atoms occupy a certain population of interstitial sites. However, the data can be equally well described by a model assuming mixing of the noble gas atoms with the oxygen atoms of the silicate melt. From a thermodynamic point of view, the constant noble gas solubility at high pressures simply implies that the partial molar volumes of the respective noble gas in the fluid and in the melt are equal. Our results differ from those of Chamorro-Perez et al. [Earth Planet. Sci. Lett. 145 (1996) 97-107; Nature 393 (1998) 352-355] who reported an abrupt, order-of-magnitude drop of Ar solubility in silica and olivine melt at around 5 GPa, suggesting that melt densification results in an abrupt decrease of the hole size

  17. Reaction rim growth on olivine in silicic melts: Implications for magma mixing

    USGS Publications Warehouse

    Coombs, Michelle L.; Gardner, James E.

    2004-01-01

    Finely crystalline amphibole or pyroxene rims that form during reaction between silicic host melt and cognate olivine xenocrysts, newly introduced during magma mixing events, can provide information about the timing between mixing and volcanic eruptions. We investigated rim growth experimentally by placing forsteritic olivine in rhyolitic and rhyodacitic melts for times between 25 and 622 h at 50 and 150 MPa, H2O-saturated, at the Ni-NiO buffer. Rims of orthopyroxene microlites formed from high-silica rhyolite and rhyodacite melts at 885°C and 50 MPa, and in the rhyolite at 150 MPa and 885°C. Rims of amphibole with lesser orthopyroxene formed in the rhyolite at 150 MPa and 800°C and in the rhyodacite at 150 MPa and 885°C. Irregular, convolute olivine edges and mass balance between olivine, melt, and rim phases show that olivine partly dissolved at all conditions. Iron-rich zones at the exteriors of olivines, which increased in width parabolically with time, show that Fe-Mg interdiffusion occurring in olivines was not outpaced by olivine dissolution. Linear increases of the square of rim widths with time suggest that diffusion within the melt is the rate-controlling process for olivine dissolution and rim growth. Rims grew one-half to one order-of-magnitude faster when melt water contents were doubled, unless conditions were far above the liquidus. Rim growth rate in rhyolite increases from 0.055 ± 0.01 µm2/h at 885°C and 50 MPa to 0.64 ± 0.13 µm2/h at 800°C and 150 MPa. Melt composition has a lesser effect on rim growth rates, with growth rate increasing as melt SiO2 content decreases. Pyroxene rims on olivines in andesite erupted from Arenal volcano (Costa Rica) grew at a rate of 3.0 ± 0.2 µm2/h over an eleven-year period. This rate is faster than those of the experiments due to lower melt viscosity and higher temperatures, and suggests that a magma mixing event preceded the start of the eruption by days.

  18. Insights into Silicate and Oxide Melt Structure from Amorphous, Non-Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2015-12-01

    Many silicate and oxide liquids of interest in the Earth sciences and in technology cannot readily be quenched to glasses, either because of low silica contents (and hence low viscosity at the melting point and accompanying liquid 'fragility') or because of liquid-liquid unmixing at high temperature. Although in-situ, high temperature structural tools have been in use for decades and are rapidly developing, many methods are still most informative for glass samples quenched to ambient pressure and temperature, e.g. high-resolution solid-state NMR. Amorphous oxides, including alumina and silicate compositions, have widespread technological applications. These are generally deposited by a variety of high-energy sputtering methods, as films of thicknesses of 10's to 100's of nm. Using Al-27, Si-29, and O-17 NMR, we have recently shown that for such films, very similar short-range structure is seen in materials made by very different kinetic pathways, such as sol-gel synthesis vs. ion-beam sputtering. This path-independent structure suggests that these materials pass through transient equilibrium states during their formation, probably that of deeply supercooled liquids just above glass transition temperatures. In the HfO2-SiO2 and ZrO2-SiO2 systems, for example, samples have well-resolved O-17 NMR spectra, allowing quantitation of O sites with only Hf(Zr) neighbors (so-called "free" oxide ions), with mixed Hf(Zr) and Si neighbors, and Si only. The observed oxygen speciation agrees well with a simple thermodynamic model of one of the most fundamental equilibria in silicate systems, namely the reaction of bridging (Si-O-Si) and "free" (e.g. OHf3 and OHf4) oxide ions to produce "non-bridging" oxygens (e.g. Si-OHf2). This new approach to sampling such structural equilibria in compositions far outside the range of normal glass-forming liquids may provide new insights into more geological compositions as well, as well as in more general models of silicate melt chemistry.

  19. Coordination chemistry of Ti(IV) in silicate glasses and melts: III. Glasses and melts from ambient to high temperatures

    NASA Astrophysics Data System (ADS)

    Farges, François; Brown, Gordon E.; Navrotsky, Alexandra; Gan, Hao; Rehr, John R.

    1996-08-01

    domains are related to the dual structural role of Ti in silicate glass/melts (acting simultaneously as network former and network modifier).

  20. Experimental halogen partitioning between earth upper mantle minerals and silicate melt

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Burgess, Ray; Ballentine, Christopher J.

    2013-04-01

    system, which simulates partial melting and fractional crystallization processes in the earth's upper mantle, allows us to determine the partitioning behaviour of fluorine, chlorine and bromine between silicate melts and pyroxene as well as forsterite using TOF-SIMS.

  1. Occurrence of silicate melt, carbonate-rich melt and fluid during medium pressure anatexis of metapelitic gneisses (Oberpfalz, Bavaria) revealed by melt and fluid inclusions study

    NASA Astrophysics Data System (ADS)

    Ferrero, Silvio; O'Brien, Patrick; Hecht, Lutz; Wunder, Bernd

    2014-05-01

    of a silicate melt and a carbonate-rich melt during anatexis at relatively shallow crustal levels, but this hypothesis needs to be further tested through re-homogenization experiments by piston cylinder means. References Bartoli, O., Cesare, B., Poli, S., Bodnar, R.J., Acosta-Vigil, A., Frezzotti, M.L. & Meli, S., 2013. Recovering the composition of melt and the fluid regime at the onset of crustal anatexis and S-type granite formation. Geology, 41, 115-118. Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D. & Cavallo, A., 2009. Nanogranite and glassy inclusions: the anatectic melt in migmatites and granulites. Geology, 37, 627-630. Ferrero, S., Bartoli, O., Cesare, B., Salvioli Mariani, E., Acosta-Vigil, A., Cavallo, A., Groppo, C. & Battiston, S., 2012. Microstructures of melt inclusions in anatectic metasedimentary rocks. Journal of Metamorphic Geology, 30, 303-322. Ferrero, S., Braga, R., Berkesi, M., Cesare, B. & Laridhi Ouazaa, N., 2014. Production of Metaluminous melt during fluid-present anatexis: an example from the Maghrebian basement, La Galite Archipelago, central Mediterranean. Journal of Metamorphic Geology, DOI:10.1111/jmg.12068. Tanner, D.C. & Behrmann, J.H., 1995. The Variscan tectonics of the Moldanubian gneisses, Oberpfalzer Wald: a compressional history. Neues Jahrbuch fur Geologie und Palaontologie. Abhandlungen, 197, 331-355. Touret, J.L.R., 2009. Mantle to lower-crust fluid/melt transfer through granulite metamorphism. Russian Geology and Geophysics, 50, 1052-1062.

  2. Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis

    NASA Astrophysics Data System (ADS)

    Veksler, Ilya V.; Dorfman, Alexander M.; Danyushevsky, Leonid V.; Jakobsen, Jakob K.; Dingwell, Donald B.

    2006-12-01

    This study investigates partitioning of elements between immiscible aluminosilicate and borosilicate liquids using three synthetic mixtures doped with 32 trace elements. In order to get a good spatial separation of immiscible liquids, we employed a high-temperature centrifuge. Experiments were performed at 1,050-1,150°C, 1 atm, in sealed Fe and Pt containers. Quenched products were analysed by electron microprobe and LA ICP-MS. Nernst partition coefficients ( D’s) between the Fe-rich and Si-rich aluminosilicate immiscible liquids are the highest for Zn (3.3) and Fe (2.6) and the lowest for Rb and K (0.4-0.5). The plots of D values against ionic potential Z/r in all the compositions show a convex upward trend, which is typical also for element partitioning between immiscible silicate and salt melts. The results bear upon the speciation and structural position of elements in multicomponent silicate liquids. The ferrobasalt-rhyolite liquid immiscibility is observed in evolved basaltic magmas, and may play an important role in large gabbroic intrusions, such as Skaergaard, and during the generation of unusual lavas, such as ferropicrites.

  3. Microstructure and mechanical properties of stainless steel/calcium silicate composites manufactured by selective laser melting.

    PubMed

    Zheng, Zeng; Wang, Lianfeng; Jia, Min; Cheng, Lingyu; Yan, Biao

    2017-02-01

    Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO3) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO3 particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO3 precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320-722MPa. The microhardness and elastic modulus are around 250HV and 215GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO3 composites can be a potential biomedical metallic materials in the medical field.

  4. Hydroclast and Peperite generation: Experimental Results produced using the Silicate Melt Injection Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Downey, W. S.; Mastin, L. G.; Spieler, O.; Kunzmann, T.; Shaw, C. S.; Dingwell, D. B.

    2008-12-01

    The Silicate Melt Injection Laboratory Experiment (SMILE) allows for the effusive and explosive injection of molten glass into a variety of media - air, water, water spray, and wet sediments. Experiments have been preformed using the SMILE apparatus to evaluate the mechanisms of "turbulent shedding" during shallow submarine volcanic eruptions and magma/wet-sediment interactions. In these experiments, approximately 0.5 kg of basaltic melt with 5 wt.% Spectromelt (dilithium tetraborate) is produced in an internally heated autoclave at 1150° C and ambient pressure. The molten charge is ejected via the bursting of a rupture disc at 3.5 MPa into the reaction media, situated within the low pressure tank (atmospheric conditions). Preliminary experiments ejecting melt into a standing water column have yielded hydroclasts of basalt. SEM images of the clasts show ubiquitous discontinuous skins ("rinds") that are flaked, peeled, or smeared away in strips. Adhering to the clast surfaces are flakes, blocks, and blobs of detached material, up to 10 μm in size. The presence of partially detached rinds and rind debris likely reflects repeated bending, scraping, impact, and other disruption through turbulent velocity fluctuations. These textures are comparable to littoral explosive deposits at Kilauea Volcano, Hawaii, where lava tubes are torn apart by wave action, the lava is quenched, and thrown back on the beach as loose fragments (hyaloclastite). Preliminary experiments injecting melt into wet sediments show evidence of sediment ingestion and fluidal textures. These results support the interpretation that peperite generation can be driven by hydrodynamic mixing of a fuel and a coolant.

  5. Aubrite basalt vitrophyres: High sulfur silicate melts and a snapshot of aubrite formation. [Abstract only

    NASA Technical Reports Server (NTRS)

    Fogel, R. A.

    1994-01-01

    Two aubrite basalt vitrophyre clasts have been found within AMNH thin sections from the Parsa EH3 chondrite and the Khor Temiki aubrite. Polished sections of the Parsa Aubrite Inclusion (PAI) and the Khor Temiki Inclusion (KTI) were studied by optical, electron probe microanalysis (EPMA), and scanning electron microscopy (SEM) techniques with broad-beam and low absorbed EPMA currents used to minimize glass volatile loss. Some data have previously been reported for PAI and KTI may possibly correlate to a previously reported inclusion in Khor Tiimiki. In polished sections, PAI and KTI are approximately equal 4 mm in diameter and contain a large volume of glass. The clasts have similar textural characteristics and are akin to lunar vitrophyre textures. The glasses have high alkali rhyodacitic compositions Al-though PAI is peraluminous, KTI is significantly peralkaline. Additionally, the glasses have elevated sulfur concentrations that are extremely high by geochemical standards. SEM examination for beam overlap of microscopic CaS, FeS, and (Mg, Mn, Fe) S inclusions showed no such contamination. Furthermore, homogeneity of glass S content and low FeO contents help rule out contamination. Materials research data show that under reducing conditions alumino-silicate melts can dissolve up to several weight percent sulfur in the absence of Fe. The high S and alkali contents, the lack of associated high shock features, and the rationalized phase equilibria suggest that PAI and KTI are igneous melting products of an E-chondrite-like source material. Although large-scale impact melting cannot totally be ruled out, the above observations eliminate the possibility of in-situ shock melting.

  6. In-situ thermal emissivity of silicate melts: an example from Erebus phonolitic volcano

    NASA Astrophysics Data System (ADS)

    Hao, Li; Joan, Andújar; Sousa Meneses Domingos, De; Bruno, Scaillet; Patrick, Echegut

    2014-05-01

    Real time thermal remote sensing of active volcanic systems is a crucial technique for understanding the behavior and eruptive activity of hot magmatic bodies. By determining the temperature of an erupting magma, researchers can have a better understanding on the rheology of active lava flows and domes, and have a first approach to the composition, flow pattern and cooling rate of the melt. Such measurements rely on determining the thermal infrared emissivity of the magma, a parameter that is crucial for understanding the heat transfer and radiative cooling of the system. Nevertheless, previous works have shown that the thermal emissivity of a silicate melt is strongly affected by changes in the composition, melt structure, presence of crystals or existence of a glassy crust. Hence, small changes on these parameters will have an important impact on retrieved temperatures (i.e., Lee et al. 2013). Within this context we have performed in-situ thermal emission spectroscopy measurements on two different samples: 1) a natural phonolitic glass/melt from Erebus and 2) an haplo-phonolitic synthetic glass/melt. We used a direct method to obtain a spectrum in the wavenumber range from 400 to 13000 cm-1; the samples were heated up from room temperature to 1600K with a CO2 laser and data were collected during all the heating stage with a FTIR spectrometer. The first results show that both samples have a different emissivity response while being heated up. Whereas the synthetic sample shows no-variation in emissivity while heated, the natural Erebus glass sample, however, experienced a sudden jump in emissivity (from 0.7 to 0.95) beyond 2000 cm-1 near the glass-transition temperature. After this point, emissivity decreases with increasing temperature (to 0.8). We have also explored the thermal behavior of the natural phonolite during cooling. A low cooling rate increases sample emissivity to values that are similar to those at the glass transition (from 0.8 to 0.95) but beyond

  7. Recalescence in Silicate Melts: More Than Just a Flash in the Pan?

    NASA Astrophysics Data System (ADS)

    Whittington, A. G.; Sehlke, A.

    2015-12-01

    Rapid cooling of silicate melts facilitates undercooling, where nucleation is delayed and crystal growth begins at temperatures below equilibrium. In such cases, rapid crystal growth and release of latent heat of crystallization can produce net heating (recalescence). We have documented recalescence in Fe-Mg pyroxene and komatiite melts, using a thermal imaging (FLIR) camera for melt volumes on the order of cm3, and using differential scanning calorimetry for melt volumes on the order of mm3. On cooling Fe0.8Mg1.2Si2O6 liquid from ~1600˚C in air, at ~30˚C/s, crystallization begins at ~1110˚C. Averaging over the whole base of the crucible (~10cm2), the observed temperature increase is ~100˚C and it takes ~2.5 seconds to attain the thermal peak. Crystallization and heating can be seen migrating across the melt volume together. When looking at a 3x3 pixel spot (~1mm2 in our setup), reheating to >1270˚C occurred in ~1 s. About 30 mg of the same melt was cooled in a differential scanning calorimeter. Cooled at ~1˚C/s, two distinct crystallization peaks were seen at ~1450 and ~1270˚C. Cooled at ~2˚C/s, the first peak was delayed to ~1315˚C and merged with the second. Examination of recovered samples indicates crystallization of enstatite, followed by Fe-oxides and tridymite in a silica-rich glass matrix. On cooling of komatiite liquid from ~1600˚C at ~50˚C/s, crystallization begins at ~1080˚C. The average temperature plateaus for ~2s and then continues cooling. When looking at a 3x3 pixel spot, heating of ~10˚C could be detected only by comparing different video frames. We conclude that (i) thermal imaging of lava flows needs to be conducted with mm-scale spatial resolution to assess true temperature fluctuations, and (ii) thermal models that incorporate latent heat of crystallization as an "effective heat capacity" term do not allow recalescence, and may inaccurately capture the thermal history of rapidly cooled lava.

  8. The solubility of carbon monoxide in silicate melts at high pressures and its effect on silicate phase relations. [in terrestrial and other planetary interiors

    NASA Technical Reports Server (NTRS)

    Eggler, D. H.; Mysen, B. O.; Hoering, T. C.; Holloway, J. R.

    1979-01-01

    Autoradiographic analysis and gas chromatography were used to measure the solubility in silicate melts of CO-CO2 vapors (30 to 40% CO by thermodynamic calculation) in equilibrium with graphite at temperatures up to 1700 deg C and pressures to 30 kbar. At near-liquidus temperatures CO-CO2 vapors were found to be slightly more soluble than CO2 alone. As a result of the apparently negative temperature dependence of CO solubility, the solubility of CO-CO2 at superliquidus temperatures is less than that of CO2. Melting points of two silicates were depressed more by CO than by CO2. Phase boundary orientations suggest that CO/CO + CO2 is greater in the liquid than in the vapor. The effect of the presence of CO on periodotite phase relations was investigated, and it was found that melts containing both CO and CO2 are nearly as polymerized as those containing only CO2. These results suggest that crystallization processes in planetary interiors can be expected to be about the same, whether the melts contain CO2 alone or CO2 and CO.

  9. Crystallization of diamond from a silicate melt of kimberlite composition in high-pressure and high-temperature experiments

    SciTech Connect

    Arima, Makoto; Nakayama, Kazuhiro ); Akaishi, Minoru; Yamaoka, Shinobu; Kanda, Hisao )

    1993-11-01

    In high-pressure and high-temperature experiments (1800-2200[degrees]C and 7.0-7.7 GPa), diamond crystallized and grew in a volatile-rich silicate melt of kimberlite composition. This diamond has well-developed [111] faces, and its morphologic characteristics resemble those of natural diamond but differ from those of synthetic diamond grown from metallic solvent-catalysts. The kimberlite melt has a strong solvent-catalytic effect on diamond formation, supporting the view that some natural diamonds crystallized from volatile-rich melts in the upper mantle. 19 refs., 3 figs., 1 tab.

  10. Melt fracturing and healing: A mechanism for degassing and origin of silicic obsidian

    USGS Publications Warehouse

    Cabrera, A.; Weinberg, R.F.; Wright, H.M.N.; Zlotnik, S.; Cas, Ray A.F.

    2011-01-01

    We present water content transects across a healed fault in pyroclastic obsidian from Lami pumice cone, Lipari, Italy, using synchrotron Fourier transform infrared spectroscopy. Results indicate that rhyolite melt degassed through the fault surface. Transects define a trough of low water content coincident with the fault trace, surrounded on either side by high-water-content plateaus. Plateaus indicate that obsidian on either side of the fault equilibrated at different pressure-temperature (P-T) conditions before being juxtaposed. The curves into the troughs indicate disequilibrium and water loss through diffusion. If we assume constant T, melt equilibrated at pressures differing by 0.74 MPa before juxtaposition, and the fault acted as a low-P permeable path for H2O that diffused from the glass within time scales of 10 and 30 min. Assuming constant P instead, melt on either side could have equilibrated at temperatures differing by as much as 100 ??C, before being brought together. Water content on the fault trace is particularly sensitive to post-healing diffusion. Its preserved value indicates either higher temperature or lower pressure than the surroundings, indicative of shear heating and dynamic decompression. Our results reveal that water contents of obsidian on either side of the faults equilibrated under different P-T conditions and were out of equilibrium with each other when they were juxtaposed due to faulting immediately before the system was quenched. Degassing due to faulting could be linked to cyclical seismic activity and general degassing during silicic volcanic activity, and could be an efficient mechanism of producing low-water-content obsidian. ?? 2011 Geological Society of America.

  11. Partitioning of H2O between olivine and carbonate-silicate melts at 6.3 GPa and 1400 °C: Implications for kimberlite formation

    NASA Astrophysics Data System (ADS)

    Sokol, Alexander G.; Kupriyanov, Igor N.; Palyanov, Yuri N.

    2013-12-01

    Partitioning of H2O between olivine and carbonate-silicate melts has been studied at 6.3 GPa and 1400 °C using a split-sphere multianvil apparatus. Olivine was synthesized in equilibrium with hydrous silicate and hydrous carbonate-silicate±chloride melts saturated with respect to one of Opx, Grt, Ms or a harzburgitic (Ol+Opx+Grt) residue and had CO2/(CO2+SiO2) molar ratios from 0 to 0.8. The concentration of H2O in olivine was determined using FTIR spectroscopy. We found that depending on the melt carbonation and saturation in equilibrium silicate phases the H2O content in olivine varied from 100 to 1500 ppm. The obtained results and data reported in Sokol et al. (2013) indicate that H2O content in olivine becomes approximately two times lower as CO2/(CO2+SiO2) molar ratios in the equilibrium melt increases from 0 to 0.4-0.8 and the crystallization media transform from hydrous silicate to hydrous carbonate-silicate (kimberlite like) melt. The estimated water partitioning between carbonate-silicate melt and nominally anhydrous mantle minerals indicates that carbonatitic melt can effectively extract water once it invades H2O-poore the peridotite. We suggest that extraction of H2O owing to the freezing point depression may provide the necessary melting degree of metasomatized peridotite source and formation of kimberlitic magma.

  12. LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: Quantification, data analysis and mineral/melt partitioning

    NASA Astrophysics Data System (ADS)

    Zajacz, Zoltán; Halter, Werner

    2007-02-01

    We present a new approach to determine the composition of silicate melt inclusions (SMI) using LA-ICPMS. In this study, we take advantage of the occurrence of SMI in co-precipitated mineral phases to quantify their composition without depending on additional sources of information. Quantitative SMI analyses are obtained by assuming that the ratio of selected elements in SMI trapped in different phases are identical. In addition Fe/Mg exchange equilibrium between olivine and melt was successfully used to quantify LA-ICPMS analyses of SMI in olivine. Results show that compositions of SMI from the different host minerals are identical within their uncertainty. Thus (1) the quantification approach is valid; (2) analyses are not affected by the composition of the host phase; (3) the derived melt compositions are representative of the original melt, excluding significant syn- or postentrapment modification such as boundary layer effects or diffusive reequilibration with the host mineral. With this data we established a large dataset of mineral/melt partition coefficients for the investigated mineral phases in hydrous calc-alkaline basaltic-andesitic melts. The clinopyroxene/melt and plagioclase/melt partition coefficients are consistent with the lattice strain model of Blundy and Wood [Blundy, J., Wood B., 1994. Prediction of crystal-melt partition-coefficients from elastic-moduli. Nature372, 452-454].

  13. Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury

    NASA Astrophysics Data System (ADS)

    Namur, Olivier; Charlier, Bernard; Holtz, Francois; Cartier, Camille; McCammon, Catherine

    2016-08-01

    Chemical data from the MESSENGER spacecraft revealed that surface rocks on Mercury are unusually enriched in sulfur compared to samples from other terrestrial planets. In order to understand the speciation and distribution of sulfur on Mercury, we performed high temperature (1200-1750 °C), low- to high-pressure (1 bar to 4 GPa) experiments on compositions representative of Mercurian lavas and on the silicate composition of an enstatite chondrite. We equilibrated silicate melts with sulfide and metallic melts under highly reducing conditions (IW-1.5 to IW-9.4; IW = iron-wüstite oxygen fugacity buffer). Under these oxygen fugacity conditions, sulfur dissolves in the silicate melt as S2- and forms complexes with Fe2+, Mg2+ and Ca2+. The sulfur concentration in silicate melts at sulfide saturation (SCSS) increases with increasing reducing conditions (from <1 wt.% S at IW-2 to >10 wt.% S at IW-8) and with increasing temperature. Metallic melts have a low sulfur content which decreases from 3 wt.% at IW-2 to 0 wt.% at IW-9. We developed an empirical parameterization to predict SCSS in Mercurian magmas as a function of oxygen fugacity (fO2), temperature, pressure and silicate melt composition. SCSS being not strictly a redox reaction, our expression is fully valid for magmatic systems containing a metal phase. Using physical constraints of the Mercurian mantle and magmas as well as our experimental results, we suggest that basalts on Mercury were free of sulfide globules when they erupted. The high sulfur contents revealed by MESSENGER result from the high sulfur solubility in silicate melt at reducing conditions. We make the realistic assumption that the oxygen fugacity of mantle rocks was set during equilibration of the magma ocean with the core and/or that the mantle contains a minor metal phase and combine our parameterization of SCSS with chemical data from MESSENGER to constrain the oxygen fugacity of Mercury's interior to IW- 5.4 ± 0.4. We also calculate that

  14. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS

    NASA Astrophysics Data System (ADS)

    Gualda, G. A.; Ghiorso, M. S.; Begue, F.; Pamukcu, A. S.; Gravley, D. M.

    2013-12-01

    been formed from two laterally-juxtaposed magma reservoirs. (2) For the Peach Spring Tuff (SW USA), we find that most matrix glass compositions yield no pressure estimates; only compositions with highest Na2O (>3.5 wt. %) and lowest K2O (<5.5 wt. %) can be in simultaneous equilibrium with quartz and 2 feldspars, which is expected from pumice mineralogy. This suggests that the rhyolite-MELTS barometer can be used to filter out compositions compromised by alteration or analytical problems. Inferred crystallization pressures are in the range 190-260 MPa. (3) For the Mamaku-Ohakuri paired eruption (Taupo Volcanic Zone, New Zealand), we find that only glass inclusion and matrix glass compositions with SiO2 >78.4 wt. % yield pressure estimates; for higher SiO2, the melt is too silicic to be in simultaneous equilibrium with both quartz and plagioclase. Inferred crystallization pressures are <130 MPa, consistent with relatively shallow magma storage in the Taupo Volcanic Zone. Glass inclusions yield higher pressures than matrix glass, suggesting that matrix glass records crystallization during eruptive decompression.

  15. XANES evidence for sulphur speciation in Mn-, Ni- and W-bearing silicate melts

    NASA Astrophysics Data System (ADS)

    Evans, K. A.; O'Neill, H. St. C.; Mavrogenes, J. A.; Keller, N. S.; Jang, L.-Y.; Lee, J.-F.

    2009-11-01

    S K-edge XANES and Mn-, W- and Ni-XANES and EXAFS spectra of silicate glasses synthesised at 1400 °C and 1 bar with compositions in the CaO-MgO-Al 2O 3-SiO 2-S plus MnO, NiO, or WO 3 systems were used to investigate sulphur speciation in silicate glasses. S K-edge spectra comprised a composite peak with an edge between 2470 and 2471.4 eV, which was attributed to S 2-, and a peak of variable height with an edge at 2480.2-2480.8 eV, which is consistent with the presence of S 6+. The latter peak was attributed to sample oxidation during sample storage. W-rich samples produced an additional lower energy peak at 2469.8 eV that is tentatively attributed to the existence of S 3p orbitals hybridised with the W 5d states. Deconvolution of the composite peak reveals that the composite peak for Mn-bearing samples fits well to a model that combines three Lorentzians at 2473.1, 2474.9 and 2476.2 eV with an arctan edge step. The composite peak for W-bearing samples fits well to the same combination plus an additional Lorentzian at 2469.8 eV. The ratio of the proportions of the signal accounted for by peaks at 2473.1 and 2476.2 eV correlates with Mn:Ca molar ratios, but not with W:Ca ratios. Spectra from Ni-bearing samples were qualitatively similar but S levels were too low to allow robust quantification of peak components. Some part of the signal accounted for by the 2473.1 eV peak was therefore taken to record the formation of Mn-S melt species, while the 2469.8 peak is interpreted to record the formation of W-S melt species. The 2474.9 and 2476.2 eV peaks were taken to be dominated by Ca-S and Mg-S interactions. However, a 1:1 relationship between peak components and specific energy transitions is not proposed. This interpretation is consistent with known features of the lower parts of the conduction band in monosulphide minerals and indicates a similarity between sulphur species in the melts and the monosulphides. S-XANES spectra cannot be reproduced by a combination of the

  16. Anionic Pt in Silicate Melts at Low Oxygen Fugacity: Speciation, Partitioning and Implications for Core Formation Processes on Asteroids

    NASA Technical Reports Server (NTRS)

    Medard, E.; Martin, A. M.; Righter, K.; Malouta, A.; Lee, C.-T.

    2017-01-01

    Most siderophile element concentrations in planetary mantles can be explained by metal/ silicate equilibration at high temperature and pressure during core formation. Highly siderophile elements (HSE = Au, Re, and the Pt-group elements), however, usually have higher mantle abundances than predicted by partitioning models, suggesting that their concentrations have been set by late accretion of material that did not equilibrate with the core. The partitioning of HSE at the low oxygen fugacities relevant for core formation is however poorly constrained due to the lack of sufficient experimental constraints to describe the variations of partitioning with key variables like temperature, pressure, and oxygen fugacity. To better understand the relative roles of metal/silicate partitioning and late accretion, we performed a self-consistent set of experiments that parameterizes the influence of oxygen fugacity, temperature and melt composition on the partitioning of Pt, one of the HSE, between metal and silicate melts. The major outcome of this project is the fact that Pt dissolves in an anionic form in silicate melts, causing a dependence of partitioning on oxygen fugacity opposite to that reported in previous studies.

  17. Partitioning of Moderately Siderophile Elements Among Olivine, Silicate Melt, and Sulfide Melt: Constraints on Core Formation in the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Gaetani, Glenn A.; Grove, Timothy L.

    1997-01-01

    This study investigates the effects of Variations in the fugacities of oxygen and sulfur on the partitioning of first series transition metals (V, Cr, Mn, Fe, Co, Ni. and Cu) and W among coexisting sulfide melt, silicate melt, and olivine. Experiments were performed at 1 atm pressure, 1350 C, with the fugacities of oxygen and sulfur controlled by mixing CO2, CO, and SO2 gases. Starting compositions consisted of a CaO-MgO-Al2O3-SiO2-FeO-Na2O analog for a barred olivine chondrule from an ordinary chondrite and a synthetic komatiite. The f(sub O2)/f(sub S2), conditions ranged from log of f(sub O2) = -7.9 to - 10.6, with log of f(sub S2) values ranging from - 1.0 to -2.5. Our experimental results demonstrate that the f(sub O2)/f(sub S2) dependencies of sulfide melt/silicate melt partition coefficients for the first series transition metals arc proportional to their valence states. The f(sub O2)/f(sub S2) dependencies for the partitioning of Fe, Co, Ni, and Cu are weaker than predicted on the basis of their valence states. Variations in conditions have no significant effect on olivine/melt partitioning other than those resulting from f(sub O2)-induced changes in the valence state of a given element. The strong f(sub O2)/f(sub S2) dependence for the olivine/silicate melt partitioning of V is attributable to a change of valence state, from 4+ to 3+, with decreasing f(sub O2). Our experimentally determined partition coefficients are used to develop models for the segregation of sulfide and metal from the silicate portion of the early Earth and the Shergottite parent body (Mars). We find that the influence of S is not sufficient to explain the overabundance of siderophile and chalcophile elements that remained in the mantle of the Earth following core formation. Important constraints on core formation in Mars are provided by our experimental determination of the partitioning of Cu between silicate and sulfide melts. When combined with existing estimates for siderophile

  18. In situ insights to Se (S) partitioning between silicate and metallic melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Borchert, M.; Petitgirard, S.; Appel, K.; Watenphul, A.; Morgenroth, W.

    2012-12-01

    The Earth's core mainly consists of a metallic Fe-Ni mixture. However, seismic observations show that the density is about 5-10% lower than expected for an Fe-Ni alloy under similar pressure and temperature conditions (e.g., [1,2]). This discovery initiated numerous studies to identify and quantify light elements in the Earth0s core. Among others, sulphur has been suggested to be a promisingly candidate to alloy with the metallic core because of its depletion in the crust and the mantle relative to other volatile elements by several orders of magnitude (e.g., [3-5]). In the last decades, several experimental studies have aimed to quantify the sulphur content in the Earth's core and to determine its influence on the physical properties (e.g., [6]). However, experimental data on sulphur partitioning between silicate and metallic liquids at pressures and temperatures relevant for core-mantle boundary conditions are missing. This lack is due to pressure and temperature limitations of conventional experimental approaches (up to 25 GPa and 2200 K). New developments, like laser-heated diamond-anvil cells (LDAC), allow studies at core-mantle boundary conditions, but in-situ chemical analysis of sulphur in LDACs is impossible due to the high absorption of S fluorescence in the diamonds. Instead of sulphur, selenium can be used to model sulphur partitioning between silicate and metallic melts at elevated PT conditions. This is based on the fact that sulphur and selenium can be considered as geochemical twins ([7,8]). The main advantage of this approach is the much higher excitation energy of selenium compared to sulphur, which enables in-situ XRF analysis in LDACs. Here, we present preliminary data on Se partitioning between silicate and metallic melt at extreme conditions. The experiments have been performed in double-sided laser-heated LDACs at the high pressure beamlines P02.2 (DESY, Germany) and ID27 (ESRF, France) as described in [9]. Micro-XRF mappings are used to

  19. Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury

    NASA Astrophysics Data System (ADS)

    Namur, Olivier; Charlier, Bernard; Holtz, Francois; Cartier, Camille; McCammon, Catherine

    2016-04-01

    Chemical data from the MESSENGER spacecraft revealed that surface rocks on Mercury are unusually enriched in sulfur compared to samples from other terrestrial planets. In order to understand the speciation and distribution of sulfur on Mercury, we performed high temperature (1200-1750°C), low- to high-pressure (1 bar to 4 GPa) experiments on compositions representative of Mercurian lavas and on the silicate composition of an enstatite chondrite. We equilibrated silicate melts with sulfide and metallic melts under highly reducing conditions (IW-1.5 to IW-9.4; IW = iron-wüstite oxygen fugacity buffer). Under these oxygen fugacity conditions, sulfur dissolves in the silicate melt as S2- and forms complexes with Fe2+, Mg2+ and Ca2+. The sulfur concentration in silicate melts at sulfide saturation (SCSS) increases significantly with increasing reducing conditions (from < 1 wt.% S at IW-2 to >10 wt.% S at IW-8) and with increasing temperature. At sulfide saturation, the composition of the sulfide melt is mainly composed of FeS at IW-2 to IW-6 whereas it also contains (Mg,Ca,Fe)S under more reducing conditions (< IW-6). Metallic melts have a low sulfur content which decreases from 3 wt.% at IW-2 to 0 wt.% at IW-9. Based on our new data and those from previous studies, we developed a parameterization to predict SCSS in Mercurian magmas as a function of melt composition, temperature, pressure and oxygen fugacity. Using physical constraints of the Mercurian mantle and magmas as well as our experimental results, we suggest that basalts on Mercury were free of sulfide globules when they erupted. The high sulfur contents revealed by MESSENGER result from the high sulfur solubility in silicate melt at reducing conditions. By combining our parameterization of SCSS with chemical data from MESSENGER, we constrain the oxygen fugacity of Mercury's interior to IW-5.4±0.4 when the lavas were produced in the mantle. We also estimate that the mantle of Mercury most probably contains 7

  20. Resolving Histories of Magmatic Volatiles in Fluids and Silicate Melts as a Function of Pressure, Temperature, and Melt Composition through Apatite Geochemistry

    NASA Astrophysics Data System (ADS)

    Webster, J. D.; Piccoli, P. M.; Goldoff, B. A.

    2012-12-01

    Fluids including aqueous or aqueous-carbonic vapor, aqueous liquid, and hydrosaline liquid, if present in magma, influence magmatic and volcanic processes, and the exsolution of fluids from magma sequesters and buffers volatile components from melt thus impacting the textural and chemical evolution of melts and phenocrysts. Establishing the timing of initial magmatic fluid saturation and monitoring changes in fluid chemistry through textural interpretations are often challenging because primary magmatic fluid inclusions are uncommon to most plutonic systems and are extremely rare in phenocrysts of eruptive magmas. Moreover, miarolitic cavities, often interpreted to be a priori evidence of fluid exsolution, are rarely observed in igneous systems. Geochemical tools used to resolve magmatic volatile histories include the analysis and interpretation of melt inclusion compositions and those of hydrous minerals including micas, amphiboles, and apatite. We have conducted more than 50 new hydrothermal experiments involving apatite+rhyodacite melt±fluids at 28, 50, 100, 200, and 400 MPa, and have combined these new data with published results for apatite-saturated melts at 200 MPa. This integrated body of data supports determination of a broadly applicable geochemical relationship that correlates the mole fractions of H2O and Cl in apatite with mole fractions of H2O and Cl in coexisting silicate melt as a function of pressure, temperature, and melt composition (for felsic to basaltic melts). The mathematical expression of this relationship is useful for a wide variety of applications: constraining H2O, Cl, and F concentrations in silicate melts and hence verifying concentrations of magmatic volatiles determined from silicate melt inclusions; establishing pressures or temperatures of apatite crystallization or last equilibration with melt ± fluids (if temperature and pressure, respectively, are constrained from other geothermobarometers); determining concentrations of

  1. XAS study of Cl and K speciation in glasses quenched from alkalic silicate and carbonate-silicate melts at high-pressure

    NASA Astrophysics Data System (ADS)

    Shiryaev, Andrei; Safonov, Oleg; Huthwelker, Thomas

    2010-05-01

    Data on microinclusions in kimberlitic diamonds and experimental results indicate that potassic Cl-bearing silicate and carbonate-silicate melts could be potential media for diamond nucleation and precursors of carbonatite-kimberlite magmatism in the Earth's mantle. These HP melts were presumably formed in equilibrium immiscible chloride or chloride-carbonate liquids [1, 2]. The immiscibility results from structural properties of the melts, in particular, from K and Cl speciation in them. We report preliminary results on X-ray absorption study of K and Cl local environments in the glasses quenched from melts in the systems NaAlSi2O6-KCl and CaMgSi2O6-CaCO3-Na2CO3-KCl at pressure 5 GPa. Experimental study of the system NaAlSi2O6-KCl [3] revealed a very strong shift of equilibrium between immiscible aluminosilicate and (K,Na)Cl melts NaAlSi2O6+ KCl = KAlSi2O6+ NaCl to the right, resulting in formation of the K-rich (up to 16 wt. % of K2O) aluminosilicate melt with 1.6-1.8 wt.% of Cl. It indicates active separation of K and Cl, which implies different structural positions of these ions in the aluminosilicate melt. Cl XAS spectra in most cases are fairly similar to the spectra of crystalline KCl with minor contribution of NaCl. Thus, chlorine is totally segregated into K(Na)Cl-like clusters of different sizes. K XAS spectra of the glasses could be represented as superposition of contributions from KCl and KAlSi3O8-NaAlSi3O8 glass [4]; the second component is dominant. Thus, in the glasses (and, presumably, in corresponding melts) K is predominantly bound to silicate units, represented by 4-membered rings as follows from Raman spectroscopy. Its CN is higher, than in crystalline leucite (>6). In contrast, Cl is coordinated exclusively by alkali ions in chloride clusters. System CaMgSi2O6-CaCO3-Na2CO3-KCl at 5 GPa shows a wide miscibility gap between Cl-bearing carbonate-silicate and Si-saturated chloride-carbonate melts [1], which converge with a decrease of the SiO2

  2. High-load, high-temperature deformation apparatus for synthetic and natural silicate melts

    NASA Astrophysics Data System (ADS)

    Hess, K.-U.; Cordonnier, B.; Lavallée, Y.; Dingwell, D. B.

    2007-07-01

    A unique high-load, high-temperature uniaxial press was developed to measure the rheology of silicate melts and magmatic suspensions at temperature up to 1050°C. This new apparatus is designed to operate at constant stresses (up to 300kN) or constant strain rates (˜10-7 to 100s-1) and further allows us to carry on experiments on samples with high viscosities (˜108 to 1012Pas). The rheological instrument represents an advance in that it accommodates homogeneously heated samples (±2°C) of voluminous sizes (up to 790cm3) which permit the insertion of thermocouples to monitor temperature distribution evolutions during measurements. At last this setup allows for accurate measurements of viscosity of natural multiphase materials at strain rates and temperatures common to natural systems. The apparatus aspires to precisely (1) describe the onset of non-Newtonian behavior and its evolution with increasing strain rate until the point of rupture in the brittle regime, (2) constrain the effect of crystals and bubbles on the viscosity, and (3) record heating dissipated through viscous deformation. Here, we present a series of measurements on NIST standard material SRM 717a to calibrate the instrument. We couple the viscosity determined via Gent's equation with certified viscosity data of the standard material to calibrate this state-of-the-art apparatus. This work shows that we can resolve the viscosity of voluminous melt sample within 0.06 logarithmic unit and furthermore present the detection of minor viscous dissipation for a high-temperature, high strain rate experiment.

  3. Viscosity and chemical diffusion of halogens in silicate melts: implications for volcanic degassing

    NASA Astrophysics Data System (ADS)

    Wasik, A.; Dingwell, D. B.; Courtial, P.; Hess, K.

    2005-12-01

    The efficiency of degassing processes in subduction zone volcanism may be affected by the magmato-hydrothermal geochemistry of halogens. In addition halogens may act as potential monitors of degassing efficiency and provide answers to the question of the role of disequilibrium during partitioning. Too little is known quantitatively about the transport properties of halogens in silicate melts. In particular, an accurate study of the transport properties of halogens should help to unlock the information contained in halogen concentrations of eruptive products and volcanic gases. For these reasons the chemical diffusivities of the halogens (fluorine, bromine, chlorine and iodine) have been measured in the synthetic Fe-bearing sodium disilicate melts, within a wide range of temperature (650-1400° C). The experiments were performed using diffusion couple technique. Halogens were added to the starting material in the form of FeF3, FeBr3, FeCl3 and FeI2 and stirred in concentric cylinder viscometer. The temperature was restricted to 1000-1100° C to avoid volatilization of halogens. After synthesis the samples were drilled, cut into 2mm disks and then doubly polished. Prepared disks were putted into platinum tubes (5mm diameter) and sealed by welding. The halogen rich sample was located at the bottom. During the experiments the temperature was monitored with a thermocouple located at the vicinity of the capsule. Run durations were between 30 minutes and 1 hour. The recovered samples were analyzed using an electron microprobe in order to determine the diffusion profiles of the halogens. The results were obtained by using Boltzmann-Matano method and they suggest at least 3 orders of magnitude range at 1000° C between the diffusion coefficients for F, Br, Cl and I. The fastest diffusing species was found to be fluorine, the slowest - iodine. In order to place the diffusivity measurements in the context of their extrinsic versus intrinsic nature, viscosity measurements were

  4. SIMS Calibration of Nitrogen in Silicate Glasses and Applications to Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Regier, M. E.; Hervig, R. L.; Wallace, P. J.; Myers, M.; Wilson, C. J. N.

    2015-12-01

    Previous attempts to constrain N fluxes between the mantle, crust, and atmospheric reservoirs over geologic time have been inhibited due to the difficulty of detecting trace amounts of nitrogen, especially as triply-bonded N2 in oxidized magmas. Secondary ion mass spectrometry (SIMS) can detect nitrogen as N+, and as the molecular ions SiN-, NO-, and CN-. However, there are few matrix-matched, bulk-analyzed standards for N, which makes quantification of its signal challenging. Here, we use the implantation of known amounts of nitrogen into rhyolitic glasses containing a range of H2O, and subsequent depth-profile analysis of these samples to derive N calibration factors1,2. We use a primary beam of O- and detection of N+ ions. Results demonstrate that the useful yield (ions detected per atom sputtered) of N increases with H2O content, whereas the useful yield of the measured matrix ion (30Si) decreases with higher H2O. Quantification is also complicated by variable N background that scales inversely with observed higher sputtering rates in hydrated glasses. The former issue can be resolved by fitting a curve to the H2O vs. calibration factor plot and the latter by varying the primary beam density on low-H2O materials. Together, these approaches allow us to quantify the N content in variably hydrated rhyolitic glasses. Application of these calibrations to quartz-hosted melt inclusions from the Bishop3, 4 and Huckleberry Ridge Tuffs4 reveals un-degassed N contents of melts at depth. We show that N can be used in concert with other volatiles to tease out magmatic processes, such as recharge events and magma mixing. We conclude that unless these inclusions do not represent the bulk concentration of N in the melt, large silicic eruptions have not released enough N to significantly impact the atmospheric reservoir over geologic time. 1Burnett DS et al. (2015) Geostand Geoanalytical Res 39:265-276; 2Wilson RG et al. (1989) Secondary ion mass spectrometry. Wiley (New York

  5. Modeling of iodine-xenon systematics during early outgassing of the earth using experimentally determined silicate melt solubilities and mineral/melt parition coefficients

    NASA Astrophysics Data System (ADS)

    Musselwhite, D. S.; Drake, M. J.; Swindle, T. D.

    1994-07-01

    Iodine-xenon systematics have been used to argue for an intense outgassing episode early in Earth history. The Xe-129/Xe-132 ratio is elevated in Mid Ocean Rich Basalts (MORBs) relative to Oceanic Island Basalts (OIBs). Xenon-129 is produced by the decay of short-lived I-129. Experimentally determined silicate-melt solubilities and mineral/melt partition coefficients (D) can be used to model systematics of I and Xe during magmatic outgassing. We consider a simple two-reservoir (mantle and atmosphere) model for partial melting and degassing of the MORB source mantle. Partial melting of the mantle occurs in equilibrium with residual minerals followed by eruption, degassing, and remixing of the entire lot. The composition of the mantle as a result will be a mixture of the degassed magma, magma that is not degassed, and residual minerals entrained in the melt. The partial pressure of I and Xe over the melt is a function of their molar mixing ratios with the dominant volatile species (water). If degassing alone is responsible for the elevated Xe-129/Xe-132 ratio of the MORB source mantle, then it did so under conditions with essentially no entrained minerals present in the mantle, i.e., a totally molten magma ocean. Furthermore, degassing must have occurred extremely rapidly, as short as one I-129 half-life. An alternative to this extreme view is recycling of I following outgassing perhaps involving differential water solubility of I and Xe.

  6. Structural environments of incompatible elements in silicate glass/melt systems: II. U IV, U V, and U VI

    NASA Astrophysics Data System (ADS)

    Farges, Franã§Ois; Ponader, Carl W.; Calas, Georges; Brown, Gordon E., Jr.

    1992-12-01

    The structural environments of trace to minor levels (≈2000 ppm to ≈3.0 wt%) of U in several silicate glasses were examined as a function of oxygen fugacity, melt composition, and melt polymerization using X-ray (XANES and EXAFS) and optical absorption spectroscopies. Glass compositions were diopside (CaMgSi 2O 6: DI), anorthite (CaAlSi 2O 8: AN), albite (NaAlSi 3O 8: AB), sodium trisilicate (Na 2Si 3O 7: TS), a peralkaline composition (Na 3.3AlSi 7O 17: PR, approximately halfway between AB and TS), and a calc-alkaline rhyolite composition (RH). A second set of silicate glasses of the same base compositions containing ≈2000 ppm to ≈3.0 wt% U and ≈0.6 to 2.5 wt% F or Cl was also synthesized. In the glasses synthesized under oxidizing conditions (in air), U VI occurs as uranyl groups with two axial oxygens at ≈ 1.77-1.85 ± 0.02 Å and four to five equatorial oxygens at ≈2.21-2.25 ± 0.03 Å. In glasses synthesized under more reducing conditions ( fO2 ≈ 10 -3-10 -7 atm), U V occurs in moderately distorted 6-coordinated polyhedra [ d(U V-O) ≈ 2.19-2.24 ± 0.03 Å], which may co-exist with smaller numbers of U VI species and/or U VI species. Under the most reducing conditions used ( fO2 ≈ 10 -8-10 -12 atm), U IV occurs in less distorted octahedra [ d(U IV-O) ≈ 2.26-2.29 ± 0.02 Å]. No clear evidence for U-F or U-Cl bonds was found for any of the halogen-containing glasses, suggesting that U-halogen "complexes" are not present. In addition, no U-U (second-neighbor) interactions were detected, indicating that no significant clustering of U atoms is present in any of the glasses studied. Bond strength-bond length calculations and constraints placed on local bonding by Pauling's second rule suggest that U IV and U V in 6-coordinated sites in silicate melts will preferentially bond to nonbridging oxygens (NBO's) rather than bridging oxygens (BO's). The unusually low 6-fold coordination of U IV and U V in relatively depolymerized silicate melts (e

  7. The effect of liquid composition on the partitioning of Ni between olivine and silicate melt

    NASA Astrophysics Data System (ADS)

    Matzen, Andrew K.; Baker, Michael B.; Beckett, John R.; Wood, Bernard J.; Stolper, Edward M.

    2017-01-01

    We report the results of experiments designed to separate the effects of temperature and pressure from liquid composition on the partitioning of Ni between olivine and liquid, D_{{Ni}}^{{ol/liq}}. Experiments were performed from 1300 to 1600 °C and 1 atm to 3.0 GPa, using mid-ocean ridge basalt (MORB) glass surrounded by powdered olivine in graphite-Pt double capsules at high pressure and powdered MORB in crucibles fabricated from single crystals of San Carlos olivine at one atmosphere. In these experiments, pressure and temperature were varied in such a way that we produced a series of liquids, each with an approximately constant composition ( 12, 15, and 21 wt% MgO). Previously, we used a similar approach to show that D_{{Ni}}^{{ol/liq}} for a liquid with 18 wt% MgO is a strong function of temperature. Combining the new data presented here with our previous results allows us to separate the effects of temperature from composition. We fit our data based on a Ni-Mg exchange reaction, which yields ln ( {D_{{Ni}}^{{molar}} } ) = { -Δ _{r(1)} H_{{T_{{ref}} ,P_{{ref}} }}°}/RT + {Δ _{r(1)} S_{{T_{{ref}} ,P_{{ref}} }}°}/R - ln ( {{X_{{MgO}}^{{liq}} }/{X_{{{{MgSi}_{ 0. 5} {{O}}_{ 2} }}^{{ol}} }}} ). Each subset of constant composition experiments displays roughly the same temperature dependence of D_{{Ni}}^{{ol/liq}} (i.e.,-Δ _{r(1)} H_{{T_{{ref}} ,P_{{ref}} }}°/R) as previously reported for liquids with 18 wt% MgO. Fitting new data presented here (15 experiments) in conjunction with our 13 previously published experiments (those with 18 wt% MgO in the silicate liquid) to the above expression gives -Δ _{r(1)} H_{{T_{{ref}} ,P_{{ref}} }}°/R = 3641 ± 396 (K) and Δ _{r(1)} S_{{T_{{ref}} ,P_{{ref}} }}° /R = - 1.597 ± 0.229. Adding data from the literature yields -Δ _{r(1)} H_{{T_{{ref}} ,P_{{ref}} }}° /R = 4505 ± 196 (K) and Δ _{r(1)} S_{{T_{{ref}} ,P_{{ref}} }}° /R = - 2.075 ± 0.120, a set of coefficients that leads to a predictive equation for D

  8. The effect of liquid composition on the partitioning of Ni between olivine and silicate melt.

    PubMed

    Matzen, Andrew K; Baker, Michael B; Beckett, John R; Wood, Bernard J; Stolper, Edward M

    2017-01-01

    We report the results of experiments designed to separate the effects of temperature and pressure from liquid composition on the partitioning of Ni between olivine and liquid, [Formula: see text]. Experiments were performed from 1300 to 1600 °C and 1 atm to 3.0 GPa, using mid-ocean ridge basalt (MORB) glass surrounded by powdered olivine in graphite-Pt double capsules at high pressure and powdered MORB in crucibles fabricated from single crystals of San Carlos olivine at one atmosphere. In these experiments, pressure and temperature were varied in such a way that we produced a series of liquids, each with an approximately constant composition (~12, ~15, and ~21 wt% MgO). Previously, we used a similar approach to show that [Formula: see text] for a liquid with ~18 wt% MgO is a strong function of temperature. Combining the new data presented here with our previous results allows us to separate the effects of temperature from composition. We fit our data based on a Ni-Mg exchange reaction, which yields [Formula: see text] Each subset of constant composition experiments displays roughly the same temperature dependence of [Formula: see text] (i.e.,[Formula: see text]) as previously reported for liquids with ~18 wt% MgO. Fitting new data presented here (15 experiments) in conjunction with our 13 previously published experiments (those with ~18 wt% MgO in the silicate liquid) to the above expression gives [Formula: see text] = 3641 ± 396 (K) and [Formula: see text] = - 1.597 ± 0.229. Adding data from the literature yields [Formula: see text] = 4505 ± 196 (K) and [Formula: see text] = - 2.075 ± 0.120, a set of coefficients that leads to a predictive equation for [Formula: see text] applicable to a wide range of melt compositions. We use the results of our work to model the melting of peridotite beneath lithosphere of varying thickness and show that: (1) a positive correlation between NiO in magnesian olivine phenocrysts and lithospheric

  9. Compressibility of hydrated and anhydrous sodium silicate-based liquids and glasses, as analogues for natural silicate melts, by Brillouin scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Tkachev, Sergey Nikolayevich

    A mathematical formalism was tested on compressibility studies of water, before applying it to the high pressure-temperature compressibility studies of hydrated and anhydrous sodium silicate-based liquids and glasses. The hypersonic sound velocity, refractive index and attenuation coefficient obtained using Brillouin light scattering spectroscopy technique were in agreement with literature data. From the measured sound velocities, the pressure dependence of the bulk moduli and density of liquid water were calculated, using Vinet equation of state. The formalism was extended to the Brillouin scattering studies of the elastic properties of alkaline-calcium silica hydrogels and float glass, which exhibits a dramatic increase in the pressure dependence of longitudinal velocity and a discontinuity in the compressibility at about 6 GPa. It is demonstrated that an apparent second-order transition to a new amorphous phase can form via the abrupt onset of a new compressional mechanism, which may be triggered by a shift in polymerization of the glass or an onset of a change in coordination of silicon. Brillouin scattering measurements were carried out on an aqueous solution of Na2O-2SiO2 and anhydrous Na2O-2SiO 2 glass and liquid at high P-T conditions. The "modified" platelet scattering geometry has allowed a determination of the longitudinal velocity independently from refractive index, and hence the adiabatic compressibility and density of liquids as a function of pressure and temperature. The observed increase in density of the melt and glass phases formed at high P-T conditions is likely associated with structural effects. The large values of KS' of the liquid phase illustrate that the means of compaction of the liquid differs substantially from that of the glass, and that the liquid is able to access a wider range of compaction mechanisms. The measured bulk modulus of Na2O-2SiO2 aqueous solution is closer to values of silicate melts than to that of end-member water at

  10. Partitioning behavior of chlorine and fluorine in the system apatite melt fluid. II: Felsic silicate systems at 200 MPa

    NASA Astrophysics Data System (ADS)

    Webster, James D.; Tappen, Christine M.; Mandeville, Charles W.

    2009-02-01

    Hydrothermal experiments were conducted to determine the partitioning of Cl between rhyolitic to rhyodacitic melts, apatite, and aqueous fluid(s) and the partitioning of F between apatite and these melts at ca. 200 MPa and 900-924 °C. The number of fluid phases in our experiments is unknown; they may have involved a single fluid or vapor plus saline liquid. The partitioning behavior of Cl between apatite and melt is non-Nernstian and is a complex function of melt composition and the Cl concentration of the system. Values of DClapat/melt (wt. fraction of: Cl in apatite/Cl in melt) vary from 1 to 4.5 and are largest when the Cl concentrations of the melt are at or near the Cl-saturation value of the melt. The Cl-saturation concentrations of silicate melts are lowest in evolved, silica-rich melts, so with elevated Cl concentrations in a system and with all else equal, the maximum values of DClapat/melt occur with the most felsic melt. In contrast, values of DFapat/melt range from 11 to 40 for these felsic melts, and many of these are an order of magnitude greater than those applying to basaltic melts at 200 MPa and 1066-1150 °C. The Cl concentration of apatite is a simple and linear function of the concentration of Cl in fluid. Values of DClfluid/apat for these experiments range from 9 to 43, and some values are an order of magnitude greater than those determined in 200-MPa experiments involving basaltic melts at 1066-1150 °C. In order to determine the concentrations and interpret the behavior of volatile components in magmas, the experimental data have been applied to the halogen concentrations of apatite grains from chemically evolved rocks of Augustine volcano, Alaska; Krakatau volcano, Indonesia; Mt. Pinatubo, Philippines; Mt. St. Helens, Washington; Mt. Mazama, Oregon; Lascar volcano, Chile; Santorini volcano, Greece, and the Bishop Tuff, California. The F concentrations of these magmas estimated from apatite-melt equilibria range from 0.06 to 0.12 wt% and are

  11. Dependence of Ru2O3 Activity on Composition of Silicate Melts: Using Statistical Correlations to Infer Thermodynamic Behavior in the Melt

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Malum, K. M.

    2005-01-01

    Understanding variations in activity with composition is an essential step in improving prediction of partition coefficients during magma evolution. Variations in activity with composition are complex and do not generally exhibit ideal behavior relative to a traditional melt-component set. Although deviations from component ideality can be modeled numerically by simply fitting to compositional variables (such as in a regular or subregular solution model), such models have not been particularly successful for describing variations in trace component activities. A better approach might be to try to identify components that do a better job of describing the behavior of the species in the melt. Electrochemical Measurement of Ru2O3 activities: Electrodes were inserted into silicate melt beads of various compositions (Table 1) suspended on Ptwire loops in a 1-atm gas mixing furnace. An electrical potential was imposed between the electrodes, the imposed potential increasing along a step ramp with a pulse imposed on each step (Fig. 1). Current flows between electrodes when electroactive species in the melt are oxidized or reduced at the electrodes. The resulting current was measured at the top and bottom of the voltage pulse, and the difference (the differential current) was plotted against potential. The peak of the resulting curve is related to the activity coefficient for the particular electroactive species (Ru2O3) in the melt [1, 2, 3]. A significant part of the nonideal contribution to activity is due not to intrinsic properties of the component in the melt, but to our ignorance about the state and mixing properties of the component in the melt.

  12. Molecular structure, configurational entropy and viscosity of silicate melts: link through the Adam and Gibbs theory of viscous flow

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel R.

    2016-04-01

    The rheological and thermodynamic properties of silicate melts played a crucial role in the formation and the evolution of the Earth. For instance, they influenced the evolution of a plausible primordial magma ocean, and, as a result, the differentiation of the Earth mantle and crust. Further, they control the dynamic of volcanic eruptions. Because of that, modelling the viscosity or the heat capacity of silicate melts is crucial in order to model the physical processes they are involved in. The Adam and Gibbs theory of viscous flow offers a thermodynamic framework that assumes that the viscosity η (Pa s) at a temperature T (K) of a melt can be expressed as: log(η) = A + ----Be--- e T Sconf(T) (1) with Ae a pre-exponential constant related to the viscosity at infinite temperature, Be (J mol-1) a constant proportional to the potential energy barrier opposed to the cooperative rearrangement of the liquid structure and Sconf(T) (J mol-1 K-1) the melt configurational entropy. With expressing Sconf(T) as the sum of the residual entropy of the glass and of the variation in melt configurational heat capacity, it is possible to link existing thermodynamic and viscosity data for melts with various chemical composition, e.g., SiO2, NaAlSi3O8 or CaAl2Si2O8. Further, it also is possible to describe the viscosity variation induced by mixing Ca and Mg or Na and K in silicate melts, under the assumption that such mixing produces an ideal excess entropy of mixing. An interesting point in the Adam and Gibbs framework is that it assumes that viscous flow occurs through the cooperative re-arrangement of molecular sub-regions in the melt. From high temperature 29Si NMR and Raman spectroscopy data, it actually is known that viscous flow occurs because of the cooperative exchange of oxygen atoms between tetrahedral SiO2 units, allowing their motions. Therefore, it is tempting to link such structural knowledge to heat capacity and viscosity data through the use of equation 1. In this

  13. Water and magmas: insights about the water solution mechanisms in alkali silicate melts from infrared, Raman, and 29Si solid-state NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Mysen, Bjorn O.; Cody, George D.

    2015-12-01

    Degassing of water during the ascent of hydrous magma in a volcanic edifice produces dramatic changes in the magma density and viscosity. This can profoundly affect the dynamics of volcanic eruptions. The water exsolution history, in turn, is driven by the water solubility and solution mechanisms in the silicate melt. Previous studies pointed to dissolved water in silicate glasses and melts existing as molecules (H2Omol species) and hydroxyl groups, OH. These latter OH groups commonly are considered bonded to Si4+ but may form other bonds, such as with alkali or alkaline-earth cations, for instance. Those forms of bonding influence the structure of hydrous melts in different ways and, therefore, their properties. As a result, exsolution of water from magmas may have different eruptive consequences depending on the initial bonding mechanisms of the dissolved water. However, despite their importance, the solution mechanisms of water in silicate melts are not clear. In particular, how chemical composition of melts affects water solubility and solution mechanism is not well understood. In the present experimental study, components of such information are reported via determination of how water interacts with the cationic network of alkali (Li, Na, and K) silicate quenched melts. Results from 29Si single-pulse magic-angle spinning nuclear magnetic resonance (29Si SP MAS NMR), infrared, and Raman spectroscopies show that decreasing the ionic radius of alkali metal cation in silicate melts results in decreasing fraction of water dissolved as OH groups. The nature of OH bonding also changes as the alkali ionic radius changes. Therefore, as the speciation and bonding of water controls the degree of polymerization of melts, water will have different effects on the transport properties of silicate melts depending on their chemical composition. This conclusion, in turn, may affect volcanic phenomena related to the viscous relaxation of hydrous magmas, such as for instance the

  14. Eclogite-associated potassic silicate melts and chloride-rich fluids in the mantle: a possible connection

    NASA Astrophysics Data System (ADS)

    Safonov, O.; Butvina, V.

    2009-04-01

    Relics of potassium-rich (4-14 wt. % of K2O and K2O/Na2O > 1.0) melts are a specific features of some partially molten diamondiferous eclogite xenoliths in kimberlites worldwide [1, 2]. In addition, potassic silicic melt inclusions with up to 16 wt. % of K2O are associated with eclogite phases in kimberlitic diamonds (O. Navon, pers. comm.). According to available experimental data, no such potassium contents can be reached by "dry" and hydrous melting of eclogite. These data point to close connection between infiltration of essentially potassic fluids, partial melting and diamond formation in mantle eclogites [2]. Among specific components of these fluids, alkali chlorides, apparently, play an important role. This conclusion follows from assemblages of the melt relics with chlorine-bearing phases in eclogite xenoliths [1], findings of KCl-rich inclusions in diamonds from the xenoliths [3], and concentration of Cl up to 0.5-1.5 wt. % in the melt inclusions in diamonds. In this presentation, we review our experimental data on reactions of KCl melts and KCl-bearing fluids with model and natural eclogite-related minerals and assemblages. Experiments in the model system jadeite(±diopside)-KCl(±H2O) at 4-7 GPa showed that, being immiscible, chloride liquids provoke a strong K-Na exchange with silicates (jadeite). As a result, low-temperature ultrapotassic chlorine-bearing (up to 3 wt. % of Cl) aluminosilicate melts form. These melts is able to produce sanidine, which is characteristic phase in some partially molten eclogites. In addition, in presence of water Si-rich Cl-bearing mica (Al-celadonite-phlogopite) crystallizes in equilibrium with sanidine and/or potassic melt and immiscible chloride liquid. This mica is similar to that observed in some eclogitic diamonds bearing chloride-rich fluid inclusions [4], as well as in diamonds in partially molten eclogites [2]. Interaction of KCl melt with pyrope garnet also produce potassic aluminosilicate melt because of high

  15. Surface tension of natural silicate melts from 1,200-1,500 C and implications for melt structure

    NASA Technical Reports Server (NTRS)

    Walker, D.; Mullins, O., Jr.

    1981-01-01

    The surface tension between silicate liquid and gas is measured for four lava compositions (limburgite to andesite) from 1,200 to 1,500 C. It is noted that the magnitude of surface tension (gamma) is in the range 350-370 dynes/cm. Variations found in gamma as a function of liquid composition are small and have no obvious relation to liquid composition. Gamma is also found to vary little with furnace atmosphere - air, Ar, CO2, H2, CO and their mixtures. It is found that a relaxation time of hours to days, depending on temperature, is required before reproducible results can be obtained from originally crystalline starting material. The reproducible temperature dependence of gamma for complex silicate liquid solution is found to be small, positive, and a relatively simple function of liquid composition.

  16. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, <~30 GPa), yielding predictions rooted in statistical representations of melt structure

  17. Experimental Partitioning of Chalcophile Elements between Mantle Silicate Minerals and Basaltic Melt at High Pressures and Temperatures - Implications for Sulfur Geochemistry of Mantle and Crust

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.; Jego, S.; Ding, S.; Li, Y.; Lee, C. T.

    2015-12-01

    The behavior of chalcophile elements during mantle melting, melt extraction, and basalt differentiation is critical for formation of ore deposits and geochemical model and evolution of crust-mantle system. While chalcophile elements are strongly partitioned into sulfides, their behavior with different extent of melting, in particular, in the absence of sulfides, can only be modeled with complete knowledge of the partitioning behavior of these elements between dominant mantle minerals and basaltic melt with or without dissolved sulfide (S2-). However, experimental data on mineral-melt partitioning are lacking for many chalcophile elements. Crystallization experiments were conducted at 3 GPa and 1450-1600 °C using a piston cylinder and synthetic silicate melt compositions similar to low-degree partial melt of peridotite. Starting silicate mixes doped with 100-300 ppm of each of various chalcophile elements were loaded into Pt/graphite double capsules. To test the effect of dissolved sulfur in silicate melt on mineral-melt partitioning of chalcophile elements, experiments were conducted on both sulfur-free and sulfur-bearing (1100-1400 ppm S in melt) systems. Experimental phases were analyzed by EPMA (for major elements and S) and LA-ICP-MS (for trace elements). All experiments produced an assemblage of cpx + melt ± garnet ± olivine ± spinel and yielded new partition coefficients (D) for Sn, Zn, Mo, Sb, Bi, Pb, and Se for cpx/melt, olivine/melt, and garnet/melt pairs. Derived Ds (mineral/basalt) reveal little effect of S2- in the melt on mineral-melt partition coefficients of the measured chalcophile elements, with Ds for Zn, Mo, Bi, Pb decreasing by less than a factor of 2 from S-free to S-bearing melt systems or remaining similar, within error, between S-free and S-bearing melt systems. By combining our data with existing partitioning data between sulfide phases and silicate melt we model the fractionation of these elements during mantle melting and basalt

  18. Metal/sulfide-silicate intergrowth textures in EL3 meteorites: Origin by impact melting on the EL parent body

    NASA Astrophysics Data System (ADS)

    van Niekerk, Deon; Keil, Klaus

    2011-10-01

    We document the petrographic setting and textures of Fe,Ni metal, the mineralogy of metallic assemblages, and the modal mineral abundances in the EL3 meteorites Asuka (A-) 881314, A-882067, Allan Hills 85119, Elephant Moraine (EET) 90299/EET 90992, LaPaz Icefield 03930, MacAlpine Hills (MAC) 02635, MAC 02837/MAC 02839, MAC 88136, Northwest Africa (NWA) 3132, Pecora Escarpment 91020, Queen Alexandra Range (QUE) 93351/QUE 94321, QUE 94594, and higher petrologic type ELs Dar al Gani 1031 (EL4), Sayh al Uhaymir 188 (EL4), MAC 02747 (EL4), QUE 94368 (EL4), and NWA 1222 (EL5). Large metal assemblages (often containing schreibersite and graphite) only occur outside chondrules and are usually intergrown with silicate minerals (euhedral to subhedral enstatite, silica, and feldspar). Sulfides (troilite, daubréelite, and keilite) are also sometimes intergrown with silicates. Numerous authors have shown that metal in enstatite chondrites that are interpreted to have been impact melted contains euhedral crystals of enstatite. We argue that the metal/sulfide-silicate intergrowths in the ELs we studied were also formed during impact melting and that metal in EL3s thus does not retain primitive (i.e., nebular) textures. Likewise, the EL4s are also impact-melt breccias. Modal abundances of metal in the EL3s and EL4s range from approximately 7 to 30 wt%. These abundances overlap or exceed those of EL6s, and this is consistent either with pre-existing heterogeneity in the parent body or with redistribution of metal during impact processes.

  19. Experimental, in-situ carbon solution mechanisms and isotope fractionation in and between (C-O-H)-saturated silicate melt and silicate-saturated (C-O-H) fluid to upper mantle temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Mysen, Bjorn

    2017-02-01

    Our understanding of materials transport processes in the Earth relies on characterizing the behavior of fluid and melt in silicate-(C-O-H) systems at high temperature and pressure. Here, Raman spectroscopy was employed to determine structure of and carbon isotope partitioning between melts and fluids in alkali aluminosilicate-C-O-H systems. The experimental data were recorded in-situ while the samples were at equilibrium in a hydrothermal diamond anvil cell at temperatures and pressures to 825 °C and >1300 MPa, respectively. The carbon solution equilibrium in both (C-O-H)-saturated melt and coexisting, silicate-saturated (C-O-H) fluid is 2CO3 + H2O + 2Qn + 1 = 2HCO3 + 2Qn. In the Qn-notation, the superscript, n, is the number of bridging oxygen in silicate structural units. At least one oxygen in CO3 and HCO3 groups likely is shared with silicate tetrahedra. The structural behavior of volatile components described with this equilibrium governs carbon isotope fractionation factors between melt and fluid. For example, the ΔH equals 3.2 ± 0.7 kJ/mol for the bulk 13C/12C exchange equilibrium between fluid and melt. From these experimental data, it is suggested that at deep crustal and upper mantle temperatures and pressures, the δ13C-differences between coexisting silicate-saturated (C-O-H) fluid and (C-O-H)-saturated silicate melts may change by more than 100‰ as a function of temperature in the range of magmatic processes. Absent information on temperature and pressure, the use of carbon isotopes of mantle-derived magma to derive isotopic composition of magma source regions in the Earth's interior, therefore, should be exercised with care.

  20. In Situ Determination of Viscosity and Structure of Carbonatitic to Carbonate-Silicate Melts as Function of Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Stagno, V.; Kono, Y.; Lustrino, M.; Irifune, T.

    2015-12-01

    Carbonatitic and carbonate-silicate magmas are representative of mantle-derived liquids that form by partial melting of carbonated peridotite and eclogite rocks at depths greater than 60 km in the Earth's interior. Carbonatitic melts are expected to contain 1-5 wt% SiO2, but at shallower conditions (about 100 km in depth), as a result of large melt fraction during decompression, SiO2 content increases up to 10-20 wt%. This variation in composition is expected to cause significant changes in the physical properties (e.g. viscosity and melt structure) of these magmas. The aim of this study was to determine the viscosity and structure of CO2-rich melts with variable SiO2 content representative of carbonatitic to carbonate-silicate natural melts. A mixture of CaCO3, MgCO3, SiO2, FeO, and NaCl was used as starting material. Synthetic glasses with 5 wt% and 18wt% SiO2 were quenched at high pressure using multi anvil presses. Viscosity measurements on CO2-bearing liquids were conducted with the falling-sphere method using the Paris-Edinburg type large volume apparatus at pressures between 1.5-6 GPa and temperatures of 1100-1500 °C. Determinations of viscosity of these liquids were determined from radiographic images recorded with a high-speed camera installed at Sector 16-BM-B (APS, Argonne). Falling velocity of the platinum probing spheres was measured by ultrafast X-ray radiography using a high-speed camera with a 500 fps recording rate (exposure time of 2 ms). The viscosity was, then, calculated from the Stokes equation including the correction factors for the effect of the wall and the end effect (Kono et al. 2014). Structural measurements of the liquid at high temperature were also performed using multi-angle energy dispersive X-ray diffraction technique. Preliminary results from this study will contribute to understand the variation of viscosity as function of pressure, temperature and degree of polymerization of CO2- melts during up welling within the

  1. Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Audétat, Andreas

    2015-08-01

    In order to assess the role of sulfide in controlling the ore metal budgets and fractionation during magmatic genesis and differentiation, the partition coefficients (D) of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide liquid (SL), monosulfide solid solution (MSS), and basaltic to rhyolitic melts (SM) were determined at 900-1200 °C, 0.5-1.5 GPa, and oxygen fugacity (fO2) ranging from ∼FMQ-2 to FMQ+3, in a piston-cylinder apparatus. The DSL/SM values range from 0.4 to 2 for V, 0.5 to 3 for Mn, 80 to 580 for Co, 2300 to 18,000 for Ni, 800 to 4600 for Cu, 1 to 11 for Zn, 20 to 180 for As, 4 to 230 for Mo, 450 to 1600 for Ag, 5 to 24 for Sn, 10 to 80 for Sb, 0.03 to 0.16 for W, 2000 to 29,000 for Au, 24 to 170 for Pb, and 830 to 11,000 for Bi; whereas the DMSS/SM values range from 0.04 to 10 for V, 0.5 to 10 for Mn, 70 to 2500 for Co, 650 to 18,000 for Ni, 280 to 42,000 for Cu, 0.1 to 80 for Zn, 0.2 to 30 for As, 1 to 820 for Mo, 20 to 500 for Ag, 0.2 to 220 for Sn, 0.1 to 40 for Sb, 0.01 to 24 for W, 10 to 2000 for Au, 0.03 to 6 for Pb, and 1 to 350 for Bi. Both DMSS/SM and DSL/SM values generally increase with decreasing temperature or decreasing FeOtot content in silicate melt, except for Mo, DMSS/SM and DSL/SM of which show a clear decrease with decreasing temperature. At given temperature and FeOtot content, high oxygen fugacity appears to lead to a significant decrease in DMSS/SM of Au, Bi, Mo, and potentially As. The partitioning data obtained experimentally in this study and previous studies were fitted to an empirical equation that expresses the DMSS/SM and/or DSL/SM of a given element as a function of temperature, oxygen fugacity, and FeOtot content of the silicate melt: log (DSL/SMorDMSS/SM = d + a · 10, 000 / T + b · (ΔFMQ) + c · log (FeOmelt) in which T is temperature in K, FeOmelt denotes wt% FeOtot in silicate melt, and ΔFMQ denotes log fO2 relative to the fayalite-magnetite-quartz (FMQ) oxygen buffer. The

  2. Bubbles Accumulation And Their Role On The Eruptability Of Melt-Rich Silicic Lenses In Upper Crustal Magma Reservoirs

    NASA Astrophysics Data System (ADS)

    Parmigiani, A.; Faroughi, S. A.; Huber, C.; Bachmann, O.

    2014-12-01

    A first-order observation in magmatic rocks is that highly evolved rhyolites are relatively abundant in the volcanic realm, but their plutonic counterparts (granites sensu stricto) are rarer, when ratioed to dacitic/granodioritic compositions. As eruptability is a function of the buoyancy of magmas in upper crustal reservoirs, the presence of exsolved gas (bubbles) plays a fundamental role on eruptability by lowering the bulk density of magmas. Then, if exsolved gas content can accumulate in certain areas of magma reservoirs, it follows that such areas might be more prone to erupt. Magma reservoirs in the upper crust likely have relatively stable, sharp transitions in crystallinity between crystal-rich regions and crystal-poor regions. With this framework in mind, in this presentation, by means of theoretical considerations, numerical modelling and laboratory experiments, we suggest that the storage capacity of exsolved gas in magma reservoirs is a function of the relative abundance of melt respect to crystals present; crystal-poor regions (high melt to crystal volume ratio) tend to act as sponges, accumulating bubbles, while crystal-rich regions (mush zones with low melt to crystal ratio) tend to degas efficiently, leading to upward percolation of volatiles. Hence, melt-rich cupolas accumulating in upper parts of crystal-rich upper crustal reservoirs are particularly eruptible and dominate the volume of volcanic deposits in silicic magmatic provinces.

  3. Estimation of trace element concentrations in the lunar magma ocean using mineral- and metal-silicate melt partition coefficients

    NASA Astrophysics Data System (ADS)

    Sharp, Miriam; Righter, Kevin; Walker, Richard J.

    2015-04-01

    This study uses experimentally determined plagioclase-melt D values to estimate the trace element concentrations of Sr, Hf, Ga, W, Mo, Ru, Pd, Au, Ni, and Co in a crystallizing lunar magma ocean at the point of plagioclase flotation. Similarly, experimentally determined metal-silicate partition experiments combined with a composition model for the Moon are used to constrain the concentrations of W, Mo, Ru, Pd, Au, Ni, and Co in the lunar magma ocean at the time of core formation. The metal-silicate derived lunar mantle estimates are generally consistent with previous estimates for the concentration of these elements in the lunar mantle. Plagioclase-melt derived concentrations for Sr, Ga, Ru, Pd, Au, Ni, and Co are also consistent with prior estimates. Estimates for Hf, W, and Mo, however, are higher. These elements may be concentrated in the residual liquid during fractional crystallization due to their incompatibility. Alternatively, the apparent enrichment could reflect the inappropriate use of bulk anorthosite data, rather than data for plagioclase separates.

  4. Metal-Silicate Partitioning of Bi, In, and Cd as a Function of Temperature and Melt Composition

    NASA Technical Reports Server (NTRS)

    Marin, Nicole; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2013-01-01

    The origin of volatile elements in the Earth, Moon and Mars is not known; however, several theories have been proposed based on volatile elements such as In, As, Se, Te and Zn which are in lower concentration in the Earth, Moon, and Mars than in chondrites. Explanations for these low concentrations are based on two contrasting theories for the origin of Earth: equilibrium core formation versus late accretion. One idea is that the volatiles were added during growth of the planets and Moon, and some mobilized into the metallic core while others stayed in the mantle (e.g., [1]). The competing idea is that they were added to the mantles after core formation had completed (e.g., [2]). Testing these ideas involves quantitative modeling which can only be performed after data is obtained on the systematic metal-silicate partitioning behavior of volatile elements with temperature, pressure and melt composition. Until now, such data for Bi, In, and Cd has been lacking. After conducting a series of high pressure, high temperature experiments, the metal-silicate partition coefficients of Bi, In, and Cd as a function of temperature and melt composition can be used to evaluate potential conditions under which terrestrial planets differentiated into core and mantle, and how they acquired volatiles.

  5. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 2: application to Taupo Volcanic Zone rhyolites

    NASA Astrophysics Data System (ADS)

    Bégué, Florence; Gualda, Guilherme A. R.; Ghiorso, Mark S.; Pamukcu, Ayla S.; Kennedy, Ben M.; Gravley, Darren M.; Deering, Chad D.; Chambefort, Isabelle

    2014-11-01

    Constraining the pressure of crystallisation of large silicic magma bodies gives important insight into the depth and vertical extent of magmatic plumbing systems; however, it is notably difficult to constrain pressure at the level of detail necessary to understand shallow magmatic systems. In this study, we use the recently developed rhyolite-MELTS geobarometer to constrain the crystallisation pressures of rhyolites from the Taupo Volcanic Zone (TVZ). As sanidine is absent from the studied deposits, we calculate the pressures at which quartz and feldspar are found to be in equilibrium with melt now preserved as glass (the quartz +1 feldspar constraint of Gualda and Ghiorso, Contrib Mineral Petrol 168:1033. doi:10.1007/s00410-014-1033-3. 2014). We use glass compositions (matrix glass and melt inclusions) from seven eruptive deposits dated between ~320 and 0.7 ka from four distinct calderas in the central TVZ, and we discuss advantages and limitations of the rhyolite-MELTS geobarometer in comparison with other geobarometers applied to the same eruptive deposits. Overall, there is good agreement with other pressure estimates from the literature (amphibole geobarometry and H2O-CO2 solubility models). One of the main advantages of this new geobarometer is that it can be applied to both matrix glass and melt inclusions—regardless of volatile saturation. The examples presented also emphasise the utility of this method to filter out spurious glass compositions. Pressure estimates obtained with the new rhyolite-MELTS geobarometer range between ~250 to ~50 MPa, with a large majority at ~100 MPa. These results confirm that the TVZ hosts some of the shallowest rhyolitic magma bodies on the planet, resulting from the extensional tectonic regime and thinning of the crust. Distinct populations with different equilibration pressures are also recognised, which is consistent with the idea that multiple batches of eruptible magma can be present in the crust at the same time and

  6. Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: Implications for the origin and distribution of terrestrial carbon

    NASA Astrophysics Data System (ADS)

    Dasgupta, Rajdeep; Chi, Han; Shimizu, Nobumichi; Buono, Antonio S.; Walker, David

    2013-02-01

    The origin of bulk silicate Earth carbon inventory is unknown and the fate of carbon during the early Earth differentiation and core formation is a missing link in the evolution of the terrestrial carbon cycle. Here we present high pressure (P)-temperature (T) experiments that offer new constraints upon the partitioning of carbon between metallic and silicate melt in a shallow magma ocean. Experiments were performed at 1-5 GPa, 1600-2100 °C on mixtures of synthetic or natural silicates (tholeiitic basalt/alkali basalt/komatiite/fertile peridotite) and Fe-Ni-C ± Co ± S contained in graphite or MgO capsules. All the experiments produced immiscible Fe-rich metallic and silicate melts at oxygen fugacity (fO2) between ˜IW-1.5 and IW-1.9. Carbon and hydrogen concentrations of basaltic glasses and non-glassy quenched silicate melts were determined using secondary ionization mass spectrometry (SIMS) and speciation of dissolved C-O-H volatiles in silicate glasses was studied using Raman spectroscopy. Carbon contents of metallic melts were determined using both electron microprobe and SIMS. Our experiments indicate that at core-forming, reduced conditions, carbon in deep mafic-ultramafic magmas may dissolve primarily as various hydrogenated species but the total carbon storage capacity, although is significantly higher than solubility of CO2 under similar conditions, remains low (<500 ppm). The total carbon content in our reduced melts at graphite saturation increases with increasing melt depolymerization (NBO/T), consistent with recent spectroscopic studies, and modestly with increasing hydration. Carbon behaves as a metal-loving element during core-mantle separation and our experimental DCmetal/silicate varies between ˜4750 and ⩾150 and increases with increasing pressure and decreases with increasing temperature and melt NBO/T. Our data suggest that if only a trace amount of carbon (˜730 ppm C) was available during early Earth differentiation, most of it was

  7. V OLATILEC ALC: a silicate melt-H 2O-CO 2 solution model written in Visual Basic for excel

    NASA Astrophysics Data System (ADS)

    Newman, Sally; Lowenstern, Jacob B.

    2002-06-01

    We present solution models for the rhyolite-H 2O-CO 2 and basalt-H 2O-CO 2 systems at magmatic temperatures and pressures below ˜5000 bar. The models are coded as macros written in Visual Basic for Applications, for use within Microsoft ® Excel (Office'98 and 2000). The series of macros, entitled V OLATILEC ALC, can calculate the following: (1) Saturation pressures for silicate melt of known dissolved H 2O and CO 2 concentrations and the corresponding equilibrium vapor composition; (2) open- and closed-system degassing paths (melt and vapor composition) for depressurizing rhyolitic and basaltic melts; (3) isobaric solubility curves for rhyolitic and basaltic melts; (4) isoplethic solubility curves (constant vapor composition) for rhyolitic and basaltic melts; (5) polybaric solubility curves for the two end members and (6) end member fugacities of H 2O and CO 2 vapors at magmatic temperatures. The basalt-H 2O-CO 2 macros in V OLATILEC ALC are capable of calculating melt-vapor solubility over a range of silicate-melt compositions by using the relationships provided by Dixon (American Mineralogist 82 (1997) 368). The output agrees well with the published solution models and experimental data for silicate melt-vapor systems for pressures below 5000 bar.

  8. Trace Elements in Olivine in Italian Potassic Volcanic Rocks Distinguish Between Mantle Metasomatism by Carbonatitic and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Foley, S. F.; Ammannati, E.; Jacob, D. E.; Avanzinelli, R.; Conticelli, S.

    2014-12-01

    material into the mantle wedge. Our data indicate opposite effects for metasomatism by silicate- and carbonate-rich melts, namely the removal and growth of olivine, respectively. This new line of evidence establishes olivine as a key tool to investigate the role of carbonatitic and silicate melts in the Earth's mantle.

  9. Energetics of silicate melts from thermal diffusion studies. Annual progress report

    SciTech Connect

    Walker, D.

    1992-07-01

    Efforts are reported in the following areas: laboratory equipment (multianvils for high P/T work, pressure media, SERC/DL sychrotron), liquid-state thermal diffusion (silicate liquids, O isotopic fractionation, volatiles, tektites, polymetallic sulfide liquids, carbonate liquids, aqueous sulfate solutions), and liquid-state isothermal diffusion (self-diffusion, basalt-rhyolite interdiffusion, selective contamination, chemical diffusion).

  10. Carbonate-silicate melt immiscibility, REE mineralising fluids, and the evolution of the Lofdal Intrusive Suite, Namibia

    NASA Astrophysics Data System (ADS)

    Bodeving, Sarah; Williams-Jones, Anthony E.; Swinden, Scott

    2017-01-01

    The Lofdal Intrusive Suite, Namibia, consists of calcio-carbonatite and silica-undersaturated alkaline intrusive rocks ranging in composition from phono-tephrite to phonolite (and nepheline syenite). The most primitive of these rocks is the phono-tephrite, which, on the basis of its Y/Ho and Nb/Ta ratios, is interpreted to have formed by partial melting of the mantle. Roughly linear trends in major and trace element contents from phono-tephrite to phonolite and nepheline syenite indicate that the latter two rock types evolved from the phono-tephrite by fractional crystallisation. The nepheline syenite, however, has a lower rare earth element (REE) content than the phonolite. The carbonatite has a primitive mantle-normalised REE profile roughly parallel to that of the silica-undersaturated alkaline igneous rocks, although the absolute REE concentrations are higher. Like the phono-tephrite, it also has a mantle Y/Ho ratio. However, the Nb/Ta and Zr/Hf ratios are significantly higher. Moreover, the carbonatite displays strong negative Ta, Zr and Hf anomalies on spidergrams, whereas the silicate rocks display positive anomalies for these elements. Significantly, this behaviour is predicted by the corresponding carbonatite-silicate melt partition coefficients, as is the behaviour of the REE. Based on these observations, we interpret the carbonatite to represent an immiscible liquid that exsolved from the phono-tephrite or possibly the phonolite melt. The result was a calcio-carbonatite that is enriched in the heavy REE (HREE) relative to most other carbonatites. Fluids released from the corresponding magma are interpreted to have been the source of the REE mineralisation that is currently the target of exploration.

  11. The Effect of Composition and Pressure on the Structure of Carbonate-Silicate Melts Using in situ X-ray Diffuse Scattering

    NASA Astrophysics Data System (ADS)

    Hummer, D. R.; Kavner, A.; Manning, C. E.

    2013-12-01

    Carbonatites are carbon-rich magmas that make up a crucial portion of the deep-Earth carbon cycle. During transport from the site of melting, reaction with surrounding mantle and crust can cause significant changes in their carbonate-silicate ratio. However, very little is known about the structure of carbonate-silicate liquids at the high pressures and temperatures where melts originate and metasomatism occurs. To examine how the melt structure of carbonate-silicate binary systems evolves as a function of pressure and composition, we performed in situ X-ray scattering experiments in the Paris-Edinburgh press at HPCAT (Advanced Photon Source). Mixtures from the CaCO3-CaSiO3 and CaCO3-Mg2SiO4 binary systems were used to simulate mantle carbonatites with differing Si:O ratio. Samples were loaded using the experimental setup of Yamada et al [1], and held at 1800 oC and a pressure of either 3 or 6 GPa while energy dispersive X-ray scattering spectra were recorded. Spectra were collected at nine different scattering angles to achieve coverage in reciprocal space up to q = 20 Å-1. Pair distribution functions for pure calcite confirm that carbonates form a simple ionic liquid, as found by previous investigators. [2,3] The silicate portion of carbonate-silicate melts, however, is extensively chain polymerized. This polymerization occurs even in melts containing Mg2SiO4, in which the solid is completely unpolymerized. However, analysis of Si-Si distances reveals that Mg2SiO4-bearing melts likely contain shorter, more distorted chains, while CaSiO3-bearing melts form extended chains with a Si-O-Si angles close to 180o. For silicate-rich mixtures in both systems, the extent of silica polymerization (as measured by the amount of scattering at the Si-Si pair distance of 3.3 Å) moderately increases with increasing carbonate content. Comparing pair distribution functions calculated from 3 and 6 GPa data reveal that pressure moderately increases the degree of polymerization of

  12. Composition of silicate partial melts of carbonated pelite at 3-5 GPa and genesis of arc magma

    NASA Astrophysics Data System (ADS)

    Tsuno, K.; Dasgupta, R.; Danielson, L. R.; Righter, K.

    2012-12-01

    The composition of arc magmas reflects a complex process of slab-modified mantle wedge melting and magma differentiation in the crust. The composition of arc magma is distinct among various subduction zones owing to the different thermal structures [1] and perhaps different subduction input. Partial melts of downgoing sediment generated at slab-top or in sedimentary diapir [2] may be key in metasomatizing the mantle wedge. However, the effect of carbonates on the silicate partial melt composition of pelitic sediments is less constrained under the deep sub-arc conditions (~5 GPa). Here we provide silicate partial melt composition of Al-poor carbonated pelite to 5 GPa and discuss whether such melts may be a potential metasomatizing agent for arc source, particularly in Central America, Sunda, and Vanuatu where low-alumina carbonated pelite subduct [3]. We performed piston cylinder (3 GPa) and multianvil (4 and 5 GPa) experiments at 800-1150 °C, using a synthetic pelite with 0.5 and 1.0 wt.% H2O and 5.0 wt.% CO2. The experimental procedures and the resulting melting phase relations of this study are described in ref. [4]. The rhyolitic partial melt at 3 GPa evolves to trachydacite at 4 GPa and tephriphonolite at 5 GPa. At 3 GPa silicate partial melt compositions of our study are similar to those derived from hydrous, CO2-free pelite [e.g., 5-7], and are lower in SiO2 (63-65 wt.%) and higher in TiO2 (1-2 wt.%), MnO (~0.6 wt.%) and CaO (2-9 wt.%) at 4 GPa. At 5 GPa and 1050-1100 °C immiscible silicate melts, in the presence of carbonatitic melt, are even more distinct in terms of SiO2 (51-55 wt.%), TiO2 (~2-3 wt.%), Al2O3 (~10-12 wt.%), FeO* (~5-9 wt.%), MnO (0.1-0.3 wt.%), and CaO (~11-14 wt.%) compared to pelite partial melts in the absence of CO2 (~69-74 wt.% SiO2, 0.5-1.0 wt.% TiO2, ~12-15 wt.% Al2O3, ~1 wt.% FeO*, ~0.1 wt.% MnO, and 0.3-0.9 wt.% CaO). The compositions of Central America, Sunda, and Vanuatu arc basalts, at 5-15 wt.% MgO, are richer in FeO*, Mn

  13. Contrasting Effects of Carbon and Sulfur on Fe-Isotope Fractionation between Metal and Silicate Melt during Planetary Core Formation

    NASA Astrophysics Data System (ADS)

    Elardo, S. M.; Shahar, A.

    2015-12-01

    There are numerous studies that show well-resolved Fe isotope fractionations in igneous materials from different planetary bodies. Potential explanations for these fractionations include a non-chondritic bulk planetary Fe isotopic composition, and equilibrium fractionation between Fe-alloys or minerals and silicate melts during planetary differentiation, mantle melting, or fractional crystallization. This is further complicated by the fact that these processes are not mutually exclusive, making the interpretation of Fe isotope data a complex task. Here we present new experimental results investigating the effect of C on Fe isotope fractionation between molten peridotite and an Fe-alloy. Experiments were conducted at 1 GPa and 1850° C for 0.5 - 3 hours on a mixture of an 54Fe-spiked peridotite and Fe-metal with and without Ni metal in an end-loaded piston cylinder at the Geophysical Laboratory. Carbon saturation was achieved with a graphite capsule, and resulted in C contents of the Fe-alloy in our experiments ranging from 3.8 - 4.9 wt. %. The metal and silicate phases from half of each experiment were separated manually and dissolved in concentrated acids. Iron was separated from matrix elements by anion exchange chromatagraphy. Iron-isotopic compositions were determined with the Nu Plasma II MC-ICP-MS at GL. The other half of each experiment was used for quantitative microbeam analysis. Equilibrium was assessed with a time series and the three-isotope exchange method. The Ni-free experiments resulted in no resolvable Fe isotope fractionation between the Fe-C-alloy and molten silicate. This is in contrast to the results of Shahar et al. (2015) which showed a fractionation for Δ57Fe of ~0.18 ‰ between a peridotite and an Fe-alloy with a similar S abundance to C in these experiments. The one experiment thus far that contained Ni (~4 wt. % in the alloy) showed a resolvable fractionation between the Fe-Ni-C alloy and silicate of ~0.10 ‰. Shahar et al. found a

  14. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    NASA Astrophysics Data System (ADS)

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-02-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  15. A thermodynamical model for the surface tension of silicate melts in contact with H2O gas

    USGS Publications Warehouse

    Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello

    2016-01-01

    Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.

  16. The solvation radius of silicate melts based on the solubility of noble gases and scaled particle theory

    SciTech Connect

    Ottonello, Giulio; Richet, Pascal

    2014-01-28

    The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25 °C and P = 1 bar for the first four elements of the series. The static dielectric constant (ε) of the investigated silicate melts and its optical counterpart (ε{sup ∞}) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter σ{sub s}, along the guidelines already used in the past for simple media such as water or benzene. The σ{sub s} obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25 °C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great industrial interest at

  17. Microscopic, Macroscopic, and Megascopic Melts: a simple model to synthesize simulation, spectroscopy, shock, and sink/float constraints on silicate melts and magma oceans

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Thomas, C.; Wolf, A. S.

    2012-12-01

    Silicate melts are the essential agents of planetary differentiation and evolution. Their phase relations, element partitioning preferences, density, and transport properties determine the fates of heat and mass flow in the high-temperature interior of active planets. In the early Earth and in extrasolar super-Earth-mass terrestrial planets it is these properties at very high pressure (> 100 GPa) that control the evolution from possible magma oceans to solid-state convecting mantles. Yet these melts are complex, dynamic materials that present many challenges to experimental, theoretical, and computational understanding or prediction of their properties. There has been encouraging convergence among various approaches to understanding the structure and dynamics of silicate melts at multiple scales: nearest- and next-nearest neighbor structural information is derived from spectroscopic techniques such as high-resolution multinuclear NMR; first-principles molecular dynamics probe structure and dynamics at scales up to hundreds of atoms; Archimedean, ultrasonic, sink/float, and shock wave methods probe macroscopic properties (and occasionally dynamics); and deformation and diffusion experiments probe dynamics at macroscopic scale and various time scales. One challenge that remains to integrating all this information is a predictive model of silicate liquid structure that agrees with experiments and simulation both at microscopic and macroscopic scale. In addition to our efforts to collect macroscopic equation of state data using shock wave methods across ever-wider ranges of temperature, pressure, and composition space, we have introduced a simple model of coordination statistics around cations that can form the basis of a conceptual and predictive link across scales and methods. This idea is explored in this presentation specifically with regard to the temperature dependence of sound speed in ultramafic liquids. This is a highly uncertain quantity and yet it is key, in

  18. Seismic evidence for silicate melt atop the 410-km mantle discontinuity

    USGS Publications Warehouse

    Revenaugh, Justin; Sipkin, S.A.

    1994-01-01

    LABORATORY results demonstrating that basic to ultrabasic melts become denser than olivine-rich mantle at pressures above 6 GPa (refs 1-3) have important implications for basalt petrogenesis, mantle differentiation and the storage of volatiles deep in the Earth. A density cross-over between melt and solid in the extensively molten Archaean mantle has been inferred from komatiitic volcanism and major-element mass balances, but present-day evidence of dense melt below the seismic low-velocity zone is lacking. Here we present mantle shear-wave impedance profiles obtained from multiple-ScS reverberation mapping for corridors connecting western Pacific subduction zone earthquakes with digital seismograph stations in eastern China, imaging a ~5.8% impedance decrease roughly 330 km beneath the Sea of Japan, Yellow Sea and easternmost Asia. We propose that this represents the upper surface of a layer of negatively buoyant melt lying on top of the olivine ??? ??- phase transition (the 410-km seismic discontinuity). Volatile-rich fluids expelled from the partial melt zone as it freezes may migrate upwards, acting as metasomatic agents and perhaps as the deep 'proto-source' of kimberlites. The remaining, dense, crystalline fraction would then concentrate above 410 km, producing a garnet-rich layer that may flush into the transition zone.

  19. Seismic evidence for silicate melt atop the 410-km mantle discontinuity

    NASA Astrophysics Data System (ADS)

    Revenaugh, J.; Sipkin, S. A.

    1994-06-01

    LABORATORY results demonstrating that basic to ultrabasic melts become denser than olivine-rich mantle at pressures above 6 GPa (refs 1-3) have important implications for basalt petrogenesis, mantle differentiation and the storage of volatiles deep in the Earth. A density cross-over between melt and solid in the extensively molten Archaean mantle has been inferred from komatiitic volcanism4-6 and major-element mass balances7, but present-day evidence of dense melt below the seismic low-velocity zone is lacking. Here we present mantle shear-wave impedance profiles obtained from multiple-ScS reverberation mapping for corridors connecting western Pacific subduction zone earthquakes with digital seismograph stations in eastern China, imaging a ~5.8% impedance decrease roughly 330 km beneath the Sea of Japan, Yellow Sea and easternmost Asia. We propose that this represents the upper surface of a layer of negatively buoyant melt lying on top of the olivine-->β-phase transition (the 410-km seismic discontinuity). Volatile-rich fluids expelled from the partial melt zone as it freezes may migrate upwards, acting as metasomatic agents8,9 and perhaps as the deep 'proto-souree' of kimberlites10,11. The remaining, dense, crystalline fraction would then concentrate above 410 km, producing a garnet-rich layer that may flush into the transition zone.

  20. The effect of oxygen fugacity on the partitioning of nickel and cobalt between olivine, silicate melt, and metal

    NASA Technical Reports Server (NTRS)

    Ehlers, Karin; Grove, Timothy L.; Sisson, Thomas W.; Recca, Steven I.; Zervas, Deborah A.

    1992-01-01

    The effect of oxygen fugacity, f(O2), on the partitioning behavior of Ni and Co between olivine, silicate melt, and metal was investigated in the CaO-MgO-Al2O3-SiO2-FeO-Na2O system, an analogue of a chondrule composition from an ordinary chondrite. The conditions were 1350 C and 1 atm, with values of f(O2) varying between 10 exp -5.5 and 10 exp -12.6 atm (i.e., the f(O2) range relevant for crystal/liquid processes in terrestrial planets and meteorite parent bodies). Results of chemical analysis showed that the values of the Ni and Co partitioning coefficients begin to decrease at values of f(O2) that are about 3.9 log units below the nickel-nickel oxide and cobalt-cobalt oxide buffers, respectively, near the metal saturation for the chondrule analogue composition.

  1. Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean - Implications for the abundance and origin of volatiles in Earth, Mars, and the Moon

    NASA Astrophysics Data System (ADS)

    Chi, Han; Dasgupta, Rajdeep; Duncan, Megan S.; Shimizu, Nobumichi

    2014-08-01

    The budget and origin of carbon in Earth and other terrestrial planets are debated and one of the key unknowns is the fate of carbon during early planetary processes including accretion, core formation, and magma ocean (MO) crystallization. Here we determine, experimentally, the solubility of carbon in coexisting Fe-Ni alloy melt and basaltic silicate melt in shallow MO conditions, i.e., at 1-3 GPa, 1500-1800 °C. Oxygen fugacity of the experiments, estimated based on Fe (in metallic alloy melt)-FeO (in silicate melt) equilibrium, varied between ∼IW-0.4 and IW-1.0, where IW refers to the oxygen fugacity imposed by the coexistence of iron and wüstite. Four different starting mixes, each with 7:3 silicate:metal mass ratio and silicate melt NBO/T (estimated proportion of non-bridging oxygen with respect to tetrahedral cations; NBO/T=2×/total OT -4, where T = Si + Ti + Al + Cr + P) ranging from 0.81 to 1.54 were studied. Concentrations of carbon in the alloy melt were determined using electron microprobe whereas carbon contents of quenched basaltic glasses were determined using secondary ionization mass spectrometry (SIMS). Identification of carbon and hydrogen-bearing species in silicate glasses was performed using Raman and Fourier Transformed Infrared (FTIR) spectroscopy. Our results show that carbon in the metallic melt varies between 4.4 wt.% and 7.4 wt.% and increases with increasing temperature and modestly with increasing pressure but decreases with increasing Ni content of the alloy melt. Carbon concentration in the silicate melts, on the other hand, varies from 11 ± 1 ppm to 111 ± 7 ppm and is negatively correlated with pressure but positively correlated with temperature, the NBO/T, the oxygen fugacity and the water content of the silicate melts. Raman and FTIR results show that at our experimental conditions, carbon in silicate melt is dissolved both as hydrogenated species and CO32-. The calculated carbon partition coefficient DCmetal/silicate varies

  2. Multicomponent Diffusion between Felsic and Silicic Melts: Insights from Tektites and Experiments

    NASA Astrophysics Data System (ADS)

    Macris, C. A.; Asimow, P. D.; Zhang, Y.; Badro, J.; Stolper, E. M.; Eiler, J. M.

    2014-12-01

    Tektites (natural glasses formed as quenched impact melt ejecta) commonly contain inclusions of nearly pure silica glass ("lechatelierite") thought to be quenched from molten silica produced by melting of quartz grains. We investigated chemical diffusion between lechatelierite (~100% SiO2) and surrounding felsic glass (~73% SiO2) in a natural indochinite tektite and in experimental analogues. We discovered concentration profiles of major elements across lechatelierite-felsic glass contacts that reflect diffusion between the two melts at high T as the they followed a ballistic trajectory prior to quenching. The profiles provide information on multicomponent diffusion at the high-silica end of composition space and on the thermal histories of tektites. To reproduce the profiles, we undertook a series of high T melting experiments using an aerodynamic levitation laser furnace. A starting mixture of powdered natural tektite plus quartz grains was exposed to temperatures of 1800-2400˚C for 1-120 s. Direct comparison of concentration profiles between the indochinite and experiments reveals a best match at 2200˚C and 50 s. This experiment successfully reproduced all major aspects of the concentration profiles observed in the natural sample including diffusion length scale, asymmetry, order of steepness of major element profiles, and uphill diffusion of K2O. Not enough information is available to model the full multicomponent diffusion problem, but SiO2 and Al2O3 concentration profiles from lechatelierite to surrounding felsic glass in the experiments can be fit well as a diffusion couple between silica melt and adjacent felsic melt using an effective binary diffusion approach and assuming that the effective binary SiO2 and Al2O3 diffusivities depend exponentially on SiO2 concentration. Further quantification of the diffusion behavior should allow constraints on the thermal histories of tektites.

  3. Preparations of PbSe quantum dots in silicate glasses by a melt-annealing technique

    NASA Astrophysics Data System (ADS)

    Ma, D. W.; Cheng, C.; Zhang, Y. N.; Xu, Z. S.

    2014-11-01

    Silicate glass containing PbSe quantum dots (QDs) has important prospective applications in near infra-red optoelectronic devices. In this study, single-stage and double-stage heat-treatment methods were used respectively to prepare PbSe QDs in silicate glasses. Investigation results show that the double-stage heat-treatment is a favorable method to synthesize PbSe QDs with strong photoluminescence (PL) intensity and narrow full weight at half maximum (FWHM) in PL peak. Therefore, the method to prepare PbSe QDs was emphasized on the double-stage heat-treatment. Transmission electron microscopy measurements show that the standard deviations of the average QD sizes from the samples heat-treated at the development temperature of 550 °C fluctuate slightly in the range of 0.6-0.8 nm, while this deviation increases up to 1.2 nm for the sample with the development temperature of 600 °C. In addition, the linear relationship between the QD size and holding time indicates that the crystallization behavior of PbSe QDs in silicate glasses is interface-controlled growth in early stage of crystallization. The growth rates of PbSe QDs are determined to be 0.24 nm/h at 550 °C and 0.72 nm/h at 600 °C. In short, the double-stage heat-treatment at 450 °C for 20 h followed by heat-treatment at 550 °C for 5 h is a preferred process for the crystallization of PbSe QDs in silicate glass. Through this treatment, PbSe QDs with a narrow size dispersion of 5.0 ± 0.6 nm can be obtained, the PL peak from this sample is highest in intensity and narrowest in FWHM among all samples, and the peak is centered on 1575 nm, very close to the most common wavelength of 1550 nm in fiber-optic communication systems.

  4. Silicate glasses and sulfide melts in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure, Virginia, USA

    USGS Publications Warehouse

    Belkin, H.E.; Horton, J.W.

    2009-01-01

    Optical and electron-beam petrography of melt-rich suevite and melt-rock clasts from selected samples from the Eyreville B core, Chesapeake Bay impact structure, reveal a variety of silicate glasses and coexisting sulfur-rich melts, now quenched to various sulfi de minerals (??iron). The glasses show a wide variety of textures, fl ow banding, compositions, devitrifi cation, and hydration states. Electron-microprobe analyses yield a compositional range of glasses from high SiO2 (>90 wt%) through a range of lower SiO2 (55-75 wt%) with no relationship to depth of sample. Some samples show spherical globules of different composition with sharp menisci, suggesting immiscibility at the time of quenching. Isotropic globules of higher interfacial tension glass (64 wt% SiO2) are in sharp contact with lower-surface-tension, high-silica glass (95 wt% SiO2). Immiscible glass-pair composition relationships show that the immiscibility is not stable and probably represents incomplete mixing. Devitrifi cation varies and some low-silica, high-iron glasses appear to have formed Fe-rich smectite; other glass compositions have formed rapid quench textures of corundum, orthopyroxene, clinopyroxene, magnetite, K-feldspar, plagioclase, chrome-spinel, and hercynite. Hydration (H2O by difference) varies from ~10 wt% to essentially anhydrous; high-SiO2 glasses tend to contain less H2O. Petrographic relationships show decomposition of pyrite and melting of pyrrhotite through the transformation series; pyrite? pyrrhotite? troilite??? iron. Spheres (~1 to ~50 ??m) of quenched immiscible sulfi de melt in silicate glass show a range of compositions and include phases such as pentlandite, chalcopyrite, Ni-As, monosulfi de solid solution, troilite, and rare Ni-Fe. Other sulfi de spheres contain small blebs of pure iron and exhibit a continuum with increasing iron content to spheres that consist of pure iron with small, remnant blebs of Fe-sulfi de. The Ni-rich sulfi de phases can be explained by

  5. Diffusion of major and trace elements in natural silicate melts as a tool to investigate timescales in magma mixing

    NASA Astrophysics Data System (ADS)

    González-García, Diego; Zezza, Angela; Behrens, Harald; Vetere, Francesco; Petrelli, Maurizio; Morgavi, Daniele; Perugini, Diego

    2016-04-01

    New melt injection into a shallow magma chamber is regarded as one of the potential triggers for explosive volcanic eruptions. Chemical diffusion occurring between the two mixing melts is a time-dependent process, and thus has the potential to shed light on the timescales involved in magma mixing events leading to an eruption. In order to achieve this, a complete database of diffusion coefficients in natural melts is a necessary prerequisite. We have carried out a set of 12 diffusion couple experiments in order to determine diffusion coefficients (D) of major and trace elements in two natural silicate melts. Two end-members from the Vulcano island (Aeolian archipelago, Italy) have been chosen for the experiments: a shoshonite (Vulcanello lava platform) and a rhyolitic obsidian (Pietre Cotte lava flow, La Fossa cone). Glasses from each end-member with added water contents of 0 wt%, 1 wt% and 2 wt% were produced in an Internally Heated Pressure Vessel (IHPV). Two glass cylinders with similar water content but different base composition are inserted in Au-Pd capsules and experiments are run in the IHPV at 1200° C with pressure from 0.5 to 3 kbar. Experiment capsules are rapidly quenched and analyzed by FTIR, EPMA and LA-ICP-MS for H2O, major and trace elements, respectively, along 2 mm linear profiles extending across the interface. A Boltzmann-Matano approach is used to obtain concentration-dependent diffusivities. The obtained concentration-distance profiles are asymmetric and extend deeper into the shoshonite relative to the rhyolite, indicating that diffusion is slower in the latter. Results show that diffusivities are notably accelerated by the presence of H2O in the melt. Experiments performed by using water-free glass show diffusivities one order of magnitude lower compared to glasses containing up to 2 wt% H2O. The effect of pressure, in the investigated range, is negligible and falls within measurement error. Among major elements, Si and Ti are the slowest

  6. Carbonatite-silicate immiscible melt inclusion in lamprophyre from Kutch, western India: Implication for plume-lithosphere interaction and initiation of Deccan Trap magmatism

    NASA Astrophysics Data System (ADS)

    Ray, Arijit; Paul, Dalim Kumar; Sen, Gautam; Biswas, Sanjib Kumar

    2014-05-01

    Kutch province of western India has undergone repeated rifting and marine transgression events from late Triassic to the late Cretaceous. Magmatic rocks occur in profusion in Kutch Basin. The southern part is characterized by occurrences of thick flows of tholeiitic basalt of Deccan Trap affinity, central part of Kutch Basin has numerous volcanic plugs of alkali basalt which is also considered as member of Deccan Trap, contain thin, discoidal mantle xenoliths of spinel lherzolite and wehrlite composition. Northern Kutch is dominated by suite of alkaline magmatic rocks similar to magmatic rocks of continental rift zone. The alkaline suite contains alkali pyroxenite, theralite, teschenite, basanite, nepheline syenite and kaersutite bearing lamprophyre (Ray et al., 2006, Das et al., 2007, Paul et al., 2008). The newly discovered east-west trending lamprophyre dyke swarm of northern Kutch (Pachham Island) is camptonite in composition and contains kaersutite phenocrysts in large proportion. These kaersutite phencrysts contain immscible melt/glass phases as melt inclusions. The lamprophyre yields an age of ca. 67 Ma.by Ar-Ar method (Sen et al., 2014 in press) synchronous with alkali basalt of central Kutch. The melt inclusions are fundamentally of two types - calciocarbonatite and alkaline silicate melts. We found sphene within carbonatitic melt and the rare mineral rhonite in silicate melt. Petrographic evidence indicates that carbonatite melt always occurs within alkali silicate melt as immiscible fraction. These carbonatite melts are extremely rich in CaCO3 (upto 95%) which contradicts the experimental results of carbonate melt composition (upto 80% CaCO3) in silicate-carbonate immiscible melt pair by Lee and Wyllie. The abundance of wehrlite xenoliths over lherzolite in alkali basalt, petrographic evidence of orthopyroxene to clinopyroxene transformation in wehrlite xenoliths, occurrence of calcite vein in mantle xenoliths indicate carbonatite metasomatism of spinel

  7. Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints.

    USGS Publications Warehouse

    Zen, E.

    1986-01-01

    The degree of Al saturation of an igneous rock may be given by its aluminium saturation index (ASI), defined as the molar ratio Al2O3/(CaO+K2O+Na2O). One suggested origin for mildly peraluminous granites (ASI 1-1.1) is fractional crystallization of subaluminous magmas (ASI 1. For hornblende to effectively cause a melt to evolve into a peraluminous composition, it must be able to coexist with peraluminous magmas; e.g. at = or <5 kbar hornblende can coexist with strongly peraluminous melts (ASI approx 1.5). Potentials and problems of using coarse-grained granitic rocks to prove courses of magmatic evolution are illustrated by a suite of samples from the Grayling Lake pluton, SW Montana. Such rocks generally contain a large cumulate component and should not be used as a primary test for the occurrence or efficacy of a fractionation process that might lead to peraluminous melts. The process is unlikely to give rise to peraluminous plutons of batholithic dimensions. A differential equation is presented which allows the direct use of mineral chemistry and modal abundance to predict the path of incremental evolution of a given magma.-R.A.H.

  8. Experimental and Theoretical Studies on the Viscosity-Structure Correlation for High Alumina-Silicate Melts

    NASA Astrophysics Data System (ADS)

    Talapaneni, Trinath; Yedla, Natraj; Pal, Snehanshu; Sarkar, Smarajit

    2017-03-01

    Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.

  9. Visualization and Analysis of Structural and Dynamical Properties of Hydrous Silicate Melt

    NASA Astrophysics Data System (ADS)

    Karki, B. B.; Bhattarai, D.; Stixrude, L. P.

    2008-12-01

    We have carried out a detailed visualization-based analysis of position-time data produced by first principles molecular dynamics simulations of hydrous MgSiO3 liquid to gain insight into its structural and dynamical behavior. A wide range of pressure (0 to ~100 GPa) and temperature (2000 to 6000 K) is covered and the water content is also varied (5 and 10 wt percent water in the melt). By exploring a number of structural parameters associated with short- and mid-range orders, we have shown that the melt structure changes substantially on compression. The speciation of the water component at low pressures is dominated by the isolated structures (with over 90 percent hydrogen participated) consisting of hydroxyls, water molecules, O- H-O bridging, and four-atom (O-H-O-H and H-O-H-O) groups, where every oxygen atom may be a part of polyhedron or free (i.e., bound to only magnesium atom). Hydroxyls slightly favor polyhedral sites over magnesium sites whereas molecular water is almost entirely bound to magnesium sites, and also interpolyhedral bridging (Si-O-H-O-Si) dominates other bridging. As compression increases, these isolated structures increasingly combine with each other to form extended structures involving a total of five or more O and H atoms and/or containing three-fold coordination species, which together consume over 60 percent hydrogen at the highest compression studied. Protons in the melt can be considered on equal footing with other cations (or more precisely as network modifier cations), and they are shown to increase and decrease, respectively, the contents of non-bridging and bridging oxygen. Relatively long runs are used to calculate the self-diffusion coefficients of all atomic species, which are enhanced in the presence of water compared to those of anhydrous melt. This is consistent with the prediction that water depolymerizes the melt structure at all pressures. Our analysis suggests that proton diffusion involves two processes - the transfer

  10. Mg-perovskite/silicate melt partition coefficients in the CMS system at 2430 C and 226 Kbars

    NASA Technical Reports Server (NTRS)

    Mcfarlane, Elisabeth A.; Drake, Michael J.; Gasparik, Tibor

    1992-01-01

    The partitioning of elements among lower mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. Because of the technical difficulty in carrying out such measurements, only one direct set of measurements has been reported, and these results as well as interpretations based on them have generated controversy. The first set of direct measurements on a synthetic system in the CaO-MgO-SiO2 (CMS) is reported. An experiment was conducted at Stony Brook, using the USSA-2000 split sphere anvil apparatus. An experiment in the CMS system doped with oxides of Al, Ti, Sc, and Sm and run at a nominal temperature of 2380 C and pressure of 226 kbars is reported. Nominal temperatures were measured with a W 3 percent Re/W 25 percent Re thermocouple. The hot spot temperature, where the liquidus is located, is estimated to be at 2430 C. A 10 mm MgO octahedron was used in concert with 4 mm truncation edge lengths on the WC cubes. The sample was contained in a Re capsule which was inserted into a LaCrO3 furnace. Pressure was calibrated at 2000 C. Run duration was approximately 3 minutes. The charge was mounted in epoxy and analyzed using a CAMECA SX-50 electron microprobe. Standard operating conditions were employed, although counting time for the less abundant elements was increased to improved counting statistics. The melt is unquenchable, and forms a dendritic intergrowth of quench crystals and residual melt. It was analyzed using a 30 micron raster. The structural identity of the Mg-perovskite phase was confirmed using x ray microdiffractometry. The results of the investigation are presented.

  11. The stability of hibonite and other aluminous phases in silicate melts: Implications for the origin of hibonite-bearing inclusions

    NASA Technical Reports Server (NTRS)

    Beckett, J. R.; Stolper, E.

    1993-01-01

    Phase fields in which hibonite (Hib) and silicate melt coexist with spinel (Sp), CaAl4O7 (CA2), gehlenitic melilite (Mel), anorthite (An), or corundum (Cor) in the system CaO-MgO-Al203-SiO2-TiO2 (CMAST) were determined and activity models developed for Mel and Hib solid solutions. Experimentally determined partition coefficients for Ti between Hib and coexisting melt, D sub t, vary from 0.8 to 2.1 and generally decrease with increasing TiO2 content in the liquid (L). Based on Ti partioning between Hib and melt, bulk inclusion compositions and Hib-saturated liquid use phase diagrams, the Hib in Fluffy Type A inclusions (FTA's) from Allende and at least some of the Hib from Hib-rich inclusions is relict; much of the Hib from Hib-glass spherules probably crystallized from a melt under nonequilibrium conditions. Bulk compositions for all of these Ca-Al-rich inclusions (CAI's) are consistent with an origin as Mel + Hib + Sp + perovskite (Pv) proto-inclusions in which Mel was partially altered. In some cases, the proto-inclusion was partially or completely melted with vaporization occurring over a period of time sufficient to remove any Na introduced by the alteration process but frequently insufficient to dissolve all of the original hibonite. If equilibration temperatures based on Hib-bearing CAI's reflect condensation in a cooling gas of solar composition, then Hib + Cor condensed at approximately 1260 C (referenced to 10 exp -3 atm) and Hib + Sp + Mel at approximately 1215 +/- 10 C. Simple thermochemical models for the substitution of trace elements into the Ca-site of meteoritic Hib suggest that virtually all Eu is divalent in early condensate Hibs but that Eu(2+)/Eu(3+) decreases by a factor of 20 or more during the course of condensation, primarily because the ratio is proportional to the partial pressure of Al, which decreases dramatically as aluminous phases condense. The relative sizes of Eu and Yb anomalies in meteoritic Hibs and CAI's may be influenced by

  12. Vapor pressure and vapor fractionation of silicate melts of tektite composition

    USGS Publications Warehouse

    Walter, Louis S.; Carron, M.K.

    1964-01-01

    The total vapor pressure of Philippine tektite melts of approximately 70 per cent silica has been determined at temperatures ranging from 1500 to 2100??C. This pressure is 190 ?? 40 mm Hg at 1500??C, 450 ?? 50 mm at 1800??C and 850 ?? 70 mm at 2100?? C. Determinations were made by visually observing the temperature at which bubbles began to form at a constant low ambient pressure. By varying the ambient pressure, a boiling point curve was constructed. This curve differs from the equilibrium vapor pressure curve due to surface tension effects. This difference was evaluated by determining the equilibrium bubble size in the melt and calculating the pressure due to surface tension, assuming the latter to be 380 dyn/cm. The relative volatility from tektite melts of the oxides of Na, K, Fe, Al and Si has been determined as a function of temperature, total pressure arid roughly, of oxygen fugacity. The volatility of SiO2 is decreased and that of Na2O and K2O is increased in an oxygen-poor environment. Preliminary results indicate that volatilization at 2100??C under atmospheric pressure caused little or no change in the percentage Na2O and K2O. The ratio Fe3 Fe2 of the tektite is increased in ambient air at a pressure of 9 ?? 10-4 mm Hg (= 106.5 atm O2, partial pressure) at 2000??C. This suggests that tektites were formed either at lower oxygen pressures or that they are a product of incomplete oxidation of parent material with a still lower ferricferrous ratio. ?? 1964.

  13. Trace element partitioning between ilmenite and anhydrous silicate melt: shedding light on the formation of lunar mare basalts

    NASA Astrophysics Data System (ADS)

    van Kan Parker, M.; Mason, P. R.; van Westrenen, W.

    2009-12-01

    Ilmenite (FeTiO3) is the main titanium-bearing, oxide mineral on the Moon. In contrast to its relatively minor role in terrestrial magmatic processes, it played a crucial role in the late stages of lunar magma ocean (LMO) crystallisation and in subsequent mare basalt formation. Quantifying its major and trace element incorporation behaviour at different conditions during partial melting and crystallisation processes is essential to constrain lunar interior evolution models. Trace element partitioning between ilmenite and silicate melt is poorly studied. Trace element partitioning between equilibrium phases depends on pressure, temperature, composition and oxygen fugacity. However, currently available ilmenite-melt partitioning data do not systematically consider these parameters. As a result, no predictive model explaining the large variations in partition coefficients seen in the literature is available. We performed systematic high-pressure, high-temperature ilmenite-melt partitioning experiments in the CaO-FeO-MgO-Al2O3-TiO2-SiO2 (CFMATS) system. Starting materials were doped with a wide range of trace elements (LILE, REE, HFSE and transition metals). Experiments were carried out at atmospheric pressure in platinum capsules, and at high pressure in an end-loaded piston cylinder at the VU University using graphite-lined Pt capsules. Major and trace element compositions of experimental charges were determined using a JEOL Electron Microprobe (VU University) and laser ablation ICP-MS (Utrecht University), respectively. Our results show that transition metals are generally compatible at pressures between 1.1 and 1.7 GPa and 1580 ± 10 K, with Cr having the highest partition coefficient (D ~ 6), followed by V (D ~ 3.5). Mn and Co have D values near 1. The HFSE are moderately incompatible at elevated pressures, with partition coefficients of 0.11-0.54. The REE are all incompatible, with HREE D values of 0.06 ± 0.03, and LILE D values are all <0.004. No clear pressure

  14. Partial reactive crystallization of variable CO2-bearing siliceous MORB-eclogite-derived melt in fertile peridotite and genesis of alkalic basalts with signatures of crustal recycling

    NASA Astrophysics Data System (ADS)

    Mallik, A.; Dasgupta, R.

    2013-12-01

    The presence of heterogeneity in the form of recycled altered oceanic crust (MORB-eclogite) has been proposed in the source of HIMU ocean island basalts (OIBs) [1]. Partial melts of recycled oceanic crust, however, are siliceous and Mg-poor and thus do not resemble the major element compositions of alkalic OIBs that are silica-poor and Mg-rich. In an upwelling heterogenous mantle, MORB-eclogite undergoes melting deeper than volatile-free peridotite, hence, andesitic partial melt derived from eclogite will react with subsolidus peridotite. We have examined the effect of such a melt-rock reaction under volatile-free conditions at 1375 °C, 3 GPa by varying the melt-rock ratio from 8 to 50 wt.% [2]. We concluded that the reacted melts reproduce certain major element characteristics of oceanic basanites, but not nephelinites. Also, the melt-rock reaction produces olivine and garnet-bearing websteritic residue. Because presence of CO2 has been invoked in the source of many HIMU ocean islands, the effect of CO2 on such a melt-rock reaction needs to be evaluated. Accordingly, we performed reaction experiments on mixtures of 25% and 33% CO2-bearing andesitic partial melt and peridotite at 1375 °C, 3 GPa by varying the dissolved CO2 content of the reacting melts from 1 to 5 wt.% (bulk CO2 from 0.25 to 1.6 wt.%) [3, this study]. Owing to melt-rock reaction, with increasing CO2 in the bulk mixture, (a) modes of olivine and cpx decrease while melt, opx and garnet increase, (b) reacted melts evolve to greater degree of Si-undersaturation (from andesite through basanite to nephelinite), (c) enhanced crystallization of garnet take place with higher CO2 in the melt, reducing alumina content of the reacted melts, and (d) CaO and MgO content of the reacted melts increase, without affecting FeO* and Na2O contents (indicating greater propensity of Ca2+ and Mg2+ over Fe2+ and Na+ to enter silicate melt as carbonate). For a given melt-MgO, the CO2-bearing reacted melts are a better

  15. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion

    NASA Astrophysics Data System (ADS)

    Richter, Frank M.; Watson, E. Bruce; Mendybaev, Ruslan A.; Teng, Fang-Zhen; Janney, Philip E.

    2008-01-01

    Two types of laboratory experiments were used to quantify magnesium isotopic fractionations associated with chemical and thermal (Soret) diffusion in silicate liquids. Chemical diffusion couples juxtaposing a molten natural basalt (SUNY MORB) and a molten natural rhyolite (Lake County Obsidian) were run in a piston cylinder apparatus and used to determine the isotopic fractionation of magnesium as it diffused from molten basalt to molten rhyolite. The thermal diffusion experiments were also run in a piston cylinder apparatus but with a sample made entirely of molten SUNY MORB displaced from the hotspot of the assembly furnace so that the sample would have a temperature difference of about 100-200 °C from one end to the other. The chemical diffusion experiments showed fractionations of 26Mg/ 24Mg by as much as 7‰, which resulted in an estimate for the mass dependence of the self-diffusion coefficients of the magnesium isotopes corresponding to D/D=(24/26)β with β = 0.05. The thermal diffusion experiments showed that a temperature difference of about 100 °C resulted in the MgO, CaO, and FeO components of the basalt becoming slightly enriched by about 1 wt% in the colder end while SiO 2 was enriched by several wt% in the hotter end. The temperature gradient also fractionated the magnesium isotopes. A temperature difference of about 150 °C produced an 8‰ enrichment of 26Mg/ 24Mg at the colder end relative to the hotter end. The magnesium isotopic fractionation as a function of temperature in molten basalt corresponds to 3.6 × 10 -2‰/°C/amu.

  16. Chromite-rich mafic silicate chondrules in ordinary chondrites: Formation by impact melting

    NASA Technical Reports Server (NTRS)

    Krot, Alexander N.; Rubin, Alan E.

    1993-01-01

    Chromium-rich chondrules constitute less than 0.1 percent of all ordinary chondrite (OC) chondrules and comprise three groups: chromian-spinel chondrules, chromian-spinel inclusions, and chromite-rich mafic silicate (CRMS) chondrules. Chromian-spinel chondrules (typically 100-300 microns in apparent diameter) exhibit granular, porphyritic and unusual textures and occur mainly in H chondrites. Their morphologies are distinct from the irregularly shaped chromian-spinel inclusions of similar mineralogy. Chromian-spinel chondrules and inclusions consist of grains of chromian-spinel embedded in plagioclase (Pl) or mesostasis of Pl composition. Many also contain accessory ilmenite (Ilm), high-Ca pyroxene (Px), merrillite (Mer), and rare olivine (Ol); some exhibit concentric mineral and chemical zoning. CRMS chondrules (300-1100 microns in apparent diameter) are generally larger than chromian-spinel chondrules and occur in all metamorphosed OC groups. Most CRMS chondrules are nearly spherical although a few are ellipsoidal with a/b aspect ratios ranging up to 1.7. Textures include cryptocrystalline, granular, radial, barred, and porphyritic varieties; some contain apparently relict grains. The chondrules consist of chromite (Chr), Ol and Pl, along with accessory Mer, troilite (Tr), metallic Fe-Ni (Met), Px and Ilm. The mesostasis in CRMS chondrules is nearly opaque in transmitted light; thus, they can be easily recognized in the optical microscope. Based on the similarity of mineralogy and chemistry between CRMS chondrules of different textures (opaque chromite-rich mesostasis, skeletal morphology of Ol grains, similar bulk compositions) we suggest that these chondrules form a genetically related population.

  17. Melt-rich segregations in the Skaergaard Marginal Border Series: Tearing of a vertical silicate mush

    NASA Astrophysics Data System (ADS)

    Humphreys, M. C. S.; Holness, M. B.

    2010-10-01

    The Marginal Border Series (MBS) of the Skaergaard Intrusion crystallised on the steeply dipping sidewalls of the magma chamber. Melt-rich segregations, previously described as the 'wavy pyroxene rock' are a key feature of the otherwise homogeneous outermost parts of the MBS. The lens-shaped segregations consistently strike parallel to the chamber wall and have a moderate dip towards it. The shape, size, grain size and mineralogy of the segregations evolve systematically away from the chamber wall. The segregations become bigger, more widely spaced, chemically more evolved and more irregular in shape with increasing distance from the margin. The segregations were previously interpreted as a nucleation effect parallel to the thermal gradient. However, they dip toward the margin, not parallel to it. We offer a new interpretation: that the segregations represent tearing of poorly consolidated crystal mush during localised sagging of the vertical solidification front. The tears form during a process analogous to 'hot tearing' of metal alloys, although the driving force for tearing is probably gravitational collapse of the vertical solidification front, or perhaps contemporaneous faulting during chamber filling. Small, regular tears formed in the thinner, more rapidly cooled outer parts of the MBS, while the larger, irregular tears formed in the coarser grained, inner parts. Movement of interstitial liquid fed the cracks after tearing, and the liquid crystallised as relatively evolved, coarse-grained segregations. The mineral chemistry and texture of the segregations suggest that the tearing occurs relatively early in the crystallisation history.

  18. Local structural variation with oxygen fugacity in Fe2SiO4+x fayalitic iron silicate melts

    NASA Astrophysics Data System (ADS)

    Alderman, O. L. G.; Lazareva, L.; Wilding, M. C.; Benmore, C. J.; Heald, S. M.; Johnson, C. E.; Johnson, J. A.; Hah, H.-Y.; Sendelbach, S.; Tamalonis, A.; Skinner, L. B.; Parise, J. B.; Weber, J. K. R.

    2017-04-01

    The structure of molten Fe2SiO4+x has been studied using both high-energy X-ray diffraction and Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy, combined with aerodynamic levitation and laser beam heating. A wide range of Fe3+ contents were accessed by varying the levitation and atmospheric gas composition. Diffraction measurements were made in the temperature (T) and oxygen partial pressure ranges 1624(21) < T < 2183(94) K (uncertainties in parentheses) and -5.6(3) < ΔFMQ < +2.8(5) log units (relative to the Fayalite-Magnetite-Quartz buffer). Iron K-edge XANES measurements covered the ranges 1557(33) < T < 1994(36) K and -2.1(3) < ΔFMQ < +4.4(3) log units. Fe3+ contents, x = Fe3+/ΣFe, estimated directly from the pre-edge peaks of the XANES spectra varied between 0.15(1) and 0.40(2). While these agree in some cases with semi-empirical models, notable discrepancies are discussed in the context of the redox kinetics and the limitations in both the models and in the calibrations used to derive oxidation state from XANES spectra. XANES pre-edge peak areas imply average Fe-O coordination numbers, nFeO, close to 5 for all Fe3+/ΣFe. Diffraction measurements yielded values of 4.4(2) < nFeO < 4.7(1). There is limited evidence for a linear trend nFeO(x) = 4.46(3) + 0.4(1)x. Asymmetric Fe-O bond length distributions peak at around 1.96 Å and have a shoulder arising from longer interatomic distances. Mean rFeO lie close to 2.06 Å, consistent with nFeO close to 5. These observations suggest that Fe2+ is less efficient at stabilizing tetrahedral Fe3+ compared to large monovalent alkali cations. Comparison of in-situ XANES estimates of Fe3+/ΣFe in the melts to those of the quenched solids obtained from XANES as well as Mössbauer spectroscopy indicate rapid oxidation during cooling, enabled by stirring of the melt by the levitation gas flow. As such, the oxidation state of hot komatiitic and other highly fluid melts may not be retained, even during

  19. Dynamic processes in a silicate liquid from above melting to below the glass transition.

    PubMed

    Nascimento, Marcio Luis Ferreira; Fokin, Vladimir Mihailovich; Zanotto, Edgar Dutra; Abyzov, Alexander S

    2011-11-21

    We collect and critically analyze extensive literature data, including our own, on three important kinetic processes--viscous flow, crystal nucleation, and growth--in lithium disilicate (Li(2)O·2SiO(2)) over a wide temperature range, from above T(m) to 0.98T(g) where T(g) ≈ 727 K is the calorimetric glass transition temperature and T(m) = 1307 K, which is the melting point. We found that crystal growth mediated by screw dislocations is the most likely growth mechanism in this system. We then calculated the diffusion coefficients controlling crystal growth, D(eff)(U), and completed the analyses by looking at the ionic diffusion coefficients of Li(+1), O(2-), and Si(4+) estimated from experiments and molecular dynamic simulations. These values were then employed to estimate the effective volume diffusion coefficients, D(eff)(V), resulting from their combination within a hypothetical Li(2)Si(2)O(5) "molecule". The similarity of the temperature dependencies of 1/η, where η is shear viscosity, and D(eff)(V) corroborates the validity of the Stokes-Einstein/Eyring equation (SEE) at high temperatures around T(m). Using the equality of D(eff)(V) and D(eff)(η), we estimated the jump distance λ ~ 2.70 Å from the SEE equation and showed that the values of D(eff)(U) have the same temperature dependence but exceed D(eff)(η) by about eightfold. The difference between D(eff)(η) and D(eff)(U) indicates that the former determines the process of mass transport in the bulk whereas the latter relates to the mobility of the structural units on the crystal/liquid interface. We then employed the values of η(T) reduced by eightfold to calculate the growth rates U(T). The resultant U(T) curve is consistent with experimental data until the temperature decreases to a decoupling temperature T(d)(U) ≈ 1.1-1.2T(g), when D(eff)(η) begins decrease with decreasing temperature faster than D(eff)(U). A similar decoupling occurs between D(eff)(η) and D(eff)(τ) (estimated from

  20. Iron metal production in silicate melts through the direct reduction of Fe/II/ by Ti/III/, Cr/II/, and Eu/II/. [in lunar basalts

    NASA Technical Reports Server (NTRS)

    Schreiber, H. D.; Balazs, G. B.; Shaffer, A. P.; Jamison, P. L.

    1982-01-01

    The production of metallic iron in silicate melts by chemical reactions of Ti(3+), Cr(2+), and Eu(2+) with Fe(2+) is demonstrated under experimental conditions in a simplified basaltic liquid. These reactions form a basis for interpreting the role of isochemical valency exchange models in explanations for the reduced nature of lunar basalts. The redox couples are individually investigated in the silicate melt to ascertain reference redox ratios that are independent of mutual interactions. These studies also provide calibrations of spectral absorptions of the Fe(2+) and Ti(2+) species in these glasses. Subsequent spectrophotometric analyses of Fe(2+) and Ti(2+) in glasses doped with both iron and titanium and of Fe(2+) in glasses doped with either iron and chromium or iron and europium ascertain the degree of mutual interactions in these dual-doped glasses.

  1. Hydrothermal Fluids, Nebular Vapors and Silicate MELTS As Seem through the Eyes of Minerals

    NASA Astrophysics Data System (ADS)

    Sack, R. O.

    2014-12-01

    Three cases where advances in mineral thermochemistry provide new insights into geological processes are discussed: (I) Sb-rich fahlores are used to constrain compositions of hydrothermal fluids and processes responsible for Ag-Pb-Zn sulfide ores from three Ag mining districts, Keno Hill, (Yukon, Canada); Julcani, (Angaraes, Peru); Coeur d'Alene, (Idaho, USA), confirming that the Ag initially contained in galena solid solutions was a substantial contributor to the total Ag mined in each of them; (II) Al8/3O4-rich MgAl2O4-Al8/3O4 spinels may have condensed from the primordial solar nebula, with their Al8/3O4 annealed out with cooling, as AgSbS2 is "annealed" out of galena in Ag-Pb-Zn ore deposits. Such spinels may explain inconsistencies between mineral condensation sequences recorded in Ca-Al-rich inclusions (CAIs) in carbonaceous chondrites and those calculated assuming spinel was MgAl2O4. A new thermodynamical model and corundum-bearing CAIs, suggest we may anticipate realization of higher temperatures and pressures of canonical condensation than currently in vogue; (III) Fassitic pyroxenes in the composition space CaMgSi2O6 (Di) - CaTiAlSiO6 (Gr) - CaTi1/2Mg1/2AlSiO6 (AlBf) - CaAl2SiO6 (CATS) exhibit at least one prominent gap evident in composition data from CAIs. This may be interpreted as due to the near superposition of the extension of the Di- AlBf gap into this fassaite tetrahedron, with an isolated two-phase region formed by the double intersections of the (Gr+CATS) - AlBf critical curve with the surfaces of constant Ti(Al)-1 exchange potential characteristic of CAIs. A thermodynamic model for fassaites may provide context for critical thinking about CAI petrogenesis, as well as presaging potential refinements to the thermochemical model for pyroxenes in MELTS.

  2. The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel R.; Florian, Pierre; Henderson, Grant S.; Massiot, Dominique

    2014-02-01

    Because of their importance in both the geosciences and the glass-making industry, alkali aluminosilicate melts have been the focal point of many past studies, but despite progress many problems remain unresolved, such as the complex behaviour of the thermodynamic properties of aluminium-rich alkali silicate melts. This paper presents a study of Na2O-Al2O3-SiO2 glasses and melts, containing 75 mol% SiO2 and different Al/(Al + Na) ratios. Their structure has been investigated by using Raman spectroscopy, as well as, 23Na, 27Al and 29Si 1D MAS NMR spectroscopy. Results confirm the role change of Na+ cations from network modifier to charge compensator in the presence of Al3+ ions. In addition, polymerization increases with increase of the Al/(Al + Na) ratio. These structural changes explain the observed variations in the viscosity of these melts. The viscosity data in turn allow us to calculate the configurational entropy of melts at the glass transition temperature [the Sconf(Tg)]. The variations of the Sconf(Tg) are strongly nonlinear, with sharp increases and decreases depending on the Al/(Al + Na) ratio. More importantly, a strong increase of the Sconf(Tg) is observed when a few Al2O3 is added to sodium silicate melt. A strong decrease is observed after crossing the tectosilicate join, when Al/(Al + Na) > 0.5 and when Al3+ ions are present in fivefold coordination, Al[5], in the glass. Furthermore, in situ27Al NMR spectra of the peraluminous melt show a clear increase of the Al[5] concentration with increasing temperature. When considered in combination with melt fragility and heat capacity, our data demonstrate that Al[5] is clearly a transient unit at high temperature in highly polymerized tectosilicate and peraluminous melts. However, when present in glasses, Al[5] increases the stability of the aluminosilicate network, hence the Tg of glasses. This could be explained by the ability of Al[5] to carry threefold coordinated oxygen atoms in its first coordination

  3. H2O-rich melt inclusions in fayalitic olivine from Hekla volcano: Implications for phase relationships in silicic systems and driving forces of explosive volcanism on Iceland

    NASA Astrophysics Data System (ADS)

    Portnyagin, Maxim; Hoernle, Kaj; Storm, Sonja; Mironov, Nikita; van den Bogaard, Christel; Botcharnikov, Roman

    2012-12-01

    Silicic Icelandic magmas are widely believed to contain low to moderate H2O content prior to degassing, and that their high explosivity mostly results from the interaction of the magmas with ice or meteoric water. Here we report the compositions of glass inclusions (SiO2=57-72 wt%, K2O=1.3-2.6 wt%) in Fe-rich olivines (Fo2-42) from the largest Holocene eruptions of Hekla volcano (H3 and H4) on Iceland, which preserved quenched melts with very high primary H2O contents (3.3-6.2 wt%). The silicic Hekla melts originate primarily by extensive (˜90%) crystal fractionation of H2O-poor (˜0.6 wt%) basalts and represent an end member in the systematics of terrestrial magmas because they originate at low fO2 (ΔQFM ˜-0.1 to -0.4) and have as high H2O contents as significantly more oxidized island-arc magmas (ΔQFM≥1). This demonstrates that H2O and ΔQFM do not correlate in silicic magmas from different tectonic settings, and that fO2, not H2O content, shows a major difference between silicic ocean-island (e.g., Icelandic) and island-arc magmas. Analysis of available experimental data suggests that high H2O activity and low fO2 expand the field of olivine stability in silicic melts. Low fO2 and low MgO content could also suppress crystallization of amphibole. On the basis of these results we propose that an anhydrous mineral assemblage bearing Fe-rich olivine in evolved volcanic and Skaergaard-type intrusive rocks does not imply low H2O in magmas prior to degassing but, in contrast to the commonly held view, is an indicator of H2O-rich silicic parental magmas crystallized at low fO2. Finally, the high H2O content in magma was a major driving force of the largest explosive eruptions of Hekla volcano and must be at least as important for driving silicic explosive volcanism on Iceland as magma-ice interaction.

  4. Crystal/Silicate Melt Partitioning of HFSE, Mo, W, U and Th as a Function of TiO2, with Implications for the Petrogenesis of Lunar Mare Basalts

    NASA Astrophysics Data System (ADS)

    Leitzke, F. P.; Fonseca, R. O. C.; Michely, L. T.; Sprung, P.; Heuser, A.; Münker, C.

    2016-08-01

    We present results from an experimental work that aimed to obtain partition coefficients for the HFSE, Mo, W, U and Th between major silicate and oxide phases present in the lunar mantle and silicate melts with a broad range of TiO2 contents.

  5. Zr complexation in high pressure fluids and silicate melts and implications for the mobilization of HFSE in subduction zones

    NASA Astrophysics Data System (ADS)

    Louvel, Marion; Sanchez-Valle, Carmen; Malfait, Wim J.; Testemale, Denis; Hazemann, Jean-Louis

    2013-03-01

    Field observations and solubility experiments show evidence for the efficient mobilization of nominally insoluble HFSE (i.e., Ti, Zr, Nb and Hf) by high pressure fluids, probably via complexation with polymerized alkali-silica dissolved species and halogens (F and Cl). Here we investigate the complexation of Zr in subduction-related fluids (aqueous fluids and hydrous haplogranite melts) up to 800 °C and 2.4 GPa using X-ray absorption spectroscopy (XANES and EXAFS) in a hydrothermal diamond anvil cell and provide evidence for the formation of Zr-O-Si/Na polymeric species in alkali-(alumino)silicate fluids at high pressure. Zr4+ speciation in dilute fluids (2.5 wt% HCl) is dominated by 8-fold-coordinated [Zr(H2O)8]4+ hydrated complexes at room conditions and no evidence for extensive Zr-Cl complexation in the fluid was found up to 420 °C, as confirmed by ab initio XANES calculations of various ZrO8-xClx clusters. The addition of Na and Si dissolved species (from 35 to 60 wt% dissolved Na2Si2O5, NS2) into the fluid favors the formation of alkali-zirconosilicate clusters Zr-O-Si/Na similar to those found in vlasovite (Na2ZrSi4O11), with Zr4+ in octahedral coordination with oxygen (Zr-O distance = 2.09 ± 0.04 Å) and ˜6 Si (Na) second neighbors (Zr-Si/Na distance = 3.66 ± 0.06 Å). This coordination environment also dominates Zr speciation in F-free and F-bearing NS2 and haplogranite glasses and high pressure hydrous haplogranite melts (15.5-33 wt% dissolved H2O) in the investigated pressure-temperature range. The XAS analyses, assisted by ab initio XANES calculations, are not conclusive concerning the extent of Zr-F complexation in hydrous granitic melts. Alkali-zirconosilicate Zr-O-Si/Na clusters such as those identified in this study may explain the enhanced solubility of zircon ZrSiO4 (and other HFSE-bearing minerals) in alkali-aluminosilicate-bearing aqueous fluids produced by dehydration and melting of the slab and provide a favorable mechanism for the

  6. The formation of the Yichun Ta-Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions

    NASA Astrophysics Data System (ADS)

    Li, Shenghu; Li, Jiankang; Chou, I.-Ming; Jiang, Lei; Ding, Xin

    2017-04-01

    The Yichun Ta-Nb deposit, which is located in Jiangxi Province, South China, can be divided into four lithological zones (from bottom upward): two-mica granite, muscovite granite, albite granite, and lepidolite-albite granite zones. It remains controversial whether these distinct vertical zones were formed through late magmatic-hydrothermal metasomatic alteration or fractional crystallization of magma. To investigate the evolution mechanism of rock- and ore-forming fluid in this deposit, we studied fluid and melt inclusions in quartz and lepidolite in these four granite zones. These fluid inclusions are mainly composed of H2O-NaCl, and have homogenization temperatures ranging from 160 °C to 240 °C, with densities between 0.86 and 0.94 g/cm3 and salinities between 0.5 and 6.5 wt% NaCl equivalent. Raman spectroscopic analyses showed that the daughter minerals contained in silicate melt inclusions are mainly quartz, lepidolite, albite, muscovite, microcline, topaz, and sassolite. From the lower to upper granite zones, the albite contents in silicate melt inclusions increase, while the muscovite contents decrease gradually until muscovite is substituted by lepidolite in the lepidolite-albite granite zone. Additionally, the calculated densities of the silicate melt inclusions exhibit decreasing trends from bottom upward. The total homogenization temperatures of silicate melt inclusions, which were observed under external pressures created in the sample chamber of a hydrothermal diamond-anvil cell, decreased from 860 °C in the lower lithological zone to 776 °C in the upper lithological zone, and the initial melting temperatures of solid phases were 570-710 °C. The calculated initial H2O contents of granitic magma showed an increasing trend from the lower (∼2 wt% in the two-mica granite zone) to the upper granitic zones (∼3 wt% in the albite granite zone). All of these features illustrate that the vertical granite zones in the Yichun Ta-Nb deposit formed through

  7. Pre-Eruptive Exsolution of Chlorine-Enriched Volatile Phases at Augustine Volcano, Alaska: Evidence from Silicate Melt Inclusions and Cl Solubility Modeling

    NASA Astrophysics Data System (ADS)

    Webster, J. D.; Tappen, C.; Mandeville, C.; Harms, C.

    2003-12-01

    Augustine volcano has experienced 6 explosive eruptions in historic time and is located in Cook Inlet, Alaska, approximately 330 km from Anchorage. Most lavas and tephra range from primitive andesite to dacite, but minor basalt flows crop out on the island. The matrix and silicate melt inclusion glasses are more felsic, however. Volcanic gases collected from the Augustine crater during and immediately after the most recent eruptions in 1976 and 1986 were strongly enriched in HCl (Symonds et al., 1990). The presence of elevated Cl levels in magmatic gases is consistent with high concentrations of Cl in silicate melt inclusions in plagioclase and pyroxene phenocrysts in materials erupted from Augustine in 1976 and with the conclusion that the 1976 magma was saturated in a Cl-enriched fluid/vapor prior to eruption (Johnston, 1978). To determine the role of Cl and other volatiles in magmatic and volcanic processes at Augustine volcano, we have begun a systematic study of silicate melt inclusions in tephra erupted at Augustine in 1986 and also erupted ˜ 1000, ˜ 1400, ˜ 1700, ˜ 2100 years ago. We analyzed glassy silicate melt inclusions in plagioclase and pyroxene phenocrysts for major, minor, and some trace elements (including Cl, S, and F) by electron microprobe and for H2O and CO2 by FTIR. Preliminary results show that each of these magmas was strongly but variably enriched in H2O, S, and Cl. Sulfur ranges from 100-700 ppm, and Cl varies from 2000 to more than 8000 ppm. Trends involving Cl, H2O, S, and major elements in tephra from all 5 of the eruptions that we studied are consistent with the exsolution of aqueous-carbonic, S- and Cl-charged volatile phases well before eruption. Moreover, the Cl contents of most melt inclusions are quite high, and the most recently erupted (e.g., 1976 [Johnston, 1978] and 1986) magmas were particularly enriched in Cl. In fact, the Cl abundances of some inclusions approach that of the 2000 bar chloride solubility limit for felsic

  8. Cumulate Fragments in Silicic Ignimbrites

    NASA Astrophysics Data System (ADS)

    Bachmann, O.; Ellis, B. S.; Wolff, J.

    2014-12-01

    Increasingly, studies are concluding that silicic ignimbrites are the result of the amalgamation of multiple discrete magma batches. Yet the existence of discrete batches presents a conundrum for magma generation and storage; if silicic magma batches are not generated nearly in situ in the upper crust, they must traverse, and reside within, a thermally hostile environment with large temperature gradients, resulting in low survivability in their shallow magmatic hearths. The Snake River Plain (Idaho, USA) is a type example of this 'multi-batch' assembly with ignimbrites containing multiple populations of pyroxene crystals, glass shards, and crystal aggregates. The ubiquitous crystal aggregates hint at a mechanism to facilitate the existence of multiple, relatively small batches of rhyolite in the upper crust. These aggregates contain the same plagioclase, pyroxene, and oxide mineral compositions as single phenocrysts of the same minerals in their host rocks, but they have significantly less silicic bulk compositions and lack quartz and sanidine, which occur as single phenocrysts in the deposits. This implies significant crystallization followed by melt extraction from mushy reservoir margins. The extracted melt then continues to evolve (crystallizing sanidine and quartz) while the melt-depleted margins provide an increasingly rigid and refractory network segregating the crystal-poor batches of magma. The hot, refractory, margins insulate the crystal-poor lenses, allowing (1) extended residence in the upper crust, and (2) preservation of chemical heterogeneities among batches. In contrast, systems that produce cumulates richer in low-temperature phases (quartz, K-feldspars, and/or biotite) favour remelting upon recharge, leading to less segregation of eruptible melt pockets and the formation of gradationally zoned ignimbrites. The occurrence of similar crystal aggregates from a variety of magmatic lineages suggests the generality of this process.

  9. Trace element composition of silicate inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite: Evidence for diamond growth from slab melts

    NASA Astrophysics Data System (ADS)

    Thomson, A. R.; Kohn, S. C.; Bulanova, G. P.; Smith, C. B.; Araujo, D.; Walter, M. J.

    2016-11-01

    The trace element compositions of inclusions in sub-lithospheric diamonds from the Juina-5 kimberlite, Brazil, are presented. Literature data for mineral/melt partition coefficients were collated, refitted and employed to interpret inclusion compositions. As part of this process an updated empirical model for predicting the partitioning behaviour of trivalent cations for garnet-melt equilibrium calibrated using data from 73 garnet-melt pairs is presented. High levels of trace element enrichment in inclusions interpreted as former calcium silicate perovskite and majoritic garnet preclude their origin as fragments of an ambient deep mantle assemblage. Inclusions believed to represent former bridgmanite minerals also display a modest degree of enrichment relative to mantle phases. The trace element compositions of 'NAL' and 'CF phase' minerals are also reported. Negative Eu, Ce, and Y/Ho anomalies alongside depletions of Sr, Hf and Zr in many inclusions are suggestive of formation from a low-degree carbonatitic melt of subducted oceanic crust. Observed enrichments in garnet and 'calcium perovskite' inclusions limit depths of melting to less than 600 km, prior to calcium perovskite saturation in subducting assemblages. Less enriched inclusions in sub-lithospheric diamonds from other global localities may represent deeper diamond formation. Modelled source rock compositions that are capable of producing melts in equilibrium with Juina-5 'calcium perovskite' and majorite inclusions are consistent with subducted MORB. Global majorite inclusion compositions suggest a common process is responsible for the formation of many superdeep diamonds, irrespective of geographic locality. Global transition zone inclusion compositions are reproduced by fractional crystallisation from a single parent melt, suggesting that they record the crystallisation sequence and melt evolution during this interaction of slab melts with ambient mantle. All observations are consistent with the

  10. Immiscibility between calciocarbonatitic and silicate melts and related wall rock reactions in the upper mantle: a natural case study from Romanian mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Chalot-Prat, Françoise; Arnold, Michel

    1999-04-01

    This paper presents the textural, mineralogical and chemical study of veinlets cross-cutting peridotite xenoliths from the lithospheric mantle and brought to the surface by alkaline basalts (Persani Mountains, Romania). The veinlets utilized pre-existing zones of weakness in the host rocks or display a random distribution, lining grain boundaries or cross-cutting any mineral, and always forming an interconnected network. They are filled with carbonate patches included in a silicate matrix. Both products are holocrystalline. Carbonate products have alkali-poor calciocarbonatitic to sövitic compositions, while the silicate matrix composition ranges from monzodioritic to monzonitic and alkali feldspar syenitic, depending on the host-sample, i.e., within a rather alkaline silica-saturated series. The mineral phases present in the silicate matrix (F-apatite, armalcolite, chromite, diopside-enstatite series, plagioclase-sanidine series) are usually present in the carbonate zones, where forsterite is also found. Some minerals cross-cut the interface between both types of zones. Only the matrix is different, feldspathic (oligoclase to sanidine) in the former and pure calcite in the latter. Thus, mineralogical and textural relationships between both products are consistent with an origin with equilibrium liquid immiscibility. Mantle minerals cross-cut by veinlets are sometimes resorbed at grain boundaries, and at the contact of the most alkaline silicate and carbonate melts, subhedral diopside/augite formed at the expense of mantle enstatite or olivine. In terms of mineral chemistry, the compositional variations recorded by vein minerals vary along a continuous trend. They generally superpose to those observed from lherzolites to harzburgites, and exhibit the same range of composition as that observed between rims and cores of mantle minerals cross-cut by veinlets. In detail, the Ca-rich pyroxenes of veinlets are Al-poor and Mg-rich; cpx in the carbonate zones are slightly

  11. C-O-H ratios of silicate melt inclusions in basalts from the Galapagos spreading center near 95 degree W: A leaser decrepitation mass spectrometry study

    SciTech Connect

    Yonover, R.N.; Sinton, J.M. ); Gibson, E.K. ); Sommer, M.A.

    1989-12-01

    Volatile ratios (primarily of H{sub 2}O and CO{sub 2}) in individual silicate melt (glass) inclusions in minerals have been analyzed using laser volatilization and mass spectrometry. A Nd-glass laser was used to produce 50-micrometer diameter pits in silicate melt inclusions. Released volatiles were analyzed directly with a computer-controlled quadrupole mass spectrometer. The mean CO{sub 2}/H{sub 2}O from the propagating rift (0.245 {plus minus} 0.068) silicate glass inclusions is significantly lower than that of the actively failing rift (0.641 {plus minus} 0.241); this difference probably reflects different degrees of degassing during contrasting magmatic histories for the two regions. Relatively undifferentiated failing rift magmas must have relatively short crustal residence time prior to eruption and, therefore, have not undergone significant degassing of CO{sub 2}, as would appear to be the case for the more highly fractionated propagating rift magmas. The laser-mass spectrometric system described herein has the ability to act as a point-source probing device that can differentiate between the various volatile sites in minerals and rocks (as well as synthetic materials) on a micrometer scale.

  12. Silicate diffusion in alkali-carbonatite and hydrous melts at 16.5 and 24 GPa: Implication for the melt transport by dissolution-precipitation in the transition zone and uppermost lower mantle

    NASA Astrophysics Data System (ADS)

    Shatskiy, Anton; Litasov, Konstantin D.; Borzdov, Yuriy M.; Katsura, Tomoo; Yamazaki, Daisuke; Ohtani, Eiji

    2013-12-01

    The diffusivity of dissolved Mg2SiO4 in wadsleyite saturated KMC melt (K2Mg(CO3)2 + 25.7 wt.% MgSiO3) at 16.5 GPa and 1700 °C, MgSiO3 diffusivity in perovskite saturated KMCH (K2Mg(CO3)2 × 2H2O + 31.7 wt.% MgSiO3) and HM (H2O + 75.7 wt.% MgSiO3) melts at 24 GPa and 1500 °C were determined experimentally using a scaled-up version of a Kawai-type multi-anvil apparatus. During a diffusion experiment, silicate saturation was maintained at different levels in the two temperature regions by placing the diffusion cell in the thermal gradient of 20 °C/mm. The diffusivity was computed from the total mass of silicate transported from “hot” to the “cold” region during the course of an experiment. At given conditions silicate diffusivities were estimated to be DKMCMg2SiO4=2×10-9 m/s, DKMCHMgSiO3=4×10-9 m/s, and DHMMgSiO3=5×10-8 m/s. Using obtained diffusivities we estimated possible migration rates of dispersed melt inclusion in the deep mantle by means of dissolution-precipitation considering different driving forces. The rates of melt migration driven by the lateral thermal gradient of 1 °C/km in the mantle plume range from 4 × 10-8 to 8 × 10-7 m/year. This means that during plume ascent time of about 50 Ma, the melt can be moved by 2-40 m. These values clearly demonstrate that the thermal gradient is very weak driving force in terms of melt segregation in the deep mantle. On the other hand, at typical mantle stress of 1 MPa and droplet size of 100 μm the migration rates of the HM, KMCH and KMC melts are estimated to be 22.5, 0.9 and 0.2 m/year, respectively, which are 2-3 orders of magnitude faster than ascent rate of the mantle plume. This implies that all melt droplets on the way of ascending plume would be entrapped by the stressed zone in front of plume and accumulated in the plume head. This mechanism may explain segregation of mantle magmas with the source regions deeper than 150-250 km, such as kimberlites.

  13. Experimental observations on noble metal nanonuggets and Fe-Ti oxides, and the transport of platinum group elements in silicate melts

    NASA Astrophysics Data System (ADS)

    Anenburg, Michael; Mavrogenes, John A.

    2016-11-01

    Platinum group element (PGE) nanonuggets are a nuisance in experimental studies designed to measure solubility or partitioning of noble metals in silicate melts. Instead of treating nanonuggets as experimental artifacts, we studied their behaviour motivated by recent discoveries of PGE nanonuggets in a variety of natural settings. We used an experimental setup consisting of AgPd, Pt or AuPd capsules and Fe(-Ti) oxide-saturated hydrous peralkaline silicate melts to maximise nanonugget production. TABS (Te, As, Bi, Sb, Sn) commonly occur in PGM (platinum group minerals), prompting addition of Bi to our experiments to investigate its properties as well. Three-dimensional optical examination by 100× objective and immersion oil reveals variable colour which correlates with nanonugget size and shape due to plasmon resonance effects. We observe two textural types: (1) intermediate-sized nanonuggets dispersed in the glass and adhering to oxides, and (2) abundant fine nanonuggets dispersed in the glass with coarse euhedral crystals in contact with oxides. Slow cooling removes dispersed nanonuggets and greatly coarsens existing oxide-associated metal crystals. Nanonugget-free halos are commonly observed around oxide grains. All metal phases are composed of major (Ag, Pd) and trace (Pt, Ir, Au) capsule material. Our results show reduction processes, imposed by growing oxides, causing local metal saturation in the oxide rich zones with preferential nucleation on smaller oxide grains. The redox gradient then blocks additional metals from diffusing into oxide rich zones, forming halos. As the entire experimental charge is reduced throughout the run, nanonuggets form in the distal glass. Bismuth contents of metal phases do not depend on Bi2O3 amounts dissolved in the melt. Further PGM crystallisation consumes nanonuggets as feedstock. We conclude that the appearance of metallic PGE phases happens in two stages: first as nanonuggets and then as larger PGM. Once formed

  14. C-O-H ratios of silicate melt inclusions in basalts from the Galapagos Spreading Center near 95 degrees W: a laser decrepitation mass spectrometry study

    NASA Technical Reports Server (NTRS)

    Yonover, R. N.; Sinton, J. M.; Sommer, M. A.; Gibson, E. K.

    1989-01-01

    Volatile ratios (primarily of H2O and CO2) in individual silicate melt (glass) inclusions in minerals have been analyzed using laser volatilization and mass spectrometry. A Nd-glass laser was used to produce 50-micrometer diameter pits in silicate melt inclusions. Released volatiles were analyzed directly with a computer-controlled quadrupole mass spectrometer. The detection limits for CO2 and H2O were on the order of 3 x 10(-14) and 3 x 10(-13) moles, respectively. The reproducibility for CO2/H2O was better than +/- 9%. The total range of volatile ratios from vitreous silicate glass inclusions contained in a suite of Galapagos lavas were: 0.018 to 1.193 for CO2/H2O; 0.002 to 0.758 for CO/H2O; 0 to 0.454 for CH4/H2O; and 0 to 0.432 for Ar/H2O. The mean CO2/H2O from the propagating rift (0.245 +/- 0.068) silicate glass inclusions is significantly lower than that of the actively failing rift (0.641 +/- 0.241); this difference probably reflects different degrees of degassing during magmatic histories for the two regions. Relatively undifferentiated failing rift magmas must have relatively short crustal residence times prior to eruption and, therefore, have not undergone significant degassing of CO2, as would appear to be the case for the more highly fractionated propagating rift magmas. The laser-mass spectrometric system described herein has the ability to act as a point-source probing device that can differentiate between the various volatile sites in minerals and rocks (as well as synthetic materials) on a micrometer scale.

  15. C-O-H ratios of silicate melt inclusions in basalts from the Galapagos Spreading Center near 95 degrees W: a laser decrepitation mass spectrometry study.

    PubMed

    Yonover, R N; Sinton, J M; Sommer, M A; Gibson, E K

    1989-01-01

    Volatile ratios (primarily of H2O and CO2) in individual silicate melt (glass) inclusions in minerals have been analyzed using laser volatilization and mass spectrometry. A Nd-glass laser was used to produce 50-micrometer diameter pits in silicate melt inclusions. Released volatiles were analyzed directly with a computer-controlled quadrupole mass spectrometer. The detection limits for CO2 and H2O were on the order of 3 x 10(-14) and 3 x 10(-13) moles, respectively. The reproducibility for CO2/H2O was better than +/- 9%. The total range of volatile ratios from vitreous silicate glass inclusions contained in a suite of Galapagos lavas were: 0.018 to 1.193 for CO2/H2O; 0.002 to 0.758 for CO/H2O; 0 to 0.454 for CH4/H2O; and 0 to 0.432 for Ar/H2O. The mean CO2/H2O from the propagating rift (0.245 +/- 0.068) silicate glass inclusions is significantly lower than that of the actively failing rift (0.641 +/- 0.241); this difference probably reflects different degrees of degassing during magmatic histories for the two regions. Relatively undifferentiated failing rift magmas must have relatively short crustal residence times prior to eruption and, therefore, have not undergone significant degassing of CO2, as would appear to be the case for the more highly fractionated propagating rift magmas. The laser-mass spectrometric system described herein has the ability to act as a point-source probing device that can differentiate between the various volatile sites in minerals and rocks (as well as synthetic materials) on a micrometer scale.

  16. Density and compressibility of the molten lunar picritic glasses: Implications for the roles of Ti and Fe in the structures of silicate melts

    NASA Astrophysics Data System (ADS)

    Vander Kaaden, Kathleen E.; Agee, Carl B.; McCubbin, Francis M.

    2015-01-01

    The density and compressibility of four synthetic molten lunar picritic glasses was investigated from 0 to 10 GPa and 1748 to 2473 K. The picritic glasses were collected from the lunar surface during the Apollo missions, and they are hypothesized to have rapidly quenched as glass beads during pyroclastic fire fountain eruptions. The specific melt compositions investigated in the present study are the Apollo 15 green glass Type C (A15C, TiO2 = 0.26 wt%), the Apollo 14 yellow glass (A14Y, TiO2 = 4.58 wt%), the Apollo 17 orange glass 74220-type (A17O TiO2 = 9.12 wt%), and the Apollo 14 black glass (A14B, TiO2 = 16.40 wt%). These glasses are reported to represent primary unfractionated melts, making them a prime candidate for experimental studies into lunar basalt density and compressibility during partial melting of the lunar mantle. Sink-float experiments were conducted on the synthetic molten lunar glass compositions using a piston-cylinder apparatus (P < 2 GPa) and a Walker-style multi-anvil device (P > 2.5 GPa) in order to bracket the density of the melts. New sink-float data are reported for A15C, A14Y, and A17O, which are combined with previously published density and compressibility data on A15C, A17O, and A14B. Although the Ti-rich liquids are highly compressible at lower pressures, they become nearly incompressible at much higher pressures when compared to the molten low-Ti glasses. Consequently, the melts with the most TiO2 (A14B) are the least dense at higher pressures, a reversal of what is seen at lower pressures. This change in density and compressibility is attributed to changes in coordination of Ti and Fe in the silicate melt structure. As Ti4+ abundances in the silicate melt increase, predominantly [IV]Ti4+ and [IV]Fe2+ change to [VI]Ti4+ and [VI]Fe2+ in the melt structure. All of the data from the present study were used to calculate a Birch-Murnaghan equation-of-state (BM-EOS) for each melt composition. The BM-EOS model for each composition was

  17. High-Temperature Fractionation of Iron Isotopes During Metal Segregation From a Silicate Melt: Experimental Study of Kinetic and Equilibrium Fractionation

    NASA Astrophysics Data System (ADS)

    Roskosz, M.; Luais, B.; Watson, H.; Toplis, M. J.; Alexander, C. M.; Mysen, B. O.

    2005-12-01

    Advances in mass spectrometry make it possible to measure isotopic variations of iron in meteoritic and igneous materials. However, interpreting these data is hampered by a lack of theoretical and experimental knowledge concerning how Fe isotopes fractionate during magmatic processes. As a first step in this direction we have performed experiments in which metallic iron was reduced and segregated from a silicate melt at one bar as a function of f(O2) and time. The starting material was a glass of anorthite-diopside eutectic composition, to which 9 wt% Fe2O3 was added. Experiments were performed at 1500 circC and f(O2) in the range 10-0.7 to 10-8 bars. A proportion of this iron is extracted through formation of an alloy with the Pt-capsule in which the melt was held. The silicate and metallic portions were physically separated and bulk analyses of each fraction performed using standard MC-ICP-MS methods. Furthermore, a Cameca 6f ion microprobe was used to measure isotopic profiles in metallic samples, such that kinetic and equilibrium effects may be disentangled and quantified. Large isotopic variations are observed and attributed to kinetic fractionation during incorporation of iron into the initially Fe-free Pt-capsule. This process leads to the formation of isotopically light metal and a heavy silicate. For instance, in samples heat-treated for 24 hours, metal fractions have δ56Fe/54Fe from 0 to -2‰, whereas silicate fractions have δ56Fe/54Fe from 0 to 4.8‰. These values are positively correlated with the fraction of iron lost to the platinum. Ion-probe analyses and time-series experiments confirm that Fe isotopes are strongly fractionated during diffusion of Fe in the Pt,Fe alloy, and the observed profiles are used to calculate the diffusion coefficients of individual iron isotopes. With increasing time at fixed oxygen fugacity, iron in the alloy reaches a constant isotopic composition. At these conditions, assumed to represent equilibrium, iron in the

  18. In situ trace-element analysis of individual silicate melt inclusions by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Taylor, R. P.; Jackson, S. E.; Longerich, H. P.; Webster, J. D.

    1997-07-01

    This paper reports the successful application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to the in situ analysis of a diverse suite of twenty trace elements including Zr, Hf, Nb, Ta, Y, and REEs, in individual silicate melt inclusions in phenocrysts from Fantale volcano, Ethiopia. The UV laser, a frequency quadrupled Nd: YAG operating at 266 nm, significantly improves the ablation characteristics of minerals that do not absorb strongly at near-IR wavelengths (e.g., quartz and feldspar). Furthermore, it allows for a significant reduction in ablation pit size to ca. 10 μm, thereby permitting numerous applications that require high-resolution sampling. Multiple ablations in individual melt inclusions in the size range 10-50 μm demonstrate both the effectiveness of the technique and the generally homogeneous character of the inclusions. Comparison of the LAM-ICP-MS data for international reference material RGM-1 (a rhyolite), with recommended values, indicates an analytical precision of <10% for most of the trace elements determined in this study. The trace element abundances of the Fantale melt inclusions, determined by LAM-ICP-MS, are typical of those of pantellerites (i.e., peralkaline rhyolites), and are consistent with their origin as tiny volumes of melt trapped in quartz and alkali-feldspar phenocrysts during the final stage of fractional crystallization of the host peralkaline magma.

  19. Structure and disorder in iron-bearing sodium silicate glasses and melts: High-resolution 29Si and 17O solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, S.

    2012-12-01

    Understanding of the effect of iron content on the structure (Si coordination environment and the degree of polymerization) of iron-bearing silicate melts and glasses is essential for studying their macroscopic properties and diverse geological processes in Earth's interior. Although the recent advances in high-resolution solid-state NMR techniques provide detailed structural information of a diverse iron-free oxide glasses with varying composition (e.g., Lee, P. Natl. Acad. Sci. USA., 2011, 108, 6847; Lee and Sung, Chem. Geol., 2008, 256, 326; Park and Lee, Geochim. Cosmochim. Acta, 2012, 80, 125; Lee et al., Phys. Rev., 103, 095501, 2009), their application to iron-bearing silicate glasses has a limited usefulness in resolving atomic configurations due to the effect of paramagnetic cation (i.e., Fe) on the NMR spectra. Here, we report the first ^{29}Si and ^{17}O NMR spectra for sodium-iron silicate glasses with varying iron content (Na_{2}O-Fe_{2}O_{3}-SiO_{2} glasses, up to 34.60 wt% Fe_{2}O_{3}), revealing previously unknown details of iron-induced changes in structure and disorder. While signal intensity decreases and peak width increases exponentially with increasing iron content [=Fe_{2}O_{3}/(Na_{2}O+Fe_{2}O_{3})], ^{29}Si MAS NMR spectra for sodium-iron silicate glasses present the slight peak shift and an asymmetrical peak broadening toward higher Q^{n} species with increasing iron content. This result implies an increase in the degree of polymerization with increasing iron content. Additionally, ^{29}Si spin-relaxation time (T_{1}) for the glasses decreases with increasing of iron content by several orders of magnitude. ^{17}O 3QMAS NMR spectra for the glasses show well-resolved non-bridging oxygen (NBO, Na-O-Si) and bridging oxygen (BO, Si-O-Si) even at relatively high iron content, providing the first direct experimental estimation of the degree of polymerization. In sodium-iron silicate glasses, the fraction of NBO decreases with increasing iron

  20. Simulating the behavior of volatiles belonging to the C-O-H-S system in silicate melts under magmatic conditions with the software D-Compress

    NASA Astrophysics Data System (ADS)

    Burgisser, Alain; Alletti, Marina; Scaillet, Bruno

    2015-06-01

    Modeling magmatic degassing, or how the volatile distribution between gas and melt changes at pressure varies, is a complex task that involves a large number of thermodynamical relationships and that requires dedicated software. This article presents the software D-Compress, which computes the gas and melt volatile composition of five element sets in magmatic systems (O-H, S-O-H, C-S-O-H, C-S-O-H-Fe, and C-O-H). It has been calibrated so as to simulate the volatiles coexisting with three common types of silicate melts (basalt, phonolite, and rhyolite). Operational temperatures depend on melt composition and range from 790 to 1400 °C. A specificity of D-Compress is the calculation of volatile composition as pressure varies along a (de)compression path between atmospheric and 3000 bars. This software was prepared so as to maximize versatility by proposing different sets of input parameters. In particular, whenever new solubility laws on specific melt compositions are available, the model parameters can be easily tuned to run the code on that composition. Parameter gaps were minimized by including sets of chemical species for which calibration data were available over a wide range of pressure, temperature, and melt composition. A brief description of the model rationale is followed by the presentation of the software capabilities. Examples of use are then presented with outputs comparisons between D-Compress and other currently available thermodynamical models. The compiled software and the source code are available as electronic supplementary materials.

  1. The effect of alkalis and polymerization on the solubility of H2O and CO2 in alkali-rich silicate melts

    NASA Astrophysics Data System (ADS)

    Vetere, Francesco; Holtz, Francois; Behrens, Harald; Botcharnikov, Roman E.; Fanara, Sara

    2014-05-01

    The effect of alkalis on the solubility of H2O and CO2 in alkali-rich silicate melts was investigated at 500 MPa and 1,250 °C in the systems with H2O/(H2O + CO2) ratio varying from 0 to 1. Using a synthetic analog of phonotephritic magma from Alban Hills (AH1) as a base composition, the Na/(Na + K) ratio was varied from 0.28 (AH1) to 0.60 (AH2) and 0.85 (AH3) at roughly constant total alkali content. The obtained results were compared with the data for shoshonitic and latitic melts having similar total alkali content but different structural characteristics, e.g., NBO/ T parameter (the ratio of non-bridging oxygens over tetrahedrally coordinated cations), as those of the AH compositions. Little variation was observed in H2O solubility (melt equilibrated with pure H2O fluid) for the whole compositional range in this study with values ranging between 9.7 and 10.2 wt. As previously shown, the maximum CO2 content in melts equilibrated with CO2-rich fluids increases strongly with the NBO/T from 0.29 wt % for latite (NBO/ T = 0.17) to 0.45 wt % for shoshonite (NBO/ T = 0.38) to 0.90 wt % for AH2 (NBO/ T = 0.55). The highest CO2 contents determined for AH3 and AH1 are 1.18 ± 0.05 wt % and 0.86 ± 0.12 wt %, respectively, indicating that Na is promoting carbonate incorporation stronger than potassium. At near constant NBO/ T, CO2 solubility increases from 0.86 ± 0.12 wt % in AH1 [Na/(Na + K)] = 0.28, to 1.18 ± 0.05 wt % in AH3 [Na/(Na + K)] = 0.85, suggesting that Na favors CO2 solubility on an equimolar basis. An empirical equation is proposed to predict the maximum CO2 solubility at 500 MPa and 1,100-1,300 °C in various silicate melts as a function of the NBO/ T, (Na + K)/∑cations and Na/(Na + K) parameters: This model is valid for melt compositions with NBO/ T between 0.0 and 0.6, (Na + K)/∑cation between 0.08 and 0.36 and Na/(Na + K) ratio from 0.25 to 0.95 at oxygen fugacities around the quartz-fayalite-magnetite buffer and above.

  2. Surface Tension-Driven Melt Flow in the Upper Mantle: An Experimental and Modeling Approach to Studying Capillary Flow of Silicate Melt Through an Olivine Matrix

    NASA Astrophysics Data System (ADS)

    Parsons, R. A.; Nimmo, F.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.

    2006-12-01

    The flow of melt in partially-molten rocks has important implications for the geochemical and geophysical evolution of planetary bodies over a wide range of length scales. Surface tension is usually ignored in favor of differential stresses and buoyancy forces, but may still distribute melt over geologically interesting distances [1], particularly in small bodies such as asteroids. We have investigated experimentally the role of surface tension in the redistribution of melt. Shear deformation of synthetic mantle-type rocks composed of 76 vol% olivine, 20 vol% chromite, and 4 vol% mid-ocean ridge basalt (MORB) at upper mantle temperature and pressure conditions (1523 K, 300 MPa) produces anastomosing networks of melt-enriched (MORB) regions separated by melt-depleted lenses [2]. After the deformation phase of the experiment, each of three samples were statically annealed at 1523 K for 0, 10, or 100 hours to allow some MORB to redistribute back into the melt-depleted olivine plus chromite matrix via surface tension-driven capillary flow.". We modeled melt redistribution resulting from surface tension during the static anneal [3]. Using sample measurements of dihedral angle, and values for MORB and olivine viscosity from the literature (10 Pas [4] and 8x10^{12} Pas [5], [6], respectively), we are able to constrain the sample permeability by matching the model results to the experiments. Permeability is given by κ = d2φn/b. The model uses an exponential melt-dependent viscosity relation of the form ηo*10-α φ where ηo is the dry olivine viscosity, α = 25 [5], and φ is the melt fraction. We find that a permeability on the order of 10-18 m2, corresponding to n = 2 ± 0.2 and b = 7000 ± 2000, gives the best fit to the the experimental anneals. The relatively high value of b is probably due to clogging of melt paths by chromite grains (see Appendix A of Holtzmann et al.). [1] Stevenson D. J. (1986) GRL, 13, 1149-1152. [2] Holtzman B. K. et al. (2003) Science, 301

  3. Effect of H[subscript 2]O on the density of silicate melts at high pressures: Static experiments and the application of a modified hard-sphere model of equation of state

    SciTech Connect

    Jing, Zhicheng; Karato, Shun-ichiro

    2012-04-20

    Density of ultramafic silicate melts was determined using the sink/float technique at high pressures. Seven melt compositions were studied, among which three were dry compositions with different Mg's (molar MgO/(MgO + FeO) x 100) and the other four were hydrous compositions synthesized by adding 2-7 wt.% H{sub 2}O to the anhydrous ones. Experimental conditions range from 9 to 15 GPa and from 2173 to 2473 K. The sinking and floatation of density markers were observed for all melt compositions. Melt density data were analyzed by applying the Birch-Murnaghan equation of state and a newly developed equation of state for silicate melts based on the model of hard sphere mixtures. The presence of water can significantly reduce the density of melts due to its small molecular mass. On the other hand, water makes hydrous silicate melts more compressible than anhydrous melts and therefore the effect of H{sub 2}O on melt density is less significant at high pressures. The density of hydrous melts was then calculated as a function of H{sub 2}O content at the conditions of the bottom of the upper mantle, and was compared with the density of the dominant upper mantle minerals. Results show that the conditions for a negatively buoyant melt that coexists with a pyrolite mantle atop the 410 km discontinuity are marginally satisfied if H{sub 2}O is the only volatile component to facilitate melting, but such conditions will be satisfied by a broader range of conditions when other heavier volatile elements (C, K, etc.) are also present.

  4. A model that helps explain Sr-isotope disequilibrium between feldspar phenocrysts and melt in large-volume silicic magma systems

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1998-01-01

    Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a model by which either more- or less-radiogenic feldspar (or even both within a single eruptive unit) can originate. The model requires a magma body open to interaction with biotite- and feldspar-bearing wall rock. Magma is incrementally contaminated as wall rock melts incongruently. Biotite preferentially melts first, followed by feldspar. Such melting behavior, which is supported by both field and experimental studies, first contaminates magma with a relatively radiogenic addition, followed by a less-radiogenic addition. Feldspar phenocrysts lag behind melt (groundmass of volcanic rock) in incorporating the influx of contaminant, thus resulting in Sr-isotopic disequilibrium between the crystals and melt. The sense of disequilibrium recorded in a volcanic rock depends on when eruption quenches the contamination process. This model is testable by isotopic fingerprinting of individual feldspar crystals. For a given set of geologic boundary conditions, specific core-to-rim Sr-isotopic profiles are expectable. Moreover, phenocrysts that nucleate at different times during the contamination process should record different and predictable parts of the history. Initial results of Sr-isotopic fingerprinting of sanidine phenocrysts from the Taylor Creek Rhyolite are consistent with the model. More tests of the model are desirable.Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a

  5. The dynamic response of ionic iron-bearing multicomponent silicate melts to reducing environments: Kinetics and structure

    NASA Astrophysics Data System (ADS)

    Everman, Rebecca L. A.

    2005-12-01

    We examine the kinetic responses of two multicomponent aluminosilicate melts (Fe2O3-FeO-MgO-Al2O3-SiO 2 "FeMAS" and Fe2O3-FeO-CaO-MgO-Al 2O3-SiO2 "FeCMAS"), subjected to extreme reduction potentials with a low- pO2 environment maintained by a CO-CO2 buffer at high temperatures. Both reactions were characterized by a reaction front sweeping into the melt (internal reduction). Despite being exposed to the same experimental conditions, the two melts exhibited differing dynamic responses with FeMAS precipitating metallic bcc-Fe crystals both at the surface and internally while FeCMAS only formed a molten alloy of Fe-Si-C at the surface with a reaction rate ˜100x slower than FeMAS. Driving the reaction in Fe-CMAS harder, through use of a lower pO2 , resulted in bubble formation in the quenched specimens. These experiments demonstrate the significance of minor compositional/structural changes in the melt on the kinetic response. For Fe-MAS, the reaction is rate-limited by chemical diffusion of Mg2+ into the melt with electron holes (h•) counter-diffusing to provide charge compensation. In FeCMAS, however, the CaO component in increases the chemical solubility of carbonate. The carbonate-inclusion reaction, by consuming h• , shuts down the reactions seen in FeMAS, and the incorporation of carbonate polyanions props open the melt network increasing the physical solubility of CO in the melt. This cascades the system down a kinetic path that favors the diffusion of molecular CO. Upon quenching, the system becomes closed to chemical diffusion, but when multiple heterovalent cations are present, local redox adjustments can occur, accounting for the production of CO bubbles as the carbonate back-reacts with Fe2+ and Si2+. The differing reaction dynamics between melts provokes thought concerning the molecular structure of the melts as affected by the on-going reduction reaction. There is no reason to expect that the local molecular structure of the reacting melt is

  6. Partitioning of Ni, Co and V between Spinel-Structured Oxides and Silicate Melts: Importance of Spinel Composition

    NASA Technical Reports Server (NTRS)

    Righter, K.; Leeman, W. P.; Hervig, R. L.

    2006-01-01

    Partitioning of Ni, Co and V between Cr-rich spinels and basaltic melt has been studied experimentally between 1150 and 1325 C, and at controlled oxygen fugacity from the Co-CoO buffer to slightly above the hematite magnetite buffer. These new results, together with new Ni, Co and V analyses of experimental run products from Leeman [Leeman, W.P., 1974. Experimental determination of the partitioning of divalent cations between olivine and basaltic liquid, Pt. II. PhD thesis, Univ. Oregon, 231 - 337.], show that experimentally determined spinel melt partition coefficients (D) are dependent upon temperature (T), oxygen fugacity (fO2) and spinel composition. In particular, partition coefficients determined on doped systems are higher than those in natural (undoped) systems, perhaps due to changing activity coefficients over the composition range defined by the experimental data. Using our new results and published runs (n =85), we obtain a multilinear regression equation that predicts experimental D(V) values as a function of T, fO2, concentration of V in melt and spinel composition. This equation allows prediction of D(V) spinel/melt values for natural mafic liquids at relevant crystallization conditions. Similarly, D(Ni) and D(Co) values can be inferred from our experiments at redox conditions approaching the QFM buffer, temperatures of 1150 to 1250 C and spinel composition (early Cr-bearing and later Ti-magnetite) appropriate for basic magma differentiation. When coupled with major element modelling of liquid lines of descent, these values (D(Ni) sp/melt=10 and D(Co) sp/melt=5) closely reproduce the compositional variation observed in komatiite, mid-ocean ridge basalt (MORB), ocean island basalt (OIB) and basalt to rhyolite suites.

  7. Analysis of Silicate Melt Inclusions in Plagioclase Phenocrysts in Prehistoric Tephra ˜1400 Years B.P. From Augustine Volcano, Alaska.

    NASA Astrophysics Data System (ADS)

    Tappen, C. M.; Webster, J. D.; Mandeville, C. W.

    2003-12-01

    Augustine volcano, located in southern Cook Inlet, Alaska, has been historically active, erupting 6 times in the last 200 years. Eruptions first began prior to 40,000 years B.P. (Begét and Kienle, 1992). There are a minimum of 6 prehistoric tephra layers, G (oldest), I, H, C, M and B (youngest), present on Augustine Island (Waitt et al, 1996). In this study, we analyzed glassy silicate melt inclusions in plagioclase phenocrysts from tephra layer H ( ˜1400 years B.P.) for major and minor and some trace elements (Cl, F, S, Ba, and Sr) by electron microprobe. We use the data to determine the chemical variation of melt inclusions in specific locations within zoned plagioclase phenocrysts. Plagioclase phenocrysts (0.5 to 4 mm long) exhibit unzoned, oscillatory or patchy zoned regions. Unzoned phenocryst cores lack melt inclusions. Patchy zonation occurs in cores and is sometimes found in intermediate zones between the core and rim. Planar oscillatory zones are distinguished in BSE images by light (An56-90) and dark (An46-55) bands. In some phenocrysts light and dark layers differ only by 1% An. Most phenocrysts show 2-3 repeated oscillating pairs of light and dark plagioclase compositional layers. Normal and reverse zoning are apparent in phenocrysts. Rims tend to be more calcic than the cores, varying from 1-5% An. Large melt inclusions (60 to 70 μ m long) are located in patchy zoned cores. Small melt inclusions (2 to 10 μ m long) are located at the contact of high calcic and low calcic oscillatory layers. All melt inclusions are trapped along compositional boundaries and occur in the more calcic plagioclase. Petrography suggests that melt inclusions may have been formed by partial dissolution of a less calcic plagioclase layer. The composition of the melt inclusions are rhyolitic (71 to 75% SiO2). The chlorine concentrations range from 3020 to 6100 ppm with the more chlorine enriched concentrations occurring in the outer rims of the phenocryst. Sr and Ba vary from

  8. Self-diffusion of magnesium in spinel and in equilibrium melts - Constraints on flash heating of silicates

    NASA Technical Reports Server (NTRS)

    Sheng, Y. J.; Wasserburg, G. J.; Hutcheon, I. D.

    1992-01-01

    An isotopic tracer is used to measure Mg self-diffusion in spinel and coexisting melt at bulk chemical equilibrium. The diffusion coefficients were calculated from the measured isotope profiles using a model that includes the complementary diffusion of Mg-24, Mg-25, and Mg-26 in both phases with the constraint that the Mg content of each phase is constant. The activation energy and preexponential factor for Mg self-diffusion in spinel are, respectively, 384 +/- 7 kJ and 74.6 +/- 1.1 sq cm/s. These data indicate Mg diffusion in spinel is much slower than previous estimates. The activation energy for Mg self-diffusion in coexisting melt is 343 +/- 25 kJ and the preexponential factor is 7791.9 +/- 1.3 sq cm/s. These results are used to evaluate cooling rates of plagioclase-olivine inclusions (POIs) in the Allende meteorite. Given a maximum melting temperature for POIs of about 1500 C, these results show that a 1-micron radius spinel would equilibrate isotopically with a melt within about 60 min.

  9. Glass science tutorial lecture {number_sign}6: The melting of silicate glasses, a review of selected topics

    SciTech Connect

    Swarts, E.L.

    1995-03-01

    This report summarizes a two-day lecture given at Westinghouse Hanford Company in March, 1995 and includes the data used in the presentation. Topics included the special needs of a low-level waste vitrification process, glass melting, mechanisms of the formation of foam, glass refining (bubble removal), and homogenization (reduction of chemical heterogeneity to acceptable levels). 96 refs.

  10. The stability of hibonite, melilite and other aluminous phases in silicate melts: Implications for the origin of hibonite-bearing inclusions from carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Beckett, J. R.; Stolper, E.

    1994-01-01

    Phase fields in which hibonite and silicate melt coexist with spinel CaAl4O7, gehlenitic melilite, anorthite or corundum at 1 bar in the system CaO-MgO-Al2O3-SiO2-TiO2 were determined. The hibonites contain up to 1.7 wt% SiO2. For TiO2, the experimentally determined partition coefficients between hibonite and coexisting melt DiHib/L, vary from 0.8 to 2.1 and generally decrease with increasing TiO2 in the liquid. Based on Ti partitioning between hibonite and melt, bulk inclusion compositions and hibonite-saturated liquidus phase diagrams, the hibonite in hibonite-poor fluffy Type A inclusions from Allende and at least some hibonite from hibonite-rich inclusions is relict, although much of the hibonite from hibonite-glass spherules probably crystallized metasably from a melt. Bulk compositions for all of these CAIs are consistent with an origin as melite + hibonite + spinel + perovskite phase assemblages that were partially altered and in some cases partially or completely melted. The duration of the melting event was sufficient to remove any Na introduced by the alteration process but frequently insufficient to dissolve all of the original hibonite. Simple thermochemical models developed for meteoritic melilite and hibonite solid solutions were used to obtain equilibration temperatures of hibonite-bearing phase assemblages with vapor. Referenced to 10-3 atm, hibonite + corundum + vapor equilibrated at approximately 1260 C and hibonite + spinel +/- melilite + vapor at 1215 +/- 10 C. If these temperatures reflect condensation in a cooling gas of solar composition, then hibonite +/- corundum condensed first, followed by spinel and then melilite. The position of perovskite within this sequence is uncertain, but it probably began to condense before spinel. This sequence of phase appearances and relative temperatures is generally consistent with observed textures but differs from expectations based on classical condensation calculations in that equilibration temperatures

  11. The stability of hibonite, melilite and other aluminous phases in silicate melts: Implications for the origin of hibonite-bearing inclusions from carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Beckett, J. R.; Stolper, E.

    1994-01-01

    Phase fields in which hibonite and silicate melt coexist with spinel CaAl4O7, gehlenitic melilite, anorthite or corundum at 1 bar in the system CaO-MgO-Al2O3-SiO2-TiO2 were determined. The hibonites contain up to 1.7 wt% SiO2. For TiO2, the experimentally determined partition coefficients between hibonite and coexisting melt D(sub i)(sup Hib/L), vary from 0.8 to 2.1 and generally decrease with increasing TiO2 in the liquid. Based on Ti partitioning between hibonite and melt, bulk inclusion compositions and hibonite-saturated liquidus phase diagrams, the hibonite in hibonite-poor fluffy Type A inclusions from Allende and at least some hibonite from hibonite-rich inclusions is relict, although much of the hibonite from hibonite-glass spherules probably crystallized metasably from a melt. Bulk compositions for all of these CAIs are consistent with an origin as melite + hibonite + spinel + perovskite phase assembalges that were partially altered and in some cases partially or completely melted. The duration of the melting event was sufficient to remove any Na introduced by the alteration process but frequently insufficient to dissolve all of the original hibonite. Simple thermochemical models developed for meteoritic melilite and hibonite solid solutions were used to obtain equilibration temperatures of hibonite-bearing phase assemblages with vapor. Referenced to 10(exp -3) atm, hibonite + corundum + vapor equilibrated at approximately 1260 C and hibonite + spinel +/- melilite + vapor at 1215 +/- 10 C. If these temperatures reflect condensation in a cooling gas of solar composition, then hibonite +/- corundum condensed first, followed by spinel and then melilite. The position of perovskite within this sequence is uncertain, but it probably began to condense before spinel. This sequence of phase appearances and relative temperatures is generally consistent with observed textures but differs from expectations based on classical condensation calculations in that

  12. Melt densities in the CaO-FeO-Fe 2O 3-SiO 2 system and the compositional dependence of the partial molar volume of ferric iron in silicate melts

    NASA Astrophysics Data System (ADS)

    Dingwell, Donald B.; Brearley, Mark

    1988-12-01

    temperature, composition and redox state, are sufficient to describe the above observations. The presence of more than one coordination geometry for Fe 3+ in low pressure silicate melts has several implications for igneous petrogenesis. The possible effects on compressibility, the pressure dependence of the redox ratio, and redox enthalpy are briefly noted.

  13. The influence of the conditions of ion exchange in CuSO4:Na2SO4 melt on the optical properties of surface layers of silicate glass

    NASA Astrophysics Data System (ADS)

    Demichev, I. A.; Sidorov, A. I.; Nikonorov, N. V.

    2015-08-01

    The influence of the temperature and duration of ion exchange in BK7 silicate glass in CuSO4:Na2SO4 melt on the optical properties of the glass surface layers has been investigated. It is shown that ion exchange occurs from the melt according to the Cu2+ ↔ 2Na+ scheme. Cu2+ ions penetrate the sample to a depth of about 1 µm. Reduction of Cu2+ ions near the glass surface gives rise to the Cu+ ↔ Na+ ion exchange in the glass. Measurements of refractive index profiles in the glass sample subjected to ion exchange have revealed the formation of two waveguides in the sample: near the surface and at a depth of more than 3 µm; the second waveguide is formed by Cu+ ions. It is shown that relatively low temperatures and short durations of ion exchange lead to the formation of copper molecular clusters Cu n in glass. An increase of ion exchange temperature and duration leads to decomposition of molecular clusters with formation of Cu2+ ions.

  14. Wüstite stability in the presence of a CO2-fluid and a carbonate-silicate melt: Implications for the graphite/diamond formation and generation of Fe-rich mantle metasomatic agents

    NASA Astrophysics Data System (ADS)

    Bataleva, Yuliya V.; Palyanov, Yuri N.; Sokol, Alexander G.; Borzdov, Yuri M.; Bayukov, Oleg A.

    2016-02-01

    Experimental simulation of the interaction of wüstite with a CO2-rich fluid and a carbonate-silicate melt was performed using a multianvil high-pressure split-sphere apparatus in the FeO-MgO-CaO-SiO2-Al2O3-CO2 system at a pressure of 6.3 GPa and temperatures in the range of 1150 °C-1650 °C and with run time of 20 h. At relatively low temperatures, decarbonation reactions occur in the system to form iron-rich garnet (Alm75Prp17Grs8), magnesiowüstite (Mg# ≤ 0.13), and CO2-rich fluid. Under these conditions, magnesiowüstite was found to be capable of partial reducing CO2 to C0 that leads to the formation of Fe3+-bearing magnesiowüstite, crystallization of magnetite and metastable graphite, and initial growth of diamond seeds. At T ≥ 1450 °C, an iron-rich carbonate-silicate melt (FeO ~ 56 wt.%, SiO2 ~ 12 wt.%) forms in the system. Interaction between (Fe,Mg)O, SiO2, fluid and melt leads to oxidation of magnesiowüstite and crystallization of fayalite-magnetite spinel solid solution (1450 °C) as well as to complete dissolution of magnesiowüstite in the carbonate-silicate melt (1550 °C-1650 °C). In the presence of both carbonate-silicate melt and CO2-rich fluid, dissolution (oxidation) of diamond and metastable graphite was found to occur. The study results demonstrate that under pressures of the lithospheric mantle in the presence of a CO2-rich fluid, wüstite/magnesiowüstite is stable only at relatively low temperatures when it is in the absolute excess relative to CO2-rich fluid. In this case, the redox reactions, which produce metastable graphite and diamond with concomitant partial oxidation of wüstite to magnetite, occur. Wüstite is unstable under high concentrations of a CO2-rich fluid as well as in the presence of a carbonate-silicate melt: it is either completely oxidized or dissolves in the melt or fluid phase, leading to the formation of Fe2 +- and Fe3 +-enriched carbonate-silicate melts, which are potential metasomatic agents in the

  15. Effect of pressure on the carbon speciation in silicate glasses and melts: Insights from multi-nuclear solid-state NMR

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Fei, Y.; Lee, S. K.

    2015-12-01

    The pressure-induced structural changes in carbon-bearing silicate glasses and melts is essential to understand the changes in melt properties in the Earth interior and yield atomistic insights into the deep carbon cycle. Despite the extensive pioneering studies on carbon-bearing silicate glasses, spectroscopic and scattering studies at high pressure above ~4 GPa is limited due to the lack of suitable experimental probes. Here, we report the pressure-induced structural changes around C, Si and Al in albite and Na-trisilicate (Na2O:SiO2=1:3, NS3) glasses with varying pressure up to 8 GPa, using 27Al, 29Si and 13C solid-state high-resolution NMR. 27Al 3QMAS NMR spectra for carbon-bearing albite glasses quenched from melts at high pressure up to 6 GPa show only [4]Al environments. The FWHM of [4]Al in albite glasses increases with increasing pressure, indicating that the overall densification of albite glasses at high pressure is accompanied by an increase in the topological disorder around Al. 29Si MAS NMR spectra for NS3 glasses at high pressure up to 8 GPa show the presence of highly coordinated Si, [5,6]Si, which contributes to an increases in the total configurational disorder in the NS3 glasses with pressure. 13C MAS NMR spectra for carbon-bearing albite glasses show the presence of dominant fraction of CO2, and minor amounts of CO32-, and CO. At least three distinct carbonate species, such as [4]Si(CO3)[4]Si, [4]Si(CO3)[4]Al, and CO32- were observed. Among those species, the increase in the fraction of [4]Si(CO3)[4]Al species is most prevalent. 13C MAS NMR spectra for NS3 glasses show the presence of carbonate species. The peaks position of the carbonate species shifts to lower frequency upon compression, suggesting the pressure-induced structural distortion of CO32- in the glasses above 6 GPa. Spin-lattice (T1) relaxation time for molecular CO2 in carbon-bearing albite glasses increases with increasing pressure. T1 relaxation time for CO2 species at 6 GPa is 3

  16. Micro-XANES Measurements on Experimental Spinels and the Oxidation State of Vanadium in Coexisting Spinel and Silicate Melt

    NASA Technical Reports Server (NTRS)

    Righter, K.; Sutton, S. R.; Newville, M.; Le. L.; Schwandt, C. S.

    2005-01-01

    Spinel can be a significant host phase for V which has multiple oxidation states V(sup 2+), V(sup 3+), V(sup 4+) or V(sup 5+) at oxygen fugacities relevant to natural systems. The magnitude of D(V) spinel/melt is known to be a function of composition, temperature and fO2, but the uncertainty of the oxidation state under the range of natural conditions has made elusive a thorough understanding of D(V) spinel/melt. For example, V(sup 3+) is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al2O3-SiO2 system. On the other hand, it has been argued that V(sup 4+) will be stable across the range of natural oxygen fugacities in nature. In order to build on our previous work in more oxidized systems, we have carried out experiments at relatively reducing conditions from the FMQ buffer to 2 log fO2 units below the IW buffer. These spinel-melt pairs, where V is present in the spinel at natural levels (approx. 300 ppm V), were analyzed using an electron microprobe at NASA-JSC and micro- XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with previous results to understand the valence of V in spinel-melt systems across 12 orders of magnitude of oxygen fugacity, and with application to natural systems.

  17. Thermal analysis of reactions in soda-lime silicate glass batches containing melting accelerants: II, multicomponent systems

    SciTech Connect

    Hong, Kug Sun; Lee, Sang Won; Speyer, R.F. )

    1993-03-01

    The glass melting reactions in a multicomponent system (sand-soda ash-calcite-dolomite-feldspar) were studied using data from DTA, TGA, and XRD interactively. The first-formed liquid phase occurred at 700C from eutectic melting among CaCO[sub 3], Na[sub 2]CO[sub 3], and MgO. Further liquid phase formed at the CaCO[sub 3]-Na[sub 2]CO[sub 3] eutectic at 785C and a fusion reaction among SiO[sub 2], CaO, and the molten phase at 812C. Reactions between molten soda ash and silica grains to form a sodium disilicate coating also occurred in this temperature range. The effects of reaction accelerant additions (Na[sub 2], SO[sub 4], NaNO[sub 3], NaCl) on batch fusion were analyzed. Sodium chloride was found to be the most effective melting accelerant due to the formation of a NaCl-Na[sub 2]CO[sub 3] eutectic liquid phase at [approximately]636C, which effectively attacked the silica relic. CO[sub 2] gas release terminated [approximately]80C earlier with 1 wt% NaCl additions to the base glass.

  18. Viscosity determinations of some frictionally generated silicate melts: Implications for slip zone rheology during impact-induced faulting

    NASA Technical Reports Server (NTRS)

    Spray, John G.

    1992-01-01

    Analytical scanning electron microscopy, using combined energy dispersive and wavelength dispersive spectrometry, was used to determine the major-element compositions of some natural and artificial glasses and their crystalline equivalents derived by the frictional melting of acid to intermediate protoliths. The major-element compositions are used to calculate the viscosities of their melt precursors using the model of Shaw at temperatures of 800-1400 C, with Fe(2+)/Fe(tot) = 0.5 and for 1-3 wt percent H2O. These results are then modified to account for suspension effects in order to determine viscosities. The results have implications for the generation of pseudotachylitic breccias as seen in the basement lithologies of the Sudbury and Vredefort structures and possibly certain dimict lunar breccias. Many of these breccias show similarities with the more commonly developed pseudotachylite fault and injection veins seen in endogenic fault zones that typically occur in thicknesses of a few centimeters or less. The main difference is one of scale: Impact-induced pseudotachylite breccias can attain several meters in thickness. This would suggest that they were generated under exceptionally high slip rates and hence high strain rates and that the friction melts generated possessed extremely low viscosities.

  19. Pressure effect on Fe3+/FeT in silicate melts and applications to magma redox, particularly in magma oceans

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Hirschmann, M. M.

    2014-12-01

    The proportions of Fe3+ and Fe2+ in magmas reflect the redox conditions of their origin and influence the chemical and physical properties of natural silicate liquids, but the relationship between Fe3+/FeT and oxygen fugacity depends on pressure owing to different molar volumes and compressibilities of Fe3+ and Fe2+ in silicates. An important case where the effect of pressure effect may be important is in magma oceans, where well mixed (and therefore potentially uniform Fe3+/FeT) experiencses a wide range of pressures, and therefore can impart different ƒO2 at different depths, influencing magma ocean degassing and early atmospheres, as well as chemical gradients within magma oceans. To investigate the effect of pressure on magmatic Fe3+/FeT we conducted high pressure expeirments on ƒO2-buffered andestic liquids. Quenched glasses were analyzed by Mössbauer spectroscopy. To verify the accuracy of Mössbauer determinations of Fe3+/FeT in glasses, we also conducted low temperature Mössbauer studies to determine differences in the recoilless fraction (ƒ) of Fe2+ and Fe3. These indicate that room temperature Mössbauer determinations of on Fe3+/FeT glasses are systematically high by 4% compared to recoilless-fraction corrected ratios. Up to 7 GPa, pressure decreases Fe3+/FeT, at fixed ƒO2 relative to metal-oxide buffers, meaning that an isochemical magma will become more reduced with decreasing pressure. Consequently, for small planetary bodies such as the Moon or Mercury, atmospheres overlying their MO will be highly reducing, consisting chiefly of H2 and CO. The same may also be true for Mars. The trend may reverse at higher pressure, as is the case for solid peridotite, and so for Earth, Venus, and possibly Mars, more oxidized atmospheres above MO are possible. Diamond anvil experiments are underway to examine this hypothesis.

  20. Understanding Structural Properties of Carbonate-Silicate Melts: An EXAFS Study on Y and Sr in the System Na2O-CaO-Al2O3-SiO2-CO2

    NASA Astrophysics Data System (ADS)

    Pohlenz, J.; Pascarelli, S.; Mathon, O.; Belin, S.; Shiryaev, A.; Safonov, O.; Murzin, V.; Shablinskaya, K.; Irifune, T.; Wilke, M.

    2014-12-01

    Carbonatite volcanism generally occurs in intra-plate settings associated with continental rifting. The only active carbonatitic volcano is the Oldoinyo Lengai, Tanzania, which generates sodium-rich carbonatites in close association with phonolites and nephelinites1. The processes of carbonatite genesis are still unresolved, however carbonate-bearing melts evidently play a crucial role during mantle melting, in diamond formation and as metasomatic agents. Carbonate melts show extraordinary properties, especially in regard to their low melt viscosities and densities, high surface tensions and electrical conductivities as well as distinct geochemical affinities to a wide range of trace elements2. Understanding the structural properties of carbonate-bearing melts is fundamental to explaining their chemical and physical behaviour as well as modeling processes operating in the deep Earth. Extended X-ray absorption fine structure (EXAFS) spectroscopy is a versatile tool for element specific investigation of the short to medium range structure of melts and glasses. This study focuses on unraveling the influence of carbonate concentration on the structural incorporation of the geochemically important trace elements Y and Sr in silicate and carbonate melts in the system Na2O-CaO-Al2O3-SiO2-CO2. First, we present structural data of silicate glasses with up to 10 wt% CO2, quenched from melts under high temperature and pressure, which indicate that the local structure of Y and Sr is not or only slightly affected by CO2. Melts with higher CO2 contents could not be quenched to glass, so far. Second, we show results of high pressure, high temperature experiments conducted in the Paris Edinburgh-Press, which provides in-situ insight into carbonate-silicate melts. All EXAFS measurements were performed at the synchrotron facility beamlines SAMBA (SOLEIL) and BM23 (ESRF). Information derived from the trace elements' local structure is used to develop a structural model for carbonate-silicate

  1. The effects of dissolved CO 2 on the density and viscosity of silicate melts: a preliminary study

    NASA Astrophysics Data System (ADS)

    Bourgue, Emmanuelle; Richet, Pascal

    2001-11-01

    A potassium silicate liquid with 56.9 mol% SiO 2 (KS 1.3) has been used as a model system to determine at 1 bar the influence of carbon dioxide on the viscosity and density of magma. For the maximum concentration of 3.5 wt% that could be dissolved, the viscosity decreases by two orders of magnitude near the glass transition at around 750 K. For 1 wt% CO 2, the decrease is 1 and only 0.04 log unit at 750 and 1500 K, respectively. Dissolved CO 2 has a composition independent partial molar volume of 25.6±0.8 cm 3/mol in glasses at room temperature, and does not affect the thermal expansion coefficient of the supercooled liquid which is (12.3±0.3)×10 -5 K -1 for CO 2 contents varying from 0.6 to 2.2 wt%. Qualitatively, these effects are similar to those of water. However, the density of dissolved CO 2 varies from about 1.7 to 1.5 g/cm 3 in a 700 K interval above the glass transition, and lowers the density of the glass less than water whose density decreases from 1.5 to 1.2 g/cm 3 under the same conditions. The relevance of these results to natural magma is finally pointed out.

  2. Pressure determination in HDAC experiments, the behavior of isochoric water-silicate systems at high pressure, and implications for melt (glass) inclusion studies

    NASA Astrophysics Data System (ADS)

    Solferino, Giulio; Anderson, Alan J.

    2015-04-01

    The Hydrothermal Diamond Anvil Cell (HDAC) could be seen as a synthetic fluid inclusion, where the composition of the trapped phase(s) and the type of fluid medium are controlled by the experimentalist. Accurate pressure determination in Hydrothermal Diamond Anvil Cell (HDAC) experiments has proven to be a complex achievement. In this study we employed in-situ visualization of the alpha-beta quartz transformation via laser interferometry for the purpose. This inexpensive and convenient method allowed for an accuracy of less than 30-40 MPa in the pressure range 130-900 MPa, which is relevant for crust and shallower upper mantle investigations. Our experiments with water + haplogranite glass crossed into the undercooled liquid and melt state of the silicate phase, where the pressure medium contains a significant amount of solute. The principal goal of this experimental series was to compare the actual run pressure with that calculated for pure water pressure medium. We found that for runs where the alpha-to-beta transition temperature is ≤ 665 °C run pressure is lower than that computed for pure water. On the contrary, at ~780 °C the pressure in the HDAC is ~100 MPa greater than that estimated using pure water isochore. We employed a simplified model of haplogranite dissolution in water for an isochoric sample chamber to explain the negative sign and the variation of the observed discrepancy between measured and calculated pressure. We suggest that, beyond the change in the intrinsic properties of the fluid phase (e.g., compressibility) with increasing solute concentration, two factors control the P-T path in the HDAC: (1) hydration of the glass prior to the glass transition; and (2) changing volume of the aqueous pressure medium. The latter effects must be considered when investigating hydrothermal isochoric systems where the solid/melt phase is highly soluble in the fluid, such as in the determination of the P-T path during rehomogenization of water-rich melt

  3. Experimental determination of argon solubility in silicate melts: An assessment of the effects of liquid composition and temperature

    NASA Astrophysics Data System (ADS)

    Marrocchi, Y.; Toplis, M. J.

    2005-12-01

    The argon solubility of 38 liquids in the system Na 2O-CaO-MgO-Al 2O 3-SiO 2 (NCMAS) has been determined at 1873 K and 1 bar, the argon concentration of presaturated glasses being measured using a static mass spectrometer. For compositions in the subsystem diopside (CaMgSi 2O 6), nepheline (NaAlSiO 4), albite (NaAlSi 3O 8), anorthite (CaAl 2Si 2O 8), argon solubility is generally a linear function of the relative proportion of each end member, solubility being lowest in diopside melt (1.53 10 -5 cm 3 STP · g -1 · bar -1) and highest in albite melt (2.88 10 -4 cm 3 STP · g -1 · bar -1). For the tectosilicate joins studied (SiO 2-Na 2Al 2O 4, SiO 2-CaAl 2O 4, SiO 2-MgAl 2O 4) solubility decreases with decreasing silica content in all cases, being highest for Na-bearing liquids and lowest for Mg-bearing liquids at constant molar silica content. Where comparison is possible our results are in good agreement with data from the literature. When our data are considered in isolation we find that argon solubility shows an excellent correlation with calculated ionic porosity. The covariation of argon solubility and liquid density is also reasonable, that with molar volume less convincing and that with polymerization state (as defined by the ratio of the number of nonbridging oxygens and tetrahedral network forming cations; NBO/T) nonexistent. However, when our data are combined with those from the literature no well constrained correlation between argon solubility and ionic porosity is apparent. Based upon this observation and consideration of the temperature dependence of noble gas solubility it is concluded that ionic porosity is not a universally applicable parameter which may be used to predict noble gas solubility as a function of composition, temperature and pressure. Two new models for calculating argon solubility are proposed, both employing the notion of partial molar argon solubilities. The first uses oxide components, for which partial molar argon solubility

  4. Sulfur Isotope Variation in Basaltic Melt Inclusions from Krakatau Revealed by a Newly Developed Secondary Ion Mass Spectrometry Technique for Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Mandeville, C. W.; Shimizu, N.; Kelley, K. A.; Cheek, L.

    2008-12-01

    Sulfur is a ubiquitous element with variable valance states (S2-, S0, S4+, S6+) allowing for its participation in a wide variety of chemical and biogeochemical processes. However, its potential as an isotopic tracer in magmatic processes has not been fully developed and is crucial to understanding of sulfur recycling in subduction zones and between Earth's major reservoirs, mantle, lithosphere and coupled hydrosphere-atmosphere. Previous studies of silicate glasses and melt inclusions have been hampered by lack of an in situ isotopic measurement technique with spatial resolution of 10 to 100 microns. We have developed a new secondary ion mass spectrometry (SIMS) analytical technique for measurement of 34S/32S ratios in silicate glasses utilizing the IMS 1280 at Woods Hole Oceanographic Institution. A beam of 133Cs+ ions with 13 keV energy and current of 1-2 nA is focused onto a 10 micron spot and rastered over 30 × 30 microns. A Normal Incidence Electron Gun was used to compensate excess charge. The rastered beam is then centered to the optical axis of the machine, and a mechanical aperture is placed on the image plane to limit the area of analysis to the central 15 × 15 microns. The energy slit width was adjusted to 50 eV. A mass resolving power of 5500 was sufficient for eliminating mass interferences. A suite of synthetic and natural glasses with δ34SVCDT values spanning from - 5.6‰ to 18.5‰ with SiO2 from 44-72 weight % were measured. Magnitude of the instrumental mass fractionation (α) for 34S/32S ratios is 0.991 and is constant for all the glasses measured despite their compositions. Precision of individual measurements of 34S/32S ratios is 0.4 ‰, or better. Preliminary δ34S measurements of olivine-hosted basaltic melt inclusions in pre- 1883 basaltic scoria from Krakatau volcano Indonesia vary from -5.6 to 7.9‰ with sulfur concentrations from 490 to 2170 ppm, respectively. Host olivines are Fo77-80 and inclusions generally need minor to no post

  5. Multidiffusion mechanisms for noble gases (He, Ne, Ar) in silicate glasses and melts in the transition temperature domain: Implications for glass polymerization

    NASA Astrophysics Data System (ADS)

    Amalberti, Julien; Burnard, Pete; Laporte, Didier; Tissandier, Laurent; Neuville, Daniel R.

    2016-01-01

    Noble gases are ideal probes to study the structure of silicate glasses and melts as the modifications of the silicate network induced by the incorporation of noble gases are negligible. In addition, there are systematic variations in noble gas atomic radii and several noble gas isotopes with which the influence of the network itself on diffusion may be investigated. Noble gases are therefore ideally suited to constrain the time scales of magma degassing and cooling. In order to document noble gas diffusion behavior in silicate glass, we measured the diffusivities of three noble gases (4He, 20Ne and 40Ar) and the isotopic diffusivities of two Ar isotopes (36Ar and 40Ar) in two synthetic basaltic glasses (G1 and G2; 20Ne and 36Ar were only measured in sample G1). These new diffusion results are used to re-interpret time scales of the acquisition of fractionated atmospheric noble gas signatures in pumices. The noble gas bearing glasses were synthesized by exposing the liquids to high noble gas partial pressures at high temperature and pressure (1750-1770 K and 1.2 GPa) in a piston-cylinder apparatus. Diffusivities were measured by step heating the glasses between 423 and 1198 K and measuring the fraction of gas released at each temperature step by noble gas mass spectrometry. In addition we measured the viscosity of G1 between 996 and 1072 K in order to determine the precise glass transition temperature and to estimate network relaxation time scales. The results indicate that, to a first order, that the smaller the size of the diffusing atom, the greater its diffusivity at a given temperature: D(He) > D(Ne) > D(Ar) at constant T. Significantly, the diffusivities of the noble gases in the glasses investigated do not display simple Arrhenian behavior: there are well-defined departures from Arrhenian behavior which occur at lower temperatures for He than for Ne or Ar. We propose that the non-Arrhenian behavior of noble gases can be explained by structural modifications

  6. Petrochemical features of Miocene volcanism around the Çubukludağ graben and Karaburun peninsula, western Turkey: Implications for crustal melting related silicic volcanism

    NASA Astrophysics Data System (ADS)

    Karacık, Z.; Genç, Ş. C.; Gülmez, F.

    2013-09-01

    Widespread Neogene volcanism, mainly intermediate and rarely mafic and felsic in composition, was controlled by the extensional tectonic regime in western Turkey. The Karaburun and Cumaovası volcanics are the cases for understanding the magma source(s) and petrological processes, producing the extension-related mafic and felsic volcanism. The Karaburun volcanics (KV) are mainly oriented north to south in the Karaburun peninsula and span a wide spectrum from basalt (20 Ma) to rhyolite (16 Ma), and younger trachyte and trachydacites (13 Ma). The products of the subaerial silicic volcanism (the Cumaovası volcanics, CV; 17 Ma) which are represented by cluster of rhyolite domes, related pyroclastics occur within the NE-SW trending Çubukludağ graben, and intermediate and mafic volcanic rocks are lack in this area. The lavas of the Cumaovası volcanics are high silica rhyolites and rare dacites which are calc alkaline, peralumious and enriched significantly in LILE. Extremely low Sr, Ba values, extremely Eu depletions and very low LaN/YbN ratios are typical for the rhyolites of CV, similar to the topaz rhyolites. The Karaburun volcanics, with the exception of the minor alkaline basaltic and trachytic lavas, are mainly calc alkaline and metaluminous intermediate lavas. 87Sr/86Sr ratios of the KV and dacitic samples of CV are close to each other and range from 0.708 to 0.709; while Sr isotopic ratios of the rhyolites are significantly high and variable (0.724-0.786). 143Nd/144Nd ratios of the CV and KV, except for the alkaline samples, are similar for both sequences vary from 0.51230 to 0.51242. Geological, geochemical, isotopic and radiochronologic data reveal that the KV and CV were formed in extensional tectonic setting, but evolved by different petrological processes in different magma chambers. During the Neogene, underplated mafic magma was injected into the crust and hybridized by mantle and crustal derived materials. Geochemical features and trace element

  7. Silicic magma accumulation beneath Mount Mazama, Oregon, 71 ka to 24 ka constrained by SHRIMP measurements of dissolved volatile concentrations in melt inclusions

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Bacon, C. R.; Vazquez, J. A.; Sisson, T. W.

    2010-12-01

    Dissolved volatile contents of melt inclusions trapped in pyroxene and plagioclase crystals from 7 silicic eruptions preceding the climactic ~7.7 ka Mazama eruption were measured by SIMS with the Stanford-USGS SHRIMP-RG. Melt inclusions in crystals were intersected, polished, and crystals were mounted in indium in Al mounts. A 1.2-3.0 nA (depending on the session), O2- primary beam was accelerated and focused to a 15-25 μm spot on the sample surface, which generated positive secondary ions of analyzed Li, Be, B, C, OH, F, Mg, Si, SiH, S, Cl, Ca, AlO, KO, Rb, and Sr. Measurements were made at high mass resolution (6000-7000). Trace element and volatile concentrations were calculated using a best-fit regression to count rate ratios (normalized to 30Si) vs. variable known concentrations in experimental and natural rhyolite glass standards. Pumiceous samples were chosen from dacitic to rhyodacitic eruptive deposits, consisting of the 71ka dacite of Pumice Castle, 70ka dacite below Llao Rock, 50ka dacite of the Watchman, 35ka dacite of Munson Valley, 35ka Williams Crater tephra, 27ka Redcloud Cliff rhyodacite, and 24ka andesite S of Bear Bluff. Melt inclusions are abundant in spongy, mineral-inclusion-rich interiors of pyroxene crystals in early (71-35ka) eruptive deposits and are less abundant throughout pyroxenes from later eruptions (35-24ka) and in plagioclase crystals. Over the entire time interval, most trace element and volatile concentrations remain approximately constant between melt inclusion populations. However, there are some variations in water and carbon dioxide concentration. A large proportion of inclusions in the smaller eruptive deposits (0.003-0.4 km3) of the dacite of the Watchman, dacite of Munson Valley, and Williams Crater tephra have low water contents, ~1 wt% H2O, corresponding to a saturation pressure of 25MPa, or ~1km depth (at 870°, approximate average temperature for these deposits, e.g., Druitt and Bacon, Contrib Mineral Petrol 1989

  8. Megablocks and melt pockets in the Chesapeake Bay impact structure constrained by magnetic field measurements and properties of the Eyreville and Cape Charles cores

    USGS Publications Warehouse

    Shah, A.K.; Daniels, D.L.; Kontny, A.; Brozena, J.

    2009-01-01

    We use magnetic susceptibility and remanent magnetization measurements of the Eyreville and Cape Charles cores in combination with new and previously collected magnetic field data in order to constrain structural features within the inner basin of the Chesapeake Bay impact structure. The Eyreville core shows the first evidence of several-hundred-meter-thick basement-derived megablocks that have been transported possibly kilometers from their pre-impact location. The magnetic anomaly map of the structure exhibits numerous short-wavelength (<2 km) variations that indicate the presence of magnetic sources within the crater fill. With core magnetic properties and seismic reflection and refraction results as constraints, forward models of the magnetic field show that these sources may represent basementderived megablocks that are a few hundred meters thick or melt bodies that are a few dozen meters thick. Larger-scale magnetic field properties suggest that these bodies overlie deeper, pre-impact basement contacts between materials with different magnetic properties such as gneiss and schist or gneiss and granite. The distribution of the short-wavelength magnetic anomalies in combination with observations of small-scale (1-2 mGal) gravity field variations suggest that basement-derived megablocks are preferentially distributed on the eastern side of the inner crater, not far from the Eyreville core, at depths of around 1-2 km. A scenario where additional basement-derived blocks between 2 and 3 km depth are distributed throughout the inner basin-and are composed of more magnetic materials, such as granite and schist, toward the east over a large-scale magnetic anomaly high and less magnetic materials, such as gneiss, toward the west where the magnetic anomaly is lower-provides a good model fi t to the observed magnetic anomalies in a manner that is consistent with both gravity and seismic-refraction data. ?? 2009 The Geological Society of America.

  9. Magmatic infiltration and melting in the lower crust and upper mantle beneath the Cima volcanic field, California

    USGS Publications Warehouse

    Wilshire, H.G.; McGuire, A.V.

    1996-01-01

    Xenoliths of lower crustal and upper mantle rocks from the Cima volcanic field (CVF) commonly contain glass pockets, veins, and planar trains of glass and/or fluid inclusions in primary minerals. Glass pockets occupy spaces formerly occupied by primary minerals of the host rocks, but there is a general lack of correspondence between the composition of the glass and that of the replaced primary minerals. The melting is considered to have been induced by infiltration of basaltic magma and differentiates of basaltic magma from complex conduits formed by hydraulic fracturing of the mantle and crustal rocks, and to have occurred during the episode of CVF magmatism between ???7.5 Ma and present. Variable compositions of quenched melts resulted from mixing of introduced melts and products of melting of primary minerals, reaction with primary minerals, partial crystallization, and fractionation resulting from melt and volatile expulsion upon entrainment of the xenoliths. High silica melts (> ??? 60% SiO2) may result by mixing introduced melts with siliceous melts produced by reaction of orthopyroxene. Other quenched melt compositions range from those comparable to the host basalts to those with intermediate Si compositions and elevated Al, alkalis, Ti, P, and S; groundmass compositions of CVF basalts are consistent with infiltration of fractionates of those basalts, but near-solidus melting may also contribute to formation of glass with intermediate silica contents with infiltration only of volatile constituents.

  10. Effects of Pressure on the Short-range Structure and Speciation of Fluid phases in Silicate Melts: Insights from Multi-nuclear NMR and X-ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Kim, E.; Fei, Y.; Tschauner, O. D.; Mosenfelder, J. L.; Asimow, P. D.; Lee, S.

    2013-12-01

    The atomic structures of fluid-bearing silicate liquids at high pressure are essential to understand the changes in the melt properties in earth's interior and to yield insights into the deep carbon-hydrogen cycle. Despite the importance, structural changes in silicate liquids (with/without fluid phases) under compression have not been fully understood. The recent breakthroughs in NMR and X-ray Raman scattering (XRS) allowed us to explore the detailed effect of pressure on the degree of melt polymerization and speciation of fluid phases in oxide glasses with varying composition (e.g. Lee, Rev. Min. Geochem. 2013 accepted; Proc. Nat. Aca. Sci. 2011, 108 6847; Kim and Lee, Geochim. Cosmochim Acta. In press; Lee et al. Geophys. Res. Letts. 2012, 39 5306). Here, we present the key recent results of structure of silicate glasses under compression. In contrast to an expected complex composition-dependence in melt-densification, the experimental results of diverse silicate melts demonstrate a simple trend in pressure-induced decreases in non-bridging oxygen content that can be modeled with a narrow range of network flexibility upon compression. NMR results of model basaltic glasses showed that both dynamic and static compression lead to an increase in the fraction of highly coordinated Al: whereas statically compressed basaltic glass at 5 GPa leads to the formation of ~40% [5,6]Al, dynamically compressed basaltic glass at peak pressure of ~ 20 GPa consists only of ~3-4% of [5]Al. The threshold pressure for Al coordination transformation in the basaltic glass upon dynamic compression is estimated to ~ 15 GPa, providing a path-dependent Al-coordination transformation. The first high-resolution 13C MAS NMR spectrum for carbon-bearing enstatite at 1.5 GPa revealed the presence of molecular CO2 in the lattice, providing a new solubility mechanism of carbon into chain silicates. 13C NMR spectra for albite glasses quenched from melts at high pressure up to 6 GPa showed that

  11. Melting phase relations of model carbonated peridotite from 2 to 3 GPa in the system CaO-MgO-Al2O3-SiO2-CO2 and further indication of possible unmixing between carbonatite and silicate liquids

    NASA Astrophysics Data System (ADS)

    Novella, Davide; Keshav, Shantanu; Gudfinnsson, Gudmundur H.; Ghosh, Shaunak

    2014-04-01

    Melting phase relations of model carbonated peridotite in the system CaO-MgO-Al2O3-SiO2-CO2 from 2 to 3 GPa are reported. Experimentally produced melts, which are model carbonatites, with approximately 36-40 wt % CaO, 12-17 wt % MgO, 0.2-1.5 wt % Al2O3, 1-4 wt % SiO2, and 40-42 wt % CO2 (carbon dioxide) are present at all pressures investigated. At 2.8 and 3 GPa, carbonatitic melts are seen experimentally at temperatures that are very close to the vapor-free (CO2) peridotite solidus and are found in equilibrium with forsterite, orthopyroxene, clinopyroxene, and garnet. Solidus phase relations with isobaric and pressure-temperature invariant points, defining the so-called carbonated peridotite solidus ledge, are also reported from 2.1 to 3 GPa. A divariant region exists from 2 to 2.6 GPa wherein two, compositionally different melts are present. In this region, these two melts, carbonatitic and silicate in composition, coexist with crystalline phase assemblage and free vapor. The silicate liquid has approximately 30-48 wt % SiO2 and approximately 6 to 20 wt % of dissolved CO2. The presence of carbonatitic and silicate liquids is interpreted to be due to liquid immiscibility. On the basis of melting phase relations reported here, we conclude that (a) the ledge is a feature along which model carbonatitic liquids are produced by reaction of silicates and CO2 vapor and (b) alkali-free carbonatites and silicate melts can form through melt unmixing at depths of ~60-80 km in the Earth's mantle.

  12. Partial Melting of the Indarch (EH4) Meteorite : A Textural, Chemical and Phase Relations View of Melting and Melt Migration

    NASA Technical Reports Server (NTRS)

    McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.

    2000-01-01

    To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.

  13. Immiscible Fe- and Si-rich silicate melts in plagioclase from the Baima mafic intrusion (SW China): Implications for the origin of bi-modal igneous suites in large igneous provinces

    NASA Astrophysics Data System (ADS)

    Liu, Ping-Ping; Zhou, Mei-Fu; Ren, Zhongyuan; Wang, Christina Yan; Wang, Kun

    2016-09-01

    The Emeishan large igneous province (ELIP) in SW China is characterized by voluminous high-Ti and low-Ti basalts and spatially associated Fe-Ti oxide-bearing mafic-ultramafic and syenitic/granitic intrusions. The Baima layered mafic intrusion in the central part of the ELIP is surrounded by syenitic and granitic rocks and contains a Lower Zone of interlayered Fe-Ti oxide ores, troctolites and clinopyroxenites and an Upper Zone of isotropic olivine gabbros and gabbros (UZa) and apatite gabbros and Fe-Ti-P oxide ores (UZb). Polycrystalline mineral inclusions, for the first time, were observed in primocryst plagioclase from the basal part of the UZa through to the top of the UZb and consist mostly of clinopyroxene, plagioclase, magnetite, ilmenite and apatite with minor orthopyroxene, sulfide and hornblende. These minerals are commonly anhedral and form irregular shapes. Daughter plagioclase usually crystallizes on the walls of host primocryst plagioclase and has An contents typically 3-6 An% lower than the host plagioclase. Daughter clinopyroxene has similar Mg# but lower TiO2 and Al2O3 contents than primocryst clinopyroxene. These polycrystalline mineral inclusions are considered to crystallize from melts contemporaneous with host plagioclase. The compositional differences between daughter and primocryst minerals can be attributed to equilibrium crystallization in a closed system of the trapped melt inclusions in contrast to fractional crystallization and possible magma replenishment in an open system typical for primo-cumulates of large layered intrusions. Heated and homogenized melt inclusions have variable SiO2 (33-52 wt%), CaO (7-20 wt%), TiO2 (0.1-12 wt%), FeOt (5-20 wt%), P2O5 (0.2-10 wt%) and K2O (0-2.2 wt%). The large ranges of melt compositions are interpreted to result from heterogeneous trapping of different proportions of immiscible Si-rich and Fe-Ti-rich silicate liquids, together with entrapment of various microphenocrysts. The separation of micrometer

  14. Crystallisation of magmatic topaz and implications for Nb-Ta-W mineralisation in F-rich silicic melts - The Ary-Bulak ongonite massif

    NASA Astrophysics Data System (ADS)

    Agangi, Andrea; Kamenetsky, Vadim S.; Hofmann, Axel; Przybyłowicz, Wojciech; Vladykin, Nikolay V.

    2014-08-01

    Textural, mineralogical and geochemical data on F-rich rhyolite (ongonite) from the Ary-Bulak massif of eastern Transbaikalia help constrain the formation of magmatic topaz. In these rocks, topaz occurs as phenocrysts, thus providing compelling evidence for crystallisation at the orthomagmatic stage. Cathodoluminescence images of topaz and quartz reveal growth textures with multiple truncation events in single grains, indicative of a dynamic system that shifted from saturated to undersaturated conditions with respect to topaz and quartz. Electron microprobe and Raman analyses of topaz indicate near-pure F composition [Al2SiO4F2], with very limited OH replacement. Laser ablation ICP-MS traverses revealed the presence of a large number of trace elements present at sub-ppm to hundreds of ppm levels. The chemical zoning of topaz records trace element fluctuations in the coexisting melt. Concentrations of some trace elements (Li, Ga, Nb, Ta and W) are correlated with cathodoluminescence intensity, thus suggesting that some of these elements act as CL activators in topaz. The study of melt inclusions indicates that melts with different F contents were trapped at different stages during formation of quartz and topaz phenocrysts, respectively. Electron microprobe analyses of glass in subhedral quartz-hosted melt inclusions indicate F ≤ 1.2 wt.%, whereas irregular-shaped melt inclusions hosted in both topaz and quartz have F ≤ 9 wt.%. Cryolithionite [Na3Li3Al2F12] coexists with glass in irregular inclusions, implying high Li contents in the melt. The very high F contents would have increased the solubility of Nb, Ta and W in the melt, thus allowing progressive concentration of these elements during magma evolution. Crystallisation of Nb-Ta-W-oxides (W-ixiolite and tantalite-columbite) may have been triggered by separation of cryolithionite, which would have caused F and Li depletion and consequent drop in the solubility of these elements.

  15. Initiation of large-volume silicic centers in the Yellowstone hotspot track: insights from H2O- and F-rich quartz-hosted rhyolitic melt inclusions in the Arbon Valley Tuff of the Snake River Plain

    NASA Astrophysics Data System (ADS)

    Drew, Dana L.; Bindeman, Ilya N.; Loewen, Matthew W.; Wallace, Paul J.

    2016-01-01

    During the onset of caldera cluster volcanism at a new location in the Snake River Plain (SRP), there is an increase in basalt fluxing into the crust and diverse silicic volcanic products are generated. The SRP contains abundant and compositionally diverse hot, dry, and often low-δ18O silicic volcanic rocks produced through time during the formation of individual caldera clusters, but more H2O-rich eruptive products are rare. We report analyses of quartz-hosted melt inclusions from pumice clasts from the upper and lower Arbon Valley Tuff (AVT) to gain insight into the initiation of caldera cluster volcanism. The AVT, a voluminous, caldera-forming rhyolite, represents the commencement of volcanism (10.44 Ma) at the Picabo volcanic field of the Yellowstone hotspot track. This is a normal δ18O rhyolite consisting of early and late erupted members (lower and upper AVT, respectively) with extremely radiogenic Sr isotopes and unradiogenic Nd isotopes, requiring that ~50 % of the mass of these elements is derived from melts of Archean upper crust. Our data reveal distinctive features of the early erupted lower AVT melt including: variable F concentrations up to 1.4 wt%, homogenous and low Cl concentrations (~0.08 wt%), H2O contents ranging from 2.3 to 6.4 wt%, CO2 contents ranging from 79 to 410 ppm, and enrichment of incompatible elements compared to the late erupted AVT, subsequent Picabo rhyolites, SRP rhyolites, and melt inclusions from other metaluminous rhyolites (e.g., Bishop Tuff, Mesa Falls Tuff). We couple melt inclusion data with Ti measurements and cathodoluminescence (CL) imaging of the host quartz phenocrysts to elucidate the petrogenetic evolution of the AVT rhyolitic magma. We observe complex and multistage CL zoning patterns, the most critical being multiple truncations indicative of several dissolution-reprecipitation episodes with bright CL cores (higher Ti) and occasional bright CL rims (higher Ti). We interpret the high H2O, F, F/Cl, and

  16. C-O-H ratios of silicate melt inclusions in basalts from the Galapagos Spreading Center near 95 deg W - A laser decrepitation mass spectrometry study

    NASA Technical Reports Server (NTRS)

    Yonover, Robert N.; Sinton, John M.; Gibson, Everett K.; Sommer, Michael A.

    1989-01-01

    Ratios of C, O, and H dissolved in silicate glass inclusions and pillow rind glasses in samples from the Galapagos Spreading Center near 95 deg W were analyzed (using laser volatilization and mass spectrometry), and the data were assessed in terms of mantle source compositions, oxygen fugacity, kinetic fractionation, and magmatic degassing. It was found that glass inclusions in the Galapagos failing rift lavas are higher and more variable in CO2/H2O (about 0.641) relative to inclusions in propagating rift lavas (about 0.245). This difference is considered to reflect different degrees of degassing during contrasting magmatic histories of the two regions.

  17. Spectroscopic properties of Eu3+, Dy3+ and Tb3+ ions in lead silicate glasses obtained by the conventional high-temperature melt-quenching technique

    NASA Astrophysics Data System (ADS)

    Żur, L.; Janek, J.; Sołtys, M.; Pisarska, J.; Pisarski, W. A.

    2013-11-01

    The luminescence properties of selected rare-earth ions in lead silicate glasses have been studied. Europium, dysprosium and terbium ions were chosen as active dopants. Based on excitation and emission measurements as well as luminescence decay analysis, some spectroscopic parameters for these lanthanide ions were determined. In particular, the intensity ratios R/O (Eu3+), Y/B (Dy3+) and G/B (Tb3+) were calculated. Luminescence lifetimes for the 5D0 state of Eu3+ ions, the 4F9/2 state of Dy3+ ions and the 5D4 state of Tb3+ ions were also determined.

  18. Argon and CO 2 on the race track in silicate melts: A tool for the development of a CO 2 speciation and diffusion model

    NASA Astrophysics Data System (ADS)

    Nowak, Marcus; Schreen, Dominik; Spickenbom, Kai

    2004-12-01

    We have analysed the kinetics of Argon and CO 2 diffusion in simplified iron free rhyolitic to hawaiitic melts using the diffusion couple technique. The concentration distance profiles of Ar and CO 2 were measured with electron microprobe analysis and Fourier Transform Infrared Spectroscopy, respectively. Error functions were fitted to the symmetrical concentration distance profiles to extract the diffusion coefficients. In the temperature range 1373 to 1773 K the activation energies for Ar diffusion range from 169 ± 20 to 257 ± 62 kJ mol -1. Ar diffusivity increases exponentially with the degree of depolymerisation. In contrast, the mobility of total CO 2, that is identical to Ar mobility in rhyolitic melt, keeps constant with changing bulk composition from rhyolite to hawaiite. CO 2 speciation at 1623 K and 500 MPa was modeled for the range of compositions studied using the diffusion data of Ar and total CO 2 in combination with network former diffusion calculated from viscosity data. Within error this model is in excellent agreement with CO 2 speciation data extrapolated from temperatures near the glass transition temperature for dacitic melt composition. This model shows that even in highly depolymerised hawaiitic and tholeiitic melts molecular CO 2 is a stable species and contributes 70 to 80% to the total CO 2 diffusion, respectively.

  19. Thermal analysis of reactions in soda-lime silicate glass batches containing melting accelerants: I, one- and two-component systems

    SciTech Connect

    Hong, Kug Sun; Speyer, R.F. )

    1993-03-01

    To identify each glass melting reaction in a multicomponent system, one-component and two-component reaction processes were studied using DTA, TGA, and XRD. Two-component mixtures were prepared by choosing pairs in the same ratio as in a commercial container glass batch composition (sand-soda ash-calcite-dolomite-feldspar). The presence of silica in the silicia-calcite system decreased the termination temperature of the decomposition of calcite, but did not alter the onset of decomposition. Similar behavior was found in the dolomite-silica system. A double carbonate (Na[sub 2]Ca(CO[sub 3])[sub 2]) formed via solid-state reaction in the calcite-soda ash system, and metasilicate/disilicate phases were detected during the fusion process in the soda ash-silica system. The effects of reaction accelerant additions in the soda ash-silica system were investigated using 1 wt% additions of sodium sulfate, sodium nitrate, and sodium chloride. Sodium chloride was the most effective melting accelerant, lowering the termination temperature of CO[sub 2] release by [approximately]80C compared with the soda ash-silica system with no additives. NaCl additions caused complete reaction and/or fusion of Na[sub 2]CO[sub 3] prior to its melting temperature. Sodium sulfate additions acted to suppress metasilicate/disilicate formation by coating quartz grains and shifted consequent CO[sub 2] release to higher temperature.

  20. Multicomponent diffusion in silicate melts: SiO2-TiO2-Al2O3-MgO-CaO-Na2O-K2O System

    NASA Astrophysics Data System (ADS)

    Guo, Chenghuan; Zhang, Youxue

    2016-12-01

    Nine successful diffusion couple experiments were carried out in a 7-component haplobasaltic silicate melt SiO2-TiO2-Al2O3-MgO-CaO-Na2O-K2O system to study multicomponent diffusion at ∼1500 °C and 1 GPa, typically with compositional gradients in only two components in each experiment. At least two concentration traverses were measured for each experiment. Effective binary diffusion coefficients (EBDC) for monotonic profiles were obtained by an error function fit, and the EBDC of a given component is dependent on its counter diffusing component, especially for SiO2. The EBDC's of SiO2 vary from 15.7 μm2/s when diffusing against Al2O3, to 102.9 μm2/s when diffusing against K2O. Furthermore, the multicomponent diffusion matrix was obtained by simultaneously fitting profiles of all oxides in all experiments. Most features in the diffusion profiles, for example uphill diffusion, are captured well by this 6 × 6 diffusion matrix. The slowest diffusing eigenvector is largely due to the exchange between Si and Al, and the fastest diffusing eigenvector is the exchange of Na with all other components. An anorthite dissolution experiment was also conducted to test whether the diffusion matrix can be applied to mineral dissolution experiments. The calculated diffusion profiles in the melt during anorthite dissolution roughly match the measured profiles, demonstrating the validity and utility of the diffusion matrix in this FeO-free aluminosilicate melt system.

  1. Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the western United States: implications for the origin of lithium-rich brines

    USGS Publications Warehouse

    Hofstra, Albert H.; Todorov, T.I.; Mercer, C.N.; Adams, D.T.; Marsh, E.E.

    2013-01-01

    To evaluate whether anatectic and/or highly fractionated lithophile element-enriched rhyolite tuffs deposited in arid lacustrine basins lose enough lithium during eruption, lithification, and weathering to generate significant Li brine resources, pre-eruptive melt compositions, preserved in inclusions, and the magnitude of post-eruptive Li depletions, evident in host rhyolites, were documented at six sites in the western United States. Each rhyolite is a member of the bimodal basalt-rhyolite assemblage associated with extensional tectonics that produced the Basin and Range province and Rio Grande rift, an evolving pattern of closed drainage basins, and geothermal energy or mineral resources. Results from the 0.8 Ma Bishop tuff (geothermal) in California, 1.3 to 1.6 Ma Cerro Toledo and Upper Bandelier tephra (geothermal) and 27.9 Ma Taylor Creek rhyolite (Sn) in New Mexico, 21.7 Ma Spor Mountain tuff (Be, U, F) and 24.6 Ma Pine Grove tuff (Mo) in Utah, and 27.6 Ma Hideaway Park tuff (Mo) in Colorado support the following conclusions. Melt inclusions in quartz phenocrysts from rhyolite tuffs associated with hydrothermal deposits of Sn, Mo, and Be are extremely enriched in Li (1,000s of ppm); those from Spor Mountain have the highest Li abundance yet recorded (max 5,200 ppm, median 3,750 ppm). Forty-five to 98% of the Li present in pre-eruptive magma was lost to the environment from these rhyolite tuffs. The amount of Li lost from the small volumes (1–10 km3) of Li-enriched rhyolite deposited in closed basins is sufficient to produce world-class Li brine resources. After each eruption, meteoric water leaches Li from tuff, which drains into playas, where it is concentrated by evaporation. The localized occurrence of Li-enriched rhyolites may explain why brines in arid lacustrine basins seldom have economic concentrations of Li. Considering that hydrothermal deposits of Sn, Mo, Be, U, and F may indicate potential for Li brines in nearby basins, we surmise that the

  2. Identification and Control of Gravity Related Defect Formation During Melt Growth of Bismuth-Silicate (Bi12SiO20)

    NASA Technical Reports Server (NTRS)

    Zheng, Y.; Witt, A. F.

    1999-01-01

    In the light of strong indications that a majority of critical defects formed in bismuth silicon oxide (BSO) during growth from the melt is related directly or indirectly to gravitational interference, it is suggested to use the reduced gravity environment of outer space for experimentation directed at the identification and control of these defects. The results of these experiments are expected to lead to advances in our understanding of crystal growth related defect formation in general and will establish a basis for effective defect engineering, the approach to efficient achievement of defect related, application specific properties in opto-electronic materials

  3. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  4. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A low noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free ranging subject is described. The electrode comprises a pocket shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member, remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  5. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  6. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA Pocket Statistics is published for the use of NASA managers and their staff. Included herein is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial, and Manpower data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  7. NASA Pocket Statistics

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This booklet of pocket statistics includes the 1996 NASA Major Launch Record, NASA Procurement, Financial, and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Luanch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  8. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid.

    PubMed

    Liu, Xin; Rahaman, Mohamed N; Day, Delbert E

    2013-03-01

    Microfibrous bioactive glasses are showing a considerable capacity to heal soft tissue wounds, but little information is available on the mechanism of healing. In the present study, the conversion of microfibrous borate bioactive glass (diameter = 0.2-5 μm) with the composition designated 13-93B3 (5.5 Na2O, 11.1 K2O, 4.6 MgO, 18.5 CaO, 3.7 P2O5, 56.6 B2O3 wt%) was evaluated in vitro as a function of immersion time in a simulated body fluid (SBF) at 37 °C using structural and chemical techniques. Silicate 45S5glass microfibers (45 SiO2, 24.5 Na2O, 24.5 CaO, 6 P2O5 wt%) were also studied for comparison. Microfibrous 13-93B3 glass degraded almost completely and converted to a calcium phosphate material within 7-14 days in SBF, whereas >85 % of the silica remained in the 45S5 microfibers, forming a silica gel phase. An amorphous calcium phosphate (ACP) product that formed on the 13-93B3 microfibers crystallized at a slower rate to hydroxyapatite (HA) when compared to the ACP that formed on the 45S5 fibers. For immersion times >3 days, the 13-93B3 fibers released a higher concentration of Ca into the SBF than the 45S5 fibers. The fast and more complete degradation, slow crystallization of the ACP product, and higher concentration of dissolved Ca in SBF could contribute to the capacity of the microfibrous borate 13-93B3 glass to heal soft tissue wounds.

  9. An Interconnected Network of Core-Forming Melts Produced by Shear Deformation

    NASA Technical Reports Server (NTRS)

    Bruhn, D.; Groebner, N.; Kohlstedt, D. L.

    2000-01-01

    The formation mechanism of terrestrial planetary is still poorly understood, and has been the subject of numerous experimental studies. Several mechanisms have been proposed by which metal-mainly iron with some nickel-could have been extracted from a silicate mantle to form the core. Most recent models involve gravitational sinking of molten metal or metal sulphide through a partially or fully molten mantle that is often referred to as a'magma ocean. Alternative models invoke percolation of molten metal along an interconnected network (that is, porous flow) through a solid silicate matrix. But experimental studies performed at high pressures have shown that, under hydrostatic conditions, these melts do not form an interconnected network, leading to the widespread assumption that formation of metallic cores requires a magma ocean. In contrast, here we present experiments which demonstrate that shear deformation to large strains can interconnect a significant fraction of initially isolated pockets of metal and metal sulphide melts in a solid matrix of polycrystalline olivine. Therefore, in a dynamic (nonhydrostatic) environment, percolation remains a viable mechanism for the segregation and migration of core-forming melts in a solid silicate mantle.

  10. Experimental determination of carbon partitioning between upper mantle minerals and silicate melts: initial results and comparison to trace element partitioning (Nb, Rb, Ba, U, Th, K)

    NASA Astrophysics Data System (ADS)

    Rosenthal, A.; Hauri, E. H.; Hirschmann, M. M.; Davis, F. A.; Withers, A. C.; Fogel, M. L.

    2012-12-01

    Inventories of C in the mantle and magmatic fluxes of C between the mantle and the Earth's outer envelopes are poorly constrained in part owing to challenges in determining undegassed C concentrations of pristine basalts. Saal et al. [1] proposed that the behavior of Nb could be used as a proxy for C, owing to apparently similar behavior of the two elements in Siqueiros Transform MORB, but higher C/Nb ratios in popping rocks [2] call into question the applicability of the C/Nb proxy. Here, we present experimentally determined carbon partition coefficients (D's) between nominally volatile-free mantle minerals (olivine, OL; orthopyroxene, OPX; clinopyroxene, CPX; garnet, GA) and melts at 0.8-3 GPa, and 1250-1500°C. We conducted piston-cylinder experiments using an olivine-tholeiite + 4 wt% CO2, doped with Nb, Rb, U, Th, and 13C to enhance detection limits. To promote growth of crystals big enough for SIMS analyses, experiments were either long (<6 days), or at an initial higher temperature (T) before cooling slowly to a target T. We also produced SIMS calibration glass standards with varying amounts of C, and subject to ongoing analyses. We analyzed carbon (12C, 13C), H, F, and trace elements (Nb, Rb, Ba, U, Th, K) of both mineral phases and quenched liquids in subsets of experimental runs (21 in graphite-lined Pt-capsules, 6 in Fe-doped Pt-lined capsules) using both Cameca IMS 6F and NanoSIMS instruments. D's measured for 12C and 13C are close to 5x10-4, in most cases D13C>D12C, but a few have the opposite. Continuous exchange of the liquid (initially rich in 13C) with the graphite capsules (rich in 12C) may yield D's with 13C>12C. D's with 12C>13C are likely owing to either low count rates or comparatively high analytical contamination. Concentrations in minerals vary from 0.20-3.46 ppm for C, 25-176 ppm for H2O, and 0.05-1.21 ppm for F, whereas liquids tend to much higher values (C≤0.9 wt%; H2O≤1.5 wt%; F≤34 ppm; P≤0.25 wt%; S≤43 ppm; Cl≤77 ppm

  11. Crystal-Melt Elemental Partitioning in Silicic Magmatic Systems: an Example From the Peach Spring Tuff High-Silica Rhyolite, Southwest USA

    NASA Astrophysics Data System (ADS)

    Padilla, A. J.; Gualda, G. A. R.

    2014-12-01

    Partition coefficients (Kd) are critical in quantitative models of magmatic evolution. High-SiO2 rhyolites (HSR) are characterized by saturation in numerous phases, thus requiring a comprehensive Kd dataset, including both major and accessory minerals. While a large body of published Kd exists, most studies are limited to small suites of elements (e.g. REE) in few (2-3) minerals, using various methods, bulk compositions, and conditions. We use SEM-EDS and LA-ICP-MS analysis to determine crystal rim and unaltered glass compositions in a single sample of Peach Spring Tuff HSR, which reflect equilibration between crystals and melt at or near the time of eruption. We present Kd for 45 elements in 8 minerals: sanidine, plagioclase, biotite, amphibole, titanite, apatite, zircon, and chevkinite. We show that titanite strongly partitions REE from melt, with significant preference for middle (MREE) over light (LREE) and heavy (HREE) REE. Apatite and amphibole share a similar MREE-enriched pattern but with absolute Kd up to ~2 orders of magnitude lower than titanite; while apatite displays a slight preference for LREE over HREE, amphibole shows a higher affinity for HREE than LREE. Zircon strongly partitions HREE, Hf, and U, with little affinity for LREE. Chevkinite concentrates LREE and Th significantly more than any other phase. Biotite Kd are generally <10, the highest being for transition metals and Ba. Both feldspars show strong preference for Sr, Ba, and Eu. We find that our dataset is largely consistent with published studies that use similar (in-situ) techniques and compositions (HSR). We observe a large variation in other studies that we partly attribute to contamination from inclusions, particularly for compositions measured by whole-crystal methods. Our Kd suggest that accessory minerals play a dominant role in partitioning trace elements, and in particular they collectively control the distribution of REE and high field strength elements. Large ion lithophile

  12. Identification and Control of Gravity Related Defect Formation During Melt Growth of Electro-Optic Single Crystals Bismuth Silicate(Bi12SiO20)

    NASA Technical Reports Server (NTRS)

    Becia, Piotr; Wiegel, Michaela E. K.

    2004-01-01

    A research carried out under Award Number NAG8-1487 was aimed at to the design, conduct and analysis of experiments directed at the identification and control of gravitational effects on crystal growth, segregation and defect formation in the Sillenite system: bismuth silicate (Bi(12)SiO(20)). Correlation analyses was conducted in order to establish the influence of gravity related defects introduced during crystal growth on critical, application specific properties. Achievement of the states objective was conducted during the period from Feb. 01, 1998 to Dec. 31, 2003 with the following anticipated milestones: 1. Establishment of capabilities for (a) reproducible Czochralski and Bridgman-type growth of BSO single crystals and (b) for comprehensive analysis of crystalline and chemical defects as well as for selective property characterization of grown crystals (year 1). 2. Design and execution of critical space growth experiment(s) based on analyses of prefatory space results (experiments aimed at establishing the viability of planned approaches and procedures) and on unresolved issues related to growth, segregation and defect formation associated with conventional growth in Bridgman geometries. Comparative analysis of growth under conventional and under mu-g conditions; identification of gravity related defect formation during conventional Bridgman growth and formulation of approaches for their control (years 2 and 3). Development of charge confinement system which permits growth interface demarcation (in a mu-g environment) as well as minimization of confinement related stress and contamination during growth; design of complementary mu-g growth experiments aimed at quantitative mu-g growth and segregation analyses (year 4). 3. Conduct of quantitative mu-g growth experiments directed at: (a) identification and control of gravity related crystalline and chemical defect formation during single crystal growth of Bi(12)SiO(20) and at (b) defect engineering -the

  13. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  14. The corneal pocket assay.

    PubMed

    Ziche, Marina; Morbidelli, Lucia

    2015-01-01

    The cornea in most species is physiologically avascular, and thus this assay allows the measurement of newly formed vessels. The continuous monitoring of neovascular growth in the same animal allows the evaluation of drugs acting as suppressors or stimulators of angiogenesis. Under anesthesia a micropocket is produced in the cornea thickness and the angiogenesis stimulus (tumor tissue, cell suspension, growth factor) is placed into the pocket in order to induce vascular outgrowth from the limbal capillaries. Neovascular development and progression can be modified by the presence of locally released or applied inhibitory factors or by systemic treatments. In this chapter the experimental details of the avascular cornea assay, the technical challenges, and advantages and disadvantages in different species are discussed. Protocols for local drug treatment and tissue sampling for histology and pharmacokinetic profile are reported.

  15. Pocket neutron REM meter

    SciTech Connect

    Quam, W.; Del Duca, T.; Plake, W.; Graves, G.; DeVore, T.; Warren, J.

    1982-01-01

    This paper describes a pocket-calculator-sized, neutron-sensitive, REM-responding personnel dosimeter that uses three tissue-equivalent cylindrical proportional counters as neutron-sensitive detectors. These are conventionally called Linear Energy Transfer (LET) counters. Miniaturized hybrid circuits are used for the linear pulse handling electronics, followed by a 256-channel ADC. A CMOS microprocessor is used to calculate REM exposure from the basic rads-tissue data supplied by the LET counters and also to provide timing and display functions. The instrument is used to continuously accumulate time in hours since reset, total counts accumulated, rads-tissue, and REM. At any time the user can display any one of these items or a channel number (an aid in calibration). The instrument provides such data with a precision of +- 3% for a total exposure of 1 mREM over 8 hours.

  16. Pocket neutron REM meter

    SciTech Connect

    Quam, W.; Del Duca, T.; Plake, W.; Graves, G.; DeVore, T.; Warren, J.

    1982-01-01

    This paper describes a pocket-calculator-sized, neutron-sensitive, REM-responding personnel dosimeter that uses three tissue-equivalent cylindrical proportional counters as neutron-sensitive detectors. These are conventionally called Linear Energy Transfer (LET) counters. Miniaturized hybrid circuits are used for the linear pulse handling electronics, followed by a 256-channel ADC. A CMOS microprocessor is used to calculate REM exposure from the basic rads-tissue data supplied by the LET counters and also to provide timing and display functions. The instrument is used to continuously accumulate time in hours since reset, total counts accumulated, rads-tissue, and REM. The user can display any one of these items or a channel number (an aid in calibration) at any time. Such data are provided with a precision of +- 3% for a total exposure of 1 mREM over eight hours.

  17. Sulfide and silicate melt inclusions in the D. João de Castro Volcanic Seamount, a hydrothermally active area on the Terceira Rift, Azores

    NASA Astrophysics Data System (ADS)

    Marques, A. F. A.; Scott, S. D.; Madureira, P.; Rosa, C. J. P.; Lourenço, N.; Conceição, P.; TerRiftic Team

    2012-04-01

    The Azores plateau is a bathymetric high located in the North Atlantic encompassing a triple junction where the American, Eurasia and African plates meet. The Terceira Rift (TR), within the plateau, defines the Eurasia/African plate boundary and corresponds to a 550 Km long, ESE trending line of volcanic islands and seamounts (e.g. D. João de Castro - DJC) alternating with deep basins (e.g. Hirondelle - HIR) [1, 2]. Fresh basalts from the TR, in particular the DJC and HIR areas, were sampled from 2007 to 2009 [EMEPC 2007/2008/2009 cruises]. The team is now studying their melt inclusions [MI] in order to understand processes of magma evolution and mixing as well as the behavior of trace metals and volatiles in the pre-erupted magmas. Petrographic observations indicate that in DJC and HIR, basalts are porphyritic, vesicular, with a microcrystalline groundmass composed mostly of plagioclase laths ± olivine ± clinopyroxene ± skeletal Fe-Ti oxides ± glass. Phenocrysts are subhedral to euhedral with corroded rims. Clinopyroxene (aluminian diopside) is the main phenocryst phase, followed by olivine (Fo83 - DJC; Fo80 - HIR) and minor plagioclase (often as microphenocrysts). Incompatible trace elements in groundmass, glass, and exposed MI in clinopyroxene depict enriched patterns above the OIB field. REE patterns are similar in the groundmass and glass from DJC and HIR. Exposed MI from HIR depicts less enriched REE patterns than the groundmass, whilst DJC MI show similar REE patterns to the groundmass. MI were found in most mineral phases studied. They are distributed randomly (azonal) and appear glassy, partially devitrified or completely opaque with one or more vapor bubbles. Glassy to devitrified MI may show interpenetrating arrays of mineral phases, skeletal Fe-Ti oxides, and included euhedral Cr-spinel. Sulfide globules are common in clinopyroxene-hosted MI and are dispersed within the groundmass. Globules are small, less than 10 μm, and contain distinct mineral

  18. Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion

    NASA Astrophysics Data System (ADS)

    Jakobsen, J. K.; Veksler, I. V.; Tegner, C.; Brooks, C. K.

    2005-11-01

    Silicate liquid immiscibility in basalt petrogenesis is a contentious issue. Immiscible iron- and silica-rich liquids were reported in melt inclusions of lunar basalt and in groundmass glasses of terrestrial volcanics. In fully crystallized plutonic rocks, however, silicate liquid immiscibility has yet to be proven. Here we report the first finding of natural, immiscible iron- and silica-rich melts in a plutonic environment documented in the Skaergaard intrusion, East Greenland. Primary melt inclusions (now finely crystallized) in apatite are either dark or light colored. The predominant dark colored type contains 30.9 ± 4.2 wt% FeOt and 40.7 ± 3.6 wt% SiO2, whereas the light colored type contains 8.6 ± 5.9 wt% FeOt and 65.6 ± 7.3 wt% SiO2. Similar light colored melt inclusions in olivine and fine-grained dark and light colored interstitial pockets also give evidence of crystallization from emulsion of silica and iron-rich liquids. On the outcrop scale, silica-rich (melanogranophyre) pods and layers in iron-rich ferrodiorite of the Upper Zone of the Skaergaard intrusion witness segregation of the two liquids. These findings demand that silicate immiscibility is considered in basalt petrogenesis. Some granitic rocks may represent unmixed silica-rich melt, whereas the dense, iron-rich melt is likely to sink in the crust and could mix with hot mantle-derived magma to form unusual rocks, like ferropicrites, otherwise interpreted as products of heterogeneous mantle sources.

  19. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions

    SciTech Connect

    Shi, Crystal Y.; Zhang, Li; Yang, Wenge; Liu, Yijin; Wang, Junyue; Meng, Yue; Andrews, Joy C.; Mao, Wendy L.

    2013-10-06

    Core formation represents the most significant differentiation event in Earth’s history. Our planet’s present layered structure with a metallic core and an overlying mantle implies that there must be a mechanism to separate iron alloy from silicates in the initially accreted material. At upper mantle conditions, percolation has been ruled out as an efficient mechanism because of the tendency of molten iron to form isolated pockets at these pressures and temperatures. Here we present experimental evidence of a liquid iron alloy forming an interconnected melt network within a silicate perovskite matrix under pressure and temperature conditions of the Earth’s lower mantle. Using nanoscale synchrotron X-ray computed tomography, we image a marked transition in the shape of the iron-rich melt in three-dimensional reconstructions of samples prepared at varying pressures and temperatures using a laser-heated diamond-anvil cell. We find that, as the pressure increases from 25 to 64GPa, the iron distribution changes from isolated pockets to an interconnected network. Our results indicate that percolation could be a viable mechanism of core formation at Earth’s lower mantle conditions.

  20. Million-year melt-presence in monotonous intermediate magma for a volcanic-plutonic assemblage in the Central Andes: Contrasting histories of crystal-rich and crystal-poor super-sized silicic magmas

    NASA Astrophysics Data System (ADS)

    Kaiser, Jason F.; de Silva, Shanaka; Schmitt, Axel K.; Economos, Rita; Sunagua, Mayel

    2017-01-01

    crystallized as a granodiorite pluton which was sampled as xenoliths in much later volcanic events. Over the ∼1.1 Ma zircon crystallization history for the PGI, postcaldera lavas and xenoliths, the melt remained in an ∼100-150 °C temperature window as indicated by Ti-in-zircon thermometry. Although chemical trends are consistent with zircon crystallization at variable temperatures, there is no secular cooling, but rather a thermal rejuvenation following the 2.89 Ma PGI eruption. As such these data provide a "low and slow" temporal constraint for models for the pre-eruptive lifetimes of mushy magma in contrast to the "rapid" mobilization of crystal-poor silicic magmas, consistent with a model where the latter are incubated within the former and extracted rapidly prior to eruption. The thermal and chemical monotony of crystal-rich dacites throughout a caldera cycle connotes conditions where near-eutectic melt can be maintained in near-surface magma reservoirs for an extended period of time if the subvolcanic magma reservoir is sufficiently large so that hotter and initially zircon-undersaturated magma can replenish shallow magma vented in a supereruption.

  1. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    , the co-ion exchange strengthens the polymer/silicate interface and ensures irreversible separation of the silicate layers. One way in which it does this is to essentially tether one amine of each diamine molecule to a silicate surface, leaving the second amine free for reaction with monomers during the synthesis of a polymer. In addition, the incorporation of alkyl ammonium ions into the galleries at low concentration helps to keep low the melt viscosity of the oligomer formed during synthesis of the polymer and associated processing - a consideration that is particularly important in the case of a highly cross-linked, thermosetting polymer. Because of the chemical bonding between the surface-modifying amines and the monomers, even when the alkyl ammonium ions become degraded at high processing temperature, the silicate layers do not aggregate and, hence, nanometer-level dispersion is maintained.

  2. Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation

    NASA Astrophysics Data System (ADS)

    Potts, Nicola J.; TartèSe, Romain; Anand, Mahesh; Westrenen, Wim; Griffiths, Alexandra A.; Barrett, Thomas J.; Franchi, Ian A.

    2016-09-01

    Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile-bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk-rock basaltic composition and that of bulk-mesostasis regions, indicating that bulk-rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late-stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite-melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts.

  3. Silicate liquid-carbonatite liquid transition along the melting curve of model, vapor-saturated peridotite in the system CaO-MgO-Al2O3-SiO2-CO2 from 1.1 to 2 GPa

    NASA Astrophysics Data System (ADS)

    Keshav, Shantanu; Gudfinnsson, Gudmundur H.

    2013-07-01

    phase relations of carbon dioxide-saturated (CO2 vapor) model peridotite in the system CaO-MgO-Al2O3-SiO2-CO2 in the 1.1-2.1 GPa pressure range are reported. The solidus has a positive slope in pressure-temperature (PT) space from 1.1 to 2 GPa. Between 2 and 2.1 GPa, the melting curve changes to a negative slope. From 1.1 to 1.9 GPa, the liquid, best described as CO2-bearing silicate liquid, is in equilibrium with forsterite, orthopyroxene, clinopyroxene, spinel, and vapor. At 2 GPa, the same crystalline phase assemblage plus vapor is in equilibrium with two liquids, which are silicate and carbonatitic in composition, making the solidus at 2 GPa PT invariant. The presence of two liquids is interpreted as being due to liquid immiscibility. Melting reactions written over 1.1-1.9 GPa are peritectic, with forsterite being produced upon melting, and the liquid is silicate in composition. Upon melting at 2.1 GPa, orthopyroxene is produced, and the liquid is carbonatitic in composition. Hence, the invariance between 1.9 and 2.1 GPa is not only the reason for the dramatic change in the liquid composition over an interval of 0.2 GPa, but the carbonated peridotite solidus ledge itself most likely appears because of this PT invariance. It is suggested that because carbonatitic liquid is produced at the highest solidus temperature at 2 GPa in PT space in the system studied, such liquids, in principle, can erupt through liquid immiscibility, as near-primary magmas from depths of approximately 60 km.

  4. Heat Capacity of Hydrous Silicate Melts

    NASA Astrophysics Data System (ADS)

    Robert, G.; Whittington, A. G.; Stechern, A.; Behrens, H.

    2015-12-01

    We determined the heat capacities of four series of glasses and liquids of basaltic and basaltic andesite compositions including two natural remelts from Fuego volcano, Guatemala, and two Fe-free analogs. The samples are low-alkali, Ca- and Mg-rich aluminosilicates with non-bridging oxygen to tetrahedrally-coordinated cation ratios (NBO/T) ranging between 0.33 and 0.67. Differential scanning calorimetry measurements were performed at atmospheric pressure between room temperature and ≈100 K above the glass transition for hydrous samples and up to ≈1800 K for dry samples. The water contents investigated range up to 5.34 wt.% (16.4 mol%). Water does not measurably affect the heat capacity of glasses (T

  5. Tailoring polymer properties with layered silicates

    NASA Astrophysics Data System (ADS)

    Xu, Liang

    Polymer layered silicate nanocomposites have found widespread applications in areas such as plastics, oil and gas production, biomedical, automotive and information storage, but their successful commercialization critically depends on consistent control over issues such as complete dispersion of layered silicate into the host polymer and optimal interaction between the layered silicates and the polymers. Polypropylene is a commercially important polymer but usually forms intercalated structures with organically modified layered silicate upon mixing, even it is pre-treated with compatibilizing agent such as maleic anhydride. In this work, layered silicate is well dispersed in ammonium modified polypropylene but does not provide sufficient reinforcement to the host polymer due to poor interactions. On the other hand, interactions between maleic anhydride modified polypropylene and layered silicate are fine tuned by using a small amount of maleic anhydride and mechanical strength of the resultant nanocomposites are significantly enhanced. In particular, the melt rheological properties of layered silicate nanocomposites with maleic anhydride functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the maleic anhydride treated polypropylene based nanocomposites exhibit solid-like linear dynamic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized polypropylene based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interaction in maleic anhydride functionalized nanocomposites, which facilitates formation of a long-lived silicate network mediated by physisorbed polymer chains. Further, the transient shear stress of the maleic anhydride functionalized nanocomposites in start-up of steady shear is a function of the shear

  6. Melt inclusions: Chapter 6

    USGS Publications Warehouse

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  7. The distribution of chromium among orthopyroxene, spinel and silicate liquid at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Barnes, S. J.

    1986-01-01

    The Cr distributions for a synthetic silicate melt equilibrated with bronzitic orthopyroxene and chromite spinel between 1334 and 1151 C over a range of oxygen fugacities between the nickel-nickel oxide and iron-wuestite buffers are studied. The occurrence, chemical composition, and structure of the orthopyroxene-silicate melt and the spinel-silicate melt are described. It is observed that the Cr content between bronzite and the melt increases with falling temperature along a given oxygen buffer and decreases with falling oxygen fugacity at a given temperature; however, the Cr content of the melt in equilibrium with spinel decreases with falling temperature and increases with lower oxygen fugacity.

  8. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  9. Hydrophobic pocket targeting probes for enteroviruses

    NASA Astrophysics Data System (ADS)

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-10-01

    Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours onwards. Remarkably, before and during the time of replication, the fluorescent probe was seen to leak from the virus-positive endosomes and thus separate from the capsid proteins that were left in the endosomes. These results suggest that, like the physiological hydrophobic content

  10. High chloride content calcium silicate glasses.

    PubMed

    Chen, Xiaojing; Karpukhina, Natalia; Brauer, Delia S; Hill, Robert G

    2017-03-08

    Chloride is known to volatilize from silicate glass melts and until now, only a limited number of studies on oxychloride silicate glasses have been reported. In this paper we have synthesized silicate glasses that retain large amounts of CaCl2. The CaCl2 has been added to the calcium metasilicate composition (CaO·SiO2). Glasses were produced via a melt quench route and an average of 70% of the chloride was retained after melting. Up to 31.6 mol% CaCl2 has been successfully incorporated into these silicate glasses without the occurrence of crystallization. (29)Si MAS-NMR spectra showed the silicon being present mainly as a Q(2) silicate species. This suggests that chloride formed Cl-Ca(n) species, rather than Si-Cl bonds. Upon increasing the CaCl2 content, the Tg reduced markedly from 782 °C to 370 °C. Glass density and glass crystallization temperature decreased linearly with an increase in the CaCl2 content. However, both linear regressions revealed a breakpoint at a CaCl2 content just below 20 mol%. This might be attributed to a significant change in the structure and is also correlated with the nature of the crystallizing phases formed upon heat treatment. The glasses with less than 19.2 mol% CaCl2 crystallized to wollastonite, whilst the compositions with CaCl2 content equal to or greater than 19.2 mol% are thought to crystallize to CaCl2. In practice, the crystallization of CaCl2 could not occur until the crystallization temperature fell below the melting point of CaCl2. The implications of the results along with the high chloride retention are discussed.

  11. NASA Pocket Statistics: 1997 Edition

    NASA Technical Reports Server (NTRS)

    1997-01-01

    POCKET STATISTICS is published by the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA). Included in each edition is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, Aeronautics and Space Transportation and NASA Procurement, Financial and Workforce data. The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. All Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

  12. Biodegradable Polyester/Layered Silicate Nanocomposites

    DTIC Science & Technology

    2003-01-01

    compatible with the polymer [5-9]. In this paper we report the synthesis and properties of both PLA and PHB nanocomposites with different nanoclays...hydroxy polyester, polylactide (PLA) and fl-hydroxy polyester, polyhydroxybutyrate ( PHB ) with layered silicates have been successfully prepared by melt...extrusion of PLA and PHB with organically modified montmorillonite (MMT) and fluoromica. The mechanical properties of the nanocomposites are improved

  13. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-01-01

    Silicate inclusions in iron meteorites display an astonishing chemical and mineralogical variety, ranging from chondritic to highly fractionated, silica- and alkali-rich assemblages. In spite of this, their origin is commonly considered to be a simple one: mixing of silicates, fractionated or unfractionated, with metal. The latter had to be liquid in order to accommodate the former in a pore-free way which all models accomplish by assuming shock melting. II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions, including some chemically strongly fractionated ones. They also pose a formidable conundrum: young silicates are enclosed by very old metal. This and many other incompatibilities between models and reality forced the formulation of an alternative genetic model for irons. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  14. Evolution of carbonated melt to alkali basalt in the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Liang; Chen, Li-Hui; Jackson, Matthew G.; Hofmann, Albrecht W.

    2017-01-01

    CO2 is considered to play a key role in the melting of the deep upper mantle, and carbonated silicate melts have been widely predicted by partial melting experiments to exist at mantle depths of greater than 80 km. However, such melts have not been shown to exist in nature. Thus, the relationship between CO2 and the origin of silicate melts is highly speculative. Here we present geochemical analyses of rocks sampled from the South China Sea, at the Integrated Ocean Discovery Program Site U1431. We identify natural carbonated silicate melts, which are enriched in light rare earth elements and depleted in Nb and Ta, and show that they were continuously transformed to alkali basalts that are less enriched in light rare earth elements and enriched in Nb and Ta. This shows that carbonated silicate melts can survive in the shallow mantle and penetrate through the hot asthenosphere. Carbonated silicate melts were converted to alkali basaltic melts through reactions with the lithospheric mantle, during which precipitation of apatite accounts for reduction of light rare earth elements and genesis of positive Nb-Ta anomalies. We propose that an extremely thin lithosphere (less than 20 km in the South China Sea) facilitates extrusion of the carbonated silicate melts, whereas a thickened lithosphere tends to modify carbonated silicate melt to alkali basalt.

  15. Martian regolith in Elephant Moraine 79001 shock melts? Evidence from major element composition and sulfur speciation

    NASA Astrophysics Data System (ADS)

    Walton, E. L.; Jugo, P. J.; Herd, C. D. K.; Wilke, M.

    2010-08-01

    Shock veins and melt pockets in Lithology A of Martian meteorite Elephant Moraine (EETA) 79001 have been investigated using electron microprobe (EM) analysis, petrography and X-ray Absorption Near Edge Structure (XANES) spectroscopy to determine elemental abundances and sulfur speciation (S 2- versus S 6+). The results constrain the materials that melted to form the shock glasses and identify the source of their high sulfur abundances. The XANES spectra for EETA79001 glasses show a sharp peak at 2.471 keV characteristic of crystalline sulfides and a broad peak centered at 2.477 keV similar to that obtained for sulfide-saturated glass standards analyzed in this study. Sulfate peaks at 2.482 keV were not observed. Bulk compositions of EETA79001 shock melts were estimated by averaging defocused EM analyses. Vein and melt pocket glasses are enriched in Al, Ca, Na and S, and depleted in Fe, Mg and Cr compared to the whole rock. Petrographic observations show preferential melting and mobilization of plagioclase and pyrrhotite associated with melt pocket and vein margins, contributing to the enrichments. Estimates of shock melt bulk compositions obtained from glass analyses are biased towards Fe- and Mg- depletions because, in general, basaltic melts produced from groundmass minerals (plagioclase and clinopyroxene) will quench to a glass, whereas ultramafic melts produced from olivine and low-Ca pyroxene megacrysts crystallize during the quench. We also note that the bulk composition of the shock melt pocket cannot be determined from the average composition of the glass but must also include the crystals that grew from the melt - pyroxene (En 72-75Fs 20-21Wo 5-7) and olivine (Fo 75-80). Reconstruction of glass + crystal analyses gives a bulk composition for the melt pocket that approaches that of lithology A of the meteorite, reflecting bulk melting of everything except xenolith chromite. Our results show that EETA79001 shock veins and melt pockets represent local mineral

  16. Mantle melts, metasomatism and diamond formation: Insights from melt inclusions in xenoliths from Diavik, Slave Craton

    NASA Astrophysics Data System (ADS)

    Araújo, D. P.; Griffin, W. L.; O'Reilly, S. Y.

    2009-11-01

    Abundant carbonatitic to ultramafic melt inclusions 0.2-2.5mm in diameter occur in the Cr-diopside of megacrystalline lherzolite xenoliths from the A154 kimberlite of the Diavik mine, Lac de Gras area. The melts range from carbonatitic (50-97% carbonate) to Ca-Mg-silicic (10-50% carbonate) to Mg-silicic (< 10% dispersed calcite) compositions, and are connected by veinlets of similar material, or by fractures bordered by spongy Cr-diopside. Phenocrysts and quench crystals of calcite, olivine and mica are set in carbonatitic to Mg-silicic matrices, and irregular volumes of carbonatite and Mg-silicate melt appear to have unmixed from one another within single inclusions. Calculated bulk compositions of the more silicic melts are similar in major- and trace elements to kimberlites from the Slave province. The Cr-diopside adjacent to melt inclusions is enriched in LREE, Ba, alkali elements, HFSE, Th and U. Calculated compositions of the metasomatising fluids are strongly enriched in these elements relative to the trapped melts, and are similar to fluids trapped in the opaque coats found on many Diavik diamonds. The microstructures, the metasomatic effects and the genetic relationship to diamond formation suggest that the melt inclusions formed when kimberlite-like melts penetrated the lherzolites along fractures deep in the lithospheric mantle. The melts began to differentiate into carbonatitic and ultramafic end-members, were trapped as globular inclusions during recrystallisation and necking-down prior to entrainment of the xenoliths in the kimberlite, and were quenched during ascent. The evolution of saline, water- and carbonate-rich fluids from melts such as these may play an important role in diamond genesis.

  17. Melt inclusions in Luna 24 soil fragments

    NASA Technical Reports Server (NTRS)

    Roedder, W.; Weiblen, P. W.

    1978-01-01

    Optical examinations of 28 slides of Luna 24 soil fragments revealed melt inclusions in grains of olivine, plagioclase, spinel, and ilmenite as well as interstitial inclusions. In contrast with Apollo samples, the Luna 24 samples contain sulfide melt inclusions, which indicates that saturation with respect to an iron sulfide melt took place throughout much of the crystallization history, even while olivine was crystallizing. The Luna 24 silicate-melt inclusions have recorded a more extensive differentiation toward higher iron magmas than have the Apollo inclusions, but they have also recorded some inexplicably low aluminum values.

  18. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  19. Identifying the crystal graveyards remaining after large silicic eruptions

    NASA Astrophysics Data System (ADS)

    Gelman, Sarah E.; Deering, Chad D.; Bachmann, Olivier; Huber, Christian; Gutiérrez, Francisco J.

    2014-10-01

    The formation of crystal-poor high-silica rhyolite via extraction of interstitial melt from an upper crustal mush predicts the complementary formation of large amounts of (typically unerupted) silicic cumulates. However, identification of these cumulates remains controversial. One hindrance to our ability to identify them is a lack of clear predictions for complementary chemical signatures between extracted melts and their residues. To address this discrepancy, we present a generalized geochemical model tracking the evolution of trace elements in a magma reservoir concurrently experiencing crystallization and extraction of interstitial melt. Our method uses a numerical solution rather than analytical, thereby allowing for various dependencies between crystallinity, partition coefficients for variably compatible and/or incompatible elements, and melt extraction efficiency. Results reveal unambiguous fractionation signatures for the extracted melts, while those signatures are muted for their cumulate counterparts. Our model is first applied to a well-constrained example (Searchlight pluton, USA), and provides a good fit to geochemical data. We then extrapolate our results to understanding the relationship between volcanic and plutonic silicic suites on a global scale. Utilizing the NAVDAT database to identify crystal accumulation or depletion signatures for each suite, we suggest that many large granitoids are indeed silicic cumulates, although their crystal accumulation signature is expected to be subtle.

  20. Density and seismic velocity of hydrous melts under crustal and upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Ueki, Kenta; Iwamori, Hikaru

    2016-05-01

    We present a new model for calculating the density of hydrous silicate melts as a function of P, T, H2O concentration, and melt composition. We optimize VPr,Tr, ∂V/∂T, ∂V/∂P, ∂V2/∂T∂P, and K' of H2O end-member components in hydrous silicate melts, as well as K' of anhydrous silicate melts, using previously reported experimental results. The parameter set for H2O end-member component in silicate melt optimized in this study is internally consistent with the parameter values for the properties of anhydrous silicate melt reported by Lange and Carmichael (1987, 1990). The model calculation developed in this study reproduces the experimentally determined densities of various hydrous melts, and can be used to calculate the relationships between pressures, temperatures, and H2O concentrations of various hydrous melts from ultramafic to felsic compositions at pressures of 0-4.29 GPa. Using the new parameter set, we investigate the effects of H2O content on the seismic velocity of hydrous melts, as well as seismic velocities in partially molten regions of subduction zones. The results show that water content in silicate melt plays a key role in determining seismic velocity structure, and therefore must be taken into account when interpreting seismic tomography.

  1. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  2. Oceanic slab melting and mantle metasomatism.

    PubMed

    Scaillet, B; Prouteau, G

    2001-01-01

    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (< 50 Ma) subducted plates. Slab melts are silicic and strongly sodic (trondhjemitic). They are produced at low temperatures (< 1000 degrees C) and under water excess conditions. Their interaction with mantle peridotite produces hydrous metasomatic phases such as amphibole and phlogopite that can be more or less sodium rich. Upon interaction the slab melt becomes less silicic (dacitic to andesitic), and Mg, Ni and Cr richer. Virtually all exposed slab melts display geochemical evidence of ingestion of mantle material. Modern slab melts are thus unlike Archean Trondhjemite-Tonalite-Granodiorite rocks (TTG), which suggests that both types of magmas were generated via different petrogenetic pathways which may imply an Archean tectonic model of crust production different from that of the present-day, subduction-related, one.

  3. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  4. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  5. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  6. Solubilities of nitrogen and noble gases in basalt melt

    NASA Technical Reports Server (NTRS)

    Miyazaki, A.; Hiyagon, H.; Sugiura, N.

    1994-01-01

    Nitrogen and noble gases are important tracers in geochemistry and chosmochemistry. Compared to noble gases, however, physicochemical properties of nitrogen, such as solubility in melt or melt/silicate partition, are not well known. Solubility of nitrogen in basalt melt depends on redox condition of the atmosphere. For example, solubility of nitrogen in E chondrite melt under reducing conditions is as high as 2 mol percent at 1500 C, suggesting that nitrogen is chemically dissolved in silicate melts, i.e., being dissolved as free anions or replacing oxygen sites in silicate network. However, the solubility and the dissolution mechanism of nitrogen under oxidizing conditions are not well investigated. To obtain nitrogen solubility in silicate melts under various redox conditions and to understand its mechanism, we are conducting experiments by using (15)N(15)N-labeled nitrogen gas. This makes it easy to distinguish dissolved nitrogen from later contamination of atmospheric nitrogen, and hence enables us to measure the nitrogen solubility accurately. As a preliminary experiment, we have measured solubility of nitrogen in basalt melt under the atmospheric oxygen pressure.

  7. Origin of silicic magma in Iceland revealed by Th isotopes

    SciTech Connect

    Sigmarsson, O.; Condomines, M. ); Hemond, C. ); Fourcade, S. ); Oskarsson, N. )

    1991-06-01

    Th, Sr, Nd, and O isotopes have been determined in a suite of volcanic rocks from Hekla and in a few samples from Askja and Krafla volcanic centers in Iceland. Although {sup 87}Sr/{sup 86}Sr and {sup 143}Nd/{sup 144}Nd ratios are nearly the same for all compositions at Hekla, the ({sup 230}Th/{sup 232}Th) ratios differ and thus clearly show that the silicic rocks cannot be derived from fractional crystallization of a more primitive magma. Similar results are obtained for the Krafla and Askja volcanic centers, where the {delta}{sup 18}O values are much lower in the silicic magma than in the mafic magma. These data suggest that large volumes of silicic rocks in central volcanoes of the neovolcanic zones in Iceland are produced by partial melting of the underlying crust.

  8. Evaluation of the turbine pocket spirometer.

    PubMed Central

    Gunawardena, K A; Houston, K; Smith, A P

    1987-01-01

    A compact electronic spirometer, the turbine pocket spirometer, which measures the FEV1, forced vital capacity (FVC), and peak expiratory flow (PEF) in a single expiration, was compared with the Vitalograph and the Wright peak flow meter in 99 subjects (FEV1 range 0.40-5.50 litres; FVC 0.58-6.48 l; PEF 40-650 l min-1). The mean differences between the machines were small--0.05 l for FEV1, 0.05 l for FVC, and 11.6 l min-1 for PEF, with the limits of agreement at +/- 0.25 l, +/- 0.48 l, and +/- 52.2 l min-1 respectively. The wide limits of agreement for the PEF comparison were probably because of the difference in the technique of blowing: a fast, long blow was used for the pocket spirometer and a short, sharp one for the Wright peak flow meter. The FEV1 and FVC showed a proportional bias of around 4-5% in favour of the Vitalograph. The repeatability coefficient for the pocket spirometer FEV1 was 0.18 l, for FVC 0.22 l, and for PEF 31 l min-1. These compared well with the repeatability coefficients of the Vitalograph and the Wright peak flow meter, which gave values of 0.18 l, 0.28 l, and 27 l min-1 respectively. At flow rates of over 600 l min-1 the resistance of the pocket spirometer marginally exceeded the American Thoracic Society recommendations. The machine is easy to operate and portable, and less expensive than the Vitalograph and Wright peak flow meter combined. It can be recommended for general use. Images PMID:3686460

  9. The Apollo 17 pocket mouse experiment (Biocore)

    NASA Technical Reports Server (NTRS)

    Haymaker, W.; Look, B. C.; Benton, E. V.; Simmonds, R. C.

    1975-01-01

    Results are presented of the Biocore experiment which attempted to assess the degree to which exposure to cosmic ray particle radiation might present a risk to astronauts. Pocket mice, with plastic dosimeters implanted beneath the scalp were flown in a sealed canister. The objective was to determine whether microscopically visible lesions attributable to particle radiation, could be found in brain, eye, and other tissues in these animals. The need for further study is demonstrated.

  10. Simplicity in melt densification in multicomponent magmatic reservoirs in Earth’s interior revealed by multinuclear magnetic resonance

    PubMed Central

    Lee, Sung Keun

    2011-01-01

    Pressure-induced changes in properties of multicomponent silicate melts in magma oceans controlled chemical differentiation of the silicate earth and the composition of partial melts that might have formed hidden reservoirs. Although melt properties show complex pressure dependences, the melt structures at high pressure and the atomistic origins of these changes are largely unknown because of their complex pressure–composition dependence, intrinsic to multicomponent magmatic melts. Chemical constraints such as the nonbridging oxygen (NBO) content at 1 atm, rather than the structural parameters for melt polymerization, are commonly used to account for pressure-induced changes in the melt properties. Here, we show that the pressure-induced NBO fraction in diverse silicate melts show a simple and general trend where all the reported experimental NBO fractions at high pressure converge into a single decaying function. The pressure-induced changes in the NBO fraction account for and predict the silica content, nonlinear variations in entropy, and the transport properties of silicate melts in Earth’s mantle. The melt properties at high pressure are largely different from what can be predicted for silicate melts with a fixed NBO fraction at 1 atm. The current results with simplicity in melt polymerization at high pressure provide a molecular link to the chemical differentiation, possibly missing Si content in primary mantle through formation of hidden Si-rich mantle reservoirs.

  11. Surface-Based Protein Binding Pocket Similarity

    PubMed Central

    Spitzer, Russell; Cleves, Ann E.; Jain, Ajay N.

    2011-01-01

    Protein similarity comparisons may be made on a local or global basis and may consider sequence information or differing levels of structural information. We present a local 3D method that compares protein binding site surfaces in full atomic detail. The approach is based on the morphological similarity method which has been widely applied for global comparison of small molecules. We apply the method to all-by-all comparisons two sets of human protein kinases, a very diverse set of ATP-bound proteins from multiple species, and three heterogeneous benchmark protein binding site data sets. Cases of disagreement between sequence-based similarity and binding site similarity yield informative examples. Where sequence similarity is very low, high pocket similarity can reliably identify important binding motifs. Where sequence similarity is very high, significant differences in pocket similarity are related to ligand binding specificity and similarity. Local protein binding pocket similarity provides qualitatively complementary information to other approaches, and it can yield quantitative information in support of functional annotation. PMID:21769944

  12. Impact melting of the largest known enstatite meteorite: Al Haggounia 001, a fossil EL chondrite

    NASA Astrophysics Data System (ADS)

    Rubin, Alan E.

    2016-09-01

    Al Haggounia 001 and paired specimens (including Northwest Africa [NWA] 2828 and 7401) are part of a vesicular, incompletely melted, EL chondrite impact melt rock with a mass of ~3 metric tons. The meteorite exhibits numerous shock effects including (1) development of undulose to weak mosaic extinction in low-Ca pyroxene; (2) dispersion of metal-sulfide blebs within silicates causing "darkening"; (3) incomplete impact melting wherein some relict chondrules survived; (4) vaporization of troilite, resulting in S2 bubbles that infused the melt; (5) formation of immiscible silicate and metal-sulfide melts; (6) shock-induced transportation of the metal-sulfide melt to distances >10 cm (7) partial resorption of relict chondrules and coarse silicate grains by the surrounding silicate melt; (8) crystallization of enstatite in the matrix and as overgrowths on relict silicate grains and relict chondrules; (9) crystallization of plagioclase from the melt; and (10) quenching of the vesicular silicate melt. The vesicular samples lost almost all of their metal during the shock event and were less susceptible to terrestrial weathering; in contrast, the samples in which the metal melt accumulated became severely weathered. Literature data indicate the meteorite fell ~23,000 yr ago; numerous secondary phases formed during weathering. Both impact melting and weathering altered the meteorite's bulk chemical composition: e.g., impact melting and loss of a metal-sulfide melt from NWA 2828 is responsible for bulk depletions in common siderophile elements and in Mn (from alabandite); weathering of oldhamite caused depletions in many rare earth elements; the growth of secondary phases caused enrichments in alkalis, Ga, As, Se, and Au.

  13. Activity composition relationships in silicate melts: Annual performance report

    SciTech Connect

    Glazner, A.F.

    1987-01-01

    Work performed during the first two years of this project includes construction of furnace laboratory and calibration of instruments, installation of an electron microprobe, and determination of phase equilibria along a basalt-rhyolite mixing line. This latter study comprises the bulk of work performed to date. We completed approximately 100 experiments on the one-atmosphere phase equilibria of balalt-rhyolite mixtures. Starting materials were an alkali basalt from Pisgah Crater, California, and a high-silica rhyolite from the Bishop Tuff, Owens Valley, California. These materials were chosen because the compositional trend of the mixtures mimics many continental calc-alkaline suites. 5 figs.

  14. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  15. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  16. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  17. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  18. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does...

  19. (Isotope tracer studies of diffusion in silicates and of geological transport processes using actinide elements)

    SciTech Connect

    Wasserburg, G.J.

    1991-01-01

    This report consists of sections entitled resonance ionization mass spectrometry of Os, Mg self-diffusion in spinel and silicate melts, neotectonics: U-Th ages of solitary corals from the California coast, uranium-series evidence on diagenesis and hydrology of carbonates of Barbados, diffusion of H{sub 2}O molecules in silicate glasses, and development of an extremely high abundance sensitivity mass spectrometer.

  20. Investigation of synthesized Be-bearing silicate glass as laboratory reference sample at X-ray electron probe microanalysis of silicates

    NASA Astrophysics Data System (ADS)

    Belozerova, Olga Yu.; Mikhailov, Mikhail A.; Demina, Tamara V.

    2017-01-01

    The article discusses estimates of the stability and homogeneity in Be-Mg-Al-silicate glass produced by the authors and its applicability as a laboratory reference sample for X-ray electron probe microanalysis (EPMA) of Be-bearing silicate matters: crystals and quenching melt (glasses), silicates and oxides. The results were obtained using Superprobe-733 and Superprobe JXA-8200 (JEOL Ltd, Japan) devices. The sample homogeneity was studied on macro (10-100 μm) and micro (1-10 μm) levels and was evaluated by the scheme of dispersion analysis. The applicability of Be-bearing silicate glass as a reference sample for Mg, Al, Si determinations was tested on the international certified reference glasses and laboratory reference samples of minerals with a known composition. The obtained experimental metrological characteristics correspond to the "applied geochemistry" type of analysis (second category) and suggest that Be-bearing silicate glass is appropriate as a laboratory reference sample for EPMA of Be-bearing silicate matters, silicates and oxides. Using Be-Mg-Al-silicate glass as a reference sample we obtained satisfactory data on the composition of both some minerals including cordierite and beryllium cordierite, beryllium indialite, beryl and metastable phases (chrysoberyl, compounds with structure of β-quartz and petalite).

  1. Melt segregation from partially molten source regions - The importance of melt density and source region size

    NASA Technical Reports Server (NTRS)

    Stolper, E.; Hager, B. H.; Walker, D.; Hays, J. F.

    1981-01-01

    An investigation is conducted regarding the changes expected in the density contrast between basic melts and peridotites with increasing pressure using the limited data available on the compressibilities of silicate melts and data on the densities of mantle minerals. It is concluded that since compressibilities of silicate melts are about an order of magnitude greater than those of mantle minerals, the density contrast between basic melts and mantle minerals must diminish significantly with increasing pressure. An earlier analysis regarding the migration of liquid in partially molten source regions conducted by Walker et al. (1978) is extended, giving particular attention to the influence of the diminished density contrast between melt and residual crystals with increasing source region depth and to the influence of source region size. This analysis leads to several generalizations concerning the factors influencing the depths at which magmas will segregate from their source regions and the degrees of partial melting that can be achieved in these source regions before melt segregation occurs.

  2. Organic Modification of a Layered Silicate by Co-Ion Exchange of an Alkyl Ammonium and a Mono-Protonated Diamine

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G. (Inventor)

    2004-01-01

    Co-Ion exchange of the interlayer cations of a layered silicate with a mono-protonated aromatic diamine and an alkyl ammonium ion into the silicate galleries. The presence of the alkyl ammonium ion provides low oligomer melt viscosity during processing. The presence of the diamine allows chemical reaction between the silicate surface modification and the monomers. This reaction strengthens the polymer silicate interface, and ensures irreversible separation of the individual silicate layers. Improved polymer thermal oxidative stability and mechanical properties are obtained.

  3. Pocket radiation dosimeter--dosimeter charger assembly

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  4. Pocket radiation dosimeter: dosimeter charger assembly

    DOEpatents

    Manning, F.W.

    1982-03-17

    This invention is a novel pocket-type radiation dosimeter comprising an electrometric radiation dosimeter and a charging circuit therefor. The instrument is especially designed to be amenable to mass production, to have a long shelf life, and to be compact, lightweight, and usable by the layman. The dosimeter proper may be of conventional design. The charging circuit includes a shake-type electrostatic generator, a voltage doubler for integrating generator output voltages of one polarity, and a switch operated by an external permanent magnet.

  5. Root Locus Algorithms for Programmable Pocket Calculators

    NASA Technical Reports Server (NTRS)

    Wechsler, E. R.

    1983-01-01

    Two algorithms are described which allow the plotting of individual points on a root locus diagram with or without time delay. The development was performed during the design of a continuous phase shifter used in the Baseband Antenna Combiner for the Deep Space Network (DSN). The algorithms, which are expected to be useful in similar DSN efforts, are simple enough to be implemented on a programmable pocket calculator. The coordinates of the open-loop zeros and poles, the gain constant K, and the time delay T are the data inputs.

  6. Thermodynamics of silicate liquids in the deep Earth (Invited)

    NASA Astrophysics Data System (ADS)

    Stixrude, L. P.

    2009-12-01

    We discuss recent first principles molecular dynamics simulations of silicate liquids and their geophysical implications. We find that the Grüneisen parameter increases rapidly on compression, yielding liquid state isentropes that are much hotter than previously thought: a potential temperature of only 2450 K is sufficient to melt the entire mantle, and a magma ocean will begin crystallization at mid-mantle depths, rather than at the base of the mantle. Our predicted melting temperature of MgSiO3 perovskite at 136 GPa is 5400±600 K, which if lowered by freezing point depression by 1300 K, yields a mantle solidus temperature of 4100 K, identical to recent estimates of the temperature at the base of the mantle. We argue on this basis that partial melting at the base of the present-day mantle is plausible. While MgSiO3 perovskite is denser than the isochemical liquid, reasonable values of iron partitioning and bulk iron contents, leads to the conclusion that a melt at the base of the multi-component mantle would be denser than its surroundings and therefore buoyantly stable. We predict the bulk sound velocity of this melt to be 10.9 km s-1, less than that of ultra-low velocity zones, and consistent with the explanation of these regions as being due to partial melting. We also find that water and silicate melt are completely miscible over nearly the entire mantle pressure regime, suggesting a mechanism for storing accreted water at depth early in Earth’s history.

  7. Silicate mineralogy at the surface of Mercury

    NASA Astrophysics Data System (ADS)

    Namur, Olivier; Charlier, Bernard

    2017-01-01

    NASA's MESSENGER spacecraft has revealed geochemical diversity across Mercury's volcanic crust. Near-infrared to ultraviolet spectra and images have provided evidence for the Fe2+-poor nature of silicate minerals, magnesium sulfide minerals in hollows and a darkening component attributed to graphite, but existing spectral data is insufficient to build a mineralogical map for the planet. Here we investigate the mineralogical variability of silicates in Mercury's crust using crystallization experiments on magmas with compositions and under reducing conditions expected for Mercury. We find a common crystallization sequence consisting of olivine, plagioclase, pyroxenes and tridymite for all magmas tested. Depending on the cooling rate, we suggest that lavas on Mercury are either fully crystallized or made of a glassy matrix with phenocrysts. Combining the experimental results with geochemical mapping, we can identify several mineralogical provinces: the Northern Volcanic Plains and Smooth Plains, dominated by plagioclase, the High-Mg province, strongly dominated by forsterite, and the Intermediate Plains, comprised of forsterite, plagioclase and enstatite. This implies a temporal evolution of the mineralogy from the oldest lavas, dominated by mafic minerals, to the youngest lavas, dominated by plagioclase, consistent with progressive shallowing and decreasing degree of mantle melting over time.

  8. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  9. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  10. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  11. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  12. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  13. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  14. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  15. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  16. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  17. Modeling the Viscosity of Aluminosilicate Melts

    NASA Astrophysics Data System (ADS)

    Decterov, Sergei A.; Grundy, A. Nicholas; Jung, In-Ho; Pelton, Arthur D.

    2007-12-01

    Silicate systems are of fundamental importance for many metallurgical processes, for the glass industry and also for many aspects of geology. In addition to the phase relations, there are many properties of the liquid phase such as molar volume, surface tension, absorption coefficient, thermal conductivity and viscosity that are important for understanding, simulating and modeling processes involving silicate liquids. Over the past several years, through critical evaluation of all available thermodynamic and phase equilibrium data, we have developed a quantitative thermodynamic description of multicomponent silicate melts using the Modified Quasichemical Model for short-range ordering. We find that the local structure of the liquid, in terms of the bridging behavior of oxygen, calculated using our thermodynamic description allows us to link the viscosity and the thermodynamics of the silicate liquid. We can thus simultaneously calculate phase relations, thermodynamics and viscosity of the liquid over a wide composition and temperature range. In the present work we outline the viscosity model using selected binary and ternary systems as examples. The model has successfully been applied to melts in the multicomponent Na2O-K2O-MgO-CaO-MnO-FeO-ZnO-PbO-Al2O3-SiO2 system and more elements are currently being added to the database.

  18. Bursting the bubble of melt inclusions

    USGS Publications Warehouse

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  19. Metal-silicate Sulfur partitioning and its implication for core formation

    NASA Astrophysics Data System (ADS)

    Boujibar, A.; Andrault, D.; Bouhifd, M.; Bolfan-Casanova, N.; Trcera, N.

    2012-12-01

    Sulfur is a potential light element in the Earth's core and can have strong effects on the distribution of siderophile elements between mantle and core at the early stages of the earth's formation. At sufficiently low oxygen fugacity conditions, it has been previously demonstrated that S replaces O in silicate melts in the form of S2- anions (Finchman & Richardson, 1954). Effects of chemical composition, pressure and temperature on sulfur saturation in silicate melts have been studied at relatively high oxygen fugacity conditions using samples saturated in sulfur that are applicable to modeling sulfide ores genesis. The goal of this work is to estimate sulfur content in the terrestrial metallic core and its evolution, taking into account the change in conditions during the progressive accretion of the Earth. For this, we modeled the S partitioning between iron rich metal and silicate melts at different conditions (P,T,fO2,etc.) relevant to core formation. We expanded the models of Holzheid and Grove (2002), Mavrogenes and O'Neill (1999) and Rose-Weston et al. (2009) by adding new experimental data on the S partitioning between iron rich metals and silicates at lower oxygen fugacities and by investigating the role of the Si that is known to be incompatible with S in metals. The Kawai-type multi-anvil presses of the Laboratoire Magmas et Volcans provided pressure and temperature in the ranges of 2-23GPa and 2073-2673K. We chose graphite capsules in order to minimize the chemical interactions with the silicate melts. Chemical analyses of the silicate melts were complicated because of the presence of small FeS inclusions of micrometric to nanometric size. Based on FEG-SEM analyses, electron microprobe analyses and X-ray absorption spectroscopy at the S K-dege, we demonstrate that the FeS inclusions are produced by exsolution from the silicate melt during the temperature quench. Our complete data set and previous data of Rose-Weston et al. (2009) are used to adjust a

  20. Material transport in laser-heated diamond anvil cell melting experiments

    NASA Technical Reports Server (NTRS)

    Campbell, Andrew J.; Heinz, Dion L.; Davis, Andrew M.

    1992-01-01

    A previously undocumented effect in the laser-heated diamond anvil cell, namely, the transport of molten species through the sample chamber, over distances large compared to the laser beam diameter, is presented. This effect is exploited to determine the melting behavior of high-pressure silicate assemblages of olivine composition. At pressures where beta-spinel is the phase melted, relative strengths of partitioning can be estimated for the incompatible elements studied. Iron was found to partition into the melt from beta-spinel less strongly than calcium, and slightly more strongly than manganese. At higher pressures, where a silicate perovskite/magnesiowuestite assemblage is melted, it is determined that silicate perovskite is the liquidus phase, with iron-rich magnesiowuestite accumulating at the end of the laser-melted stripe.

  1. Silicic volcanism in Iceland: Composition and distribution within the active volcanic zones

    NASA Astrophysics Data System (ADS)

    Jónasson, Kristján

    2007-01-01

    source materials. Isotope systematics indicate that the silicic rocks are derived from older basaltic rocks similar to those from the same volcano, and that meteoric water has played a role in the genesis of the silicic rocks. Traditionally, the petrogenesis of silicic rocks in Iceland has been explained by various models of fractional crystallization or partial melting. The available data seems to be better explained by near-solidus differentiation than by near-liquidus differentiation. The silicic minimum melts can be extracted from the rigid framework of the near-solidus source by the process of solidification front instability or by deformation-assisted melt segregation. The source of the silicic rocks is within the intrusive complex beneath a central volcano rather than in a large, long-lived magma chamber.

  2. Dewetting-Controlled Binding of Ligands to Hydrophobic Pockets

    PubMed Central

    Setny, P.; Wang, Z.; Cheng, L.-T.; Li, B.; McCammon, J. A.; Dzubiella, J.

    2010-01-01

    We report on a combined atomistic molecular dynamics simulation and implicit solvent analysis of a generic hydrophobic pocket-ligand (host-guest) system. The approaching ligand induces complex wetting-dewetting transitions in the weakly solvated pocket. The transitions lead to bimodal solvent fluctuations which govern magnitude and range of the pocket-ligand attraction. A recently developed implicit water model, based on the minimization of a geometric functional, captures the sensitive aqueous interface response to the concave-convex pocket-ligand configuration semiquantitatively. PMID:19905832

  3. Detection of multiscale pockets on protein surfaces using mathematical morphology.

    PubMed

    Kawabata, Takeshi

    2010-04-01

    Detection of pockets on protein surfaces is an important step toward finding the binding sites of small molecules. In a previous study, we defined a pocket as a space into which a small spherical probe can enter, but a large probe cannot. The radius of the large probes corresponds to the shallowness of pockets. We showed that each type of binding molecule has a characteristic shallowness distribution. In this study, we introduced fundamental changes to our previous algorithm by using a 3D grid representation of proteins and probes, and the theory of mathematical morphology. We invented an efficient algorithm for calculating deep and shallow pockets (multiscale pockets) simultaneously, using several different sizes of spherical probes (multiscale probes). We implemented our algorithm as a new program, ghecom (grid-based HECOMi finder). The statistics of calculated pockets for the structural dataset showed that our program had a higher performance of detecting binding pockets, than four other popular pocket-finding programs proposed previously. The ghecom also calculates the shallowness of binding ligands, R(inaccess) (minimum radius of inaccessible spherical probes) that can be obtained from the multiscale molecular volume. We showed that each part of the binding molecule had a bias toward a specific range of shallowness. These findings will be useful for predicting the types of molecules that will be most likely to bind putative binding pockets, as well as the configurations of binding molecules. The program ghecom is available through the Web server (http://biunit.naist.jp/ghecom).

  4. The Potential for Pocket Parks to Increase Physical Activity

    PubMed Central

    Cohen, Deborah A.; Marsh, Terry; Williamson, Stephanie; Han, Bing; Derose, Kathryn Pitkin; Golinelli, Daniella; McKenzie, Thomas L.

    2014-01-01

    Purpose To assess the use of new pocket parks in low-income neighborhoods. Setting Los Angeles Subjects Parks users and residents living within ½ mile of 3 pocket parks and 15 neighborhood parks Intervention The creation of pocket parks Design Quasi-experimental post-only comparison Measures We used the System of Observing Play and Recreation in Communities (SOPARC) to measure park use and park-based physical activity and surveyed park users and residents about their park use. Analysis We surveyed 392 and 432 household members within one-half mile of the 3 pocket parks before and after park construction, respectively, as well as 71 pocket park users and compared them to 992 neighborhood park users and 342 residents living within ½ mile of other neighborhood parks. We compared pocket park use to playground area use in the larger neighborhood parks. We used descriptive statistics and Generalized Estimating Equations for the analysis. Results Overall, pocket park use compared favorably in promoting moderate-to-vigorous physical activity with that of existing playground space in nearby parks and they were cost-effective at $0.73/MET hour gained. Pocket park visitors walked an average of 0.25 miles to get there. Conclusions Pocket parks, when perceived as attractive and safe destinations, may increase physical activity by encouraging families with children to walk there. Additional strategies and programs may be needed to encourage more residents to use the parks. PMID:24380461

  5. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  6. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  7. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  8. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 172.410 Section 172.410 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used in food in accordance with...

  9. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  10. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  11. The density, compressibility and seismic velocity of hydrous melts at crustal and upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Ueki, K.; Iwamori, H.

    2015-12-01

    Various processes of subduction zone magmatism, such as upward migration of partial melts and fractional crystallization depend on the density of the hydrous silicate melt. The density and the compressibility of the hydrous melt are key factors for the thermodynamic calculation of phase relation of the hydrous melt, and the geophysical inversion to predict physicochemical conditions of the melting region based on the seismic velocity. This study presents a new model for the calculations of the density of the hydrous silicate melts as a function of T, P, H2O content and melt composition. The Birch-Murnaghan equation is used for the equation of state. We compile the experimentally determined densities of various hydrous melts, and optimize the partial molar volume, compressibility, thermal expansibility and its pressure derivative, and K' of the H2O component in the silicate melt. P-T ranges of the calibration database are 0.48-4.29 GPa and 1033-2073 K. As such, this model covers the P-T ranges of the entire melting region of the subduction zone. Parameter set provided by Lange and Carmichael [1990] is used for the partial molar volume and KT value of the anhydrous silicate melt. K' of anhydrous melt is newly parameterized as a function of SiO2 content. The new model accurately reproduces the experimentally determined density variations of various hydrous melts from basalt to rhyolite. Our result shows that the hydrous melt is more compressive and less dense than the anhydrous melt; with the 5 wt% of H2O in melt, density and KT decrease by ~10% and ~30% from those of the anhydrous melt, respectively. For the application of the model, we calculated the P-wave velocity of the hydrous melt. With the 5 wt% of H2O, P-wave velocity of the silicate melt decreases by >10%. Based on the melt P-wave velocity, we demonstrate the effect of the melt H2O content on the seismic velocity of the partially molten zone of the subduction zone.

  12. Laboratory studies of actinide metal-silicate fractionation

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Burnett, D. S.

    1980-01-01

    Actinide and Sm partition coefficients between silicate melt and several metallic phases have been measured. Under reducing conditions Si, Th, U and Pu can be reduced to metals from silicate melts and alloyed with a platinum-gold alloy. U and Pu enter a molten Pt-Si alloy with roughly equal affinity but U strongly partitions into the solid Pt. Th behaves qualitatively the same as Pu but is much less readily reduced than U, and Sm appears to remain unreduced. Experiments with Fe metal have shown that the partition coefficients of the actinides between Fe and silicate liquid are extremely low, suggesting a very low actinide concentration in planetary cores. Experiments show that platinum metals can efficiently fractionate actinides and fractionate actinides from lanthanides and this process may be relevant to the condensation behavior of these elements from the solar nebula. Pt-metal grains in Allende Ca-Al-rich inclusions appear to be U-poor, although the sub-class of Zr-bearing Pt metals may have high U contents.

  13. Mafic and silica-rich glasses in mantle xenoliths from Wau-en-Namus, Libya: Textural and geochemical evidence for peridotite-melt reactions

    NASA Astrophysics Data System (ADS)

    Miller, C.; Zanetti, A.; Thöni, M.; Konzett, J.; Klötzli, U.

    2012-01-01

    Anhydrous spinel peridotite xenoliths in Quaternary nepheline-basanite and melilite- or sodalite-bearing lavas of the Wau-en-Namus volcano in S Libya range from lherzolites to harzburgites recording melt extraction in a shallow setting (≤ 2 GPa). Primary clinopyroxenes have distinct trace element characteristics documenting LILE (large ion lithophile element) depletion or enrichment events predating the formation of glass pockets and veins in the xenoliths. These glasses are aluminous and alkali-rich, range in composition from ultrabasic to silicic (43-67 wt.% SiO 2) and may contain empty vugs and micro-phenocrysts of olivine, clinopyroxene, spinel, plagioclase, sodalite, apatite that are similar in composition to phenocrysts in the host lavas. Reactions of infiltrating melt and xenolith minerals are documented by diffuse Fe-Ca-rich rims of olivine in contact with glass, and by spongy-textured reaction domains caused by incongruent dissolution of primary pyroxenes and spinel. Some glasses have trace element characteristics similar to that of the host Ne-basanite, suggesting they were derived from the same source during entrainment and transport to the surface. Incompatible element enrichment and Sr-Nd isotopic compositions of the analyzed host lava are similar to HIMU (high μ; μ = 238Pb/ 204Pb)-type magmas, but the Pb isotopic composition is less radiogenic compared to other intra-plate Neogene magmatic rocks from N Africa.

  14. Kinetics of melt migration in upper mantle-type rocks

    NASA Astrophysics Data System (ADS)

    Riley, G. N.; Kohlstedt, D. L.

    1991-08-01

    Experiments have been performed to determine the permeability of an aggregate of olivine plus a silicate melt, as well as the viscosity of the matrix. Melt migration couples were formed between discs composed of olivine with about 12% of a synthetic potassium-aluminum silicate glass and discs of polycrystalline San Carlos olivine. Four melt infiltration experiments were carried out at temperatures between 1050 and 1255°C at 300 MPa in a gas-medium apparatus; each couple was held at the experimental conditions for 2 h. At temperature, capillary forces cause the molten glass to infiltrate into the dunite along triple junctions because the dihedral angle is less than 60°. In order to analyze the resulting melt migration profiles, the coupled differential equations governing melt migration via "porous flow" driven by capillary forces and resisted by compaction/dilation of the matrix were solved numerically. The effects of dihedral angle, melt fraction exponent and amount of the melt in the source region on the spatial and temporal evolution of the melt distribution were investigated with numerical simulations for the initial and boundary conditions imposed by the experimental geometry. The permeability of the aggregate and the viscosity of the matrix were determined by comparison of the melt migration profiles obtained from the experiments with those generated from simulation. The permeability of the partially molten aggregate increased approximately linearly with increasing melt fraction and, at 1255°C, the permeability of the rock and viscosity of the olivine are about 8 × 10 -16 m 2 and 8 × 10 9 Pa s, respectively, for a grain size of 4.2 μm and a melt fraction of 0.145. These results predict a relatively high permeability at low melt fractions, indicating that only very small amounts of melt (˜ 0.1%) could be maintained in a dunitic mantle.

  15. Fluid and melt inclusions in the Mesozoic Fangcheng basalt from North China Craton: implications for magma evolution and fluid/melt-peridotite reaction

    NASA Astrophysics Data System (ADS)

    Sun, He; Xiao, Yilin; Gao, Yongjun; Lai, Jianqing; Hou, Zhenhui; Wang, Yangyang

    2013-05-01

    Melt inclusions and fluid inclusions in the Fangcheng basalt were investigated to understand the magma evolution and fluid/melt-peridotite interaction. Primary silicate melt inclusions were trapped in clinopyroxene and orthopyroxene phenocrysts in the Fangcheng basalt. Three types of melt inclusions (silicate, carbonate, and sulfide) coexisting with fluid inclusions occur in clinopyroxene xenocrysts and clinopyroxene in clinopyroxenite xenoliths. In situ laser-ablation ICP-MS analyses of major and trace element compositions on individual melt inclusions suggest that the silicate melt inclusions in clinopyroxene and orthopyroxene phenocrysts were trapped from the same basaltic magma. The decoupling of major and trace elements in the melt inclusions indicates that the magma evolution was controlled by melt crystallization and contamination from entrapped ultramafic xenoliths. Trace element patterns of melt inclusions are similar to those of the average crust of North China Craton and Yangtze Craton, suggesting a considerable crustal contribution to the magma source. Calculated parental melt of the Fangcheng basalt has features of low MgO (5.96 wt%), high Al2O3 (16.81 wt%), Sr (1,670 ppm), Y (>35 ppm), and high Sr/Y (>40), implying that subducted crustal material was involved in the genesis of the Fangcheng basalt. The coexisting fluid and melt inclusions in clinopyroxene xenocrysts and in clinopyroxene of xenoliths record a rare melt-peridotite reaction, that is olivine + carbonatitic melt1 (rich in Ca) = clinopyroxene + melt2 ± CO2. The produced melt2 is enriched in LREE and CO2 and may fertilize the mantle significantly, which we consider to be the cause for the rapid replacement of lithospheric mantle during the Mesozoic in the region.

  16. Immiscible silicate liquids and phosphoran olivine in Netschaëvo IIE silicate: Analogue for planetesimal core-mantle boundaries

    NASA Astrophysics Data System (ADS)

    Van Roosbroek, Nadia; Hamann, Christopher; McKibbin, Seann; Greshake, Ansgar; Wirth, Richard; Pittarello, Lidia; Hecht, Lutz; Claeys, Philippe; Debaille, Vinciane

    2017-01-01

    We have investigated a piece of the Netschaëvo IIE iron meteorite containing a silicate inclusion by means of electron microprobe analysis (EMPA) and transmission electron microscopy (TEM). Netschaëvo contains chondrule-bearing clasts and impact melt rock clasts were also recently found. The examined inclusion belongs to the latter and is characterized by a porphyritic texture dominated by clusters of coarse-grained olivine and pyroxene, set in a fine-grained groundmass that consists of new crystals of olivine and a hyaline matrix. This matrix material has a quasi-basaltic composition in the inner part of the inclusion, whereas the edge of the inclusion has a lower SiO2 concentration and is enriched in MgO, P2O5, CaO, and FeO. Close to the metal host, the inclusion also contains euhedral Mg-chromite crystals and small (<2 μm), Si-rich globules. A TEM foil was cut from this glassy, silico-phosphate material. It shows that the material consists of elongated olivine crystallites containing up to 14 wt% P2O5, amorphous material, and interstitial Cl-apatite crystals. The Si-rich silicate glass globules show a second population of Fe-rich silicate glass droplets, indicating they formed by silicate liquid immiscibility. Together with the presence of phosphoran olivine and quenched Cl-apatite, these textures suggest rapid cooling and quenching as a consequence of an impact event. Moreover, the enrichment of phosphorus in the silicate inclusion close to the metal host (phosphoran olivine and Cl-apatite) indicates that phosphorus re-partitioned from the metal into the silicate phase upon cooling. This probably also took place in pallasite meteorites that contain late-crystallizing phases rich in phosphorus. Accordingly, our findings suggest that oxidation of phosphorus might be a general process in core-mantle environments, bearing on our understanding of planetesimal evolution. Thus, the Netschaëvo sample serves as a natural planetesimal core-mantle boundary experiment

  17. Determining the Metal/Silicate Partition Coefficient of Germanium: Implications for Core and Mantle Differentiation.

    NASA Technical Reports Server (NTRS)

    King, C.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2010-01-01

    Currently there are several hypotheses for the thermal state of the early Earth. Some hypothesize a shallow magma ocean, or deep magma ocean, or heterogeneous accretion which requires no magma ocean at all. Previous models are unable to account for Ge depletion in Earth's mantle relative to CI chondrites. In this study, the element Ge is used to observe the way siderophile elements partition into the metallic core. The purpose of this research is to provide new data for Ge and to further test these models for Earth's early stages. The partition coefficients (D(sub Ge) = c(sub metal)/c(sub silicate), where D = partition coefficient of Ge and c = concentration of Ge in the metal and silicate, respectively) of siderophile elements were studied by performing series of high pressure, high temperature experiments. They are also dependent on oxygen fugacity, and metal and silicate composition. Ge is a moderately siderophile element found in both the mantle and core, and has yet to be studied systematically at high temperatures. Moreover, previous work has been limited by the low solubility of Ge in silicate melts (less than 100 ppm and close to detection limits for electron microprobe analysis). Reported here are results from 14 experiments studying the partitioning of Ge between silicate and metallic liquids. The Ge concentrations were then analyzed using Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) which is sensitive enough to detect ppm levels of Ge in the silicate melt.

  18. Thermochemistry of Silicate Speciation in Aqueous Sodium Silicate Solutions: Ionization and Polymerization of Small Silicate Ion

    DTIC Science & Technology

    1993-07-12

    reasonable success, but a number of simplifications were used. For instance, the polymerization equilibrium constants were assumed to be independent of...Another weakness lies in the functionality assumed for the ionization equilibrium constants . As will be discussed below, experimental data that the free...characterize silicate species in fairly complex alkaline silicate solutions and thereby to estimate a large number of equilibrium constants [27,28

  19. Reactive melt migration in mantle rocks: an experimental study

    NASA Astrophysics Data System (ADS)

    Pec, M.; Kohlstedt, D. L.; Zimmerman, M. E.; Holtzman, B. K.

    2013-12-01

    Several physical and chemical driving forces are important during the segregation and focusing of melt from a partially molten mantle toward a mid-oceanic spreading center. We performed a series of experiments to investigate the coupling between stress-driven and reaction-driven melt segregation. A core of melt-rich source material containing olivine, chromite and 20 vol% alkali basalt was placed within a ring of melt-poor sink containing olivine, enstatite, chromite and 4 vol% of alkali basalt. The gradient in silica activity at the source-sink interface provides a chemical driving force for melt migration. These source-sink couples were deformed in torsion in a gas-medium deformation apparatus at 1200°C, 300 MPa confining pressure and shear strain rates of ~10-4 s-1 to different finite shear strains (γ = 0 - 5). Microstructural observations of tangential sections show that at low strains (γ ≤ 2) melt aligns along grain boundaries in the sink at ~45° antithetic to the shear plane (parallel to σ1). At higher strains (γ > 3.5), melt-rich bands develop at 0 to 20° antithetic to the shear direction with a mean spacing between bands of 100 to 250 μm. The melt-rich bands contain 20 - 30% melt in the form of individual melt pockets (dequ ≈ 2.5 μm) aligned 10 - 45° with respect to the applied shear. Typically, a band contains 2 to 10 euhedral to rounded, small, mostly olivine grains (dequ ≈ 3 μm) almost entirely surrounded by melt. Bands terminate at melt-depleted lenses (< 1 vol% melt) in a zone 2 - 4 grains wide containing ~2 vol% melt in small (≤1 μm) pockets. Melt-rich zones do not develop in the sink at the source-sink interface after annealing a sample hydrostatically for >9 h. However, once melt bands are well developed by stress-driven melt segregation (γ ≥ 3.5) dissolution of enstatite reaches ~200 μm into the sink from the source-sink interface. For the pressure-temperature conditions and timescales of our experiments, the observations

  20. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    NASA Astrophysics Data System (ADS)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; D'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  1. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  2. The solubility of palladium and ruthenium in picritic melts: 2. The effect of sulfur

    NASA Astrophysics Data System (ADS)

    Laurenz, Vera; Fonseca, Raúl O. C.; Ballhaus, Chris; Jochum, Klaus Peter; Heuser, Alexander; Sylvester, Paul J.

    2013-05-01

    The platinum-group elements (PGE) are exceptional tracers of planetary differentiation and therefore are useful discriminants of different high-temperature processes. Many of the initial efforts to understand how PGE behave during mantle melting involved experiments where PGE solubility in silicate melt was measured. The results of these experiments showed that PGE dissolve in silicate melts as oxide species, and that their saturation depends on oxygen partial pressure (pO2). However, the majority of these experimental studies were conducted on FeO and sulfur-free melt compositions that little resemble natural magmas. In particular, the role of sulfur has been downplayed because of its lower availability as a ligand to the PGE in silicate melt when compared to oxygen. However, magmatic sulfides from oceanic basalts and layered intrusions are greatly enriched in the PGE relative to the silicate melts in equilibrium with them, suggesting that the PGE are strongly chalcophile. The question then is whether the PGE are actively scavenged into sulfide melt after it exsolves from a silicate melt; or if the PGE are already associated with S2- in a silicate melt prior to sulfide saturation. Here we report the results of experiments where the solubilities of Ru and Pd have been measured in natural picritic melt, as a function of pO2 and in the presence of sulfur. Results show that the presence of sulfur in the silicate melt enhances the solubility of Ru in picrite by over an order of magnitude. These results can be used to quantify the preference that PGE have to associate with sulfur relative to oxygen. For example, Ru was found to be 880 ± 410 times more likely to associate with sulfur than with oxygen at pO2 around the fayalite-magnetite-quartz redox equilibrium. The preferential association of the PGE with S2- ligand indicates that once a sulfide melt exsolves, it will already be enriched in PGE precluding the need for it to actively scavenge PGE from a silicate melt.

  3. 30 CFR 56.19103 - Dumping facilities and loading pockets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dumping facilities and loading pockets. 56.19103 Section 56.19103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Personnel Hoisting Shafts § 56.19103 Dumping facilities and loading pockets. Dumping facilities and...

  4. 30 CFR 57.19103 - Dumping facilities and loading pockets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dumping facilities and loading pockets. 57.19103 Section 57.19103 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... MINES Personnel Hoisting Shafts § 57.19103 Dumping facilities and loading pockets. Dumping...

  5. Redistribution of Core-forming Melt During Shear Deformation of Partially Molten Peridotite

    NASA Technical Reports Server (NTRS)

    Hustoft, J. W.; Kohlstedt, D. L.

    2002-01-01

    To investigate the role of deformation on the distribution of core-forming melt in a partially molten peridotite, samples of olivine-basalt-iron sulfide were sheared to large strains. Dramatic redistribution of sulfide and silicate melts occur during deformation. Additional information is contained in the original extended abstract.

  6. Comparative pathology of silicate pneumoconiosis.

    PubMed Central

    Brambilla, C.; Abraham, J.; Brambilla, E.; Benirschke, K.; Bloor, C.

    1979-01-01

    A simple pneumoconiosis with lamellar birefringent crystals was observed in animals dying in the San Diego Zoo. We studied 100 autopsies from 11 mammalian and eight avian species. In mammals, mild pulmonary lesions comprised crystal-laden macrophages in alveoli and lymphatics. Interstitial fibrosis was present in 20% of cases. There were no nodules. In birds, dust retention produced large granulomas around tertiary bronchi without fibrosis. Mineralogic analysis using scanning and transmission electron microscopy showed most of the crystals to be silicates. Ninety percent were complex silicates, with aluminum-potassium silicates comprising 70% of the analyzed particles. Electron and x-ray diffraction showed the silicates to be muscovite mica and its hydrothermal degradation product, ie, illite clay. This mica was also present on filtration membranes of atmospheric air samples obtained from the San Diego Zoo. The amount of dust retention was related to the animal's age, anatomic or ecologic variances, and length of stay in the San Diego Zoo. Its semidesert atmosphere is rich in silicates, which are inhaled and deposited in the lungs. Similar mica-induced lesions are found in humans living in this region or the Southwest of the USA. This simple pneumoconiosis is likely to be widespread in human populations living in desert or semidesert climates. Images Figure 9 Figure 10 Figure 7 Figure 8 Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:223447

  7. Hydrated Silicates on Edgeworth-Kuiper Objects - Probable Ways of Formation

    NASA Astrophysics Data System (ADS)

    Busarev, V. V.; Dorofeeva, V. A.; Makalkin, A. B.

    2003-06-01

    Visible-range absorption bands at 600-750 nm were recently detected on two Edgeworth-Kuiper Belt (EKB) objects (Boehnhardt et al., 2002). Most probably the spectral features may be attributed to hydrated silicates originated in the bodies. We consider possibilities for silicate dressing and silicate aqueous alteration within them. According to present models of the protoplanetary disk, the temperatures and pressures at the EKB distances (30-50 AU) at the time of formation of the EKB objects (106 to 108 yr) were very low (15-30 K and 10-9-10-10 bar). At these thermodynamic conditions all volatiles excluding hydrogen, helium and neon were in the solid state. An initial mass fraction of silicates (silicates/(ices + dust)) in EKB parent bodies may be estimated as 0.15-0.30. Decay of the short-lived 26Al in the bodies at the early stage of their evolution and their mutual collisions (at velocities >=1.5 km s-1) at the subsequent stage were probably two main sources of their heating, sufficient for melting of water ice. Because of the former process, large EKB bodies (R >= 100 km) could contain a large amount of liquid water in their interiors for the period of a few 106 yr. Freezing of the internal ocean might have begun at ~ 5 × 106 yr after formation of the solar nebula (and CAIs). As a result, aqueous alteration of silicates in the bodies could occur. A probable mechanism of silicate dressing was sedimentation of silicates with refractory organics, resulting in accumulation of large silicate-rich cores. Crushing and removing icy covers under collisions and exposing EKB bodies' interiors with increased silicate content could facilitate detection of phyllosilicate spectral features.

  8. An observational and thermodynamic investigation of carbonate partial melting

    NASA Astrophysics Data System (ADS)

    Floess, David; Baumgartner, Lukas P.; Vonlanthen, Pierre

    2015-01-01

    Melting experiments available in the literature show that carbonates and pelites melt at similar conditions in the crust. While partial melting of pelitic rocks is common and well-documented, reports of partial melting in carbonates are rare and ambiguous, mainly because of intensive recrystallization and the resulting lack of criteria for unequivocal identification of melting. Here we present microstructural, textural, and geochemical evidence for partial melting of calcareous dolomite marbles in the contact aureole of the Tertiary Adamello Batholith. Petrographic observations and X-ray micro-computed tomography (X-ray μCT) show that calcite crystallized either in cm- to dm-scale melt pockets, or as an interstitial phase forming an interconnected network between dolomite grains. Calcite-dolomite thermometry yields a temperature of at least 670 °C, which is well above the minimum melting temperature of ∼600 °C reported for the CaO-MgO-CO2-H2O system. Rare-earth element (REE) partition coefficients (KDcc/do) range between 9-35 for adjacent calcite-dolomite pairs. These KD values are 3-10 times higher than equilibrium values between dolomite and calcite reported in the literature. They suggest partitioning of incompatible elements into a melt phase. The δ18O and δ13C isotopic values of calcite and dolomite support this interpretation. Crystallographic orientations measured by electron backscattered diffraction (EBSD) show a clustering of c-axes for dolomite and interstitial calcite normal to the foliation plane, a typical feature for compressional deformation, whereas calcite crystallized in pockets shows a strong clustering of c-axes parallel to the pocket walls, suggesting that it crystallized after deformation had stopped. All this together suggests the formation of partial melts in these carbonates. A Schreinemaker analysis of the experimental data for a CO2-H2O fluid-saturated system indeed predicts formation of calcite-rich melt between 650-880 °C, in

  9. Characteristics of cellular composition of periodontal pockets

    PubMed Central

    Hasiuk, Petro; Hasiuk, Nataliya; Kindiy, Dmytro; Ivanchyshyn, Victoriya; Kalashnikov, Dmytro; Zubchenko, Sergiy

    2016-01-01

    Purpose The development of inflammatory periodontal disease in young people is an urgent problem of today's periodontology, and requires a development of new methods that would give an opportunity not only to diagnose but also for prognosis of periodontitis course in a given patients contingent. Results Cellular structure of periodontal pockets is presented by hematogenous and epithelial cells. Our results are confirmed by previous studies, and show that the penetration of periodontal pathogens leads to formation in periodontal tissue of a highly active complex compounds—cytokines that are able to modify the activity of neutrophils and reduce their specific antibacterial properties. Cytokines not only adversely affect the periodontal tissues, but also cause further activation of cells that synthesized them, and inhibit tissue repair and process of resynthesis of connective tissue by fibroblasts. Conclusion Neutrophilic granulocytes present in each of the types of smear types, but their functional status and quantitative composition is different. The results of our cytological study confirmed the results of immunohistochemical studies, and show that in generalized periodontitis, an inflammatory cellular elements with disorganized epithelial cells and connective tissue of the gums and periodontium, and bacteria form specific types of infiltration in periodontal tissues. PMID:28180007

  10. Identifying the Crystal Graveyards Remaining After Large Silicic Eruptions

    NASA Astrophysics Data System (ADS)

    Gelman, S. E.; Deering, C. D.; Bachmann, O.; Huber, C.; Gutiérrez, F. J.

    2014-12-01

    The accumulation of voluminous crystal-poor rhyolites from an upper crustal mush environment inherently necessitates the complementary formation of unerupted silicic cumulates. However, identification of such frozen cumulates remains controversial. This has motivated us to develop of a new geochemical model aimed at better constraining the behavior of trace elements in a magma reservoir concurrently tracking crystallization and imperfect segregation of melt. We use a numerical method to solve our model equations rather than seek analytical solutions, thereby relieving overly simplistic assumptions for the dependencies between partition coefficient or melt segregation rate as functions of crystallinity. Our model allows partition coefficient to vary depending on the crystallinizing mineralogy at any particular stage in magma cooling, as well as the ability to test different rates and efficiencies of crystal-melt segregation. We apply our model first to the Searchlight Pluton as a well-constrained case study, which allows us to quantitatively test existing interpretations of that pluton. Building on this, we broaden our model to better understand the relationship between volcanic and plutonic rocks utilizing the NAVDAT database. Our results produce unambiguous fractionation signatures for segregated melts, while those signatures are muted for their cumulate counterparts. These models suggest that some large granitiods may represent accumulations of crystals, having lost melt in some cases to volcanic eruptions or to higher level evolved plutonic units, although the trace element signature of this process is expected to be subtle.

  11. [Isotope tracer studies of diffusion in silicates and of geological transport processes using actinide elements]. Progress report

    SciTech Connect

    Wasserburg, G.J.

    1991-12-31

    This report consists of sections entitled resonance ionization mass spectrometry of Os, Mg self-diffusion in spinel and silicate melts, neotectonics: U-Th ages of solitary corals from the California coast, uranium-series evidence on diagenesis and hydrology of carbonates of Barbados, diffusion of H{sub 2}O molecules in silicate glasses, and development of an extremely high abundance sensitivity mass spectrometer.

  12. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    SciTech Connect

    Stolper, Edward

    2007-03-05

    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  13. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    PubMed

    Elmore, Amy R

    2003-01-01

    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers <5 microm were not classified as to their carcinogenicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin

  14. Transition metals in superheat melts

    NASA Technical Reports Server (NTRS)

    Jakes, Petr; Wolfbauer, Michael-Patrick

    1993-01-01

    A series of experiments with silicate melts doped with transition element oxides was carried out at atmospheric pressures of inert gas at temperatures exceeding liquidus. As predicted from the shape of fO2 buffer curves in T-fO2 diagrams the reducing conditions for a particular oxide-metal pair can be achieved through the T increase if the released oxygen is continuously removed. Experimental studies suggest that transition metals such as Cr or V behave as siderophile elements at temperatures exceeding liquidus temperatures if the system is not buffered by the presence of other oxide of more siderophile element. For example the presence of FeO prevents the reduction of Cr2O3. The sequence of decreasing siderophility of transition elements at superheat conditions (Mo, Ni, Fe, Cr) matches the decreasing degree of depletion of siderophile elements in mantle rocks as compared to chondrites.

  15. The Role of the Acid Pocket in Gastroesophageal Reflux Disease.

    PubMed

    Mitchell, David R; Derakhshan, Mohammad H; Robertson, Elaine V; McColl, Kenneth E L

    2016-02-01

    Gastroesophageal reflux disease is one of the commonest chronic conditions in the western world and its prevalence is increasing worldwide. The discovery of the acid pocket explained the paradox of acid reflux occurring more frequently in the postprandial period despite intragastric acidity being low due to the buffering effect of the meal. The acid pocket was first described in 2001 when it was detected as an area of low pH immediately distal to the cardia using dual pH electrode pull-through studies 15 minutes after a meal. It was hypothesized that there was a local pocket of acid close to the gastroesophageal junction that escapes the buffering effect of the meal, and that this is the source of postprandial acidic reflux. The presence of the acid pocket has been confirmed in other studies using different techniques including high-resolution pHmetry, Bravo capsule, magnetic resonance imaging, and scintigraphy. This review aims to describe what we know about the acid pocket including its length, volume, fluid constituents, and its relationship to the lower esophageal sphincter and squamocolumnar junction. We will discuss the possible mechanisms that lead to the formation of the acid pocket and examine what differences exist in patients who suffer from acid reflux. Treatments for reflux disease that affect the acid pocket will also be discussed.

  16. Experimentally determined sulfur isotope fractionation between metal and silicate and implications for planetary differentiation

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Shahar, A.; Le Losq, C.; Hillgren, V. J.; Mysen, B. O.; Farquhar, J.

    2016-02-01

    The Earth's mantle displays a subchondritic 34S/32S ratio. Sulfur is a moderately siderophile element (i.e. iron-loving), and its partitioning into the Earth's core may have left such a distinctive isotope composition on the terrestrial mantle. In order to constrain the sulfur isotope fractionation occurring during core-mantle differentiation, high-pressure and temperature experiments were conducted with synthetic mixtures of metal and silicate melts. With the purpose to identify the mechanism(s) responsible for the S isotope fractionations, we performed our experiments in different capsules - namely, graphite and boron nitride capsules - and thus at different fO2, with varying major element chemistry of the silicate and metal fractions. The S isotope fractionations Δ34Smetal-silicate of equilibrated metal alloys versus silicate melts is +0.2 ± 0.1‰ in a boron-free and aluminum-poor system quenched at 1-1.5 GPa and 1650 °C. The isotope fractionation increases linearly with increasing boron and aluminum content, up to +1.4 ± 0.2‰, and is observed to be independent of the silicon abundance as well as of the fO2 over ∼3.5 log units of variations explored here. The isotope fractionations are also independent of the graphite or nitride saturation of the metal. Only the melt structural changes associated with aluminum and boron concentration in silicate melts have been observed to affect the strength of sulfur bonding. These results establish that the structure of silicate melts has a direct influence on the S2- average bonding strengths. These results can be interpreted in the context of planetary differentiation. Indeed, the structural environments of silicate evolve strongly with pressure. For example, the aluminum, iron or silicon coordination numbers increase under the effect of pressure. Consequently, based on our observations, the sulfur-bonding environment is likely to be affected. In this scheme, we tentatively hypothesize that S isotope fractionations

  17. Experimental modeling of the interaction of subducted carbonates and sulfur with mantle silicates

    NASA Astrophysics Data System (ADS)

    Bataleva, Yu. V.; Palyanov, Yu. N.; Borzdov, Yu. M.; Zdrokov, E. V.; Sobolev, N. V.

    2016-09-01

    Experimental studies in the system Fe,Ni-olivine-carbonate-S ( P = 6.3 GPa, T = 1050-1550°C, t = 40-60 h) aimed at modeling of the interaction of subducted carbonates and sulfur with rocks of the silicate mantle and at investigation of the likely mechanism of the formation of mantle sulfides were performed. It is shown that an association of olivine + orthopyroxene + magnesite + pyrite coexisting with a sulfur melt/fluid with dissolved Fe, Ni, and O is formed at T ≤ 1250°C. An association of low-Fe olivine, orthopyroxene, and magnesite and two immiscible melts of the carbonate and S-Fe-Ni-O compositions are formed at T ≥ 1350°C. It is shown that the reduced S-bearing fluids may transform silicates and carbonates, extract metals from the solid-phase matrix, and provide conditions for generation of sulfide melts.

  18. Dihedral angle of carbonatite melts in mantle residue near the upper mantle and transition zone

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.; Rohrbach, A.; Schmidt, M. W.

    2015-12-01

    Carbonate melts are thought to be ideal metasomatic agents in the deep upper mantle (Green & Wallace, 1988) and these melts are low in viscosities (10-1-10-3 Pa·s) compared to primitive basalt (101-102 Pa·s), furthermore the ability to form an interconnected grain-edge melt network at low melt fractions (< 1%) make carbonate melts extremely mobile. They are molten at relatively low temperatures and have solidus temperatures hundreds of degrees lower than silicate melts at >3 GPa (Dasgupta et al. 2006, Ghosh et al., 2009), dissolve a number of geochemically incompatible elements much better than silicate melts (Blundy and Dalton, 2000). Previous studies of carbonate melt dihedral angles in olivine-dominated matrices yielded 25-30oat 1-3 GPa, relatively independent of melt composition (Watson et al., 1990) and temperature (Hunter and McKenzie, 1989). Dihedral angles of carbonate melts in contact with deep mantle silicate phases (e.g. garnet, wadsleyite, and ringwoodite) which constitute more than 70 % of the deep upper mantle and transition zone have not been studied yet. We have performed multi-anvil experiments on carbonate-bearing peridotites with 5.0 wt% CO2 from 13.5 to 20 GPa 1550 oC to investigate the dihedral angle of magnesio-carbonatite melts in equilibrium with garnet, olivine (and its high-pressure polymorphs), and clinoenstatite. The dihedral angle of carbonate melts in the deep upper mantle and transition zone is ~30° for majorite garnet and olivine (and its polymorphs) dominated matrices. It does not change with increasing pressure in the range 13.5-20 GPa. Our results suggest that very low melt fractions of carbonatite melt forming in the deep upper mantle and transition zone are interconnected at melt fractions less than 0.01. Consistent with geophysical observations, this could possibly explain low velocity regions in the deep mantle and transition zone.

  19. APoc: large-scale identification of similar protein pockets

    PubMed Central

    Gao, Mu; Skolnick, Jeffrey

    2013-01-01

    Motivation: Most proteins interact with small-molecule ligands such as metabolites or drug compounds. Over the past several decades, many of these interactions have been captured in high-resolution atomic structures. From a geometric point of view, most interaction sites for grasping these small-molecule ligands, as revealed in these structures, form concave shapes, or ‘pockets’, on the protein’s surface. An efficient method for comparing these pockets could greatly assist the classification of ligand-binding sites, prediction of protein molecular function and design of novel drug compounds. Results: We introduce a computational method, APoc (Alignment of Pockets), for the large-scale, sequence order-independent, structural comparison of protein pockets. A scoring function, the Pocket Similarity Score (PS-score), is derived to measure the level of similarity between pockets. Statistical models are used to estimate the significance of the PS-score based on millions of comparisons of randomly related pockets. APoc is a general robust method that may be applied to pockets identified by various approaches, such as ligand-binding sites as observed in experimental complex structures, or predicted pockets identified by a pocket-detection method. Finally, we curate large benchmark datasets to evaluate the performance of APoc and present interesting examples to demonstrate the usefulness of the method. We also demonstrate that APoc has better performance than the geometric hashing-based method SiteEngine. Availability and implementation: The APoc software package including the source code is freely available at http://cssb.biology.gatech.edu/APoc. Contact: skolnick@gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23335017

  20. An electromotive force series in a borosilicate glass-forming melt

    NASA Technical Reports Server (NTRS)

    Schreiber, H. D.; Balazs, G. B.; Carpenter, B. E.; Kirkley, J. E.; Minnix, L. M.; Jamison, P. L.

    1984-01-01

    An electromotive force series for redox couples was defined as a function of oxygen fugacity in a borosilicate melt at 1150 C. The resulting order of relative reduction potentials can be used to estimate the amounts of redox species in glass during processing. The electromotive force series in this melt is comparable to those in other silicate glass-forming melts and in aqueous systems but differs in detail because of interaction of the solvents with individual redox couples.

  1. Carbonatite melts and electrical conductivity in the asthenosphere.

    PubMed

    Gaillard, Fabrice; Malki, Mohammed; Iacono-Marziano, Giada; Pichavant, Michel; Scaillet, Bruno

    2008-11-28

    Electrically conductive regions in Earth's mantle have been interpreted to reflect the presence of either silicate melt or water dissolved in olivine. On the basis of laboratory measurements, we show that molten carbonates have electrical conductivities that are three orders of magnitude higher than those of molten silicate and five orders of magnitude higher than those of hydrated olivine. High conductivities in the asthenosphere probably indicate the presence of small amounts of carbonate melt in peridotite and can therefore be interpreted in terms of carbon concentration in the upper mantle. We show that the conductivity of the oceanic asthenosphere can be explained by 0.1 volume percent of carbonatite melts on average, which agrees with the carbon dioxide content of mid-ocean ridge basalts.

  2. Primary carbonatite melt from deeply subducted oceanic crust.

    PubMed

    Walter, M J; Bulanova, G P; Armstrong, L S; Keshav, S; Blundy, J D; Gudfinnsson, G; Lord, O T; Lennie, A R; Clark, S M; Smith, C B; Gobbo, L

    2008-07-31

    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here we provide experimental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.

  3. Primary carbonatite melt from deeply subducted oceanic crust

    SciTech Connect

    Walter, M.J.; Bulanova, G.P.; Armstrong, L.S.; Keshav, S.; Blundy, J.D.; Gudfinnesson, G.; Lord, O.T.; Lennie, A.R.; Clark, S.M.; Smith, C.B.; Gobbo, L.

    2008-07-01

    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here they provide exper8imental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.

  4. Battery components employing a silicate binder

    DOEpatents

    Delnick, Frank M.; Reinhardt, Frederick W.; Odinek, Judy G.

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  5. Melt Structure and Properties: a Spectroscopic Perspective

    NASA Astrophysics Data System (ADS)

    Stebbins, J.

    2006-12-01

    Entropy, volume, and their P/T derivatives are at the heart of models of the thermodynamics of silicate melts and magmas. Quantitative characterization of glass structure is leading to important new insights into the links from "Microscopic to Macroscopic" that can at least guide interpretations of data and in some cases even have predictive power. A few recent examples will be discussed here. The often-large configurational components to heat capacities, thermal expansivities, and compressibilities of melts strongly indicate that structural changes with temperature and pressure are of key importance. At least some aspects of thermal increases in configurational (as opposed to vibrational) disorder are amenable to spectroscopic detection, either with in situ methods or on glasses with varying quench rates and thus varying fictive temperatures. In some systems, such changes are now clear, and can be shown to make significant contributions to properties. These include network cation coordination in systems such as borate liquids (BO4 to BO3 at higher T), and Al-Si disordering in aluminosilicates. In general, however, progress in this rich problem has only begun. It has long been suspected from thermodynamic analyses (and theoretical simulations) that configurational changes in melts play a key role in volume compression at high pressure, over and above that which can be expressed in "normal" equations of state or from those expected from bond compression and bending. Scattering and spectroscopic studies have revealed some of the important aspects of pressure-induced structural changes, but again we are just at the beginning of full understanding. For example, binary silicate glasses quenched from high-P melts clearly record some systematic increases in Si coordination, while aluminosilicates record systematic pressure and compositional (modifier cation field strength) effects on Al coordination in recovered samples with large, quenched-in density increases

  6. Grain-scale alignment of melt in sheared partially molten rocks: implications for viscous anisotropy

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Quintanilla-Terminel, Alejandra; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Presence of melt significantly influences rheological properties of partially molten rocks by providing fast diffusional pathways. Under stress, melt aligns at the grain scale and this alignment induces viscous anisotropy in the deforming aggregate. One of the consequences of viscous anisotropy is melt segregation into melt-rich sheets oriented at low angle to the shear plane on much larger scales than the grain scale. The magnitude and orientation of viscous anisotropy with respect to the applied stress are important parameters for constitutive models (Takei and Holtzman 2009) that must be constrained by experimental studies. In this contribution, we analyze the shape preferred orientation (SPO) of individual grain-scale melt pockets in deformed partially molten mantle rocks. The starting materials were obtained by isostatically hot-pressing olivine + basalt and olivine + chromite + basalt powders. These partially molten rocks were deformed in general shear or torsion at a confining pressure, Pc = 300 MPa, temperature, T = 1200° - 1250° C, and strain rates of 10-3 - 10-5 s-1to finite shear strains, γ, of 0.5 - 5. After the experiment, high resolution backscattered electron images were obtained using a SEM equipped with a field emission gun. Individual melt pockets were segmented and their SPO analyzed using the paror and surfor methods and Fourier transforms (Heilbronner and Barret 2014). Melt segregation into melt-rich sheets inclined at 15° -20° antithetic with respect to the shear plane occurs in three-phase system (olivine + chromite + basalt) and in two-phase systems (olivine + basalt) twisted to high strain. The SPO of individual melt pockets within the melt-rich bands is moderately strong (b/a ≈ 0.8) and is always steeper (20° -40°) than the average melt-rich band orientation. In the two-phase system (olivine + basalt) sheared to lower strains, no distinct melt-rich sheets are observed. Individual grain-scale melt pockets are oriented at 45° -55

  7. Circumstellar Crystalline Silicates: Evolved Stars

    NASA Astrophysics Data System (ADS)

    Tartar, Josh; Speck, A. K.

    2008-05-01

    One of the most exciting developments in astronomy in the last 15 years was the discovery of crystalline silicate stardust by the Short Wavelength Spectrometer (SWS) on board of ISO; discovery of the crystalline grains was indeed one of the biggest surprises of the ISO mission. Initially discovered around AGB stars (evolved stars in the range of 0.8 > M/M¤>8) at far-infrared (IR) wavelengths, crystalline silicates have since been seen in many astrophysical environments including young stellar objects (T Tauri and Herbig Ae/Be), comets and Ultra Luminous Infrared Galaxies. Low and intermediate mass stars (LIMS) comprise 95% of the contributors to the ISM, so study of the formation of crystalline silicates is critical to our understanding of the ISM, which is thought to be primarily amorphous (one would expect an almost exact match between the composition of AGB dust shells and the dust in the ISM). Whether the crystalline dust is merely undetectable or amorphized remains a mystery. The FORCAST instrument on SOFIA as well as the PACS instrument on Herschel will provide exciting observing opportunities for the further study of crystalline silicates.

  8. Amended Silicated for Mercury Control

    SciTech Connect

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly

  9. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  10. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  11. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  12. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  13. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  14. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  15. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  16. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  17. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  18. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  19. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  20. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  1. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  2. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  3. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  4. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  5. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  6. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  7. 7. DETAIL VIEW OF ROCKER ARM, SHOWING POCKETS, LUGS, INCLINED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW OF ROCKER ARM, SHOWING POCKETS, LUGS, INCLINED STOPPING BLOCK AT SHOREWARD END OF TRACK GIRDER - Seddon Island Scherzer Rolling Lift Bridge, Spanning Garrison Channel from Tampa to Seddon Island, Tampa, Hillsborough County, FL

  8. 15. MACHINERY DETAILS: LATCH WHEEL BRACKET, LATCH POCKET, LOCK BAR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. MACHINERY DETAILS: LATCH WHEEL BRACKET, LATCH POCKET, LOCK BAR, LATCH CRADLE, SPLIT COLLAR, ETC. - Niantic River Swing Bridge, Spanning Niantic River between East Lyme & Waterford, Old Lyme, New London County, CT

  9. Investigation on the gas pockets in a rotodynamic multiphase pump

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Li, Y. J.; Cai, S. J.; Zhu, H. W.; Zhang, Y. X.

    2016-05-01

    The appearance of gas pockets has an obvious impact on the performance of the rotodynamic multiphase pump. In order to study the formation of gas pockets in the pump and its effects on pump's performance, the unsteady numerical simulation and the visualization experiments were done to investigate gas pockets in a three-stage rotodynamic multiphase pump developed by authors. Meanwhile, the mixture of water and air was selected as the medium. According to the distributions of pressure, gas volume fraction and velocity vector in three compression cells in unsteady flow process, the process of the formation of gas pockets in the pump were analysed generally. The visualization experiments were used to verify the validity of the numerical simulation. The results will be benefit for the hydraulic design of the compression cell of rotodynamic multiphase pump.

  10. Behind the Scenes: Astronauts Pockets Deep in Mystery

    NASA Video Gallery

    Host Mike Massimino returns to the pre-launch suit up room at the Kennedy Space Center to reexamine the question: what's inside all those pockets of the astronauts' big orange suits? Find out on "N...

  11. Synthesis of diamonds with mineral, fluid and melt inclusions

    NASA Astrophysics Data System (ADS)

    Bataleva, Yuliya V.; Palyanov, Yuri N.; Borzdov, Yuri M.; Kupriyanov, Igor N.; Sokol, Alexander G.

    2016-11-01

    Experiments on the synthesis of inclusions-bearing diamond were performed in the SiO2-((Mg,Ca)CO3-(Fe,Ni)S system at 6.3 GPa and 1650-1750 °C, using a multi-anvil high pressure apparatus of the ;split-sphere; type. Diamond synthesis was realized in the ;sandwich-type; experiments, where the carbonate-oxide mixture acted as a source of both CO2-dominated fluid and carbonate-silicate melt, and Fe,Ni-sulfide played a role of reducing agent. As a result of redox reactions in the carbonate-oxide-sulfide system, diamond was formed in association with graphite and Mg,Fe-silicates, coexisting with CO2-rich fluid, carbonate-silicate and sulfide melts. The synthesized diamonds are predominantly colorless or light-yellow monocrystals with octahedral habit (20-200 μm), and polycrystalline aggregates (300-400 μm). Photoluminescence spectroscopy revealed defects related to nickel impurity (S3 optical centers), which are characteristic of many diamonds in nature. The density of diamond crystallization centers over the entire reaction volume was 3 × 102-103 cm- 3. The overwhelming majority of diamonds synthesized were inclusions-bearing. According to Raman spectroscopy data, diamond trapped a wide variety of inclusions (both mono- and polyphase), including orthopyroxene, olivine, carbonate-silicate melt, sulfide melt, CO2-fluid, graphite, and diamond. The Raman spectral pattern of carbonate-silicate melt inclusions have bands characteristic of magnesite and orthopyroxene (± SiO2). The spectra of sulfide melt displayed marcasite and pyrrhotite peaks. We found that compositions of sulfide, silicate and carbonate phases are in good agreement not only with diamond crystallization media in experiments, but with data on natural diamond inclusions of peridotitic and eclogitic parageneses. The proposed methodological approach of diamond synthesis can be used for experimental simulation of the formation of several types of mineral, fluid and melt inclusions, observed in natural

  12. Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle.

    PubMed

    Rosenthal, Anja; Yaxley, Gregory M; Green, David H; Hermann, Joerg; Kovács, István; Spandler, Carl

    2014-08-18

    Large-scale tectonic processes introduce a range of crustal lithologies into the Earth's mantle. These lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous mantle and we characterize the melting reactions and compositional changes in the residue minerals. The chemical exchange between these partial melts and more refractory peridotite leads to a variably metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing, hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat.

  13. Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle

    PubMed Central

    Rosenthal, Anja; Yaxley, Gregory M.; Green, David H.; Hermann, Joerg; Kovács, István; Spandler, Carl

    2014-01-01

    Large-scale tectonic processes introduce a range of crustal lithologies into the Earth's mantle. These lithologies have been implicated as sources of compositional heterogeneity in mantle-derived magmas. The model being explored here assumes the presence of widely dispersed fragments of residual eclogite (derived from recycled oceanic crust), stretched and stirred by convection in the mantle. Here we show with an experimental study that these residual eclogites continuously melt during upwelling of such heterogeneous mantle and we characterize the melting reactions and compositional changes in the residue minerals. The chemical exchange between these partial melts and more refractory peridotite leads to a variably metasomatised mantle. Re-melting of these metasomatised peridotite lithologies at given pressures and temperatures results in diverse melt compositions, which may contribute to the observed heterogeneity of oceanic basalt suites. We also show that heterogeneous upwelling mantle is subject to diverse local freezing, hybridization and carbonate-carbon-silicate redox reactions along a mantle adiabat. PMID:25130275

  14. Experimental Modeling of Peridotite Melting with Alkali-Carbonate Fluid at P = 3.9 GPa, T=1250°C

    NASA Astrophysics Data System (ADS)

    Kostyuk, Anastasia; Gorbachev, Nikolay; Nekrasov, Alexey

    2014-05-01

    The close association of alkaline and ultramafic rocks with carbonatites, apatite and sulfide mineralization, as well as features of the melt compositions, tell us about the mantle source and the importance of alkaline-carbonate fluids in the genesis of these rocks. Experimental modeling of formation of alkali silicate, carbonate and sulfide melts was carried out in the system peridotite-alkaline-carbonate fluid (K, Na)2CO3 with additives of apatite, nickel-containing pyrrhotite, ilmenite and zircon as accessory minerals at P= 3.9 GPa and T=1250°C. Composition of coexisting melts, phase relationships, behavior of titanium, phosphorus, sulfur and zircon have been studied in this system. Liquidus association of phlogopite-clinopyroxene-zircon-X-phase (not diagnosed titanium and phosphorus-containing aluminosilicate phase) cemented by intergranular silicate glass with inclusions of carbonate and sulphide phases at partial (10%) melting of peridotite. Morphology, composition and relations of silicate glass, carbonate and sulfide globules indicate the existence of immiscible silicate, carbonate and sulfide melts at the experimental conditions. The composition of the silicate melt is phonolite, carbonate melt - significantly calcium composition with an admixture of alkali metal and silicate components. Solubility of zircon in silicate melt reached up to 0.8 wt.% of ZrO2, in coexisting carbonate melt - up to 1.5 wt.%. Absence of ilmenite and apatite in the experimental samples due to their high solubility in the coexisting phases. Concentration of TiO2 and P2O5 in silicate melt reached 2 wt. %. The concentration of TiO2 in the carbonate melt up to 1.7 wt.% and P2O5 up to 14 wt.%. The sulfur concentration in these melts does not exceed 0.2 wt.%. Concentrators of titanium and phosphorus among liquidus minerals were X-phase and phlogopite - 8 wt.% TiO2 and up to 3 wt.% P2O5 in the X-phase; up to 6 wt.% TiO2 and up to 2.5 wt.% of P2O5 in the phlogopite. The distribution

  15. Probing the atomic structure of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1): Insights from high-resolution solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Lee, S. K.

    2015-12-01

    Probing the structural disorder in multi-component silicate glasses and melts with varying composition is essential to reveal the change of macroscopic properties in natural silicate melts. While a number of NMR studies for the structure of multi-component silicate glasses and melts including basaltic and andesitic glasses have been reported (e.g., Park and Lee, Geochim. Cosmochim. Acta, 2012, 80, 125; Park and Lee, Geochim. Cosmochim. Acta, 2014, 26, 42), many challenges still remain. The composition of multi-component basaltic melts vary with temperature, pressure, and melt fraction (Kushiro, Annu. Rev. Earth Planet. Sci., 2001, 71, 107). Especially, the eutectic point (the composition of first melt) of nepheline-forsterite-quartz (the simplest model of basaltic melts) moves with pressure from silica-saturated to highly undersaturated and alkaline melts. The composition of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1, the xenolith from Kilbourne Hole) also vary with pressure. In this study we report experimental results for the effects of composition on the atomic structure of Na2O-MgO-Al2O3-SiO2 (NMAS) glasses in nepheline (NaAlSiO4)-forsterite (Mg2SiO4)-quartz (SiO2) eutectic composition and basaltic glasses generated by partial melting of upper mantle peridotite (KLB-1) using high-resolution multi-nuclear solid-state NMR. The Al-27 3QMAS (triple quantum magic angle spinning) NMR spectra of NMAS glasses in nepheline-forsterite-quartz eutectic composition show only [4]Al. The Al-27 3QMAS NMR spectra of KLB-1 basaltic glasses show mostly [4]Al and a non-negligible fraction of [5]Al. The fraction of [5]Al, the degree of configurational disorder, increases from 0 at XMgO [MgO/(MgO+Al2O3)]=0.55 to ~3% at XMgO=0.79 in KLB-1 basaltic glasses while only [4]Al are observed in nepheline-forsterite-quartz eutectic composition. The current experimental results provide that the fraction of [5]Al abruptly increases by the effect of

  16. Evolution of peralkaline silicic complexes: Lessons from the extrusive rocks

    NASA Astrophysics Data System (ADS)

    Macdonald, Ray

    2012-11-01

    Young (< 1 Ma) volcanic complexes in the Kenya Rift Valley are used to outline recent progress in our understanding of how peralkaline silicic systems evolve. Such systems are all to some degree unique, varying in their structural development, the interplay of petrogenetic complexes, and the range of lithologies. Peralkaline silicic reservoirs vary greatly in size and form (even beneath volcanoes of roughly similar size) but all are basalt-driven, in that basaltic magma is the fundamental source of heat and volatiles in the magmatic system. Fractional crystallisation of basaltic magma is the dominant differentiation mechanism but important contributions are made by magma mixing, remobilisation of crystal mushes and feldspar resorption, exsolution of carbonate phases and various volatile-magma interactions. Peralkaline silicic magmas are water-rich (> 4 wt.%) and the rhyolitic varieties evolve to temperatures < 800 °C at oxygen fugacities largely within the range ∆FMQ 0 to - 1. They can be categorised as of cold-wet-reduced type. Low viscosities (< 104-106 Pa s) result in rapid growth of volcanic edifices, highly efficient crystal-melt separation and the ubiquitous development of compositionally zoned caps to reservoirs. No peralkaline equivalent of the monotonous intermediate ignimbrites found in some calc-alkaline systems has yet been found.

  17. Removal of lead from cathode ray tube funnel glass by generating the sodium silicate.

    PubMed

    Hu, Biao; Zhao, Shuangshuang; Zhang, Shuhao

    2015-01-01

    In the disposal of electronic waste, cathode ray tube (CRT) funnel glass is an environmental problem of old television sets. Removal of the lead from CRT funnel glass can prevent its release into the environment and allow its reuse. In this research, we reference the dry progress productive technology of sodium silicate, the waste CRT glass was dealt with sodium silicate frit melted and sodium silicate frit dissolved. Adding a certain amount of Na ₂CO₃to the waste CRT glass bases on the material composition and content of it, then the specific modulus of sodium silicate frit is obtained by melting progress. The silicon, potassium and sodium compounds of the sodium silicate frit are dissolved under the conditions of high temperature and pressure by using water as solvent, which shows the tendency that different temperature, pressure, liquid-solid ratio and dissolving time have effect on the result of dissolving. At 175°C(0.75MPa), liquid-solid ratio is 1.5:1, the dissolving time is 1h, the dissolution rate of sodium silicate frit is 44.725%. By using sodium sulfide to separate hydrolysis solution and to collect lead compounds in the solution, the recovery rate of lead in dissolving reached 100% and we can get clean sodium silicate and high purity of lead compounds. The method presented in this research can recycle not only the lead but also the sodium, potassium and other inorganic minerals in CRT glass and can obtain the comprehensive utilization of leaded glass.

  18. Distribution of rubidium between sodic sanidine and natural silicic liquid

    USGS Publications Warehouse

    Noble, D.C.; Hedge, C.E.

    1970-01-01

    Phenocrysts of sodic sanidine from twelve upper Cenozoic units of silicic ash-flow tuff and lava from the Western United States contain from 0.25 to 0.45 the Rb present in the associated groundmass materials. The ratios of potassium to rubidium in the sanidines are, on the average, about four times greater than those of the groundmass. Separation of phenocrystic sanidine from salic melts provides an efficient method for raising the Rb content and lowering the K/Rb ratio of the melts, although the amount of differentiation probably is limited by continuous reequilibration of the alkalis between crystal and liquid phases through ion exchange. Syenites of cumulate origin will have appreciably lower Rb contents and higher K/Rb ratios than the melts from which they precipitated. Available data on the distribution of Rb between synthetic biotite and K-sanidine demonstrate that the separation of biotite probably will not deplete salic melts in Rb relative to K. ?? 1970 Springer-Verlag.

  19. Sublithospheric Triggers for Episodic Silicic Magmatism in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Gerya, T.; Vogt, K.; Schubert, M.

    2014-12-01

    The melt source and ascent mechanisms for crustal-scale silicic magmatism in subduction zones remain a matter of debate. Recent petrological-thermo-mechanical numerical experiments suggest that important physical controls of this process can be of sublithospheric origin. Firstly, deep sources of silicic magma can be related to episodic development of positively buoyant diapiric structures in the mantle wedge originated from deeply subducted rock mélanges (Gerya and Yuen, 2003; Castro and Gerya, 2008). Partial melting of these rapidly ascending lithologically mixed structures can produce silicic magmas with a relatively constant major element composition and variable time-dependent isotopic ratios inherited from the mélange (Vogt et al., 2013). Secondly, episodic injections of subduction-related mantle-derived mafic magmas into a partially molten hot zone of the arc lower crust can drive ascents of pre-existing felsic crustal magmas toward upper crustal levels. The injection of mafic magma induces overpressure in the lower crustal magma reservoir, which increases crustal stresses and triggers development of brittle/plastic fracture zones serving as conduits for the rapid episodic ascent of felsic magmas (Shubert et al., 2013). Our numerical results thus imply that subduction-related sublithospheric magma intrusions into the lower arc crust may both be the prime source for the generation of silicic magmas and the major physical driving mechanism for their episodic ascent toward upper crustal levels. References:Castro, A., and Gerya, T.V., 2008. Magmatic implications of mantle wedge plumes: experimental study. Lithos 103, 138-148. Gerya, T.V., and Yuen, D.A., 2003. Rayleigh-Taylor instabilities from hydration and melting propel "cold plumes" at subduction zones. Earth and Planetary Science Letters 212, 47-62.Schubert, M., Driesner, T., Gerya, T.V., Ulmer, P., 2013. Mafic injection as a trigger for felsic magmatism: A numerical study. Geochemistry, Geophysics

  20. Cometary Silicates: Interstellar and Nebular Materials

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.

    2002-01-01

    Evidence for interstellar material in comets is deduced from IR spectra, insitu measurements of Halley, and chondritic porous interplanetary dust particles (CP IDPs). IR spectra of comets reveal the spectrally active minerals: amorphous carbon, amorphous silicates, and (in some comets) crystalline silicates. Evidence suggests amorphous silicates are of interstellar origin while crystalline silicates are of nebular origin. 10 microns spectra of comets and submicron amorphous silicate spherules in CP IDPs have shapes similar to lines-of-sight through the ISM. Thermal emission models of cometary IR spectra require Fe-bearing amorphous silicates. Fe-bearing amorphous silicates may be Fe-bearing crystalline silicates formed in AGB outflows that are amorphized through He+ ion bombardment in supernova shocks in the ISM. Crystalline silicates in comets, as revealed by IR spectra, and their apparent absence in the ISM, argues for their nebular origin. The high temperatures (less than l000 K) at which crystals form or are annealed occur in the inner nebula or in nebular shocks in the 5-10 AU region. Oxygen isotope studies of CP IDPs show by mass only 1 % of the silicate crystals are of AGB origin. Together this suggests crystalline silicates in comets are probably primitive grains from the early solar nebula.

  1. Genesis of the IIICD iron meteorites - Evidence from silicate-bearing inclusions

    NASA Technical Reports Server (NTRS)

    Mccoy, Timothy J.; Keil, Klaus; Scott, Edward R. D.; Haack, Henning

    1993-01-01

    Our studies of the silicate-bearing inclusions in the IIICD iron meteorites Maltahohe, Carlton, and Dayton suggest that their mineralogy and mineral compositions are related to the composition of the metal in the host meteorites. An inclusion in the low-Ni Maltahohe is similar in mineralogy to those in IAB irons, which contain olivine, pyroxene, plagioclase, graphite, and troilite. With increasing Ni concentration of the metal, silicate inclusions become poorer in graphite, richer in phosphates, and the phosphate and silicate assemblages become more complex. Dayton contains pyroxene, plagioclase, SiO2, brianite, panethite, and whitlockite, without graphite. In addition, mafic silicates become more FeO-rich with increasing Ni concentration of the hosts. In contrast, silicates in IAB irons show no such correlation with host Ni concentration, nor do they have the complex mineral assemblages of Dayton. These trends in inclusion composition and mineralogy in IIICD iron meteorites have been established by reactions between the S-rich metallic magma and the silicates, but the physical setting is uncertain. Of the two processes invoked by other authors to account for groups IAB and IIICD, fractional crystallization of S-rich cores and impact generation of melt pools, we prefer core crystallization. We suggest that the solidification of the IIICD core may have been very complex, involving fractional crystallization, nucleation effects and, possibly, liquid immiscibility.

  2. Low-(18)O Silicic Magmas: Why Are They So Rare?

    SciTech Connect

    Balsley, S.D.; Gregory, R.T.

    1998-10-15

    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 values between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.

  3. Surface characterization of silicate bioceramics.

    PubMed

    Cerruti, Marta

    2012-03-28

    The success of an implanted prosthetic material is determined by the early events occurring at the interface between the material and the body. These events depend on many surface properties, with the main ones including the surface's composition, porosity, roughness, topography, charge, functional groups and exposed area. This review will portray how our understanding of the surface reactivity of silicate bioceramics has emerged and evolved in the past four decades, owing to the adoption of many complementary surface characterization tools. The review is organized in sections dedicated to a specific surface property, each describing how the property influences the body's response to the material, and the tools that have been adopted to analyse it. The final section introduces the techniques that have yet to be applied extensively to silicate bioceramics, and the information that they could provide.

  4. Effect of water on the composition of partial melts of greenstone and amphibolite

    NASA Technical Reports Server (NTRS)

    Beard, James S.; Lofgren, Gary E.

    1989-01-01

    Closed-system partial melts of hydrated, metamorphosed arc basalts and andesites (greenstones and amphibolites), where only water structurally bound in metamorphic minerals is available for melting (dehydration melting), are generally water-undersaturated, coexist with plagioclase-rich, anhydrous restites, and have compositions like island arc tonalites. In contrast, water-saturated melting at water pressures of 3 kilobars yields strongly peraluminous, low iron melts that coexist with an amphibole-bearing, plagioclase-poor restite. These melt compositions are unlike those of most natural silicic rocks. Thus, dehydration melting over a range of pressures in the crust of island arcs is a plausible mechanism for the petrogenesis of islands arc tonalite, whereas water-saturated melting at pressure of 3 kilobars and above is not.

  5. Energetics of melts from thermal diffusion studies. Final report

    SciTech Connect

    Lesher, C.E.

    1998-12-01

    Most processes in geology are a consequence at some level of the flow of energy or mass. Heat conduction and chemical diffusion are examples of two of these sorts of flows which are driven by temperature and chemical potential imbalances, respectively. In the general case these flows may be coupled so that, for instance, a temperature gradient may result in a flow of mass as well as heat. This effect in liquids was demonstrated by Soret (1879) and bears his name. In gases or solids the phenomenon is given the general name thermal diffusion. It was the purpose of this research program to examine the Soret effect in molten silicates under laboratory conditions. Results of these experiments are used to evaluate the form and quantitative values of many thermodynamic and kinetic properties of silicate melts over a range of temperature, pressure, and bulk composition. The author published a comprehensive review and synthesis with a microscopic theoretical explanation for the effect at low pressure in silicate liquids of geological interest. He conducted experimental investigations of molecular diffusion in the absence of a thermal gradient through experiments involving dissolution of solid silicates in molten silicate and interdiffusion of species between miscible silicate liquids. Collectively these results enable the author to construct a more comprehensive model of molecular diffusion in magmatic liquids. He has applied this model to problems of magma mixing and crustal assimilation.

  6. Impact-induced melting during accretion of the Earth

    NASA Astrophysics Data System (ADS)

    de Vries, Jellie; Nimmo, Francis; Melosh, H. Jay; Jacobson, Seth A.; Morbidelli, Alessandro; Rubie, David C.

    2016-12-01

    Because of the high energies involved, giant impacts that occur during planetary accretion cause large degrees of melting. The depth of melting in the target body after each collision determines the pressure and temperature conditions of metal-silicate equilibration and thus geochemical fractionation that results from core-mantle differentiation. The accretional collisions involved in forming the terrestrial planets of the inner Solar System have been calculated by previous studies using N-body accretion simulations. Here we use the output from such simulations to determine the volumes of melt produced and thus the pressure and temperature conditions of metal-silicate equilibration, after each impact, as Earth-like planets accrete. For these calculations a parameterised melting model is used that takes impact velocity, impact angle and the respective masses of the impacting bodies into account. The evolution of metal-silicate equilibration pressures (as defined by evolving magma ocean depths) during Earth's accretion depends strongly on the lifetime of impact-generated magma oceans compared to the time interval between large impacts. In addition, such results depend on starting parameters in the N-body simulations, such as the number and initial mass of embryos. Thus, there is the potential for combining the results, such as those presented here, with multistage core formation models to better constrain the accretional history of the Earth.

  7. A Disequilibrium Melting Spectrum: Partially Melted Crustal Xenoliths from the Wudalianchi Volcanic Field, NE China.

    NASA Astrophysics Data System (ADS)

    McLeod, C. L.; McGee, L. E.

    2015-12-01

    Disequilibrium melting has been established as a common process occurring during crustal anatexis and thus demonstrates that crustal assimilation by ascending mantle-derived magmas is likley not a closed system. Observations of extreme compositional heterogeneity within partial melts derived from crustal xenoliths have been documented in several recent examples, however, the retention or transfer of elements to and from residues and glasses, and their relative contributions to potential crustal contaminants warrants further investigation. Sampled lavas from the Huoshaoshan volcano in the Holocene Wudalianchi volcanic field of Northeast China contain crustal xenoliths which preserve a spectrum of partial melting both petrographically and geochemically, thus providing an excellent, natural example of crustal anatexis. Correlations exist between the volume of silicic glass preserved within the xenoliths and bulk rock SiO2 (70-83 wt%), Al2O3 (16-8 wt%), glass 87Sr/86Sr (0.715-0.908), abundances of elements common in feldspars and micas (Sr, Ba, Rb) and elements common in accessory minerals (Y, Zr, Nb). These correlations are likely associated with the consumption of feldspars and micas and the varying retention of accessory phases during partial melting. The xenoliths which contain the greater volumes of silicic glass and residual quartz (interpreted as being the most melted) were found within pahoehoe lava, whilst the least melted xenoliths were found within scoria of the summit cone of Huoshaoshan; thus it is interpreted that the extent of melting is linked to the immersion time in the lava. Small-scale (mm) mingling and transfer of material from the enclosing lava to the xenolith is observed, however, modelling of potential contaminant compositions is inconsistent with crustal contamination during lava petrogenesis. It is inferred that crustal contamination in sampled lavas is localized within the open magmatic system and most likely occurs at the contact zone

  8. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..

    2014-01-01

    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  9. Diffusion of dissolved CO sub 2 and Cl in hydrous silicic to intermediate magmas

    SciTech Connect

    Watson, E.B. )

    1991-07-01

    The bulk diffusivity of dissolved CO{sub 2} in obsidian and dacite melts containing 0-11 wt% dissolved water at 800-1,100C and 1 GPa was characterized using a {sup 14}C radiotracer technique. Five values were also obtained for Cl in melts containing 8% H{sub 2}O. Carbon dioxide diffusivity (D{sub CO{sub 2}}) in nominally dry molten obsidian is similar to previously reported values for a simple melt in the Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2} system and for dry basalt, indicating little effect of melt composition on bulk CO{sub 2} diffusion. Three D{sub CO{sub 2}} values for hydrous dacite melt are consistent with this lack of a melt composition effect. Dissolved water, however, causes an increase of D{sub CO{sub 2}} in molten obsidian by about an order of magnitude for each 5% of added water. The activation energy of {approximately}18 kcal/mol is lower by a factor of {approximately}3 than that for diffusion in dry basalt. In comparison with existing data for diffusion of water in silicic melts at their typical liquidus temperatures, D{sub CO{sub 2}} is generally lower unless the melt contains more than about 6% dissolved H{sub 2}O, in which case D{sub CO{sub 2}} {approximately} D{sub H{sub 2}0}. The few data obtained from chlorine diffusion reveal the D{sub Cl} is lower by a factor of 5-10 than D{sub CO{sub 2}} in the same melt. The overall systematics of the new data on dissolved volatile diffusion indicate that diffusional fractionation effects are likely to be most significant in silicic to intermediate magmas having water contents in the 0-4% range.

  10. Concentrations and behavior of oxygen and oxide ion in melts of composition CaO.MgO.xSiO2

    NASA Technical Reports Server (NTRS)

    Semkow, K. W.; Haskin, L. A.

    1985-01-01

    The behavior of oxygen and oxide ion in silicate melts was investigated through their electrochemical reactions at a platinum electrode. Values are given for the diffusion coefficient for molecular oxygen in diopside melt and the activation energy of diffusion. It is shown that molecular oxygen dissociates prior to undergoing reduction and that oxide ion reacts quickly with silicate polymers when it is produced. The concentration of oxide ion is kept low by a buffering effect of the silicate, the exact level being dependent on the silicate composition. Data on the kinetics of reaction of the dissociation of molecular oxygen and on the buffering reactions are provided. It is demonstrated that the data on oxygen in these silicate melts are consistent with those for solid buffers.

  11. Free enthalpies of replacing water molecules in protein binding pockets

    NASA Astrophysics Data System (ADS)

    Riniker, Sereina; Barandun, Luzi J.; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F.

    2012-12-01

    Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH3 group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH3 at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.

  12. Free enthalpies of replacing water molecules in protein binding pockets.

    PubMed

    Riniker, Sereina; Barandun, Luzi J; Diederich, François; Krämer, Oliver; Steffen, Andreas; van Gunsteren, Wilfred F

    2012-12-01

    Water molecules in the binding pocket of a protein and their role in ligand binding have increasingly raised interest in recent years. Displacement of such water molecules by ligand atoms can be either favourable or unfavourable for ligand binding depending on the change in free enthalpy. In this study, we investigate the displacement of water molecules by an apolar probe in the binding pocket of two proteins, cyclin-dependent kinase 2 and tRNA-guanine transglycosylase, using the method of enveloping distribution sampling (EDS) to obtain free enthalpy differences. In both cases, a ligand core is placed inside the respective pocket and the remaining water molecules are converted to apolar probes, both individually and in pairs. The free enthalpy difference between a water molecule and a CH(3) group at the same location in the pocket in comparison to their presence in bulk solution calculated from EDS molecular dynamics simulations corresponds to the binding free enthalpy of CH(3) at this location. From the free enthalpy difference and the enthalpy difference, the entropic contribution of the displacement can be obtained too. The overlay of the resulting occupancy volumes of the water molecules with crystal structures of analogous ligands shows qualitative correlation between experimentally measured inhibition constants and the calculated free enthalpy differences. Thus, such an EDS analysis of the water molecules in the binding pocket may give valuable insight for potency optimization in drug design.

  13. The effects of sulfur, silicon, water, and oxygen fugacity on solubility and metal-silicate partitioning of carbon at 3 GPa and 1600 °C - Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles

    NASA Astrophysics Data System (ADS)

    Li, Y.; Dasgupta, R.; Tsuno, K.

    2014-12-01

    The partition coefficient of carbon between Fe-rich alloy melt and silicate melt, and solubility of C-O-H volatiles in reduced silicate melts are key to understand the origin and distribution of carbon in different planetary reservoirs and subsequent evolution of volatiles in magma oceans (MO) and silicate mantles. In this study, three sets of graphite-saturated experiments have been performed at 3 GPa and 1600 °C to investigate the effects of oxygen fugacity (fO2), sulfur, silicon, and water on the dissolution and partitioning of carbon between Fe-rich alloy melt and silicate melt. The results show that the presence of 0-5 wt% sulfur in alloy melt does not have considerable effect on carbon solubility (~5.6 wt%) in alloy melt, whereas the presence of 0-10 wt% silicon decreases it from ~5.6 wt% to 1.8 wt%. Carbon solubility (11-192 ppm) in silicate melt is strongly controlled by fO2 and the bulk water content. Decreasing fO2 from IW-0.6 to IW-4.7 or increasing bulk water content from 0.07 to 0.55 wt% results in significant increase of carbon solubility in silicate melt. Raman and FTIR spectroscopy of silicate glasses show that the carbon species is mostly methane, confirmed by the positive correlation between carbon and non-hydroxyl hydrogen in silicate melt. The decreases from 4600 to 180 with decreasing fO2 or increasing bulk water in silicate melt. In addition, increasing Si in metallic alloy melt also decreases . Our results show that fO2 and silicate melt bulk water contents play an important role in the fractionation of carbon in planetary MO. A reduced, hydrous MO may have led to a considerable fraction of carbon retained in the silicate mantle, whereas an oxidized, dry MO may have lost almost its entire carbon to the core. If delivery of bulk Earth carbon predominantly occurred after >90% of accretion, i.e., in a relatively oxidized MO (IW-2 to IW-1), then with applicable >1000, most carbon would also enter the segregating core. Finally, the predominance

  14. Partial melting of apatite-bearing charnockite, granulite, and diorite: Melt compositions, restite mineralogy, and petrologic implications

    NASA Technical Reports Server (NTRS)

    Beard, James S.; Lofgren, Gary E.; Sinha, A. Krishna; Tollo, Richard P.

    1994-01-01

    Melting experiments (P = 6.9 kbar, T = 850-950 deg C, NNO is less than fO2 is less than HM) were done on mafic to felsic charnockites, a dioritic gneiss, and a felsic garnet granulite, all common rock types in the Grenville basement of eastern North America. A graphite-bearing granulite gneiss did not melt. Water (H2O(+) = 0.60 to 2.0 wt %) is bound in low-grade, retrograde metamorphic minerals and is consumed during the earliest stages of melting. Most melts are water-undersaturated. Melt compositions range from metaluminous, silicic granodiorite (diorite starting composition) to peraluminous or weakly metaluminous granites (all others). In general, liquids become more feldspathic, less silicic, and less peraluminous and are enriched in FeO, MgO, and TiO2 with increasing temperature. Residual feldspar mineralogy controls the CaO, K2O, and Na2O contents of the partial melts and the behavior of these elements can be used, particularly if the degree of source melting can be ascertained, to infer some aspects of the feldspar mineralogy of the source. K-feldspar, a common restite phase in the charnockite and granulite (but not the diorite) should control the behavior of Ba and, possibly, Eu in these systems and yield signatures of these elements that can distinguish source regions and, in some cases, bulk versus melt assimilation. Apatite, a common restite phase, is enriched in rare earth elements (REE), especially middle REE. Retention of apatite in the restite will result in steep, light REE-enriched patterns for melts derived from the diorite and charnockites.

  15. Melt-melt immiscibility as result of synchronous melting of metapelites and impure marbles at crustal depth in the Moldanubian Zone, Bohemian Massif.

    NASA Astrophysics Data System (ADS)

    Ferrero, Silvio; O´Brien, Patrick J.; Ziemann, Martin A.; Wunder, Bernd; Hecht, Lutz; Wälle, Markus

    2016-04-01

    the commonly observed preferentially partitioning of REE in carbonatic melts with respect to silicatic melts. The formation of this carbonatic melt under conditions of primary melt-melt immiscibility at relatively shallow crustal levels is a novel finding. Primary carbonatic melts, i.e. carbonatites, are characteristically the product of partial melting of carbonates at mantle depths, or result from differentiation of deep, Ca-rich silicate melt during migration toward the surface. In the present case study, the protolith of these migmatites was likely a heterogeneous (meta)sedimentary sequence, mainly composed of pelitic sediments and including scattered lenses of impure limestones, which underwent synchronous partial melting during the Variscan orogeny.

  16. Li{sup +} alumino-silicate ion source development for the neutralized drift compression experiment

    SciTech Connect

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2011-01-15

    We report results on lithium alumino-silicate ion source development in preparation for warm dense matter heating experiments on the new neutralized drift compression experiment II. The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of {approx_equal}1275 deg. C, a space-charge limited Li{sup +} beam current density of J {approx_equal}1 mA/cm{sup 2} was obtained. The lifetime of the ion source was {approx_equal}50 h while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 {mu}s.

  17. Evidence for the reversal of gradients in the uppermost parts of silicic magma reservoirs

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    Evidence from large-volume ignimbrites indicates that the source-magma reservoirs for most of these voluminous silicic pyroclastic deposits contained monotonic vertical chemical gradients at the time of eruption. However, gradients from a large-volume magma reservoir that produced a group of penecontemporaneous silicic lava domes, but no ignimbrite, show a reversal of the usual ignimbrite pattern. This reversal originated by modification of the usual pattern through minor assimilation of partially melted roof rocks. Eruptions that produced these domes apparently just tapped the uppermost part of their source reservoir. They thereby provide a high-resolution instantaneous view of this variably contaminated part of the magma system. The long-standing paradigm for monotonic zoning in large-volume reservoirs of silicic magma may require modification. -from Authors

  18. AN EXAMINATION OF COLLISIONAL GROWTH OF SILICATE DUST IN PROTOPLANETARY DISKS

    SciTech Connect

    Yamamoto, Tetsuo; Kadono, Toshihiko; Wada, Koji

    2014-03-10

    N-body simulations of collisions of dust aggregates in protoplanetary disks performed so far have revealed that silicate aggregates suffer from catastrophic disruption if the collision velocities are higher than about 10 m s{sup –1}, which is much lower than those expected in the disks. This is mainly due to the low surface energy of the quartz used in the simulations. We find a simple relation between the surface energy and melting temperature for various materials including those of astrophysical interest, and show that the surface energy of the quartz used in the previous simulations is much lower than the present estimate. This result may provide a way out of the difficulty of growing silicate dust inside the snowline in disks. We show that silicate dust can evade catastrophic disruption and grow even at high-velocity collisions expected in the disks if one takes the present estimate of the surface energy into account.

  19. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    SciTech Connect

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  20. NMR evidence for five-coordinated silicon in a silicate glass at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stebbins, Jonathan F.

    1991-06-01

    KNOWLEDGE of the structure of liquid silicates is essential to understanding the properties of materials ranging from magmas in lava flows to melts in glass processing. At 1 atmosphere pressure, a wide range of evidence indicates that most silicon cations in these systems are coordinated by four oxygens in a tetrahedral configuration (SiIV). Molecular dynamics computer simulations of these liquids have, however, predicted that defect complexes (of relatively low abundance) consisting of silicon with five oxygen neighbours (SiV) are of key importance in the mechanism by which viscous flow takes place1-5. I present here direct experimental evidence from 29Si NMR studies of K2Si4O9 glass that SiV does exist in silicate liquids at low pressures, and that the abundance of this species increases with temperature, supporting the idea that SiV defects contribute to 'weakening' of the structure of molten silicates.

  1. The genetic basis of adaptive melanism in pocket mice.

    PubMed

    Nachman, Michael W; Hoekstra, Hopi E; D'Agostino, Susan L

    2003-04-29

    Identifying the genes underlying adaptation is a major challenge in evolutionary biology. Here, we describe the molecular changes underlying adaptive coat color variation in a natural population of rock pocket mice, Chaetodipus intermedius. Rock pocket mice are generally light-colored and live on light-colored rocks. However, populations of dark (melanic) mice are found on dark lava, and this concealing coloration provides protection from avian and mammalian predators. We conducted association studies by using markers in candidate pigmentation genes and discovered four mutations in the melanocortin-1-receptor gene, Mc1r, that seem to be responsible for adaptive melanism in one population of lava-dwelling pocket mice. Interestingly, another melanic population of these mice on a different lava flow shows no association with Mc1r mutations, indicating that adaptive dark color has evolved independently in this species through changes at different genes.

  2. Ethics pocket cards: an educational tool for busy clinicians.

    PubMed

    Volpe, Rebecca L; Levi, Benjamin H; Blackhall, George F; Green, Michael J

    2014-01-01

    The adage "an ounce of prevention is worth a pound of cure" is widely used in healthcare settings and can be applied to the work of institutional clinical ethics committees. The model of clinical ethics consultation, however, is inherently reactive: a crisis or question emerges, and ethics experts are called to help. In an effort to employ a proactive component to the model of clinical ethics consultation (as well as to standardize our educational interventions), we developed ethics pocket cards. The purpose of this article is to: (1) describe the rationale for using ethics pocket cards, (2) provide examples of our cards, and (3) begin a dialogue about the potential uses of ethics pocket cards. In doing so, we hope to explore how such portable, economical devices can advance the goals of ethics consultation as well as the educational aims of ethics committees.

  3. Pocket-Sized Echocardiography Devices: One Stop Shop Service?

    PubMed

    Seraphim, Andreas; Paschou, Stavroula A; Grapsa, Julia; Nihoyannopoulos, Petros

    2016-03-01

    The introduction of portable, pocket-sized echocardiography devices in various healthcare systems has raised new questions with regards to their realistic use in clinical practice. Several studies have already attempted to provide information regarding their safety and diagnostic potential, the training required to operate them, as well as their direct comparison with standard echocardiography machines. This manuscript is a review of the literature of the documents or position papers which employ the use of pocket or handheld devices. Following review of the literature, we suggest that these miniaturized devices can provide a valuable diagnostic tool that can complement and improve the diagnostic yield of clinical examination. When operated by appropriately trained professionals, they can provide a limited but very reliable echocardiographic assessment. Pocket-sized echocardiography is a part of physical examination and should not be considered a complete echocardiographic scan. Optimal training is required for the smooth operation of handheld echocardiography.

  4. Pocket-Sized Echocardiography Devices: One Stop Shop Service?

    PubMed Central

    Seraphim, Andreas; Paschou, Stavroula A; Nihoyannopoulos, Petros

    2016-01-01

    The introduction of portable, pocket-sized echocardiography devices in various healthcare systems has raised new questions with regards to their realistic use in clinical practice. Several studies have already attempted to provide information regarding their safety and diagnostic potential, the training required to operate them, as well as their direct comparison with standard echocardiography machines. This manuscript is a review of the literature of the documents or position papers which employ the use of pocket or handheld devices. Following review of the literature, we suggest that these miniaturized devices can provide a valuable diagnostic tool that can complement and improve the diagnostic yield of clinical examination. When operated by appropriately trained professionals, they can provide a limited but very reliable echocardiographic assessment. Pocket-sized echocardiography is a part of physical examination and should not be considered a complete echocardiographic scan. Optimal training is required for the smooth operation of handheld echocardiography. PMID:27081437

  5. Adsorption kinetics of silicic acid on akaganeite.

    PubMed

    Naren, Gaowa; Ohashi, Hironori; Okaue, Yoshihiro; Yokoyama, Takushi

    2013-06-01

    As part of a series of studies on the interaction between ferric ions and silicic acid in the hydrosphere, the adsorption of silicic acid on akaganeite was investigated kinetically at various pH values. The adsorption of silicic acid increased with increasing pH over an initial pH range of 4-11.5. In the kinetic experiment, the Cl(-) was released from akaganeite much faster than silicic acid was adsorbed. From this result, we concluded that chloride ions bound on the surface of akaganeite are released and Fe-OH or Fe-O(-) sites are formed, which then acts as an adsorption site for silicic acid. The uptake mechanism of silicic acid by akaganeite is significantly different from that by schwertmannite, despite the presence of the same tunnel structure.

  6. Chemistry of the subalkalic silicic obsidians

    USGS Publications Warehouse

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    liquid-state differentiation mechanisms, or in other words a complex interaction of petrogenetic processes (CIPP types). Such rocks may also form by volatile-fluxed partial melting of the wallrocks, and subsequent mixing into the magma reservoir. Compositional ranges and averages for CLPD and CIPP obsidians are given. It is shown by analogy with well-documented, zoned ash-flow ruffs that obsidians fractionated by CIPP have very low Mg, P, Ba, and Sr contents, flat rare-earth-element patterns with extensive Eu anomalies, low K/Rb and Zr/Nb ratios, and relatively high Na2O/K2O ratios. There is, however, considerable compositional overlap between CLPD and CIPP obsidians. The effects of magma mixing, assimilation, and vapor-phase transport in producing compositional variations in the obsidians are briefly assessed. The geochemistry of the subalkalic silicic obsidians is described on an element-by-element basis, in order to provide a database for silicic magma compositions that will hopefully contribute to studies of granitic rocks. Attempts are also made to isolate the geochemical effects of tectonic environment and genetic mechanism for each element, by comparison with data from crystal-liquid equilibria-controlled systems, from ash-flow sheets zoned by CIPP, and from mixed-magma series. A final tabulation relates the complexities of obsidian geochemistry to all the tectonic and genetic variables.

  7. Apatite-Melt Partitioning at 1 Bar: An Assessment of Apatite-Melt Exchange Equilibria Resulting from Non-Ideal Mixing of F and Cl in Apatite

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.

    2016-01-01

    The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl

  8. Evidence for extreme fractionation of peralkaline silicic magmas, the Boseti volcanic complex, Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    MacDonald, Ray; Bagiński, Bogusław; Ronga, Fiorenzo; Dzierżanowski, Piotr; Lustrino, Michele; Marzoli, Andrea; Melluso, Leone

    2012-03-01

    Matrix glass and melt inclusions in phenocrysts from pantellerite lavas of the Boseti volcanic complex, Ethiopia, record extreme fractionation of peralkaline silicic magma, with Al2O3 contents as low as 2.3 wt.%, FeO* contents up to 17 wt.% and SiO2 contents ~65 wt.%. The new data, and published data for natural and experimental glasses, suggest that the effective minimum composition for peralkaline silicic magmas has ~5 wt.% Al2O3, 13 wt.% FeO* and 66 ± 2 wt.% SiO2. The dominant fractionating assemblage is alkali feldspar + fayalite + hedenbergite + oxides ± quartz. Feldspar - melt relationships indicate that the feldspar is close to the minimum on the albite-orthoclase solid solution loop through the entire crystallization history. There is petrographic, mineralogical and geochemical evidence that magma mixing may have been a common process in the Boseti rhyolites.

  9. Float processing of high-temperature complex silicate glasses and float baths used for same

    NASA Technical Reports Server (NTRS)

    Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)

    2000-01-01

    A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.

  10. Silicate stabilization studies in propylene glycol

    SciTech Connect

    Schwartz, S.A.

    1999-08-01

    In most North American and many European coolant formulations, the corrosion inhibition of heat-rejecting aluminum surfaces is provided by alkali metal silicates. But, their tendency towards polymerization, leading to gelation and/or precipitation, can reduce the effectiveness of a coolant. This paper presents the results of experiments which illustrate formulation-dependent behavior of inorganic silicate in propylene glycol compositions. Specific examples of the effects of glycol matrix, stabilizer type, and hard water on silicate stabilization are provided.

  11. NOTE: Cell-phone interference with pocket dosimeters

    NASA Astrophysics Data System (ADS)

    Djajaputra, David; Nehru, Ramasamy; Bruch, Philip M.; Ayyangar, Komanduri M.; Raman, Natarajan V.; Enke, Charles A.

    2005-05-01

    Accurate reporting of personal dose is required by regulation for hospital personnel that work with radioactive material. Pocket dosimeters are commonly used for monitoring this personal dose. We show that operating a cell phone in the vicinity of a pocket dosimeter can introduce large and erroneous readings of the dosimeter. This note reports a systematic study of this electromagnetic interference. We found that simple practical measures are enough to mitigate this problem, such as increasing the distance between the cell phone and the dosimeter or shielding the dosimeter, while maintaining its sensitivity to ionizing radiation, by placing it inside a common anti-static bag.

  12. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  13. Structure of carbonate melts at high pressure

    NASA Astrophysics Data System (ADS)

    Hudspeth, J.; Sanloup, C.; Cochain, B.; Konopkova, Z.; Afonina, V.; Morgenroth, W.

    2015-12-01

    Carbonate melts are rare magmas with only a single active volcano (Oldoinyo Lengai,Tanzania [1]). They are of fundamental interest for their role in the Earth's deep carbon cycle and are of immense economic importance due to their affinity for REE strategic metals (niobium, uranium, tantalum, etc). They have remarkable physical properties such as very low viscosity [2] and magmatic temperatures for alkaline carbonate lavas [3] and it has been predicted that their compressibility could be significantly higher than that of silicate melts [4,5]. Despite the atomic structure of carbonate melts being fundamental for controlling their physical and chemical behavior in natural systems, very few structural studies have been reported and these have been largely computational. Here we present initial structural investigations of carbonate melts at mantle pressures using in situ x-ray diffraction in diamond anvil cells. The structure factor S(Q) is transformed to obtain the real space pair distribution function G(R) which describes the local and intermediate range atomic ordering allowing bond length and coordination number changes with pressure to be determined. [1] Krafft and Keller, Science 245:168-170, 1989 [2] Yono et al., Nat. Commun. 5:5091, 2014 [3] Dobson et al., Earth Planet. Sci. Lett. 143:207-215, 1996 [4] Genge et al., Earth Planet. Sci. Lett. 131:225-238, 1995 [5] Jones et al., Rev. Mineral. Geochem. 75:289-322, 2013

  14. Carbonate-silicate immiscibility and extremely peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai Volcano, Tanzania

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.; Dawson, J. Barry

    2012-11-01

    Phenocrysts of garnet, pyroxene and nepheline in peralkaline nephelinite from the Nasira parasitic cones at Oldoinyo Lengai contain quenched immiscible silicate (peralkalinity = 2-13) and Na-Ca-carbonate melts. Their bulk compositions further define the limits of liquid immiscibility for peralkaline carbonated nephelinite magmas and confirm this process was operative at Oldoinyo Lengai during older stages of activity. Groundmass glasses in Nasira nephelinites are peralkaline (peralkalinity = 5.5-9.5) but less evolved than melt inclusion glasses (peralkalinity = 8-13) in nepheline phenocrysts, implying that these magmas are hybrids formed by magma mixing. Groundmass glass in diverse peralkaline combeite nephelinite ash clasts with and without melilite and/or wollastonite formed in the January-June 2008 eruptions of Oldoinyo Lengai are also exceptionally peralkaline. Two trends in their compositions are evident: (1) increasing peralkalinity from 6 to 10 with SiO2 decreasing from 42 to 33 wt.%; (2) increasing peralkalinity from 6 to 16 with SiO2 decreasing from 45 to 40 wt.%. All recent glasses are considered to be more evolved than groundmass glass in Nasira combeite nephelinite. These data indicate that several varieties of nephelinite exist at Oldoinyo Lengai. Their parental magmas are considered to have been initially enriched in alkalis during partial melting of their metasomatized asthenospheric sources and further by subsequent assimilation, or re-solution, of previously exsolved natrocarbonatite melt in the magma chamber(s) underlying Oldoinyo Lengai. On this basis, none of the bulk compositions of peralkaline stage II lavas at Oldoinyo Lengai, including Nasira, are considered to represent those of liquids as their compositions are determined by rheological factors (phenocryst accumulation; cumulate disruption) and assimilation processes. The formation of combeite is considered to be a consequence of natrocarbonatite melt assimilation.

  15. Identification of Gravity-Related Effects on Crystal Growth From Melts With an Immiscibility Gap

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Sayir, A.; Farmer, S.

    1999-01-01

    This work involves an experimental-numerical approach to study the effects of natural and Marangoni convections on solidification of single crystals from a silicate melt with a liquid-liquid immiscibility gap. Industrial use of crystals grown from silicate melts is becoming increasingly important in electronic, optical, and high temperature structural applications. Even the simplest silicate systems like Al203-SiO2 have had, and will continue to have, a significant role in the development of traditional and advanced ceramics. A unique feature of crystals grown from the silicate systems is their outstanding linear electro-optic properties. They also exhibit exceptionally high optical rotativity. As a result, these crystals are attractive materials for dielectric, optical, and microwave applications. Experimental work in our laboratory has indicated that directional solidification of a single crystal mullite appears to be preceded by liquid-liquid phase separation in the melt. Disruption of the immiscible state results in crystallization of a two phase structure. There is also evidence that mixing in the melt caused by density-driven convection can significantly affect the stability of the immiscible liquid layers and result in poly-crystalline growth. On earth, the immiscible state has only been observed for small diameter crystals grown in float zone systems where natural convection is almost negligible. Therefore, it is anticipated that growth of large single crystals from silicate melts would benefit from microgravity conditions because of the reduction of the natural convective mixing. The main objective of this research is to determine the effects of transport processes on the phase separation in the melt during growth of a single crystal while addressing the following issues: (1) When do the immiscible layers form and are they real?; (2) What are the main physical characteristics of the immiscible liquids?; and (3) How mixing by natural or Marangoni convection

  16. Differentiation of Asteroid 4 Vesta: Core Formation by Iron Rain in a Silicate Magma Ocean

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2017-01-01

    Geochemical observations of the eucrite and diogenite meteorites, together with observations made by NASA's Dawn spacecraft while orbiting asteroid 4 Vesta, suggest that Vesta resembles H chondrites in bulk chemical composition, possible with about 25 percent of a CM-chondrite like composition added in. For this model, the core is 15 percent by mass (or 8 percent by volume) of the asteroid, with a composition of 73.7 percent by weight Fe, 16.0 percent by weight S, and 10.3 percent by weight Ni. The abundances of moderately siderophile elements (Ni, Co, Mo, W, and P) in eucrites require that essentially all of the metallic phase in Vesta segregated to form a core prior to eucrite solidification. The combination of the melting phase relationships for the silicate and metal phases, together with the moderately siderophile element concentrations together require that complete melting of the metal phase occurred (temperature is greater than1350 degrees Centigrade), along with substantial (greater than 40 percent) melting of the silicate material. Thus, core formation on Vesta occurs as iron rain sinking through a silicate magma ocean.

  17. Evaluation of Cation Hydrolysis Schemes with a Pocket Calculator.

    ERIC Educational Resources Information Center

    Clare, Brian W.

    1979-01-01

    Described is the use of two models of pocket calculators. The Hewlett-Packard HP67 and the Texas Instruments TI59, to solve problems arising in connection with ionic equilibria in solution. A three-parameter regression program is described and listed as a specific example, the hydrolysis of hexavalent uranium, is provided. (BT)

  18. Portable Anthrax Testing with Lab-in-a-Pocket

    SciTech Connect

    Finley, Melissa; Koskelo, Markku; Edwards, Thayne; Kadner, Steve; Beckes-Talcot, Judy; Harper, Jason; Shawwa, Luay

    2014-10-24

    BaDx (Bacillus anthracis Diagnostics) is a lab-in-a-pocket device to sample, sense, and diagnose bacteria that cause anthrax. It accomplishes these tasks in environments with no power, refrigerated storage, or laboratory equipment. BaDx was designed to be used with minimal or no training, and to keep handlers safe.

  19. Portable Anthrax Testing with Lab-in-a-Pocket

    ScienceCinema

    Finley, Melissa; Koskelo, Markku; Edwards, Thayne; Kadner, Steve; Beckes-Talcot, Judy; Harper, Jason; Shawwa, Luay

    2016-07-12

    BaDx (Bacillus anthracis Diagnostics) is a lab-in-a-pocket device to sample, sense, and diagnose bacteria that cause anthrax. It accomplishes these tasks in environments with no power, refrigerated storage, or laboratory equipment. BaDx was designed to be used with minimal or no training, and to keep handlers safe.

  20. Simulation of Population Processes with a Programmable Pocket Calculator.

    ERIC Educational Resources Information Center

    Kidd, N. A. C.

    1979-01-01

    Presents a set of simulation models for use in teaching population dynamics. These models are designed specifically for use with a programmable pocket calculator, and can be used to demonstrate growth of populations with discrete or overlapping generations and also to explore effects of density-dependent and -independent mortality. (Author/CS)

  1. Advanced Geometric Optics on a Programmable Pocket Calculator.

    ERIC Educational Resources Information Center

    Nussbaum, Allen

    1979-01-01

    Presents a ray-tracing procedure based on some ideas of Herzberger and the matrix approach to geometrical optics. This method, which can be implemented on a programmable pocket calculator, applies to any conic surface, including paraboloids, spheres, and planes. (Author/GA)

  2. Air pocket stability and the imbibition pathway in droplet wetting.

    PubMed

    Chang, Cheng-Chung; Wu, Cyuan-Jhang; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2015-10-07

    The stability of air pockets formed in grooves on a surface is relevant to contact angle hysteresis of droplet wetting and it is investigated by imbibition experiments and surface evolver (SE) simulations. Liquid drops of different wettabilities are placed atop a conical hole on a polymethyl methacrylate (PMMA) substrate. The stability of the air pocket depends on surface wettability. Four kinds of imbibition behaviors ranging from wetting to nonwetting are observed. The imbibition pathway for the kinetically unstable air pocket is observed by using the olive oil droplet. It involves an inward flow of a thin liquid film along the wall of the hole. The accumulation of liquid at the bottom leads to the rise of the air bubble. The energy-barrier profile associated with the imbibition pathway acquired by SE simulations is able to interpret the outcome of imbibition. The advancing and receding contact angles of various liquids on a PMMA substrate with drilled holes are also determined. Their wetting behaviors can be categorized into three types. Our experimental results for substrates with or without fluorination are in good agreement with the theory based on the stability of air pockets.

  3. Calculation of Oxygen Fugacity in High Pressure Metal-Silicate Experiments and Comparison to Standard Approaches

    NASA Technical Reports Server (NTRS)

    Righter, K.; Ghiorso, M.

    2009-01-01

    Calculation of oxygen fugacity in high pressure and temperature experiments in metal-silicate systems is usually approximated by the ratio of Fe in the metal and FeO in the silicate melt: (Delta)IW=2*log(X(sub Fe)/X(sub FeO)), where IW is the iron-wustite reference oxygen buffer. Although this is a quick and easy calculation to make, it has been applied to a huge variety of metallic (Fe- Ni-S-C-O-Si systems) and silicate liquids (SiO2, Al2O3, TiO2, FeO, MgO, CaO, Na2O, K2O systems). This approach has surely led to values that have little meaning, yet are applied with great confidence, for example, to a terrestrial mantle at "IW-2". Although fO2 can be circumvented in some cases by consideration of Fe-M distribution coefficient, these do not eliminate the effects of alloy or silicate liquid compositional variation, or the specific chemical effects of S in the silicate liquid, for example. In order to address the issue of what the actual value of fO2 is in any given experiment, we have calculated fO2 from the equilibria 2Fe (metal) + SiO2 (liq) + O2 = Fe2SiO4 (liq).

  4. Prediction of metal-silicate partition coefficients for siderophile elements: An update and assessment of PT conditions for metal-silicate equilibrium during accretion of the Earth

    NASA Astrophysics Data System (ADS)

    Righter, K.

    2011-04-01

    Experimental studies of the partitioning of siderophile elements between metallic and silicate liquids have provided fundamental constraints on the early history and differentiation conditions of the Earth. With many new studies even in the last 20 yr, several models have emerged from the results, including low pressure equilibrium, high pressure equilibrium, and combined high and low pressure multi-stage models. The reasons - silicate melt composition, pressure effects on silicate melt structure, different methods for calculating metal activity coefficients, and the role of deep mantle phases - for the multitude of resulting models have not been specifically addressed before, yet are critical in evaluating the more likely and realistic models. The four reasons leading to the divergence of results will be discussed and evaluated. The behavior of the moderately siderophile elements Ni and Co will be compared using several approaches, each of which results in the same conclusion for Ni and Co. This consistency will eliminate the supposition that one or the other approaches gives a more accurate answer for element partitioning. Newly updated expressions for 11 elements are then derived and presented and applied to the early Earth to evaluate the idea of a late stage equilibration between a core forming metal and silicate melt (or magma ocean). It is possible to explain all 11 elements at conditions of 27-33 GPa, 3300-3600 K, ΔIW = - 1, for peridotite and a metallic liquid containing 10% of a light element. The main difference between the current result and several other recent modeling efforts is that Mn, V, and Cr are hosted in deep mantle phases as well as the core. The other elements - Ni, Co, Mo, W, P, Cu, Ga, and Pd - are hosted in core, and detailed modeling here shows the importance of accounting for oxygen fugacity, silicate and metallic liquid compositions, as well as temperature and pressure. The idea of late stage metal-silicate equilibrium at a restricted

  5. Slab crustal dehydration, melting and dynamics through time

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; Bouilhol, Pierre; Magni, Valentina; Maunder, Benjamin

    2015-04-01

    Melting subducted mafic crust is commonly assumed to be the main process leading to silicic melts with an adakitic signature, which may form Archaean granitoids and generate early continental crust. Alternatively, melting of the overriding lower mafic crust and near-Moho depth fractional crystallisation of mantle melts can form differentiated magmas with an adakitic signature. Previous work shows how only very young slabs melt through dehydration melting, or depict melting of dry eclogites via water addition from deeper slab dehydration. We quantify subduction dehydration and melting reactions in a warm subduction system using a thermo-mechanical subduction model with a thermodynamic database. We find that even young (hot) slabs dehydrate before reaching their solidus, which suppresses any slab dehydration melting and creates significant amounts of mantle wedge melting irrespective of slab age. Significant slab crust melting is only achieved in young slabs via water present melting if metamorphic fluids from the subducted mantle flux through the dry eclogites. These slab melts, however, are affected by massive mantle wedge melting and unlikely to participate in the overriding plate felsic magmatism, unlike the shallower, primitive mantle wedge melts. Understanding the overall flux of water carried by the descending slab mantle is therefore of prime importance. We thus inverstigated the deeper dehydration processes in subduction zones and implications for the water cycle throughout Earth's history. We estimate that presently ~26% of the global influx water is recycled into the mantle, and that deep water recycling was also significant (although less efficient, 2-13% at 2.8 Ga) in early Earth conditions, which has important implications for mantle dynamics and tectonic processes in the Early Earth. Alternatively, delamination and underplating of the mafic subducted crust would be a suitable mechanism to fit the geological record. We thus explore the conditions for

  6. FORMATION OF COSMIC CRYSTALS IN HIGHLY SUPERSATURATED SILICATE VAPOR PRODUCED BY PLANETESIMAL BOW SHOCKS

    SciTech Connect

    Miura, H.; Yamada, J.; Tsukamoto, K.; Nozawa, J.; Tanaka, K. K.; Yamamoto, T.; Nakamoto, T.

    2010-08-10

    Several lines of evidence suggest that fine silicate crystals observed in primitive meteorite and interplanetary dust particles (IDPs) nucleated in a supersaturated silicate vapor followed by crystalline growth. We investigated evaporation of {mu}m-sized silicate particles heated by a bow shock produced by a planetesimal orbiting in the gas in the early solar nebula and condensation of crystalline silicate from the vapor thus produced. Our numerical simulation of shock-wave heating showed that these {mu}m-sized particles evaporate almost completely when the bow shock is strong enough to cause melting of chondrule precursor dust particles. We found that the silicate vapor cools very rapidly with expansion into the ambient unshocked nebular region; for instance, the cooling rate is estimated to be as high as 2000 K s{sup -1} for a vapor heated by a bow shock associated with a planetesimal of radius 1 km. The rapid cooling of the vapor leads to nonequilibrium gas-phase condensation of dust at temperatures much lower than those expected from the equilibrium condensation. It was found that the condensation temperatures are lower by a few hundred K or more than the equilibrium temperatures. This explains the results of the recent experimental studies of condensation from a silicate vapor that condensation in such large supercooling reproduces morphologies similar to those of silicate crystals found in meteorites. Our results strongly suggest that the planetesimal bow shock is one of the plausible sites for formation of not only chondrules but also other cosmic crystals in the early solar system.

  7. High Pressure Response of Siliceous Materials

    DTIC Science & Technology

    2013-02-01

    quartz, Starphire soda lime silicate glass, hydrated Starphire, BOROFLOAT borosilicate glass, an iron-containing soda lime silicate glass, opal (a hydrated... Opal (hydrated amorphous silica). .............................................................................. 10 2.7. ROBAX glass ceramic...spectrum as a function of stress for BOROFLOAT borosilicate glass. .......... 29 4.8. Raman spectrum as a function of stress for opal (hydrated

  8. High Pressure Response of Siliceous Materials

    DTIC Science & Technology

    2013-02-01

    iron-containing soda lime silicate glass, opal (a hydrated silicate glass), ROBAX glass ceramic, and others were single crystal (α-quartz) and...10 2.6. Opal (hydrated amorphous silica...Raman spectrum as a function of stress for opal (hydrated silica) glass. ................... 29 4.9. Raman spectrum as a function of stress for

  9. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2227 Calcium silicate. (a) Product. Calcium...

  10. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437 Magnesium silicate. (a) Product....

  11. Smyer H-Chondrite Impact-Melt Breccia and Evidence for Sulfur Vaporization

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2002-01-01

    Smyer is an H-chondrite impact-melt breccia containing approx.20 vol% 0.5- to 13-mm-thick silicate-rich melt veins surrounding unmelted subrounded chondritic clasts up to 7 cm in maximum dimension. At the interface between some of the melt veins and chondritic clasts, there are troilite-rich regions consisting of unmelted. crushed 0.2- to 140-micron-size angular silicate grains and chondrule fragments surrounded by troilite and transected by thin troilite veins. Troilite fills every available fracture in the silicates. including some as thin as 0.1 microns. Little metallic Fe-Ni is present in these regions: the FeS/Fe modal ratio ranges from -25: 1 to approx.500: 1, far higher than the eutectic weight ratio of 7.5: 1. The texture of these regions indicates that the sulfide formed from a fluid of very low viscosity. The moderately high viscosity (0.2 poise) and large surface tension of liquid FeS, its inability to wet silicate grain surfaces at low oxygen fugacities. and the supereutectic FeS/Fe ratios in the troilite-rich regions indicate that the fluid was a vapor. It seems likely that during the shock event that melted Smyer, many silicates adjacent to the melt veins were crushed. Upon release of shock pressure. some of the troilite evaporated and dissociated. Molecules of S2 were transported and condensed into fractures and around tiny silicate grains: there, they combined with Fe from small adjacent metallic Fe-Ni grains to form troilite. The Ni content at the edges of some of these metal grains increased significantly; Co from these Ni-rich grains diffused into nearby kamacite. Impact-induced S volatilization may have played a major role in depleting the surface of 433 Eros (and other chondritic asteroids) in S.

  12. Mesoporous Silicate Materials in Sensing

    PubMed Central

    Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.

    2008-01-01

    Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules. PMID:27873810

  13. Conduction mechanism in bismuth silicate glasses containing titanium

    NASA Astrophysics Data System (ADS)

    Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.

    2014-11-01

    Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.

  14. Water Speciation and properties of hydrous model basalt melt at high pressure

    NASA Astrophysics Data System (ADS)

    Bajgain, S. K.; Karki, B. B.

    2013-12-01

    Silicate melts in the Earth's interior are known/expected to be hydrous. Water can make major impact on physical properties including the structure, density, and mobility of melts. The behavior of relevant hydrous melts over most of the mantle pressure regime is poorly constrained. Water solubility increases rapidly with increasing pressure at low pressure [1] and a complete miscibility of liquid MgSiO3 and H2O has been suggested based on high-pressure simulations [2]. We have recently performed first principle molecular dynamics simulations of hydrous model basalt melt at high pressure. Our results show that with increasing pressure, the partial molar volume of water in the melt asymptotically approaches to that of pure water, and both the volumes become identical after certain point. Water is predicted to dissolve in the form of hydroxyls and water molecules at low pressure and as more extended structures at high pressure. The simulated basalt-H2O system commences to behave ideally at pressures above 10 GPa. In contrast, the simulated SiO2-H2O and MgSiO3-H2O systems approach to an ideal limit at much higher pressures of 50 GPa or above. These results imply an unlimited solubility of water in in silicate melts and the water solubility rather appears to be insensitive of composition at high pressure. Existence of water-rich silicate melts over most of the mantle in early history could have made substantial contribution to the origin of hydrosphere [3]. [1] Shen, A. H., and H. Keppler (1997), Direct observation of complete miscibility in the Albite-H2O system, Nature, 385, 710-712. [2] Mookherjee, M., L. Stixrude, and B. Karki (2008), Hydrous silicate melt at high pressure, Nature, 452, 983-986. [3] Matsui, T., and Y. Abe (1986), Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth, Nature, 319, 303-305.

  15. Carbon substitution for oxygen in silicates in planetary interiors

    PubMed Central

    Sen, Sabyasachi; Widgeon, Scarlett J.; Navrotsky, Alexandra; Mera, Gabriela; Tavakoli, Amir; Ionescu, Emanuel; Riedel, Ralf

    2013-01-01

    Amorphous silicon oxycarbide polymer-derived ceramics (PDCs), synthesized from organometallic precursors, contain carbon- and silica-rich nanodomains, the latter with extensive substitution of carbon for oxygen, linking Si-centered SiOxC4-x tetrahedra. Calorimetric studies demonstrated these PDCs to be thermodynamically more stable than a mixture of SiO2, C, and silicon carbide. Here, we show by multinuclear NMR spectroscopy that substitution of C for O is also attained in PDCs with depolymerized silica-rich domains containing lithium, associated with SiOxC4-x tetrahedra with nonbridging oxygen. We suggest that significant (several percent) substitution of C for O could occur in more complex geological silicate melts/glasses in contact with graphite at moderate pressure and high temperature and may be thermodynamically far more accessible than C for Si substitution. Carbon incorporation will change the local structure and may affect physical properties, such as viscosity. Analogous carbon substitution at grain boundaries, at defect sites, or as equilibrium states in nominally acarbonaceous crystalline silicates, even if present at levels at 10–100 ppm, might form an extensive and hitherto hidden reservoir of carbon in the lower crust and mantle. PMID:24043830

  16. Observations of impact-induced molten metal-silicate partitioning

    NASA Technical Reports Server (NTRS)

    Rowan, Linda R.; Ahrens, Thomas J.

    1994-01-01

    Observations of molten mid-ocean ridge basalt (MORB)-molybdenum (Mo) interactions produced by shock experiments provide insight into impact and differentiation processes involving metal-silicate partitioning. Analysis of fragments recovered from experiments (achieving MORB liquid shock pressures from 0.8 to 6 GPa) revealed significant changes in the composition of the MORB and Mo due to reaction of the silicate and metal liquids on a short time scale (less than 13 s). The FeO concentration of the shocked liquid decreases syste