Sample records for silicate rock samples

  1. U.S. Geological Survey silicate rock standards

    USGS Publications Warehouse

    Flanagan, F.J.

    1967-01-01

    The U.S. Geological Survey has processed six silicate rocks to provide new reference samples to supplement G-1 and W-1. Complete conventional, rapid rock, and spectrochemical analyses by the U.S. Geological Survey are reported for a granite (replacement for G-1), a granodiorite, an andesite, a peridotite, a dunite, and a basalt. Analyses of variance for nickel, chromium, copper, and zirconium in each rock sample showed that for these elements, the rocks can be considered homogeneous. Spectrochemical estimates are given for the nickel, chromium, copper, and zirconium contents of the samples. The petrography of five of the six rocks is described and CIPW norms are presented. ?? 1967.

  2. Predicting the Sources and Formation Mechanisms of Evolved Lunar Crust by Linking K/Ca Ratios of Lunar Granites to Analogous Terrestrial Igneous Rocks

    NASA Technical Reports Server (NTRS)

    Mills, R. D.; Simon, J. I.

    2012-01-01

    Although silicic rocks (i.e. granites and rhyolites) comprise a minor component of the sampled portion of the lunar crust, recent remote sensing studies [e.g., 1-4] indicate that several un-sampled regions of the Moon have significantly higher concentrations of silicic material (also high in [K], [U], and [Th]) than sampled regions. Within these areas are morphological features that are best explained by the existence of chemically evolved volcanic rocks. Observations of silicic domes [e.g., 1-5] suggest that sizable networks of silicic melt were present during crust formation. Isotopic data indicate that silicic melts were generated over a prolonged timespan from 4.3 to 3.9 Ga [e.g., 6-8]. The protracted age range and broad distribution of silicic rocks on the Moon indicate that their petrogenesis was an important mechanism for secondary crust formation. Understanding the origin and evolution of such silicic magmas is critical to determining the composition of the lunar crustal highlands and will help to distinguish between opposing ideas for the Moon's bulk composition and differentiation. The two main hypotheses for generating silicic melts on Earth are fractional crystallization or partial melting. On the Moon silicic melts are thought to have been generated during extreme fractional crystallization involving end-stage silicate liquid immiscibility (SLI) [e.g. 9, 10]. However, SLI cannot account for the production of significant volumes of silicic melt and its wide distribution, as reported by the remote global surveys [1, 2, 3]. In addition, experimental and natural products of SLI show that U and Th, which are abundant in the lunar granites and seen in the remote sensing data of the domes, are preferentially partitioned into the depolymerized ferrobasaltic magma and not the silicic portion [11, 12]. If SLI is not the mechanism that generated silicic magmas on the Moon then alternative processes such as fractional crystallization (only crystal-liquid separation) or partial melting should be considered as viable possibilities to be tested.

  3. Rapid determination of nanogram amounts of tellurium in silicate rocks

    USGS Publications Warehouse

    Greenland, L.P.; Campbell, E.Y.

    1976-01-01

    A hydride-generation flameless atomic-absorption technique is used to determine as little as 5 ng g-1 tellurium in 0.25 g of silicate rock. After acid decomposition of the sample, tellurium hydride is generated with sodium borohydride and the vapor passed directly to a resistance-heated quartz cell mounted in an atomic-absorption spectrophotometer. Analyses of 11 U.S. Geological Survey standard rocks are presented. ?? 1976.

  4. Field, petrologic and detrital zircon study of the Kings sequence and Calaveras complex, Southern Lake Kaweah Roof Pendant, Tulare County, California

    NASA Astrophysics Data System (ADS)

    Buchen, Christopher T.

    U-Pb dating of detrital zircon grains separated from elastic sedimentary rocks is combined with field, petrographic and geochemical data to reconstruct the geologic history of Mesozoic rocks exposed at the southern end of the Lake Kaweah metamorphic pendant, western Sierra Nevada. Identification of rocks exposed at Limekiln Hill, Kern County, CA, as belonging to the Calaveras complex and Kings sequence was confirmed. Detrital zircon populations from two Calaveras complex samples provide Permo-Triassic maximum depositional ages (MDA) and reveal a Laurentian provenance indicating that continental accretion of the northwest-trending Kings-Kaweah ophiolite belt was in process prior to the Jurassic Period. Rock types including radiolarian metachert, metachert-argillite, and calc-silicate rocks with marble lenses are interpreted as formed in a hemipelagic environment of siliceous radiolarian deposition, punctuated by extended episodes of lime-mud gravity flows mixing with siliceous ooze forming cafe-silicate protoliths and limestone olistoliths forming marble lenses. Two samples of the overlying Kings sequence turbidites yield detrital zircons with an MDA of 181.4 +/-3.0 Ma and an interpreted provenance similar to other Jurassic metasediments found in the Yokohl Valley, Sequoia and Boyden Cave roof pendants. Age peaks indicative of Jurassic erg heritage are also present. In contrast, detrital zircon samples from the Sequoia and Slate Mountain roof pendants bear age-probability distributions interpreted as characteristic of the Snow Lake block, a tectonic sliver offset from the Paleozoic miogeocline.

  5. The determination of the acoustic parameters of volcanic rocks from compressional velocity measurements

    USGS Publications Warehouse

    Carroll, R.D.

    1969-01-01

    A statistical analysis was made of the relationship of various acoustic parameters of volcanic rocks to compressional wave velocities for data obtained in a volcanic region in Nevada. Some additional samples, chiefly granitic rocks, were also included in the study to extend the range of parameters and the variety of siliceous rock types sampled. Laboratory acoustic measurements obtained on 62 dry core samples were grouped with similar measurements obtained from geophysical logging devices at several depth intervals in a hole from which 15 of the core samples had been obtained. The effects of lithostatic and hydrostatic load on changing the rock acoustic parameters measured in the hole were noticeable when compared with the laboratory measurements on the same core. The results of the analyses determined by grouping all of the data, however, indicate that dynamic Young's, shear and bulk modulus, shear velocity, shear and compressional characteristic impedance, as well as amplitude and energy reflection coefficients may be reliably estimated on the basis of the compressional wave velocities of the rocks investigated. Less precise estimates can be made of density based on the rock compressional velocity. The possible extension of these relationships to include many siliceous rocks is suggested. ?? 1969.

  6. Families of miocene monterey crude oil, seep, and tarball samples, coastal California

    USGS Publications Warehouse

    Peters, K.E.; Hostettler, F.D.; Lorenson, T.D.; Rosenbauer, R.J.

    2008-01-01

    Biomarker and stable carbon isotope ratios were used to infer the age, lithology, organic matter input, and depositional environment of the source rocks for 388 samples of produced crude oil, seep oil, and tarballs to better assess their origins and distributions in coastal California. These samples were used to construct a chemometric (multivariate statistical) decision tree to classify 288 additional samples. The results identify three tribes of 13C-rich oil samples inferred to originate from thermally mature equivalents of the clayey-siliceous, carbonaceous marl and lower calcareous-siliceous members of the Monterey Formation at Naples Beach near Santa Barbara. An attempt to correlate these families to rock extracts from these members in the nearby COST (continental offshore stratigraphic test) (OCS-Cal 78-164) well failed, at least in part because the rocks are thermally immature. Geochemical similarities among the oil tribes and their widespread distribution support the prograding margin model or the banktop-slope-basin model instead of the ridge-and-basin model for the deposition of the Monterey Formation. Tribe 1 contains four oil families having geochemical traits of clay-rich marine shale source rock deposited under suboxic conditions with substantial higher plant input. Tribe 2 contains four oil families with traits intermediate between tribes 1 and 3, except for abundant 28,30-bisnorhopane, indicating suboxic to anoxic marine marl source rock with hemipelagic input. Tribe 3 contains five oil families with traits of distal marine carbonate source rock deposited under anoxic conditions with pelagic but little or no higher plant input. Tribes 1 and 2 occur mainly south of Point Conception in paleogeographic settings where deep burial of the Monterey source rock favored petroleum generation from all three members or their equivalents. In this area, oil from the clayey-siliceous and carbonaceous marl members (tribes 1 and 2) may overwhelm that from the lower calcareous-siliceous member (tribe 3) because the latter is thinner and less oil-prone than the overlying members. Tribe 3 occurs mainly north of Point Conception where shallow burial caused preferential generation from the underlying lower calcareous-siliceous member or another unit with similar characteristics. In a test of the decision tree, 10 tarball samples collected from beaches in Monterey and San Mateo counties in early 2007 were found to originate from natural seeps representing different organofacies of Monterey Formation source rock instead from one anthropogenic pollution event. The seeps apparently became more active because of increased storm activity. Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  7. Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation - inductively coupled plasma mass spectrometry.

    PubMed

    Zhang, Wen; Hu, Zhaochu; Liu, Yongsheng; Yang, Wenwu; Chen, Haihong; Hu, Shenghong; Xiao, Hongyan

    2017-08-29

    In this paper, we described a NH 4 HF 2 digestion method as sample preparation for the rapid determination of major and trace elements in silicate rocks using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS). Sample powders digested by NH 4 HF 2 at 230 °C for 3 h form ultrafine powders with a typical grain size d 80  < 8.5 μm, and various silicate rocks have a consistent grain morphology and size, allowing us to produce pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of binder. The influences of the digestion parameters were investigated and optimized, including the evaporation stage of removing residual NH 4 HF 2 , sample homogenization, selection of the digestion vessel and calibration strategy of quantitative analysis. The optimized NH 4 HF 2 digestion method was applied to dissolve six silicate rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2, GSR-1) covering a wide range of rock types. Ten major elements and thirty-five trace elements were simultaneously analyzed by LA-ICP-MS. The analytical results of the six reference materials generally agreed with the recommended values, with discrepancies of less than 10% for most elements. The analytical precision is within 5% for most major elements and within 10% for most trace elements. Compared with previous methods of LA-ICP-MS bulk analysis, our method enables the complete dissolution of refractory minerals, such as zircon, in intermediate-acidic intrusive rocks and limits contamination as well as the loss of volatile elements. Moreover, there are many advantages for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The applicability filed of the new technique in this study was focused on the whole-rock analysis of igneous rock samples, which are from basic rocks to acid rocks (45% < SiO 2  < 73%). However, we thought that the NH 4 HF 2 digestion method can be used as a new alternative in LA-ICP-MS for a wider range of geological samples, and will significantly accelerate the application of LA-ICP-MS for the whole-rock analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microbiology of Low Temperature Seafloor Deposits Along a Geochemical Gradient in Lau Basin

    NASA Astrophysics Data System (ADS)

    sylvan, J. B.; Sia, T. Y.; Haddad, A.; Briscoe, L. J.; Girguis, P. R.; Edwards, K. J.

    2011-12-01

    The East Lau Spreading Center (ELSC) and Valu Fa Ridge comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle lenses manifest themselves by gradients in seafloor rock geochemistry. At the spreading center in the north, basaltic host rock extrudes while the influence of subduction in the south creates mainly basaltic andesite host rock. A contuous gradient between these two end members exists along the spreading center. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected along the ELSC and Valu Fa Ridge by X-ray diffraction, elemental analysis, thin section analysis and construction of bacterial 16S rRNA clone libraries. Here, we discuss the geological and biological differences between the collected rocks. We found that the bacterial community composition changed as the host rock mineralogy and chemistry changed from north to south. Also, the bacterial community composition on the silicates is distinct from those on the inactive chimneys, and the interior conduit of an inactive chimney hosts a very different community from the exterior. Basalt from the northern end of the ELSC had high proportions of Alphaproteobacteria and Bacteroidetes. These proportions decreased on the silicates collected further south. Epsilonproteobacteria were also present on the basalt, decreased further south and were absent on the basaltic andesite. Conversely, basaltic andesite rocks from the southern end had high proportions of Chloroflexi, which decreased further north and were absent on basalt. The exterior of inactive sulfide structures were dominated by lineages of sulfur oxidizing Gammaproteobacteria and Epsilonproteobacteria and were less diverse than those on the silicates. The interior of one chimney was dominated by sulfate-reducing Deltaproteobacteria and was the least diverse of all samples. These results support the Mantle to Microbe hypothesis in that different types of Bacteria are selected by the composition of the host rock as determined by the melt lens underlying the hydrothermal vent field.

  9. Magnetic mineralogy and rock magnetic properties of silicate and carbonatite rocks from Oldoinyo Lengai volcano (Tanzania)

    NASA Astrophysics Data System (ADS)

    Mattsson, H. B.; Balashova, A.; Almqvist, B. S. G.; Bosshard-Stadlin, S. A.; Weidendorfer, D.

    2018-06-01

    Oldoinyo Lengai, a stratovolcano in northern Tanzania, is most famous for being the only currently active carbonatite volcano on Earth. The bulk of the volcanic edifice is dominated by eruptive products produced by silica-undersaturated, peralkaline, silicate magmas (effusive, explosive and/or as cumulates at depth). The recent (2007-2008) explosive eruption produced the first ever recorded pyroclastic flows at this volcano and the accidental lithics incorporated into the pyroclastic flows represent a broad variety of different rock types, comprising both extrusive and intrusive varieties, in addition to various types of cumulates. This mix of different accidental lithics provides a unique insight into the inner workings of the world's only active carbonatite volcano. Here, we focus on the magnetic mineralogy and the rock magnetic properties of a wide selection of samples spanning the spectrum of Oldoinyo Lengai rock types compositionally, as well from a textural point of view. Here we show that the magnetic properties of most extrusive silicate rocks are dominated by magnetite-ulvöspinel solid solutions, and that pyrrhotite plays a larger role in the magnetic properties of the intrusive silicate rocks. The natrocarbonatitic lavas, for which the volcano is best known for, show distinctly different magnetic properties in comparison with the silicate rocks. This discrepancy may be explained by abundant alabandite crystals/blebs in the groundmass of the natrocarbonatitic lavas. A detailed combination of petrological/mineralogical studies with geophysical investigations is an absolute necessity in order to understand, and to better constrain, the overall architecture and inner workings of the subvolcanic plumbing system. The results presented here may also have implications for the quest in order to explain the genesis of the uniquely natrocarbonatitic magmas characteristic of Oldoinyo Lengai.

  10. Hydrogeochemical processes controlling changes in fluoride ion concentration within alluvial and hard rock aquifers in a part of a semi-arid region of Northern India

    NASA Astrophysics Data System (ADS)

    Singh, Priyadarshini; Ashthana, Harshita; Rena, Vikas; Kumar, Pardeep; Mukherjee, Saumitra

    2017-04-01

    Geochemical signatures from alluvial and hard rock aquifers in a part of Northern India elucidate the chemical processes controlling fluctuations in fluoride ion concentration linked to changes in major ion groundwater chemistry. Majority of samples from the hard rock and the alluvial aquifers for pre-monsoon show both carbonate and silicate weathering, ion exchange, evaporation and rock water interaction as the processes controlling major ion chemistry whereas for post monsoon samples, contribution of silicate weathering and ion exchange process were observed. Evaporative processes causing the increase in Na+ ion concentration in premonsoon enhance the reverse ion exchange processes causing increase in Ca2+ ions which impedes fluorite mineral dissolution in the premonsoon groundwater samples within the study area. Alternately, it is observed that the removal of Ca2+ ion from solution plays a key role in increase in fluorite mineral dissolution despite its saturation in groundwater in the postmonsoon samples. Also, ion exchange process on clay surfaces is more pronounced in the postmonsoon samples leading to the uptake of Ca2+ ion upon release of Na+ and K+ ion in solution. Ca2+ ion concentration is inversely correlated with F- ion concentration in both the aquifers in the postmonsoon season validating the role of calcite precipitation as a major reason for the fluoride ion increase. Moreover, increase in silicate weathering in the postmonsoon samples leads to increase in clay particles acting as suitable sites for ion exchange enhancing Ca2+ removal from groundwater. Cationic dominance of Na+ ion in the post monsoon samples also validates the occurrence of this process. Collectively, these processes set the ideal conditions for increase in the fluoride ion concentration particularly in the alluvium aquifer waters in the postmonsoon season Keywords: geochemistry, ion-exchange, rock-water interaction, mineral dissolution, weathering.

  11. Geological characterization of remote field sites using visible and infrared spectroscopy: Results from the 1999 Marsokhod field test

    USGS Publications Warehouse

    Johnson, J. R.; Ruff, S.W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N.A.; Cockell, C.; Gazis, P.; Newsom, Horton E.; Stoker, C.

    2001-01-01

    Upcoming Mars Surveyor lander missions will include extensive spectroscopic capabilities designed to improve interpretations of the mineralogy and geology of landing sites on Mars. The 1999 Marsokhod Field Experiment (MFE) was a Mars rover simulation designed in part to investigate the utility of visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site in the California Mojave Desert. The experiment simultaneously investigated the abilities of an off-site science team to effectively analyze and acquire useful imaging and spectroscopic data and to communicate efficiently with rover engineers and an on-site field team to provide meaningful input to rover operations and traverse planning. Experiences gained during the MFE regarding effective communication between different mission operation teams will be useful to upcoming Mars mission teams. Field spectra acquired during the MFE mission exhibited features interpreted at the time as indicative of carbonates (both dolomitic and calcitic), mafic rocks and associated weathering products, and silicic rocks with desert varnish-like coatings. The visible/near-infrared spectra also suggested the presence of organic compounds, including chlorophyll in one rock. Postmission laboratory petrologic and spectral analyses of returned samples confirmed that all rocks identified as carbonates using field measurements alone were calc-silicates and that chlorophyll associated with endolithic organisms was present in the one rock for which it was predicted. Rocks classified from field spectra as silicics and weathered mafics were recognized in the laboratory as metamorphosed monzonites and diorite schists. This discrepancy was likely due to rock coatings sampled by the field spectrometers compared to fresh rock interiors analyzed petrographically, in addition to somewhat different surfaces analyzed by laboratory thermal spectroscopy compared to field spectra. Copyright 2001 by the American Geophysical Union.

  12. Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet: Record of slab breakoff that triggered ca. 108-113 Ma magmatism in the western Qiangtang terrane

    NASA Astrophysics Data System (ADS)

    Wei, Shao-gang; Tang, Ju-xing; Song, Yang; Liu, Zhi-bo; Feng, Jun; Li, Yan-bo

    2017-05-01

    We report new zircon U-Pb ages and Hf isotope compositions, and whole-rock major and trace element and Sr-Nd isotope data for the Meiriqiecuo Formation (MF) bimodal volcanic rocks collected from the Duolong Cu mining district (DCMD) in the western Qiangtang terrane (QT), western Tibet. These data provide important constraints on the petrogenetic evolution and geodynamic setting of Early Cretaceous magmatism in the DCMD. The MF bimodal volcanic rocks are mainly basaltic andesite and andesite, with subordinate rhyolite. Four mafic samples yielded zircon U-Pb ages of ca. 108.2-113.0 Ma, and one silicic sample has an age of 109.3 ± 2.2 Ma, indicating that the mafic and silicic eruptions were contemporaneous. The MF bimodal volcanic rocks belong to the medium-K calc-alkaline to shoshonite series. The rocks show arc-type affinities characterized by significant enrichment in light rare earth (LaN/YbN = 7.74-12.60) and large-ion lithophile elements (Rb, Cs, K, and Pb), but depletions in the high-field-strength elements (Nb, Ta, and Ti), which geochemically resemble Andean arc basalts. Therefore, the MF bimodal volcanic rocks were likely emplaced at an Andean-type active continental margin and represent an Early Cretaceous magmatic arc that was located at the western QT margin. Moreover, the mafic volcanic rocks have high initial Sr isotopic ratios (0.705269-0.705413) and negative εNd(t) values of -1.5 to -0.6 compared with the silicic volcanic rocks ((87Sr/86Sr)i = 0.704770-0.704903; εNd(t) = +1.2 to +1.3). Zircons from silicic samples have significantly higher εHf(t) values (+11.6 to +15.5) and predominantly lower Paleoproterozoic Hf crustal model ages (TDMC = 180-428 Ma) than the mafic samples, which have variable εHf(t) values of +3.4 to +13.0 and TDMC ages of 346-952 Ma. These results indicate that the mafic and silicic end-members of the MF bimodal suite were generated from mantle and crustal sources, respectively. The basaltic andesite and andesite may have been derived from mantle enriched by the metasomatism of subducted fluids, whereas the rhyolite could have been derived by partial melting of mafic juvenile crust that originated from an older and more depleted mantle. In light of the geochemical characteristics and field relationships, we propose that breakoff of the Bangong-Nujiang oceanic lithosphere was responsible for the generation and emplacement of the MF bimodal volcanic rocks. The fact that the MF bimodal volcanic arc magmatism was active at ca. 108-113 Ma indicates that it was associated with closure of the Bangong-Nujiang Ocean via an arc-arc "soft" collision during the Early Cretaceous.

  13. Rock weathering by indigenous heterotrophic bacteria of Bacillus spp. at different temperature: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Štyriaková, I.; Štyriak, I.; Oberhänsli, H.

    2012-07-01

    The bio-weathering of basalt, granite and gneiss was experimentally investigated in this study. These rock-forming minerals weathered more rapidly via the ubiquitous psychrotrophic heterotrophic bacteria . With indigenous bacteria of Bacillus spp. from sediments of Lake Baikal, we traced the degradation process of silicate minerals to understand the weathering processes occurring at the change temperature in the subsurface environment with organic input. The bacteria mediated dissolution of minerals was monitored with solution and solid chemistry, X-ray analyses as well as microscopic techniques. We determined the impact of the bacteria on the mineral surface and leaching of K, Ca, Mg, Si, Fe, and Al from silicate minerals. In the samples the release of major structural elements of silicates was used as an overall indicator of silicate mineral degradation at 4°C and 18°C from five medium exchanges over 255 days of rock bioleaching. The increase of temperature importantly affected the efficiency of Fe extraction from granite and basalt as well as Si extraction from granite and gneiss. In comparison with elemental extraction order at 4°C, Ca was substituted first by Fe or Si. It is evident that temperature influences rock microbial weathering and results in a change of elements extraction.

  14. Ion microprobe survey of the grain-scale oxygen isotope geochemistry of minerals in metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Ferry, John M.; Kitajima, Kouki; Strickland, Ariel; Valley, John W.

    2014-11-01

    The oxygen isotope compositions of calcite, diopside, dolomite, forsterite, garnet, K-feldspar, kyanite, plagioclase, quartz, and wollastonite were analyzed in suites of contact and regional metamorphic rocks using an ion microprobe. Spatial resolution was ∼10 μm. Precision, measured as the standard deviation of working standards averaged over the entire project, was 0.13-0.18‰ for three carbonate standards and 0.11-0.12‰ for two silicate standards. A total of 1176 analyses (excluding standards) were made of 73 minerals in 23 samples. Both intercrystalline and intracrystalline variability in δ18O is greater in contact than in regional metamorphic rocks. Of 27 minerals analyzed in contact metamorphosed rocks, 70% exhibit statistically significant grain-to-grain variability in δ18O over areas ⩽1.41 cm2 with the largest range in silicates and carbonates in a single sample of 7.4‰ (forsterite) and 10.6‰ (dolomite). Of 88 grains analyzed in two or more places in contact metamorphosed rocks, 32% exhibit statistically significant intracrystalline variability in δ18O with the largest range in a single silicate and carbonate grain of 3.1‰ (forsterite) and 10.1‰ (dolomite). In contrast, 44% of 45 minerals in regional metamorphic rocks exhibit significant grain-to-grain variability in δ18O over areas ⩽1.17 cm2 with the largest range in silicates and carbonates in a single sample of only 1.1‰ (plagioclase) and 0.9‰ (calcite). Only 6% of 144 grains analyzed in two or more places in regional metamorphic rocks exhibit significant intracrystalline variability in δ18O with the largest range in a single silicate and carbonate grain of only 1.5‰ (diopside) and 0.7‰ (calcite). The difference in intercrystalline and intracrystalline variability in δ18O between contact and region metamorphic rocks is explained by the longer duration and slower reaction rates of regional metamorphism rather than to differences in temperature. There is no significant difference in intercrystalline and intracrystalline variability in δ18O in regional metamorphic rocks among samples from the biotite, garnet, and kyanite zones. Calcite inclusions in forsterite, and calcite and quartz inclusions in garnet either have δ18O that is statistically indistinguishable from δ18O of the same mineral occurring as nearby matrix grains or have statistically significant lower δ18O. No reversed isotope fractionations were measured between coexisting mineral pairs. Minerals in individual samples, however, exhibit a wide range in the degree to which they attained and preserve oxygen isotope fractionations consistent with metamorphic temperatures recorded by mineral equilibria. Processes that account for grain-scale departures from isotope exchange equilibrium include: (a) overstepping of prograde mineral reactions, (b) growth zoning in low-diffusivity minerals, (c) interaction of rocks with fluids at the peak of metamorphism and/or during cooling, (d) retrograde mineral reactions, and (e) closed-system isotope exchange between coexisting minerals during cooling. This study provides new information about (1) the degree to which a variety of textural changes experienced by rocks during metamorphism are associated with changes in δ18O, (2) oxygen isotope homogenization at the outcrop scale among contrasting lithologies, (3) changes in δ18O with increasing grade of regional metamorphism, and (4) time scales of metamorphic process.

  15. The presence of carbonates on Mars: origin, terrestrial analogues and analytical tecniques ambiguity

    NASA Astrophysics Data System (ADS)

    Marinangeli, Lucia; Liberi, Francesca; Pompilio, Loredana; Piluso, Eugenio; Rosatelli, Gianluigi; Tranquilli, Andrea; Pepe, Monica

    2013-04-01

    The most common cause of carbonates formation on Earth is the chemical deposition from Ca-rich waters in sedimentary basins, mostly in shallow water. The lack of widespread exposure of carbonates on the Mars' surface in areas where geomorphological and sedimentological mapping confirms the presence of water for a long period of the Martian history, led us to look for a potential different origin of the carbonates identified on CRISM data [1, 2,3]. We suggest the presence of carbonatites on Mars and we have also investigated the capabilities of analytical tecniques for mineralogical analysis to recognise these peculiar type of rocks. Carbonatites are igneous rocks containing more than 50 percent of carbonate minerals and associated silicate minerals as olivine, pyroxene and phyllosilicates. Carbonatites are associated with alkali silicate rocks that are usually of nephelinitic or melilititic affinity. The Martian carbonates are often present in layered rocks and in association with hydrated Fe-Mg silicates (clays family) and kaolinite-group minerals at places [1]. This mineralogical association is very similar to an water-altered carbonatite. We have compared the compositional and mineralogical affinity of some carbonatite samples from different alkaline-carbonatite complexes from Uganda, Spain and Italy, with the mineralogy described for the carbonate- and phyllosolicate rich rocks on Mars, using the XRD and IR analyses. The mineral assemblage has been defined through petrographic analyses as well. It is important to stress that only with XRD analysis some minerals diagnos-tic of carbonatitic assemblage (i.e. melilite) were identified. The relationships between carbonatites and their associated silicate rocks are complex and are still not fully understood on Earth as well, however, it deserves further investigations to better explain the carbonates and silicate volcanic rocks on Mars and its crustal dynamics. References: [1] Michalski and Niles, 2010, Nature Geoscience, 751-755. [2] Helmann et al., 2008, Science, 322, 1828-1832. [3] Morris et al., 2010, Science, 329, 421-424.

  16. Spectrofluorimetric determination of thallium in silicate rocks with rhodamine b in the presence of aluminum chloride

    USGS Publications Warehouse

    Shnepfe, M.M.

    1975-01-01

    A sensitive spectrofluorimetric procedure with rhodamine B in the presence of aluminum chloride is given for determining submicrogram and microgram quantities of thallium in silicate rocks. Samples are decomposed with a mixture of hydrofluoric and nitric acids and then treated with hydrochloric acid. Thallium is extracted as its dithizonate with chloroform from an alkaline medium containing ascorbate, citrate, and cyanide and then back-extracted with dilute nitric acid. After destruction of the organic matter and treatment with bromine, hydrochloric acid, aluminum chloride, and rhodamine B, the {A table is presented}. ?? 1975.

  17. Petrology and physical conditions of metamorphism of calcsilicate rocks from low- to high-grade transition area, Dharmapuri District, Tamil Nadu

    NASA Technical Reports Server (NTRS)

    Narayana, B. L.; Natarajan, R.; Govil, P. K.

    1988-01-01

    Calc-silicate rocks comprising quartz, plagioclase, diopside, sphene, scapolite, grossularite-andradite and wollastonite occur as lensoid enclaves within the greasy migmatitic and charnockitic gneisses of the Archaean amphibolite- to granulite-facies transition zone in Dharmapuri district, Tamil Nadu. The calc-silicate rocks are characterized by the absence of K-feldspar and primary calcite, presence of large modal quartz and plagioclase and formation of secondary garnet and zoisite rims around scapolite and wollastonite. The mineral distributions suggest compositional layering. The chemical composition and mineralogy of the calc-silicate rocks indicate that they were derived from impure silica-rich calcareous sediments whose composition is similar to that of pelite-limestone mixtures. From the mineral assemblages the temperature, pressure and fluid composition during metamorphism were estimated. The observed mineral reaction sequences require a range of X sub CO2 values demonstrating that an initially CO2-rich metamorphic fluid evolved with time towards considerably more H2O-rich compositions. These variations in fluid composition suggest that there were sources of water-rich fluids external to the calc-silicate rocks and that mixing of these fluids with those of calc-silicate rocks was important in controlling fluid composition in calc-silicate rocks and some adjacent rock types as well.

  18. Paleomagnetism and Mineralogy of Unusual Silicate Glasses and Baked Soils on the Surface of the Atacama Desert of Northern Chile: A Major Airburst Impact ~12ka ago?.

    NASA Astrophysics Data System (ADS)

    Roperch, P. J.; Blanco, N.; Valenzuela, M.; Gattacceca, J.; Devouard, B.; Lorand, J. P.; Tomlinson, A. J.; Arriagada, C.; Rochette, P.

    2015-12-01

    Unusual silicate glasses were found in northern Chile in one of the driest place on earth, the Atacama Desert. The scoria-type melted rocks are littered on the ground at several localities distributed along a longitudinal band of about 50km. The silicate glasses have a stable natural remanent magnetization carried by fine-grained magnetite and acquired during cooling. At one locality, fine-grained overbank sediments were heated to form a 10 to 20 cm-thick layer of brick-type samples. Magnetic experiments on oriented samples demonstrate that the baked clays record a thermoremanent magnetization acquired in situ above 600°C down to more than 10cm depth and cooled under a normal polarity geomagnetic field with a paleointensity of 40μT. In some samples of the silicate glass, large grains of iron sulphides (troilite) are found in the glass matrix with numerous droplets of native iron, iron sulphides and iron phosphides indicating high temperature and strong redox conditions during melting. The paleomagnetic record of the baked clays and the unusual mineralogy of the silicate glasses indicate a formation mainly by in situ high temperature radiation. Paleomagnetic experiments and chemical analyses indicate that the silicate glasses are not fulgurite type rocks due to lightning events, nor volcanic glasses or even metallurgical slags related to mining activity. The existence of a well-developped baked clay layer indicates that the silicate glasses are not impact-related ejectas. The field, paleomagnetic and mineralogical observations support evidence for a thermal event likely related to a major airburst. The youngest calibrated 14C age on a charcoal sample closely associated with the glass indicates that the thermal event occurred around 12 to 13 ka BP. The good conservation of the surface effects of this thermal event in the Atacama Desert could provide a good opportunity to further estimate the threats posed by large asteroid airbursts.

  19. Magnetic anisotropy of some phyllosilicates

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.; Werner, Tomasz

    1994-08-01

    Magnetic susceptibility, anisotropy of susceptibility and hysteresis of single microcrystals of chlorite, biotite, phlogopite, muscovite, zinnwaldite and fuchsite were measured in low and high magnetic fields with an alternating gradient force magnetometer (Micromag). Their properties are sufficient to account for the low field susceptibility (AMS) of most micaceous rocks. Nearly all samples show some ferromagnetic contribution at low fields due to inclusions of pseudosingle domain and multidomain magnetite. The paramagnetic contribution isolated at high fields usually exceeds the ferromagnetic contribution. The paramagnetic susceptibility is intrinsic to the silicate lattice and agrees with values predicted from chemical composition within the limits of error. The minimum susceptibility is nearly parallel to c, another axis is parallel to b and the third susceptibility (usually the maximum) is close to a. The paramagnetic susceptibility has a disk-shaped magnitude ellipsoid with strong anisotropy ( P' < 2). The ferromagnetic contributions at low fields have more variably shaped ellipsoids with greater eccentricity ( P' < 5). The silicate lattice does not constrain their orientation. Our technique cannot determine the principal axes of the ferromagnetic component. However, its principal values usually correspond with the paramagnetic principal susceptibilities in order of magnitude. Thus, the combined paramagnetic-ferromagnetic anisotropy recognised in routine studies of AMS should faithfully represent the petrofabric of most micaceous rocks. Nevertheless, nearly 10% of our samples have incompatible anisotropy ellipsoids for the silicate host and magnetite inclusions. These yield a net inverse AMS that does not correctly represent the orientation of the silicate lattice. Therefore, some caution is necessary in petrofabric-AMS studies of micaceous rocks.

  20. The distribution and composition characteristics of siliceous rocks from Qinzhou Bay-Hangzhou Bay joint belt, South China: constraint on the tectonic evolution of plates in South China.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak.

  1. Simulated Lunar Environment Spectra of Silicic Volcanic Rocks: Application to Lunar Domes

    NASA Astrophysics Data System (ADS)

    Glotch, T. D.; Shirley, K.; Greenhagen, B. T.

    2016-12-01

    Lunar volcanism was dominated by flood-style basaltic volcanism associated with the lunar mare. However, since the Apollo era it has been suggested that some regions, termed "red spots," are the result of non-basaltic volcanic activity. These early suggestions of non-mare volcanism were based on interpretations of rugged geomorphology resulting from viscous lava flows and relatively featureless, red-sloped VNIR spectra. Mid-infrared data from the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter have confirmed that many of the red spot features, including Hansteen Alpha, the Gruithuisen Domes, the Mairan Domes, Lassell Massif, and Compton Belkovich are silicic volcanic domes. Additional detections of silicic material in the Aristarchus central peak and ejecta suggest excavation of a subsurface silicic pluton. Other red spots, including the Helmet and Copernicus have relatively low Diviner Christiansen feature positions, but they are not as felsic as the features listed above. To date, the SiO2 content of the silicic dome features has been difficult to quantitatively determine due to the limited spectral resolution of Diviner and lack of terrestrial analog spectra acquired in an appropriate environment. Based on spectra of pure mineral and glass separates, preliminary estimates suggest that the rocks comprising the lunar silicic domes are > 65 wt.% SiO2. In an effort to better constrain this value, we have acquired spectra of andesite, dacite, rhyolite, pumice, and obsidian rock samples under a simulated lunar environment in the Planetary and Asteroid Regolith Spectroscopy Environmental Chamber (PARSEC) at the Center for Planetary Exploration at Stony Brook University. This presentation will discuss the spectra of these materials and how they relate to the Diviner measurements of the lunar silicic dome features.

  2. Determination of total tin in silicate rocks by graphite furnace atomic absorption spectrometry

    USGS Publications Warehouse

    Elsheimer, H.N.; Fries, T.L.

    1990-01-01

    A method is described for the determination of total tin in silicate rocks utilizing a graphite furnace atomic absorption spectrometer with a stabilized-temperature platform furnace and Zeeman-effect background correction. The sample is decomposed by lithium metaborate fusion (3 + 1) in graphite crucibles with the melt being dissolved in 7.5% hydrochloric acid. Tin extractions (4 + 1 or 8 + 1) are executed on portions of the acid solutions using a 4% solution of tricotylphosphine oxide in methyl isobutyl ketone (MIBK). Ascorbic acid is added as a reducing agent prior to extraction. A solution of diammonium hydrogenphosphate and magnesium nitrate is used as a matrix modifier in the graphite furnace determination. The limit of detection is > 10 pg, equivalent to > 1 ??g l-1 of tin in the MIBK solution or 0.2-0.3 ??g g-61 in the rock. The concentration range is linear between 2.5 and 500 ??g l-1 tin in solution. The precision, measured as relative standard deviation, is < 20% at the 2.5 ??g l-1 level and < 7% at the 10-30 ??g l-1 level of tin. Excellent agreement with recommended literature values was found when the method was applied to the international silicate rock standards BCR-1, PCC-1, GSP-1, AGV-1, STM-1, JGb-1 and Mica-Fe. Application was made to the determination of tin in geological core samples with total tin concentrations of the order of 1 ??g g-1 or less.

  3. The Distribution and Composition Characteristics of Siliceous Rocks from Qinzhou Bay-Hangzhou Bay Joint Belt, South China: Constraint on the Tectonic Evolution of Plates in South China

    PubMed Central

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Zhou, Yongzhang; Yang, Zhijun; He, Junguo; Liang, Jin; Zhou, Liuyu

    2013-01-01

    The Qinzhou Bay-Hangzhou Bay joint belt is a significant tectonic zone between the Yangtze and Cathaysian plates, where plentiful hydrothermal siliceous rocks are generated. Here, the authors studied the distribution of the siliceous rocks in the whole tectonic zone, which indicated that the tensional setting was facilitating the development of siliceous rocks of hydrothermal genesis. According to the geochemical characteristics, the Neopalaeozoic siliceous rocks in the north segment of the Qinzhou Bay-Hangzhou Bay joint belt denoted its limited width. In comparison, the Neopalaeozoic Qinzhou Bay-Hangzhou Bay joint belt was diverse for its ocean basin in the different segments and possibly had subduction only in the south segment. The ocean basin of the north and middle segments was limited in its width without subduction and possibly existed as a rift trough that was unable to resist the terrigenous input. In the north segment of the Qinzhou Bay-Hangzhou Bay joint belt, the strata of hydrothermal siliceous rocks in Dongxiang copper-polymetallic ore deposit exhibited alternative cycles with the marine volcanic rocks, volcanic tuff, and metal sulphide. These sedimentary systems were formed in different circumstances, whose alternative cycles indicated the release of internal energy in several cycles gradually from strong to weak. PMID:24302882

  4. Cooperative investigation of precision and accuracy: In chemical analysis of silicate rocks

    USGS Publications Warehouse

    Schlecht, W.G.

    1951-01-01

    This is the preliminary report of the first extensive program ever organized to study the analysis of igneous rocks, a study sponsored by the United States Geological Survey, the Massachusetts Institute of Technology, and the Geophysical Laboratory of the Carnegie Institution of Washington. Large samples of two typical igneous rocks, a granite and a diabase, were carefully prepared and divided. Small samples (about 70 grams) of each were sent to 25 rock-analysis laboratories throughout the world; analyses of one or both samples were reported by 34 analysts in these laboratories. The results, which showed rather large discrepancies, are presented in histograms. The great discordance in results reflects the present unsatisfactory state of rock analysis. It is hoped that the ultimate establishment of standard samples and procedures will contribute to the improvement of quality of analyses. The two rock samples have also been thoroughly studied spectrographically and petrographically. Detailed reports of all the studies will be published.

  5. Using MELTS to understand the evolution of silicic magmas: Challenges and successes in modeling the Highland Range Volcanic Sequence (NV)

    NASA Astrophysics Data System (ADS)

    Vaum, R. C.; Gualda, G. A.; Ghiorso, M. S.; Miller, C. F.; Colombini, L. L.

    2009-12-01

    The Highland Range near Searchlight, Nevada is comprised of mid-Miocene, intermediate to silicic volcanic rocks. This study focuses on the most silicic portion of the eruptive sequence (16.0-16.5 Ma). The first eruptions during this interval were effusive and produced trachydacite (66-70 wt% SiO2), but later the eruptive style shifted to explosive and compositions were more evolved (70-78 wt% SiO2). Glass compositions in rocks saturated in both quartz and sanidine align along the 150 MPa quartz+sanidine saturation surface, suggesting that the Highland Range magmas equilibrated in a single reservoir at that pressure. We are interested in better understanding this transition in eruptive style from effusive to eruptive, and our approach is based on modeling melt evolution using MELTS thermodynamic modeling software. We selected representative samples from key stratigraphic units, and focused on samples for which whole-rock and glass compositions, as well as mineral abundances, are available. This allows for direct comparison of simulation results with existing data. Initial simulations showed that MELTS predicts unrealistic paths of evolution when compared to the glass compositions and to the phase relations in the Qz-Ab-Or ternary. In particular, the stability field of quartz predicted by MELTS is much too small, causing melts to become exceedingly silicic (>80 wt% SiO2). Sanidine, on the other hand, has fairly sodic compositions and crystallizes too early in the sequence; therefore, simulated melt compositions are never as potassic as the analyzed glasses. Similar results are obtained when modeling the evolution of the Bishop and Campanian magmas, showing that these are systematic problems in MELTS calibration. Accordingly, we have adjusted the enthalpy of quartz and potassium end-member of the feldspar solid solution in MELTS so that the quartz-sanidine saturation surface is correctly predicted. We find that this modified version of MELTS much better models the evolution of silicic magmas. Sanidine begins to crystallize at lower temperatures, causing evolved melts to become significantly more potassic. Also, MELTS prediction of quartz saturation is in agreement with the position of the experimentally determined 150 MPa quartz+sanidine saturation surface. Importantly, the melt evolution that this modified version of MELTS predicts is very consistent with whole-rock data, glass chemistry, and mineral abundances in samples from the Highland Range. Simulations using the modified version of MELTS show that it works remarkably well, at least for relatively low degrees of crystallization. But a more reliable model to simulate the evolution of silicic magmas is necessary to more properly simulate the evolution of silicic systems, in particular at high degrees of crystallinity. We are currently working to create gMELTS, an associated solution model of the haplogranitic system, which, once completed, will be optimized to simulate the evolution of silicic systems.

  6. Paleomagnetism of a primitive achondrite parent body: The acapulcoite-lodranites

    NASA Astrophysics Data System (ADS)

    Schnepf, N. R.; Weiss, B. P.; Andrade Lima, E.; Fu, R. R.; Uehara, M.; Gattacceca, J.; Wang, H.; Suavet, C. R.

    2014-12-01

    Primitive achondrites are a recently recognized meteorite grouping with textures and compositions intermediate between unmelted meteorites (chondrites) and igneous meteorites (achondrites). Their existence demonstrates prima facie that some planetesimals only experienced partial rather than complete melting. We present the first paleomagnetic measurements of acapulcoite-lodranite meteorites to determine the existence and intensity of ancient magnetic fields on their parent body. Our paleomagnetic study tests the hypothesis that their parent body had an advecting metallic core, with the goal of providing one of the first geophysical constraints on its large-scale structure and the extent of interior differentiation. In particular, by analyzing samples whose petrologic textures require an origin on a partially differentiated body, we will be able to critically test a recent proposal that some achondrites and chondrite groups could have originated on a single body (Weiss and Elkins-Tanton 2013). We analyzed samples of the meteorites Acapulco and Lodran. Like other acapulcoites and lodranites, these meteorites are granular rocks containing large (~0.1-0.3 mm) kamacite and taenite grains along with similarly sized silicate crystals. Many silicate grains contain numerous fine (1-10 μm) FeNi metal inclusions. Our compositional measurements and rock magnetic data suggest that tetrataenite is rare or absent. Bulk paleomagnetic measurements were done on four mutually oriented bulk samples of Acapulco and one bulk sample of Lodran. Alternating field (AF) demagnetization revealed that the magnetization of the bulk samples is highly unstable, likely due to the large (~0.1-0.3 mm) interstitial kamacite grains throughout the samples. To overcome this challenge, we are analyzing individual ~0.2 mm mutually oriented silicate grains extracted using a wire saw micromill. Preliminary SQUID microscopy measurements of a Lodran silicate grain suggest magnetization stable to AF levels of at least 25-40 mT.

  7. The stripping of penetration 85-100 asphalt from silicate aggregate rocks : a laboratory study.

    DOT National Transportation Integrated Search

    1972-01-01

    In Virginia stripping has occurred when certain of the acidic silicate rocks have been used as aggregate in bituminous paving. The purpose of this project was to discover which kinds of silicate aggregate would be most apt to remain well bonded in bi...

  8. Geochemical and palaeoenvironmental characteristics of Missole I iron duricrusts of the Douala sub-basin (Western Cameroon)

    NASA Astrophysics Data System (ADS)

    Ngon Ngon, Gilbert François; Etame, Jacques; Ntamak-Nida, Marie Joseph; Mbesse, Cécile Olive; Mbai, Joël Simon; Bayiga, Élie Constantin; Gerard, Martine

    2016-02-01

    Major and trace element composition of iron duricrusts including clayey material samples and biostratigraphy of the Missole I outcrop from the Paleocene-Eocene N'Kapa Formation in the Douala sub-basin of Cameroon were used to infer the palaeoenvironment and relative age of the iron duricrusts. Iron duricrusts and clayey materials are essentially kaolinitic and smectitic and are generally siliceous and ferruginous (iron duricrusts) or siliceous and aluminous (clayey materials). These materials have high Chemical Indices of Alteration (CIA = 86.6-99.33%). The negative Eu anomalies with high (La/Yb)N shown by iron duricrusts and clayey sediments are essentially derived from silicic or felsic parent rocks when fractionated chondrite-normalized REE patterns also indicate felsic or silicic parent rocks. The Missole I iron duricrusts have a post-Thanetian age according to the relative age of claystones (Thanetian) and were formed after the deposition of sedimentary materials in an anoxic low-depth marine environment with eutrophication of surface water, and may have been exhumed and oxidized under arid climate.

  9. Geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) constraints on Quaternary bimodal volcanism of the Nigde Volcanic Complex (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Aydin, F.; Siebel, W.; Uysal, I.; Ersoy, E. Y.; Schmitt, A. K.; Sönmez, M.; Duncan, R.

    2012-04-01

    The Nigde Volcanic Complex (NVC) is a major Late Neogene-Quaternary volcanic centre within the Cappadocian Volcanic Province of Central Anatolia. The Late Neogene evolution of the NVC generally initiated with the eruption of extensive andesitic-dacitic lavas and pyroclastic flow deposits, and minor basaltic lavas. This stage was followed by a Quaternary bimodal magma suite which forms Na-alkaline/transitional basaltic and high-K calc-alkaline to alkaline silicic volcanic rocks. In this study, we present new geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) data for the bimodal volcanic suite within the NVC. Recent data suggest that the eruption of this suite took place ranges between ~650 and ~220 ka (Middle-Late Pleistocene). Silicic rocks consisting of rhyolite and associated pumice-rich pyroclastic fall out and surge deposits define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5127), and show virtually no difference in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of the silicic (0.704-0.705) and basaltic rocks (0.703-0.705) are rather similar reflecting a common source. The most mafic sample from basaltic rocks related to monogenetic cones is characterized by 87Sr/86Sr = 0.704, 143Nd/144Nd = 0.5127, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68. These values suggest a moderately depleted signature of the mantle source. The geochronological and geochemical data suggest that NVC silicic and basaltic rocks are genetically closely related to each other. Mantle derived differentiated basaltic melts which experienced low degree of crustal assimilation are suggested to be the parent melt of the rhyolites. Further investigations will focus on the spatial and temporal evolution of Quaternary bimodal magma suite in the NVC and the genetic relation between silicic and basaltic rocks through detailed oxygen isotope analysis and (U-Th)/He zircon geochronology.

  10. Multiphotonic Confocal Microscopy 3D imaging: Application to mantle sulfides in sub-arc environment (Avacha Volcano, Kamchatka)

    NASA Astrophysics Data System (ADS)

    Antoine, Bénard; Luc-Serge, Doucet; Sabine, Palle; Dmitri A., Ionov

    2010-05-01

    Petrogenetic relations in igneous rocks are usually studied in natural samples using classical optical microscopy and subsequent geochemical data acquisition. Multiphotonic Laser Scanning Confocal Microscopy (MLSCM) can be a powerful tool to section geological materials optically with sub-micrometric resolution and then generate a three-dimensional (3D) reconstruction (ca. 106 μm3 stack). MLSCM is used here to investigate textural relations of Monosulfide Solid Solution (MSS) with silicate phases in fresh spinel harzburgite xenoliths from the andesitic Avacha volcano (Kamchatka, Russia). The xenoliths contain MSS disseminated in olivine and orthopyroxene (opx) neoblasts as well as MSS-rich quenched magmatic opx veins [1]. First, Reflection Mode (RM) was tested on vein sulfides in resin-impregnated thick (120 μm) polished rock sections. Then we used a combination of Differential Interference Contrast (DIC) with a transmitted light detector, two photons-excited fluorescence (2PEF) and Second Harmonic Generation (SHG). Sequential imaging feature of the Leica TCS-SP2 software was applied. The excitation laser used for 2PEF was a COHERENT MIRA 900 with a 76Hz repetition rate and 800nm wavelength. Image stacks were analysed using ImageJ software [2]. The aim of the tests was to try to discriminate sulfides in silicate matrix as a tool for a better assessment of equilibrium conditions between the two phases. Preliminary results show that Fe-Ni rich MSS from vein and host rock have a strong auto-fluorescence in the Near UV-VIS domain (392-715 nm) whereas silicate matrix is only revealed through DIC. SHG is obtained only from dense nanocentrosymmetrical structures such as embedded medium (organic matter like glue and resin). The three images were recorded sequentially enabling efficient discrimination between the different components of the rock slices. RM permits reconstruction of the complete 3D structure of the rock slice. High resolution (ca. 0.2 μm along X-Y axis vs. 0.4 along Z axis) 2PEF enables analysis of 3D textural relations of tiny individual MSS globules (˜10 μm) in their various habitus. Statistical microgeometric descriptions can be derived from volumetric image data. These results may permit refinement of models concerning (re-) crystallisation kinetics and miscibility conditions of sulphur species in various media likely to act in different mantle environments: silicate melt, fluid-rich silicate melt, silicate-rich fluid. Furthermore, this study provides 3D images with improved resolution of several components (silicate phases, sulfides, silicate glass) over the full thickness (>100 μm) of rock slices which cannot be done with classical methods. Besides 3D imaging of ‘hidden' phases in mantle rocks, it opens up new possibilities for other domains in geosciences like crystallography or petrophysics. [1] Bénard & Ionov (2010) GRA, this volume [2] Abramoff, M.D., Magelhaes, P.J. & Ram, S.J. (2004) Image processing with ImageJ. Biophoton. Int., 11, 36-42

  11. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng

    2017-10-01

    Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.

  12. Development and application of laser microprobe techniques for oxygen isotope analysis of silicates, and, fluid/rock interaction during and after granulite-facies metamorphism, highland southwestern complex, Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsenheimer, D.W.

    1992-01-01

    The extent of fluid/rock interaction within the crust is a function of crustal depth, with large hydrothermal systems common in the brittle, hydrostatically pressured upper crust, but restricted fluid flow in the lithostatically pressured lower crust. To quantify this fluid/rock interaction, a Nd-YAG/CO[sub 2] laser microprobe system was constructed to analyze oxygen isotope ratios in silicates. Developed protocols produce high precision in [sigma][sup 18]O ([+-]0.2, 1[sigma]) and accuracy comparable to conventional extraction techniques on samples of feldspar and quartz as small as 0.3mg. Analysis of sub-millimeter domains in quartz and feldspar in granite from the Isle of Skye, Scotland, revealsmore » complex intragranular zonation. Contrasting heterogeneous and homogeneous [sigma][sup 18]O zonation patterns are revealed in samples <10m apart. These differences suggest fluid flow and isotopic exchange was highly heterogeneous. It has been proposed that granulite-facies metamorphism in the Highland Southwestern Complex (HSWC), Sri Lanka, resulted from the pervasive influx of CO[sub 2], with the marbles and calc-silicates within the HSWC a proposed fluid source. The petrologic and stable isotopic characteristic of HSWC marbles are inconsistent with extensive decarbonation. Wollastonite calc-silicates occur as deformed bands and as post-metamorphis veins with isotopic compositions that suggest vein fluids that are at least in part magmatic. Post-metamorphic magmatic activity is responsible for the formation of secondary disseminated graphite growth in the HSWC. This graphite has magmatic isotopic compositions and is associated with vein graphite and amphibolite-granulite facies transitions zones. Similar features in Kerela Khondalite Belt, South India, may suggest a common metamorphic history for the two terranes.« less

  13. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  14. Long-term migration of iodine in sedimentary rocks based on iodine speciation and 129I/127I ratio

    NASA Astrophysics Data System (ADS)

    Togo, Y.; Takahashi, Y.; Amano, Y.; Matsuzaki, H.; Suzuki, Y.; Muramatsu, Y.; Iwatsuki, T.

    2012-12-01

    [Introduction] 129I is one of the available indexes of long-term migration of groundwater solutes, because of its long half-life (15.7 million years) and low sorption characteristics. The Horonobe underground research center (Japan Atomic Energy Agency), at which are conducted research and development of fundamental techniques on geological disposal of high-level radioactive waste, is an appropriate site for natural analogue studies, because iodine concentration in groundwater is high in this area. To predict iodine behavior in natural systems, speciation of iodine is essential because of different mobility among each species. In this study, we determined iodine speciation and129I/127I isotope ratios of rock and groundwater samples to investigate long term migration of iodine. [Methods] All rock and groundwater samples were collected at Horonobe underground research center. The region is underlain mainly by Neogene to Quaternary marine sedimentary rocks, the Wakkanai Formation (Wk Fm, siliceous mudstones), and the overlying Koetoi Formation (Kt Fm, diatomaceous mudstones). Iodine species in rock samples were determined by iodine K-edge X-ray absorption near edge structure (SPring-8 BL01B1). Thin sections of rock samples were prepared, and iodine mapping were obtained by micro-XRF analysis (SPring-8 BL37XU). Iodine species (IO3-, I-, and organic I) in groundwater were separately detected by high performance liquid chromatography connected to ICP-MS. The 129I/127I ratios in groundwater and rock samples were measured by accelerator mass spectrometry (MALT, Univ. of Tokyo). Iodine in rock samples were separated by pyrohydrolysis and water extraction. [Results and discussion] Concentration of iodine in groundwater varied widely and was much higher than that of seawater showing a high correlation with that of chlorine (R2 = 0.90). Species of iodine in groundwater was mainly I-. Iodine in rock samples decreased near the boundary between Wk and Kt Fms. Iodine K-edge XANES showed that iodine in rock was a mixture of organic and inorganic iodine. According to iodine and carbon mapping in micrometer scale, iodine was accumulated locally and correlated with carbon, suggesting that iodine existed as organic iodine. The 129I/127I isotope ratios in groundwater were lower than those in rocks and almost constant at various depths, demonstrating that iodine in groundwater was released from layers deeper than co-existing rocks. According to these results, migration of iodine in this area can be expected as follows. (i) During sedimentation of Wk and Kt Fms, iodine was accumulated as organic iodine in siliceous sediments. (ii) Iodine was released as I- from the layers deeper than Wk Fm during diagenetic processes. Subsequently, iodine rich groundwater was distributed to Wk and Kt Fms due to the compaction of the layers. (iii) During uplift and denudation processes, both iodine and chlorine were diluted by meteoric water from the surface. Iodine distribution coefficient (Kd = [I concentration in rock]/[I concentration in groundwater]) of Kt Fm is higher than that in Wk Fm. Diatomaceous mudstones might be more effective than siliceous mudstones as natural barrier for 129I released from deep underground radioactive waste repository. This suggestion should be reinforced by laboratory experiments in future studies.

  15. Oxygen and iron production by electrolytic smelting of lunar soil

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Haskin, L. A.

    1991-01-01

    Oxygen, present in abundance in nearly all lunar materials, can theoretically be extracted by molten silicate electrolysis from any known lunar rock. Derivation of oxygen by this method has been amply demonstrated experimentally in silicate melts of a variety of compositions. This work can be divided into three categories: (1) measurement of solubilities of metals (atomic) in silicate melts; (2) electrolysis experiments under various conditions of temperature, container material, electrode configuration, current density, melt composition, and sample mass (100 to 2000 mg) measuring energy required and character of resulting products; and (3) theoretical assessment of compositional requirements for steady state operations of an electrolysis cell.

  16. Palladium, platinum, rhodium, iridium and ruthenium in chromite- rich rocks from the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Page, N.J.; Pallister, J.S.; Brown, M.A.; Smewing, J.D.; Haffty, J.

    1982-01-01

    30 samples of chromitite and chromite-rich rocks from two stratigraphic sections, 250 km apart, through the basal ultramafic member of the Samail ophiolite were spectrographically analysed for platinum-group elements (PGE) and for Co, Cu, Ni and V. These data are reported as are Cr/(Cr + Al), Mg/(Mg + Fe) and wt.% TiO2 for most samples. The chromitite occurs as pods or lenses in rocks of mantle origin or as discontinuous layers at the base of the overlying cumulus sequence. PGE abundances in both sections are similar, with average contents in chromite-rich rocks: Pd 8 ppb, Pt 14 ppb, Rh 6 ppb, Ir 48 ppb and Ru 135 ppb. The PGE data, combined with major-element and petrographic data on the chromitite, suggest: 1) relatively larger Ir and Ru contents and highest total PGE in the middle part of each section; 2) PGE concentrations and ratios do not correlate with coexisting silicate and chromite abundances or chromite compositions; 3) Pd/PGE, on average, increases upward in each section; 4) Samail PGE concentrations, particularly Rh, Pt and Pd, are lower than the average values for chromite-rich rocks in stratiform intrusions. 2) suggests that PGEs occur in discrete alloy or sulphide phases rather than in the major oxides or silicates, and 4) suggests that chromite-rich rocks from the oceanic upper mantle are depleted in PGE with respect to chondrites. L.C.C.

  17. Petrophysical, Lithological and Mineralogical Characteristics of the Shale Strata of the Volga- Ural Region

    NASA Astrophysics Data System (ADS)

    Morozov, Vladimir P.; Plotnikova, Irina N.; Pronin, Nikita V.; Nosova, Fidania F.; Pronina, Nailya R.

    2014-05-01

    The objects of the study are Upper Devonian carbonate rocks in the territory of South-Tatar arch and Melekess basin in the Volga- Urals region. We studied core material of Domanicoid facies from the sediments of Mendymski and Domanik horizons of middle substage of Frasnian stage of the Upper Devonian. Basic analytical research methods included the following: study of the composition, structural and textural features of the rocks, the structure of their voids, filter and reservoir properties and composition of the fluid. The complex research consisted of macroscopic description of the core material, optical microscopy analysis, radiographical analysis, thermal analysis, x-ray tomography, electron microscopy, gas-liquid chromatography, chromate-mass spectrometry, light hydrocarbons analysis using paraphase assay, adsorbed gases analysis, and thermal vacuum degassing method. In addition, we performed isotopic studies of hydrocarbons saturating shale rocks. Shale strata are mainly represented by carbonate-chert rocks. They consist mainly of calcite and quartz. The ratio of these rock-forming minerals varies widely - from 25 to 75 percent. Pyrite, muscovite, albite, and microcline are the most common inclusions. Calcareous and ferruginous dolomite (ankerite), as well as magnesian calcite are tracked down as secondary minerals. While performing the tests we found out that the walls of open fractures filled with oil are stacked by secondary dolomite, which should be considered as an indication moveable oil presence in the open-cut. Electron microscopy data indicate that all the studied samples have porosity - both carbonates and carbonate-siliceous rocks. Idiomorphism of the rock-forming grains and pores that are visible under a microscope bring us to that conclusion. The analysis of the images indicates that the type of reservoir is either porous or granular. The pores are distributed evenly in the volume of rock. Their size is very unstable and varies from 0.5 microns to 100 microns. The lowest value are observed in long carbonate-siliceous rocks, the highest values are found in carbonate rocks. The latter is caused by the fact that there is a very strong recrystallization of calcite and its dolomite substitution in carbonates. Open porosity ranges from 0.65 to 7.98 percent, average value is 4.1percent . Effective porosity has an average value of 0.44 percent, ranging from 0.22 to 1.97. Permeability varies from 0.043 to 1.49 mD, average value is 0,191 mD. Organic matter was found in all samples. Its content varies within the section. The fluctuation range of from 1.0 to 20 percent. The lowest content of carbonates is found in carbonates, while the highest is observed in carbonate-siliceous rocks with a high content of chalcedony. Average organic matter content is 5-7 percent. According to Rock-Eval studies of the core, the catagenetic maturity of organic matter corresponds to MK1 - MK2 degree. We found a connection between the type of organic matter and the composition of adsorbed gas. We also could see that the samples with humic organics present in their organic matter and can be characterized by a fair dominance of methane over other gases. There is a clear relationship between organic matter content and the intensity of the gas saturation of the rock. Organic matter is characteristic mainly of the most siliceous formations. In "pure" carbonates, which are represented by micro-layers with different capacities, OM is not observed at all or its content is quite low.

  18. A combined microstructural and petrophysical study to analyse the mechanical behaviour of shales in the Flysch units, Glarus Alps, Switzerland

    NASA Astrophysics Data System (ADS)

    Akker, Vénice; Kaufmann, Josef; Berger, Alfons; Herwegh, Marco

    2017-04-01

    Crustal scale deformation is strongly controlled by the rheological behaviour of sheet-silicate-rich rock types. As these rocks have low rock strength, facilitated by the strong crystallographically controlled mechanical anisotropy and interstitial pore fluid in the aggregate, they are able to accommodate considerable amounts of strain. A close relationship is expected between microstructure, porosity and permeability as function of metamorphic conditions and strain gradients. Thereby, fluids set free by compaction, mineral reactions or deformation play an important role. Rising industries in underground storage such as nuclear waste disposal, shale gas exploration or geological carbon sequestration make use of the advantageous properties of such rock types. Therefore, there is a great demand for research on the interaction of these processes. This study uses samples from Flysch-units of the Glarus Alps (Switzerland) collected along a metamorphic gradient (150-400°C) to unravel the link between the mechanical behaviour of these sheet-silicate-rich rocks at geological conditions and their present-day physical parameters. Investigations include two topics: (1) characterization of such rock types in terms of mineralogy, microstructure and petrophysical properties; and (2) possible reconstruction of deformation processes from microstructures. Quantitative information on the porosity, i.e. the pore sizes, distribution and their interconnectivity is crucial for both topics. Porosity is therefore estimated by: (1) image analysis of high resolution SEM images, (2) He-pycnometry, and (3) Hg-porosimetry. In a first step, differences in their present day physical parameters between low and high temperature sampling sites are shown. The variations inside and between the investigated samples is partly due to initial sedimentological heterogeneity and partly to the changes along the metamorphic gradient. This study will demonstrate how the characterized present day porosity evolved owing to these two prerequisites.

  19. Trace element content of gossans at four mines in the West Shasta massive sulfide district.

    USGS Publications Warehouse

    Sanzolone, R.F.; Domenico, J.A.

    1985-01-01

    Paired analyses of the spongy whole-rock gossan and its botryoidal crust ("chipped rock rind') show little differences, whereas duplicate samples of each at individual sites show such extreme differences as to preclude the use of the data in areal mapping. Gossans from disseminated sulphides have lower and less variable trace-element contents than gossans from massive sulphides, due in part to dilution by rock silicates. Computer reduction of the data by a regionalizing algorithm enables determination of pattern differences among the four mines.-G.J.N.

  20. Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system

    NASA Astrophysics Data System (ADS)

    Stöffler, Dieter; Hamann, Christopher; Metzler, Knut

    2018-01-01

    We reevaluate the systematics and geologic setting of terrestrial, lunar, Martian, and asteroidal "impactites" resulting from single or multiple impacts. For impactites derived from silicate rocks and sediments, we propose a unified and updated system of progressive shock metamorphism. "Shock-metamorphosed rocks" occur as lithic clasts or melt particles in proximal impactites at impact craters, and rarely in distal impactites. They represent a wide range of metamorphism, typically ranging from unshocked to shock melted. As the degree of shock metamorphism, at a given shock pressure, depends primarily on the mineralogical composition and the porosity of a rock or sediment sample, different shock classification systems are required for different types of planetary rocks and sediments. We define shock classification systems for eight rock and sediment classes which are assigned to three major groups of rocks and sediments (1) crystalline rocks with classes F, M, A, and U; (2) chondritic rocks (class C); and (3) sedimentary rocks and sediments with classes SR, SE, and RE. The abbreviations stand for felsic (F), mafic (M), anorthositic (A), ultramafic (U), sedimentary rocks (SR), unconsolidated sediments (SE), and regoliths (RE). In each class, the progressive stages of shock metamorphism are denominated S1 to Sx. These progressive shock stages are introduced as: S1-S7 for F, S1-S7 for M, S1-S6 for A, S1-S7 for U, S1-S7 for C, S1-S7 for SR, S1-S5 for SE, and S1-S6 for RE. S1 stands for "unshocked" and Sx (variable between S5 and S7) stands for "whole rock melting." We propose a sequence of symbols characterizing the degree of shock metamorphism of a sample, i.e., F-S1 to F-S7 with the option to add the tabulated pressure ranges (in GPa) in parentheses.

  1. CUMULATE ROCKS ASSOCIATED WITH CARBONATE ASSIMILATION, HORTAVÆR COMPLEX, NORTH-CENTRAL NORWAY

    NASA Astrophysics Data System (ADS)

    Barnes, C. G.; Prestvik, T.; Li, Y.

    2009-12-01

    The Hortavær igneous complex intruded high-grade metamorphic rocks of the Caledonian Helgeland Nappe Complex at ca. 466 Ma. The complex is an unusual mafic-silicic layered intrusion (MASLI) because the principal felsic rock type is syenite and because the syenite formed in situ rather than by deep-seated partial melting of crustal rocks. Magma differentiation in the complex was by assimilation, primarily of calc-silicate rocks and melts with contributions from marble and semi-pelites, plus fractional crystallization. The effect of assimilation of calcite-rich rocks was to enhance stability of fassaitic clinopyroxene at the expense of olivine, which resulted in alkali-rich residual melts and lowering of silica activity. This combination of MASLI-style emplacement and carbonate assimilation produced three types of cumulate rocks: (1) Syenitic cumulates formed by liquid-crystal separation. As sheets of mafic magma were loaded on crystal-rich syenitic magma, residual liquid was expelled, penetrating the overlying mafic sheets in flame structures, and leaving a cumulate syenite. (2) Reaction cumulates. Carbonate assimilation, illustrated by a simple assimilation reaction: olivine + calcite + melt = clinopyroxene + CO2 resulted in cpx-rich cumulates such as clinopyroxenite, gabbro, and mela-monzodiorite, many of which contain igneous calcite. (3) Magmatic skarns. Calc-silicate host rocks underwent partial melting during assimilation, yielding a Ca-rich melt as the principal assimilated material and permitting extensive reaction with surrounding magma to form Kspar + cpx + garnet-rich ‘cumulate’ rocks. Cumulate types (2) and (3) do not reflect traditional views of cumulate rocks but instead result from a series of melt-present discontinuous (peritectic) reactions and partial melting of calc-silicate xenoliths. In the Hortavær complex, such cumulates are evident because of the distinctive peritectic cumulate assemblages. It is unclear whether assimilation of ‘normal’ silicate rocks results in peritectic assemblages, or whether they could be identified as such if they exist.

  2. Assessment of the U-Th-Pb system in two Archean metabasalts - Deciphering the complex histories of sulfides and silicates using acid leaching methods

    NASA Astrophysics Data System (ADS)

    Smith, Patrick E.; Farquhar, Ronald M.; Tatsumoto, Mitsunobo

    1989-08-01

    A detailed U-Th-Pb isotopic study of two Archean basalts from two greenstone belts in the eastern Wawa Subprovince of the Canadian shield was carried out on samples that were either dissolved at once or leached in either 1N HNO3, 2N HCl, or 6N HCl. The abundances and isotopic compositions from these samples suggest that variable disturbances had occurred in both rock systems, which can be attributed to Pb mobility, particularly in the form of sulphide addition at various times, and, in one case, by recent Pb loss. The Pb isotopic compositions of the sulphides record late events which affected the greenstone terrains. The results also indicate that the sulphides and silicate rocks could have originated from a common source. The isotopic compositions of the basalt suggest that, in the Archean, both depleted and enriched mantle sources existed beneath the Wawa Subprovince.

  3. The role of disseminated calcite in the chemical weathering of granitoid rocks

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Vivit, D.V.; Schulz, M.S.; Clow, D.W.

    1999-01-01

    Accessory calcite, present at concentrations between 300 and 3000 mg kg-1, occurs in fresh granitoid rocks sampled from the Merced watershed in Yosemite National Park, CA, USA; Loch Vale in Rocky Mountain National Park CO USA; the Panola watershed, GA USA; and the Rio Icacos, Puerto Rico. Calcite occurs as fillings in microfractures, as disseminated grains within the silicate matrix, and as replacement of calcic cores in plagioclase. Flow-through column experiments, using de-ionized water saturated with 0.05 atm. CO2, produced effluents from the fresh granitoid rocks that were dominated by Ca and bicarbonate and thermodynamically saturated with calcite. During reactions up to 1.7 yr, calcite dissolution progressively decreased and was superceded by steady state dissolution of silicates, principally biotite. Mass balance calculations indicate that most calcite had been removed during this time and accounted for 57-98% of the total Ca released from these rocks. Experimental effluents from surfically weathered granitoids from the same watersheds were consistently dominated by silicate dissolution. The lack of excess Ca and alkalinity indicated that calcite had been previously removed by natural weathering. The extent of Ca enrichment in watershed discharge fluxes corresponds to the amounts of calcite exposed in granitoid rocks. High Ca/Na ratios relative to plagioclase stoichiometries indicate excess Ca in the Yosemite, Loch Vale, and other alpine watersheds in the Sierra Nevada and Rocky Mountains of the western United States. This Ca enrichment correlates with strong preferential weathering of calcite relative to plagioclase in exfoliated granitoids in glaciated terrains. In contrast, Ca/Na flux ratios are comparable to or less than the Ca/Na ratios for plagioclase in the subtropical Panola and tropical Rio Icacos watersheds, in which deeply weathered regoliths exhibit concurrent losses of calcite and much larger masses of plagioclase during transport-limited weathering. These results indicate that the weathering of accessory calcite may strongly influence Ca and alkalinity fluxes from silicate rocks during and following periods of glaciation and tectonism but is much less important for older stable geomorphic surfaces.

  4. Petrogenesis of incipient charnockite in the Ikalamavony sub-domain, south-central Madagascar: New insights from phase equilibrium modeling

    NASA Astrophysics Data System (ADS)

    Endo, Takahiro; Tsunogae, Toshiaki; Santosh, M.; Shaji, E.; Rambeloson, Roger A.

    2017-06-01

    Incipient charnockites representing granulite formation on a mesoscopic scale occur in the Ambodin Ifandana area of Ikalamavony sub-domain in south-central Madagascar. Here we report new petrological data from these rocks, and discuss the process of granulite formation on the basis of petrography, mineral equilibrium modeling, and fluid inclusion studies. The incipient charnockites occur as brownish patches, lenses, and layers characterized by an assemblage of biotite + orthopyroxene + K-feldspar + plagioclase + quartz + magnetite + ilmenite within host orthopyroxene-free biotite gneiss with an assemblage of biotite + K-feldspar + plagioclase + quartz + magnetite + ilmenite. Lenses and layers of calc-silicate rock (clinopyroxene + garnet + plagioclase + quartz + titanite + calcite) are typically associated with the charnockite. Coarse-grained charnockite occurs along the contact between the layered charnockite and calc-silicate rock. The application of mineral equilibrium modeling on the mineral assemblages in charnockite and biotite gneiss employing the NCKFMASHTO system as well as fluid inclusion study on coarse-grained charnockite defines a P-T range of 8.5-10.5 kbar and 880-900 °C, which is nearly consistent with the inferred P-T condition of the Ikalamavony sub-domain (8.0-10.5 kbar and 820-880 °C). The result of T versus H2O activity (a(H2O)) modeling demonstrates that orthopyroxene-bearing assemblage in charnockite is stable under relatively low a(H2O) condition of 0.42-0.43, which is consistent with the popular models of incipient-charnockite formation related to the lowering of water activity and stabilization of orthopyroxene through dehydration of biotite. The occurrence of calc-silicate rocks adjacent to the charnockite suggests that the CO2-bearing fluid that caused dehydration and incipient-charnockite formation might have been derived through decarbonation of calc-silicate rocks during the initial stage of decompression slightly after the peak metamorphism. The calc-silicate rocks might have also behaved as a cap rock that trapped CO2 infiltrated from an external source. 'CO2-rich fluid ponds' formed beneath calc-silicate layers could have enhanced dehydration of biotite to orthopyroxene, and produced layers of coarse-grained charnockite adjacent to calc-silicate layers.

  5. X-ray diffraction studies of shocked lunar analogs

    NASA Technical Reports Server (NTRS)

    Hanss, R. E.

    1979-01-01

    The X-ray diffraction experiments on shocked rock and mineral analogs of particular significance to lunar geology are described. Materials naturally shocked by meteorite impact, nuclear-shocked, or artificially shocked in a flat plate accelerator were utilized. Four areas were outlined for investigation: powder diffractometer studies of shocked single crystal silicate minerals (quartz, orthoclase, oligoclase, pyroxene), powder diffractometer studies of shocked polycrystalline monomineralic samples (dunite), Debye-Scherrer studies of single grains of shocked granodiorite, and powder diffractometer studies of shocked whole rock samples. Quantitative interpretation of peak shock pressures experienced by materials found in lunar or terrestrial impact structures is presented.

  6. Distribution, microfabric, and geochemical characteristics of siliceous rocks in central orogenic belt, China: implications for a hydrothermal sedimentation model.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian--Ordovician, and Carboniferous--Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08-95.30%), Ba (42.45-503.0 ppm), and ΣREE (3.28-19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb) N, and (La/Ce) N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  7. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    PubMed Central

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch.

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%), Ba (42.45–503.0 ppm), and ΣREE (3.28–19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb)N, and (La/Ce)N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics. PMID:25140349

  8. Three-dimensional imaging of sulfides in silicate rocks at submicron resolution with multiphoton microscopy.

    PubMed

    Bénard, Antoine; Palle, Sabine; Doucet, Luc Serge; Ionov, Dmitri A

    2011-12-01

    We report the first application of multiphoton microscopy (MPM) to generate three-dimensional (3D) images of natural minerals (micron-sized sulfides) in thick (∼120 μm) rock sections. First, reflection mode (RM) using confocal laser scanning microscopy (CLSM), combined with differential interference contrast (DIC), was tested on polished sections. Second, two-photon fluorescence (TPF) and second harmonic signal (SHG) images were generated using a femtosecond-laser on the same rock section without impregnation by a fluorescent dye. CSLM results show that the silicate matrix is revealed with DIC and RM, while sulfides can be imaged in 3D at low resolution by RM. Sulfides yield strong autofluorescence from 392 to 715 nm with TPF, while SHG is only produced by the embedding medium. Simultaneous recording of TPF and SHG images enables efficient discrimination between different components of silicate rocks. Image stacks obtained with MPM enable complete reconstruction of the 3D structure of a rock slice and of sulfide morphology at submicron resolution, which has not been previously reported for 3D imaging of minerals. Our work suggests that MPM is a highly efficient tool for 3D studies of microstructures and morphologies of minerals in silicate rocks, which may find other applications in geosciences.

  9. Using experimental petrology to constrain genesis of wet, silicic magmas in the Tonga-Kermadec island arc

    NASA Astrophysics Data System (ADS)

    Brens, R.; Rushmer, T. A.; Turner, S.; Adam, J.

    2012-12-01

    The Tongan arc system is comprised of a pair of island chains, where the western chain is the active volcanic arc. A range of rock suites, from basaltic andesites (53-56% SiO2) to dacites (64-66% SiO2), has been recovered from Late, Tofua and Fonualei in the Tonga-Kermadec primitive island arc system. For which the question arises: What is the mechanism that allows for silicic magmas to develop in a primitive island arc system? Caufield et al. (2012) suggest that fractional crystallization of a multi magma chamber process, with varying depth, is responsible for the silicic magma generation in this arc. Models such as this one have been proposed and experimentally tested in other systems (Novarupta, Alaska) to explain the origin of these silicic rocks. Our Tongan suite of rocks has had a full geochemical analysis for majors, traces and isotopes. The lavas from Tofua and Late are Fe-rich and have low concentrations of K, Rb, Ba, Zr, REE, Pb and U. However, experimental studies are needed to complement the extensive geochemical analysis done on the Tongan arc. Former geochemical work done on the igneous rocks from both of these volcanic suites from this arc suggests that the source of these rocks extend from 1.5-5.5 km in depth (Caulfield et al., 2012). Here, we present an experimental study of the phase equilibria on a natural andesitic sample (Late 1, from Ewart et al., 1975) from the island of Late. Experiments were run using the temperature constraints between 900 to 1220oC, pressure from 5 to 25 kbars and H2O addition of mostly 5wt% (but some results were obtained at 2wt% in the rocks). In the presence of 5 wt% water, phase equilibria of these experiments show the garnet stability field at >10 kb for 900 oC and increases with increasing temperature, while plagioclase enters at lower pressures when garnet exits. Experimental results currently suggests, at lower temperatures (900-950oC), a fractional crystallization relationship due to shallow level pressures of these rocks and further reinforcing Brophy's (2009) model of crystal fractionation of basalt to dacite in the presence of water, as an important process for which silica-rich magmas are produced within a primitive oceanic island arc.

  10. First finding of impact melt in the IIE Netschaëvo meteorite

    NASA Astrophysics Data System (ADS)

    Roosbroek, N.; Pittarello, L.; Greshake, A.; Debaille, V.; Claeys, P.

    2016-02-01

    About half of the IIE nonmagmatic iron meteorites contain silicate inclusions with a primitive to differentiated nature. The presence of preserved chondrules has been reported for two IIE meteorites so far, Netschaëvo and Mont Dieu, which represent the most primitive silicate material within this group. In this study, silicate inclusions from two samples of Netschaëvo were examined. Both silicate inclusions are characterized by a porphyritic texture dominated by clusters of coarse-grained olivine and pyroxene, set in a fine-grained groundmass that consists of new crystals of olivine and a glassy appearing matrix. This texture does not correspond to the description of the previously examined pieces of Netschaëvo, which consist of primitive chondrule-bearing angular clasts. Detailed petrographic observations and geochemical analyses suggest that the investigated samples of Netschaëvo consist of quenched impact melt. This implies that Netschaëvo is a breccia containing metamorphosed and impact-melt rock (IMR) clasts and that collisions played a major role in the formation of the IIE group.

  11. Review of samples of sediment, tailings, and waters adjacent to the Cactus Queen gold mine, Kern County, California

    USGS Publications Warehouse

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Cactus Queen Mine is located in the western Mojave Desert in Kern County, California. The Cactus Queen gold-silver (Au-Ag) deposit is similar to other Au-Ag deposits hosted in Miocene volcanic rocks that consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions. The volcanic rocks were emplaced onto a basement of Mesozoic silicic intrusive rocks. A part of the Cactus Queen Mine is located on Federal land managed by the U.S. Bureau of Land Management (BLM). Staff from the BLM initially sampled the mine area and documented elevated concentrations of arsenic (As) in tailings and sediment. BLM then requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure and characterize As and other geochemical constituents in sediment, tailings, and waters on the part of the mine on Federal lands. This report is made in response to the request by the BLM, the lead agency mandated to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) - Removal Site Investigation (RSI). The RSI applies to the potential removal of As-contaminated mine waste from the Cactus Queen Mine as a means of reducing As release and exposure to humans and biota. This report summarizes data obtained from field sampling of sediments, mine tailings, and surface waters at the Cactus Queen Mine on January 27, 2008. Our results provide a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  12. Loss of iron to gold capsules in rock-melting experiments

    USGS Publications Warehouse

    Ratajeski, K.; Sisson, T.W.

    1999-01-01

    Gold is used widely for capsules in high-temperature rock-melting studies because it is generally thought to absorb negligible Fe from silicate samples. However, we observed significant losses of Fe from fluid-absent melting experiments on hornblende gabbros at 800-975 ??C and 8 kbar, using standard piston-cylinder techniques. The extent of Fe loss from the sample is dependent on the relative masses of the sample and the capsule. Low sample to capsule mass ratios (~0.04) lead to the highest Fe losses (32-49% relative). Concentrations of Fe in silicate melt and used gold capsules define an apparent equilibrium constant (K') that follows a linear 1n K' vs. 1/T relation (at an estimated log f(O)(2) of QFM-1). The apparent equilibrium constant is used to make limiting upper estimates on the amount of Fe that could be lost during rock-melting experiments for a range of f(O)(2) and sample to capsule mass ratios. At high f(O)(2) (NNO + 2), loss of Fe to gold is negligible (<2% relative) for a wide range of sample to capsule mass ratios. At an f(O)(2) of NNO, Fe loss can be kept to <10% relative by using a sample to capsule mass ratio of 0.2 or greater. At low f(O)(2) (QFM-1), presaturating the Au with Fe would be necessary to ensure that Fe losses remained <10% relative. Fe loss can compromise experimental results for small samples run at low f(O)(2) conditions, be they buffered, imposed by the pressure media, or produced by intrinsically reduced (graphitic) starting materials.

  13. Deformation and failure of single- and multi-phase silicate liquids: seismic precursors and mechanical work

    NASA Astrophysics Data System (ADS)

    Vasseur, Jeremie; Lavallée, Yan; Hess, Kai-Uwe; Wassermann, Joachim; Dingwell, Donald B.

    2013-04-01

    Along with many others, volcanic unrest is regarded as a catastrophic material failure phenomenon and is often preceded by diverse precursory signals. Although a volcanic system intrinsically behave in a non-linear and stochastic way, these precursors display systematic evolutionary trends to upcoming eruptions. Seismic signals in particular are in general dramatically increasing prior to an eruption and have been extensively reported to show accelerating rates through time, as well as in the laboratory before failure of rock samples. At the lab-scale, acoustic emissions (AE) are high frequency transient stress waves used to track fracture initiation and propagation inside a rock sample. Synthesized glass samples featuring a range of porosities (0 - 30%) and natural rock samples from volcán de Colima, Mexico, have been failed under high temperature uniaxial compression experiments at constant stresses and strain rates. Using the monitored AEs and the generated mechanical work during deformation, we investigated the evolutionary trends of energy patterns associated to different degrees of heterogeneity. We observed that the failure of dense, poorly porous glasses is achieved by exceeding elevated strength and thus requires a significant accumulation of strain, meaning only pervasive small-scale cracking is occurring. More porous glasses as well as volcanic samples need much lower applied stress and deformation to fail, as fractures are nucleating, propagating and coalescing into localized large-scale cracks, taking the advantage of the existence of numerous defects (voids for glasses, voids and crystals for volcanic rocks). These observations demonstrate that the mechanical work generated through cracking is efficiently distributed inside denser and more homogeneous samples, as underlined by the overall lower AE energy released during experiments. In contrast, the quicker and larger AE energy released during the loading of heterogeneous samples shows that the mechanical work tends to concentrate in specific weak regions facilitating dynamical failure of the material through dissipation of the accumulated strain energy. Applying a statistical Global Linearization Method (GLM) in multi-phase silicate liquids samples leads to a maximum likelihood power-law fit of the accelerating rates of released AEs. The calculated α exponent of the famous empirical Failure Forecast Method (FFM) tends to decrease from 2 towards 1 with increasing porosity, suggesting a shift towards an idealized exponential-like acceleration. Single-phase silicate liquids behave more elastically during deformation without much cracking and suddenly releasing their accumulated strain energy at failure, implying less clear trends in monitored AEs. In a predictive prospective, these results support the fact that failure forecasting power is enhanced by the presence of heterogeneities inside a material.

  14. Titanite chronology, thermometry, and speedometry of ultrahigh-temperature (UHT) calc-silicates from south Madagascar: U-Pb dates, Zr temperatures, and lengthscales of trace-element diffusion

    NASA Astrophysics Data System (ADS)

    Holder, R. M.; Hacker, B. R.

    2017-12-01

    Calc-silicate rocks are often overlooked as sources of pressure-temperature-time data in granulite-UHT metamorphic terranes due to the strong dependence of calc-silicate mineral assemblages on complex fluid compositions and a lack of thermodynamic data on common high-temperature calc-silicate minerals such as scapolite. In the Ediacaran-Cambrian UHT rocks of southern Madagascar, clinopyroxene-scapolite-feldspar-quartz-zircon-titanite calc-silicate rocks are wide-spread. U-Pb dates of 540-520 Ma from unaltered portions of titanite correspond to cooling of the rocks through upper-amphibolite facies and indicate UHT metamorphism occurred before 540 Ma. Zr concentrations in these domains preserve growth temperatures of 900-950 °C, consistent with peak temperatures calculated by pseudosection modeling of nearby osumilite-bearing gneisses. Younger U-Pb dates (510-490 Ma) correspond to fluid-mediated Pb loss from titanite grains, which occurred below their diffusive Pb-closure temperature, along fractures. The extent of fluid alteration is seen clearly in back-scattered electron images and Zr-, Al-, Fe-, Ce-, and Nb-concentration maps. Laser-ablation depth profiling of idioblastic titanite grains shows preserved Pb diffusion profiles at grain rims, but there is no evidence for Zr diffusion, indicating that it was effectively immobile even at UHT.

  15. Watson: A new link in the IIE iron chain

    NASA Technical Reports Server (NTRS)

    Olsen, Edward; Davis, Andrew; Clarke, Roy S., Jr.; Schultz, Ludolf; Weber, Hartwig W.; Clayton, Robert; Mayeda, Toshiko; Jarosewich, Eugene; Sylvester, Paul; Grossman, Lawrence

    1994-01-01

    Watson, which was found in 1972 in South Australia, contains the largest single silicate rock mass seen in any known iron meteorite. A comprehensive study has been completed on this unusual meteorite: petrography, metallography, analyses of the silicate inclusion (whole rock chemical analysis, INAA, RNAA, noble gases, and oxygen isotope analysis) and mineral compositions (by electron microprobe and ion microprobe). The whole rock has a composition of an H-chondrite minus the normal H-group metal and troilite content. The oxygen isotope composition is that of the silicates in the IIE iron meteorites and lies along an oxygen isotope fractionation line with the H-group chondrites. Trace elements in the metal confirm Watson is a new IIE iron. Whole rock Watson silicate shows an enrichment in K and P (each approximately 2X H-chondrites). The silicate inclusion has a highly equilibrated igneous (peridotite-like) texture with olivine largely poikilitic within low-Ca pyroxene: olivine (Fa20), opx (Fs17Wo3), capx (Fs9Wo14)(with very fine exsolution lamellae), antiperthite feldspar (An1-3Or5) with less than 1 micron exsolution lamellae (An1-3Or greater than 40), shocked feldspar with altered stoichiometry, minor whitlockite (also a poorly characterized interstitial phosphate-rich phase) and chromite, and only traces of metal and troilite. The individual silicate minerals have normal chondritic REE patterns, but whitlockite has a remarkable REE pattern. It is very enriched in light REE (La is 720X C1, and Lu is 90X C1, as opposed to usual chonditic values of approximately 300X and 100-150X, respectively) with a negative Eu anomaly. The enrichment of whole rock K is expressed both in an unusually high mean modal Or content of the feldspar, Or13, and in the presence of antiperthite.

  16. Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine

    USGS Publications Warehouse

    Gates, Olcott; Moench, R.H.

    1981-01-01

    Exposed in the Machias-Eastport area of southeastern Maine is the thickest (at least 8,000 m), best exposed, best dated, and most nearly complete succession of Silurian and Lower Devonian volcanic strata in the coastal volcanic belt, remnants of which crop out along the coasts of southern New Brunswick, Canada, and southeastern New England in the United States. The volcanics were erupted through the 600-700-million-year-old Avalonian sialic basement. To test the possibility that this volcanic belt was a magmatic arc above a subduction zone prior to presumed Acadian continental collision, samples representing the entire section in the Machias-Eastport area of Maine were chemically analyzed. Three strongly bimodal assemblages of volcanic rocks and associated intrusives are recognized, herein called the Silurian, older Devonian, and younger Devonian assemblages. The Silurian assemblage contains typically nonporphyritic high-alumina tholeiitic basalts, basaltic andesites, and diabase of continental characterand calc-alkalic rhyolites, silicic dacites, and one known dike of andesite. These rocks are associated with fossiliferous, predominantly marine strata of the Quoddy, Dennys, and Edmunds Formations, and the Leighton Formation of the Pembroke Group (the stratigraphic rank of both is revised herein for the Machias-Eastport area), all of Silurian age. The shallow marine Hersey Formation (stratigraphic rank also revised herein) of the Pembroke Group, of latest Silurian age (and possibly earliest Devonian, as suggested by an ostracode fauna), contains no known volcanics; and it evidently was deposited during a volcanic hiatus that immediately preceded emergence of the coastal volcanic belt and the eruption of the older Devonian assemblage. The older Devonian assemblage, in the lagoonal to subaerial Lower Devonian Eastport Formation, contains tholeiitic basalts and basaltic andesites, typically with abundant plagioclase phenocrysts and typically richer in iron and titanium and poorer in magnesium and nickel than the Silurian basalts; and the Eastport Formation has rhyolites and silicic dacites that have higher average SiO2 and K2O contents and higher ratios of FeO* to MgO than the Silurian ones. The younger Devonian assemblage is represented by one sample of basalt from a flow in red beds of the post-Acadian Upper Devonian Perry Formation, and by three samples from pre-Acadian diabases that intrude the Leighton and Hersey Formations. These rocks are even richer in titanium and iron and poorer in magnesium and nickel than the older Devonian basalts. Post-Acadian granitic plutons exposed along the coastal belt for which analyses are available are tentatively included in the younger Devonian assemblage. The most conspicuous features of the coastal volcanics and associated intrusives are the preponderance of rocks of basaltic composition ( < 52 percent SiO2 ) in the Silurian assemblage, and the near absence in all assemblages of intermediate rocks having 57-67 percent SiO2 (calculated without volatiles). All the rocks are variably altered spilites and keratophyres. The basaltic types are adequately defined, however, by eight samples of least altered basalts having calcic plagioclase, clinopyroxene, and 0.5 percent or less CO2 , The more altered basalts are variably enriched or depleted in Na2O, K2O, and CaO relative to the least altered ones. In the silicic rocks no primary ferromagnesian minerals are preserved. The Na2O and K2O contents of the silicic rocks are erratic; they are approximately reciprocal, possibly owing to alkali exchange while the rocks were still glassy. We propose that the coastal volcanic belt extended along an axis of thermal swelling in the Earth's mantle and upward intrusion of partially melted mantle into the sialic Avalonian crust. These processes were accompanied by shoaling and emergence of the belt, and they produced the bimodal volcanism. Tholeiitic basaltic melts segregated from mantle material

  17. The relation between magnetite and silicate fabric in granitoids of the Adamello Batholith

    NASA Astrophysics Data System (ADS)

    Schöpa, A.; Floess, D.; de Saint Blanquat, M.; Annen, C.; Launeau, P.

    2015-02-01

    The link between the macroscopic silicate fabric and the magnetite-controlled AMS (anisotropy of magnetic susceptibility) fabric in ferromagnetic rocks was investigated through a comprehensive comparison between different fabric measurement techniques. Sample lithologies include tonalites and granodiorites from the Lago della Vacca Complex, Adamello Batholith, Italy. The datasets used to assess the link between subfabrics and the coherence between methods include: 1) macroscopic silicate fabric measured directly in the field; 2) macroscopic silicate fabric derived from image analysis (IA) of outcrop pictures and sample pictures; 3) shape-preferred orientations (SPO) of mafic silicates, 4) SPO of magnetite, and 5) calculated distribution of magnetite grains from computer-assisted high-resolution X-ray tomography (X-ray CT) images; 6) fabrics derived from the AMS. Macroscopic mineral fabrics measured in the field agree with the IA results and with the SPO of mafic silicates obtained from the X-ray CT imaging. The X-ray CT results show that the SPO of the magnetite grains are consistent with the AMS data whereas the spatial distribution of the magnetite grains is less compatible with the AMS fabric. This implies that the AMS signal is mainly controlled by the shape of the magnetic carrier mineral rather than by the spatial arrangement of the magnetite grains. An exception is the presence of magnetite clusters. Furthermore, the SPO of mafic silicates and the SPO of the magnetite grains are consistent with the AMS data. Another finding of this study is that the magnetic susceptibility correlates linearly with the amount of magnetite in the samples. The coherent results obtained from a variety of methods reinforce the application of both AMS measurements and IA as robust tools to analyse fabrics in granitic intrusions.

  18. On the neutralization of acid rock drainage by carbonate and silicate minerals

    NASA Astrophysics Data System (ADS)

    Sherlock, E. J.; Lawrence, R. W.; Poulin, R.

    1995-02-01

    The net result of acid-generating and-neutralizing reactions within mining wastes is termed acid rock drainage (ARD). The oxidation of sulfide minerals is the major contributor to acid generation. Dissolution and alteration of various minerals can contribute to the neutralization of acid. Definitions of alkalinity, acidity, and buffer capacity are reviewed, and a detailed discussion of the dissolution and neutralizing capacity of carbonate and silicate minerals related to equilibium conditions, dissolution mechanism, and kinetics is provided. Factors that determine neutralization rate by carbonate and silicate minerals include: pH, PCO 2, equilibrium conditions, temperature, mineral composition and structure, redox conditions, and the presence of “foreign” ions. Similar factors affect sulfide oxidation. Comparison of rates shows sulfides react fastest, followed by carbonates and silicates. The differences in the reaction mechanisms and kinetics of neutralization have important implications in the prediction, control, and regulation of ARD. Current static and kinetic prediction methods upon which mine permitting, ARD control, and mine closure plans are based do not consider sample mineralogy or the kinetics of the acid-generating and-neutralizing reactions. Erroneous test interpretations and predictions can result. The importance of considering mineralogy for site-specific interpretation is highlighted. Uncertainty in prediction leads to difficulties for the mine operator in developing satisfactory and cost-effective control and remediation measures. Thus, the application of regulations and guidelines for waste management planning need to beflexible.

  19. Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials

    NASA Astrophysics Data System (ADS)

    Pękala, Agnieszka

    2017-10-01

    Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.

  20. The Dissolved Ca Isotope Composition of Himalayan-Tibetan Waters

    NASA Astrophysics Data System (ADS)

    Tipper, E. T.; Galy, A.; Bickle, M. J.

    2004-12-01

    Determining the relative proportions of carbonate versus silicate weathering in the Himalaya is important for understanding the long-term atmospheric CO2 budget and the marine Sr isotope record. 87Sr/86Sr is not a straightforward proxy of carbonate to silicate weathering in the Himalaya and up to 50% of the dissolved Ca may be removed by the precipitation of secondary calcite. Ca isotopes have the potential to constrain the relative inputs of carbonates to silicates and incongruent dissolution processes in the weathering environment. Ca is the major cation carried by rivers. Thirty four Himalayan rock and water samples from the Nepal Himalaya and Tibet have been analysed for 44/42Ca and 43/42Ca on a Nu-Instruments Multiple Collector -ICP-MS. Unlike the 44/40Ca ratio the 44/42Ca is not susceptible to excess 40Ca production from the decay of K. All samples lie on a single mass fractionation line. There is a total range of 0.4 \\permil variation in \\delta44Ca with values from 0.63 \\permil - 0.21 \\permil relative to the SRM915a standard. This is comparable to that already reported with \\delta44/40Ca for small catchments and global rivers. Small first order catchments from each of the main lithotectonic units of the Himalaya have been analysed to examine the effect of lithology on dissolved Ca isotopic composition. In agreement with previous studies elsewhere there is little correlation between source rock and dissolved composition for small rivers spanning a range of source rock from limestone to various silicates and covering a vegetation range from temperate semi-desert to jungle. \\delta44Ca is not correlated with 87Sr/86Sr or Na/Ca ratios confirming that source rock composition is not the dominant control on the observed range in \\delta44Ca. A time-series has been examined for the Marsyandi River, central Nepal. In spite of significant systematic variations in major element chemistry including Ca concentration and 87Sr/86Sr the variations in \\delta44Ca are limited to 0.16 \\permil. Either there is only a single isotopic source of Ca or the \\delta44Ca is controlled by incongruent dissolution processes. The most important incongruent process to affect the Ca budget is the precipitation of pedogenic carbonate. Such incongruent processes should be detectable in the Ca-isotope budget.

  1. Petrogenesis of Silicic Magmas in the Afro-Arabian Flood Volcanic Province in Yemen: A Melt Inclusion Study

    NASA Astrophysics Data System (ADS)

    Falkena, L. B.; Peate, D.; Ukstins Peate, I.

    2009-05-01

    The Oligocene (˜26-30 Ma) Afro-Arabian Flood Volcanic Province in Yemen and Ethiopia contains significant silicic material primarily deposited as large volume (>1,000 km 3 ) ignimbrites. These deposits have been correlated to tephra layers in ODP cores ˜2700 km SE of Yemen in the Indian Ocean. We are using melt inclusions (MI) in 4 ignimbrite units to model the petrogenesis and pre-eruptive volatile contents of the ignimbrites. Although quartz is a better MI host in silicic systems, these units only contain plagioclase that has the potential for degassing and leakage in cleavage planes. Through a series of experiments to investigate the rehomogenization temperature of the MI, we found inclusions were glassy at 1075 ° C after 24 hours. We also have compositional data from shorter duration runs (˜20 min.) at 1050 ° C. Reconnaissance MI data show a wide compositional variation compared to whole rock samples of the ignimbrites, and they provide a better estimate of true magmatic compositions compared to the heterogeneous whole rock samples. The inclusions are generally lower in Si (˜59-85 wt.%), yet significantly higher in Na and Al, which both decrease with increasing Si. We are currently modeling these variations to determine the petrogenesis of these silicic magmas. In terms of pre-eruptive volatiles, sulfur in the long duration experiments appears degassed (<5 ppm) yet is retained in the shorter duration runs (up to 500 ppm). Cl appears robust in the MI at ˜340 ppm and is consistent with modeled high halogen contents in such peralkaline melts. We will present estimates for the total S and Cl released during these large ignimbrite eruptions.

  2. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  3. ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Nasir, Sobhi

    2014-02-01

    Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates in carbonatites apart the influence of major carbonate minerals that occurred predominantly in these rocks. The study of ASTER thermal infrared (TIR) spectral bands distinguished the marls have low emissivity of energy due to the presence of hydroxyl bearing alumina-silicate minerals from the other rocks such as limestones, listwaenites and carbonatites which have high emissivity due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of carbonate minerals and carbonates. Further, the study demonstrates and confirms the spectral sensitivity of marls and carbonatites. Marls have high reflectivity in ASTER visible near infrared (VNIR) and shortwave infrared (SWIR) spectral bands and low emissivity of energy in ASTER TIR spectral bands due to the presence of hydroxyl bearing alumina-silicate minerals. Carbonatites have low reflectivity in ASTER VNIR-SWIR spectral bands and high emissivity in ASTER TIR spectral bands due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of the carbonate minerals and carbonates. These have been discussed by providing the grey scale color image of 14 ASTER spectral bands of the study sites. The study is based on the interpretation of image spectra of multispectral image conducted to map such economic valuable carbonate rocks. It provides a simple methods and basic knowledge, which are of great help to the geology and exploration communities. It is recommended to the geologists, industrialists, exploration communities of carbonates and mine owners to take up the knowledge for economic exploration of such deposits. Further, the study has proved that the technique is time and cost effective in mapping of such deposits and can be used to the areas which have extremely rugged topography occurred in similar arid region, where difficult to do exhaustive sampling and not reachable for conventional geological mapping.

  4. Pristine moon rocks - Apollo 17 anorthosites

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Jerde, E. A.; Kallemeyn, G. W.

    1991-01-01

    New chemical analyses and petrographic descriptions for 10 previously unanalyzed Apollo 17 rock samples are provided. Attention is focused on several that appear to be pristine. All samples were analyzed in INAA using a procedure based on that of Kallemeyn et al. (1989). One sample was found to be unambiguously pristine, and is the first pristine ferroan-anorthositic suite (FAS) sample from Apollo 17. It exhibits extremely low-mg(asterisk) mafic silicates, coupled with relatively sodic plagioclase. It has an unusually high augite/low-Ca pyroxene ratio and contains incompatible trace elements at levels unprecedentedly high compared to FAS anorthosites from the Apollo 14, 15, 16 sites. It is inferred that 74114.5, and Apollo 17 anorthosites in general, formed at a relatively late stage in the evolution of the primordial magmasphere.

  5. Biological and Organic Chemical Decomposition of Silicates. Chapter 7.2

    NASA Technical Reports Server (NTRS)

    Silverman, M. P.

    1979-01-01

    The weathering of silicate rocks and minerals, an important concern of geologists and geochemists for many years, traditionally has been approached from strictly physical and chemical points of view. Biological effects were either unrecognized, ignored, or were mentioned in passing to account for such phenomena as the accumulation of organic matter in sediments or the generation of reducing environments. A major exception occurred in soil science where agricultural scientists, studying the factors important in the development of soils and their ability to nourish and sustain various crops, laid the foundation for much of what is known of the biological breakdown of silicate rocks and minerals. The advent of the space age accelerated the realization that many environmental problems and geo- chemical processes on Earth can only be understood in terms of ecosystems. This in turn, spurred renewed interest and activity among modem biologists, geologists and soil scientists attempting to unravel the intimate relations between biology and the weathering of silicate rocks and minerals of the earth surface.

  6. Biological and Organic Chemical Decomposition of Silicates. Chapter 7.2

    NASA Technical Reports Server (NTRS)

    Sliverman, M. P.

    1979-01-01

    The weathering of silicate rocks and minerals, an important concern of geologists and geochemists for many years, traditionally has been approached from strictly physical and chemical points of view. Biological effects were either unrecognized, ignored, or were mentioned in passing to account for such phenomena as the accumulation of organic matter in sediments or the generation of reducing environments. A major exception occurred in soil science where agricultural scientists, studying the factors important in the development of soils and their ability to nourish and sustain various crops, laid the foundation for much of what is known of the biological breakdown of silicate rocks and minerals. The advent of the space age accelerated the realization that many environmental problems and geochemical processes on Earth can only be understood in terms of ecosystems. This in turn, spurred renewed interest and activity among modem biologists, geologists and soil scientists attempting to unravel the intimate relations between biology and the weathering of silicate rocks and minerals of the earth's surface.

  7. Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diabira, I.; Castanier, L.M.; Kovscek, A.R.

    2001-04-19

    An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.

  8. Mobility of plume-derived volcanogenic elements in meteoric water at Nyiragongo volcano (Congo) inferred from the chemical composition of single rainfall events

    NASA Astrophysics Data System (ADS)

    Liotta, Marcello; Shamavu, Patient; Scaglione, Sarah; D'Alessandro, Walter; Bobrowski, Nicole; Bruno Giuffrida, Giovanni; Tedesco, Dario; Calabrese, Sergio

    2017-11-01

    The chemical composition of single rainfall events was investigated at Nyiragongo volcano (Democratic Republic of Congo) with the aim of determining the relative contributions of plume-derived elements. The different locations of the sampling sites allowed both plume-affected samples (hereafter referred to as ;fumigated samples;) and samples representative of the local background to be collected. The chemical composition of the local background reflects the peculiar geographic features of the area, being influenced by biomass burning, geogenic dust, and biological activity. Conversely, fumigated samples contain large amounts of volcanogenic elements that can be clearly distinguished from the local background. These elements are released into the atmosphere from the persistently boiling lava lake of the Nyiragongo crater and from the neonate lava lake of Nyamulagira. These emissions result in a volcanic plume that includes solid particles, acidic droplets, and gaseous species. The chemical signature of the volcanic emissions appears in falling raindrops as they interact with the plume. HCl and HBr readily dissolve in water, and so their ratio in rain samples reflects that of the volcanic plume. The transport of HF is mediated by the large amount of silicate particles generated at the magma-air interface. SO2 is partially converted into SO42- that dissolves in water. The refractory elements dissolved in rain samples derive from the dissolution of silicate particles, and most of them (Al, Mg, Ca, and Sr) are present at exactly the same molar ratios as in the rocks. In contrast, elements such as Na, K, Rb, Cu, and Pb are enriched relative to the whole-rock composition, suggesting that they are volatilized during magma degassing. After correcting for the dissolution of silicate particles, we can define that the volatility of the elements decreases in the following order: Pb ≫ Rb > K > Na. This finding, which is the first for a volcanic plume, is consistent with previous measurements in high-temperature fumaroles at other volcanic areas.

  9. Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization

    USGS Publications Warehouse

    Barnes, I.; Rapp, J.B.; O'Neil, J.R.; Sheppard, R.A.; Gude, A.J.

    1972-01-01

    Fluids related to Serpentinization are of at least three types. The first reported (Barnes and O'Neil, 1969) is a fluid of local meteoric origin, the chemical and thermodynamic properties of which are entirely controlled by olivine, orthopyroxene, brucite, and serpentine reactions. It is a Ca+2-OH-1 type and is shown experimentally to be capable of reacting with albite to yield calcium hydroxy silicates. Rodingites may form where the Ca+2-OH-1 type waters flow across the ultramafic contact and react with siliceous country rock. The second type of fluid has its chemical composition largely controlled before it enters the ultramafic rocks, but reactions within the ultramafic rocks fix the thermodynamic properties by reactions of orthopyroxene, olivine, calcite, brucite, and serpentine. The precipitation of brucite from this fluid clearly shows that fluid flow allows reaction products to be deposited at a distance from the point of solution. Thus, textural evidence for volume relations during Serpentinization may not be valid. The third type of fluid has its chemical properties fixed in part before the reactions with ultramafic rocks, in part by the reactions of orthopyroxene, olivine, and serpentine and in part by reactions with siliceous country rock at the contact. The reactions of the ultramafic rock and country rock with the fluid must be contemporaneous and require flow to be along the contact. This third type of fluid is grossly supersaturated with talc and tremolite, both found along the contact. The occurrence of magadiite, kenyaite, mountainite, and rhodesite along the contact is probably due to a late stage low-temperature reaction of fluids of the same thermodynamic properties as those that formed the talc and tremolite at higher temperatures. Oxygen isotope analyses of some of these minerals supports this conclusion. Rodingites form from Ca+2-rich fluids flowing across the contact; talc and tremolite form from silica-rich fluids flowing along the contact. Isotopic analyses of the fluids indicate varied origins including unaltered local meteoric water and connate water. Complexion Spring water may be a sample of only slightly altered Jurassic or Cretaceous sea water. ?? 1972 Springer-Verlag.

  10. The direction of fluid flow during contact metamorphism of siliceous carbonate rocks: new data for the Monzoni and Predazzo aureoles, northern Italy, and a global review

    NASA Astrophysics Data System (ADS)

    Ferry, John M.; Wing, Boswell A.; Penniston-Dorland, Sarah C.; Rumble, Douglas

    2002-03-01

    Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux ~5,000 and ~300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.

  11. The direction of fluid flow during contact metamorphism of siliceous carbonate rocks: new data for the Monzoni and Predazzo aureoles, northern Italy, and a global review

    NASA Astrophysics Data System (ADS)

    Ferry, John; Wing, Boswell; Penniston-Dorland, Sarah; Rumble, Douglas

    2001-11-01

    Periclase formed in siliceous dolomitic marbles during contact metamorphism in the Monzoni and Predazzo aureoles, the Dolomites, northern Italy, by infiltration of the carbonate rocks by chemically reactive, H2O-rich fluids at 500 bar and 565-710 °C. The spatial distribution of periclase and oxygen isotope compositions is consistent with reactive fluid flow that was primarily vertical and upward in both aureoles with time-integrated flux 5,000 and 300 mol fluid/cm2 rock in the Monzoni and Predazzo aureoles, respectively. The new results for Monzoni and Predazzo are considered along with published studies of 13 other aureoles to draw general conclusions about the direction, amount, and controls on the geometry of reactive fluid flow during contact metamorphism of siliceous carbonate rocks. Flow in 12 aureoles was primarily vertically upward with and without a horizontal component directed away from the pluton. Fluid flow in two of the other three was primarily horizontal, directed from the pluton into the aureole. The direction of flow in the remaining aureole is uncertain. Earlier suggestions that fluid flow is often horizontal, directed toward the pluton, are likely explained by an erroneous assumption that widespread coexisting mineral reactants and products represent arrested prograde decarbonation reactions. With the exception of three samples from one aureole, time-integrated fluid flux was in the range 102-104 mol/cm2. Both the amount and direction of fluid flow are consistent with hydrodynamic models of contact metamorphism. The orientation of bedding and lithologic contacts appears to be the principal control over whether fluid flow was either primarily vertical or horizontal. Other pre-metamorphic structures, including dikes, faults, fold hinges, and fracture zones, served to channel fluid flow as well.

  12. Review of samples of tailings, soils and stream sediment adjacent to and downstream from the Ruth Mine, Inyo County, California

    USGS Publications Warehouse

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Ruth Mine and mill are located in the western Mojave Desert in Inyo County, California (fig. 1). The mill processed gold-silver (Au-Ag) ores mined from the Ruth Au-Ag deposit, which is adjacent to the mill site. The Ruth Au-Ag deposit is hosted in Mesozoic intrusive rocks and is similar to other Au-Ag deposits in the western Mojave Desert that are associated with Miocene volcanic centers that formed on a basement of Mesozoic granitic rocks (Bateman, 1907; Gardner, 1954; Rytuba, 1996). The volcanic rocks consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions (fig. 2) that were emplaced into Mesozoic silicic intrusive rocks (Troxel and Morton, 1962). The Ruth Mine is on Federal land managed by the U.S. Bureau of Land Management (BLM). Tailings from the mine have been eroded and transported downstream into Homewood Canyon and then into Searles Valley (figs. 3, 4, 5, and 6). The BLM provided recreational facilities at the mine site for day-use hikers and restored and maintained the original mine buildings in collaboration with local citizen groups for use by visitors (fig. 7). The BLM requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure arsenic (As) and other geochemical constituents in soils and tailings at the mine site and in stream sediments downstream from the mine in Homewood Canyon and in Searles Valley (fig. 3). The request was made because initial sampling of the site by BLM staff indicated high concentrations of As in tailings and soils adjacent to the Ruth Mine. This report summarizes data obtained from field sampling of mine tailings and soils adjacent to the Ruth Mine and stream sediments downstream from the mine on June 7, 2009. Our results permit a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  13. Green and Fast Laser Fusion Technique for Bulk Silicate Rock Analysis by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong

    2016-10-18

    Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.

  14. Simultaneous determination of tantalum and hafnium in silicates by neutron activation analysis

    USGS Publications Warehouse

    Greenland, L.P.

    1968-01-01

    A neutron activation procedure suitable for the routine determination of tantalum and hafnium in silicates is described. The irradiated sample is fused with sodium peroxide and leached, and the insoluble hydroxides are dissolved in dilute hydrofluoric acid-hydrochloric acid. After LaF3 and AgCl scavenges, tantalum and hafnium are separated by anion exchange. Tantalum is obtained radiochemically pure; 233Pa and 95Zr contaminants in the hafnium fraction are resolved by ??-ray spectrometry. The chemical yield of the procedure is detemined after counting by re-irradiation. Values for the 8 U.S. Geological Survey standard rocks are reported. ?? 1968.

  15. Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth's core formation

    NASA Astrophysics Data System (ADS)

    Shahar, Anat; Ziegler, Karen; Young, Edward D.; Ricolleau, Angele; Schauble, Edwin A.; Fei, Yingwei

    2009-10-01

    Stable isotope fractionation amongst phases comprising terrestrial planets and asteroids can be used to elucidate planet-forming processes. To date, the composition of the Earth's core remains largely unknown though cosmochemical and geophysical evidence indicates that elements lighter than iron and nickel must reside there. Silicon is often cited as a light element that could explain the seismic properties of the core. The amount of silicon in the core, if any, can be deduced from the difference in 30Si/ 28Si between meteorites and terrestrial rocks if the Si isotope fractionation between silicate and Fe-rich metal is known. Recent studies (e.g., [Georg R.B., Halliday A.N., Schauble E.A., Reynolds B.C., 2007. Silicon in the Earth's core. Nature 447 (31), 1102-1106.]; [Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., Reynolds, B. C., 2009. Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core. Earth Planet. Sci. Lett. 287, 77-85.]) showing (sometimes subtle) differences between 30Si/ 28Si in meteorites and terrestrial rocks suggest that Si missing from terrestrial rocks might be in the core. However, any conclusion based on Earth-meteorite comparisons depends on the veracity of the 30Si/ 28Si fractionation factor between silicates and metals at appropriate conditions. Here we present the first direct experimental evidence that silicon isotopes are not distributed uniformly between iron metal and rock when equilibrated at high temperatures. High-precision measurements of the silicon isotope ratios in iron-silicon alloy and silicate equilibrated at 1 GPa and 1800 °C show that Si in silicate has higher 30Si/ 28Si than Si in metal, by at least 2.0‰. These findings provide an experimental foundation for using isotope ratios of silicon as indicators of terrestrial planet formation processes. They imply that if Si isotope equilibrium existed during segregation of Earth's core-forming metal and silicate mantle, there should be an isotopic signature of Si in the core. Our experiments, combined with previous measurements of Si isotope ratios in meteorites and rocks representing the bulk silicate Earth, suggest that the formation of the Earth's core imparted a high 30Si/ 28Si signature to the bulk silicate Earth due to dissolution of ~ 6 wt% Si into the early core.

  16. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation control?

    NASA Astrophysics Data System (ADS)

    Tipper, Edward T.; Galy, Albert; Bickle, Mike J.

    2008-02-01

    In rivers draining the Himalaya-Tibetan-Plateau region, the 26Mg/ 24Mg ratio has a range of 2‰ and the 44Ca/ 42Ca ratio has a range of 0.6‰. The average δ26Mg values of tributaries from each of the main lithotectonic units (Tethyan Sedimentary Series (TSS), High Himalayan Crystalline Series (HHCS) and Lesser Himalayan Series (LHS)) are within 2 standard deviation analytical uncertainty (0.14‰). The consistency of average riverine δ26Mg values is in contrast to the main rock types (limestone, dolostone and silicate) which range in their average δ26Mg values by more than 2‰. Tributaries draining the dolostones of the LHS differ in their δ44Ca values compared to tributaries from the TSS and HHCS. The chemistry of these river waters is strongly influenced by dolostone (solute Mg/Ca close to unity) and both δ26Mg (-1.31‰) and δ44Ca (0.64‰) values are within analytical uncertainty of the LHS dolostone. These are the most elevated δ44Ca values in rivers and rock reported so far demonstrating that both riverine and bedrock δ44Ca values may show greater variability than previously thought. Although rivers draining TSS limestone have the lowest δ26Mgandδ44Ca values at -1.41 and 0.42‰, respectively, both are offset to higher values compared to bedrock TSS limestone. The average δ26Mg value of rivers draining mainly silicate rock of the HHCS is -1.25‰, lower by 0.63‰ than the average silicate rock. These differences are consistent with a fractionation of δ26Mg values during silicate weathering. Given that the proportion of Mg exported from the Himalaya as solute Mg is small, the difference in 26Mg/ 24Mg ratios between silicate rock and solute Mg reflects the 26Mg/ 24Mg isotopic fractionation factor ( αsilicate-dissolvedMg) between silicate and dissolved Mg during incongruent silicate weathering. The value of αsilicate-dissolvedMg of 0.99937 implies that in the TSS, solute Mg is primarily derived from silicate weathering, whereas the source of Ca is overwhelmingly derived from carbonate weathering. The average δ44Ca value in HHCS rivers is within uncertainty of silicate rock at 0.39‰. The widespread hot springs of the High Himalaya have an average δ26Mg value of -0.46‰ and an average δ44Ca value of 0.5‰, distinct from riverine values for δ26Mg but similar to riverine δ44Ca values. Although rivers draining each major rock type have δ44Ca and δ26Mg values in part inherited from bedrock, there is no correlation with proxies for carbonate or silicate lithology such as Na/Ca ratios, suggesting that Ca and Mg are in part recycled. However, in spite of the vast contrast in vegetation density between the arid Tibetan Plateau and the tropical Lesser Himalaya, the isotopic fractionation factor for Ca and Mg between solute and rocks are not systematically different suggesting that vegetation may only recycle a small amount of Ca and Mg in these catchments. The discrepancy between solute and solid Ca and Mg isotope ratios in these rivers from diverse weathering environments highlight our lack of understanding concerning the origin and subsequent path of Ca and Mg, bound as minerals in rock, and released as cations in rivers. The fractionation of Ca and Mg isotope ratios may prove useful for tracing mechanisms of chemical alteration. Ca isotope ratios of solute riverine Ca show a greater variability than previously acknowledged. The variability of Ca isotope ratios in modern rivers will need to be better quantified and accounted for in future models of global Ca cycling, if past variations in oceanic Ca isotope ratios are to be of use in constraining the past carbon cycle.

  17. Petrogenesis of Western Cascades Silicic Volcanics Near Sweet Home, Oregon

    NASA Astrophysics Data System (ADS)

    Cook, G. W.; White, C. M.

    2002-12-01

    Silicic lavas in the Menagerie Wilderness east of Sweet Home, Oregon are Oligocene to Miocene in age and range in composition from dacite (low K) to trachydacite (high K) and rhyolite (medium K). Three distinct silicic centers have been distinguished through a combination of field observation, chemistry and petrography. Phenocryst assemblages in rocks of the centers are plagioclase-hornblende-magnetite (Rooster Rock rhyolite), plagioclase-quartz-magnetite (Soda Fork rhyolite) and quartz-plagioclase-biotite-hornblende-magnetite (Moose Mt. rhyolite). The silicic volcanics in the study area are similar in terms of mineral content and overall chemical composition. Despite this, chemical evidence suggests that the three centers are petrologically unrelated. REE variations and least squares modeling of major element compositions are consistent with fractionation of plagioclase and hornblende. The rhyolites have moderate Eu anomalies and have flat MREE and HREE signatures. Least squares models and bivariate plots of major and trace elements also suggest fractionation of the aforementioned phases for both the andesite to dacite, and dacite to rhyolite steps. Comparisons with similar silicic centers show the Menagerie rocks share affinities with High Cascades rocks thought to have been derived through fractional crystallization (Crater Lake and South Sister). Plots of ratios of incompatible trace elements were utilized to determine if assimilation played some role alongside fractional crystallization in differentiation. Plots of Ba/La vs. Ba, Rb/Zr vs. Rb and Rb/Th vs. Rb show systematic positive increases in the ratios between a plausible parent magma (icelandite) and the rhyolites. These increases are not easily explained by fractional crystallization but can be modeled by assimilation of silicic crust. Overall, it seems likely that the three centers evolved independently through similar petrogenetic processes from an andesitic parent. The most plausible petrogenetic scenario involves some combination of fractional crystallization and assimilation of partial melts of silicic crust.

  18. A high-temperature hydrothermal deposit on the seabed at a Gulf of California spreading center ( Guaymas Basin).

    USGS Publications Warehouse

    Lonsdale, P.F.; Bischoff, J.L.; Burns, V.M.; Kastner, M.; Sweeney, R.E.

    1980-01-01

    A submersible dive on a turbidite-covered spreading axis in Guaymas Basin photographed and sampled extensive terraces and ledges of talc. The rock contains siliceous microfossils, smectite, and euhedral pyrrhotite as well as rather pure iron-rich talc. S and O isotopes indicate precipitation around a hydrothermal vent, at about 2800C. - Authors

  19. A IAB-Complex Iron Meteorite Containing Low-Ca Clinopyroxene: Northwest Africa 468 and its Relationship to Iodranites and Formation by Impact Melting

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Kallemeyn, Gregory W.; Wasson, John T.

    2002-01-01

    Northwest Africa 468 (NWA 468) is a new ungrouped, silicate-rich member of the IAB complex of nonmagmatic iron meteorites. The silicates contain relatively coarse (approximately 300 micron-size) grains of low-Ca clinopyroxene with polysynthetic twinning and inclined extinction. Low-Ca clinopyroxene is indicative of quenching from high temperatures (either from protoenstatite in a few seconds or high-temperature clinoenstatite in a few hours). It seems likely that NWA 468 formed by impact melting followed by rapid cooling to less than or equal to 660 C. After the loss of a metal-sulfide melt from the silicates, sulfide was reintroduced, either from impact-mobilized FeS or as an S2 vapor that combined with metallic Fe to produce FeS. The O-isotopic composition (delta O-17 = -1.39 %) indicates that the precursor material of NWA 468 was a metal-rich (e.g., CR) carbonaceous chondrite. Lodranites are similar in bulk chemical and O-isotopic composition to the silicates in NWA 468; the MAC 88177 lodranite (which also contains low-Ca clinopyroxene) is close in bulk chemical composition. Both NWA 468 and MAC 88177 have relatively low abundances of REE (rare earth elements) and plagiophile elements. Siderophiles in the metal-rich areas of NWA 468 are similar to those in the MAC 88177 whole rock; both samples contain low Ir and relatively high Fe, Cu and Se. Most unweathered lodranites contain approximately 20 - 38 wt. % metallic Fe-Ni. These rocks may have formed in an analogous manner to NWA 468 (i.e., by impact melting of metal-rich carbonaceous-chondrite precursors) but with less separation of metal-rich melts from silicates.

  20. Experimental high strain-rate deformation products of carbonate-silicate rocks: Comparison with terrestrial impact materials

    NASA Astrophysics Data System (ADS)

    van der Bogert, C. H.; Schultz, P. H.; Spray, J. G.

    2008-09-01

    Introduction. The response of carbonate to impact processes has thus far been investigated using a combination of thermodynamic modelling, shock experiments, and impact experiments. Localized shear deformation was suggested to play an important role in the failure of carbonate during some shock experiments [1,2], and was invoked to explain significant degassing of carbonates during oblique impact experiments [3]. The results of the impact experiments are at odds with experiments [4] that show back-reaction of CO2 with CaO and MgO could significantly reduce CO2 degassing during impact events. We performed a frictional-welding experiment in order to investigate the effects of high strain-rate deformation on carbonate-silicate target materials, exclusive of shock deformation effects, and to investigate the differing results of other experiments. Samples and Techniques. A frictional melting experiment was performed using dolomitic marble and quartzite samples to simulate conditions during an impact into carbonate-silicate target rocks. The experiment followed the method of Spray (1995) [5]. The 1.5 cm3 samples were mounted onto separate steel cylinders with epoxy. Using a Blacks FWH-3 axial friction-welding rig, the samples were brought into contact at room temperature and under dry conditions with ~5 MPa applied pressure. Contact was maintained for two seconds at 750 rpm for a sustained strain-rate of 102 to 103 s-1. Results. Vapor or fine dust escaped from the interface during the experiment. Immediately after sample separation, the interfaces were incandescent. Once cooled, opaque white material adhered to both the quartzite and dolomitic marble samples. Quartzite sample. Material was injected into cracks that formed in the quartzite sample. Cooling and crystallization of the friction products resulted in the formation of submicron-sized minerals such as periclase and Ca- and Ca,Mg-silicates (Fig. 1) including merwinite and åkermanite. While periclase was observed as an individual mineral species, no pure lime was observed to be present. In the quartzite sample, CaO is present only as a component of the Ca- and Ca,Mg-silicates. In the fine-grained shear zone materials, however, elemental mapping and EMP analyses reveal an overall segregation of MgO and CaO [6], suggesting that CaO is mostly present in Casilicates and Ca,Mg-silicates with low MgO contents. Dolomitic marble sample. The dolomitic marble section exhibited thinner, shorter fractures than the quartzite sample. Mechanical twinning was induced by the deformation. The adhered friction products were very fine-grained material with larger, untwinned calcite (Fig. 2), and dendritic carbonates with a composition similar to huntite. Most of the secondary calcite had rounded margins, which suggested that they were molten during the experiment. The dendritic huntite-like carbonate, with a CO2 content higher than of these secondary carbonate grains (Fig. 3). However, calcite was the dominant secondary mineral. The finegrained portion of the shear zone material contained pervasive vesicles. The vesicles immediately adjacent to the secondary calcite grains were smaller than those adjacent to the dolomitic marble. This suggests that incorporation of CO2 near the calcite grains facilitated their growth. Discussion. The textures and compositions of the experimental products indicate that the dolomitic marble decarbonated in response to the high temperatures generated during experimental deformation. Simultaneously, the liberated CaO recombined with CO2 to form molten calcite in the shear zone. This effect, in part, is due to the lower decarbonation temperature for dolomite versus calcite [c.f., 7], which allows calcite to survive at higher temperatures than dolomite. In addition, the confining pressure during the experiment was high enough to allow calcite to be present as a liquid [c.f., 8]. Both the calcite and dendritic carbonate are likely products of back-reaction of CaO and MgO with CO2. However, both CaO and MgO were also incorporated into secondary silicates, which reduced the total amount available to back-react with CO2. It appears that all CaO released from the dolomitic marble formed secondary minerals (carbonates and silicates), because it is not present as pure CaO. The MgO released from the dolomitic marble primarily formed secondary silicates, periclase, and minor secondary carbonate. As a result, the secondary carbonates cannot be a sink for all the CO2 gas released from the dolomitic marble, unless a much higher proportion of the huntite-like phase was present. Thus, there was a net release of CO2 gas from the original dolomitic marble. A portion of this CO2 remained trapped in vesicles, but CO2 gas also escaped from the shear zone. This is consistent with compositional measurements of the shear zone that suggest a release of at least 5 wt% CO2 relative to the original dolomitic marble. Comparison with terrestrial craters. Many of the descriptions of deformation features in carbonates at terrestrial craters, such as mechanical twinning and bent fractures [9-11], are similar to those seen in our experimental products. Carbonates that survive impact seem to accommodate both shock and shear deformation primarily through mechanical fracturing and twinning. Impact melts at craters in carbonate-rich targets have been found to contain both silicic and carbonatitic melts [e.g., 12], with mineral phases that are indicative of high temperature reactions between carbonate and silicate rocks [e.g., 9]. Our experiments also showed these characteristics, however, the mineral phases produced were slightly different and we have not observed silicate glass in our experimental products. The segregation of MgO from CaO has been observed, for example, at Haughton [12] and Popigai [13], and was also seen in our experimental products [6]. Implications. The products of high strain-rate deformation experiments with carbonate-silicate rocks are similar in many aspects to impact products at terrestrial craters in mixed carbonate-silicate targets. The experiments show that decarbonation of carbonate targets and high temperature reactions between carbonate and silicates in the target rocks are not exclusive effects of shock deformation. Shear deformation alone can generate temperature and pressure conditions necessary to decarbonate dolomitic marble and generate calcitic melts. Thus, high strain-rate deformation is a potentially major contributor to the total impact-related energy deposited into the target, especially for oblique impacts. Shear deformation occuring during and after shock deformation could, in fact, enhance the release of CO2 as a gas, by creating pathways that allow gases to escape from target materials. Understanding the relative importance and interaction of each CO2 releasing or trapping mechanism is important for the determination of the environmental significance of impacts in targets containing carbonates. References. [1] Lange M. A. and Ahrens T. J. (1986) EPSL 77, 409-418. [2] Tyburczy J. A. and Ahrens T. J. (1986) JGR 91, 4730-4744. [3] Schultz P. H. (1996) GSA Abstracts, A384. [4] Agrinier P., et al. (2001) GCA 65, 2615-2632. [5] Spray J. G. (1995) Geology 23, 1119-1122. [6] van der Bogert C. H., et al. (2007) LPI Contribution No. 1360, 123-124. [7] Martinez I., et al. (1995) JGR 100, 15456-15476. [8] Ivanov B. A. and Deutsch A. (2002) Phys. Earth Planet. Int. 129, 131-143. [9] Martinez I., et al. (1994) EPSL 121, 559-574. [10] Redeker H.-J. and Stöffler D. (1988) Meteoritics 23, 185-196. [11] Skála R. and Jakes P. (1999). In Large Meteorite Impacts and Planetary Evolution II (eds. B. O. Dressler and V. L. Sharpton), pp. 205-214. [12] Osinski G. R. and Spray J. G. (2001) EPSL 194, 17-29. [13] Kenkmann T., et al. (1999) LPS XXX, Abstract #1561.

  1. Evidence for a Dying Magma Chamber at Rábida Island, Galápagos

    NASA Astrophysics Data System (ADS)

    Bercovici, H.; Geist, D.; Harpp, K. S.; Almeida, M.

    2015-12-01

    Rábida Island in the Galapagos has experienced both explosive and effusive volcanism. It is located to the east of the most active volcanoes of the Galapagos, and previously determined ages range from 0.9 to 1.1 Ma. An unusually curved escarpment cuts the western sector of the island, which might be part of a caldera wall, although its radius of curvature is much greater than that of the island. Lavas range from basalt to rhyolite, and there are also several intermediate compositions, which are unique in the archipelago. A welded ignimbrite crops out in northeast sector, the only such deposit known in the entire region. The volumetric proportion of evolved rocks is unusually high; 25% of the rocks in our comprehensive sample set are intermediate to felsic. The siliceous rocks occur in two clusters in the southern and southwestern sections of the island, suggesting two separate sources. The intermediate rocks are concentrated in the center and northwestern parts of the island. Despite these foci of more siliceous lavas, basalt is the most widespread rock type across the island. It is notable that Rabida is immediately east of Volcan Alcedo, which is the only active Galápagos volcano that has also erupted rhyolite, and south of Santiago Island, which erupted the trachyte dome observed by Charles Darwin in 1835. These observations, in conjunction with the cumulate xenoliths observed in Rábida explosive deposits, are consistent with the evolved rocks resulting from fractional crystallization of a dying magma chamber, as the volcano is carried away from the hotspot.

  2. Sampling the oxidative weathering products and the potentially acidic permafrost on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1988-01-01

    Large areas of Mars' surface are covered by oxidative weathering products containing ferric and sulfate ions having analogies to terrestrial gossans derived from sulfide mineralization associated with iron-rich basalts. Chemical weathering of such massive and disseminated pyrrhotite-pentlandite assemblages and host basaltic rocks in the Martian environment could have produced metastable gossaniferous phases (limonite containing poorly crystalline hydrated ferric sulfates and oxyhydroxides, clay silicates and opal). Underlying groundwater, now permafrost on Mars, may still be acidic due to incomplete buffering reactions by wall-rock alteration of unfractured host rock. Such acidic solutions stabilize temperature-sensitive complex ions and sols which flocculate to colloidal precipitates at elevated temperatures. Sampling procedures of Martian regolith will need to be designed bearing in mind that the frozen permafrost may be corrosive and be stabilizing unique complex ions and sols of Fe, Al, Mg, Ni and other minor elements.

  3. Determination of small and large amounts of fluorine in rocks

    USGS Publications Warehouse

    Grimaldi, F.S.; Ingram, B.; Cuttitta, F.

    1955-01-01

    Gelatinous silica and aluminum ions retard the distillation of fluorine in the Willard and Winter distillation method. A generally applicable, simple method for the determination of fluorine in rocks containing aluminum or silicon or both as major constituents was desired. In the procedure developed, the sample is fused with a mixture of sodium carbonate and zinc oxide, leached with water, and filtered. The residue is granular and retains nearly all of the silica. The fluorine in the filtrate is distilled directly from a perchloric acid-phosphoric acid mixture. Phosphoric acid permits the quantitative distillation of fluorine in the presence of much aluminum at the usual distillation temperature and without the collection of large volumes of distillate. The fluorine is determined either by microtitration with thorium nitrate or colorimetrically with thoron. The procedure is rapid and has yielded excellent results on silicate rocks and on samples from the aluminum phosphate (leached) zone of the Florida phosphate deposits.

  4. Geochemical and lithological factors in acid precipitation

    Treesearch

    James R. Kramer

    1976-01-01

    Acid precipitation is altered by interaction with rocks, sediment and soil. A calcareous region buffers even the most intense loading at pH ~8; an alumino silicate region with unconsolidated sediment buffers acid loadings at pH ~6.5; alumino silicate outcrops are generally acidified. Either FeOOH or alumino silicates are probable H+...

  5. Origin of silicic crust by rifting and bimodal plume volcanism in the Afar Depression

    NASA Astrophysics Data System (ADS)

    Ghatak, A.; Basu, A. R.; Ebinger, C. J.

    2010-12-01

    The youngest mantle plume province worldwide occurs at the seismically and volcanically active East African - Red Sea - Gulf of Aden (Afar) triple junction, where one or more upwellings has impinged the thick cratonic lithosphere since ~45 Ma. A spectacular example of magmatism in the Afar depression is seen in the present to < 2 Ma old bimodal fissural mafic and peralkaline silicic eruptions in the ~60 km-long Dabbahu-Manda Hararo (DMH) Rift. In this study we report major, trace elements, and Nd-Sr-Pb isotopes in recent basaltic and silicic rocks originating from the center of the DMH rift segment, exposed along the rift axis and flanks of this segment. The rare earth element (REE) patterns of the silicic rocks and basalts are different in two significant ways: (1) the silicic rocks show a prominent positive Ce-anomaly that is extremely rare in volcanic rocks; and (2) this positive Ce-anomaly is accompanied by a strong negative Eu-anomaly. These anomalies are absent in the basaltic rocks. The positive Ce-anomaly is probably due to interaction in a magma chamber, similar in composition to the basalts, with deep saline aquifer or brines that typically show positive Ce-anomaly. The REE patterns of the two lava groups are interpreted to be due to fractional crystallization of plagioclase in a magma chamber similar in REE composition as the basalts that erupted in the DMH segments. We interpret the silicic rocks to be residues after ~20% fractional crystallization of plagioclase in the DMH basalts. The Nd-Pb isotopic composition of the basalts and rhyolites of the DMH are similar to the Ethiopian plume as defined by the ~30 Ma old Ethiopian flood basalts. Based on their high 3He/4He ratios (R/RA ~30) and Nd-Sr-Pb isotopic data, the source of the Ethiopian plume is generally believed to be in the lower mantle. Therefore, the similarity of the Nd-Pb and Pb-Pb isotopic variations between the Ethiopian plume and the DMH lavas indicates that these lavas were sourced from the lower mantle, and this source zone showed little variation over the past 30 Ma. Some of the silicic lavas fall distinctly outside the plume field toward more radiogenic 87Sr/86Sr at relatively restricted Nd and Pb isotopic compositions. This excursion in Sr-isotopic ratios of the silicic lavas, in concert with their positive Ce-anomaly, is interpreted to be due to mixing of the Afar plume derived basaltic magma with fluids from saline aquifers. We conclude that the bimodal lavas are consanguineous, the silicic lavas being generated by fractional crystallization of plagioclase in a lower mantle plume-derived basaltic magma-chamber, caused by the interaction with saline aquifers. The generation of bimodal volcanism from parental primitive basalts without any contribution from pre-existing continental crust in Dabbahu may explain other similar intraplate magmatism including early Archean-Hadean continental crust formation prior to onset of arc-volcanism.

  6. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  7. A Model for Formation of Dust, Soil and Rock Coatings on Mars: Physical and Chemical Processes on the Martian Surface

    NASA Technical Reports Server (NTRS)

    Bishop, Janice; Murchie, Scott L.; Pieters, Carle M.; Zent, Aaron P.

    2001-01-01

    This model is one of many possible scenarios to explain the generation of the current surface material on Mars using chemical, magnetic and spectroscopic data From Mars and geologic analogs from terrestrial sites. One basic premise of this model is that the dust/soil units are not derived exclusively from local rocks, but are rather a product of global, and possibly remote, weathering processes. Another assumption in this model is that there are physical and chemical interactions of the atmospheric dust particles and that these two processes create distinctly different results on the surface. Physical processes distribute dust particles on rocks and drift units, forming physically-aggregated layers; these are reversible processes. Chemical reactions of the dust/soil particles create alteration rinds on rock surfaces and cohesive, crusted surface units between rocks, both of which are relatively permanent materials. According to this model the dominant components of the dust/soil particles are derived from alteration of volcanic ash and tephra, and contain primarily nanophase and poorly crystalline ferric oxides/oxyhydroxide phases as well as silicates. These phases are the alteration products that formed in a low moisture environment. These dust/soil particles also contain a smaller amount of material that was exposed to more water and contains crystalline ferric oxides/oxyhydroxides, sulfates and clay silicates. These components could have formed through hydrothermal alteration at steam vents or fumeroles, thermal fluids, or through evaporite deposits. Wet/dry cycling experiments are presented here on mixtures containing poorly crystalline and crystalline ferric oxides/oxyhydroxides, sulfates and silicates that range in size from nanophase to 1-2 pm diameter particles. Cemented products of these soil mixtures are formed in these experiments and variation in the surface texture was observed for samples containing smectites, non-hydrated silicates or sulfates. Reflectance spectra were measured of the initial particulate mixtures, the cemented products and ground versions of the cemented material. The spectral contrast in the visible/near-infrared and mid-infrared regions is significantly reduced for the cemented material compared to the initial soil, and somewhat reduced for the ground, cemented soil compared to the initial soil. The results of this study suggest that diurnal and seasonal cycling on Mars will have a profound effect on the texture and spectral properties of the dust/soil particles on the surface. The model developed in this study provides an explanation for the generation of cemented or crusted soil units and rock coatings on Mars and may explain albedo variations on the surface observed near large rocks or crater rims.

  8. Constraining Silicate Weathering Processes in an Active Volcanic Complex: Implications for the Long-term Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Washington, K.; West, A. J.; Hartmann, J.; Amann, T.; Hosono, T.; Ide, K.

    2017-12-01

    While analyzing geochemical archives and carbon cycle modelling can further our understanding of the role of silicate weathering as a sink in the long-term carbon cycle, it is necessary to study modern weathering processes to inform these efforts. A recent compilation of data from rivers draining basaltic catchments estimates that rock weathering in active volcanic fields (AVFs) consumes atmospheric CO2 approximately three times faster than in inactive volcanic fields (IVFs), suggesting that the eruption and subsequent weathering of large igneous provinces likely played a major role in the carbon cycle in the geologic past [1]. The study demonstrates a significant correlation between catchment mean annual temperature (MAT) and atmospheric CO2 consumption rate for IVFs. However CO2 consumption due to weathering of AVFs is not correlated with MAT as the relationship is complicated by variability in hydrothermal fluxes, reactive surface area, and groundwater flow paths. To investigate the controls on weathering processes in AVFs, we present data for dissolved and solid weathering products from Mount Aso Caldera, Japan. Aso Caldera is an ideal site for studying the how the chemistry of rivers draining an AVF is impacted by high-temperature water/rock interactions, volcanic ash weathering, and varied groundwater flow paths and residence times. Samples were collected over five field seasons from two rivers and their tributaries, cold groundwater springs, and thermal springs. These samples capture the region's temperature and precipitation seasonality. Solid samples of unaltered volcanic rocks, hydrothermally-altered materials, volcanic ash, a soil profile, and suspended and bedload river sediments were also collected. The hydrochemistry of dissolved phases were analyzed at the University of Hamburg, while the mineralogy and geochemical compositions of solid phases were analyzed at the Natural History Museum of Los Angeles. This work will be discussed in the context of volcanic activity and associated silicate weathering in the geologic past. [1] Li, G., J. Hartmann, L. A. Derry, A. J. West, C.-F. You, X. Long, T. Zhan, L. Li, G. Li, and W. Qiu (2016), Temperature dependence of basalt weathering, Earth Planet. Sci. Lett., 443, 59-69.

  9. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  10. Determination of chlorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  11. Mineral resource of the month: diatomite

    USGS Publications Warehouse

    Founie, Alan

    2006-01-01

    Diatomite is a soft, very fine-grained, siliceous sedimentary rock that is usually very light grey or beige in color. It is very finely porous, very low in density and essentially chemically inert. Rocks containing diatomite are excellent reservoir rocks for hydrocarbons.

  12. The determination of calcium in phosphate, carbonate, and silicate rocks by flame photometer

    USGS Publications Warehouse

    Kramer, Henry

    1956-01-01

    A method has been developed for the determination of calcium in phosphate, carbonate, and silicate rocks using the Beckman flame photometer, with photomultiplier attachement. The sample is dissolved in hydrofluoric, nitric, and perchloric acids, the hydrofluoric and nitric acids are expelled, a radiation buffer consisting of aluminum, magnesium, iron, sodium, potassium, phosphoric acid, and nitric acid is added, and the solution is atomized in an oxy-hydrogen flame with an instrument setting of 554 mµ. Measurements are made by comparison against calcium standards, prepared in the same manner, in the 0 to 50 ppm range. The suppression of calcium emission by aluminum and phosphate was overcome by the addition of a large excess of magnesium. This addition almost completely restores the standard curve obtained from a solution of calcium nitrate. Interference was noted when the iron concentration in the aspirated solution (including the iron from the buffer) exceeded 100 ppm iron. Other common rock-forming elements did not interfere. The results obtained by this procedure are within ± 2 percent of the calcium oxide values obtained by other methods in the range 1 to 95 percent calcium oxide. In the 0 to 1 percent calcium oxide range the method compares favorably with standard methods.

  13. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  14. X-Ray Fluorescence (XRF) to identify chemical analysis of minerals in Buton island, SE Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Jamaluddin; Darwis, A.; Massinai, M. A.

    2018-02-01

    Asbuton as natural rock asphalt consists of a granular material; usually limestone or sandstone. In its natural state, it contains bitumen intimately dispersed throughout its mass, while the remainder of the material is a solid mineral matter. This research was conducted in Sorowalio, Buton Regency, Southeast Sulawesi province, Indonesia. This study aims to determine the content and the percentage of minerals contained in the rocks by using X-Ray Fluorescence (XRF). The method of research is a preliminary survey, sampling and laboratory analysis. XRF reports chemical composition, including Si (quartz) and Ca (calcite). The results indicate the content and the percentage of element dominate the rock sample is Fe2O3, MgO, CaO, and SiO2. Research results using XRF show that there are four metal oxide dominant elements. Hematite (Fe2O3) is dominant in all locations of sampling. Magnesium oxide (MgO) has the highest levels found in sample number six and the lowest is in sample number five. Silicates (SiO) has the highest levels at sample number six and the lowest in sample number seven. Calcium oxide (CaO) is dominant in all sampling locations. The sample of asbuton contains 37.90% asphalt, 43.28% carbonate, and18.82% other minerals.

  15. Installation Restoration Program. Preliminary Assessment: Connecticut Air National Guard, 103rd Tactical Fighter Group (TFG), Bradley International Airport, Windsor Locks, Connecticut and 103rd Tactical Control Squadron (TCS), Orange/West Haven, Connectiut

    DTIC Science & Technology

    1988-11-01

    poorly sorted, not I E compacted, very plastic . Contains siliceous N diatoms and spores. Organic content high (17.2 T percent of sample lost during...physical character of a rock (e.g., particle size, color, mineral content, primary strutures, thickness, weathering caracteristics , and other physical

  16. Nature and time of emplacement of a pegmatoidal granite within the Delhi Fold Belt near Bayalan, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Dasgupta, N.; Sen, J.; Pal, T.; Ghosh, T.

    2009-04-01

    The study area is situated about 70 km south east of Ajmer, in Rajasthan, India around the village Bayala (26o 02' 19 N''; 74o 21' 01'') within the Ajmer district of Central Rajasthan. The area is along the eastern flank of the central portion of the Precambrian South Delhi Fold Belt (SDFB) and it stratigraphically belongs to the Bhim Group of rocks. Basement rocks of Archaean age, commonly known as the Banded gneissic Complex (BGC), is exposed to the east, where the rocks of the Bhim Group rests unconformably over BGC. To the west gneissic basement rocks of mid-Proterozoic times underlie the Bhim Group and have been referred to as the Beawar gneiss (BG). The Bhim Group of rocks comprises of metamorphosed marls and calc-silicate gneisses with minor amounts of quartzites and pelitic schists, indicative of its shallow marine origin. Within the Bhim Group, a pegmatoidal granite has intruded the calc silicate gneisses of the area. The pegmatoidal granite body is elliptical in outline with the long dimension(20 km) trending N-S and covers an area of 300 sq. km. approximately. This granite have so far been mapped as basement rocks (BG) surrounding the Beawar town (26o 06' 05'' N; 74o 19' 03'' E), 50 km south east of Ajmer. Rafts of calc-silicate gneisses, belonging to the Bhim Group, are seen to be entrapped within granite. Fragments of BG and its equivalents have also been found as caught up blocks within this pegmatoidal granite body near Andheri Devari, a small hamlet east of Beawar. The objective of the study was to map this pegmatoidal body, and decipher the mechanism and time of emplacement of this granite. A detailed structural mapping of the area in a 1:20000 scale spread over a 30 sq. km area in the vicinity of Bayala was carried out to analyse the geometry and the time of emplacement of the pegmatitic granite. The ridges of calc silicates and marbles adjoining the area were studied for the structural analyses of the Delhi fold belt rocks of the area. The calc silicate gneisses of the Bhim Group have been deformed by three major phases of folding, namely D1, D2 and D3. Of these the D1 folds defined by transposed compositional layering are intrafolial and isoclinal in nature. The D2 folds are asymmetric with alternate steeply and gently easterly dipping limbs and are defined by compositional banding and schistosity (S1). A good compositional layering parallel to the S2 fabric has been observed within the calc silicate gneisses. The D2 folds are close to tight, gently plunging with a modal plunge of 20o towards 40o; and has an inclined axial plane which has an easterly vergence. This is the most dominant phase of deformation. The D3 folds have developed on the gentle limbs of the D2 folds with a horizontal axis on a vertical axial plane. Interference of the D1 with D2 and D1 with D3 has produced Type III type of interference pattern. The pegmatitic granite body is a coarse grained rock composed of quartz feldspar (dominantly K-feldspar), muscovite, biotite, and tourmaline. A weak foliation has developed within this rock which is parallel to the D3 axial planar structure found within the calc silicate gneisses. Thus from the structural study it is proposed that the pegmatitic granite was emplaced post-D2 and possibly syn D3. The presence of narrow planar zones of hornfelsic rocks parallel to the D3 axial plane within the calc silicate rocks also attests to the above fact. Therefore the D3 axial planes provided the necessary conduits of the granite fluid movement within the calcsilicate rocks. The intrusions have scaled off the calc silicate gneisses into large continuous pieces along the gneissosity plane and got emplaced along the hinges of the D2 and D3 folds. Though disturbed, it has been seen that the orientation of the structural elements within these ripped off blocks of the calc silicate gneisses were quite similar to those found within the ridges, unaffected by the granite. The granites were thus emplaced lit-par-lit in the country rocks and on their contact with the calc gneisses shows hornfelsic textures within the calcsilicates (Tremolite-actinolite schists). It is thought of that this pegmatoidal granite has a bearing in age with the wide scale granite activity seen within this region. The structural study shows that this pegmatitic granite was emplaced synchronous to the D3 deformation episode which is the last major recognizable deformation within the Delhi Orogeny. Therefore this pegmatitic granite marks the closing stages of the Delhi Orogeny. Combined with the 1 Ga age of the formation of crust, in the western segment of the Delhi basin, a proper dating of this granite could give us the exact time span of the delhi orogenic cycle.

  17. Planetary Differentiation by Aerial Metasomatism

    NASA Astrophysics Data System (ADS)

    Baker, D. R.

    2018-05-01

    Dissolution of surficial rocks will occur on planetary bodies with steam atmospheres. Although the amount of dissolved material is small, metasomatism of chondritic compositions produces siliceous crustal materials and enriches residual rocks.

  18. The role of ophiolite in metallogeny of the Sikhote-Alin region

    NASA Astrophysics Data System (ADS)

    Kazachenko, V. T.; Perevoznikova, E. V.; Lavrik, S. N.; Skosareva, N. V.

    2012-06-01

    Metalliferous sediments of the Triassic siliceous formation of the Sikhote-Alin (manganese-silicate rocks and cherts with dispersed rhodochrosite, silicate-magnetite ores, and jasper) and skarns of the Dalnegorsk and Olginsk ore districts were initially the wash away products (Late Anisian-end of the Triassic) of the lateritic weathering crust on ophiolite in the islands. Manganese, iron, and other metals were deposited in the sediments of both lagoons (present-day, skarns) and island water areas (manganese-silicate and siliceousrhodochrosite rocks, silicate-magnetite ores, and jasper). Skarns contain boric and polymetallic ores thus indicating the occurrence of both shallow (periodically drying up) and quite deep (with hydrogen sulfide contamination zones) lagoons. Lead was deposited in protoliths of the skarn deposits in lagoons from the beginning of the Carboniferous to the beginning of the Late Anisian (initial island submergence). Tin, tin-leadzinc (with Ag), and silver-lead-zinc (with Sn and Au) vein deposits (Late Cretaceous-Paleogene) of the Taukha and Zhuravlevka Terrains contain lead deposited in the sediments flanking the islands of water areas with the hydrogen sulfide contamination zones, in the Carboniferous-Permian and Triassic metalliferous sediments.

  19. Viscosity of rock-ice mixtures and applications to the evolution of icy satellites

    NASA Technical Reports Server (NTRS)

    Friedson, A. J.; Stevenson, D. J.

    1983-01-01

    Theory and experiments are used to establish lower and upper bounds on the ratio of actual viscosity to pure ice viscosity for a suspension of rock particles in a water ice matrix. A rheological model for rock-ice mixtures is described, establishing bounds for the range of possible viscosity enhancements provided by a suspension of silicate spheres in an ice matrix. A parametrized thermal convection model is described and used to determine a criterion for criticality, defined as the heat flow and/or silicate volume fraction for which the satellite temperature profile intercepts the melting curve of water ice. The consequences of achieving this critical state are examined, and it is shown that under certain circumstances a 'runaway' differentiation can occur in which the silicates settle to form a core and extensive melting of water ice takes place, the latent heat being supplied by the gravitational energy of differentiation. A possible application of these results to Ganymede and Callisto is described.

  20. The oxidation state of the mantle and the extraction of carbon from Earth's interior.

    PubMed

    Stagno, Vincenzo; Ojwang, Dickson O; McCammon, Catherine A; Frost, Daniel J

    2013-01-03

    Determining the oxygen fugacity of Earth's silicate mantle is of prime importance because it affects the speciation and mobility of volatile elements in the interior and has controlled the character of degassing species from the Earth since the planet's formation. Oxygen fugacities recorded by garnet-bearing peridotite xenoliths from Archaean lithosphere are of particular interest, because they provide constraints on the nature of volatile-bearing metasomatic fluids and melts active in the oldest mantle samples, including those in which diamonds are found. Here we report the results of experiments to test garnet oxythermobarometry equilibria under high-pressure conditions relevant to the deepest mantle xenoliths. We present a formulation for the most successful equilibrium and use it to determine an accurate picture of the oxygen fugacity through cratonic lithosphere. The oxygen fugacity of the deepest rocks is found to be at least one order of magnitude more oxidized than previously estimated. At depths where diamonds can form, the oxygen fugacity is not compatible with the stability of either carbonate- or methane-rich liquid but is instead compatible with a metasomatic liquid poor in carbonate and dominated by either water or silicate melt. The equilibrium also indicates that the relative oxygen fugacity of garnet-bearing rocks will increase with decreasing depth during adiabatic decompression. This implies that carbon in the asthenospheric mantle will be hosted as graphite or diamond but will be oxidized to produce carbonate melt through the reduction of Fe(3+) in silicate minerals during upwelling. The depth of carbonate melt formation will depend on the ratio of Fe(3+) to total iron in the bulk rock. This 'redox melting' relationship has important implications for the onset of geophysically detectable incipient melting and for the extraction of carbon dioxide from the mantle through decompressive melting.

  1. A thermal emission spectral library of rock-forming minerals

    NASA Astrophysics Data System (ADS)

    Christensen, Philip R.; Bandfield, Joshua L.; Hamilton, Victoria E.; Howard, Douglas A.; Lane, Melissa D.; Piatek, Jennifer L.; Ruff, Steven W.; Stefanov, William L.

    2000-04-01

    A library of thermal infrared spectra of silicate, carbonate, sulfate, phosphate, halide, and oxide minerals has been prepared for comparison to spectra obtained from planetary and Earth-orbiting spacecraft, airborne instruments, and laboratory measurements. The emphasis in developing this library has been to obtain pure samples of specific minerals. All samples were hand processed and analyzed for composition and purity. The majority are 710-1000 μm particle size fractions, chosen to minimize particle size effects. Spectral acquisition follows a method described previously, and emissivity is determined to within 2% in most cases. Each mineral spectrum is accompanied by descriptive information in database form including compositional information, sample quality, and a comments field to describe special circumstances and unique conditions. More than 150 samples were selected to include the common rock-forming minerals with an emphasis on igneous and sedimentary minerals. This library is available in digital form and will be expanded as new, well-characterized samples are acquired.

  2. Appalachian piedmont regolith: Relations of saprolite and residual soils to rock-type

    USGS Publications Warehouse

    Pavich, M.J.

    1996-01-01

    Saprolite is a major product of rock weathering on the Appalachian Piedmont from New Jersey to Alabama. On the Piedmont, it is the primary substrate from which residual soils are developed. Properties of saprolite and residual soils are highly related to their parent rocks. Studies of cores and outcrops illustrate that rock structure and mineralogy control upland regolith zonation. Saprolite develops by in situ chemical alteration of a wide variety of mafic to highly silicic rocks. Thickness of upland saprolite varies from a few meters on mafic rocks to tens of meters on silicic rocks. Saprolite thickness decreases with increasing slope and saprolite is generally thin or absent in valley bottoms. Massive residual subsoils and soils develop by physical and chemical processes that alter the upper few meters of saprolite. The fabric, texture and mineralogy of residual soils are distinctly different from underlying saprolite. The boundary between soil and saprolite is often gradual, and often a zone of low permeability. Geologic maps are useful guides to Piedmont regolith thickness and zonation. In regional design studies, geologic maps and regolith characteristics can be useful in environmental decision-making.

  3. Degradation of Potassium Rock by Earthworms and Responses of Bacterial Communities in Its Gut and Surrounding Substrates after Being Fed with Mineral

    PubMed Central

    Liu, Dianfeng; Lian, Bin; Wang, Bin; Jiang, Guofang

    2011-01-01

    Background Earthworms are an ecosystem's engineers, contributing to a wide range of nutrient cycling and geochemical processes in the ecosystem. Their activities can increase rates of silicate mineral weathering. Their intestinal microbes usually are thought to be one of the key drivers of mineral degradation mediated by earthworms,but the diversities of the intestinal microorganisms which were relevant with mineral weathering are unclear. Methodology/Principal Findings In this report, we show earthworms' effect on silicate mineral weathering and the responses of bacterial communities in their gut and surrounding substrates after being fed with potassium-bearing rock powder (PBRP). Determination of water-soluble and HNO3-extractable elements indicated some elements such as Al, Fe and Ca were significantly released from mineral upon the digestion of earthworms. The microbial communities in earthworms' gut and the surrounding substrates were investigated by amplified ribosomal DNA restriction analysis (ARDRA) and the results showed a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP after being fed to earthworms. UPGMA dendrogram with unweighted UniFrac analysis, considering only taxa that are present, revealed that earthworms' gut and their surrounding substrate shared similar microbiota. UPGMA dendrogram with weighted UniFrac, considering the relative abundance of microbial lineages, showed the two samples from surrounding substrate and the two samples from earthworms' gut had similarity in microbial community, respectively. Conclusions/Significance Our results indicated earthworms can accelerate degradation of silicate mineral. Earthworms play an important role in ecosystem processe since they not only have some positive effects on soil structure, but also promote nutrient cycling of ecosystem by enhancing the weathering of minerals. PMID:22174903

  4. Highly evolved rhyolitic glass compositions from the Toba Caldera, Sumatra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesner, C.A.

    1985-01-01

    The quartz latite to rhyolitic ash flow tuffs erupted form the Toba Caldera, perhaps the largest caldera on earth (100 by 30 kms), provide the unique opportunity to study a highly differentiated liquid in equilibrium with numerous mineral phases. Not only are the rocks very crystal rich (30-50%), but at present a minimum of 15 co-existing mineral phases have been identified. Both whole-rock and glass analyses were made by XRF techniques providing data on both major and trace elements. Whole rock chemistry of individual pumices from the youngest eruption at Toba (75,000 years ago), are suggestive of the eruption ofmore » two magma compositions across a boundary layer in the magma chamber. Glass chemistry of the pumices also show two distinct liquid compositions. The more silicic pumices, which have the most evolved glass compositions, are similar to the whole rock chemistry of the few aplitic pumices and cognate granitic xenoliths that were collected. This highly evolved composition resulted from the removal of up to 15 mineral phases and may be a fractionation buffered, univariant composition. The glasses from the less silicic pumices are similar to the whole rock chemistry of the more silicic pumice, thus falling nicely on a fractionation trend towards the univariant composition for these rocks. This set of glass compositions allows an independent test for the origin of distal ashes thought to have erupted from Toba and deposited in Malaysia, the Indian Ocean, and as far away as India.« less

  5. Nanoscale zinc silicate from phytoliths

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Gorzkowski, E. P.; Rath, B. B.; Feng, C. R.; Amarasinghe, R.; Freitas, J. A.; Culbertson, J. C.; Wollmershauser, J. A.

    2017-10-01

    We report a faster, less expensive method of producing zinc silicate nanoparticles. Such particles are used in high volume to make phosphors and anti-corrosion coatings. The approach makes use of phytoliths (plant rocks), which are microscopic, amorphous, and largely silicate particles embedded in plants, that lend themselves to being easily broken down into nanoparticles. Nanoparticles of Zn2SiO4 were produced in a two stage process. In the refinement stage, plant residue, mixed with an appropriate amount of ZnO, was heated in an argon atmosphere to a temperature exceeding 1400 °C for four to six hours and then heated in air at 650 °C to remove excess carbon. TEM shows 50-100 nm nanoparticles. Raman scattering indicates that only the -Zn2SiO4 crystalline phase was present. X-ray analysis indicated pure rhombohedral R 3 bar phase results from using rice/wheat husks. Both samples luminesced predominantly at 523 nm when illuminated with X-rays or UV laser light.

  6. The geochemical nature of the Archean Ancient Gneiss Complex and Granodiorite Suite, Swaziland: a preliminary study

    USGS Publications Warehouse

    Hunter, D.R.; Barker, F.; Millard, H.T.

    1978-01-01

    The Ancient Gneiss Complex (AGC) of Swaziland, an Archean gray gneiss complex, lies southeast and south of the Barberton greenstone belt and includes the most structurally complex and highly metamorphosed portions of the eastern Kaapvaal craton. The AGC is not precisely dated but apparently is older than 3.4 Ga. The AGC consists of three major units: (a) a bimodal suite of closely interlayered siliceous, low-K gneisses and metabasalt; (b) homogeneous tonalite gneiss; and (c) interlayered siliceous microcline gneiss, metabasalt, and minor metasedimentary rocks - termed the metamorphite suite. A geologically younger gabbro-diorite-tonalite-trondhjemite suite, the Granodiorite Suite, is spatially associated with the AGC and intrusive into it. The bimodal suite consists largely of two types of low-K siliceous gneiss: one has SiO2 14%, low Rb/Sr ratios, and depleted heavy rare earth elements (REE's); the other has SiO2 > 75%, Al2O3 < 13%, high Rb/Sr ratios, and relatively abundant REE's except for negative Eu anomalies. The interlayered metabasalt ranges from komatiitic to tholeiitic compositions. Lenses of quartz monzonitic gneiss of K2O/Na2O close to 1 form a minor part of the bimodal suite. Tonalitic to trondhjemitic migmatite locally is abundant and has major-element abundances similar to those of non-migmatitic varieties. The siliceous gneisses of the metamorphic suite show low Al2O, K2O/Na2O ratios of about 1, high Rb/Sr ratios, moderate REE abundances and negative Eu anomalies. K/Rb ratios of siliceous gneisses of the bimodal suite are very low (???130); of the tonalitic gneiss, low (???225); of the siliceous gneiss of the metamorphite suite, moderate (???300); and of the Granodiorite Suite, high (???400). Rocks of the AGC differ geochemically in several ways from the siliceous volcanic and hypabyssal rocks of the Upper Onverwacht Group and from the diapirs of tonalite and trondhjemite that intrude the Swaziland Group. ?? 1978.

  7. Impact-generated carbonate melts: evidence from the Haughton structure, Canada

    NASA Astrophysics Data System (ADS)

    Osinski, Gordon R.; Spray, John G.

    2001-12-01

    Evidence is presented for the melting of dolomite-rich target rocks during formation of the 24 km diameter, 23 Ma Haughton impact structure on Devon Island in the Canadian high Arctic. Field studies and analytical scanning electron microscopy reveal that the >200 m thick crater-fill deposit, which currently covers an ˜60 km2 area in the center of the structure, comprises fragmented target rocks set within a carbonate-silicate matrix. The silicate component of the matrix consists of Si-Al-Mg-rich glass. The carbonate component is microcrystalline calcite, containing up to a few wt% Si and Al. The calcite also forms spherules and globules within the silicate glass, with which it develops microtextures indicative of liquid immiscibility. Dolomite clasts exhibit evidence of assimilation and may show calcite and rare dolomite overgrowths. Some clasts are penetrated by calcite and silicate injections. Along with the carbonate-silicate glass textures, the presence of pigeonite and spinifex-textured diopside suggests that the matrix to the crater-fill deposit was originally molten and was rapidly cooled. This indicates that the impact event that generated Haughton caused fusion of the predominantly dolomitic target rocks. It appears that the Ca-Mg component of the dolomite may have dissociated, with Mg entering the silicate melt phase, while the Ca component formed a CaCO3-dominant melt. The silicates were derived by the fusion of Lower Paleozoic sandstones, siltstones, shales and impure dolomites. Evidence for melting is corroborated by a review of theoretical and experimental work, which shows that CaCO3 melts at >10 GPa and >2000 K, instead of dissociating to release CO2. This work indicates that carbonate-rich sedimentary targets may also undergo impact melting and that the volume of CO2 released into the atmosphere during such events may be considerably less than previously estimated.

  8. Carbonate-silicate melt immiscibility, REE mineralising fluids, and the evolution of the Lofdal Intrusive Suite, Namibia

    NASA Astrophysics Data System (ADS)

    Bodeving, Sarah; Williams-Jones, Anthony E.; Swinden, Scott

    2017-01-01

    The Lofdal Intrusive Suite, Namibia, consists of calcio-carbonatite and silica-undersaturated alkaline intrusive rocks ranging in composition from phono-tephrite to phonolite (and nepheline syenite). The most primitive of these rocks is the phono-tephrite, which, on the basis of its Y/Ho and Nb/Ta ratios, is interpreted to have formed by partial melting of the mantle. Roughly linear trends in major and trace element contents from phono-tephrite to phonolite and nepheline syenite indicate that the latter two rock types evolved from the phono-tephrite by fractional crystallisation. The nepheline syenite, however, has a lower rare earth element (REE) content than the phonolite. The carbonatite has a primitive mantle-normalised REE profile roughly parallel to that of the silica-undersaturated alkaline igneous rocks, although the absolute REE concentrations are higher. Like the phono-tephrite, it also has a mantle Y/Ho ratio. However, the Nb/Ta and Zr/Hf ratios are significantly higher. Moreover, the carbonatite displays strong negative Ta, Zr and Hf anomalies on spidergrams, whereas the silicate rocks display positive anomalies for these elements. Significantly, this behaviour is predicted by the corresponding carbonatite-silicate melt partition coefficients, as is the behaviour of the REE. Based on these observations, we interpret the carbonatite to represent an immiscible liquid that exsolved from the phono-tephrite or possibly the phonolite melt. The result was a calcio-carbonatite that is enriched in the heavy REE (HREE) relative to most other carbonatites. Fluids released from the corresponding magma are interpreted to have been the source of the REE mineralisation that is currently the target of exploration. 2. The composition of feldspar in nepheline syenite, fenite, calcio-carbonatite and phonolite plotted on the feldspar ternary classification diagram modified after Schairer (1950) in terms of the components albite (Ab), orthoclase (Or) and anorthite (An). Note: ANO = anorthosite, SAN = sanidine, OLI = oligoclase, AND = andesine, LAB = labradorite, BYT = bytownite. 3. Composition of the Lofdal mica plotted on the biotite classification diagram of Rieder et al. (1998). 4. Clinopyroxene composition in nepheline syenite and calcio-carbonatite phenocrysts illustrated on the classification ternary for sodic pyroxenes (after Morimoto; 1989). Quad (Q) represents wollastonite, enstatite and ferrosilite of the Mg-Ca-Fe group of pyroxenes. 5. The range of carbonatite compositions illustrated on the carbonatite classification diagram of Gittins and Harmer (1997). 6. Composition of the Lofdal nepheline syenite on the plutonic Total-Alkali-Silica diagram of Wilson (1989). 7. a. A binary plot showing the concentration of Y versus that of Ho in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 27.7 (Sun and McDonough, 1989). b. A binary plot showing the concentration of Nb versus that of Ta in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 17.4 (Sun and McDonough, 1989). c. A binary plot showing the concentration of Zr versus that of Hf in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 36.2 (Sun and McDonough, 1989). 8. A binary plot showing the concentration of K2O versus Na2O in nepheline syenite and fenite.

  9. Aeromagnetic map of the Fossil Springs Roadless Area, Yavapai, Gila, and Coconino counties, Arizona

    USGS Publications Warehouse

    Davis, W.E.; Weir, G.W.

    1984-01-01

    The magnetic anomalies and patterns on the aeromagnetic map reflect variations of magnetization in the underlying rocks. Basaltic rocks contain moderate amounts of magnetic minerals, mainly magnetite, and possess strong intensities of magnetization. The more silicic volcanic rocks have much lower magnetization intensities. Sedimentary rocks contain little or no magnetite and are virtually nonmagnetic.

  10. Infrared and Raman spectroscopic studies of structural variations in minerals from Apollo 11, 12, 14 and 15 samples, volume 3

    NASA Technical Reports Server (NTRS)

    Estep, P. A.; Kovach, J. J.; Waldstein, P.; Karr, C., Jr.

    1972-01-01

    Infrared and Raman vibrational spectroscopic data, yielding direct information on molecular structure, were obtained for single grains ( 150 microns) of minerals, basalts, and glasses isolated from Apollo 11, 12, 14, and 15 rock and dust samples, and for grains in Apollo 14 polished butt samples. From the vibrational data, specification substitutions were determined for the predominant silicate minerals of plagioclase, pyroxene, and olivine. Unique spectral variations for grains of K-feldspar, orthopyroxene, pyroxenoid, and ilmenite were observed to exceed the ranges of terrestrial samples, and these variations may be correlatable with formation histories. Alpha-quartz was isolated as pure single grains, in granitic grains composited with sanidine, and in unique grains that were intimately mixed with varying amounts of glass. Accessory minerals of chromite and ulvospinel were isolated as pure grains and structurally characterized from their distinctive infrared spectra. Fundamental vibrations of the SiO4 tetrahedra in silicate minerals were used to classify bulk compositions in dust sieved fractions, basalt grains and glass particles, and to compare modal characteristics for maria, highland and rille samples. No hydrated minerals were found in any of the samples studied, indicating anhydrous formation conditions.

  11. Tracking Hadean processes in modern basalts with 142-Neodymium

    NASA Astrophysics Data System (ADS)

    Horan, M. F.; Carlson, R. W.; Walker, R. J.; Jackson, M.; Garçon, M.; Norman, M.

    2018-02-01

    The short-lived 146Sm→142 Nd isotope system (t1/2 = 103 Ma) provides constraints on the timing and processes of terrestrial silicate fractionation during the early Hadean. Although some Archean terranes preserve variability in 142Nd/144Nd, no anomalies have been resolved previously in young rocks. This study provides high precision 142Nd/144Nd data on a suite of ocean island basalts from Samoa and Hawaii previously shown to have variable depletions in 182W/184W that are inversely correlated with 3He/4He ratios. Improved analytical techniques and multiple replicate analyses of Nd show a variation in μ142 Nd values between -1.3 and +2.7 in the suite, relative to the JNdi standard. Given the reproducibility of the standard (±2.9 ppm, 2 SD), two Samoan samples exhibit resolved variability in their 142Nd/144Nd ratios outside of their 95% confidence intervals, suggesting minor variability in the Samoan hotspot. One sample from Samoa has a higher μ142 Nd of +2.7, outside the 95% confidence interval (±1.0 ppm) of the average of the JNdi standard. Limited, but resolved, variation in 142Nd/144Nd within the suite suggests the preservation of early Hadean silicate differentiation in the sources of at least some basalts from Samoa. Larger variations of 182W/184W and 3He/4He ratios in the same samples suggest that metal-silicate separation and mantle outgassing left a more persistent imprint on the accessible mantle compared to 142Nd/144Nd ratios which are impacted by early silicate differentiation.

  12. Ultra-high sensitivity moment magnetometry of geological samples using magnetic microscopy

    NASA Astrophysics Data System (ADS)

    Lima, Eduardo A.; Weiss, Benjamin P.

    2016-09-01

    Useful paleomagnetic information is expected to be recorded by samples with moments up to three orders of magnitude below the detection limit of standard superconducting rock magnetometers. Such samples are now detectable using recently developed magnetic microscopes, which map the magnetic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities. However, realizing this potential requires the development of techniques for retrieving sample moments from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unresolved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by applying it to field maps generated from synthetic sources and also to field maps measured using a superconducting quantum interference device (SQUID) microscope above geological samples with moments down to 10-15 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope data are within error of independent moment measurements acquired using lower sensitivity standard rock magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry also enables the identification and isolation of magnetic contamination and background sources, which is critical for improving accuracy in paleomagnetic studies of weakly magnetic samples.

  13. Lithologic mapping of silicate rocks using TIMS

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.

    1986-01-01

    Common rock-forming minerals have thermal infrared spectral features that are measured in the laboratory to infer composition. An airborne Daedalus scanner (TIMS) that collects six channels of thermal infrared radiance data (8 to 12 microns), may be used to measure these same features for rock identification. Previously, false-color composite pictures made from channels 1, 3, and 5 and emittance spectra for small areas on these images were used to make lithologic maps. Central wavelength, standard deviation, and amplitude of normal curves regressed on the emittance spectra are related to compositional information for crystalline igneous silicate rocks. As expected, the central wavelength varies systematically with silica content and with modal quartz content. Standard deviation is less sensitive to compositional changes, but large values may result from mixed admixture of vegetation. Compression of the six TIMS channels to three image channels made from the regressed parameters may be effective in improving geologic mapping from TIMS data, and these synthetic images may form a basis for the remote assessment of rock composition.

  14. Automated Rock Identification for Future Mars Exploration Missions

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Gazis, P.; Bishop, J. L.; Alena, R.; Hart, S. D.; Horton, A.

    2003-01-01

    A key task for human or robotic explorers on the surface of Mars is choosing which particular rock or mineral samples should be selected for more intensive study. The usual challenges of such a task are compounded by the lack of sensory input available to a suited astronaut or the limited downlink bandwidth available to a rover. Additional challenges facing a human mission include limited surface time and the similarities in appearance of important minerals (e.g. carbonates, silicates, salts). Yet the choice of which sample to collect is critical. To address this challenge we are developing science analysis algorithms to interface with a Geologist's Field Assistant (GFA) device that will allow robotic or human remote explorers to better sense and explore their surroundings during limited surface excursions. We aim for our algorithms to interpret spectral and imaging data obtained by various sensors. The algorithms, for example, will identify key minerals, rocks, and sediments from mid-IR, Raman, and visible/near-IR spectra as well as from high resolution and microscopic images to help interpret data and to provide high-level advice to the remote explorer. A top-level system will consider multiple inputs from raw sensor data output by imagers and spectrometers (visible/near-IR, mid-IR, and Raman) as well as human opinion to identify rock and mineral samples.

  15. The importance of the Maillard-metal complexes and their silicates in astrobiology

    NASA Astrophysics Data System (ADS)

    Liesch, Patrick J.; Kolb, Vera M.

    2007-09-01

    The Maillard reaction occurs when sugars and amino acids are mixed together in the solid state or in the aqueous solution. Since both amino acids and sugar-like compounds are found on meteorites, we hypothesized that they would also undergo the Maillard reaction. Our recent work supports this idea. We have shown previously that the water-insoluble Maillard products have substantial similarities with the insoluble organic materials from the meteorites. The Maillard organic materials are also part of the desert varnish on Earth, which is a dark, shiny, hard rock coating that contains iron and manganese and is glazed in silicate. Rocks that are similar in appearance to the desert varnish have been observed on the Martian surface. They may also contain the organic materials. We have undertaken study of the interactions between the Maillard products, iron and other metals, and silicates, to elucidate the role of the Maillard products in the chemistry of desert varnish and meteorites. Specifically, we have synthesized a series of the Maillard-metal complexes, and have tested their reactivity towards silicates. We have studied the properties of these Maillard-metal-silicate products by the IR spectroscopy. The astrobiological potential of the Maillard-metal complexes is assessed.

  16. Plagioclase-Hosted Magnetite Inclusions From the Bushveld Complex

    NASA Astrophysics Data System (ADS)

    Feinberg, J. M.; Scott, G. R.; Renne, P. R.; Wenk, H.

    2004-12-01

    Gabbros from the Main Zone of the 2.064 Ga Bushveld Complex have long been known to possess unusually stable magnetizations due to the presence of high coercivity, exsolved magnetite inclusions in plagioclase and clinopyroxene. The paleomagnetic pole for these rocks has been used to anchor apparent polar wander paths for the Kaapval craton during the Early-Mid Proterozoic. To better understand the rock magnetic properties of silicate-hosted magnetite inclusions, oriented paleomagnetic samples of gabbro were collected from quarries near Belfast and Rustenberg, South Africa, sampling the eastern and western limbs of the Complex, respectively. Plagioclase composition at both sites ranges from An55 (rims) to An65 (cores) based on optical and electron microprobe data. Four kinds of inclusions are present within the plagioclase: elongate magnetite needles, nanometer-scale magnetite particles (responsible for the "cloudy" appearance of some crystals), translucent brown hematite/ilmenite platelets, and colorless euhedral inclusions of pyroxene and/or feldspar. Magnetite inclusions are most abundant at the cores of the plagioclase crystals. Orientations of the needles and the platelets are crystallographically controlled by the silicate host. Although the elongation direction of the magnetite inclusions can occur in any of five possible orientations, only two or three of these directions dominates each plagioclase crystal. Alternating field demagnetization of bulk samples (NRM = 1.5 x 101 A m-1) shows univectorial remanence with average median destructive fields (MDF) of 115 mT (Belfast) and 90 mT (Rustenberg). AF demagnetization of single plagioclase crystals (NRM = 100 A m-1) also shows single component remanence with average MDFs >150 mT. The NRM coercivity spectra of single plagioclase crystals are indistinguishable from that of the bulk samples. When normalized to their abundance in bulk samples the magnetite-bearing plagioclase fully accounts for the NRM of Bushveld gabbros at both sites. Close examination of the inclusions' interiors using magnetic force microscopy shows no ulvöspinel exsolution as observed in other silicate exsolved titanomagnetites with comparably high coercivities. Consequently, we interpret the high coercivities of the inclusions to be a product of their small size and extreme shape anisotropy. Single crystals of plagioclase demonstrate a strong anisotropy of IRM acquisition (see Scott, et al. this conference). Additionally, electron backscatter diffraction (EBSD) orientation indexing shows a strongly preferred orientation for plagioclase and pyroxene (with (010)plag and (100)pyr parallel to subhorizontal layering) consistent with gravitational settling within a magma chamber. Thus, there are two anisotropies (silicate preferred orientation and magnetite inclusion remanence) to consider when describing the ancient magnetic field present during the emplacement of the Bushveld.

  17. Carbon isotope geochemistry of graphite vein deposits from New Hampshire, U.S.A.

    NASA Astrophysics Data System (ADS)

    Rumble, Douglas, III; Hoering, Thomas C.

    1986-06-01

    Graphite veins of hydrothermal origin occur throughout central New Hampshire. Veins truncate sillimanite-grade, metasedimentary rocks of Early Devonian-Silurian age and range in size from microscopic to meters in thickness. In addition to graphite, veins may contain quartz, tourmaline, ilmenite, rutile, sillimanite, muscovite or chlorite. Vein mineralogy is generally compatible with wall rock mineral assemblages. Mineralization structures include wall-rock alteration zones, coxcomb graphite crystals on vein walls, and botryoidal, concentrically layered graphite-silicate nodules. The δ13C values of graphite in 14 deposits studied range from - 28%. (PDB) to - 9%. Veins whose textures give evidence of a single stage of mineralization have a narrow range of δ13C values (± 0.2%.). Other veins record successive episodes of graphite precipitation and have ranges of 3-6%. In one sample, adjacent layers of graphite differ by 3%. The wide range of δ13C may be explained by mixing carbon from two crustal reservoirs: biogenic, reduced carbon and carbonate. Precipitation of graphite results from mixing two or more aqueous fluids with different CO 2/CH 4 ratios. Parental fluids are produced by devolatilization during metamorphism. Water-rich fluids with CH4 > CO2 and low δ13C are derived from pelites that contained organic matter; whereas fluids with CO2 > CH4 and high δ13C come from siliceous carbonates.

  18. Mineralogy, chemical composition and structure of the MIR Mound, TAG Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Stepanova, T. V.; Krasnov, S. G.; Cherkashev, G. A.

    The study of samples collected from the surface of the MIR mound (TAG Hydrothermal Field) by video-controlled hydraulic grab allowed identification of a number of mineralogical types. These include pyrite-chalcopyrite (Py-Cp), bornite-chalcopyrite-opaline (Bn-Cp-Op) and sphalerite-opaline (Sp-Op) sulfide chimneys, massive sulfides composed of pyrite (Py), chalcopyrite-pyrite (Cp-Py), marcasite-pyrite-opaline (Mc-Py-Op), sphalerite-pyrite-opaline (Sp-Py-Op) and sphalerite-chalcopyrite-pyrite-opaline (Sp-Cp-Py-Op), as well as siliceous and Fe-Mn oxide hydrothermal deposits. Most of the minor elements (Ag, Au, Cd, Ga, Hg, Sb and Pb) are associated with Zn-rich massive sulfides, Co Bi, Pb, and As with Ferich ones, while Cu-rich sulfides are depleted of trace metals. Cu-enriched assemblages are concentrated in the northern part, Zn-enriched in the center, and siliceous rocks in the south of the MIR mound. According to paragenetic relations, the development of the mound started with the formation of quartz (originally opaline) rocks and dendritic assemblages of melnikovite-pyrite, followed by deposition of chalcopyrite and recrystallization of primary pyrite, subsequent generation of sphalerite-rich assemblages and final deposition of opaline rocks. The late renewal of hydrothermal activity led to local formation of Cu-rich chimneys enriched in Au, Ag, Hg and Pb probably due to their remobilization from inner parts of the deposit.

  19. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic activities. For example, Huntington et al. (2000) show that extensive timber harvesting in the southeastern forests of the United States, which are underlain by intensely weathered saprolites, produces net calcium exports that exceed inputs from weathering, thus creating a long-term regional problem in forest management.The role of chemical weathering has long been recognized in economic geology. Tropical bauxites, which account for most of world's aluminum ores, are typical examples of residual concentration of silicate rocks by chemical weathering over long time periods (Samma, 1986). Weathering of ultramafic silicates such as peridotites forms residual lateritic deposits that contain significant deposits of nickel and cobalt. Ores generated by chemical mobilization include uranium deposits that are produced by weathering of granitic rocks under oxic conditions and subsequent concentration by sorption and precipitation ( Misra, 2000).Over the last several decades, estimating rates of silicate weathering has become important in addressing new environmental issues. Acidification of soils, rivers, and lakes has become a major concern in many parts of North America and Europe. Areas at particular risk are uplands where silicate bedrock, resistant to chemical weathering, is overlain by thin organic-rich soils (Driscoll et al., 1989). Although atmospheric deposition is the most important factor in watershed acidification, land use practices, such as conifer reforestation, also create acidification problems ( Farley and Werritty, 1989). In such environments, silicate hydrolysis reactions are the principal buffer against acidification. As pointed out by Drever and Clow (1995), a reasonable environmental objective is to decrease the inputs of acidity such that they are equal to or less than the rate of neutralization by weathering in sensitive watersheds.The intensive interest in past and present global climate change has renewed efforts to understand quantitatively feedback mechanisms between climate and chemical weathering. On timescales longer than a million years, atmospheric CO2 levels have been primarily controlled by the balance between the rate of volcanic inputs from the Earth's interior and the rate of uptake through chemical weathering of silicates at the Earth's surface (Ruddiman, 1997). Weathering is proposed as the principal moderator in controlling large increases and decreases in global temperature and precipitation through the greenhouse effects of CO2 over geologic time (R. A. Berner and E. K. Berner, 1997). Weathering processes observed in paleosols, discussed elsewhere in this volume (see Chapter 5.18), have also been proposed as indicating changes in Archean atmospheric CO2 and O2 levels (Ohmoto, 1996; Rye and Holland, 1998).

  20. Impact-melt origin for the Simondium, Pinnaroo, and Hainholz mesosiderites: implicatiions for impact processes beyond the Earth--Moon system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Floran, R J; Caulfield, J B.D.; Harlow, G E

    The Simondium, Pinnaroo, and Hainholz mesosiderites are interpreted to be clast-laden impact melts that crystallized from immiscible silicate, metallic (Fe-FeS) liquids. The existence of silicate melts is shown by intergranular basaltic textures. Metallic melts are inferred on the basis of smooth boundaries between metal and troilite and the occurrence of troilite as anastomosing areas that radiate outward into the silicate fractions. These relations suggest that troilite crystallized after silicates, concentrating as a late-stage residuum. Evidence for impact melting includes: diversity and abundance of clast types (mineral, metal, lithic) in various stages of recrystallization and assimilation; differences in mineral chemistries betweenmore » clasts and igneous-textured matrix silicates; unusual metal plus silicate bulk composition. Silicate clasts consist primarily of orthopyroxene and minor olivine with a range of Fe/Fe + Mg ratios, anorthitic plagioclase, and rare orthopyroxenite (diogenite) fragments. Substantial amounts of Fe-Ni metal were melted during the impact events and minor amounts were incorporated into the melts as clasts. The clast populations suggest that at least four rock types were melted and mixed: (a) diogenite, (b) a plagioclase-rich source, possibly cumulate eucrite, (c) dunite, and (d) metal. Most orthopyroxene appears to have been derived from fragmentation of diogenites. Orthopyroxene (En/sub 82-61/) and olivine (Fo/sub 86-67/) clasts include much material unsampled as individual meteorites and probably represent a variety of source rocks.« less

  1. Stratigraphy, geochemistry and tectonic significance of the Oligocene magmatic rocks of western Oaxaca, southern Mexico

    USGS Publications Warehouse

    Martiny, B.; Martinez-Serrano, R. G.; Moran-Zenteno, D. J.; MacIas-Romo, C.; Ayuso, R.A.

    2000-01-01

    In Western Oaxaca, Tertiary magmatic activity is represented by extensive plutons along the continental margin and volcanic sequences in the inland region. K-Ar age determinations reported previously and in the present work indicate that these rocks correspond to a relatively broad arc in this region that was active mainly during the Oligocene (~ 35 to ~ 25 Ma). In the northern sector of western Oaxaca (Huajuapan-Monte Verde-Yanhuitlan), the volcanic suite comprises principally basaltic andesite to andesitic lavas, overlying minor silicic to intermediate volcaniclastic rocks (epiclastic deposits, ash fall tuffs, ignimbrites) that were deposited in the lacustrine-fluvial environment. The southern sector of the volcanic zone includes the Tlaxiaco-Laguna de Guadalupe region and consists of intermediate to silicic pyroclastic and epiclastic deposits, with silicic ash fall tuffs and ignimbrites. In both sectors, numerous andesitic to dacitic hypabyssal intrusions (stocks and dikes) were emplaced at different levels of the sequence. The granitoids of the coastal plutonic belt are generally more differentiated than the volcanic rocks that predominate in the northern sector and vary in composition from granite to granodiorite. The studied rocks show large-ion lithophile element (LILE) enrichment (K, Rb, Ba, Th) relative to high-field-strength (HFS) elements (Nb, Ti, Zr) that is characteristic of subduction-related magmatic rocks. On chondrite-normalized rare earth element diagrams, these samples display light rare earth element enrichment (LREE) and a flat pattern for the heavy rare earth elements (HREE). In spite of the contrasting degree of differentiation between the coastal plutons and inland volcanic rocks, there is a relatively small variation in the isotopic composition of these two suites. Initial 87Sr/86Sr ratios obtained and reported previously for Tertiary plutonic rocks of western Oaxaca range from 0.7042 to 0.7054 and ??Nd values, from -3.0 to +2.4, and for the volcanic rocks, from 0.7042 to 0.7046 and 0 +2.6. The range of these isotope ratios and those reported for the basement rocks in this region suggest a relatively low degree of old crustal involvement for most of the studied rocks. The Pb isotopic compositions of the Tertiary magmatic rocks also show a narrow range [(206Pb/204Pb) = 18.67-18.75; (207Pb/204Pb) = 15.59-15.62; (208Pb/204Pb) = 38.44-38.59], suggesting a similar source region for the volcanic and plutonic rocks. Trace elements and isotopic compositions suggest a mantle source in the subcontinental lithosphere that has been enriched by a subduction component. General tectonic features in this region indicate a more active rate of transtensional deformation for the inland volcanic region than along the coastal margin during the main events of Oligocene magmatism. The lower degree of differentiation of the inland volcanic sequences, particularly the upper unit of the northern sector, compared to the plutons of the coastal margin, suggests that the differentiation of the Tertiary magmas in southern Mexico was controlled to a great extent by the characteristics of the different strain domains. (C) 2000 Elsevier Science B.V. All rights reserved.

  2. Samples for estimating primary volatiles in Martian magmas and ancient atmospheric pressures on Mars

    NASA Technical Reports Server (NTRS)

    Anderson, A. T., Jr.

    1988-01-01

    Inclusions of glass are likely to be present in phenocrysts in volcanic rocks from Mars, because these occur in volcanic rocks from both Earth and Moon. The usefulness of the inclusions depends upon their size and composition. The compositions of tiny inclusions may be modified by diffusion during growth of the enclosing crystal, the modifications increasing with melt viscosity (silica). Slow cooling results in crystallization and possible redistribution of volatiles, the effects increasing with decreasing silica. Primary volatile concentrations are best sought in inclusions larger than about 50 micrometer diameter in olivine or chromite crystals from quickly cooled basaltic scoria. Such crystals may be present in sands, but it would be preferable to extract them from individual rocks which could be dated and compositionally characterized. This would allow eventual understanding of the role of time and place in outgassing and volcanism on Mars. Analyses of volatiles in inclusions of more siliceous glass in non-basaltic rocks will reveal whether deep outgassing occurs and whether surface volatiles are recycled. Most volcanic crystals contain inclusions, but large inclusions can be uncommon. In the case of terrestrial basalts sample masses of several hundred grams are generally sufficient.

  3. The neodymium stable isotope composition of the silicate Earth and chondrites

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd isotope composition giving an average composition for the bulk silicate Earth of δ146/144Nd = -0.022 ± 0.034‰ (n = 30). In the samples here magmatic differentiation appears to only have an effect on stable Nd in highly evolved magmas with heavier δ146/144Nd values observed in samples with >70 wt% SiO2. The average stable Nd isotope composition of chondrites and the bulk silicate Earth are indistinguishable at the 95% confidence level. However, mantle samples do possess variable stable Nd isotope compositions (Δ146/144Nd = 75 ppm) with an average δ 146 / 144Nd value of -0.008‰. If these heavier values represent the true composition of pristine mantle then it is not possible to completely rule out some role for core formation in accounting for some of the offset between the mantle and chondrites. Overall, these results indicate that the mismatch of 142Nd between the Earth and chondrites is best explained by a higher proportion of s-process Nd in the Earth, rather than partitioning into sulfide or S-rich metal in the core.

  4. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.

    PubMed

    Shellnutt, J Gregory

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.

  5. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus

    PubMed Central

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra. PMID:29584745

  6. Nickel isotopic composition of the mantle

    NASA Astrophysics Data System (ADS)

    Gall, Louise; Williams, Helen M.; Halliday, Alex N.; Kerr, Andrew C.

    2017-02-01

    This paper presents a detailed high-precision study of Ni isotope variations in mantle peridotites and their minerals, komatiites as well as chondritic and iron meteorites. Ultramafic rocks display a relatively large range in δ60 Ni (permil deviation in 60 Ni /58 Ni relative to the NIST SRM 986 Ni isotope standard) for this environment, from 0.15 ± 0.07‰ to 0.36 ± 0.08‰, with olivine-rich rocks such as dunite and olivine cumulates showing lighter isotope compositions than komatiite, lherzolite and pyroxenite samples. The data for the mineral separates shed light on the origin of these variations. Olivine and orthopyroxene display light δ60 Ni whereas clinopyroxene and garnet are isotopically heavy. This indicates that peridotite whole-rock δ60 Ni may be controlled by variations in modal mineralogy, with the prediction that mantle melts will display variable δ60 Ni values due to variations in residual mantle and cumulate mineralogy. Based on fertile peridotite xenoliths and Phanerozoic komatiite samples it is concluded that the upper mantle has a relatively homogeneous Ni isotope composition, with the best estimate of δ60Nimantle being 0.23 ± 0.06‰ (2 s.d.). Given that >99% of the Ni in the silicate Earth is located in the mantle, this also defines the Ni isotope composition of the Bulk Silicate Earth (BSE). This value is nearly identical to the results obtained for a suite of chondrites and iron meteorites (mean δ60 Ni 0.26 ± 0.12‰ and 0.29 ± 0.10‰, respectively) showing that the BSE is chondritic with respect to its Ni isotope composition, with little to no Ni mass-dependent isotope fractionation resulting from core formation.

  7. Euhedral metallic-Fe-Ni grains in extraterrestrial samples

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1993-01-01

    Metallic Fe-Ni is rare in terrestrial rocks, being largely restricted to serpentinized peridotites and volcanic rocks that assimilated carbonaceous material. In contrast, metallic Fe-Ni is nearly ubiquitous among extraterrestrial samples (i.e., meteorites, lunar rocks, and interplanetary dust particles). Anhedral grains are common. For example, in eucrites and lunar basalts, most of the metallic Fe-Ni occurs interstitially between silicate grains and thus tends to have irregular morphologies. In many porphyritic chondrules, metallic Fe-Ni and troilite form rounded blebs in the mesostasis because their precursors were immiscible droplets. In metamorphosed ordinary chondrites, metallic Fe-Ni and troilite form coarse anhedral grains. Some of the metallic Fe-Ni and troilite grains has also been mobilized and injected into fractures in adjacent silicate grains where local shock-reheating temperatures reached the Fe-FeS eutectic (988 C). In interplanetary dust particles metallic Fe-Ni most commonly occurs along with sulfide as spheroids and fragments. Euhedral metallic Fe-Ni grains are extremely rare. Several conditions must be met before such grains can form: (1) grain growth must occur at free surfaces, restricting euhedral metallic Fe-Ni grains to systems that are igneous or undergoing vapor-deposition; (2) the metal (+/-) sulfide assemblage must have an appropriate bulk composition so that taenite is the liquidus phase in igneous systems or the stable condensate phase in vapor-deposition systems; and (3) metallic Fe-Ni grains must remain underformed during subsequent compaction, thermal metamorphism, and shock. Because of these restrictions, the occurrence of euhedral metallic Fe-Ni grains in an object can potentially provide important petrogenetic information. Despite its rarity, euhedral metallic Fe-Ni occurs in a wide variety of extraterrestrial materials. Some of these materials formed in the solar nebula; others formed on parent body surfaces by meteoroid impacts.

  8. Application of epithermal neutron activation in multielement analysis of silicate rocks employing both coaxial Ge(Li) and low energy photon detector systems

    USGS Publications Warehouse

    Baedecker, P.A.; Rowe, J.J.; Steinnes, E.

    1977-01-01

    The instrumental activation analysis of silicate rocks using epithermal neutrons has been studied using both high resolution coaxial Ge(Li) detectors and low energy photon detectors, and applied to the determination of 23 elements in eight new U.S.G.S. standard rocks. The analytical use X-ray peaks associated with electron capture or internal conversion processes has been evaluated. Of 28 elements which can be considered to be determinable by instrumental means, the epithermal activation approach is capable of giving improved sensitivity and precision in 16 cases, over the normal INAA procedure. In eleven cases the use of the low energy photon detector is thought to show advantages over convertional coaxial Ge(Li) spectroscopy. ?? 1977 Akade??miai Kiado??.

  9. Laboratory synthesis of silicate glass spherules: Application to impact ejecta

    NASA Astrophysics Data System (ADS)

    Stoddard, P. S.; Pahlevan, K.; Tumber, S.; Weber, R.; Lee, K. K.

    2012-12-01

    To investigate the process by which molten droplets of impact ejecta solidify into glassy spherule tektites, we employed laser levitation experiments to recreate the hot temperatures of falling molten rock. Following models for Earth composition based on enstatite chondrites, we levitated mixtures of oxide powders in a stream of gas and melted them with a laser, producing silicate glass beads. After quenching, we polished the ~1 mm diameter samples in cross-section and analyzed with electron probe microanalysis (EPMA). Fine and coarsely-spaced EPMA transects across each bead displayed diffusion profiles at their edges, particularly in their SiO2 and MgO content. Heating altered the beads' bulk composition as well; all of the glassy spherules were compositionally different from the initial combination of powders. By comparing these changes to the environmental factors acting on the bead (e.g., temperature, type of levitation gas, duration of heating and amount of rotation), we produced a model for how molten ejecta change chemically and physically as they solidify into a glass. We find that high temperatures likely generated on impact have a strong effect on the composition of tektites; therefore, attempts to correlate tektites to their parent rocks should correct for this effect.

  10. A Quantitative Geochemical, Mineralogical and Physical Study of Some Selected Rock Weathering Profiles from Brazil

    DTIC Science & Technology

    1977-08-17

    weather to gibbsite (plus or minus iron oxides) in well-drained, and smectite in poorly-drained, environments. Kaolinite found in the vicinity of quartz...rock and completely weathered saprolite. Quartz-rich rock types exhibit wide, gradational weathered zones and usually form kaolinite or halloysite in...free rocks is either formed by re-silication of gibbsite , or is of secondary origin (transported). Texture of the rock (aphanitic vs. phaneric) has

  11. Fe-Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas

    NASA Astrophysics Data System (ADS)

    Ghiorso, Mark S.; Sack, O.

    1991-10-01

    A new thermodynamic formulation of the Fe-Ti oxide geothermometer/oxygen barometer is developed. The method is based upon recently calibrated models for spinel solid solutions in the quinary system (Fe2+, Mg)(Al,Fe3+,Cr)2O4-(Fe2+, Mg)2TiO4 by Sack and Ghiorso, and rhombohedral oxides in the quaternary system (Fe2+,Mg,Mn)TiO3-Fe2O3 (this paper). The formulation is internally consistent with thermodynamic models for (Fe2+,Mg)-olivine and -orthopyroxene solid solutions and end-member thermodynamic properties tabulated by Berman. The constituent expressions account for compositional and temperature dependent cation ordering and reproduce miscibility gap features in all of the component binaries. The calibration does not account for the excess Gibbs energy resulting from compositional and temperature dependent magnetic ordering in either phase. This limits application of the method to assemblages that equilibrated at temperatures above 600° C. Practical implementation of the proposed geothermometer/oxygen barometer requires minimal use of projection algorthms in accommodating compositions of naturally occurring phases. The new formulation is applied to the estimation of temperature and oxygen fugacity in a wide variety of intermediate to silicic volcanic rocks. In combination with previous work on olivine and orthopyroxene thermodynamics, equilibration pressures are computed for a subset of these volcanics that contain the assemblage quartz, oxides and either ferromagnesian silicate. The calculated log10 f O 2- T relations are reflected in coexisting ferromagnesian mineral assemblages. Volcanics with the lowest relative oxygen fugacity (Δlog10 f O 2) are characterized by the assemblage olivine-quartz, those with slightly higher Δ log10 f O 2 s, by the assemblage orthopyroxene-quartz. The sequence proceeds with the necessary phases biotite-feldspar, then hornblende-quartz-clinopyroxene, and finally at the highest Δ log10 f O 2 s, sphene-quartz-clinopyroxene. Quantitative analysis of these trends, utilizing thermodynamic data for the constituent phases, establishes that, in most cases, the T-log10 f O 2value computed from the oxides is consistent with the compositions of coexisting silicate phases, indicating that phenocryst equilibrium was achieved prior to eruption. There is, however, considerable evidence of oxide-silicate disequilibrium in samples collected from more slowly cooled domes and obsidians. In addition, T-log10 f O 2trends from volcanic rocks that contain biotite and orthopyroxene are interpreted to imply a condition of Fe2+-Mg exchange disequilibrium between orthopyroxene and coexisting ferromagnesian silicates and melt. It is suspected that many biotite-feldspar-quartz-orthopyroxene bearing low temperature volcanic rocks inherit orthopyroxene xenocrysts which crystallized earlier in the cooling history of the magma body.

  12. Metals in Devonian kerogenous marine strata at Gibellini and Bisoni properties in southern Fish Creek Range, Eureka County, Nevada

    USGS Publications Warehouse

    Desborough, George A.; Poole, F.G.; Hose, R.K.; Radtke, A.S.

    1979-01-01

    A kerogen-rich sequence of siliceous mudstone, siltstone, and chert as much as 60 m thick on ridge 7129 in the southern Fish Creek Range, referred to as Gibellini facies of the Woodruff Formation, has been evaluated on the surface and in drill holes principally for its potential resources of vanadium, zinc, selenium, molybdenum, and syncrude oil content. The strata are part of a strongly deformed allochthonous mass of eugeosynclinal Devonian marine rocks that overlie deformed allochthonous Mississippian siliceous rocks and relatively undeformed autochthonous Mississippian Antler flysch at this locality. The vanadium in fresh black rocks obtained from drill holes and fresh exposures in trenches and roadcuts occurs chiefly in organic matter. Concentrations of vanadium oxide (V2O5) in unoxidized samples range from 3,000 to 7,000 ppm. In oxidized and bleached rock that is prevalent at the surface, concentrations of vanadium oxide range from 6,000 to 8,000 ppm, suggesting a tendency toward enrichment due to surficial weathering and ground-water movement. Zinc occurs in sphalerite, and selenium occurs in organic matter; molybdenum appears to occur both in molybdenite and in organic matter. Concentrations of zinc in unoxidized rock range from 4,000 to 18,000 ppm, whereas in oxidized rock they range from 30 to 100 ppm, showing strong depletion due to weathering. Concentrations of selenium in unoxidized rock range from 30 to 200 ppm, whereas in oxidized rock they range from 200 to 400 ppm, indicating some enrichment upon weathering. Concentrations of molybdenum in unoxidized rock range from 70 to 960 ppm, whereas in oxidized rock they range from 30 to 80 ppm, indicating strong depletion upon weathering. Most fresh black rock is low-grade oil shale, and yields as much as 12 gallons/short ton of syncrude oil. Metahewettite is the principal vanadium mineral in the oxidized zone, but it also occurs sparsely as small nodules and fillings of microfractures in unweathered strata. In fresh rock, bluish-white opaline-like silica (chalcedonic quartz) fills microfractures, and is believed to have originated by diagenetic mobilization of opaline silica from radiolarian tests and sponge spicules. As revealed by microscopic study, the Gibellini facies originally consisted of siliceous muds, slimes, and oozes high in organic constituents. The organic matter is amorphous flaky and stringy sapropel, and probably includes remains of bacteria, phytoplankton, zooplankton, and minor higher plants. Recognizable organic remnants include radiolarian tests, sponge spicules, conodonts, brachiopod shells, algae, and humic debris. Diagnostic radiolarians indicate a Late Devonian age for the Gibellini facies of the Woodruff Formation. Some pyrite is disseminated through the rock and may be primary (syngenetic) but significant pyrite and marcasite occur in chalcedonic quartz veinlets and appear to be diagenetic. In fresh rock, black solid bitumen and liquid oil fill voids and microfractures. These early phase hydrocarbons probably were released during diagenesis from complex nonhydrocarbon molecular structures originating from living organisms, and formed without any major thermal degradation of the kerogen. Gas chromatographic analysis of the saturated hydrocarbon fraction indicates a very complex mixture dominated by branched and cyclic compounds. Conodont and palynomorph color alteration, vitrinite reflectance, and other organic geochemical data suggest that the organic matter in the rock is thermally immature and has not been subjected to temperatures greater than 60?C since deposition in Devonian time. All of these characteristics are consistent with the interpretation of a relatively low temperature and a shallow-burial history for the Gibellini facies on ridge 7129.

  13. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites.

  14. Composition of Impact Melt Debris from the Eltanin Impact Strewn Field, Bellingshausen Sea

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    The impact of the km-sized Eltanin asteroid into the Bellingshausen Sea produced mm- to cm-sized vesicular impact melt-rock particles found in sediment cores across a large area of the ocean floor. These particles are composed mainly of olivine and glass with minor chromite and traces of NiFe-sulfides. Some particles have inclusions of unmelted mineral and rock fragments from the precursor asteroid. Although all samples of melt rock examined have experienced significant alteration since their deposition in the late Pliocene, a significant portion of these particles have interiors that remain pristine and can be used to estimate the bulk composition of the impact melt. The bulk composition of the melt-rock particles is similar to the composition of basaltic meteorites such as howardites or mesosiderite silicates, with a contribution from seawater salts and a siderophile-rich component. There is no evidence that the Eltanin impact melt contains a significant terrestrial silicate component that might have been incorporated by mixing of the projectile with oceanic crust. If terrestrial silicates were incorporated into the melt, then their contribution must be much less than 10 wt%. Since excess K, Na, and CI are not present in seawater proportions, uptake of these elements into the melt must have been greatest for K and least for CI, producing a K/CI ratio about 4 times that in seawater. After correcting for the seawater component, the bulk composition of the Eltanin impact melt provides the best estimate of the bulk composition of the Eltanin asteroid. Excess Fe in the impact melt, relative to that in howardites, must be from a significant metal phase in the parent asteroid. Although the estimated Fe:Ni:Ir ratios (8:1:4 x 10(exp -5)) are similar to those in mesosiderite metal nodules (10:1:6 x 10(exp -5), excess Co and Au by factors of about 2 and 10 times, respectively, imply a metal component distinct from that in typical mesosiderites. An alternative interpretation, that siderophiles have been highly fractionated from a mesosiderite source, would require loss of about 90% of the original metal from the impact melt and the sediments, and is unsupported by any observational data. More likely, the excess Fe in the melt rocks is 'representative of the amount of metal in the impacting asteroid, which is estimated to be 4+/- 1 wt%.

  15. The flame photometric determination of calcium in phosphate, carbonate, and silicate rocks

    USGS Publications Warehouse

    Kramer, H.

    1957-01-01

    A flame photometric method of determining calcium in phosphate, carbonate, and silicate locks has been developed Aluminum and phosphate interference was overcome by the addition of a large excess of magnesium. The method is rapid and suitable for routine analysis Results obtained are within ?? 2% of the calcium oxide content. ?? 1957.

  16. Experimental simulation of the alkali-carbonate metasomatism

    NASA Astrophysics Data System (ADS)

    Gorbachev, Nikolay; Kostyuk, Anastasia

    2010-05-01

    Close association of alkaline and ultrabasic rocks, carbonatites, apatitic and sulfidic mineralization, features of structure testify about mantle a source and the important role alcalic-carbonaceous fluids in genesis of these rocks. Formation alkaline silicate, carbonaceous and sulfidic melts, phase relationship, behaviour of the ti-tan, phosphorus, sulphur and zircon has been experimentally studied at pressure 3.9 GPa, temperature 1250°С in system peridotit-basalt (eclogite)-alcalic-carbonaceous fluid with additives in quality acces-sory minerals, apatite, nickel-containing pyrrhotite, ilmenite, zircon. Experiments were carried out using of apparatus high pressure (piston cilinder and anvil with hole) by a quenching technique. It was used two ampoules (platinum and peridotite, content basalt powder) method. Duration of experiments was 6-8 hours. Products of experiments were studied on electronic scanning microscope Tescan VEGA TS 5130MM with YAG detector of secondary and reflected elec-tron and energy-dispersive the x-ray microanalyzer with semi-conductor Si (Li) detector INCA Energy 350. The morphology, structure and relationship of glass, inclusions of carbonatic and sulfidic globules specify in existence in the conditions of experiment immiscibility silicate, carbonate and sulfidic melts. The composition of silicate melt answered phonolite, carbonaceous melts it is essential calciferous composition with an impurity of alkaline metals and silicate components. Solubility of zircon in silicate melts reached 0.8 wt.% ZrO2, in co-existing carbonaceous melt - 1.5 wt.%. Concentration TiO2 and Р2О5 in silicate melt reached 2 wt.%, in carbonaceous melt - 1.7 wt.% TiO2 and up to 14 wt.% Р2О5. Concentration of sulphur in these melts did not exceed 0.2 мас. %. From minerals of liqudus the main concentrators of the titan and phosphorus were the X-phase and phlogopite - up to 8 wt.% TiO2 and up to 3 wt.% Р2О5 in the X-phase, up to 6 wt. % TiO2 and to 2.5 wt. % Р2О5 in phlogopite. Absence ilmenite and apatite in experimental samples under the studied conditions is obviously caused by their high solubility in co-existing phases. The composition of X-phase is similar to composition of Cpx, but X-phase enrich in TiO2 and de-plete in SiO2 . The partition coefficient of oxides some elements between silicate and carbonaceous melts Dka/si increasing from SiO2 (D<1) to CaO (D>10). Reduction of solubility of apatite in alkaline silicate melt at pressure decline promotes silicate-phosphate stratification and formation of apatite mineralization at introduction of mantle magmas into the earth crust. Supported by grant RFBR № 09-05-01131, ONZ th. 2

  17. A regional soil and sediment geochemical study in northern California

    USGS Publications Warehouse

    Goldhaber, M.B.; Morrison, J.M.; Holloway, J.M.; Wanty, R.B.; Helsel, D.R.; Smith, D.B.

    2009-01-01

    Regional-scale variations in soil geochemistry were investigated in a 20,000-km2 study area in northern California that includes the western slope of the Sierra Nevada, the southern Sacramento Valley and the northern Coast Ranges. Over 1300 archival soil samples collected from the late 1970s to 1980 in El Dorado, Placer, Sutter, Sacramento, Yolo and Solano counties were analyzed for 42 elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry following a near-total dissolution. These data were supplemented by analysis of more than 500 stream-sediment samples from higher elevations in the Sierra Nevada from the same study site. The relatively high-density data (1 sample per 15 km2 for much of the study area) allows the delineation of regional geochemical patterns and the identification of processes that produced these patterns. The geochemical results segregate broadly into distinct element groupings whose distribution reflects the interplay of geologic, hydrologic, geomorphic and anthropogenic factors. One such group includes elements associated with mafic and ultramafic rocks including Cr, Ni, V, Co, Cu and Mg. Using Cr as an example, elevated concentrations occur in soils overlying ultramafic rocks in the foothills of the Sierra Nevada (median Cr = 160 mg/kg) as well as in the northern Coast Ranges. Low concentrations of these elements occur in soils located further upslope in the Sierra Nevada overlying Tertiary volcanic, metasedimentary and plutonic rocks (granodiorite and diorite). Eastern Sacramento Valley soil samples, defined as those located east of the Sacramento River, are lower in Cr (median Cr = 84 mg/kg), and are systematically lower in this suite compared to soils from the west side of the Sacramento Valley (median Cr = 130 mg/kg). A second group of elements showing a coherent pattern, including Ca, K, Sr and REE, is derived from relatively silicic rocks types. This group occurs at elevated concentrations in soils overlying volcanic and plutonic rocks at higher elevations in the Sierras (e.g. median La = 28 mg/kg) and the east side of the Sacramento Valley (median 20 mg/kg) compared to soils overlying ultramafic rocks in the Sierra Nevada foothills (median 15 mg/kg) and the western Sacramento Valley (median 14 mg/kg). The segregation of soil geochemistry into distinctive groupings across the Sacramento River arises from the former presence of a natural levee (now replaced by an artificial one) along the banks of the river. This levee has been a barrier to sediment transport. Sediment transport to the Valley by glacial outwash from higher elevations in the Sierra Nevada and, more recently, debris from placer Au mining has dominated sediment transport to the eastern Valley. High content of mafic elements (and low content of silicic elements) in surface soil in the west side of the valley is due to a combination of lack of silicic source rocks, transport of ultramafic rock material from the Coast Ranges, and input of sediment from the late Mesozoic Great Valley Group, which is itself enriched in mafic elements. A third group of elements (Zn, Cd, As and Cu) reflect the impact of mining activity. Soil with elevated content of these elements occurs along the Sacramento River in both levee and adjacent flood basin settings. It is interpreted that transport of sediment down the Sacramento River from massive sulfide mines in the Klamath Mountains to the north has caused this pattern. The Pb, and to some extent Zn, distribution patterns are strongly impacted by anthropogenic inputs. Elevated Pb content is localized in major cites and along major highways due to inputs from leaded gasoline. Zinc has a similar distribution pattern but the source is tire wear.

  18. Water and carbon in rusty lunar rock 66095

    USGS Publications Warehouse

    Friedman, I.; Hardcastle, Kenneth G.; Gleason, J.D.

    1974-01-01

    Lunar rock 66095 contains a hydrated iron oxide and has an unusual amount of water for a lunar rock (140 to 750 parts per million), 90 percent of which is released below 690??C. The ??D of water released at these low temperatures varies from -75 to -140 per mil relative to standard mean ocean water (SMOW). The small amount of water released between 690?? and 1300??C has a ??D of about -175 ?? 25 per mil SMOW. These ??D values are not unusual for terrestrial water. The ??18O of water extracted from 110?? to 400??C has a value of + 5 ?? 1 per mil SMOW, similar to the value for lunar silicates from rock 66095 and different from the value of -4 to -22 per mil found for samples of terrestrial rust including samples of rusted meteoritic iron. The amount of carbon varies from 11 to 59 parts per million with a ??13C from -20 to -30 per mil relative to Pee Dee belemnite. Only very small amounts of reduced species (such as hydrogen, carbon monoxide, and methane) were found, in contrast to the analyses of other lunar rocks. Although it is possible that most of the water in the iron oxide (goethite) may be terrestrial in origin or may have exchanged with terrestrial water during sample return and handling, evidence presented herein suggests that this did not happen and that some lunar water may have a ??D that is indistinguishable from that of terrestrial water.

  19. Processes of high-T fluid-rock interaction during gold mineralization in carbonate-bearing metasediments: the Navachab gold deposit, Namibia

    NASA Astrophysics Data System (ADS)

    Dziggel, A.; Wulff, K.; Kolb, J.; Meyer, F. M.

    2009-08-01

    The Navachab gold deposit in the Damara belt of central Namibia is hosted by a near-vertical sequence of amphibolite facies shelf-type metasediments, including marble, calc-silicate rock, and biotite schist. Petrologic and geochemical data were collected in the ore, alteration halos, and the wall rock to evaluate transport of elements and interaction between the wall rock and the mineralizing fluid. The semi-massive sulfide lenses and quartz-sulfide veins are characterized by a complex polymetallic ore assemblage, comprising pyrrhotite, chalcopyrite, sphalerite, and arsenopyrite, native bismuth, gold, bismuthinite, and bismuth tellurides. Mass balance calculations indicate the addition of up to several orders of magnitude of Au, Bi, As, Ag, and Cu. The mineralized zones also record up to eightfold higher Mn and Fe concentrations. The semi-massive sulfide lenses are situated in the banded calc-silicate rock. Petrologic and textural data indicate that they represent hydraulic breccias that contain up to 50 vol.% ore minerals, and that are dominated by a high-temperature (T) alteration assemblage of garnet-clinopyroxene-K-feldspar-quartz. The quartz-sulfide veins crosscut all lithological units. Their thickness and mineralogy is strongly controlled by the composition and rheological behavior of the wall rocks. In the biotite schist and calc-silicate rock, they are up to several decimeters thick and quartz-rich, whereas in the marble, the same veins are only a few millimeters thick and dominated by sulfides. The associated alteration halos comprise (1) an actinolite-quartz alteration in the biotite schist, (2) a garnet-clinopyroxene-K-feldspar-quartz alteration in the marble and calc-silicate rock, and (3) a garnet-biotite alteration that is recorded in all rock types except the marble. The hydrothermal overprint was associated with large-scale carbonate dissolution and a dramatic increase in CO2 in the ore fluid. Decarbonation of wall rocks, as well as a low REE content of the ore fluid resulted in the mobilization of the REE, and the decoupling of the LREE from the HREE. The alteration halos not only parallel the mineralized zones, but may also follow up single layers away from the mineralization. Alteration is far more pronounced facing upward, indicating that the rocks were steep when veining occurred. The petrologic and geochemical data indicate that the actinolite-quartz- and garnet-clinopyroxene-K-feldspar-quartz alterations formed in equilibrium with a fluid (super-) saturated in Si, and were mainly controlled by the composition of the wall rocks. In contrast, the garnet-biotite alteration formed by interaction with a fluid undersaturated in Si, and was mainly controlled by the fluid composition. This points to major differences in fluid-rock ratios and changes in fluid composition during alteration. The alteration systematics and geometry of the hydrothermal vein system are consistent with cyclic fluctuations in fluid pressure during fault valve action.

  20. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate differentiation processes, such as partial mantle melting and crystal fractionation, can cause stable Cr isotopic fractionation on Earth and other planetary bodies.

  1. Nano- and microstructural disperse rocks in protective barriers, medicine and balneology

    NASA Astrophysics Data System (ADS)

    Panko, A. V.; Kovzun, I. G.; Prokopenko, V. A.; Tsyganovich, O. A.; Oliinyk, V. O.; Nikipelova, O. M.

    2018-03-01

    On the base of results of electron microscopy, thermogravimetric, X-ray, rheological, mechanochemical and medico-biological research methods, there are proposed models of physico-mechanical, nanochemical, colloidal and biocolloid metamorphic processes of iron oxide-silicate rocks, which are accompanied by formation of nano- and microdispersed pelitic sediments, peloids (therapeutic muds), clays, sedimentary iron-silicate-carbonate ore materials. The role of microorganisms and surface-active products of their vital activity in these processes is shown. It was noted that a stable existence of ecosystems, which contain iron oxide-hydroxide-silicate polymineral formations, is largely determined by preliminary processes of geomechanical dispersion of rocks and by subsequent processes of vital activity of various microorganisms. The metabolic products of such microorganisms activate the biocolloid interactions, which are due to cooperative colloidal, biological, biochemical and nanochemical transformations of biogeocenosis of living and non-living substance. The conceptions of role and meaning of chemical and biocolloidal processes of iron and silicon nanocluster formation are developed for strength changes in contact zones of microparticles in polymineral dispersion systems which, respectively, have an influence on their rheological properties. It is shown that in the presence of sodium chloride (seawater, lake's brine) for low-iron clay-sand systems, a dilatant-thixotropic nature of the flow is observed, and at a high-iron content in the form of nanostructured goethite, a hypernomalous growth of concentrated iron-silicate suspensions' viscosity and enhancement of contact interactions in them are observed. Taking into account the established phenomena the application of iron oxide-silicate peloid compositions in the construction of protective barriers, in medicine and balneology (treatment of injured joints, wounds, leukemia, etc.) is considered.

  2. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    NASA Astrophysics Data System (ADS)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected to be congruent, meaning that the Mg released to solutes during mineral dissolution should have the same composition as the host rock. Some of this difference is likely accounted for by atmospheric deposition or cyclic inputs, but this cannot account for all of the 1.5permil shift between rock and water. It is plausible that some of the difference is explained by trace levels of Mg-silicate dissolution (with a delta26Mg of circa 0permil), but equally carbonate precipitation and attendant Mg isotope fractionation could theoretically account for the difference between rock and water. The various plausible explications will be discussed, as well as the implications of the data for better understanding carbonate weathering.

  3. The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: Geological characteristics and environmental implication

    NASA Astrophysics Data System (ADS)

    Yasmin, Sabina; Barua, Bijoy Sonker; Uddin Khandaker, Mayeen; Kamal, Masud; Abdur Rashid, Md.; Abdul Sani, S. F.; Ahmed, H.; Nikouravan, Bijan; Bradley, D. A.

    2018-03-01

    Accurate quantification of naturally occurring radioactive materials in soil provides information on geological characteristics, possibility of petroleum and mineral exploration, radiation hazards to the dwelling populace etc. Of practical significance, the earth surface media (soil, sand and sediment) collected from the densely populated coastal area of Chittagong city, Bangladesh were analysed using a high purity germanium γ-ray spectrometer with low background radiation environment. The mean activities of 226Ra (238U), 232Th and 40K in the studied materials show higher values than the respective world average of 33, 36 and 474 Bq/kg reported by the UNSCEAR (2000). The deduced mass concentrations of the primordial radionuclides 238U, 232Th and 40K in the investigated samples are corresponding to the granite rocks, crustal minerals and typical rocks respectively. The estimated mean value of 232Th/238U for soil (3.98) and sediment (3.94) are in-line with the continental crustal average concentration of 3.82 for typical rock range reported by the National Council on Radiation Protection and Measurements (NCRP). But the tonalites and more silicic rocks elevate the mean value of 232Th/238U for sand samples amounting to 4.69. This indicates a significant fractionation during weathering or associated with the metasomatic activity in the investigated area of sand collection.

  4. Molybdenite tricks with titanite give history of the Central Indian Tectonic Zone

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.; Hannah, Judith L.; Pandit, Manoj K.; Mohanty, Saradaprasad; Corfu, Fernando; Zimmerman, Aaron

    2014-05-01

    The time that the cratonic blocks joined to form peninsular India creating the E-W-trending Central Indian Tectonic Zone (CITZ) is important for tectonic reconstructions and Paleoproterozoic glaciations, and fundamental to understanding how sutures behave through time. An abundance of recent literature highlights ~1.0 Ga as the time of suturing. This late 1.0 Ga meeting of the two cratons, however, is increasingly difficult to reconcile. One of the well-studied and well-mapped terranes in the southern part of the CITZ is the Sausar Belt [1]. The metasedimentary and metavolcanic rocks comprising the extensive Paleoproterozoic Sausar Group are multiply deformed. To examine the history of the Sausar Belt from a new vantage, we employed Re-Os dating of molybdenite, a sulfide that serves faithfully as a single-mineral radiometric clock in both magmatic and metamorphic environments [2]. Molybdenite is rare in the Sausar belt. Samples containing a 1-cm molybdenite patch and coarse-grained, euhedral, clear brown titanite were acquired from two different varieties of calc-silicate rocks near the village of Umri in central India. The molybdenite occurs in a calcite-quartz vein that clearly cross-cuts a strongly deformed calc-silicate host with quartz-biotite and quartz bands at the cm scale. This vein, metamorphic in character, is about 1-cm-wide and slightly deformed. The molybdenite was contained wholly within the vein. To check for possible Re-Os decoupling [2], we split the molybdenite patch into seven subsamples, analyzing each fraction separately; in sum, these seven fractions account for the entire molybdenite crystal. We obtained extremely disparate ages for the individual fractions, ranging from 1.4 to 3.1 Ga. These data were recombined on an atomic basis to calculate the Re-Os age for the entire crystal, a trick we employed after affirming there was no additional sulfide and no additional molybdenite that might compete for Re and Os in our hand-sample of 10 x 15 cm. This circumstance provided us the opportunity to turn Re-Os decoupling to our advantage. The whole-crystal Re-Os molybdenite age on combining data from individual separates is between 2.41 and 2.45 Ga, depending on estimates of very minor silicate dilution as the crystal was extracted piecemeal from the vein. The U-Pb age for euhedral titanite crystals in a dense massive calc-silicate host, not unexpectedly, is ~1.0 Ga. The molybdenite and titanite record two different episodes of metamorphism. These results suggest that the Sausar Group calc-silicate rocks we analyzed are earliest Paleoproterozoic, >2.41 Ga. Shortly after deposition these rocks were metamorphosed - the first event in a long history of metamorphism and deformation continually focused along an ancient suture. These results have implications for the CITZ, and are similar to ages found in terranes on either side of this continental scale collisional belt [3,4]. This study was funded by the U.S. National Science Foundation (EAR-1119655). References Cited [1] Mohanty, S. (2010) Journal of Asian Earth Sciences 39: 516-526. [2] Stein et al. (2003) Geochimica et Cosmochimica Acta 67: 3673-3686. [3] Stein et al. (2004) Precambrian Research 134: 189-226. [4] Radhakrishna et al. (2013) Precambrian Research 226: 91-104.

  5. Impact on the earth, ocean and atmosphere

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; O'Keefe, John D.

    1987-01-01

    On the basis of finite-difference techniques, cratering flow calculations are used to obtain the spatial attenuation of shock pressure with radius along the impact axis for the impact of silicate rock and iron impactors on a silicate half-space at speeds of 5 to 45 km/sec. Upon impact of a 10 to 30 km diameter silicate or water object onto a 5 km deep ocean overlying a silicate half-space planet at 30 km/sec, it is found that from 12 to 15 percent of the incident energy is coupled into the water. The mass of atmosphere lost due to impacts of 1 to 5 km radius projectiles is calculated.

  6. Chemical Variation of Silicate Mineral Phases in Lunar Feldspathic Granulitic Impactites: Implications for Thermal Histories and Provenances

    NASA Technical Reports Server (NTRS)

    Fincke, E. M.; Ryder, G.

    2001-01-01

    We report on the internal variation and abundances of minor elements of silicate phases in lunar granulitic impactites to assess their thermal histories and the pre-metamorphic provenances of the minerals and the process that assembled the rocks. Additional information is contained in the original extended abstract.

  7. Ar-Ar ages, Sr-Nd isotope geochemistry, and implications for the origin of the silicate rocks of the Jacupiranga ultramafic-alkaline complex (Brazil)

    NASA Astrophysics Data System (ADS)

    Chmyz, Luanna; Arnaud, Nicolas; Biondi, João Carlos; Azzone, Rogério Guitarrari; Bosch, Delphine; Ruberti, Excelso

    2017-08-01

    The Jacupiranga Complex is one of several Meso-Cenozoic alkaline intrusive complexes along the margins of the intracratonic Paraná Basin in southern Brazil. The complex encompasses a wide range of rock-types, including dunites, wehrlites, clinopyroxenites, melteigites-ijolites, feldspar-bearing rocks (diorites, syenites, and monzonites), lamprophyres and apatite-rich carbonatites. While carbonatites have been extensively investigated over the last decades, little attention has been paid to the silicate rocks. This study presents new geochonological and geochemical data on the Jacupiranga Complex, with particular emphasis on the silicate lithotypes. 40Ar/39Ar ages for different lithotypes range from 133.7 ± 0.5 Ma to 131.4 ± 0.5 Ma, while monzonite zircon analyzed by SHRIMP yields a U-Pb concordia age of 134.9 ± 1.3 Ma. These ages indicate a narrow time frame for the Jacupiranga Complex emplacement, contemporaneous with the Paraná Magmatic Province. Most of the Jacupiranga rocks are SiO2-undersaturated, except for a quartz-normative monzonite. Based on geochemical compositions, the Jacupiranga silicate lithotypes may be separated into two magma-evolution trends: (1) a strongly silica-undersaturated series, comprising part of the clinopyroxenites and the ijolitic rocks, probably related to nephelinite melts and (2) a mildly silica-undersaturated series, related to basanite parental magmas and comprising the feldspar-bearing rocks, phonolites, lamprophyres, and part of the clinopyroxenites. Dunites and wehrlites are characterized by olivine compositionally restricted to the Fo83-84 interval and concentrations of CaO (0.13-0.54 wt%) and NiO (0.19-0.33 wt%) consistent with derivation by fractional crystallization, although it is not clear whether these rocks belong to the nephelinite or basanite series. Lamprophyre dikes within the complex are considered as good representatives of the basanite parental magma. Compositions of calculated melts in equilibrium with diopside cores from clinopyroxenites are quite similar to those of the lamprophyres, suggesting that at least a part of the clinopyroxenites is related to the basanite series. Some feldspar-bearing rocks (i.e. meladiorite and monzonite) show petrographic features and geochemical and isotope compositions indicative of crustal assimilation, although this may be relegated to a local process. Relatively high CaO/Al2O3 and La/Zr and low Ti/Eu ratios from the lamprophyres and calculated melts in equilibrium with cumulus clinopyroxene point to a lithospheric mantle metasomatized by CO2-rich fluids, suggesting vein-plus-wall-rock melting mechanisms. The chemical differences among those liquids are thought to reflect both variable contributions of melting resulting from veins and variable clinopyroxene/garnet proportions of the source.

  8. Estimation of weathering rates and CO2 drawdown based on solute load: Significance of granulites and gneisses dominated weathering in the Kaveri River basin, Southern India

    NASA Astrophysics Data System (ADS)

    Pattanaik, J. K.; Balakrishnan, S.; Bhutani, R.; Singh, P.

    2013-11-01

    The solute load of the Kaveri River (South India) and its tributaries draining diverse Precambrian terrains during pre-monsoon and monsoon periods was determined. Using average annual flow, total drainage area and atmospheric input corrected major ion concentrations of these rivers chemical weathering rates, annual fluxes of different ionic species to the ocean and CO2 consumption rates were estimated. Bicarbonate is the most dominant ion (27-79% of anion budget) in all the river samples collected during monsoon period followed by Ca2+, whereas, in case of pre-monsoon water samples Na+ is the most dominant ion (in meq/l). Two approaches were adopted to estimate silicate and carbonate weathering rates in the drainage basin. At Musuri silicate weathering rate (SWR) is 9.44 ± 0.29 tons/km2/a and carbonate weathering rate (CWR) is 1.46 ± 0.16 tons/km2/a. More than 90% of the total ionic budget is derived from weathering of silicates in the Kaveri basin. CO2 consumption rate in the basin for silicate weathering FCO2sil is 3.83 ± 0.12 × 105 mol/km2/a (upper limit), which is comparable with the Himalayan rivers at upper reaches. For carbonate weathering (FCO2carb) CO2 consumption rate is 0.15 ± 0.03 × 105 mol/km2/a in the Kaveri basin. The lower limit of CO2 consumption rate corrected for H2SO4 during silicate and carbonate weathering is FCO2sil is 3.24 × 1005 mol/km2/a and FCO2carb 0.13 × 105 mol/km2/a respectively. CO2 sequestered due to silicate weathering in the Kaveri basin is 25.41 (±0.82) × 109 mol/a which represents 0.21 (±0.01)% of global CO2 drawdown. This may be due to tropical climatic condition, high rainfall during both SW and NE monsoon and predominance of silicate rocks in the Kaveri basin.

  9. Coupled extremely light Ca and Fe isotopes in peridotites

    NASA Astrophysics Data System (ADS)

    Zhao, Xinmiao; Zhang, Zhaofeng; Huang, Shichun; Liu, Yufei; Li, Xin; Zhang, Hongfu

    2017-07-01

    Large metal stable isotopic variations have been observed in both extraterrestrial and terrestrial samples. For example, Ca exhibits large mass-dependent isotopic variation in terrestrial igneous rocks and mantle minerals (on the order of ∼2‰ variation in 44Ca/40Ca). A thorough assessment and understanding of such isotopic variations in peridotites provides important constraints on the evolution and compositon of the Earth's mantle. In order to better understand the Ca and Fe isotopic variations in terrestrial silicate rocks, we report Ca isotopic compositions in a set of peridotitic xenoliths from North China Craton (NCC), which have been studied for Fe isotopes. These NCC peridotites have large Ca and Fe isotopic variations, with δ44/40Ca ranging from -0.08 to 0.92 (delta value relative to SRM915a) and δ57/54Fe (delta value relative to IRMM-014) ranging from -0.61 to 0.16, and these isotopic variations are correlated with large Mg# (100 × Mg/(Mg + Fe) molar ratio) variation, ranging from 80 to 90. Importantly, NCC Fe-rich peridotites have the lowest 44Ca/40Ca and 57Fe/54Fe ratios in all terrestrial silicate rocks. In contrast, although ureilites, mantle rocks from a now broken differentiated asteroid(s), have large Mg# variation, from 70 to 92, they have very limited δ57Fe/54Fe variation (0.03-0.21, delta value relative to IRMM-014). Our model calculations show that the coupled extremely light Ca-Fe isotopic signatures in NCC Fe-rich peridotites most likely reflect kinetic isotopic fractionation during melt-peridotite reaction on a timescale of several to 104 years. In addition, our new data and compiled literature data show a possible compositional effect on the inter-mineral Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene pairs.

  10. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective

    NASA Astrophysics Data System (ADS)

    Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang

    2017-12-01

    The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.

  11. Natural CO 2 accumulations in the western Williston Basin: A mineralogical analog for CO 2 injection at the Weyburn site

    DOE PAGES

    Ryerson, F. J.; Lake, John; Whittaker, Steven; ...

    2013-01-17

    The Devonian carbonates of the Duperow Formation on the western flank of the Williston Basin in southwest Saskatchewan contain natural accumulations of CO 2, and may have done so for as long as 50 million years. These carbonate sediments are characterized by a succession of carbonate cycles capped by anhydrite-rich evaporites that are thought to act as seals to fluid migration. The Weyburn CO 2 injection site lies 400 km to the east in a series of Mississippian carbonates that were deposited in a similar depositional environment. That long-term isolation of natural CO 2 can be accomplished within carbonate stratamore » has motivated the investigation of the Duperow rocks as a potential natural analog for storage of anthropogenic CO 2 in carbonate lithologies. For the Duperow strata to represent a legitimate analog for Midale injection and storage, the similarity in lithofacies, whole rock compositions, mineral compositions and porosity with the Midale Beds must be established. Here we compare lithofacies, whole rock compositions, mineralogy and mineral compositions from both locales. The major mineral phases at both locales are calcite, dolomite and anhydrite. In addition, accessory pyrite, fluorite, quartz and celestine (strontium sulfate) are also observed. Dawsonite, a potential CO 2-trapping mineral, is not observed within the CO 2-bearing horizons of the Duperow Formation, however. The distribution of porosity in the Midale Vuggy units is similar to that of the Duperow Formation, but the Marly units of the Midale have significantly higher porosity. The Duperow Formation is topped by the Dinesmore evaporite that is rich in anhydrite, and often contains authigenic K-feldspar. The chemistry of dolomite and calcite from the two localities also overlaps. Silicate minerals are in low abundance (<3%) within the analyzed Duperow samples, with quartz and K-feldspar the only silicates observed petrographically or in X-ray diffraction patterns. The Midale Beds contain significantly higher silica/silicate concentrations (Durocher et al., 2003), but the paucity of mono- and divalent cations that can be derived from dissolution of these silicate minerals likely precludes significant carbonate mineral formation. Therefore physical and solution trapping are likely to be the primary CO 2 trapping mechanisms at both sites.« less

  12. Dehydroxylated clay silicates on Mars: Riddles about the Martian regolith solved with ferrian saponites

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Clay silicates, resulting from the chemical weathering of volcanic glasses and basaltic rocks of Mars, are generally believed to be major constituents of the martian regolith and atmospheric dust. Because little attention has been given to the role, if any, of Mg-bearing clay silicates on the martian surface, the crystal chemistry, stability, and reactivity of Mg-Fe smectites are examined. Partially dehydroxylated ferrian saponites are suggested to be major constituents of the surface of Mars, regulating several properties of the regolith.

  13. Making Earth's earliest continental crust - an analogue from voluminous Neogene silicic volcanism in NE-Iceland

    NASA Astrophysics Data System (ADS)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Riishuus, Morten S.; Deegan, Frances M.; Harris, Chris; Whitehouse, Martin J.; Gústafsson, Ludvik E.

    2014-05-01

    Borgarfjörður Eystri in NE-Iceland represents the second-most voluminous exposure of silicic eruptive rocks in Iceland and is a superb example of bimodal volcanism (Bunsen-Daly gap), which represents a long-standing controversy that touches on the problem of crustal growth in early Earth. The silicic rocks in NE-Iceland approach 25 % of the exposed rock mass in the region (Gústafsson et al., 1989), thus they significantly exceed the usual ≤ 12 % in Iceland as a whole (e.g. Walker, 1966; Jonasson, 2007). The origin, significance, and duration of the voluminous (> 300 km3) and dominantly explosive silicic activity in Borgarfjörður Eystri is not yet constrained (c.f. Gústafsson, 1992), leaving us unclear as to what causes silicic volcanism in otherwise basaltic provinces. Here we report SIMS zircon U-Pb ages and δ18O values from the region, which record the commencement of silicic igneous activity with rhyolite lavas at 13.5 to 12.8 Ma, closely followed by large caldera-forming ignimbrite eruptions from the Breiðavik and Dyrfjöll central volcanoes (12.4 Ma). Silicic activity ended abruptly with dacite lava at 12.1 Ma, defining a ≤ 1 Myr long window of silicic volcanism. Magma δ18O values estimated from zircon range from 3.1 to 5.5 (± 0.3; n = 170) and indicate up to 45 % assimilation of a low-δ18O component (e.g. typically δ18O = 0 ‰, Bindeman et al., 2012). A Neogene rift relocation (Martin et al., 2011) or the birth of an off-rift zone to the east of the mature rift associated with a thermal/chemical pulse in the Iceland plume (Óskarsson & Riishuus, 2013), likely brought mantle-derived magma into contact with fertile hydrothermally-altered basaltic crust. The resulting interaction triggered large-scale crustal melting and generated mixed-origin silicic melts. Such rapid formation of silicic magmas from sustained basaltic volcanism may serve as an analogue for generating continental crust in a subduction-free early Earth (e.g. ≥ 3 Ga, Kamber et al., 2005). REFERENCES: Bindeman, I.N., et al., 2012. Terra Nova 24, 227-232. Gústafsson, L.E., et al., 1989. Jökull, v. 39, 75-89. Gústafsson, L.E., 1992. PhD dissertation, Freie Universität Berlin. Jonasson, K., 2007. Journal of Geodynamics, 43, 101-117. Kamber, B.S., et al., 2005. Earth Planet. Sci. Lett., Vol. 240 (2), 276-290. Martin, E., et al., 2011. Earth Planet. Sc. Lett., 311, 28-38. Óskarsson, B.V., & Riishuus, M.S., 2013. J. Volcanol. Geoth.Res., 267, 92-118. Walker, G.P.L., 1966. Bull. Volcanol., 29 (1), 375-402.

  14. Recognizing subtle evidence for silicic magma derivation from petrochemically-similar arc crust: Isotopic and chemical evidence for the bimodal volcanic series of Gorely Volcanic Center, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Seligman, A. N.; Bindeman, I. N.; Ellis, B. S.; Ponomareva, V.; Leonov, V.

    2012-12-01

    The Kamchatka Peninsula is home to some of the most prolific subduction related volcanic activity in the world. Gorely caldera and its central volcano are located in the rear of its currently active Eastern Volcanic Front. Recent work determined the presence of explosive ignimbrite eruptions sourced from Gorely volcano during the Pleistocene. We studied 32 eruptive units, including tephrochronologically-dated Holocene tephra, stratigraphically-arranged ignimbrites, as well as pre- and post-caldera lavas. We analyzed oxygen isotope ratios of pyroxene and plagioclase grains by laser fluorination, and major and trace element compositions of whole rocks. In addition, we determined 87Sr/86Sr and 143Nd/144Nd ratios of caldera-forming ignimbrite eruptions. Chemical compositions show that Gorely eruptive units range from basalt to basaltic andesite in the "Pra-Gorely" stages prior to caldera formation and the modern Gorely stages forming its current edifice. In contrast, eruptive material from earlier ignimbrites exposed at Opasny Ravine consists primarily of dacite. Whole rock analyses for Gorely indicate that silicic rocks and ignimbrites volumetrically dominate all other products, forming separate bimodal peaks in our SiO2-frequency diagram. In addition, trace element concentrations and ratios define two trends, one for more silicic and another for more mafic material. δ18Omelt values range from a low of 4.85 up to 6.22‰, where the lowest value was found in the last caldera forming eruption, suggesting incorporation of hydrothermally-altered material from earlier eruptions. 87Sr/86Sr and 143Nd/144Nd ratios range from 0.70328 to 0.70351 and from 0.51303 to 0.51309 respectively, with higher and more diverse values being characteristic of earlier ignimbrite units; again suggesting incorporation of surrounding crustal material. In contrast to these results, MELTS modeling using a variety of likely primitive basalts from Gorely shows it is possible to obtain silicic chemical compositions near the evolved ignimbrite compositions, strictly through 70-80% fractional crystallization at 1-2 kbars and NNO oxygen fugacity. The combination of light δ18O values as well as elevated 87Sr/86Sr and low 143Nd/144Nd values, in addition to the volumetric excess of silicic rocks suggest assimilation of the older and petrochemically-similar country-rocks (Karymshina volcano and/or the underlying Akhomten Massif). This research can be utilized for studies of other volcanoes at "long-term centers", underscoring the importance of using both isotopes and modeling of fractional crystallization to determine silicic magma derivation through coupled shallow crustal assimilation of similar older material and fractional crystallization.

  15. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of igneous rocks is progressively more alkaline and silicic from basalt to granodiorite. Early (Stage I) chalcopyrite-bornite (-molybdenite) mineralization and genetically related K-silicate alteration are centered on the Christmas stock. K-silicate alteration is manifested by pervasive hornblende-destructive biotitization in the stock, biotitization of basaltic volcanic wall rocks, and a continuous stockwork of K-feldspar veinlets and quartz-K-feldspar veins in the stock and quartz-sulfide veins in volcanic rocks. Younger (Stage II) pyrite-chalcopyrite mineralization and quartz-sericite-chlorite alteration occur in a zone overlapping with but largely peripheral to the zone of Stage I stockwork veins. Within the Christmas intrusive complex, K-silicate-altered rocks in the central stock are flanked east and west by zones of fracture-controlled quartz-sericite alteration and strong pyritization. In volcanic rocks quartz-chlorite-pyrite-chalcopyrite veins are superimposed on earlier biotitization and crosscut Stage I quartz-sulfide veins. Beyond the zones of quartz-sericite alteration, biotite rhyodacite porphyry dikes contain the propylitic alteration assemblage epidote-chlorite-albite-sphene. Chemical analyses indicate the following changes during pervasive alteration of igneous rocks: (1) addition of Si, K, H, S, and Cu, and loss of Fe 3+ and Ca during intense biotitization of basalt; (2) loss of Na and Ca, increase of Fe3+/Fe2+, and strong H-metasomatism during sericitization of quartz diorite; and (3) increase in Ca, Na, and Fe3+/Fe2+, and loss of K during intense propylitization of biotite rhyodacite porphyry dikes. Thorough biotitization of biotite granodiorite porphyry in the Christmas stock was largely an isochemical process. Fluid-inclusion petrography reveals that Stage I veins are characterized by low to moderate populations of moderate-salinity and gas-rich inclusions, and sparse but ubiquitous halite-bearing inclusions. Moderate-salinity an

  16. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    USGS Publications Warehouse

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  17. Origins of cryptic variation in the Ediacaran-Fortunian rhyolitic ignimbrites of the Saldanha Bay Volcanic Complex, Western Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Stevens, G.; Frei, D.; Joseph, C. S. A.

    2017-12-01

    The Saldanha eruption centre, on the West Coast of South Africa, consists of 542 Ma, intracaldera, S-type, rhyolite ignimbrites divided into the basal Saldanha Ignimbrite and the partly overlying Jacob's Bay Ignimbrite. Depleted-mantle Nd model ages suggest magma sources younger than the Early Mesoproterozoic, and located within the Neoproterozoic Malmesbury Group and Swartland complex metasedimentary and metavolcanic rocks that form the regional basement. The Sr isotope systematics suggest that the dominant source rocks were metavolcaniclastic rocks and metagreywackes, and that the magmas formed from separate batches extracted from the same heterogeneous source. No apparent magma mixing trends relate the Saldanha to the Jacob's Bay Ignimbrites, or either of these to the magmas that formed the Plankiesbaai or Tsaarsbank Ignimbrites in the neighbouring Postberg eruption centre. The magmas were extracted from their source rocks carrying small but significant proportions of peritectic and restitic accessory minerals. Variations in the content of this entrained crystal cargo were responsible for most of the chemical variations in the magmas. Although we cannot construct a cogent crystal fractionation model to relate these groups of magmas, at least some crystal fractionation occurred, as an overlay on the primary signal due to peritectic assemblage entrainment (PAE). Thus, the causes of the cryptic chemical variation among the ignimbrite magmas of the Saldanha centre are variable, but dominated by the compositions of the parent melts and PAE. The preservation of clear, source-inherited chemical signatures, in individual samples, calls into question the common interpretation of silicic calderas as having been formed in large magma reservoirs, with magma compositions shaped by magma mingling, mixing, and fractional crystallization. The Saldanha rocks suggest a more intimate connection between source and erupted magma, and perhaps indicate that silicic magmas are too viscous to be significantly modified by magma-chamber processes.

  18. Phaeodarian radiolarians as potential indicators of thermal maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, R.E.

    1986-04-01

    Phaeodarian radiolarian skeletons contain large amounts of organic matter, and discolored phaeodarian skeletons are observed in the fossil record, which suggests that the skeletons may be useful as thermal maturation indicators. Such a maturation index would be useful in Monterey-type rocks that are difficult to interpret with conventional thermal maturation indexes. Phaeodarians extracted from plankton samples, Holocene Santa Barbara and Orca basin sediments, and Neogene Monterey rocks with siliceous facies were subjected to different temperatures of varying duration in pyrolysis experiments. To calibrate the observed phaeodarian color changes with a known standard, Holocene pine pollen were subjected to the samemore » treatment. These phaeodarian go through the same color change spectrum as do the pollen, but they appear to lag slightly behind the pollen color changes.« less

  19. Zircon U-Th and U-Pb Ages From Quaternary Silicic Volcanic and Plutonic Rocks, and Their Bearing on Granitoid Batholiths

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.

    2007-12-01

    In the ten years since publication of M. Reid et al.'s seminal paper on zircon ages from rhyolites (EPSL 150:2-39, 1997) >20 papers have appeared on SIMS 238U-230Th and 238U-206Pb geochronology of zircon from silicic volcanic rocks, plutonic xenoliths, and young intrusions. In some cases, as well as for U-Pb studies of Tertiary granitoids, plutonic samples are interpreted in the context of related volcanism. These geochronologic data have advanced conceptual models of silicic magma genesis and pluton construction. Of fundamental importance are discoveries that zircons in volcanic rocks typically pre-date eruption by 10's to 100's of kyr and that multiple zircon populations are common; these crystals are "antecrysts" recycled from intrusive rocks or crystal mush of the system that vented. Resolving such age differences is possible with U-Th at <300 ka but is challenging with U-Pb, where SIMS precision limits resolution of differences on the order of 100 kyr for Pleistocene-Miocene zircons. Cathodoluminescence (CL) imaging of polished crystals guides beam placement but leads to sampling bias that favors high-U regions. Thus, although model-age histograms and relative probability plots identify zircon age populations, they are unlikely to accurately define relative abundances of age groups. Microbeam analysis collects data for the entire volume sampled but only SIMS depth-profiling into crystal faces can spatially resolve fine zones. ID-TIMS analysis of CL-imaged zircon fragments can improve U-Pb precision. SIMS complements geochronology with trace element fingerprints of zircon growth environments and enables Ti-in-zircon thermometry. Literature examples illustrate recent findings: (1) rhyodacite lava at Crater Lake contains zircons derived from late Pleistocene granodiorite represented by blocks ejected in the caldera-forming eruption; (2) zircons in Mount St. Helens dacites grew at sub-eruption temperatures and pre-date eruptions by up to 250 kyr; (3) Miocene plutons near Mount Rainier and the Colorado River were emplaced and crystallized in pulses over ~2-3-Myr periods, some with coeval volcanics; and (4) Cretaceous batholiths in the Sierra Nevada and North Cascades preserve evidence of assembly over as much as 10 Myr; individual samples contain zircons that crystallized during intervals of >1 Myr. Zircon ages and wide-ranging trace element concentrations suggest crystallization mainly in differentiated melt pockets in high-crystallinity magmas that may repeatedly freeze and thaw. Some high-Th/U, incompatible-element rich, spongy textured zircons grew very late, in the presence of oxidizing fluid. Not all zircons survive recycling into undersaturated magmas, in which zircon will dissolve given enough time, depending on temperature and dissolved volatiles. Recent zircon geochronologic results for volcanic and plutonic rocks lend credence to the "mush model" of rhyolite genesis and batholith consolidation. Crystal-poor rhyolites and leucogranites are melts segregated by compaction or gas-driven filter pressing from granitoid crystal mush emplaced incrementally in the middle to upper crust and powered by basaltic magma repeatedly injected into the lower reaches of the mush column. Balance between heat loss and basaltic influx determines whether the mush freezes or partially thaws at any given time, blurs internal contacts in resulting plutons, and can produce large volumes of crystal-rich ignimbrite or rapid separation and eruption of crystal-poor rhyolite. Lifetimes of the largest volcano-plutonic systems, such as the Altiplano-Puna or Southern Rocky Mountains volcanic fields, are comparable to the ~10 Myr of the Tuolumne Intrusive Suite.

  20. CO2-brine-mineral Reactions in Geological Carbon Storage: Results from an EOR Experiment

    NASA Astrophysics Data System (ADS)

    Chapman, H.; Wigley, M.; Bickle, M.; Kampman, N.; Dubacq, B.; Galy, A.; Ballentine, C.; Zhou, Z.

    2012-04-01

    Dissolution of CO2 in brines and reactions of the acid brines ultimately dissolving silicate minerals and precipitating carbonate minerals are the prime long-term mechanisms for stabilising the light supercritical CO2 in geological carbon storage. However the rates of dissolution are very uncertain as they are likely to depend on the heterogeneity of the flow of CO2, the possibility of convective instability of the denser CO2-saturated brines and on fluid-mineral reactions which buffer brine acidity. We report the results of sampling brines and gases during a phase of CO2 injection for enhanced oil recovery in a small oil field. Brines and gases were sampled at production wells daily for 3 months after initiation of CO2 injection and again for two weeks after 5 months. Noble gas isotopic spikes were detected at producing wells within days of initial CO2 injection but signals continued for weeks, and at some producers for the duration of the sampling period, attesting to the complexity of gas-species pathways. Interpretations are complicated by the previous history of the oil field and re-injection of produced water prior to injection of CO2. However water sampled from some producing wells during the phase of CO2 injection showed monotonic increases in alkalinity and in concentrations of major cations to levels in excess of those in the injected water. The marked increase in Na, and smaller increases in Ca, Mg, Si, K and Sr are interpreted primarily to result from silicate dissolution as the lack of increase in S and Cl concentrations preclude additions of more saline waters. Early calcite dissolution was followed by re-precipitation. 87Sr/86Sr ratios in the waters apparently exceed the 87Sr/86Sr ratios of acetic and hydrochloric acid leaches of carbonate fractions of the reservoir rocks and the silicate residues from the leaching. This may indicate incongruent dissolution of Sr or larger scale isotopic heterogeneity of the reservoir. This is being investigated further by analyses of rock and mineral clasts from core. A surprising result of this study is the extent to which CO2 has dissolved in brines to drive fluid-rock reactions during the short duration of this experiment. However, simple one-dimensional flow modelling with lateral diffusion of CO2 into brines demonstrates that the natural heterogeneities in permeability in the reservoir on the scale of ~ 1 m are sufficient to cause extensive fingering of the CO2 along the highest permeability horizons. Because flow of brines is fastest in the relatively high permeability layers adjacent to the CO2-bearing layers, production of this more CO2-rich water dominates the output from production wells.

  1. Silicate glasses and sulfide melts in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure, Virginia, USA

    USGS Publications Warehouse

    Belkin, H.E.; Horton, J. Wright

    2009-01-01

    Optical and electron-beam petrography of melt-rich suevite and melt-rock clasts from selected samples from the Eyreville B core, Chesapeake Bay impact structure, reveal a variety of silicate glasses and coexisting sulfur-rich melts, now quenched to various sulfi de minerals (??iron). The glasses show a wide variety of textures, fl ow banding, compositions, devitrifi cation, and hydration states. Electron-microprobe analyses yield a compositional range of glasses from high SiO2 (>90 wt%) through a range of lower SiO2 (55-75 wt%) with no relationship to depth of sample. Some samples show spherical globules of different composition with sharp menisci, suggesting immiscibility at the time of quenching. Isotropic globules of higher interfacial tension glass (64 wt% SiO2) are in sharp contact with lower-surface-tension, high-silica glass (95 wt% SiO2). Immiscible glass-pair composition relationships show that the immiscibility is not stable and probably represents incomplete mixing. Devitrifi cation varies and some low-silica, high-iron glasses appear to have formed Fe-rich smectite; other glass compositions have formed rapid quench textures of corundum, orthopyroxene, clinopyroxene, magnetite, K-feldspar, plagioclase, chrome-spinel, and hercynite. Hydration (H2O by difference) varies from ~10 wt% to essentially anhydrous; high-SiO2 glasses tend to contain less H2O. Petrographic relationships show decomposition of pyrite and melting of pyrrhotite through the transformation series; pyrite? pyrrhotite? troilite??? iron. Spheres (~1 to ~50 ??m) of quenched immiscible sulfi de melt in silicate glass show a range of compositions and include phases such as pentlandite, chalcopyrite, Ni-As, monosulfi de solid solution, troilite, and rare Ni-Fe. Other sulfi de spheres contain small blebs of pure iron and exhibit a continuum with increasing iron content to spheres that consist of pure iron with small, remnant blebs of Fe-sulfi de. The Ni-rich sulfi de phases can be explained by melting and/or concentrating targetderived Ni without requiring an asteroid impactor source component. The presence of locally unaltered glasses in these rocks suggests that in some rock volumes, isolation from postimpact hydrothermal systems was suffi cient for glass preservation. Pressure and temperature indicators suggest that, on a thin-section scale, the suevites record rapid mixing and accumulation of particles that sustained widely different peak temperatures, from clasts that never exceeded 300 ?? 50 ??C, to the bulk of the glasses where melted sulfi de and unmelted monazite suggest temperatures of 1500 ?? 200 ??C. The presence of coesite in some glass-bearing samples suggests that pressures exceeded ~3 GPa. ?? 2009 Geological Society of America.

  2. Contribution of early impact events to metal-silicate separation, thermal annealing, and volatile redistribution: Evidence in the Pułtusk H chondrite

    NASA Astrophysics Data System (ADS)

    Krzesińska, Agata M.

    2017-11-01

    Three-dimensional X-ray tomographic reconstructions and petrologic studies reveal voluminous accumulations of metal in Pułtusk H chondrite. At the contact of these accumulations, the chondritic rock is enriched in troilite. The rock contains plagioclase-rich bands, with textures suggesting crystallization from melt. Unusually large phosphates are associated with the plagioclase and consist of assemblages of merrillite, and fluorapatite and chlorapatite. The metal accumulations were formed by impact melting, rapid segregation of metal-sulfide melt and the incorporation of this melt into the fractured crater basement. The impact most likely occurred in the early evolution of the H chondrite parent body, when post-impact heat overlapped with radiogenic heat. This enabled slow cooling and separation of the metallic melt into metal-rich and sulfide-rich fractions. This led to recrystallization of chondritic rock in contact with the metal accumulations and the crystallization of shock melts. Phosphorus was liberated from the metal and subsumed by the silicate shock melt, owing to oxidative conditions upon slow cooling. The melt was also a host for volatiles. Upon further cooling, phosphorus reacted with silicates leading to the formation of merrillite, while volatiles partitioned into the residual halogen-rich, dry fluid. In the late stages, the fluid altered merrillite to patchy Cl/F-apatite. The above sequence of alterations demonstrates that impact during the early evolution of chondritic parent bodies might have contributed to local metal segregation and silicate melting. In addition, postshock conditions supported secondary processes: compositional/textural equilibration, redistribution of volatiles, and fluid alterations.

  3. Trace-element composition of Chicxulub crater melt rock, K/T tektites and Yucatan basement

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Gregoire, D. C.; Attrep, M., Jr.; Claeys, P.; Thompson, C. M.; Boynton, W. V.

    1993-01-01

    The Cretaceous/Tertiary (K/T) boundary Chicxulub impact is the best preserved large impact in the geologic record. The Chicxulub crater has been buried with no apparent erosion of its intracrater deposits, and its ejecta blanket is known and is well preserved at hundreds of localities globally. Although most of the molten material ejected from the crater has been largely altered, a few localities still preserve tektite glass. Availability of intra- and extracrater impact products as well as plausible matches to the targeted rocks allows the comparison of compositions of the different classes of impact products to those of the impacted lithologies. Determination of trace-element compositions of the K/T tektites, Chicxulub melt rock, and the targeted Yucatan silicate basement and carbonate/evaporite lithologies have been made using instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). Some sample splits were studied with both techniques to ensure that inter-laboratory variation was not significant or could be corrected. The concentration of a few major and minor elements was also checked against microprobe results. Radiochemical neutron activation analysis (RNAA) was used to determine Ir abundances in some samples.

  4. Transfer of volatiles and metals from mafic to felsic magmas in composite magma chambers: An experimental study

    NASA Astrophysics Data System (ADS)

    Guo, Haihao; Audétat, Andreas

    2017-02-01

    In order to determine the behavior of metals and volatiles during intrusion of mafic magma into the base of silicic, upper crustal magma chambers, fluid-rock partition coefficients (Dfluid/rock) of Li, B, Na, S, Cl, K, Mn, Fe, Rb, Sr, Ba, Ce, Cu, Zn, Ag, Cd, Mo, As, Se, Sb, Te, W, Tl, Pb and Bi were determined experimentally at 2 kbar and 850 °C close to the solidus of mafic magma. In a first step, volatile-bearing mafic glasses were prepared by melting a natural basaltic trachyandesite in the presence of volatile-bearing fluids at 1200 °C/10 kbar in piston cylinder presses. The hydrous glasses were then equilibrated in subsequent experiments at 850 °C/2 kbar in cold-seal pressure vessels, which caused 80-90% of the melt to crystallize. After 0.5-2.0 days of equilibration, the exsolved fluid was trapped by means of in-situ fracturing in the form of synthetic fluid inclusions in quartz. Both the mafic rock residue and the fluid inclusions were subsequently analyzed by laser-ablation ICP-MS for major and trace elements. Reverse experiments were conducted by equilibrating metal-bearing aqueous solutions with rock powder and then trapping the fluid. In two additional experiments, information on relative element mobilities were obtained by reacting fluids that exsolved from crystallizing mafic magma with overlying silicic melts. The combined results suggest that under the studied conditions S, Cl, Cu, Se, Br, Cd and Te are most volatile (Dfluid/rock >10), followed by Li, B, Zn, As, Ag, Sb, Cs, W, Tl, Pb and Bi (Dfluid/rock = 1-10). Less volatile are Na, Mg, K, Ca, Mn, Fe, Rb, Sr, Mo and Rb (Dfluid/rock 0.1-1), and the least fluid-mobile elements are Al, Si, Ti, Zr, Ba and Ce (Dfluid/rock <0.1). This trend is broadly consistent with relative element volatilities determined on natural high-temperature fumarole gases, although some differences exist. Based on the volatility data and measured mineral-melt and sulfide-melt partition coefficients, volatile fluxing in felsic natural samples may be identified by Cu, Se, Te and Cd-enrichment in magmatic sulfides, and by As, Se, Cd and Bi-enrichment in magmatic apatite.

  5. Geological carbon budget of the Mackenzie River Basin: New insight from the oxidation of rock-derived organic carbon

    NASA Astrophysics Data System (ADS)

    Horan, K.; Hilton, R. G.; Dellinger, M.; Galy, V.; Gaillardet, J.; Tipper, E.; Selby, D. S.; Ottley, C. J.; Burton, K. W.

    2016-12-01

    Erosion and weathering transfer carbon between the atmosphere and lithospheric storage, thereby operating to modify Earth's long-term climate. Over millions of years, atmospheric carbon dioxide (CO2) is sequestered during the weathering of silicate minerals by carbonic acid, coupled to carbonate formation, and following the erosion of biospheric organic carbon and its burial in sediments. However, erosion and weathering also act together to release CO2 from the lithosphere. Erosion enhances the rate of oxidative weathering of organic carbon in rocks (petrogenic OC, OCpetro), which is a major CO2 source over geological time. In addition, oxidation of sulfide minerals can produce sulfuric acid that weathers carbonate minerals and results in transient CO2 release. Although these sources and sinks of CO2 are well recognised, limited case studies exist where they have been measured alongside each other. Here we calculate the geological carbon budget during weathering and erosion in the Mackenzie River Basin, Canada. The silicate weathering rate, carbonate weathering rate by sulfuric acid and the sedimentary burial of biospheric organic carbon have been constrained by prior work. Closing the long-term CO2 budget therefore requires us to quantify the OCpetro oxidation rate. To do this, we use dissolved rhenium (Re) concentrations as a proxy for OCpetro weathering using samples collected from 2009 to 2013. We normalise dissolved river Re concentrations to the rock Re concentration ([Re]diss/[Re]rock) to assess the variability in oxidative weathering efficiency. We find [Re]diss/[Re]rock ratios are 2-4 times lower than those calculated for rapidly eroding mountain catchments (e.g. Taiwan), which is consistent with a lower physical erosion rate in the Mackenzie Basin. By making assumptions about the concurrent mobility of Re and CO2 during OCpetro weathering we quantify the OCpetro weathering rate and constrain the associated CO2 flux to be 0.3 tC km-2 yr-1. The transient CO2 release by sulfuric acid driven carbonate weathering is 0.8 tC km-2 yr-1. Therefore, these two CO2 sources counter CO2 drawdown by silicate weathering (0.4 tC km-2 yr-1). Nevertheless, OCpetro oxidation does not negate the large CO2 sink driven by biospheric organic carbon erosion (2 tC km-2 yr-1), so the Mackenzie Basin is presently a CO2 sink.

  6. Hydrochemical characterization of groundwater in the Akyem area, Ghana

    USGS Publications Warehouse

    Banoeng-Yakubo, B.; Yidana, S.M.; Anku, Y.; Akabzaa, T.; Asiedu, D.

    2008-01-01

    The Akyem area is a small farming community located in southeastern Ghana. Groundwater samples from wells in the area were analyzed for concentrations of the major ions, silica, electrical conductivity and pH. The objective was to determine the main controls on the hydrochemistry of ground-water. Mass balance modeling was used together with multivariate R-mode hierarchical cluster analysis to determine the significant sources of variation in the hydrochemistry. Two water types exist in this area. The first is influenced most by the weathering of silicate minerals from the underlying geology, and is thus rich in silica, sodium, calcium, bicarbonate, and magnesium ions. The second is water that has been influenced by the effects of fertilizers and other anthropogenic activities in the area. Mineral speciation and silicate mineral stability diagrams suggest that montmorillonite, probably derived from the incongruent dissolution of feldspars and micas, is the most stable silicate phase in the groundwaters. The apparent incongruent weathering of silicate minerals in the groundwater system has led to the enrichment of sodium, calcium, magnesium and bicarbonate ions as well as silica, leading to the supersaturation of calcite, aragonite, dolomite and quartz. Stability in the montmorillonite field suggests restricted flow conditions and a long groundwater residence time, leading to greater exposure of the rock to weathering. Cation exchange processes appear to play minor roles in the hydrochemistry of groundwater.

  7. Highly Shocked Low Density Sedimentary Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

    NASA Technical Reports Server (NTRS)

    Osinski, G. R.; Spray, J. G.

    2001-01-01

    We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.

  8. Endolithic phototrophs in built and natural stone.

    PubMed

    Gaylarde, Christine C; Gaylarde, Peter M; Neilan, Brett A

    2012-08-01

    Lichens, algae and cyanobacteria have been detected growing endolithically in natural rock and in stone buildings in various countries of Australasia, Europe and Latin America. Previously these organisms had mainly been described in natural carbonaceous rocks in aquatic environments, with some reports in siliceous rocks, principally from extremophilic regions. Using various culture and microscopy methods, we have detected endoliths in siliceous stone, both natural and cut, in humid temperate and subtropical climates. Such endolithic growth leads to degradation of the stone structure, not only by mechanical means, but also by metabolites liberated by the cells. Using in vitro culture, transmission, optical and fluorescence microscopy, and confocal laser scanning microscopy, both coccoid and filamentous cyanobacteria and algae, including Cyanidiales, have been identified growing endolithically in the facades of historic buildings built from limestone, sandstone, granite, basalt and soapstone, as well as in some natural rocks. Numerically, the most abundant are small, single-celled, colonial cyanobacteria. These small phototrophs are difficult to detect by standard microscope techniques and some of these species have not been previously reported within stone.

  9. Characterizing multiple sources and interaction in the critical zone through Sr-isotope tracing of surface and groundwater

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Pauwels, Hélène

    2017-04-01

    The Critical Zone (CZ) is the lithosphere-atmosphere boundary where complex physical, chemical and biological processes occurs and control the transfer and storage of water and chemical elements. This is the place where life-sustaining resources are, where nutrients are being released from the rocks. Because it is the place where we are living, this is a fragile zone, a critical zone as a perturbed natural ecosystem. Water resources in hard-rocks commonly involve different hydrogeological compartments such as overlying sediments, weathered rock, the weathered-fissured zone, and fractured bedrock. Streams, lakes and wetlands that drain such environments can drain groundwater, recharge groundwater, or do both. Groundwater resources in many countries are increasingly threatened by growing demand, wasteful use, and contamination. Surface water and shallow groundwater are particularly vulnerable to pollution, while deeper resources are more protected from contamination. Here, we first report on Sr isotope data as well as major ions, from shallow and deep groundwater in several granite and schist areas over France with intensive agriculture covering large parts of these catchments. In three granite and Brioverian 'schist' areas of the Armorican Massif, the range in Sr contents in groundwater from different catchments agrees with previous work on groundwater sampled from granites in France. The Sr content is well correlated with Mg and both are partly related to agricultural practices and water rock interaction. The relationship between Sr- isotope and Mg/Sr ratios allow defining the different end-members, mainly rain, agricultural practice and water-rock interaction. The data from the Armorican Massif and other surface and groundwater for catchment draining silicate bedrocks (300-450Ma) like the Hérault, Seine, Moselle, Garonne, Morvan, Margeride, Cantal, Pyrénées and Vosges are scattered between at least three geochemical signatures. These include fertilizer and manure, water originating in the upper compartment of the aquifer in weathered rock (alterite) and water from the lower compartment of the aquifer, mainly comprising fissured fresh rock. The interaction with alterite thus led to higher Sr- isotope ratios (around 0.730) in the water because of the weathering of residual minerals whereas interaction in the fissured part implies that the Sr-isotope characteristics of waters are more related to the weathering of whole rock with a lower value. Secondly, an extensive approach was done by enlarging to Africa (granite-gneiss and schists 2200 - 700 Ma of the Congo Basin), French Guiana (Archaen gneiss 3400-2700Ma and granite-gneiss rocks 2300-1900Ma) and India (Archean granites 2500Ma and Palaeoproterozoic granodiorite and schists 3100 - 1600Ma) considering both surface and groundwater. Here, the weathering processes concern older silicate environments and such weathered silicates yield to clearly higher Sr- isotope ratios (up to 0.745). The Sr-isotope tracing defines and identifies the relative signature of water origin between alterite and rain or agricultural practice (India), between alterite and underlying weathered-fissured and fractured bedrock (Africa) and between the three end-members in French Guiana.

  10. Peralkaline nephelinites. I. Comparative petrology of Shombole and Oldoinyo L'engai, East Africa

    NASA Astrophysics Data System (ADS)

    Peterson, Tony D.

    1989-04-01

    Shombole, a nephelinite-carbonatite volcano in south Kenya, erupted silicate lavas, carbonatite dikes and tuffs, and pyroclastic rocks similar to those at other East African alkaline centres. Shombole lavas containing cpx + nepheline + accessory minerals range from perovskite-bearing nephelinites (43% SiO2, volatile-free) to sphene-bearing and phonolitic nephelinites (46 49% SiO2) and phonolites (49 56% SiO2) and have low peralkalinity ([Na+K]/Al ≈ 1.15) which does not correlate with SiO2. Early fractionation of olivine and clinopyroxene strongly depleted Ni and Cr concentrations (≈10 ppm); fractionation of perovskite, melanite, sphene, and apatite produced negative correlations of all REE with SiO2. Many lavas contain cognate intrusive xenoliths and xenocrysts and oscillatory zoning is a common feature of clinopyroxene, nepheline, and melanite crystals, indicating recycling of intrusive material. Irregular calcite-rich bodies in many samples are interpreted as quenched immiscible Ca-carbonatite liquid, and [Ca-carbonate]-silicate liquid immiscibility is observed in experiments with one nephelinite. Chemical variation in the Shombole suite can be modeled as a combination of crystal fractionation (clinopyroxene and heavy minor phases) and retention of neutral density nepheline derived from disaggregated xenoliths entrained during emplacement of dike swarms. Six newly analyzed lavas from Oldoinyo L'engai, northern Tanzania, are geochemically similar to Shombole nephelinites except that they have relatively high Na2O+K2O (average 18% vs 12%) and Zr (average 680 ppm vs 400 ppm). They are extremely peralkaline and are not typical of nephelinites from other centres. Three with [Na+K]/Al≈1.5 contain euhedral wollastonite phenocrysts; three with [Na+K]/Al≈2.0 contain combeite (Na2Ca2Si3O9) phenocrysts and pseudomorphs after wollastonite. Both types contain abundant sodalite phenocrysts (+nepheline+clinopyroxene+melanite+sphene). Seven other wollastonite nephelinite samples from L'engai have been described, but it is a lava type rarely seen in other centres. Combeite has been described from only two other locations (Mt. Shaheru, Zaire; Mayener Feld, Eifel). The hyperalkaline L'engai nephelinites have compositions similar to those of experimental silicate liquids immiscible with natrocarbonatite. Textural evidence for both carbonate-silicate (as carbonate globules) and silicate-silicate (as two optically discrete glasses with distinct compositions) liquid immiscibility is observed in the samples.

  11. Exploring Iron Silicate Precursors of Ancient Iron Formations through Rock Record, Laboratory and Field Analogue Investigations

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Rasmussen, B.; Muhling, J.; Benzerara, K.; Jezequel, D.; Cosmidis, J.; Templeton, A. S.

    2016-12-01

    In direct contrast to today's oceans, iron-rich chemical precipitates dominate the deep marine sedimentary record > 2.3 billion years ago. The deposition of these minerals resulted in massive iron formations and indicate that the ocean was previously ferruginous and largely anoxic. To precipitate and concentrate iron in the sediments, many hypotheses have centered on the oxidation of soluble Fe(II) to solid Fe(III)-oxyhydroxides; these ideas have stimulated extensive research using iron-oxidizing bacteria to produce Fe(III)-oxides and trace metal sorption experiments on Fe(III)-oxides, leading to inferences of trace metal availability and implications for enzymatic and microbial evolution as well as pO2 levels and seawater chemistry. However, recent discoveries of disseminated iron-silicate nanoparticles in early-silicifying chert indicate that iron-silicates may have instead been the primary precipitates from these Archean ferruginous oceans (Rasmussen et al, 2015). Considering the significant paradigm shift this discovery implies for interpretations of Archean elemental cycling, redox state and potential microbial metabolisms, we investigated these iron-silicate inclusions and their implications for ancient seawater chemistry in a multi-faceted approach using spectroscopic- and diffraction-based techniques. The crystal structure, Fe oxidation state and Fe coordination environment of iron-silicate nanoparticles have been interrogated using microscale X-ray absorption spectroscopy, TEM and nanoscale scanning transmission X-ray microscopy. To further explore the chemical and potential biological controls on iron-silicate formation, we have also performed laboratory experiments to mimic Archean seawater and precipitate iron-bearing silicate minerals under abiotic conditions and in the presence of iron-oxidizing bacteria. In a complementary study, sediments from a natural Archean analogue system were sampled to determine if iron-silicate minerals form in Mexican crater lakes that are variably iron- and silica-rich. As we continue to probe the mechanism of Fe(II/III)-silicate formation, we can constrain the activity of silica, pH, and pO2 on early Earth and describe any potential influence of microbial activity on the precipitation of these phases.

  12. Geochronology of Cenozoic rocks in the Bodie Hills, California and Nevada

    USGS Publications Warehouse

    Fleck, Robert J.; du Bray, Edward A.; John, David A.; Vikre, Peter G.; Cosca, Michael A.; Snee, Lawrence W.; Box, Stephen E.

    2015-01-01

    Four trachyandesite stratovolcanoes developed along the margins of the volcanic field and numerous silicic trachyandesite to rhyolite flow dome complexes erupted more centrally. Volcanism in the Bodie Hills volcanic field peaked at two periods, ~15.0 to 12.6 million years before present (Ma) and ~9.9 to 8.0 Ma, which were dominated by emplacement of large stratovolcanoes and large silicic trachyandesite-dacite lava domes, respectively. A final period of small-volume silicic dome emplacement began in the western part of the volcanic field at ~6 Ma and culminated at ~5.5 Ma (John and others, 2012).

  13. The nature and origin of ureilites

    NASA Technical Reports Server (NTRS)

    Berkley, J. L.; Taylor, G. J.; Keil, K.; Harlow, G. E.; Prinz, M.

    1980-01-01

    A theory of the origin of ureilites is presented based on mineralogical and petrological investigation of eight species including Kenna, Novo Urei, and Goalpara. The theory suggests that ureilites are primarily olivine-pigeonite cumulates crystallized from a silicate liquid which also contained suspended solid carbon phases. The carbon induced reduction of the melt and affected the ureilite mineral compositions. Petrofabric analyses show that mafic silicates are oriented in lineated and foliated patterns similar to cumulate rocks; strain rate of silicates suggests that ureilites were deformed after lithification by a mild tectonic stress and a moderate to severe shock.

  14. Chalcophile element geochemistry of the Boggy Plain zoned pluton, southeastern Australia: a S-saturated barren compositionally diverse magmatic system

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Campbell, Ian H.; Ickert, Ryan B.; Allen, Charlotte M.

    2013-02-01

    The behavior of the platinum group elements (PGE) and Re in felsic magmas is poorly understood due to scarcity of data. We report the concentrations of Ni, Cu, Re, and PGE in the compositionally diverse Boggy Plain zoned pluton (BPZP), which shows a variation of rock type from gabbro through granodiorite and granite to aplite with a SiO2 range from 52 to 74 wt %. In addition, major silicate and oxide minerals were analyzed for Ni, Cu, and Re, and a systematic sulfide study was carried out to investigate the role of silicate, oxide, and sulfide minerals on chalcophile element geochemistry of the BPZP. Mass balance calculation shows that the whole rock Cu budget hosted by silicate and oxide minerals is <13 wt % and that Cu is dominantly located in sulfide phases, whereas most of the whole rock Ni budget (>70 wt %) is held in major silicate and oxide minerals. Rhenium is dominantly hosted by magnetite and ilmenite. Ovoid-shaped sulfide blebs occur at the boundary between pyroxene phenocrysts and neighboring interstitial phases or within interstitial minerals in the gabbro and the granodiorite. The blebs are composed of pyrrhotite, pyrite, chalcopyrite, and S-bearing Fe-oxide, which contain total trace metals (Co, Ni, Cu, Ag, Pb) up to ~16 wt %. The mineral assemblage, occurrence, shape, and composition of the sulfide blebs are a typical of magmatic sulfide. PGE concentrations in the BPZP vary by more than two orders of magnitude from gabbro (2.7-7.8 ppb Pd, 0.025-0.116 ppb Ir) to aplite (0.05 ppb Pd, 0.001 ppb Ir). Nickel, Cu, Re, and PGE concentrations are positively correlated with MgO in all the rock types although there is a clear discontinuity between the granodiorite and the granite in the trends for Ni, Rh, and Ir when plotted against MgO. Cu/Pd values gradually increase from 6,100 to 52,600 as the MgO content decreases. The sulfide petrology and chalcophile element geochemistry of the BPZP show that sulfide saturation occurred in the late gabbroic stage of magma differentiation. Segregation and distribution of these sulfide blebs controlled Cu and PGE variations within the BPZP rocks although the magma of each rock type may have experienced a different magma evolution history in terms of crustal assimilation and crystal fractionation. The sulfide melt locked in the cumulate rocks must have sequestered a significant portion of the chalcophile elements, which restricted the availability of these metals to magmatic-hydrothermal ore fluids. Therefore, we suggest that the roof rocks that overlay the BPZP were not prospective for magmatic-hydrothermal Cu, Au, or Cu-Au deposits.

  15. The earliest Lunar Magma Ocean differentiation recorded in Fe isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Jacobsen, Stein B.; Sedaghatpour, Fatemeh; Chen, Heng; Korotev, Randy L.

    2015-11-01

    Recent high-precision isotopic measurements show that the isotopic similarity of Earth and Moon is unique among all known planetary bodies in our Solar System. These observations provide fundamental constraints on the origin of Earth-Moon system, likely a catastrophic Giant Impact event. However, in contrast to the isotopic composition of many elements (e.g., O, Mg, Si, K, Ti, Cr, and W), the Fe isotopic compositions of all lunar samples are significantly different from those of the bulk silicate Earth. Such a global Fe isotopic difference between the Moon and Earth provides an important constraint on the lunar formation - such as the amount of Fe evaporation as a result of a Giant Impact origin of the Moon. Here, we show through high-precision Fe isotopic measurements of one of the oldest lunar rocks (4.51 ± 0.10 Gyr dunite 72 415), compared with Fe isotope results of other lunar samples from the Apollo program, and lunar meteorites, that the lunar dunite is enriched in light Fe isotopes, complementing the heavy Fe isotope enrichment in other lunar samples. Thus, the earliest olivine accumulation in the Lunar Magma Ocean may have been enriched in light Fe isotopes. This new observation allows the Fe isotopic composition of the bulk silicate Moon to be identical to that of the bulk silicate Earth, by balancing light Fe in the deep Moon with heavy Fe in the shallow Moon rather than the Moon having a heavier Fe isotope composition than Earth as a result of Giant Impact vaporization.

  16. Major chemical characteristics of Mesozoic Coast Range ophiolite in California

    USGS Publications Warehouse

    Bailey, E.H.; Blake, Jr., M.C.

    1974-01-01

    Sixty-four major element analyses of rocks representative of the Coast Range ophiolite in California were compared with analyses of other onland ophiolite sequences and those of rocks from oceanic ridges. The rocks can be classed in five groups harzburgite-dunite, clinopyroxenite-wehrlite, gabbro, basalt-spilite, and keratophyre-quartz keratophyre which on various diagrams occupy nonoverlapping fields. The harzburgite-dunite from onland ophiolite and ocean ridges are comparable and very low in alkalies. Possible differentiation trends defined on AFM diagrams by other rocks from onland ophiolites and ocean ridges suggest two lines of descent: (1) A trend much like the calc-alkalic trend, though shifted somewhat toward higher iron, and (2) an iron-enrichment trend defined chiefly by the more iron-rich gabbros and amphibolite. MgO-variation diagrams for rocks from the Coast Range ophiolite further distinguish the iron-rich gabbros and amphibolite from the other rock groups and indicate that the iron enrichment, unlike that of the Skaergaard trend, is related to the formation of amphibole. Ophiolite sequences that include the most silicic rock types, such as quartz keratophyre, also exhibit the most pronounced dual lines of descent, suggesting that the silicic rocks and the amphibole-rich gabbros are somehow related. Although the major element chemistry of the Coast Range ophiolite is clearly like that of rocks dredged from oceanic ridges, it is not sufficiently diagnostic to discriminate among the choices of a spreading ridge, an interarc basin, or perhaps even the root zone of an island arc as the site of ophiolite formation.

  17. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    USGS Publications Warehouse

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  18. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James B. Paces; Zell E. Peterman; Kiyoto Futa

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously aroundmore » the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.« less

  19. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    USGS Publications Warehouse

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.

  20. Is Tridymite at Gale Crater Evidence for Silicic Volcanism on Mars?

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Vaniman, David T.; Ming, Douglas W.; Graff, Trevor G.; Downs, Robert T.; Fendrich, Kim; Mertzman, Stanley A.

    2016-01-01

    The X-ray diffraction (XRD) instrument (CheMin) onboard the MSL rover Curiosity detected 17 wt% of the SiO2 polymorph tridymite (relative to bulk sample) for the Buckskin drill sample (73 wt% SiO2) obtained from sedimentary rock in the Murray formation at Gale Crater, Mars. Other detected crystalline materials are plagioclase, sanidine, cristobalite, cation-deficient magnetite, and anhydrite. XRD amorphous material constitutes approx. 60 wt% of bulk sample, and the position of its broad diffraction peak near approx. 26 deg. 2-theta is consistent with opal-A. Tridymite is a lowpressure, high-temperature mineral (approx. 870 to 1670 deg. C) whose XRD-identified occurrence on the Earth is usually associated with silicic (e.g., rhyolitic) volcanism. High SiO2 deposits have been detected at Gale crater by remote sensing from martian orbit and interpreted as opal-A on the basis H2O and Si-OH spectral features. Proposed opal-A formation pathways include precipitation of silica from lake waters and high-SiO2 residues of acid-sulfate leaching. Tridymite is nominally anhydrous and would not exhibit these spectral features. We have chemically and spectrally analyzed rhyolitic samples from New Mexico and Iwodake volcano (Japan). The glassy (by XRD) NM samples have H2O spectral features similar to opal-A. The Iwodake sample, which has been subjected to high-temperature acid sulfate leaching, also has H2O spectral features similar to opal-A. The Iwodake sample has approx. 98 wt% SiO2 and 1% wt% TiO2 (by XRF), tridymite (>80 wt.% of crystalline material without detectable quartz by XRD), and H2O and Si-OH spectral features. These results open the working hypothesis that the opal-A-like high-SiO2 deposits at Gale crater detected from martian orbit are products of alteration associated with silicic volcanism. The presence or absence of tridymite will depend on lava crystallization temperatures (NM) and post crystallization alteration temperatures (Iwodake).

  1. Intracrystalline cation order in a lunar crustal troctolite

    NASA Technical Reports Server (NTRS)

    Smyth, J. R.

    1975-01-01

    Lunar sample 76535 appears to be one of the most slowly cooled bits of silicate material yet studied. It provides, therefore, a unique opportunity for the study of ordering processes in the minerals present. A better understanding of these processes may permit better characterization of the thermal history of this and similar rocks. The cation ordering in the olivine is consistent with terrestrial olivines favoring the interpretation that ordering in olivines increases with increasing temperature. In low bronzite, the deviations from the common orthopyroxene space group appear to be caused by cation order on the basis of four M sites instead of two. The degree of cation order in each of these minerals is consistent with the rock having been excavated from its depth of formation by tectonic or impact processes without being reheated above 300 C.

  2. Melt inclusions: Chapter 6

    USGS Publications Warehouse

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  3. Geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    USGS Publications Warehouse

    Smith, James G.

    1993-01-01

    For geothermal reasons, the maps emphasize Quaternary volcanic rocks. Large igneous-related geothermal systems that have high temperatures are associated with Quaternary volcanic fields, and geothermal potential declines rapidly as age increases (Smith and Shaw, 1975). Most high-grade recoverable geothermal energy is likely to be associated with silicic volcanism less than 1 Ma. Lower grade (= lower temperature) geothermal resources may be associated with somewhat older rocks; however, volcanic rocks older than about 2 Ma are unlikely geothermal targets (Smith and Shaw, 1975).

  4. Palladium, platinum, and rhodium contents of rocks near the lower margin of the Stillwater complex, Montana.

    USGS Publications Warehouse

    Zientek, M.L.; Foose, M.P.; Leung, Mei

    1986-01-01

    Statistical summaries are reported for Pd, Pt and Rh contents of rocks from the lower part of the Stillwater complex, the underlying contact-metamorphosed sediments, and post-metamorphic dykes and sills wholly within the hornfelses. Variability of the data among the rock types is attributed largely to differences in sulphide content. Non-correlation of sulphur with platinum-group assays of many rock types leads to the suggestion that the immiscible sulphide and silicate liquids did not completely equilibrate with respect to platinum-group elements. -G.J.N.

  5. A New Sample Transect through the Sierra Madre Occidental Silicic Large Igneous Province in Southern Chihuahua State, Mexico: First Stratigraphic, Petrologic, and Geochemical Results

    NASA Astrophysics Data System (ADS)

    Andrews, G. D.; Davila Harris, P.; Brown, S. R.; Anderson, L.; Moreno, N.

    2014-12-01

    We completed a field sampling transect across the northern Sierra Madre Occidental silicic large igneous province (SMO) in December 2013. Here we present the first stratigraphic, petrological, and geochemical data from the transect between Hidalgo del Parral and Guadalupe y Calvo, Chihuahua, Mexico. This is the first new transect across the SMO in 25 years and the only one between existing NE - SW transects at Chihuahua - Hermosillo and Durango - Mazatlan. The 245 km-long transect along Mexican Highway 24 crosses the boundary between the extended (Basin and Range) and non-extended (Sierra Madre Occidental plateau) parts of the SMO, and allows sampling of previously undescribed Oligocene (?) - early Miocene (?) rhyolitic ignimbrites and lavas, and occasional post-rhyolite, Miocene (?) SCORBA basaltic andesite lavas. 54 samples of rhyolitic ignimbrites (40) and lavas (7), and basaltic andesite lavas (7) were sampled along the transect, including 8 canyon sections with more than one unit. The ignimbrites are overwhelming rhyodacitic (plagioclase and hornblende or biotite phyric) or rhyolitic (quartz (+/- sanidine) in additon to plagioclase and hornblende or biotite phyric) and sparsely to highly phyric. Preliminary petrographic (phenocryst abundances) and geochemical (major and trace element) will be presented and compared to existing data from elsewhere in the SMO. Future work will include U-Pb zircon dating and whole rock and in-zircon radiogenic isotopes analyses.

  6. Late Neoproterozoic basement rocks of Meatiq area, Central Eastern Desert, Egypt: Petrography and remote sensing characterizations

    NASA Astrophysics Data System (ADS)

    Hassan, Safaa M.; El kazzaz, Yahiya A.; Taha, Maysa M. N.; Mohammad, Abdullah T.

    2017-07-01

    Meatiq dome is one of the mysteries of the basement rocks in Central Eastern Desert (CED) of Egypt. Its mode of formation, and tectonic evolution are still controversial and not fully understood. Satellite remote sensing is a powerful tool for geologic applications, especially in inaccessible regions of the Earth's surface. In this study, three proposed Landsat-8 band ratios (6/2, 6/7, (6/4*4/3)), (6/7, 6/4, 4/2), and (7/5, 7/6, 5/3) are successfully used for detailed geological mapping of the different lithological rock units exposed in Meatiq dome area in the CED. Landsat-8 Principal component (PC) images is also used for refinement the boundaries between the widely-exposed rock units in the study area. Fourteen spectral bands of Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) data are successfully used to emphasize the distribution of some rock forming minerals (i.e. muscovite, quartz, ferrous oxides, ferrous silicates and hydroxyl-bearing minerals) in the lithological rock units of Meatiq dome area. ASTER muscovite index (B7/B6) and quartz index (B14/B12), ferrous iron index (B5/B3), ferrous silicates index (B5/B4), mafic index (B12/B13) and hydroxyl-bearing minerals index ((B7/B6)*(B4/B6)) discriminate muscovite bearing rocks, Granitoids, and other felsic rocks, amphibolite and other mafic rocks. The proposed image processing methods effectively discriminates between four granitic varieties existed in Meatiq area. They are namely; Abu Ziran, Ariki, Fawakhir and Atalla Plutons. This study reveals that the applied data of ASTER and Landsat-8 enhanced images produced a modified geological map with well emphasized rock units which are verified with field observations, and petrographic study.

  7. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhengrong; Qiu, Lin; Zhang, Shuang

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawai‘i, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trappingmore » carbon dioxide (CO 2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO 2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200°C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg 2SiO 4) reacting with CO 2 brines in the form of sodium bicarbonate (NaHCO 3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO 3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount that could have been removed if the olivine initially present had fully dissolved and the cations released had subsequently precipitated in carbonate minerals. The carbonation fractions observed in batch experiments with olivine grains and powders varied significantly, from less than 0.01 (1%) to more than 0.5 (50%). Over time, the carbonation fractions reached an upper limit after about 24 to 72 hours of reaction, then stayed constant or decreased. The peak Final Scientific/Technical Report DE-FE0004275 | Mineral Carbonation | 4 coincided with the appearance of secondary magnesium-bearing silicate minerals, whose formation competes for magnesium ions in solution and can even promote conditions that dissolve magnesite. The highest carbonation fractions resulted from experiments with low ratios of concentrated solution to olivine, during which amorphous silica spheres or meshes formed, instead of secondary silicate minerals. The highest carbonation fractions appear to result from competing effects. Precipitation of silica layers on olivine reduces the reactive surface area and, thus, the rate of olivine dissolution (which ultimately limits the carbonation rate), but these same silica layers can also inhibit the formation of secondary silicate minerals that consume magnesite formed in earlier stages of carbonation. Simulation of these experiments with simple geochemical models using the software program EQ3/6 reproduces the general trends observed—especially the results for the carbonation fraction in short-run experiments. Although further experimentation and better models are needed, this study nevertheless provides a framework for understanding the optimal conditions for sequestering carbon dioxide by reacting CO 2-bearing fluids with rocks containing olivine minerals. A series of experiments at the Rock Physics Laboratory at the University of Maryland studied the carbonation process during deformation of thermally cracked olivine-rich rock samples (dunite) saturated with CO 2 brines of varying compositions. A goal of these geomechanical experiments was to see if flow and deformation processes, which accompany natural carbonation reactions in underground settings, work to enhance or inhibit the reactions. The experiments involved hydrostatic compaction, followed by deformation at a constant rate of strain. Sample permeability was monitored during the reactions. Comparison of the samples’ volume changes to their axial strains (shortening) during deformation indicates that samples reacted with CO 2-saturated brines accommodate more axial compaction, before the onset of dilation (a swelling that precedes rock failure), than samples reacted with distilled water. Analyses of the reacted samples with scanning electron microscope (SEM) images indicate, first, that dissolution of olivine occurring in the initial stages of carbonation can provide pathways to fluid flow that sustain the reaction, and, second, that carbonate minerals precipitated along existing fractures in the rocks may serve as asperities, or roughness on a crack’s surface that restricts its closure. Final Scientific/Technical Report DE-FE0004275 | Mineral Carbonation | 5 In a related study undertaken by one of the principal investigators as a spin-off of the main project, a simple model of (magnesite) crystal growth in the pore space of basalts undergoing carbonation was developed. The model suggests that, under a carefully controlled program of CO 2 injection, carbonate mineral growth can harden the rock formation against earthquakes that might otherwise be induced by the injection of large fluid volumes (Yarushina and Bercovici, 2013). The overall conclusion of the research project is that mineral carbonation of underground mafic and ultramafic rock formations is a viable candidate for long-term sequestration of man-made carbon dioxide. No results obtained during the project indicate that the method is inherently intractable in its implementation; moreover, enormous volumes of basalt near Earth’s surface are candidate locations for large-scale injection programs. The geochemical experiments do indicate, however, that there will be significant engineering challenges in maintaining high rates of carbonation, by delaying the onset of chemical conditions that promote formation of secondary silicate minerals and, therefore, slow down, or even reverse, the carbonation process. It remains an open question as to whether carbonation processes can be sustained for many years in an engineered system operating on a large scale—a scale capable of accommodating millions of tons of CO 2 annually. The development of realistic theoretical models that can systematically describe the combined effects of reactive flow, precipitation and geomechanical deformation is a major barrier to further understanding of the practical viability of mineral carbonation as large-scale method of carbon sequestration.« less

  8. CO 2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.

    Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less

  9. CO 2-induced chemo-mechanical alteration in reservoir rocks assessed via batch reaction experiments and scratch testing

    DOE PAGES

    Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.; ...

    2017-09-22

    Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less

  10. Theoretical backgrounds of non-tempered materials production based on new raw materials

    NASA Astrophysics Data System (ADS)

    Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.

    2018-03-01

    One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.

  11. A-type granites from the Guéra Massif, Central Chad: Petrology, geochemistry, geochronology, and petrogenesis.

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc Ha T.; Shellnutt, J. Gregory; Yeh, Meng-Wan; Lee, Tung-Yi

    2017-04-01

    The poorly studied Saharan Metacraton of North-Central Africa is located between the Arabian-Nubian Shield in the east, the Tuareg Shield in the west and the Central African Orogenic Belt in the south. The Saharan Metacraton is composed of Neoproterozoic juvenile crust and the relics of pre-Neoproterozoic components reactivated during the Pan-African Orogeny. The Republic of Chad, constrained within the Saharan Metacraton, comprises a Phanerozoic cover overlying Precambrian basement outcroppings in four distinct massifs: the Mayo Kebbi, Tibesti, Ouaddaï, and the Guéra. The Guéra massif is the least studied of the four massifs but it likely preserves structures that were formed during the collision between Congo Craton and Saharan Metacraton. The Guéra Massif is composed of mostly granitic rocks. The granitoids have petrologic features that are consistent with A-type granite, such as micrographic intergrowth of sodic and potassic feldspar, the presence of sodic- and iron-rich amphibole, and iron-rich biotite. Compositionally, the granitic rocks of the Guéra Massif have high silica (SiO2 ≥ 68.9 wt.%) content and are metaluminous to marginally peraluminous. The rocks are classified as ferroan calc-alkalic to alkali-calcic with moderately high to very high Fe* ratios. The first zircon U/Pb geochronology of the silicic rocks from the Guéra Massif yielded three main age groups: 590 Ma, 570 Ma, 560 Ma, while a single gabbro yielded an intermediate age ( 580 Ma). A weakly foliated biotite granite yielded two populations, in which the emplacement age is interpreted to be 590 ± 10 Ma, whereas the younger age (550 ± 11 Ma) is considered to be a deformation age. Furthermore, inherited Meso- to Paleoproterozoic zircons are found in this sample. The geochemical and geochronology data indicate that there is a temporal evolution in the composition of rocks with the old, high Mg# granitoids shifting to young, low Mg# granitoids. This reveals that the A-type granites in the Guéra Massif were probably derived by the repeated melting of a single source region, from an initial fertile source to a less fertile source at distinct intervals. Finally, the oldest inherited zircons indicate that the Guéra Massif is either built upon Paleoproterozoic continental crust or that pre-Neoproterozoic rocks were the source of the silicic Ediacaran rocks.

  12. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The data also indicate that DXVliQP2O5 decrease in the same order, but DOVLiQP2O5 and DOpx/LiQP205 are likely constant, respectively equal to 0.08(3) and 0.007(4), in contrast, DG1ILiQP205 increases from 0.15(3) to 0.36(10) as garnet becomes majoritic, thus silica-enriched, and may also depend on liquid composition (SiO2, P2O5 and Na2O wt%).

  13. X-Ray Fingerprinting Techniques for Recognizing A Hydrological Role in the Formation of Minerals on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Metzger, Ellen P.; John, R.

    1999-01-01

    Previous work has demonstrated the ability of a miniaturized XRD-XRF instrument to perform in-situ analyses without sample preparation or acquisition. Deployment of this instrument on a Martian rover will allow a large number of rapid qualitative analyses, which will maximize the diversity of samples studied and selected for possible return. As a first step in designing a decision tree for recognizing minerals in complex mixtures, d spacings were plotted against intensity for several mineral groups comprising rock and soil types inferred for the surface of Mars (weathered basalt, playa and hydrothermal deposits, clay-rich soils). In all groups, d spacings cluster in a range from about 1-4 angstroms, which can under certain circumstances obscure patterns for individual phases. However, within the silicate family, minerals containing either bound OH- or molecules of H20 (clays, micas, amphiboles, zeolites) are characterized by a shift of peaks to higher d spacings. Large d spacings (greater than about 7 angstroms) thus act as a first-order filter for distinguishing hydrous from anhydrous silicates. The ability to quickly verify the presence of silicates that have interacted with water has important implications for using mineral chemistry and structure to help decipher the hydrologic and atmospheric history of Mars. This represents a beginning for developing more sophisticated methods of pattern recognition. These will combine XRD and XRF analyses with optical data to rapidly7 discern environmentally diagnostic assemblages without the necessity of identifying every peak individual mineral phase.

  14. Geophysical ore guides along the Colorado mineral belt

    USGS Publications Warehouse

    Case, James E.

    1967-01-01

    A 40-50-mgal gravity low trends northeast along the Colorado mineral belt between Monarch Pass and Breckenridge, Colorado. The low is probably caused by a silicic Tertiary batholith of lower density than adjacent Precambrian crystalline rocks. Many major mining districts associated with silicic Tertiary intrusives are near the axis of the low. Positive and negative aeromagnetic anomalies are present over the larger silicic Tertiary intrusive bodies. A good correlation exists between the magnetic lows and zones of altered, mineralized porphyry. Apparently, original magnetite in the silicic porphyries has been altered to relatively nonmagnetic pyrite or iron oxides. The regional gravity low aids in defining the limits of the mineral belt, and the magnetic lows over the porphyries indicate specific alteration zones and the possibility of associated mineral deposits.

  15. Evidence for seismogenic fracture of silicic magma.

    PubMed

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  16. Sets of spectral lines for spectrographic thermometry and manometry in d.c. arcs of geologic materials

    USGS Publications Warehouse

    Golightly, D.W.; Dorrzapf, A.F.; Thomas, C.P.

    1977-01-01

    Sets of 5 Fe(I) lines and 3 Ti(I)Ti(II) line pairs have been characterized for precise spectrographic thermometry and manometry, respectively, in d.c. arcs of geologic materials. The recommended lines are free of spectral interferences, exhibit minimal self absorption within defined concentration intervals, and are useful for chemically-unaltered silicate rocks, arced in an argon-oxygen stream. The functional character of these lines in thermometry and manometry of d.c. arcs for evaluations of electrical parameter effects, for temporal studies, and for matrix-effect investigations on real samples is illustrated. ?? 1977.

  17. Determination of carrier yields for neutron activation analysis using energy dispersive X-ray spectrometry

    USGS Publications Warehouse

    Johnson, R.G.; Wandless, G.A.

    1984-01-01

    A new method is described for determining carrier yield in the radiochemical neutron activation analysis of rare-earth elements in silicate rocks by group separation. The method involves the determination of the rare-earth elements present in the carrier by means of energy-dispersive X-ray fluorescence analysis, eliminating the need to re-irradiate samples in a nuclear reactor after the gamma ray analysis is complete. Results from the analysis of USGS standards AGV-1 and BCR-1 compare favorably with those obtained using the conventional method. ?? 1984 Akade??miai Kiado??.

  18. Uranium favorability of tertiary rocks in the Badger Flats, Elkhorn Thrust Area, Park and Teller Counties, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, P.; Mickle, D.G.

    1976-10-01

    Uranium potential of Tertiary rocks in the Badger Flats--Elkhorn Thrust area of central Colorado is closely related to a widespread late Eocene erosion surface. Most uranium deposits in the area are in the Eocene Echo Park Alluvium and Oligocene Tallahassee Creek Conglomerate, which were deposited in paleodrainage channels on or above this surface. Arkosic detritus within the channels and overlying tuffaceous sedimentary rocks of the Antero and Florissant Formations of Oligocene age and silicic tuffs within the volcanic units provide abundant sources of uranium that could be concentrated in the channels where carbonaceous debris facilitates a reducing environment. Anomalous soil,more » water, and stream-sediment samples near the Elkhorn Thrust and in Antero basin overlie buried channels or are offset from them along structural trends; therefore, uranium-bearing ground water may have moved upward from buried uranium deposits along faults. The area covered by rocks younger than the late Eocene erosion surface, specifically the trends of mapped or inferred paleochannels filled with Echo Park Alluvium and Tallahassee Creek Conglomerate, and the Antero Formation are favorable for the occurrence of uranium deposits.« less

  19. Electrochemistry of lunar rocks

    NASA Technical Reports Server (NTRS)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  20. Spectrophotometric determination of fluorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.; Smith, V.C.

    1964-01-01

    The rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate, the sinter-cake leached with water and the resulting solution filtered. Fluorine is separated from the acidified filtrate by steam distillation and determined spectrophotometrically by means of a zirconium-SPADNS reagent. If a multiple-unit distillation apparatus is used, 12 determinations can be completed per man-day. ?? 1964.

  1. Lithium isotopes as indicators of meteorite parent body alteration

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; James, Rachael H.; Fehr, Manuela A.; Bland, Philip A.; Gounelle, Matthieu

    2013-05-01

    Hydrothermal processing on planetesimals in the early solar system produced new mineral phases, including those generated by the transformation of anhydrous silicates into their hydrated counterparts. Carbonaceous chondrites represent tangible remnants of such alteration products. Lithium isotopes are known to be responsive to aqueous alteration, yet previously recognized variability within whole rock samples from the same meteorite appears to complicate the use of these isotopes as indicators of processing by water. We demonstrate a new way to use lithium isotopes that reflects aqueous alteration in carbonaceous chondrites. Temperature appears to exert a control on the production of acetic acid-soluble phases, such as carbonates and poorly crystalline Fe-oxyhydroxides. Temperature and degree of water-rock interaction determines the amount of lithium isotope fractionation expressed as the difference between whole rock and acetic acid-leachable fractions. Using these features, the type 1 chondrite Orgueil (δ7Li(whole rock) = 4.3‰; Δ7Li(acetic-whole) = 1.2‰) can be distinguished from the type 2 chondrites Murchison (δ7Li(whole rock) = 3.8; Δ7Li(acetic-whole) = 8.8‰) and carbonate-poor Tagish Lake (δ7Li(whole rock) = 4.3; Δ7Li(acetic-whole) = 9.4‰). This initial study suggests that lithium isotopes have the potential to reveal the role of liquid water in the early solar system.

  2. Spatio-temporal variation in the hydrochemistry of Tawa River, Central India: effect of natural and anthropogenic factors.

    PubMed

    Mehto, Ashwini; Chakrapani, G J

    2013-12-01

    Tawa River is the biggest left bank tributary of the Narmada, the largest west-flowing river of the Indian peninsula. Central India enjoys a tropical climate, is highly urbanized, and the river flow is mostly controlled by monsoon; a large part of the population depend on rivers for their livelihood. Spatial and temporal variations in the hydrochemistry of the Tawa River were studied based on seasonal sampling along the course of the river and its tributaries. The study is important because not much data exist on small size rivers and the river processes spell out correctly in smaller basins. The monsoon season accounts for more than 70% of river water flow. The basin is characterized by silicate lithology; however, water chemistry is controlled by carbonate-rich soils and other weathering products of the silicate rocks, as indicated by the high (Ca + Mg)/(Na + K) ratios (>3.8). The values of the Na-normalized ratios of Ca(2+), Mg(2+), and HCO₃(-) suggest that both the carbonate and silicate lithology contribute to the hydrochemistry. On average, 42% of HCO₃(-) in the Tawa River water is contributed by silicate weathering and 58% from carbonate lithology. The water remains undersaturated with respect to calcite during the monsoon and post-monsoon seasons and supersaturated during the pre-monsoon season. A significant influence of mining in the basin and other industrial units is observed in water chemical composition.

  3. The Role of Siliceous Hydrothermal Breccias in the Genesis of Volcanic Massive Sulphide Deposits - Ancient and Recent Systems

    NASA Astrophysics Data System (ADS)

    Costa, I. A.; Barriga, F. J.; Fouquet, Y.

    2014-12-01

    Siliceous hydrothermal breccias were sampled in two Mid-Atlantic Ridge active sites: Lucky Strike and Menez Gwen. These hydrothermal fields are located in the border of the Azorean plateau, southwest of the Azores islands where the alteration processes affecting basaltic rocks are prominent (Costa et al., 2003). The hydrothermal breccias are genetically related with the circulation of low temperature hydrothermal fluids in diffuse vents. The groundmass of these breccias precipitates from the fluid and consolidates the clastic fragments mostly composed of basalt. The main sources are the surrounding volcanic hills. Breccias are found near hydrothermal vents and may play an important role in the protection of subseafloor hydrothermal deposits forming an impermeable cap due to the high content in siliceous material. The amorphous silica tends to precipitate when the fluid is conductively cooled as proposed by Fouquet et al. (1998) after Fournier (1983). The process evolves gradually from an initial stage where we have just the fragments and circulating seawater. The ascending hydrothermal fluid mixes with seawater, which favours the precipitation of the sulphide components. Sealing of the initially loose fragments begins, the temperature rises below this crust, and the processes of mixing fluid circulation and conductive cooling are simultaneous. At this stage the fluid becomes oversaturated with respect to amorphous silica. This form of silica can precipitate in the open spaces of the porous sulphides and seal the system. Normally this can happen at low temperatures. At this stage the hydrothermal breccia is formed creating a progressively less permeable, eventually impermeable cap rock at the surface. Once the fluid is trapped under this impermeable layer, conductive cooling is enhanced and mixing with seawater is restricted, making the precipitation of amorphous silica more efficient. Since the first discovery and description of recent mineralized submarine hydrothermal deposits, comparison with ancient volcanic massive sulphide deposits is appropriate. The proposed model can explain some of the processes taking place in the early phase of formation of old deposits where equivalent siliceous material is found in the hanging wall of the ore bodies (e.g. Barriga and Fyfe, 1988).

  4. Late Neoproterozoic metamorphic assemblages along the Pan-African Hamisana Shear Zone, southeastern Egypt: Metamorphism, geochemistry and petrogenesis

    NASA Astrophysics Data System (ADS)

    Ali-Bik, Mohamed W.; Sadek, Mohamed F.; Ghabrial, Doris Sadek

    2014-11-01

    A variety of Late Neoproterozoic gneisses and amphibolites are distributed along the N-S trending Hamisana Shear Zone (HSZ), in southeastern Egypt. The HSZ originated after the accretion of the Arabian-Nubian Shield (ANS) and covers an area of about 1500 km2 in southeastern Egypt and northeastern Sudan. The architecture of the northern part of the HSZ is best explained as a tectono-stratigraphic column, in which allochthonous ophiolitic mélange was thrusted onto metamorphosed island-arc assemblages (gneisses and amphibolites). The latter rock units were generally subjected to two successive phases of amphibolite facies metamorphism, followed by a thermal phase and retrograde overprint. The early penetrative, low- to medium-pressure metamorphism (M1) was synchronous with D1-gneissosity and N-S trending lineation, demarcating the high strain HSZ. The mineral assemblages formed during the M1 phase include quartz + andesine + hornblende (I) + biotite (I) in hornblende-biotite gneiss, quartz + andesine + pargasitic hornblende (I) + ferroan pargasitic hornblende (I) + edenitic hornblende (I) in hornblende-schist, quartz + plagioclase + biotite + muscovite in psammopelitic gneiss, and diopside + tremolite + calcite + sphene ± garnet in calc-silicates, being characteristic for amphibolite facies with metamorphic conditions of 600 ± 50 °C and 5-6.5 kbar. The second metamorphic phase (M2) is related to the crystallization of biotite and/or hornblende in S2 foliation demarcating the NE-SW trending dextral shear deformation (D2). The calculated temperature for this M2 phase is about 592 °C. Subsequent thermal events are documented by growth of spinel and scapolite in calc-silicate rocks and of cordierite in psammopelitic gneiss in response to uplift, decomposition and heat provided by the nearby late-formed igneous intrusions. Finally, the rocks reached a temperature of about 530 °C during the cooling retrogressive stage. Based on geological, petrological and geochemical investigations, the island arc assemblages are grouped into: (a) meta-igneous rocks (hornblende-biotite gneiss, biotite gneiss and amphibolites) and (b) metasedimentary rocks (psammopelitic gneiss, hornblende-schist and calc-silicates). Geochemical inspection revealed the non-consanguineous nature of these rock units. They represent subduction-related, theoleiitic and calc-alkaline magmatic rocks and their concomitant sedimentary derivations as well as minor continental shelf calcareous sediments. In terms of maturity, the geochemical signatures of these subduction-related rocks point to an immature volcanic arc origin.

  5. Regional metamorphism in the Condrey Mountain Quadrangle, north-central Klamath Mountains, California

    USGS Publications Warehouse

    Hotz, Preston Enslow

    1979-01-01

    A subcircular area of about 650 km 2 in northern California and southwestern Oregon is occupied by rocks of the greenschist metamorphic facies called the Condrey Mountain Schist. This greenschist terrane is bordered on the east and west by rocks belonging to the amphibolite metamorphic facies that structurally overlie and are thrust over the Condrey Mountain Schist. The amphibolite facies is succeeded upward by metavolcanic and metasedimentary rocks belonging to the greenschist metamorphic facies. The Condrey Mountain Schist is composed predominantly of quartz-muscovite schist and lesser amounts of actinolite-chlorite schist formed by the metamorphism of graywacke and spilitic volcanic rocks that may have belonged to the Galice Formation of Late Jurassic age. Potassium-argon age determinations of 141?4 m.y. and 155?5 m.y. obtained on these metamorphic rocks seem to be incompatible with the Late Jurassic age usually assigned the Galice. The rocks that border the amphibolite facies are part of an extensive terrane of metavolcanic and metasedimentary rocks belonging to the western Paleozoic and Triassic belt. The metavolcanic rocks include some unmetamorphosed spilite but are mostly of the greenschist metamorphic facies composed of oligoclase (An15-20) and actinolite with subordinate amounts of chlorite and clinozoisiteepidote. The interbedded sedimentary rocks are predominantly argillite and slaty argillite, less commonly siliceous argillite and chert, and a few lenticular beds of marble. On the south, high-angle faults and a tabular granitic pluton separate the greenschist metavolcanic terrane from the amphibolite facies rocks; on the east, nonfoliated amphibolite is succeeded upward, apparently conformably, by metasedimentary rocks belonging to the greenschist metavolcanic terrane. In the southern part of Condrey Mountain quadrangle, an outlier of a thrust plate composed of the Stuart Fork Formation overlies the metavolcanic and metasedimentary rocks. The Stuart Fork in this region is composed of siliceous phyllite and phyllitic quartzite and is believed to be the metamorphosed equivalent of rocks over which it is thrust. In the Yreka-Fort Jones area, potassium-argon determinations on mica from the blueschist facies in the Stuart Fork gave ages of approximately 220 m.y. (Late Triassic) for the age of metamorphism. Rocks of the amphibolite facies structurally overlie the Condrey Mountain Schist along a moderate to steeply dipping thrust fault. The amphibolite terrane is composed of amphibolite and metasedimentary rocks in approximately equal amounts accompanied by many bodies of serpentinite and a number of gabbro and dioritic plutons. Most of the amphibolite is foliated, but some is nonfoliated; the nonfoliated amphibolite has an amphibolite mineralogy and commonly a relict volcanic rock texture. The nonfoliated amphibolite occurs on the southern and eastern borders of the amphibolite terrane between the areas offoliated amphibolite and the overly ing metavolcanic and metasedimentary rocks. Hornblende and plagioclase (An30-35) are the characteristic minerals, indicating that the rocks are of the almandine-amphibolite metamorphic facies. The metasedimentary rocks interbedded with the amphibolites include siliceous schist and phyllite, minor quartzite, and subordinate amounts of marble. Potassium-argon age dates obtained on hornblende from foliated amphibolite yield ages of 146?4 and 148? 4 m.y., suggesting a Late Jurassic metamorphic episode. Mafic and ultramafic rocks are widespread in the amphibolite terrane but are almost entirely absent from the area of greenschist facies metavolcanic and metasedimentary rocks. The ultramafic rocks, predominantly serpentinite, occur as a few large bodies and many small tabular concordant bodies interleaved with the foliated rocks. The ultramafic rocks include harzburgite and d1lIlite and their serpentinized equivalents. In the Condrey Mountain quadrangle, probably more t

  6. A Study of Melt Inclusions in Tin-Mineralized Granites From Zinnwald, Germany

    NASA Astrophysics Data System (ADS)

    Sookdeo, C. A.; Webster, J. D.; Eschen, M. L.; Tappen, C. M.

    2001-12-01

    We have analyzed silicate melt inclusions from drill core samples from the eastern Erzgebirge region, Germany, to investigate magmatic-hydrothermal and mineralizing processes in compositionally evolved, tin-bearing granitic magmas. Silicate melt inclusions are small blebs of glass that are trapped or locked within phenocrysts and may contain high concentrations of volatiles that usually leave magma via degassing. Quartz phenocrysts were carefully hand picked from crushed samples of albite-, zinnwaldite- +/- lepidolite-bearing granitic dikes from Zinnwald and soaked in cold dilute HF to remove any attached groundmass. The cleaned phenocrysts were loaded into precious metal capsules with several drops of immersion oil to create a reducing environment at high temperature. The quartz-bearing capsules were inserted into quartz glass tubes, loaded into a furnace for heating at temperatures of 1025\\deg and 1050\\deg C (1atm) for periods of 20 to 30 hours, and subsequently the inclusions were quenched to glass. The inclusions were analyzed for major and minor elements (including F, Cl, and P) by electron microprobe and for H2O, trace elements, and ore elements by ion microprobe. The melt inclusion compositions are similar to that of the whole-rock sample from which the quartz separates were extracted. The average melt inclusion and whole-rock compositions are peraluminous, high in silica and rare alkalis, and low in MgO, CaO, FeO, MnO, and P2O5. Unlike the whole-rock sample, the melt inclusions contain from 0.5 to more than 4 wt.% F. The Cl contents of the inclusions are variable and range from hundreds of ppm to several thousand ppm. The variable and strong enrichments in F of the melt inclusions may correlate with (Na2O/Na2O+K2O) in the inclusions which is consistent with crystal fractionation of feldspars which drives the residual melt to increasing Na contents. Overall, the compositions of these melt inclusions are different from melt inclusions extracted from the highly peraluminous, tin-mineralized granites of the western Erzgebirge region. The latter represent extreme compositional evolution of P- and F-rich magmas. The inclusions from the albite-, zinnwaldite-, +/- lepidolite-bearing granitic dikes of Zinnwald are more similar, compositionally, to those in tin-mineralized rhyolites of Mexico and New Mexico; the Erzgebirge dike melt inclusions container comparatively greater abundances of Li, Sn, and F, however.

  7. Cambrian intermediate-mafic magmatism along the Laurentian margin: Evidence for flood basalt volcanism from well cuttings in the Southern Oklahoma Aulacogen (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Brueseke, Matthew E.; Hobbs, Jasper M.; Bulen, Casey L.; Mertzman, Stanley A.; Puckett, Robert E.; Walker, J. Douglas; Feldman, Josh

    2016-09-01

    The Southern Oklahoma Aulocogen (SOA) stretches from southern Oklahoma through the Texas panhandle and into Colorado and New Mexico, and contains mafic through silicic magmatism related to the opening of the Iapetus Ocean during the early Cambrian. Cambrian magmatic products are best exposed in the Wichita Mountains (Oklahoma), where they have been extensively studied. However, their ultimate derivation is still somewhat contentious and centers on two very different models: SOA magmatism has been suggested to occur via [1] continental rifting (with or without mantle plume emplacement) or [2] transform-fault related magmatism (e.g., leaky strike-slip faults). Within the SOA, the subsurface in and adjacent to the Arbuckle Mountains in southern Oklahoma contains thick sequences of mafic to intermediate lavas, intrusive bodies, and phreatomagmatic deposits interlayered with thick, extensive rhyolite lavas, thin localized tuffs, and lesser silicic intrusive bodies. These materials were first described in the Arbuckle Mountains region by a 1982 drill test (Hamilton Brothers Turner Falls well) and the best available age constraints from SOA Arbuckle Mountains eruptive products are 535 to 540 Ma. Well cuttings of the mafic through intermediate units were collected from that well and six others and samples from all but the Turner Falls and Morton wells are the focus of this study. Samples analyzed from the wells are dominantly subalkaline, tholeiitic, and range from basalt to andesite. Their overall bulk major and trace element chemistry, normative mineralogy, and Srsbnd Nd isotope ratios are similar to magmas erupted/emplaced in flood basalt provinces. When compared with intrusive mafic rocks that crop out in the Wichita Mountains, the SOA well cuttings are geochemically most similar to the Roosevelt Gabbros. New geochemical and isotope data presented in this study, when coupled with recent geophysical work in the SOA and the coeval relationship with rhyolites, indicates that the 250,000 km3 of early Cambrian mafic to silicic igneous rocks in the SOA were emplaced in a rifting event. This event is suggested to result from the break-up of Pannotia and the formation of the failed arm of a three-armed radial rift system.

  8. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    PubMed Central

    Yliniemi, Juho; Kinnunen, Paivo; Karinkanta, Pasi; Illikainen, Mirja

    2016-01-01

    Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW) and glass wool (GW) were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW). The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation. PMID:28773435

  9. Clues on Acid-Sulfate Alteration and Hematite Formation on Earth and Mars From Iron Isotopic Analyses of Terrestrial Analogues From Hawaii

    NASA Technical Reports Server (NTRS)

    Nie, N. X.; Dauphas, N.; Morris, R. V

    2017-01-01

    The Mars Exploration Rover mission revealed the presence of rocks and minerals indicative of water-rock interactions on Mars. A range of mineralogies have been identified, including hematite spherules (i.e., blueberries), jarosite, Mg-, Ca-sulfates, silica-rich materials and silicate relics from basaltic rocks. The mineral assemblages have been interpreted to be derived from acid-sulfate alteration of basaltic materials. Indeed, the chemical compositions of rocks and soils at Home Plate in Gusev Crater follow the trends expected for acid-sulfate alteration.

  10. Analysis of the Toxic Element Concentrations in the Mesozoic Siliceous Rocks in Terms of the Raw Material Importance

    NASA Astrophysics Data System (ADS)

    Pękala, Agnieszka

    2017-10-01

    As part of an integrated system of environmental protection at every stage of the product life cycle such as: raw material extraction, its transportation and processing as well the subsequent use and development is required to carry out actions towards reducing or completely eliminating products that contain harmful substances to the environment. The purpose of the presented paper is an analysis of the toxic element concentrations in the extracted siliceous minerals at the initial stage of the raw material recognition. The research material is constituted by rocks collected from the Mesozoic bedrock from the Bełchatów lignite deposit. A group of the studied rocks is represented by diatomites, gaizes, opoka-rocks and light opoka-rocks, enriched with minerals from the group of SiO2. Most of the recognized petrographic sediments have a real possibility of potential applications in the building material industry, but it needs to carry out a detailed and thorough research. The studies of the chemical composition were determined by atomic absorption spectroscopy (AAS) using Philips PU 9100Xi Camera SX-100 spectrometer and an atomic emission spectroscopy with inductively coupled plasma (ICP AES) using PLASMA 40 spectrometer. There were carried out a chemical analyses and determined the content of some toxic elements: Pb, Cr, Cd, Ni, Zn, Cu, Co, As, Sr, Ba, Zr. in the studied sedimentary rocks. The analysis of the results draws attention to the high content of cadmium in the case of the studied sediments. The concentration of this element in the described rocks is an average of 0.22 mg/kg -the diatomites, 0.05 mg/kg -the gaizes, 0.4 mg/kg -the opoka-rocks, 2.23 mg/kg -the light opoka-rocks. It was moreover registered varied concentration of arsenic in diatomites, that is formed in the range of 0.05 - 9.6 mg/kg, an average of 6.3 mg/kg. The content of the other designated elements with toxic properties in the analysed groups of rocks does not exceed the limit values. An increased concentration of cadmium and arsenic should be considered as an important information in resource research of the studied rocks. The both elements belong to the easily soluble elements as a result of weathering processes. Cadmium is one of the most dangerous toxicological environmental elements. It is easily absorbed and relatively long stopped in humans and animal’s organism. It also seems that the increased concentration in the siliceous rocks results from the nature of the lignite from the Bełchatów lignite deposit, outstanding higher cadmium content in relation to the observed lignite of the world.

  11. Identification of major sources controlling groundwater chemistry from a hard rock terrain — A case study from Mettur taluk, Salem district, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Srinivasamoorthy, K.; Chidambaram, S.; Prasanna, M. V.; Vasanthavihar, M.; Peter, John; Anandhan, P.

    2008-02-01

    The study area Mettur forms an important industrial town situated NW of Salem district. The geology of the area is mainly composed of Archean crystalline metamorphic complexes. To identify the major process activated for controlling the groundwater chemistry an attempt has been made by collecting a total of 46 groundwater samples for two different seasons, viz., pre-monsoon and post-monsoon. The groundwater chemistry is dominated by silicate weathering and (Na + Mg) and (Cl + SO4) accounts of about 90% of cations and anions. The contribution of (Ca + Mg) and (Na + K) to total cations and HCO3 indicates the domination of silicate weathering as major sources for cations. The plot for Na to Cl indicates higher Cl in both seasons, derived from Anthropogenic (human) sources from fertilizer, road salt, human and animal waste, and industrial applications, minor representations of Na also indicates source from weathering of silicate-bearing minerals. The plot for Na/Cl to EC indicates Na released from silicate weathering process which is also supported by higher HCO3 values in both the seasons. Ion exchange process is also activated in the study area which is indicated by shifting to right in plot for Ca + Mg to SO4 + HCO3. The plot of Na-Cl to Ca + Mg-HCO3-SO4 confirms that Ca, Mg and Na concentrations in groundwater are derived from aquifer materials. Thermodynamic plot indicates that groundwater is in equilibrium with kaolinite, muscovite and chlorite minerals. Saturation index of silicate and carbonate minerals indicate oversaturation during pre-monsoon and undersaturation during post-monsoon, conforming dissolution and dilution process. In general, water chemistry is guided by complex weathering process, ion exchange along with influence of Cl ions from anthropogenic impact.

  12. Seismic anisotropy in the lower crust: The link between rock composition, microstructure, texture and seismic properties.

    NASA Astrophysics Data System (ADS)

    Czaplinska, Daria; Piazolo, Sandra; Almqvist, Bjarne

    2015-04-01

    Seismic anisotropy observed in Earth's interior is caused by the presence of aligned anisotropic minerals (crystallographic and shape preferred orientation; CPO and SPO respectively), and fluid and/or melt inclusions related to deformation. Therefore, the variations in seismic anisotropy carry valuable information about the structure of the mantle and crust. For example, anisotropy observed in the upper mantle is mainly attributed to the CPO of olivine, and provides strong evidence for the flow within the upper mantle. Seismic anisotropy in the crust is still poorly constrained, mostly due to the much larger heterogeneity of the crustal rocks in comparison with the more homogenous mantle. Anisotropy in the crust will be affected by the variations in rock composition, microstructure, texture (presence or lack of CPO), brittle structures (e.g. fracture systems) and chemical composition of the minerals. However, once the relationships between those variables and seismic properties of the crustal rocks are established, seismic anisotropy can be used to derive characteristics of rocks otherwise out of reach. Our study focuses on two sets of samples of middle to lower crustal rocks collected in Fiordland (New Zealand) and in Sweden. Samples from Fiordland represent a root of a thick (ca. 80 km) magmatic arc and comprise igneous rocks, which crystallized at high P and T conditions and were subsequently metamorphosed and deformed. Samples from Sweden are derived from a metasedimentary nappe in the Caledonian orogenic belt, which is mostly composed of gneisses, amphibolites and calc-silicates that have experienced different amounts of strain. We use large area EBSD mapping to measure the CPO of the constituent phases and record the geometric relationships of the rock microstructure. Data is then used to calculate the elastic properties of the rock from single-crystal stiffnesses. Here, we utilize the EBSD GUI software (Cook et al., 2013), which offers varied homogenization techniques, including Voigt, Reuss, Hill, geometric mean and self-consistent and Asymptotic Expansion Homogenization (AEH) methods. To test the advantages and disadvantages of the method, results are compared to measured geophysical properties of equivalent rocks. Such comparison, allows refinement of seismic data interpretation for mid to lower crustal rocks. References: Cook, A., Vel., S., Johnson, S.E., Gerbi, C., Song, W.J., 2013. Elastic and Seismic Properties (ESP) Toolbox (beta version); http://umaine.edu/mecheng/faculty-and-staff/senthil-vel/software/ESP_Toolbox/

  13. Trace element distribution in peridotite xenoliths from Tok, SE Siberian craton: A record of pervasive, multi-stage metasomatism in shallow refractory mantle

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri A.; Chazot, Gilles; Chauvel, Catherine; Merlet, Claude; Bodinier, Jean-Louis

    2006-03-01

    Spinel peridotite xenoliths in alkali basalts at Tok, SE Siberian craton range from fertile lherzolites to harzburgites and wehrlites; olivine-rich (70-84%) rocks are dominant. REE patterns in the lherzolites range from nearly flat for fertile rocks (14-17% cpx) to LREE-enriched; the enrichments are positively correlated with modal olivine, consistent with high-permeability of olivine-rich rocks during melt percolation. Clinopyroxene in olivine-rich Tok peridotites typically has convex-upward trace element patterns (La/Nd PM < 1 and Nd/Yb PM ≫ 1), which we consider as evidence for equilibration with evolved silicate liquids (with higher REE and lower Ti contents than in host basalts). Whole-rock patterns of the olivine-rich xenoliths range from convex-upward to LREE-enriched (La/Nd PM > 1); the LREE-enrichments are positively correlated with phosphorus abundances and are mainly hosted by accessory phosphates and P-rich cryptocrystalline materials. In addition to apatite, some Tok xenoliths contain whitlockite (an anhydrous, halogen-poor and Na-Mg-rich phosphate), which is common in meteorites and lunar rocks, but has not been reported from any terrestrial mantle samples. Some olivine-rich peridotites have generations of clinopyroxene with distinct abundances of Na, LREE, Sr and Zr. The mineralogical and trace element data indicate that the lithospheric mantle section represented by the xenoliths experienced a large-scale metasomatic event produced by upward migration of mafic silicate melts followed by percolation of low- T, alkali-rich melts and fluids. Chromatographic fractionation and fractional crystallisation of the melts close to the percolation front produced strong LREE-enrichments, which are most common in the uppermost mantle and are related to carbonate- and P 2O 5-rich derivatives of the initial melt. Reversal and gradual retreat of the percolation front during thermal relaxation to ambient geotherm ("retrograde" metasomatism) caused local migration and entrapment of small-volume residual fluids and precipitation of volatile-rich accessory minerals. A distinct metasomatic episode, which mainly produced "anhydrous" late-stage interstitial materials was concomitant with the alkali basaltic magmatism, which brought the xenoliths to the surface.

  14. Early Jurassic Volcanism in the South Lhasa Terrane, Southern Tibet: Record of Back-arc Extension in the Active Continental Margin

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Zhao, Z.; Zhu, D. C.; Wang, Z.; Liu, D.; Mo, X.

    2015-12-01

    Indus-Yarlung Zangbo Suture Zone (IYZSZ) represents the Mesozoic remnants of the Neo-Tethyan Ocean lithosphere after its northward subduction beneath the Lhasa Terrane. The evolution of the Neo-Tethyan Ocean prior to India-Asia collision remains unclear. To explore this period of history, we investigate zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes of the Early Jurassic bimodal-like volcanic sequence around Dagze area, south Tibet. The volcanic sequence comprises calc-alkaline basalts to rhyolites whereas intermediate components are volumetrically restricted. Zircons from a basaltic andesite yielded crystallization age of 178Ma whereas those from 5 silicic rocks were dated at 183-174Ma, which suggest that both the basaltic and the silicic rocks are coeval. The basaltic rocks are enriched in LREE and LILE, and depleted in HFSE, with Epsilon Nd(t) of 1.6-4.0 and zircon Epsilon Hf(t) of 0.7-11.8, which implies that they were derived from a heterogenetic mantle source metasomatized by subduction components. Trace element geochemistry shows that the basaltic rocks are compositionally transitional from normal mid-ocean ridge basalts (N-MORB) to island arc basalts (IAB, e.g. Zedong arc basalts of ~160-155Ma in the south margin of Lhasa Terrane), with the signature of immature back-arc basin basalts. The silicic rocks display similar Nd-Hf isotopic features of the Gangdese batholith with Epsilon Nd(t) of 0.9-3.4 and zircon Epsilon Hf(t) of 2.4-17.7, indicating that they were possibly generated by anatexis of basaltic juvenile lower crust, instead of derived from the basaltic magma. These results support an Early to Middle Jurassic (183-155Ma) model that the back-arc extension tectonic setting were existing in the active continental margin in the south Lhasa Terrane.

  15. Argillization by descending acid at Steamboat Springs, Nevada

    USGS Publications Warehouse

    Schoen, Robert; White, Donald E.; Hemley, J.J.

    1974-01-01

    Steamboat Springs, Nevada, an area of present-day hot springs, clearly illustrates the genetic dependence of some kaolin deposits on hot-spring activity. Andesite, granodiorite and arkosic sediments are locally altered at the land surface to siliceous residues consisting of primary quartz and anatase, plus opal from primary silicates. These siliceous residues commonly exhibit the textural and structural features of their unaltered equivalents. Beneath the siliceous residues, kaolin and alunite replace primary silicates and fill open spaces, forming a blanketlike deposit. Beneath the kaolin-alunite zone, montmorillonite, commonly accompanied by pyrite, replaces the primary silicates. On the ground surface, the same alteration mineral zones can be traced outward from the siliceous residue; however, hematite rather than pyrite accompanies montmorillonite.Chemical analysis indicates that sulfuric acid is the active altering agent. The acid forms from hydrogen sulfide that exsolves from deep thermal water, rises above the water table and is oxidized by sulfur-oxidizing bacteria living near the ground surface. This acid dissolves in precipitation or condensed water vapor and percolates downward destroying most of the primary minerals producing a siliceous residue. Coincidence of the water table with the downward transition from siliceous residue to kaolin-alunite signifies decreasing hydrogen metasomatism because of dilution of descending acid by ground water.In hot-spring areas, beds of siliceous sinter deposited at the surface by hypogene thermal water look, superficially, like areas of surficial acid alteration. Features diagnostic of a surficial alteration are the relict rock structures of a siliceous residue and a kaolin-alunite zone immediately beneath.

  16. The Brittle-Ductile Transition in Crystal and Bubble-bearing Magmas

    NASA Astrophysics Data System (ADS)

    Caricchi, L.; Pistone, M.; Cordonnier, B.; Tripoli, B.; Ulmer, P.; Reusser, E.; Marone, F.; Burlini, L.

    2011-12-01

    The strain response of magma is critically dependent upon its viscosity, the magnitude of the applied stress and the experimental time-scale. The brittle-ductile transition in pure silicate melts is expected for an applied stress approaching 108±0.5 Pa (Dingwell, 1997). However, magmas are mostly mixture of crystal and bubble-bearing silicate melts. To date, there are no data to constrain the ductile-brittle transition for three-phase magmas. Thus, we conducted consistent torsion experiments at high temperature (673-973 K) and high pressure (200 MPa), in the strain rate range 1*10-5-4*10-3 s-1, using a HT-HP internally-heated Paterson-type rock deformation apparatus. The samples are composed of hydrous haplogranitic glass, quartz crystals (24-65 vol%) and CO2-rich gas-pressurized bubbles (9-12 vol%). The applied strain rate was increased until brittle failure occurred; micro-fracturing and healing processes commonly occurred before sample macroscopic fracturing. The experimental results highlight a clear relationship between the effective viscosity of the three-phase magmas, strain rate, temperature and the onset of brittle-ductile behavior. Crystal- and bubble-free melts at high viscosity (1011-1011.6 Pa*s at 673 K) show brittle behavior in the strain rate range between 1*10-4 and 5*10-4 s-1. For comparable viscosities crystal and bubble-bearing magmas show a transition to brittle behavior at lower strain rates. Synchrotron-based 3D imaging of fractured samples, show the presence of fractures with an antithetic trend with respect to shear strain directions. The law found in this study expresses the transition from ductile to brittle behavior for real magmas and could significantly improve our understanding of the control of brittle processes on extrusion of high-viscosity magmas and degassing at silicic volcanoes.

  17. Continental erosion and the Cenozoic rise of marine diatoms

    NASA Astrophysics Data System (ADS)

    Cermeño, Pedro; Falkowski, Paul G.; Romero, Oscar E.; Schaller, Morgan F.; Vallina, Sergio M.

    2015-04-01

    Marine diatoms are silica-precipitating microalgae that account for over half of organic carbon burial in marine sediments and thus they play a key role in the global carbon cycle. Their evolutionary expansion during the Cenozoic era (66 Ma to present) has been associated with a superior competitive ability for silicic acid relative to other siliceous plankton such as radiolarians, which evolved by reducing the weight of their silica test. Here we use a mathematical model in which diatoms and radiolarians compete for silicic acid to show that the observed reduction in the weight of radiolarian tests is insufficient to explain the rise of diatoms. Using the lithium isotope record of seawater as a proxy of silicate rock weathering and erosion, we calculate changes in the input flux of silicic acid to the oceans. Our results indicate that the long-term massive erosion of continental silicates was critical to the subsequent success of diatoms in marine ecosystems over the last 40 My and suggest an increase in the strength and efficiency of the oceanic biological pump over this period.

  18. Continental erosion and the Cenozoic rise of marine diatoms

    PubMed Central

    Cermeño, Pedro; Falkowski, Paul G.; Romero, Oscar E.; Schaller, Morgan F.; Vallina, Sergio M.

    2015-01-01

    Marine diatoms are silica-precipitating microalgae that account for over half of organic carbon burial in marine sediments and thus they play a key role in the global carbon cycle. Their evolutionary expansion during the Cenozoic era (66 Ma to present) has been associated with a superior competitive ability for silicic acid relative to other siliceous plankton such as radiolarians, which evolved by reducing the weight of their silica test. Here we use a mathematical model in which diatoms and radiolarians compete for silicic acid to show that the observed reduction in the weight of radiolarian tests is insufficient to explain the rise of diatoms. Using the lithium isotope record of seawater as a proxy of silicate rock weathering and erosion, we calculate changes in the input flux of silicic acid to the oceans. Our results indicate that the long-term massive erosion of continental silicates was critical to the subsequent success of diatoms in marine ecosystems over the last 40 My and suggest an increase in the strength and efficiency of the oceanic biological pump over this period. PMID:25831504

  19. Continental erosion and the Cenozoic rise of marine diatoms.

    PubMed

    Cermeño, Pedro; Falkowski, Paul G; Romero, Oscar E; Schaller, Morgan F; Vallina, Sergio M

    2015-04-07

    Marine diatoms are silica-precipitating microalgae that account for over half of organic carbon burial in marine sediments and thus they play a key role in the global carbon cycle. Their evolutionary expansion during the Cenozoic era (66 Ma to present) has been associated with a superior competitive ability for silicic acid relative to other siliceous plankton such as radiolarians, which evolved by reducing the weight of their silica test. Here we use a mathematical model in which diatoms and radiolarians compete for silicic acid to show that the observed reduction in the weight of radiolarian tests is insufficient to explain the rise of diatoms. Using the lithium isotope record of seawater as a proxy of silicate rock weathering and erosion, we calculate changes in the input flux of silicic acid to the oceans. Our results indicate that the long-term massive erosion of continental silicates was critical to the subsequent success of diatoms in marine ecosystems over the last 40 My and suggest an increase in the strength and efficiency of the oceanic biological pump over this period.

  20. A mid-Permian chert event: widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins

    USGS Publications Warehouse

    Murchey, B.L.; Jones, D.L.

    1992-01-01

    Radiolarian and conodont of Permian siliceous rocks from twenty-three areas in teh the circum-Pacific and Mediterranean regions reveal a widespread Permian Chert Event during the middle Leonardian to Wordian. Radiolarian- and (or) sponge spicule-rich siliceous sediments accumulated beneath high productivity zones in coastal, island arc and oceanic basins. Most of these deposits now crop out in fault-bounded accreted terranes. Biogenic siliceous sediments did not accumulate in terranes lying beneath infertile waters including the marine sequences in terranes of northern and central Alaska. The Permian Chert Event is coeval with major phosphorite deposition along the western margin of Pangea (Phosphoria Formation and related deposits). A well-known analogue for this event is middle Miocene deposition of biogenic siliceous sediments beneath high productivity zones in many parts of the Pacific and concurrent deposition of phosphatic as well as siliceous sediments in basins along the coast of California. Interrelated factors associated with both the Miocene and Permian depositional events include plate reorientations, small sea-level rises and cool polar waters. ?? 1992.

  1. Petrogenesis of mid-Miocene rhyolites from the Idaho-Oregon-Nevada region, USA: Implications from feldspar Sr and Pb isotope data

    NASA Astrophysics Data System (ADS)

    Wypych, A.; Hart, W. K.

    2012-12-01

    The Idaho-Oregon-Nevada (ION) region provides an excellent natural laboratory for studying the complex processes that form continental crust. During the Oligocene-Miocene, the ION region underwent widespread extension and volcanism with bimodal (silicic and mafic) volcanism dominating the mid-Miocene [1]. This bimodal volcanism is temporally related to the main Columbia River flood basalt activity to the north, and initiated with mafic eruptions at ~17 Ma, followed closely by silicic magmatism at ~16.5 Ma. This intimate link between mafic and silicic activity continued until ~13 Ma. The ION region is situated on a boundary between Proterozoic cratonic lithosphere to the east and Mesozoic accreted terrains to the west as defined by Sr and Nd isotopic compositions. In this region, however, the boundary is not sharp and distinctive, but rather forms a heterogeneous "transitional zone" between the two lithospheric domains. Another feature adding to the complexity of this region is the fact that it lies at the junction of two major volcanic trends: the Snake River Plain- Yellowstone (SRP-Y) progressing in time and space to the northeast and the High Lava Plains - Newberry (HPL-N) progressing to the northwest. The ION region volcanism as well as the SRP-Y and HLP-N volcanic trends is caused by mantle upwelling behind the subducting Juan de Fuca slab, voluminous mafic magma injections into the crust, melting of spatially, temporally, and compositionally heterogeneous crust, and mixing of the primitive and more evolved products [1,2,3]. An ongoing petrographic, major and trace element and Sr-Nd-Pb-Hf isotope investigation of 24 pairs of glass separates and whole rock samples from five ION silicic centers representing a west (off-craton) to east (on-craton) transect across this zone of transitional lithosphere provides evidence of open system processes involved in the production of the silicic material as well as spatial, temporal and compositional diversity within and between the silicic centers [4]. The samples demonstrate involvement of fractional crystallization of less evolved mafic material along with assimilation of partial crustal melts, however the degree of involvement of each process remains difficult to quantify, as do the contributions from mantle and crustal reservoirs. To further investigate these issues, we here present petrological, major and trace element, along with lead and strontium isotopic examination of feldspar crystals from three selected silicic centers: 1) westernmost, off-craton, 2) central region of transitional lithosphere, and 3) eastern transition zone to on-craton. The textural evidence for open system behavior is only partially supported by bulk feldspar Pb and Sr isotopic compositions where the differences between whole rock, glass and crystal separate aliquots of the same eruptive units are a maximum of 0.3 in 208Pb/204Pb, 0.2 in 206Pb/204Pb and 0.002 in 87Sr/86Sr. Models combining these results with the spatial availability of geochemically distinct magma source reservoirs will be discussed. [1] Brueseke et al. (2008) Bull. Volc. 70, 343-360. [2] Nash et al. (2006) Earth Plant. Sci. Lett. 247, 143-156. [3] Christiansen and McCurry (2008) Bull. Volc., 70, 251-267. [4] Wypych and Hart (2011) Min. Magazine, 75 (3), 2186.

  2. Carbon dioxide released from subduction zones by fluid-mediated reactions

    NASA Astrophysics Data System (ADS)

    Ague, Jay J.; Nicolescu, Stefan

    2014-05-01

    The balance between the subduction of carbonate mineral-bearing rocks into Earth's mantle and the return of CO2 to the atmosphere by volcanic and metamorphic degassing is critical to the carbon cycle. Carbon is thought to be released from subducted rocks mostly by simple devolatilization reactions. However, these reactions will also retain large amounts of carbon within the subducting slab and have difficulty in accounting for the mass of CO2 emitted from volcanic arcs. Carbon release may therefore occur via fluid-induced dissolution of calcium carbonate. Here we use carbonate δ18O and δ13C systematics, combined with analyses of rock and fluid inclusion mineralogy and geochemistry, to investigate the alteration of the exhumed Eocene Cycladic subduction complex on the Syros and Tinos islands, Greece. We find that in marble rocks adjacent to two fluid conduits that were active during subduction, the abundance of calcium carbonate drastically decreases approaching the conduits, whereas silicate minerals increase. Up to 60-90% of the CO2 was released from the rocks--far greater than expected via simple devolatilization reactions. The δ18O of the carbonate minerals is 5-10 lighter than is typical for metamorphosed carbonate rocks, implying that isotopically light oxygen was transported by fluid infiltration from the surroundings. We suggest that fluid-mediated carbonate mineral removal, accompanied by silicate mineral precipitation, provides a mechanism for the release of enormous amounts of CO2 from subduction zones.

  3. Impact of silica diagenesis on the porosity of fine-grained strata: An analysis of Cenozoic mudstones from the North Sea

    NASA Astrophysics Data System (ADS)

    Wrona, Thilo; Taylor, Kevin G.; Jackson, Christopher A.-L.; Huuse, Mads; Najorka, Jens; Pan, Indranil

    2017-04-01

    Silica diagenesis has the potential to drastically change the physical and fluid flow properties of its host strata and therefore plays a key role in the development of sedimentary basins. The specific processes involved in silica diagenesis are, however, still poorly explained by existing models. This knowledge gap is addressed by investigating the effect of silica diagenesis on the porosity of Cenozoic mudstones of the North Viking Graben, northern North Sea through a multiple linear regression analysis. First, we identify and quantify the mineralogy of these rocks by scanning electron microscopy and X-ray diffraction, respectively. Mineral contents and host rock porosity data inferred from wireline data of two exploration wells are then analyzed by multiple linear regressions. This robust statistical analysis reveals that biogenic opal-A is a significant control and authigenic opal-CT is a minor influence on the porosity of these rocks. These results suggest that the initial porosity of siliceous mudstones increases with biogenic opal-A production during deposition and that the porosity reduction during opal-A/CT transformation results from opal-A dissolution. These findings advance our understanding of compaction, dewatering, and lithification of siliceous sediments and rocks. Moreover, this study provides a recipe for the derivation of the key controls (e.g., composition) on a rock property (e.g., porosity) that can be applied to a variety of problems in rock physics.

  4. Carbonate-silicate liquid immiscibility upon impact melting, Ries Crater, Germany

    NASA Astrophysics Data System (ADS)

    Graup, Guenther

    1999-05-01

    The 24-km-diameter Ries impact crater in southern Germany is one of the most studied impact structures on Earth. The Ries impactor struck a Triassic to Upper Jurassic sedimentary sequence overlying Hercynian crystalline basement. At the time of impact (14.87 +/- 0.36 Ma; Storzer et al., 1995), the 350 m thick Malm limestone was present only to the S and E of the impact site. To the N and W, the Malm had been eroded away, exposing the underlying Dogger and Lias. The largest proportion of shocked target material is in the impact melt-bearing breccia suevite. The suevite had been believed to be derived entirely from the crystalline basement. Calcite in the suevite has been interpreted as a post-impact hydrothermal deposit. From optical inspection of 540 thin sections of suevite from 32 sites, I find that calcite in the suevite shows textural evidence of liquid immiscibility with the silicate impact melt. Textural evidence of liquid immiscibility between silicate and carbonate melt in the Ries suevite includes: carbonate globules within silicate glass, silicate globules embedded in carbonate, deformable and coalescing carbonate spheres within silicate glass, sharp menisci or cusps and budding between silicate and carbonate melt, fluidal textures and gas vesicles in carbonate schlieren, a quench crystallization sequence of the carbonate, spinifex textured quenched carbonate, separate carbonate spherules in the suevite mineral-fragment-matrix, and inclusions of mineral fragments suspended in carbonate blebs. Given this evidence of liquid immiscibility, the carbonate in the suevite has, therefore, like the silicate melt a primary origin by impact shock melting. Evidence of carbonate-silicate liquid immiscibility is abundant in the suevites to the SW to E of the Ries crater. The rarer suevites to the W to NE of the crater are nearly devoid of carbonate melts. This correspondence between the occurrence of outcropping limestones at the target surface and the formation of carbonate melt, indicates that the Malm limestones are the source rocks of the carbonate impact melt. This correspondence shows that the suevites preserve a compositional memory of their source rocks. From the regional distribution of suevites with or without immiscible carbonate melts, it is inferred that the Ries impactor hit the steep Albtrauf escarpment at its toe, in an oblique impact from the north.

  5. Implications of meso- to micro-scale deformation for fault sealing capacity: Insights from the Lenghu5 fold-and-thrust belt, Qaidam Basin, NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xie, Liujuan; Pei, Yangwen; Li, Anren; Wu, Kongyou

    2018-06-01

    As faults can be barriers to or conduits for fluid flow, it is critical to understand fault seal processes and their effects on the sealing capacity of a fault zone. Apart from the stratigraphic juxtaposition between the hanging wall and footwall, the development of fault rocks is of great importance in changing the sealing capacity of a fault zone. Therefore, field-based structural analysis has been employed to identify the meso-scale and micro-scale deformation features and to understand their effects on modifying the porosity of fault rocks. In this study, the Lenghu5 fold-and-thrust belt (northern Qaidam Basin, NE Tibetan Plateau), with well-exposed outcrops, was selected as an example for meso-scale outcrop mapping and SEM (Scanning Electron Microscope) micro-scale structural analysis. The detailed outcrop maps enabled us to link the samples with meso-scale fault architecture. The representative rock samples, collected in both the fault zones and the undeformed hanging walls/footwalls, were studied by SEM micro-structural analysis to identify the deformation features at the micro-scale and evaluate their influences on the fluid flow properties of the fault rocks. Based on the multi-scale structural analyses, the deformation mechanisms accounting for porosity reduction in the fault rocks have been identified, which are clay smearing, phyllosilicate-framework networking and cataclasis. The sealing capacity is highly dependent on the clay content: high concentrations of clay minerals in fault rocks are likely to form continuous clay smears or micro- clay smears between framework silicates, which can significantly decrease the porosity of the fault rocks. However, there is no direct link between the fault rocks and host rocks. Similar stratigraphic juxtapositions can generate fault rocks with very different magnitudes of porosity reduction. The resultant fault rocks can only be predicted only when the fault throw is smaller than the thickness of a faulted bed, in which scenario self-juxtaposition forms between the hanging wall and footwall.

  6. Geochemistry of surface and subsurface waters in quartz-sandstones: significance for the geomorphic evolution of tepui table mountains (Gran Sabana, Venezuela)

    NASA Astrophysics Data System (ADS)

    Mecchia, Marco; Sauro, Francesco; Piccini, Leonardo; De Waele, Jo; Sanna, Laura; Tisato, Nicola; Lira, Jesus; Vergara, Freddy

    2014-04-01

    In situ measurements of discharge, pH, electric conductivity (EC), temperature, and SiO2 content have been carried out during five expeditions in the last 20 years on the summit plateaus, inside caves and along the rivers of the surrounding lowlands of three tepui massifs in Venezuela (Auyan, Roraima, and Chimanta). Additionally, detailed chemical analyses were performed on waters sampled in a newly discovered extensive quartz-sandstone cave system on the Auyan Tepui. Rock samples of the quartz-sandstone bedrock from different locations have been analysed to obtain their chemical composition with a wavelength dispersive X-ray fluorescence spectrometer. These data show that the majority of silica present in surface and subsurface water comes from dissolution of quartz and only in minor amount from hydrolysis of other silicate minerals. Probably the presence of a hardened crust of iron hydroxides limits the dissolution of silica on the top surface of tepuis. Dissolution in the subsurface, instead, is more significant and causes, in the long term, the “arenisation” of the quartz-sandstone and its subsequent removal by mechanical erosion. On the other hand, waters flowing on the arkosic rock outcropping on the lowland below the tepuis obtain their high dissolved silica content mainly from hydrolysis of silicates. The morphological evolution of these table mountains appears thus to be controlled mainly by the underground weathering of the quartz-sandstone, with the opening of deep fractures (grietas) and the collapse of large underground horizontal cave systems. Scarp retreat, instead, seems to be related to the higher weathering rate of the more arkosic formations underlying the quartz-sandstones.

  7. Geology of parts of the Johnny Gulch quadrangle, Montana

    USGS Publications Warehouse

    Freeman, Val L.

    1954-01-01

    An area of about 35 square miles, situated about 30 miles southeast of Helena, Montana, was mapped during the summer of 1952 at a scale of l:24, 000. The area includes a part of the eastern foothills of the Elkhorn Mountains, and is underlain by sedimentary mad volcanic rocks of Cretaceous age that were intruded during late Cretaceous or early Tertiary time by several types of igneous rocks. The oldest rocks in the map area are the nonmarine sandstone, shale, and limestone of the Kootenai formation. These are overlain disconformably by the black shale siltstone, sandstone, and siliceous mudstone of the Colorado group that is subdivided into three map units; a lower black shale unit composed of black shale and silty shale with a basal clean sandstone, all of probable marine origin; a middle siliceous unit composed of sandstone, siltstone, and siliceous mudstone of both marine and nonmarine origin; and an upper black unit composed of black shale of marine origin. Conformably above the Colorado group are crystal lithic turfs of the Slim Sam formation; in places theme grade into and in other places are unconformably overlain by the Elkhorn Mountains volcanics composed of crystal tuff, breccia, flows, and bedded tuff of andesitic composition. The rocks of the Elkhorn Mountains volcanics and older formations have been intruded by diorite porphyry and related rocks and by hornblende quartz monzonite. The diorite porphyry and related rocks include hornblende diorite porphyry, hornblende augite diorite porphyry, augite diorite porphyry, and basalt. Resting with marked unconformity upon older rocks are volcanic sedimentary rocks of early Tertiary age that are locally overlain by thin rhyolite flows. Late Tertiary and Quaternary fans overlie the rhyolite flows. Alluvium, talus, and other mantle are present in small amounts in many parts of the area. The sedimentary rocks of the area mapped form a part of the east flank of a major anticline. A major north-south syncline to the north of map area is believed to have been deflected to the east of the area because of the rigidity of large irregular plutons of diorite porphyry. The location of the plutons may have been controlled by the initiation of the major syncline, by a postulated pre-intrusive fault, or by both. Most of the small-scale structural features are related to the emplacement of the plutons. During emplacement the intruded sediments yielded either by faulting or by folding; the deeper rocks failed by faulting and the shallower rocks failed by folding. The area contains deposits of gold, silver, copper, lead, and zinc, none of which are currently being mined; and a deposit of magnetite which is being mined for use in cement.

  8. Comparison of the Wymark CO2 Reservoir with the Midale Beds at the Weyburn CO2 Injection Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F; Johnson, J

    2010-11-22

    The Devonian carbonates of the Duperow Formation on the western flank of the Williston Basin in southwest Saskatchewan contain natural accumulations of CO{sub 2}, and may have done so for as long as 50 m.y. in the views of some investigations. These carbonate sediments are characterized by a succession of carbonate cycles capped by anhydrite-rich evaporites that are thought to act as seals to fluid migration. The Weyburn CO{sub 2} injection site lies 400 km to the east in a series of Mississippian carbonates that were deposited in a similar depositional environment. That natural CO{sub 2} can be stored long-termmore » within carbonate strata has motivated the investigation of the Duperow rocks as a potential natural analogue to storage of anthropogenic CO{sub 2} that may ultimately provide additional confidence for CO{sub 2} sequestration in carbonate lithologies. For the Duperow strata to represent a legitimate analog for Midale injection and storage, the similarity in lithofacies, whole rock compositions, mineral compositions and porosity with the Midale Beds must be established. Previous workers have demonstrated the similarity of the lithofacies at both sites. Here we compare the whole rock compositions, mineralogy and mineral compositions. The major mineral phases at both locales are calcite, dolomite and anhydrite. In addition, accessory pyrite, fluorite and celestine are also observed. The distribution of porosity in the Midale Vuggy units is virtually identical to that of the Duperow Formation, but the Marly units of the Midale have significantly higher porosity. The Duperow Formation is topped by the Dinesmore evaporite that is particularly rich in anhydrite, and often contains authigenic K-feldspar. The chemistry of dolomite and calcite from the two localities also overlaps. Silicate minerals are in low abundance within the analyzed Duperow samples, < 3 wt% on a normative basis, with quartz the only phase identifiable in x-ray diffraction patterns. The Midale Beds contain significantly higher silica/silicate concentrations, but the silicate minerals observed, K-feldspar and quartz, are unlikely to participate in carbonate mineral precipitation due to the absence of alkaline earths. Hence, physical and solution trapping are likely to be the primary trapping mechanisms at both sites. Given the similarity of mineral constituents, whole rock and mineral chemistry, reactive transport models developed for the Weyburn site should also be applicable to the Duperow lithologies.« less

  9. Isotopic and trace element variations in the Ruby Batholith, Alaska, and the nature of the deep crust beneath the Ruby and Angayucham Terranes

    USGS Publications Warehouse

    Arth, Joseph G.; Zmuda, Clara C.; Foley, Nora K.; Criss, Robert E.; Patton, W.W.; Miller, T.P.

    1989-01-01

    Thirty-six samples from plutons of the Ruby batholith of central Alaska were collected and analyzed for 22 trace elements, and many were analyzed for the isotopic compositions of Sr, Nd, O, and Pb in order to delimit the processes that produced the diversity of granodioritic to granitic compositions, to deduce the nature of the source of magmas at about 110 Ma, and to characterize the deep crust beneath the Ruby and Angayucham terranes. Plutons of the batholith show a substantial range in initial 87Sr/86Sr (SIR) of 0.7055–0.7235 and a general decrease from southwest to northeast. Initial 143Nd/144Nd (NIR) have a range of 0.51150–0.51232 and generally increase from southwest to northeast. The δ18O values for most whole rocks have a range of +8.4 to +11.8 and an average of +10.3‰. Rb, Cs, U, and Th show large ranges of concentration, generally increase as SiO2 increases, and are higher in southwest than in northeast plutons. Sr, Ba, Zr, Hf, Ta, Sc, Cr, Co, and Zr show large ranges of concentration and generally decrease as SiO2 increases. Rare earth elements (REE) show fractionated patterns and negative Eu anomalies. REE concentrations and anomalies are larger in the southwest than in the northeast plutons. Uniformity of SIR and NIR in Sithylemenkat and Jim River plutons suggests a strong role for fractional crystallization or melting of uniform magma sources at depth. Isotopic variability in Melozitna, Ray Mountains, Hot Springs, and Kanuti plutons suggests complex magmatic processes such as magma mixing and assimilation, probably combined with fractional crystallization, or melting of a complex source at depth. The large variations in SIR and NIR in the batholith require a variation in source materials at depth. The southwestern plutons probably had dominantly siliceous sources composed of metamorphosed Proterozoic and Paleozoic upper crustal rocks. The northeastern plutons probably had Paleozoic sources that were mixtures of siliceous and intermediate to mafic crustal rocks. The inferred sources could well have been the higher-metamorphic-grade lithologic equivalents of the exposed Proterozoic(?) to Paleozoic schists, orthogneisses, and metavolcanic rocks of Ruby terrane, the silicic portions of which are quite radiogenic. The deeper crustal sources that gave rise to most of the batholithic magmas are inferred to be similar under both the Ruby metamorphic terrane and the Angayucham ophiolitic terrane.

  10. Shock melting and vaporization of lunar rocks and minerals.

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; O'Keefe, J. D.

    1972-01-01

    The entropy associated with the thermodynamic states produced by hypervelocity meteoroid impacts at various velocities are calculated for a series of lunar rocks and minerals and compared with the entropy values required for melting and vaporization. Taking into account shock-induced phase changes in the silicates, we calculate that iron meteorites impacting at speeds varying from 4 to 6 km/sec will produce shock melting in quartz, plagioclase, olivine, and pyroxene. Although calculated with less certainty, impact speeds required for incipient vaporization vary from 7 to 11 km/sec for the range of minerals going from quartz to periclase for aluminum (silicate-like) projectiles. The impact velocities, which are required to induce melting in a soil, are calculated to be in the range of 3 to 4 km/sec, provided thermal equilibrium is achieved in the shock state.

  11. Magmatic evolution of lunar highland rocks estimated from trace elements in plagioclase: A new bulk silicate Moon model with sub-chondritic Ti/Ba, Sr/Ba, and Sr/Al ratios

    NASA Astrophysics Data System (ADS)

    Togashi, Shigeko; Kita, Noriko T.; Tomiya, Akihiko; Morishita, Yuichi

    2017-08-01

    The compositions of host magmas of ferroan anorthosites (FAN-host magmas) were estimated from secondary ion mass spectrometry analyses of plagioclase in lunar highland rocks. The evolution of the magmas was investigated by considering phase relations based on the MELTS algorithm and by re-examining partition coefficients for trace elements between plagioclase and melts. Data little affected by post-magmatic processes were selected by using plagioclase with relatively primitive Sc and Co contents. The FAN-host magma contained 90-174 ppm Sr, 40-119 ppm Ba and 0.5-1.3% TiO2, and had sub-chondritic Sr/Ba and Ti/Ba ratios. It is difficult to account for the formation of FAN-host magma on the basis of magma evolution processes of previously proposed bulk silicate Moon models with chondritic ratios for refractory elements at global scale. Therefore, the source of the FAN-host magma must have had primordial sub-chondritic Sr/Ba and Ti/Ba ratios. The FAN-host magmas were consistent in refractory elements with the estimated host mafic magma for feldspathic crust based on lunar meteorites, and some very-low-Ti mare rocks from lunar meteorites. Here, we propose an alternative bulk silicate Moon model (the cBSM model), which is enriched in crustal components of proto-bodies relative to the present whole Earth-Moon system.

  12. Net Acid Production, Acid Neutralizing Capacity, and Associated Mineralogical and Geochemical Characteristics of Animas River Watershed Igneous Rocks Near Silverton, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Choate, LaDonna; Stanton, Mark R.

    2008-01-01

    This report presents results from laboratory and field studies involving the net acid production (NAP), acid neutralizing capacity (ANC), and magnetic mineralogy of 27 samples collected in altered volcanic terrain in the upper Animas River watershed near Silverton, Colo., during the summer of 2005. Sampling focused mainly on the volumetrically important, Tertiary-age volcanic and plutonic rocks that host base- and precious-metal mineralization in the study area. These rocks were analyzed to determine their potential for neutralization of acid-rock drainage. Rocks in the study area have been subjected to a regional propylitic alteration event, which introduced calcite, chlorite (clinochlore), and epidote that have varying amounts and rates of acid neutralizing capacity (ANC). Locally, hydrothermal alteration has consumed any ANC and introduced minerals, mainly pyrite, that have a high net acid production (NAP). Laboratory studies included hydrogen pyroxide (H2O2) acid digestion and subsequent sodium hydroxide (NaOH) titration to determine NAP, and sulfuric acid (H2SO4) acid titration experiments to determine ANC. In addition to these environmental rock-property determinations, mineralogical, chemical, and petrographic characteristics of each sample were determined through semiquantitative X-ray diffractometry (Rietveld method), optical mineralogy, wavelength dispersive X-ray fluorescence, total carbon-carbonate, and inductively coupled plasma?mass spectrometric analysis. An ANC ranking was assigned to rock samples based on calculated ANC quantity in kilograms/ton (kg/t) calcium carbonate equivalent and ratios of ANC to NAP. Results show that talus near the southeast Silverton caldera margin, composed of andesite clasts of the Burns Member of the Silverton Volcanics, has the highest ANC (>100 kg/t calcium carbonate equivalent) with little to no NAP. The other units found to have moderate to high ANC include (a) andesite lavas and volcaniclastic rocks of the San Juan Formation, west and northwest of the Silverton caldera, and (b) the Picayune Megabreccia Member of Sapinero Mesa Tuff along the western San Juan caldera margin. Sultan Mountain stock, composed of granitoid intrusive rocks, was shown to have low ANC and moderate NAP. Sequential leachate analyses on a suite of whole-rock samples from the current and a previous study indicate that host rock composition and mineralogy control leachate compositions. The most mafic volcanic samples had high leachate concentrations for Mg, Fe, and Ca, whereas silicic volcanic samples had lower ferromagnesiun compositions. Samples with high chlorite abundance also had high leachable Mg concentrations. Trace-element substitution, such as Sr for Ca in plagioclase, controls high Sr concentrations in those samples with high plagioclase abundance. High Ti abundance in leachate was observed in those samples with high magnetite concentrations. This is likely due to samples containing intergrown magnetite-ilmenite. Whole rocks having high trace-element concentrations have relatively high leachate trace-element abundances. Some lavas of the San Juan Formation and Burns Member of the Silverton Volcanics had elevated Zn-, Cd-, and Pb-leachate concentrations. Manganese was also elevated in one San Juan Formation sample. Other San Juan Formation and Burns Member lavas had low to moderate trace-element abundances. One sample of the pyroxene andesite member of the Silverton Volcanics had elevated concentrations for As and Mo. Most other pyroxene andesite member samples had low leachate trace-element abundances. Mine-waste-leachate analyses indicated that one mine-waste sample had elevated concentrations of Cu (1.5 orders of magnitude), Zn (1 order of magnitude), As (1 order of magnitude), Mo (1.5 to 2 orders of magnitude), Cd (1 to 2 orders of magnitude), and Pb (2 to 3 orders of magnitude) compared to whole rocks. These data indicate the importance of whole-rock geochemistry or leachate analys

  13. Hydrogen isotope investigation of amphibole and biotite phenocrysts in silicic magmas erupted at Lassen Volcanic Center, California

    USGS Publications Warehouse

    Underwood, S.J.; Feeley, T.C.; Clynne, M.A.

    2012-01-01

    Hydrogen isotope ratio, water content and Fe3 +/Fe2 + in coexisting amphibole and biotite phenocrysts in volcanic rocks can provide insight into shallow pre- and syn-eruptive magmatic processes such as vesiculation, and lava drainback with mixing into less devolatilized magma that erupts later in a volcanic sequence. We studied four ~ 35 ka and younger eruption sequences (i.e. Kings Creek, Lassen Peak, Chaos Crags, and 1915) at the Lassen Volcanic Center (LVC), California, where intrusion of crystal-rich silicic magma mushes by mafic magmas is inferred from the varying abundances of mafic magmatic inclusions (MMIs) in the silicic volcanic rocks. Types and relative proportions of reacted and unreacted hydrous phenocryst populations are evaluated with accompanying chemical and H isotope changes. Biotite phenocrysts were more susceptible to rehydration in older vesicular glassy volcanic rocks than coexisting amphibole phenocrysts. Biotite and magnesiohornblende phenocrysts toward the core of the Lassen Peak dome are extensively dehydroxylated and reacted from prolonged exposure to high temperature, low pressure, and higher fO2 conditions from post-emplacement cooling. In silicic volcanic rocks not affected by alteration, biotite phenocrysts are often relatively more dehydroxylated than are magnesiohornblende phenocrysts of similar size; this is likely due to the ca 10 times larger overall bulk H diffusion coefficient in biotite. A simplified model of dehydrogenation in hydrous phenocrysts above reaction closure temperature suggests that eruption and quench of magma ascended to the surface in a few hours is too short a time for substantial H loss from amphibole. In contrast, slowly ascended magma can have extremely dehydrogenated and possibly dehydrated biotite, relatively less dehydrogenated magnesiohornblende and reaction rims on both phases. Eruptive products containing the highest proportions of mottled dehydrogenated crystals could indicate that within a few days prior to eruption, degassed vesiculated magma or lava had drained back down the volcanic conduit and mixed with less devolatilized magma. The vesiculated magma contained hydrous phenocrysts with lattice damage, which locally raised the effective H diffusion coefficient by ca 10–100 × and resulted in increased mineral dehydrogenation. Remobilization of dacite magma mush by relatively more reduced mafic magma appears to have generated further fO2 variations in May 1915 as oxidized magma from shallow levels circulated to depths where dehydrogenation of hydrous phenocrysts began. The δDMagmatic H2O expressed in LVC acid hot springs is likely a mixture derived from devolatilized ascending mafic magmas and crystallizing silicic magma mush.

  14. Geochemical and Isotopic Data from Micron to Across-Arc Scales in the Andean Central Volcanic Zone: Applications for Resolving Crustal Magmatic Differentiation and Modification Processes

    NASA Astrophysics Data System (ADS)

    Michelfelder, G.; Wilder, A.; Feeley, T.

    2014-12-01

    Plagioclase crystals from silicic (andesitic to dacitic) lavas and domes at Volcán Uturuncu, a potentially active volcano in the back-arc of the Andean CVZ (22.3°S, 67.2°W), exhibit large variations in An contents, textures, and core to rim 87Sr/86Sr ratios. Many of the isotopic variations can not have existed at magmatic temperatures for more than a few thousand years. The crystals likely derived from different locations in the crustal magmatic system and mixed just prior to eruption. Uturuncu magmas initially assimilated crustal rocks with high 87Sr/86Sr ratios. The magmas were subsequently modified by frequent recharge of more mafic magmas with lower 87Sr/86Sr ratios. A typical Uturuncu silicic magma therefore only attains its final composition just prior to or during eruption. In the Lazufre region of active surface uplift (~25˚14'S; Volcán Lastarria and Cordon del Azufre) closed system differentiation processes are not the only factors influencing silicic magma compositions. 87Sr/86Sr (0.70651-0.70715) and 206Pb/204Pb ratios (18.83-18.88) are highly elevated and143Nd/144Nd ratios (0.512364 -0.512493) are low relative to similar composition rocks from the "southern Cordillera domain." These data, along with major and trace element trends, reflect a multitude of differentiation processes and magma sources including crystallization-differentiation of more mafic magmas, melting and assimilation of older crustal rocks, and magma mixing and mingling. On an arc-wide scale silicic lavas erupted from three well-characterized composite volcanoes between 21oS and 22oS (Aucanquilcha, Ollagüe, and Uturuncu) display systematically higher K2O, LILE, REE and HFSE contents and 87Sr/86Sr ratios with increasing distance from the arc-front. In contrast, the lavas have systematically lower Na2O, Sr, and Ba contents; LILE/HFSE ratios; 143Nd/144Nd ratios; and more negative Eu anomalies. Silicic magmas along the arc-front apparently reflect melting of relatively young, mafic composition amphibolitic source rocks with the continental crust becoming increasingly older with a more felsic bulk composition toward the east. We suggest this results from progressively smaller degrees of mantle partial melting, primary melt generation, and crustal hybridization with distance from the arc-front.

  15. Confidence Hills Mineralogy and Chemin Results from Base of Mt. Sharp, Pahrump Hills, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Cavanagh, P. D.; Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Morris, R. V.; Ming, D. W.; Rampe, E. B.; Achilles, C. N.; Chipera, S. J.; Treiman, A. H.; hide

    2015-01-01

    The Mars Science Laboratory (MSL) rover Curiosity recently completed its fourth drill sampling of sediments on Mars. The Confidence Hills (CH) sample was drilled from a rock located in the Pahrump Hills region at the base of Mt. Sharp in Gale Crater. The CheMin X-ray diffractometer completed five nights of analysis on the sample, more than previously executed for a drill sample, and the data have been analyzed using Rietveld refinement and full-pattern fitting to determine quantitative mineralogy. Confidence Hills mineralogy has several important characteristics: 1) abundant hematite and lesser magnetite; 2) a 10 angstrom phyllosilicate; 3) multiple feldspars including plagioclase and alkali feldspar; 4) mafic silicates including forsterite, orthopyroxene, and two types of clinopyroxene (Ca-rich and Ca-poor), consistent with a basaltic source; and 5) minor contributions from sulfur-bearing species including jarosite.

  16. Tonalites in crustal evolution

    USGS Publications Warehouse

    Barker, F.; Arth, Joseph G.; Hudson, T.

    1981-01-01

    Tonalites, including trondhjemite as a variety, played three roles through geological time in the generation of Earth's crust. Before about 2.9 Ga ago they were produced largely by simple partial melting of metabasalt to give the dominant part of Archaean grey gneiss terranes. These terranes are notably bimodal; andesitic rocks are rare. Tonalites played a crucial role in the generation of this protocontinental and oldest crust 3.7-2.9 Ga ago in that they were the only low-density, high-SiO2 rocks produced directly from basaltic crust. In the enormous event giving the greenstone-granite terranes, mostly 2.8-2.6 Ga ago, tonalites formed in lesser but still important proportions by partial melting of metabasalt in the lower regions of down-buckled greenstone belts and by remobilization of older grey gneisses. Tectonism in the Archaean (3.9-2.5 Ga ago) perhaps was controlled by small-cell convection (McKenzie & Weiss I975). Little or no ophiolite or eclogite formed, and only minor andesite. Plate tectonics of modern type (involving large, rigid plates) commenced in the early Proterozoic. Uniformitarianism thus goes back one-half of the age of the earth. Tonalites compose about 5-10 % of crust generated in Proterozoic and Phanerozoic time at convergent oceanic-continental margins. They occur here as minor to prominent members of the compositionally continuous continental-margin batholiths. A simple model of generation of these batholiths is offered: mantle-derived mafic magma pools in the lower crust above a subduction zone reacts with and incorporates wall-rock components (Bowen I922), and breaches its roof rocks as an initial diapir. This mantle magma also develops a gradient of partial melting in its wall rocks. This wall-rock melt accretes in the collapsed chamber and moves up the conduit broached by the initial diapir, the higher, less siliceous fractions of melting first, the lower, more siliceous (and further removed) fractions of melting last. The process gives in the optimum case a mafic-to-siliceous sequence of diorite or quartz diorite through tonalite or quartz monzodiorite to granodiorite and granite. The model implies that great masses of cumulate phases and refractory wall rock form the roots of continental- margin batholiths, and that migmatites overlie that residuum and underlie the batholiths.

  17. Zircon U-Pb Ages Chronicle 3 Myr of Episodic Crystallization in the Composite Miocene Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Du Bray, E. A.; Wooden, J. L.; Mazdab, F. K.

    2007-12-01

    Zircon geochronology of upper crustal plutons can constrain longevities of intermediate to silicic magmatic systems. As part of a larger study of the geochemistry and metallogeny of Tertiary Cascades magmatic arc rocks, we used the USGS-Stanford SHRIMP RG to determine 20 to 28 238U-206Pb ages for zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples representative of the Tatoosh pluton, and one grd from the nearby Carbon River stock. The 7x12 km composite Tatoosh pluton, discontinuously exposed on the south flank of Mount Rainier, consists of at least 4 petrographic/compositional phases, here termed Pyramid Peak, Nisqually, Reflection Lake, and Tatoosh. These collectively intrude gently folded and weakly metamorphosed basaltic andesite flows and volcaniclastic rocks of the Eocene Ohanapecosh Formation, silicic ignimbrites and sedimentary rocks of the Oligocene Stevens Ridge Formation, and basaltic to intermediate volcanic rocks of the Miocene Fifes Peak Formation. Histograms and relative probability plots of U- Pb ages indicate 2 to 4 age populations within each sample. The weighted mean age of each of the youngest populations (all ±2σ) is interpreted as the time of final solidification: Pyramid Peak qmd (58.5% SiO2) 17.4±0.2 Ma, Nisqually grd (in Paradise Valley; 65.4% SiO2) 16.7±0.2 Ma, Nisqually grd (at Christine Falls; 66.4% SiO2) 17.3±0.2 Ma, Reflection Lake qm (along Pinnacle Peak trail; 66.6% SiO2) 17.1±0.2 Ma, Tatoosh grd (in Stevens Canyon; 67.8% SiO2) 18.2±0.2 Ma, Tatoosh grd (south of Louise Lake; 69.3% SiO2) 19.3±0.1 Ma, and Carbon River grd (68.0% SiO2) 17.4±0.3 Ma. The older Nisqually grd age is indistinguishable from a TIMS zircon age of 17.5±0.1 Ma reported by Mattinson (GSA Bulletin 88:1509-1514, 1977) for grd from a nearby locality. None of the 164 SHRIMP-RG U-Pb ages, including cores, is older than 21 Ma. The relatively small, high-level pluton likely was emplaced and solidified in pulses; zircons with ages significantly greater than the final solidification age of a given sample are considered to be antecrysts recycled from earlier crystallization episodes within the larger magmatic system. Although interpretation of the age populations is subjective, we have identified 17.4-Ma antecrysts in the 16.7-Ma Nisqually grd and antecrysts of 1-3 ages averaging 18.1, 18.8, 19.3, and 20.0 Ma in the other samples. Notably, age populations are separated by 0.5-0.7 Myr, intervals similar to lifetimes of large arc volcanoes. The total duration of pluton assembly is ~2.6 Myr, or as much as ~3.6 Myr if the oldest antecrysts are considered. The oldest, most differentiated rocks are on the east side of the pluton (Tatoosh phase) and the youngest, least differentiated on the west (Pyramid Peak phase). Two samples each of the Nisqually and Tatoosh phases yield apparent crystallization age differences of 0.7- and 1.1-Myr, respectively, for petrographically and chemically similar rocks. The Tatoosh U-Pb data appear to chronicle repeated waxing and waning of a long-lived igneous system as recorded by crystal-rich magma that periodically solidified near the system's roof at the close of well-defined crystallization episodes.

  18. Geologic map of the Wenatchee 1:100,000 Quadrangle, central Washington

    USGS Publications Warehouse

    Tabor, R.W.; Waitt, R.B.; Frizzell, V.A.; Swanson, D.A.; Byerly, G.R.; Bentley, R.D.

    1982-01-01

    The rocks and deposits within the Wenatchee quadrangle can be grouped into six generalized units: (1) Precambrian(?) Swakane Biotite Gneiss in the northeastern part of the quadrangle and the probable Jurassic low-grade metamorphic suite, mostly composed of the Easton Schist, in the southwestern part; (2) the Mesozoic Ingalls Tectonic Complex; (3) the Mesozoic Mount Stuart batholith; (4) lower and middle Tertiary nonmarine sedimentary and volcanic rocks; (5) Miocene basalt flows and interbedded epiclastic rocks constituting part of the Columbia River Basalt Group and interbedded silicic volcaniclastic rocks of the Ellensburg Formation; and (6) Pliocene to Holocene alluvium, glacial, flood, and mass-wastage deposits.

  19. Calcium isotope fractionation in a silicate dominated Cenozoic aquifer system

    NASA Astrophysics Data System (ADS)

    Li, Junxia; DePaolo, Donald J.; Wang, Yanxin; Xie, Xianjun

    2018-04-01

    To understand the characteristics of Ca isotope composition and fractionation in silicate-dominated Quaternary aquifer system, hydrochemical and isotope studies (87Sr/86Sr, 13CDIC and 44/40Ca) were conducted on groundwater, sediment and rock samples from the Datong basin, China. Along the groundwater flow path from the basin margin to the center, groundwater hydrochemical type evolves from Ca-HCO3 to Na-HCO3/Na-Cl type, which results from aluminosilicate hydrolysis, vertical mixing, cation exchange between CaX2 and NaX, and calcite/dolomite precipitation. These processes cause the decrease in groundwater Ca concentration and the associated modest fractionation of groundwater Ca isotopes along the flowpath. The groundwater δ44/40Ca value varies from -0.11 to 0.49‰. The elevated δ44/40Ca ratios in shallow groundwater are attributed to vertical mixing involving addition of irrigation water, which had the average δ44/40Ca ratio of 0.595‰. Chemical weathering of silicate minerals and carbonate generates depleted δ44/40Ca signatures in groundwater from Heng Mountain (east area) and Huanghua Uplift (west area), respectively. Along the groundwater flow path from Heng Mountain to central area of east area, cation exchange between CaX2 and NaX on clay mineral results in the enrichment of heavier Ca isotope in groundwater. All groundwater samples are oversaturated with respect to calcite and dolomite. The groundwater environment rich in organic matter promotes the precipitation of carbonate minerals via the biodegradation of organic carbon, thereby further promoting the elevation of groundwater δ44/40Ca ratios.

  20. Storage of Nitrogen in the Cyclosilicates Beryl and Cordierite: Nitrogen Cycling, Isotope Fractionation, and Fluid-Rock Interactions

    NASA Astrophysics Data System (ADS)

    Lazzeri, K. E.; Bebout, G. E.; Idleman, B. D.; Geiger, C. A.; Li, L.

    2011-12-01

    The N isotope system shows potential for tracing the transfer of volatiles among Earth's major reservoirs, including the transfer of organic N into solid inorganic phases. This work explores the potential for the storage of N (i.e., N2 and possibly as ammonium) in various microporous minerals (pores or channels), specifically the cyclosilicates beryl and cordierite (see early work on beryl by Scalan, 1958, dissertation, Univ. Arkansas). Isotopic analyses of the N2 residing in these phases could help elucidate fluid-rock interactions, potentially contributing information regarding fluid-mineral fractionation, and provide records of past biological processes (see Palya et al., 2011, Chem. Geol.). We are investigating the N release from beryl crystals of different size separates by using various heating regimes. Samples are first examined petrographically to determine equilibrium mineral assemblages (based on textures of the coexisting phases) and to identify possible mica (or other mineral) inclusions that could contaminate the N analyses. Analyses of one beryl sample from New England, USA, yielded very similar N concentrations and δ15Nair (40 ppm N; +5%) when tested over a wide range of grain sizes (0.25 to 1.00 mm), extraction temperatures (1050-1100°C), and durations of heating (3-5 hours at maximum T), which is consistent with complete extraction of the N2 from the channels of beryl. Shift to higher N and δ15N concentrations, in some analyses, can be attributed to very small amounts of mica as inclusions (observed by SEM) not removed by sieving and hand-picking. Preliminary work on cordierite has concentrated on several samples of iolite (gemstone variety of cordierite)-bearing, chlorite-muscovite schist from Connecticut, USA. For these rock samples, mica-rich matrices contain up to 350 ppm N with δ15Nair near +3.5%, whereas the iolite grains contain little or no measurable N. This contrasts with the observation by Palya et al. (2011) that cordierites in granulite-facies metasedimentary migmatites at Mt. Stafford, Australia, contain up to 350 ppm N with δ15N similar to that of the whole-rocks. Ongoing work is also being directed at analyzing a suite of pure cordierite separates from different petrologic enviironments, for which Geiger et al. (in revision for GCA) conducted degassing experiments and noted the presence of N2. In a related study, we are examining the N concentrations and isotopic compositions of silicate phases crystalized in various low-T hydrothermal settings. Some low-temperature silicates, such as zeolites and melanophlogite (silica clathrate), as well as palagonitized volcanic glasses, can preserve records of low-temperature biogeochemical processes on Earth and potentially on early Mars as well (Bebout et al., 2011, abstract LPSC).

  1. Horizontal insulating barriers as a way to protect groundwater

    NASA Astrophysics Data System (ADS)

    Cicha-Szot, Renata; Labus, Krzysztof; Falkowicz, Sławomir; Madetko, Norbert

    2018-06-01

    Trenchless Technology of Forming Horizontal Insulating Barriers (TFHB) can be considered a method of groundwater protection against inflow of pollutants. In TFHB technology, the working fluid (sodium silicate solution) and the gelling agent (CO2) are injected separately, using one tool, to different zones of the aquifer profile. Carbon dioxide injected into the saturation zone rises due to buoyancy forces and reaches the silicate which was injected at the water table level. This initiates the process of silicate gelation, resulting in the formation of an insulating barrier. For technological purposes, the gelation time must be controlled, and the resulting gel must have certain mechanical properties. In order to apply THFB in real conditions it was necessary to identify important technological and technical parameters, as well as to define interactions between the injected fluid and the aquifer rocks. Geochemical modelling (equilibrium, reaction path and reactive transport) was used to identify potential geochemical effects of the application of TFHB in sandy aquifers. Certain petrophysical parameters and mineralogical assemblages of aquifers were addressed, taking into account both low and strongly mineralized groundwater. The simulations revealed that TFHB does not have a negative impact on the chemistry of rock-water systems described in this work.

  2. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture

    PubMed Central

    Lim, Felix; James, Rachael H.; Pearce, Christopher R.; Scholes, Julie; Freckleton, Robert P.; Beerling, David J.

    2017-01-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. PMID:28381631

  3. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture.

    PubMed

    Edwards, David P; Lim, Felix; James, Rachael H; Pearce, Christopher R; Scholes, Julie; Freckleton, Robert P; Beerling, David J

    2017-04-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO 2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. © 2017 The Author(s).

  4. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (lvtESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wustite (lW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at I GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850 C. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-Si02 buffer, which is approx. 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi206) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of elements during the differentiation and thermal evolution of Mercury and other highly reducing planetary bodies.

  5. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high Sand low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wtistite (lW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at I GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multianvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-Si02 buffer, which is approximately 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi206) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of elements during the differentiation and thermal evolution of Mercury and other highly reducing planetary bodies.

  6. Scanning electron microscope view of iron crystal

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).

  7. Thermodynamics of rock forming crystalline solutions

    NASA Technical Reports Server (NTRS)

    Saxena, S. K.

    1971-01-01

    Analysis of phase diagrams and cation distributions within crystalline solutions as means of obtaining thermodynamic data on rock forming crystalline solutions is discussed along with some aspects of partitioning of elements in coexisting phases. Crystalline solutions, components in a silicate mineral, and chemical potentials of these components were defined. Examples were given for calculating thermodynamic mixing functions in the CaW04-SrW04, olivine-chloride solution, and orthopyroxene systems.

  8. Scanning electron microscope view of iron crystal

    NASA Image and Video Library

    1972-11-10

    A scanning electron microscope photograph of iron crystals which grow in a small vug or cavity in a recrystallized breccia (fragmented rock) from the Apollo 15 Hadley-Apennino lunar landing site. The largest crystal is three microns across. Perfectly developed crystals such as these indicate slow formation from a hot vapor as the rock was cooling. The crystals are resting on an interlocking lattice of pyroxene (calsium-magnesium-iron silicate).

  9. Perspectives on Magmatic Differentiation of Mercury

    NASA Astrophysics Data System (ADS)

    Charlier, B.; Namur, O.; Cartier, C.

    2018-05-01

    Silicate/metal liquid immiscibility, crystallization of a magma ocean, partial melting of mantle rocks, and surface crystallization have shaped Mercury as we know it today. We review these processes based on high-T experiments at reducing conditions.

  10. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks

    USGS Publications Warehouse

    Wray, James J.; Hansen, Sarah T.; Dufek, Josef; Swayze, Scott L.; Murchie, Scott L.; Seelos, Frank P.; Skok, John R.; Irwin, Rossman P.; Ghiorso, Mark S.

    2013-01-01

    Rocks dominated by the silicate minerals quartz and feldspar are abundant in Earth’s upper continental crust. Yet felsic rocks have not been widely identified on Mars, a planet that seems to lack plate tectonics and the associated magmatic processes that can produce evolved siliceous melts on Earth. If Mars once had a feldspar-rich crust that crystallized from an early magma ocean such as that on the Moon, erosion, sedimentation and volcanism have erased any clear surface evidence for widespread felsic materials. Here we report near-infrared spectral evidence from the Compact Reconnaissance Imaging Spectrometer for Mars onboard the Mars Reconnaissance Orbiter for felsic rocks in three geographically disparate locations on Mars. Spectral characteristics resemble those of feldspar-rich lunar anorthosites, but are accompanied by secondary alteration products (clay minerals). Thermodynamic phase equilibrium calculations demonstrate that fractional crystallization of magma compositionally similar to volcanic flows near one of the detection sites can yield residual melts with compositions consistent with our observations. In addition to an origin by significant magma evolution, the presence of felsic materials could also be explained by feldspar enrichment by fluvial weathering processes. Our finding of felsic materials in several locations on Mars suggests that similar observations by the Curiosity rover in Gale crater may be more widely applicable across the planet.

  11. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): Elemental partitioning, phase relations, and influence on evolution of silicic magma

    USGS Publications Warehouse

    Colombini, L.L.; Miller, C.F.; Gualda, G.A.R.; Wooden, J.L.; Miller, J.S.

    2011-01-01

    Sphene is prominent in Miocene plutonic rocks ranging from diorite to granite in southern Nevada, USA, but it is restricted to rhyolites in coeval volcanic sequences. In the Highland Range volcanic sequence, sphene appears as a phenocryst only in the most evolved rocks (72-77 mass% SiO2; matrix glass 77-78 mass% SiO2). Zr-in-sphene temperatures of crystallization are mostly restricted to 715 and 755??C, in contrast to zircon (710-920??C, Ti-in-zircon thermometry). Sphene rim/glass Kds for rare earth elements are extremely high (La 120, Sm 1200, Gd 1300, Lu 240). Rare earth elements, especially the middle REE (MREE), decrease from centers to rims of sphene phenocrysts along with Zr, demonstrating the effect of progressive sphene fractionation. Whole rocks and glasses have MREE-depleted, U-shaped REE patterns as a consequence of sphene fractionation. Within the co-genetic, sphene-rich Searchlight pluton, only evolved leucogranites show comparable MREE depletion. These results indicate that sphene saturation in intruded and extruded magmas occurred only in highly evolved melts: abundant sphene in less silicic plutonic rocks represents a late-stage 'bloom' in fractionated interstitial melt. ?? 2011 Springer-Verlag.

  12. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.

    PubMed

    Quirk, Joe; Beerling, David J; Banwart, Steve A; Kakonyi, Gabriella; Romero-Gonzalez, Maria E; Leake, Jonathan R

    2012-12-23

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to 'trenching' of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO(2) and climate history.

  13. Late-stage magmatic to deuteric/metasomatic accessory minerals from the Cerro Boggiani agpaitic complex (Alto Paraguay Alkaline Province)

    NASA Astrophysics Data System (ADS)

    Comin-Chiaramonti, Piero; Renzulli, Alberto; Ridolfi, Filippo; Enrich, Gaston E. R.; Gomes, Celso B.; De Min, Angelo; Azzone, Rogério G.; Ruberti, Excelso

    2016-11-01

    This work describes rare accessory minerals in volcanic and subvolcanic silica-undersaturated peralkaline and agpaitic rocks from the Permo-Triassic Cerro Boggiani complex (Eastern Paraguay) in the Alto Paraguay Alkaline Province. These accessory phases consist of various minerals including Th-U oxides/silicates, Nb-oxide, REE-Sr-Ba bearing carbonates-fluorcarbonates-phosphates-silicates and Zr-Na rich silicates. They form a late-stage magmatic to deuteric/metasomatic assemblage in agpaitic nepheline syenites and phonolite dykes/lava flows made of sodalite, analcime, albite, fluorite, calcite, ilmenite-pyrophanite, titanite and zircon. It is inferred that carbonatitic fluids rich in F, Na and REE percolated into the subvolcanic system and metasomatically interacted with the Cerro Boggiani peralkaline and agpaitic silicate melts at the thermal boundary layers of the magma chamber, during and shortly after their late-stage magmatic crystallization and hydrothermal deuteric alteration.

  14. Computational and experimental studies of iron-bearing carbonates and silicate glasses at lower mantle pressures

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Jackson, J. M.; Asimow, P. D.; Sturhahn, W.; Rossman, G. R.; Roskosz, M.

    2017-12-01

    Decomposition of carbonates may be responsible for creating silicate melts within the lower mantle by lowering the melting temperature of surrounding rock. Identifying and characterizing the stability of carbonates is therefore a necessary step towards understanding the transport of carbon in Earth's interior. Dolomite is one of the major mineral forms in which carbon is subducted into the Earth's mantle. Although iron-free dolomite is expected to break down upon compression, high-pressure polymorphs of iron-bearing dolomite may resist decomposition. Using a genetic algorithm that predicts crystal structures, we found a monoclinic phase with space group C2/c that has a lower energy than all previously reported dolomite structures at pressures above 15 GPa, where the substitution of iron for magnesium stabilizes monoclinic dolomite at certain pressures of the lower mantle. Thus, an iron-bearing dolomite polymorph may be an important carbon carrier in regions of Earth's lower mantle. The depth at which carbonates will decompose is dependent on the age, temperature and density of subducting slabs. Decarbonation reactions may lower the melting temperature of surrounding rocks to produce silicate melts. In regions of the mantle where silicate melts may exist, it is important to understand the physical properties and dynamic behavior of the melts because they affect the chemical and thermal evolution of its interior. Composition, degree of polymerization, and iron's spin state affect such properties. The behavior of iron in silicate melts is poorly understood but, in some cases, may be approximated by iron-bearing glasses. We measured the hyperfine parameters of iron-bearing rhyolitic and basaltic glasses up to 120 GPa and 100 GPa, respectively, in a neon pressure medium using time-domain synchrotron Mössbauer spectroscopy. The spectra for rhyolitic and basaltic glasses are well explained by three high-spin Fe2+-like sites with distinct quadrupole splittings, reflecting the influence of evolving coordination environments with pressure. With the assumption that coordination environments in silicate glasses may serve as a good indicator for those in a melt, this study suggests that ferrous iron in chemically-complex silicate melts likely exists in a high-spin state throughout most of Earth's mantle.

  15. Sulfide in the core and the composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    Burton, K. W.

    2015-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive 'chondritic' meteorites. It now appears, however, that the silicate Earth is not 'chondritic', but depleted in incompatible elements, including refractory lithophile and heat-producing elements. Either Earth lost material during planet-building due to collisional erosion or else internal differentiation processes produced a hidden reservoir deep in the early Earth. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [1]. Pioneering work using the short-lived 146Sm-142Nd system strongly suggests that Earth's silicate mantle is non-chondritic [e.g. 2]. The drawback of such radiogenic isotope systems is that it is not possible to distinguish the fractionation of Sm/Nd that occurs during silicate melting from that occurring during the segregation of a sulfide-melt to form the core. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavy values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd Stable isotope data for chondritic meteorites and mantle rocks, are consistent with the segregation of sulfide to the core. [1] Wohlers &Wood, Nature 520, 337 (2015) [2] Boyet & Carlson, Science 309, 576 (2005)

  16. Petrology and chemistry of Jebel Tanumah complex, Khamis Mushayt, Southern Arabian shield, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Nassief, M. O.; Ali, H. M.; Zakir, F. A.

    The mafic intrusive complex at Jebel Tanumah is located 15 km north-west of Khamis Mushayt in the southern Arabian Shield and includes olivine-bearing gabbro as well as amphibole-diopside-hornblende gabbro cumulates. These rocks have been generally metamorphosed to upper greeenschist-lower amphibolite facies. Fourteen white rock silicate analyses indicate that the majority of the rocks are calc-alkaline to tholeiitic in composition. The two major structural units in the Khamis Mushayt region identified by Coleman consist of the basement complex of Asir Mountains and the younger metamorphic rocks. Syntectonic granitic rocks intruded the antiforms characterizing the younger rocks whereas the lower parts of the synforms are intruded by post-tectonic intrusions of layered gabbros such as the one studied at Jebel Tanumah.

  17. The Jeanie Point complex revisited

    USGS Publications Warehouse

    Dumoulin, Julie A.; Miller, Martha L.

    1984-01-01

    The so-called Jeanie Point complex is a distinctive package of rocks within the Orca Group, a Tertiary turbidite sequence. The rocks crop out on the southeast coast of Montague Island, Prince William Sound, approximately 3 km northeast of Jeanie Point (loc. 7, fig. 44). These rocks consist dominantly of fine-grained limestone and lesser amounts of siliceous limestone, chert, tuff, mudstone, argillite, and sandstone (fig. 47). The Jeanie Point rocks also differ from those typical of the Orca Group in their fold style. Thus, the Orca Group of the area is isoclinally folded on a large scale (tens to hundreds of meters), whereas the Jeanie Point rocks are tightly folded on a 1- to 3- m-wavelength scale (differences in rock competency may be responsible for this variation in fold style).

  18. Oreshoot zoning in the Carlin-type Betze orebody, Goldstrike Mine, Eureka County, Nevada

    USGS Publications Warehouse

    Peters, Stephen G.; Ferdock, Gregory C.; Woitsekhowskaya, Maria B.; Leonardson, Robert; Rahn, Jerry

    1998-01-01

    Field and laboratory investigations of the giant Betze gold orebody, the largest Carlin-type deposit known, in the north-central Carlin trend, Nevada document that the orebody is composed of individual high-grade oreshoots that contain different geologic, mineralogic, and textural characteristics. The orebody is typical of many structurally controlled Carlin-type deposits, and is hosted in thin-bedded, impure carbonate or limy siltstone, breccia bodies, and intrusive or calc-silicate rock. Most ores in the Betze orebody are highly sheared or brecciated and show evidence of syndeformational hydrothermal deposition. The interplay between rock types and pre- and syn-structural events accounts for most of the distribution and zoning of the oreshoots. Hydrothermal alteration is scale dependent, either in broad, pervasive alteration patterns, or in areas related to various oreshoots. Alteration includes decarbonatization (~decalcification) of carbonate units, argillization (illite-clay), and silicification. Patterns of alteration zoning in and surrounding the Betze orebody define a large porous, dilated volume of rock where high fluid flow predominated. Local restriction of alteration to narrow illite- and clay-rich selvages around unaltered marble or calc-silicate rock phacoids implies that fluid flow favored permeable structures and deformed zones. Gold mainly is present as disseminated sub-micron-sized particles, commonly associated with Asñrich pyrite, although one type of oreshoot contains micron-size free gold. Oreshoots form a three-dimensional zoning pattern in the orebody within a WNW-striking structural zone of shearing and shear folding, termed the Dillon deformation zone (DDZ). Main types of oreshoots are: (1) rutile-bearing siliceous oreshoots; (2) illite-clay-pyrite oreshoots; (3) realgar- and orpiment-bearing oreshoots; (4) stibnite-bearing siliceous oreshoots; and (5) polymetallic oreshoots. Zoning patterns result from paragenetically early development of illite-clay-pyrite oreshoots during movement along the DDZ, and subsequent silicification and brecciation, associated with formation of the realgar- and orpiment-bearing, and stibnite-bearing oreshoots. Additional shear movement along the DDZ followed. Polymetallic oreshoots, which contain minerals rich in Hg, Cu, Zn, Ag, and native Au, were the last ores to form and overprint most earlier oreshoots. Ore textures, gouge, phyllonitic rock, alteration style, and previously documented isotopic and fluid-inclusion data, all indicate a weakly to moderately saline fluid that ascended and cooled during structural displacements. Changing conditions, due to water-wall rock reactions and P-T changes during deformation, are probably responsible for fluid variation that resulted in zoning of the different oreshoots during dynamic interaction of the Au-bearing fluid with the wall rock. This investigation indicates that isolated As-, Sb-, and Hg-rich ores are separate parts of a larger single gold system. This large gold system was contemporaneous with post-Jurassic brittle-ductile deformation, on the basis of deformed mineralized pods of the Jurassic Goldstrike pluton, and large-scale hydrothermal flow, and together they appear to be an integral part of the formation of some Carlin-type gold deposits in north-central Nevada.

  19. Mineral texture based seismic properties of meta-sedimentary and meta-igneous rocks in the orogenic wedge of the Central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Almqvist, B. S. G.; Czaplinska, D.; Piazolo, S.

    2015-12-01

    Progress in seismic methods offers the possibility to visualize in ever greater detail the structure and composition of middle to lower continental crust. Ideally, the seismic parameters, including compressional (Vp) and shear (Vs) wave velocities, anisotropy and Vp/Vs-ratio, allow the inference of detailed and quantitative information on the deformation conditions, chemical composition, temperature and the amount and geometry of fluids and melts in the crust. However, such inferences regarding the crust should be calibrated with known mineral and rock physical properties. Seismic properties calculated from the crystallographic preferred orientation (CPO) and laboratory measurements on representative core material allow us to quantify the interpretations from seismic data. The challenge of such calibrations lies in the non-unique interpretation of seismic data. A large catalogue of physical rock properties is therefore useful, with as many constraining geophysical parameters as possible (including anisotropy and Vp/Vs ratio). We present new CPO data and modelled seismic properties for amphibolite and greenschist grade rocks representing the orogenic wedge in the Central Scandinavian Caledonides. Samples were collected from outcrops in the field and from a 2.5 km long drill core, which penetrated an amphibolite-grade allochthonous unit composed of meta-sedimentary and meta-igneous rocks, as well as mica and chlorite-rich mylonites. The textural data was acquired using large area electron backscatter diffraction (EBSD) maps, and the chemical composition of minerals obtained by energy dispersive x-ray (EDS). Based on the texture data, we compare and evaluate some of the existing methods to calculate texture-based seismic properties of rocks. The suite of samples consists of weakly anisotropic rocks such as felsic gneiss and calc-silicates, and more anisotropic amphibolite, metagabbro, mica-schist. The newly acquired dataset provides a range of seismic properties that improves compositional and structural characterization of deformed middle and lower crust.

  20. Experimental Constraints on Fe Isotope Fractionation in Carbonatite Melt Systems

    NASA Astrophysics Data System (ADS)

    Stuff, M.; Schuessler, J. A.; Wilke, M.

    2015-12-01

    Iron isotope data from carbonatite rocks show the largest variability found in igneous rocks to date [1]. Thus, stable Fe isotopes are promising tracers for the interaction of carbonate and silicate magmas in the mantle, particularly because their fractionation is controlled by oxidation state and bonding environment. The interpretation of Fe isotope data from carbonatite rocks remains hampered, since Fe isotope fractionation factors between silicate and carbonate melts are unknown and inter-mineral fractionation can currently only be assessed by theoretical calculations [1;2]. We present results from equilibration experiments in three natrocarbonatite systems between immiscible silicate and carbonate melts, performed at 1200°C and 0.7 GPa in an internally heated gas pressure vessel at intrinsic redox conditions. The Fe isotope compositions of the silicate melt (sil.m.), quenched to a glass, and the carbonate melt (carb.m.), forming fine-grained quench crystals, were analysed by solution MC-ICP-MS. Our first data indicate a remarkable fractionation of Δ56Fesil.m.‒carb.m.= 0.29 ±0.07 ‰ near equilibrium. At short run durations, even stronger fractionation up to Δ56Fesil.m.‒carb.m. = 0.41 ±0.07 ‰ occurs, due to kinetic effects. Additionally, Δ56Fesil.m.‒carb.m. changes with bulk chemical composition, likely reflecting considerable differences between the studied systems in terms of the Fe3+/Fe2+-ratios in the two immiscible liquids. Our findings provide experimental support for a carbonatite genesis model, in which extremely negative δ56Fe values in carbonatites result from differentiation processes, such as liquid immiscibility [1]. This effect can be enhanced by disequilibrium during fast ascent of carbonatite magmas. Their sensitivity to chemical and redox composition makes Fe isotopes a potential tool for constraining the original compositions of carbonatite magmas. [1] Johnson et al. (2010) Miner. Petrol. 98, 91-110. [2] Polyakov & Mineev (2000) Geochim. Cosmochim. Acta 64, 849-865.

  1. Role of Clay Minerals in Long-Distance Transport of Landslides in Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Watkins, J.; Ehlmann, B. L.; Yin, A.

    2014-12-01

    Long-runout (> 50 km) subaerial landslides are rare on Earth, but are common features episodically shaping Mars' Valles Marineris (VM) trough system over the past 3.5 billion years. They display two end-member morphologies: a thick-skinned inner zone, characterized by fault-bounded, rotated blocks near their source region, and a thin-skinned, exceptionally long-runout outer zone, characterized by thin sheets spreading over 10s of km across the trough floor. Four decades of studies on the latter have resulted in two main competing hypotheses to explain their long-distance transport: (1) movement of landslides over layers of trapped air or soft materials containing ice or snow, enabling basal lubrication, and (2) fluidization of landslide materials with or without the presence of water and volatiles. To address this issue, we examine the mineralogic composition of landslides across VM using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) near-infrared spectral data analysis coupled with detailed geologic mapping and morphometric analysis of satellite images. Our survey reveals a general correlation between transport distance, significant lateral spreading, and the presence of hydrated silicates among VM landslides. Given that smectite clay absorbs water into its layered crystal structure and can reduce the friction coefficient by a factor of three v. that of dry rocks, these results suggest that hydrated silicates played a decisive role in facilitating long-runout landslide transport in VM. We propose that, concurrent with downslope failure and sliding of broken trough-wall rock, frontal landslide masses overrode and entrained hydrated-silicate-bearing trough-floor deposits, lubricating the basal sliding zones and permitting the landslide outer zones to spread laterally while moving forward over the low-friction surface. The key participation of hydrated silicates in episodic, sustained landslide activity throughout the canyon implies that clay minerals, generated by water-rock interactions in the Noachian and Hesperian (4.1- 3.3 Ga), exert a long-lasting influence on geomorphic processes that shape the surface of the planet.

  2. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    PubMed

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H 2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.

  3. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.

    NASA Astrophysics Data System (ADS)

    Bassez, Marie-Paule

    2017-12-01

    In this article, anoxic and oxic hydrolyses of rocks containing Fe (II) Mg-silicates and Fe (II)-monosulfides are analyzed at 25 °C and 250-350 °C. A table of the products is drawn. It is shown that magnetite and hydrogen can be produced during low-temperature (25 °C) anoxic hydrolysis/oxidation of ferrous silicates and during high-temperature (250 °C) anoxic hydrolysis/oxidation of ferrous monosulfides. The high-T (350 °C) anoxic hydrolysis of ferrous silicates leads mainly to ferric oxides/hydroxides such as the hydroxide ferric trihydroxide, the oxide hydroxide goethite/lepidocrocite and the oxide hematite, and to Fe(III)-phyllosilicates. Magnetite is not a primary product. While the low-T (25 °C) anoxic hydrolysis of ferrous monosulfides leads to pyrite. Thermodynamic functions are calculated for elementary reactions of hydrolysis and carbonation of olivine and pyroxene and E-pH diagrams are analyzed. It is shown that the hydrolysis of the iron endmember is endothermic and can proceed within the exothermic hydrolysis of the magnesium endmember and also within the exothermic reactions of carbonations. The distinction between three products of the iron hydrolysis, magnetite, goethite and hematite is determined with E-pH diagrams. The hydrolysis/oxidation of the sulfides mackinawite/troilite/pyrrhotite is highly endothermic but can proceed within the heat produced by the exothermic hydrolyses and carbonations of ferromagnesian silicates and also by other sources such as magma, hydrothermal sources, impacts. These theoretical results are confirmed by the products observed in several related laboratory experiments. The case of radiolyzed water is studied. It is shown that magnetite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite are formed in oxic hydrolysis of ferromagnesian silicates at 25 °C and 350 °C. Oxic oxidation of ferrous monosulfides at 25 °C leads mainly to pyrite and ferric oxides/hydroxides such as ferric trihydroxide, goethite/lepidocrocite and hematite and also to sulfates, and at 250 °C mainly to magnetite instead of pyrite, associated to the same ferric oxides/hydroxides and sulfates. Some examples of geological terrains, such as Mawrth Vallis on Mars, the Tagish Lake meteorite and hydrothermal venting fields, where hydrolysis/oxidation of ferromagnesian silicates and iron(II)-monosulfides may occur, are discussed. Considering the evolution of rocks during their interaction with water, in the absence of oxygen and in radiolyzed water, with hydrothermal release of H2 and the plausible associated formation of components of life, geobiotropic signatures are proposed. They are mainly Fe(III)-phyllosilicates, magnetite, ferric trihydroxide, goethite/lepidocrocite, hematite, but not pyrite.

  4. Fractionation products of basaltic komatiite magmas at lower crustal pressures: implications for genesis of silicic magmas in the Archean

    NASA Astrophysics Data System (ADS)

    Mandler, B. E.; Grove, T. L.

    2015-12-01

    Hypotheses for the origin of crustal silicic magmas include both partial melting of basalts and fractional crystallization of mantle-derived melts[1]. Both are recognized as important processes in modern environments. When it comes to Archean rocks, however, partial melting hypotheses dominate the literature. Tonalite-trondhjemite-granodiorite (TTG)-type silicic magmas, ubiquitous in the Archean, are widely thought to be produced by partial melting of subducted, delaminated or otherwise deeply buried hydrated basalts[2]. The potential for a fractional crystallization origin for TTG-type magmas remains largely unexplored. To rectify this asymmetry in approaches to modern vs. ancient rocks, we have performed experiments at high pressures and temperatures to closely simulate fractional crystallization of a basaltic komatiite magma in the lowermost crust. These represent the first experimental determinations of the fractionation products of komatiite-type magmas at elevated pressures. The aim is to test the possibility of a genetic link between basaltic komatiites and TTGs, which are both magmas found predominantly in Archean terranes and less so in modern environments. We will present the 12-kbar fractionation paths of both Al-depleted and Al-undepleted basaltic komatiite magmas, and discuss their implications for the relative importance of magmatic fractionation vs. partial melting in producing more evolved, silicic magmas in the Archean. [1] Annen et al., J. Petrol., 47, 505-539, 2006. [2] Moyen J-F. & Martin H., Lithos, 148, 312-336, 2012.

  5. Origin of karst conduits in calcareous sandstone and carbonate-silicate rocks: Complex role of insoluble material

    NASA Astrophysics Data System (ADS)

    Bruthans, Jiri; Balak, Frantisek; Schweigstillova, Jana; Vojtisek, Jan

    2017-04-01

    Carbonate karst is best developed in high-grade limestones and majority of the studies is focused on these rocks. Features developed by dissolution of calcite cement in quartz sandstones and dissolution of various carbonate-silicate rocks are studied far less frequently. Unlike in common karst, the insoluble residuum has to be washed out after dissolution to create high-permeability conduits in these rocks. Aquifers in a Bohemian Cretaceous Basin (BCB), the most important hydrogeological basin in the Czech Republic, consist mainly of quartz and calcareous sandstones to siltstones. These rocks are intercalated by thin layers of calcite-cemented sandstone and low-grade limestone, the latter sometimes partly impregnated by a secondary silica. Results of tracer tests show a high flow velocity in some of the aquifers. Springs with flow rate up to 500 l/s and wells with yield up to 200 l/s occur in these rocks. Dissolution features in BCB were however not yet studied in detail. For identification and characterization of rocks prone to karstification, 350 cores were sampled mostly from boreholes but also from rock outcrops in several areas of BCB. Cores were taken from intervals where: (i) high carbonate content was expected, (ii) conduits and enlarged porosity was observed in rock outcrops or wells, (iii) inflows to boreholes were determined by well logging. Calcium carbonate content was determined by calcimetry in all cores. All cores were leached in hydrochloric acid to observe the degree of disintegration after removal of calcite, which was far dominating portion of total carbonate. Polished sections were prepared from selected cores and Ca, Si, Na, K, Al content was automatically mapped by microprobe to visualize the calcium, silica, feldspar and clay mineral distribution in cores. Conduits were photo documented in the field. Two types of sediments with distinct disintegration characteristics were observed: (i) In sandstone composed of quartz grains cemented by calcite the complete disintegration occurs when calcite content exceeds 30-50%. Such calcite-rich layers are mostly few tens of cms thick and are enclosed in quartz sandstone. Groundwater flow dissolves calcite cement and turns the rock into cohesion-less sand. Sand is consequently washed out by headward erosion in drainage areas forming high capacity conduits within the sandstone. (ii) In carbonates containing secondary silica which form reinforcing structure, even 70-80% calcite content may not be sufficient for rock disintegration during leaching. Disintegration occurs only on tectonically heavily fractured zones, where secondary silica structure is fragmented. It was found that inflows into wells are often associated with zones prone to karstification. Results clearly show that form of insoluble material is critical for karstification potential. Insoluble grain size defines minimum flow velocity needed to excavate the conduits in dissolved residuum. Impregnation by secondary silica needs to be tectonically fragmented prior conduits can occur. Research was funded by the Czech Science Foundation (GA CR No. 16-19459S) and Review of groundwater resources (Ident. No. 155996).

  6. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    PubMed

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  7. Discovery of Ni-smectite-rich saprolite at Loma Ortega, Falcondo mining district (Dominican Republic): geochemistry and mineralogy of an unusual case of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite

    NASA Astrophysics Data System (ADS)

    Tauler, Esperança; Lewis, John F.; Villanova-de-Benavent, Cristina; Aiglsperger, Thomas; Proenza, Joaquín A.; Domènech, Cristina; Gallardo, Tamara; Longo, Francisco; Galí, Salvador

    2017-10-01

    Hydrous Mg silicate-type Ni-laterite deposits, like those in the Falcondo district, Dominican Republic, are dominated by Ni-enriched serpentine and garnierite. Recently, abundant Ni-smectite in the saprolite zone have been discovered in Loma Ortega, one of the nine Ni-laterite deposits in Falcondo. A first detailed study on these Ni-smectites has been performed (μXRD, SEM, EPMA), in addition to a geochemical and mineralogical characterisation of the Loma Ortega profile (XRF, ICP-MS, XRD). Unlike other smectite occurrences in laterite profiles worldwide, the Loma Ortega smectites are trioctahedral and exhibit high Ni contents never reported before. These Ni-smectites may be formed from weathering of pyroxene and olivine, and their composition can be explained by the mineralogy and the composition of the Al-depleted, olivine-rich parent ultramafic rock. Our study shows that Ni-laterites are mineralogically complex, and that a hydrous Mg silicate ore and a clay silicate ore can be confined to the same horizon in the weathering profile, which has significant implications from a recovery perspective. In accordance, the classification of "hybrid hydrous Mg silicate - clay silicate" type Ni-laterite deposit for Loma Ortega would be more appropriate.

  8. Continental igneous rock composition: A major control of past global chemical weathering

    PubMed Central

    Bataille, Clément P.; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-01-01

    The composition of igneous rocks in the continental crust has changed throughout Earth’s history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition (87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times. PMID:28345044

  9. Glacial Chemical Alteration of Mars-Like Bedrock

    NASA Astrophysics Data System (ADS)

    Rutledge, A. M.; Horgan, B. H. N.; Havig, J. R.; Rampe, E. B.; Scudder, N.; Hamilton, T.

    2017-12-01

    Mars is understood to have had a widespread and long-lived cryosphere, including glaciers and ice sheets, possibly since the Noachian. However, the contribution of glaciers to the observed alteration mineralogy of Mars is unclear. To characterize this alteration, water and rock samples were collected from glaciated volcanic bedrock of a range of compositions in the Cascade Volcanic Arc, USA: Mount Hood (silicic), Mount Adams (intermediate), North Sister (mafic), and Middle Sister (most mafic). We analyzed glacial meltwater using field meters (pH, temperature), portable spectrophotometry (dissolved silica), and ion chromatography (major ions). We analyzed proglacial rock coatings and sediments using scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible/short-wave-infrared (VSWIR) and thermal-infrared (TIR) spectroscopies. Water samples are dominated by dissolved silica across a range of pH values, and dissolved silica increases significantly at more mafic sites. Rock coatings associated with glacial striations on mafic terrains include a major poorly crystalline silica component, as do proglacial sediments. This field study demonstrates that silica cycling is the dominant alteration process at glaciated volcanics, and more mafic glaciovolcanic sites have higher concentrations of dissolved silica compared to more felsic glaciovolcanic sites. Though basalts have lower silica content than more felsic volcanic rocks, they are more susceptible to silica mobility. On Mars, widespread poorly crystalline, high silica deposits have been modeled in Nothern Acidalia and Gusev Crater, and hydrated silica deposits have been identified in Nili Fossae and elsewhere. We hypothesize that these phases may be indicators of a cold climate regime on early Mars such as one dominated by large regional ice sheets. Cryosphere-driven silica cycling on low-carbonate, mafic rocks may be more important than previously thought on Mars.

  10. Cyclic activity at silicic volcanoes: A response to dynamic permeability variations

    NASA Astrophysics Data System (ADS)

    Lamur, Anthony; Lavallée, Yan; Kendrick, Jackie; Eggertsson, Gudjon; Ashworth, James; Wall, Richard

    2017-04-01

    Silicic volcanoes exhibit cyclic eruptive activity characterised by effusive (dome growth) to quiescent periods punctuated by short explosive episodes. The latter, characterised by fast emissions of gas and ash into the atmosphere, results from stress release through fracturing and causes significant hazards to the surrounding environment. Understanding the formation, development and closure of fractures as well as their impact on the volcanic system is hence vital for better constraining current models. Here, we present the results of two sets of experiments designed to understand first, the development of permeability through fracturing and second, the timescale over which these fractures can persist in magmas. To characterise the influence of a macro-fracture, the permeability of intact volcanic rocks with a wide porosity range (1-41%) was measured at varying effective pressures (-0.001-30 MPa). We then fractured each sample using the Brazilian disc method to induce a tensile macro-fracture, before measuring the permeability under the same conditions. While our results for intact samples are consistent with previous studies, the results for fractured samples display a distinct permeability-porosity relationship. We show that low porosity samples (<18%) suffer a net increase in permeability of up to 4 orders of magnitude upon fracturing, compared to high porosity samples (>18%) that show a less than 1 order of magnitude increase. This suggests that a macro-fracture has the ability to efficiently localise the flow in low porosity rocks by becoming the prevailing structure in a previously micro-fracture-dominated porous network, whereas at higher porosities fluid flow remains controlled by pore connectivity, irrespective of the presence of a fracture. To assess the longevity of fractures in magmas we developed a novel experimental set-up, in which two glass rods were placed in contact for different timescales at high temperatures before being pulled apart to test the tensile strength recovery of the fracture. We show that fracture healing starts within timescales 50-100 times longer than the structural relaxation time of the melt and that that full healing can be achieved within only a few hours of contact (timescale decreasing with decreasing viscosities) at magmatic temperatures. These results are important for understanding the permeability decrease associated with annealing. We postulate that rapid permeability evolution due to fracturing or fracture healing may be the cause of observed cyclicity at silicic volcanoes, whereby "instantaneous" increases in permeability occur through the development of macro-fractures drives explosions. We propose that the timescale for this cyclicity is governed by the competition between stress build up through gas accumulation under a relatively impervious plug until failure and fracture healing through annealing or, as shown in other studies, mineral precipitation and sintering of particulate material in fractures.

  11. The coming revolution in planetology

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1985-01-01

    Current ideas about the moon appear to be mistaken on two fundamental points. First, at least within certain large classes of lunar craters, internal origin (i.e., some form of volcanism) predominates over impact; this result raises questions about the reality of the 'era of violent bombardment'. Second, the origin of tektites by meteoritic impact on the earth cannot be reconciled with physical principles and is to be abandoned. The only viable alternative is origin by lunar volcanism, which implies the following: continuance of (rare) explosive lunar volcanism to the present time; existence of silicic lunar volcanism and of small patches of silicic rock at the lunar surface; a body of rock in the lunar interior, probably at great depth, which is closely similar to the earth's mantle and which contains billions of tons of volatiles, probably including hydrogen; and origin of the moon from the earth after the formation of the earth's core.

  12. Post-eruptive alteration of silicic ignimbrites and lavas, Gran Canaria, Canary Islands - Strontium, neodymium, lead, and oxygen isotopic evidence

    NASA Technical Reports Server (NTRS)

    Cousens, Brian L.; Spera, Frank J.; Dobson, Patrick F.

    1993-01-01

    The isotopic composition of lavas from oceanic islands provides important information about the composition and evolution of the earth's mantle. Isotopic analyses of Miocene comenditic, pantelleritic, and trachyphonolitic ignimbrites and lavas from the Canary islands were performed. Results provide evidence for posteruptive mobility of Rb and Sr during low temperature postemplacement interaction with circulating ground water. Calculated Sr isotope ratios define a magmatic trend in the stratigraph section. 87Sr/86Sr ratios in hydrated vitrophyte and devitrified matrix separates indicate significant posteruptive interaction with meteoric water starting soon after deposition. This process extends patchily through the entire pyroclastic flow and may be ongoing. 87Sr/86Sr ratios determined by whole rock analysis of silicic rocks from oceanic islands are suspect and should not be incorporated into mantle tracer studies. Anorthoclase phenocrysts are resistant to these processes and may produce useful data.

  13. Ultra-reducing conditions in average mantle peridotites and in podiform chromitites: a thermodynamic model for moissanite (SiC) formation

    NASA Astrophysics Data System (ADS)

    Golubkova, Anastasia; Schmidt, Max W.; Connolly, James A. D.

    2016-05-01

    Natural moissanite (SiC) is reported from mantle-derived samples ranging from lithospheric mantle keel diamonds to serpentinites to podiform chromitites in ophiolites related to suprasubduction zone settings (Luobusa, Dongqiao, Semail, and Ray-Iz). To simulate ultra-reducing conditions and the formation of moissanite, we compiled thermodynamic data for alloys (Fe-Si-C and Fe-Cr), carbides (Fe3C, Fe7C3, SiC), and Fe-silicides; these data were augmented by commonly used thermodynamic data for silicates and oxides. Computed phase diagram sections then constrain the P- T- fO2 conditions of SiC stability in the upper mantle. Our results demonstrate that: Moissanite only occurs at oxygen fugacities 6.5-7.5 log units below the iron-wustite buffer; moissanite and chromite cannot stably coexist; increasing pressure does not lead to the stability of this mineral pair; and silicates that coexist with moissanite have X Mg > 0.99. At upper mantle conditions, chromite reduces to Fe-Cr alloy at fO2 values 3.7-5.3 log units above the moissanite-olivine-(ortho)pyroxene-carbon (graphite or diamond) buffer (MOOC). The occurrence of SiC in chromitites and the absence of domains with almost Fe-free silicates suggest that ultra-reducing conditions allowing for SiC are confined to grain scale microenvironments. In contrast to previous ultra-high-pressure and/or temperature hypotheses for SiC origin, we postulate a low to moderate temperature mechanism, which operates via ultra-reducing fluids. In this model, graphite-/diamond-saturated moderately reducing fluids evolve in chemical isolation from the bulk rock to ultra-reducing methane-dominated fluids by sequestering H2O into hydrous phases (serpentine, brucite, phase A). Carbon isotope compositions of moissanite are consistent with an origin of such fluids from sediments originally rich in organic compounds. Findings of SiC within rocks mostly comprised by hydrous phases (serpentine + brucite) support this model. Both the hydrous phases and the limited diffusive equilibration of SiC with most minerals in the rocks indicate temperatures below 700-800 °C. Moissanite from mantle environments is hence a mineral that does not inform on pressure but on a low to moderate temperature environment involving ultra-reduced fluids. Any mineral in equilibrium with SiC could only contain traces of Fe2+ or Cr3+.

  14. Modeling a CO2 mineralization experiment of fractured peridotite from the Semail ophiolite/ Oman

    NASA Astrophysics Data System (ADS)

    Muller, Nadja; Zhang, Guoxiang; van Noort, Reinier; Spiers, Chris; Ten Grotenhuis, Saskia; Hoedeman, Gerco

    2010-05-01

    Most geologic CO2 sequestration technologies focus on sedimentary rocks, where the carbon dioxide is stored in a fluid phase. A possible alternative is to trap it as a mineral in the subsurface (in-situ) in basaltic or even (ultra)mafic rocks. Carbon dioxide in aqueous solution reacts with Mg-, Ca-, and Fe-bearing silicate minerals, precipitates as (MgCa,Fe)CO3 (carbonate), and can thus be permanently sequestered. The cation donors are silicate minerals such as olivine and pyroxene which are abundant in (ultra)mafic rocks, such as peridotite. Investigations are underway to evaluate the sequestration potential of the Semail Ophiolite in Oman, utilizing the large volumes of partially serpentinized peridotite that are present. Key factors are the rate of mineralization due to dissolution of the peridotite and precipitation of carbonate, the extent of the natural and hydraulic fracture network and the accessibility of the rock to reactive fluids. To quantify the influence of dissolution rates on the overall CO2 mineralization process, small, fractured peridotite samples were exposed to supercritical CO2 and water in laboratory experiments. The samples are cored from a large rock sample in the dimension of small cylinders with 1 cm in height and diameter, with a mass of ~2g. Several experimental conditions were tested with different equipment, from large volume autoclave to small volume cold seal vessel. The 650 ml autoclave contained 400-500g of water and a sample under 10 MPa of partial CO2 pressure up to 150. The small capsules in the cold seal vessel held 1-1.5g of water and the sample under CO2 partial pressure from 15MPa to 70 MPa and temperature from 60 to 200°C. The samples remained for two weeks in the reaction vessels. In addition, bench acid bath experiments in 150 ml vials were performed open to the atmosphere at 50-80°C and pH of ~3. The main observation was that the peridotite dissolved two orders of magnitude slower in the high pressure and temperature cell of the cold seal vessel than comparative experiments in large volume autoclaves and bench acid bath vials under lower and atmospheric pressure conditions. We attributed this observation to the limited water availability in the cold seal vessel, limiting the aqueous reaction of bi-carbonate formation and magnesite precipitation. To test this hypothesis, one of the cold seal vessel experiments at 20 MPa and 100°C was simulated with a reactive transport model, using TOUGHREACT. To simulate the actual experimental conditions, the model used a grid on mm and 100's of μm scale and a fractured peridotite medium with serpentine filling the fractures. The simulation produced dissolution comparable to the experiment and showed an effective shut down of the bi-carbonation reaction within one day after the start of the experiment. If the conditions of limited water supply seen in our experiments are applicable in a field setting, we could expect dissolution may be limited by the buffering of the pH and shut down of the bi-carbonate formation. Under field conditions water and CO2 will only flow in hydraulic induced fractures and the natural fracture network that is filled with serpentine and some carbonate. The simulation result and potential implication for the field application will require further experimental investigation in the lab or field in the future.

  15. The biodegradation of layered silicates under the influence of cyanobacterial-actinomycetes associations

    NASA Astrophysics Data System (ADS)

    Ivanova, Ekaterina

    2013-04-01

    The weathering of sheet silicates is well known to be related to local and global geochemical cycles. Content and composition of clay minerals in soil determine the sorption properties of the soil horizons, water-holding capacity of the soil, stickiness, plasticity, etc. Microorganisms have a diverse range of mechanisms of minerals' structure transformation (acid- and alkali formation, biosorption, complexing, etc). One of the methods is an ability of exopolysaccharide-formation, in particular the formation of mucus, common to many bacteria, including cyanobacteria. Mucous covers cyanobacteria are the specific econiches for other bacteria, including actinomycetes. The objective was to analyze the structural changes of clay minerals under the influence of the cyanobacterial-actinomycetes associative growth. The objects of the study were: 1) the experimental symbiotic association, consisting of free-living heterocyst-formative cyanobacterium Anabaena variabilis Kutz. ATCC 294132 and actinomycete Streptomyces cyaneofuscatus FR837630, 2) rock samples obtained from the Museum of the Soil Science Department of the Lomonosov Moscow State University: kaolinite, consisting of kaolin (96%) Al4 (OH) 8 [Si4O10]; mixed with hydromica, chlorite and quartz; vermiculite, consisting of vermiculite (Ca, Mg, ...)*(Mg, Fe)3(OH)2[(Si, Al)4O10]*4H2O and trioctahedral mica (biotite). The mineralogical compositions of the rocks were determined by the universal X-ray Diffractometer Carl Zeiss Yena. The operationg regime was kept constant (30 kv, 40 mA). The cultivation of the association of actinomycete S. cyanoefuscatus and cyanobacterium A. variabilis caused a reduction in the intensity of kaolinite and hydromica reflexes. However, since both (mica and kaolinite) components have a rigid structure, the significant structural transformation of the minerals was not revealed. Another pattern was observed in the experiment, where the rock sample of vermiculite was used as the mineral substrate. The associative growth of S. cyaneofuscatus and A. variabilis led to the transformation of minerals indicated by the significant decreasing of the intensity of the reflections of vermiculite as well as biotite. Reduction in the intensity of the basal reflections of vermiculite (d001, d004 and d005) three times indicates the process of biodestruction of this component of the rock. The formation of the swelling phase - the product of biotite transformation into the mica-vermicullite mixed-layer formation was revealed. The study demonstrates the differences in the transformation of clay minerals under the influence of cyanobacterial-actinomycetes association, depending on minerals' crystal chemistry and it's resistance to weathering. The rate of the process transformation of micas into the mixed-layer formation depends on their structure - trioctahedral mica (biotite, part of vermiculite sample) are transformated much faster than dioctahedral. The growth of associative thallus and monocultures of cyanobacterium and actinomycete promoted the removal of potassium (?), magnesium (Mg) and aluminum (Al) from the crystal lattice of the rock sample of vermiculite. Leaching of elements due to the influence of associative thallus exceeded the release of cations observed in the sample under the influence of the growth of cyanobacterium and streptomycete monocultures and in the control sample of vermiculite. Therefore, the association's biodegradation impact on the mineral structure was significantly greater than the influence of the monocultures of cyanobacteria and actinomycetes.

  16. Pancam multispectral imaging results from the Spirit Rover at Gusev crater

    USGS Publications Warehouse

    Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; Goetz, W.; Golombek, M.; Grant, J. A.; Greeley, R.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Morris, R.V.; Dobrea, E.Z.N.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Wolff, M.J.; Wang, A.

    2004-01-01

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  17. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater.

    PubMed

    Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Blaney, D; Cabrol, N; Calvin, W; Farmer, J; Farrand, W H; Goetz, W; Golombek, M; Grant, J A; Greeley, R; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Moersch, J E; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Wolff, M J; Wang, A

    2004-08-06

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  18. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; hide

    2004-01-01

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  19. Mineral resource of the month: Vermiculite

    USGS Publications Warehouse

    Tanner, Arnold O.

    2014-01-01

    Vermiculite comprises a group of hydrated, laminar magnesium-aluminum-iron silicate minerals resembling mica. They are secondary minerals, typically altered biotite, iron-rich phlogopite or other micas or clay-like minerals that are themselves sometimes alteration products of amphibole, chlorite, olivine and pyroxene. Vermiculite deposits are associated with volcanic ultramafic rocks rich in magnesium silicate minerals, and flakes of the mineral range in color from black to shades of brown and yellow. The crystal structure of vermiculite contains water molecules, a property that is critical to its processing for common uses.

  20. A physical basis for remote rock mapping of igneous rocks using spectral variations in thermal infrared emittance

    NASA Technical Reports Server (NTRS)

    Walter, L. S.; Labovitz, M. L.

    1980-01-01

    Results of a theoretical investigation of the relation between spectral features in the 8-12 micrometer region and rock type are presented. Data on compositions of a suite of rocks and measurements of their spectral intensities in 8.2-10.9 and 9.4-12.1 micrometer bands published by Vincent (1973) were subjected to various quantitative procedures. There was no consistent direct relationship between rock group names and the relative spectral intensities. However, there is such a relationship between the Thornton-Tuttle (1960) Differentiation Index and the relative spectral intensities. This relationship is explicable on the basis of the change in average Si-O bond length which is a function of the degree of polymerization of the SiO4 tetrahedra of the silicate minerals in the igneous rocks.

  1. As, Bi, Hg, S, Sb, Sn and Te geochemistry of the J-M Reef, Stillwater Complex, Montana: constraints on the origin of PGE-enriched sulfides in layered intrusions

    USGS Publications Warehouse

    Zientek, M.L.; Fries, T.L.; Vian, R.W.

    1990-01-01

    The J-M Reef is an interval of disseminated sulfides in the Lower Banded series of the Stillwater Complex that is enriched in the platinum group elements (PGE). Palladium and Pt occur in solid solution in base-metal sulfides and as discrete PGE minerals. PGE minerals include sulfides, tellurides, arsenides, antimonides, bismuthides, and alloys with Fe, Sn, Hg, and Au. Several subpopulations can be delineated based on whole-rock chemical analyses for As, Bi, Cu, Hg, Pd, Pt, S, Sb and Te for samples collected from and adjacent to the J-M Reef. In general, samples from within the reef have higher Pt/Cu, Pd/Cu, Pd/Pt, Te/Bi and S/(Te+Bi) than those collected adjacent to the reef. Vertical compositional profiles through the reef suggest that Pd/Cu and Pt/Cu decrease systematically upsection from mineralized to barren rock. The majority of samples with elevated As, Sb and Hg occur adjacent to the reef, not within it, or in sulfide-poor rocks. Neither magma mixing nor fluid migration models readily explain why the minor quantities of sulfide minerals immediately adjacent to the sulfide-enriched layers that form the J-M Reef have different element ratios than the sulfide minerals that form the reef. If all the sulfides formed by exsolution during a magma mixing event and the modal proportion of sulfide now in the rocks are simply the result of mechanical processes that concentrated the sulfides into some layers and not others, then the composition of the sulfide would not be expected to be different. Models that rely upon ascending liquids or fluids are incompatible with the presence of sulfides that are not enriched in PGE immediately below or interlayered with the PGE-enriched sulfides layers. PGE-enriched postcumulus fluids should have reacted to the same extent with sulfides immediately outside the reef as within the reef. One explanation is that some of the sulfide minerals in the rocks outside the reef have a different origin than those that make up the reef. The sulfide minerals that form the reef may represent a cumulus sulfide phase that formed as the result of a magma-mixing event, achieved its high PGE contents at that time, and accumulated to form a layer. The rocks outside the reef may contain a large proportion of postcumulus sulfide minerals that formed as the last dregs of intercumulus liquids trapped in the interstitial spaces between the cumulus grains reached sulfur saturation and exsolved a sulfide liquid or precipitated a sulfide mineral. The PGE contents of these sulfides would be expected to be less than the cumulus sulfides that form the reef since they would have equilibrated with a much smaller volume of silicate liquid. Another explanation is that some of the sulfide droplets that formed as a result of the mixing event were trapped as inclusions in silicate minerals soon after they formed. This would reduce the amount of magma these sulfide droplets could equilibrate with and effectively reduce their PGE tenor. ?? 1990.

  2. Mantle xenoliths from Central Vietnam: evidence for at least Meso-Proterozoic formation of the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Proßegger, Peter; Ntaflos, Theodoros; Ackerman, Lukáš; Hauzenberger, Christoph; Tran, Tuan Anh

    2016-04-01

    Intraplate Cenozoic basalts that are widely dispersed along the continental margin of East Asia belong to the Western Pacific "diffuse" igneous province. They consist mainly of alkali basalts, basanites,rarely nephelinites, which are mantle xenolith-bearing, potassic rocks and quartz tholeiites. The volcanism in this area has been attributed to the continental extension caused by the collision of India with Asia and by the subduction of the Pacific Ocean below Asia. We studied a suite of 24 mantle xenoliths from La Bang Lake, Dak Doa district and Bien Ho, Pleiku city in the Gia Province, Central Vietnam. They are predominantly spinel lherzolites (19) but spinel harburgites (3) and two garnet pyroxenites are present as well. The sizes of the xenoliths range from 5 to 40 cm in diameter with medium to coarse-grained protogranular textures. Whole rock major and trace element analyses display a wide range of compositions. The MgO concentration varies from 36.0 to 45.8 wt% whereas Al2O3 and CaO range from 0.63 to 4.36 wt% and from 0.52 to 4.21 wt% (with one sample having CaO of 6.63 wt%) respectively. Both CaO and Al2O3 positively correlate with MgO most likely indicating that the sampled rocks were derived from a common mantle source experienced variable degrees of partial melting. Mineral analyses show that the rock forming minerals are chemically homogeneous. The Fo contents of olivine vary between 89.2 and 91.2 and the Mg# of orthopyroxene and clinopyroxene range from 89 to 92 and 89 to 94 respectively. The range of Cr# for spinel is 0.06-0.26. Model calculations in both whole rock and clinopyroxenes show that lithospheric mantle underneath Central Vietnam experienced melt extractions that vary between 2-7, 12-15 and 20-30%. The majority of the primitive mantle-normalized whole rock and clinopyroxene REE patterns are parallel to each other indicating that clinopyroxene is the main repository of the trace elements. Clinopyroxenes are divided into two groups: group A with concave upwards REE and (La/Yb)N < 1 suggesting various degrees of melt extraction and group B with (La/Yb)N ranging between 1 and 10. The group B in a mantle normalized trace element diagram shows negative Pb and Sr anomalies compared to their neighbour elements, which together with the general absence of hydrous phases, suggest variable interaction with percolating silicate melt(s). The primitive-mantle normalized highly siderophile element (HSE) concentration pattern show almost no fractionation among Ir, Ru and Pt with only slight depletion in Os suggesting very limited effect of metasomatism on the HSE contents. On the other hand, most of the samples display clear Re addition from the percolating melts preventing calculation of reliable rhenium depletion ages (TRD). However, one sample with depleted Pd and Re signature yield TRD of 1.0 Ga which can be interpreted as a minimum SCLM stabilization age in this area. Mantle xenoliths from Central Vietnam range from fertile to depleted compositions partly affected by metasomatic silicate melts. Re-Os isotopic composition reveals a Meso-Proterozoic minimum stabilization age of the lithospheric mantle.

  3. Carbon Retention and Isotopic Evolution in Deeply Subducted Sediments: Evidence from the Italian Alps

    NASA Astrophysics Data System (ADS)

    Cook-Kollars, J.; Bebout, G. E.; Agard, P.; Angiboust, S.

    2012-12-01

    Subduction-zone metamorphism of oceanic crust and carbonate-rich seafloor sediments plays an important regulatory role in the global C cycle by controlling the fraction of subducting C entering long-term storage in the mantle and the fraction of subducting C emitted into the atmosphere in arc volcanic gases. Modeling studies suggest that the extent of decarbonation of subducting sediments could be strongly affected by extents of infiltration by external H2O-rich fluids and that, in cool subduction zones, the dehydration of subducting oceanic slabs may not release sufficient H2O to cause significant decarbonation of overlying sediments [Gorman et al. (2006), G-cubed; Hacker (2008), G-cubed]. Metasedimentary suites in the Western Alps (sampled from the Schistes Lustres, Zermatt-Saas ophiolite, and at Lago di Cignana) were subducted to depths corresponding to 1.5-3.2 GPa, over a range of peak temperatures of 350-600°C, and are associated with HP/UHP-metamorphosed Jurassic ophiolitic rocks [Agard et al. (2001), Bull. soc. geol. France; Frezzotti et al. (2011), Nature Geoscience]. These metasedimentary suites are composed of interlayered metapelites and metacarbonates and represent a range of peak P-T conditions experienced in modern, relatively cool subduction zones. Integrated petrologic and isotopic study of these rocks allows an analysis of decarbonation and isotopic exchange among oxidized and reduced C reservoirs along prograde subduction-zone P-T paths. Petrographic work on Schistes Lustres metacarbonates indicates only minor occurrences of calc-silicate phases, consistent with the rocks having experienced only very minor decarbonation during prograde metamorphism. Carbonate δ13CVPDB values (-1.5 to 1‰) are similar to values typical of marine carbonates. Higher grade, UHP-metamorphosed carbonates at Cignana show mineralogic evidence of decarbonation; however, the δ13C of the calcite in these samples remains similar to that of marine carbonate. With increasing grade, metapelitic carbonaceous matter shows an increase in δ13CVPDB, ranging from about -25‰ in low-grade Schistes Lustres samples to -16‰ in the highest-grade Cignana samples. Carbonate in the entire suite shows decrease in δ18OSMOW, from marine carbonate values > 25‰ to values of 17-22‰ independent of the carbonate content of the rocks. This shift could possibly be explained by isotopic exchange with silicate phases in the same rocks [Henry et al. (1996), Chem. Geol.]. Metapelitic rocks in this suite experienced moderate amounts of dehydration (20-50%) largely related to breakdown of chlorite and carpholite [Bebout et al. (in press), Chem. Geol. (abstract in this session); Angiboust and Agard (2010), Lithos], conceivably providing a source for infiltrating H2O-rich fluids producing negative shifts in calcite δ18O in interlayered metacarbonates. These results indicate that relatively little decarbonation occurred in carbonate-bearing sediments subducted to depths greater than 100 km, arguing against any model of extensive decarbonation driven by infiltration of the sediments by H2O-rich fluids released from mafic and ultramafic parts of the underlying subducting slab. This study provides field evidence for the efficient retention of C in subducting shale-carbonate sequences through forearc depths, potentially affecting the C budget and isotopic evolution of the deeper mantle.

  4. Highly Reducing Partitioning Experiments Relevant to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3-7 log units below the Iron-Wüstite (Fe-FeO) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). With this limited amount of material, we must perform experiments to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity. Experiments are being conducted at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were selected for the final run products to contain metal, silicate melt, and sulfide melt phases. Oxygen fugacity is controlled in the experiments by adding silicon metal to the samples, using the Si-SiO2 oxygen buffer, which is approximately 5 log units more reducing than the Fe-FeO oxygen buffer at our temperatures of interest. The target silicate melt compositional is diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. Elements detected on Mercury's surface by MESSENGER (K, Na, Fe, Ti, Cl, Al, Cr, Mn, U, Th) and other geochemically relevant elements (P, F, H, N, C, Co, Ni, Mo, Ce, Nd, Sm, Eu, Gd, Dy, Yb) are added to the starting composition at trace abundances (approximately 500 ppm) so that they are close enough to infinite dilution to follow Henry's law of trace elements, and their partitioning behavior can be measured between the metal, silicate, and sulfide phases. The results of these experiments will allow us to assess the thermal and magmatic evolution of the planet Mercury from a geochemical standpoint.

  5. Aluminum enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints.

    USGS Publications Warehouse

    Zen, E.

    1986-01-01

    The degree of Al saturation of an igneous rock may be given by its aluminium saturation index (ASI), defined as the molar ratio Al2O3/(CaO+K2O+Na2O). One suggested origin for mildly peraluminous granites (ASI 1-1.1) is fractional crystallization of subaluminous magmas (ASI 1. For hornblende to effectively cause a melt to evolve into a peraluminous composition, it must be able to coexist with peraluminous magmas; e.g. at = or <5 kbar hornblende can coexist with strongly peraluminous melts (ASI approx 1.5). Potentials and problems of using coarse-grained granitic rocks to prove courses of magmatic evolution are illustrated by a suite of samples from the Grayling Lake pluton, SW Montana. Such rocks generally contain a large cumulate component and should not be used as a primary test for the occurrence or efficacy of a fractionation process that might lead to peraluminous melts. The process is unlikely to give rise to peraluminous plutons of batholithic dimensions. A differential equation is presented which allows the direct use of mineral chemistry and modal abundance to predict the path of incremental evolution of a given magma.-R.A.H.

  6. Pancam multispectral imaging results from the opportunity Rover at Meridiani Planum

    USGS Publications Warehouse

    Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.; Grotzinger, J.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Morris, R.V.; Noe Dobrea, E.Z.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.M.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Weitz, C.M.; Wolff, M.J.

    2004-01-01

    Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.

  7. Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum.

    PubMed

    Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Calvin, W; Farrand, W H; Goetz, W; Golombek, M; Greeley, R; Grotzinger, J; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J M; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Weitz, C M; Wolff, M J

    2004-12-03

    Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.

  8. Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Calvin, W.; Farrand, W. H.; Goetz, W.; Golombek, M.; Greeley, R.; hide

    2004-01-01

    Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.

  9. Redistribution of iron and titanium in subduction zones: insights from high-pressure serpentinites

    NASA Astrophysics Data System (ADS)

    Crossley, Rosalind; Evans, Katy; Reddy, Steven; Lester, Gregory

    2017-04-01

    The redox state, quantity and composition of subduction zone fluids influence the transport and precipitation of elements including those which are redox-sensitive, of economic importance such as Cu, Au and Ag, and those considered to be immobile, which include Fe3+. However, subduction zone fluids remain poorly understood. The redox state of Fe in high-pressure ultramafic rocks, which host a significant proportion of Fe3+, can be used to provide an insight into Fe cycling and constrain the composition of subduction zone fluids. In this work, a combination of the study of oxide and silicate mineral textures, interpretation of mineral parageneses, mineral composition data, and the whole rock geochemistry of high-pressure retrogressed ultramafic rocks from the Zermatt-Saas Zone constrains the distribution of iron and titanium, and oxidation state of iron, to provide constraints on fluids at depth in subduction zones. Oxide minerals host the bulk of the iron, particularly Fe3+. The increase in mode of magnetite during initial retrogression is most consistent with oxidation of existing iron within the samples during the infiltration of an oxidising fluid since it is difficult to reconcile addition of Fe3+ with the known limited solubility of this species. These fluids may be sourced from hybrid samples and/or serpentinites at greater depths. However, high Ti contents are not typical of serpentinites and additionally cannot be accounted for by simple mixing of a depleted mantle protolith with the nearby Allalin gabbro. Titanium-rich samples are suggested to result from fluid-facilitated hybridisation of gabbro and serpentinite protoliths prior to peak metamorphism, and provides the tantalising possibility that Ti, an element generally perceived as immobile, has been added to the rock during this process. If Ti addition has occurred, then the introduction of Fe3+, also generally considered to be immobile, cannot be disregarded. Aluminosilicate complexing could provide a transport vector for Ti where this mechanism of Ti transport is consistent with the Al-rich nature of the sample.

  10. Metamorphism and gold mineralization in the Blue Ridge, Southernmost Appalachians

    USGS Publications Warehouse

    Stowell, H.H.; Lesher, C.M.; Green, N.L.; Sha, P.; Guthrie, G.M.; Sinha, A.K.

    1996-01-01

    Lode gold mineralization in the Blue Ridge of the southernmost Appalachians is hosted by metavolcanic rocks (e.g., Anna Howe mine, AL; Royal Vindicator mine, GA), metaplutonic rocks (e.g., Hog Mountain mine, AL), and metasedimentary rocks (e.g., Lowe, Tallapoosa, and Jones Vein mines, AL). Most gold occurs in synkinematic quartz ?? plagioclase ?? pyrite ?? pyrrhotite ?? chlorite veins localized along polydeformational faults that juxtapose rocks with significantly different peak metamorphic mineral assemblages. Mineralogy, chemistry, and O and H isotope studies suggest that the three types of host rocks have undergone differing amounts and types of alteration during mineralization. Limited wall-rock alteration in metavolcanic- and metasediment-hosted deposits, and relatively extensive wall-rock alteration in granitoid-hosted deposits, suggests that most deposits formed from fluids that were close to equilibrium with metavolcanic and metasedimentary rocks. Stable isotope compositions of the fluids calculated from vein minerals and vein selvages are consistent with a predominantly metasedimentary fluid source, but vary from deposit to deposit (-22 to -47??? ??D, 4-5??? ??18O, and 5-7??? ??34S at Anna Howe and Royal Vindicator; -48 to -50??? ??D, 9-13??? ??18O, and ca. 19??? ??34S at Lowe and Jones Vein; and -22 to -23??? ??D, 8-11??? ??18O, 9-10??? ??34S, and -6 ??13C at Hog Mountain). Silicate mineral thermobarometry of vein, vein selvage, and wall-rock mineral assemblages indicate that mineralization and regional metamorphism occured at greenschist to amphibolite facies (480?? ?? 75??C at Anna Howe, 535?? ?? 50??C at 6.4 ?? 1 kbars at Lowe, 530?? ?? 50??C at 6.9 ?? 1 kbars at Tallapoosa, and 460?? ?? 50??C at 5.5 ?? 1 kbars at Hog Mountain). Oxygen isotope fractionation between vein minerals and selvage minerals consistently records equilibration temperatures that are similar to or slightly lower than those estimated from silicate thermometry. Auriferous veins contain numerous fluid inclusions that were emplaced in several stages and can be subdivided into five compositional types based on salt and CO2 concentrations. Fluid inclusion isochores for early formed inclusions from these veins intercept the pressure and temperature conditions estimated from silicate mineral thermobarometry and stable isotope thermometry, and are compatible with entrapment at those conditions. These fluids exhibit significant variation in salinity (XNaClequiv = 0.0-0.2) and CO2 (XCO2 = 0.0-0.2), suggesting variation in fluid-wall-rock interaction that accompanied gold deposition during declining temperatures. Less abundant and later fluids within the veins are dominantly CO2. The association of gold mineralization with structurally controlled concordant and discordant quartz sulfide veins, and the temperatures and pressures of wall-rock alteration and regional metamorphism indicate that the present distribution of gold is a result of metamorphism during progressive D2-D3 deformation. Isotopic data for alteration envelopes date this event as Alleghanian: 279 ?? 14 Ma (K-Ar whole rock) and 343 ?? 18 Ma (K-Ar biotite) at Lowe; and 315 ?? 18 Ma (Rb-Sr whole-rock isochron; 87Sr/86Sr, = 0.7061 ?? 0.0008) and 294 ?? 16 Ma (K-Ar whole-rock) at Hog Mountain. Available data are compatible with development of the lodes during early Alleghanian overthrusting of allochthons over sedimentary rocks of the autochthonous North American margin. The implication is that the fluids were derived from metasedimentary and/or metavolcanic formations in the lower parts of the crystalline thrust stack (or possibly from underlying autochthonous sedimentary formations), ascended along permeable fault zones, and were emplaced as veins into dilatent areas in and adjacent to the fault zones.

  11. X-ray biosignature of bacteria in terrestrial and extra-terrestrial rocks

    NASA Astrophysics Data System (ADS)

    Lemelle, L.; Simionovici, A.; Susini, J.; Oger, P.; Chukalina, M.; Rau, Ch.; Golosio, B.; Gillet, P.

    2003-04-01

    X-ray imaging techniques at the best spatial resolution and using synchrotron facilities are put forth as powerful techniques for the search of small life forms in extraterrestrial rocks under quarantine conditions (Lemelle et al. 2003). Samples, which may be collected in situ on the martian surface or on a cometary surface, will be brought back and finally stored in a container. We tested on the ID22 beamline, the possibilities of the X-ray absorption and fluorescence tomographies on sub-mm grains of NWA817 (Lemelle et al. submitted) and Tatahouine (Simionovici et al. 2001) meteorites stored in a 10 micrometer silica capillary, full of air, mimicking such containers. Studies of the X-ray microtomographies carried on reveal the positions, the 3D textures and mineralogies of the microenvironments where traces of life should be looked for in priority (with a submicrometer spatial resolution). Limitations with respect to bacterial detection are due to the difficulties to obtain information about light elements (Z <= 14), major constituents of biological and silicate samples. At this stage, traces of life were not detected, nor identified such as, on all the studied meteorites through the capillary. Theoretical developments of an internal elemental microanalysis combining X-ray fluorescence, Compton and Transmission tomographies will soon allow improvements of 3D detection of life by X-ray techniques (Golosio et al. submitted). We tested on the ID21 beamline, the possibilities of the X-ray imaging techniques on bacteria/silicate assemblages prepared in the laboratory and directly placed in the beam. The X-ray signature of a "present" bacteria on a silicate surface was defined by X-ray mapping, out of a container, as coincident micrometer and oval zones having strong P and S fluorescence lines (S-fluorescence being slightly lower than P-fluorescence) and an amino-linked sulfur redox speciation. The X-ray signature of a single bacteria can now be applied to test the bacterial origin of nanostructures observed on some meteorite surfaces. Lemelle et al. (2003a) accepted to Journal de Physique, b submitted to Am. Min., Simionovici et al. (2001) Proc. SPIE, vol 4503, ed. U. BONSE, San Diego, August. Golosio et al. submitted to Phys. Rev. B

  12. Along and Across Arc Variation of the Central Andes by Single Crystal Trace Element Analaysis

    NASA Astrophysics Data System (ADS)

    Michelfelder, G.; Sundell, T.; Wilder, A.; Salings, E. E.

    2017-12-01

    Along arc and across arc geochemical variations at continental volcanic arcs are influenced by a number of factors including the composition and thickness of the continental crust, mantle heterogeneity, and fluids from the subducted slab. Whole rock geochemical trends along and across the arc front of the Central Volcanic Zone (CVZ) have been suggested to be primarily influenced by the composition and thickness of the crust. In the CVZ, Pb isotopic domains relate volcanic rock compositions to the crustal basement and systematically varies with crustal age. It has been shown repeatedly that incompatible trace element trends and trace element ratios can be used to infer systematic geochemical changes. However, there is no rule linking magmatic process or chemical heterogeneity/ homogeneity as a result of large crustal magma storage reservoirs such as MASH zones to the observed variation. Here we present a combination of whole rock major- and trace element data, isotopic data and in situ single crystal data from plagioclase, pyroxene and olivine for six stratovolcanoes along the arc front and in the back arc of the CVZ. We compare geochemical trends at the whole and single crystal scale. These volcanoes include lava flows and domes from Cerro Uturuncu in the back-arc, Aucanquilcha, Ollagüe, San Pedro-San Pablo, Lascar, and Lazufre from the arc front. On an arc-wide scale, whole rock samples of silicic lavas from these six composite volcanoes display systematically higher K2O, LILE, REE and HFSE contents and 87Sr/86Sr ratios with increasing distance from the arc-front. In contrast, the lavas have systematically lower Na2O, Sr, and Ba contents; LILE/HFSE ratios; 143Nd/144Nd ratios; and more negative Eu anomalies. Silicic magmas along the arc-front reflecting melting of young, mafic composition source rocks with the continental crust becoming increasingly older and more felsic toward the east. These trends are paralleled in the trace element compositions of plagioclase cores which systematically become less diverse in composition in younger lava flows from each center. We suggest these trends result from progressively smaller degrees of mantle partial melting, primary melt generation, and crustal hybridization with distance from the arc-front and varying influence of MASH zone processes.

  13. Permian A-type rhyolites of the Muráň Nappe, Inner Western Carpathians, Slovakia: in-situ zircon U-Pb SIMS ages and tectonic setting

    NASA Astrophysics Data System (ADS)

    Ondrejka, Martin; Li, Xian-Hua; Vojtko, Rastislav; Putis, Marian; Uher, Pavel; Sobocký, Tomas

    2018-04-01

    Three representative A-type rhyolitic rock samples from the Muráň Nappe of the inferred Silicic Unit of the Inner Western Carpathians (Slovakia) were dated using the high-precision SIMS U-Pb isotope technique on zircons. The geochronological data presented in this paper is the first in-situ isotopic dating of these volcanic rocks. Oscillatory zoned zircon crystals mostly revealed concordant Permian (Guadalupian) ages: 266.6 ± 2.4 Ma in Tisovec-Rejkovo (TIS-1), 263.3 ± 1.9 Ma in Telgárt-Gregová Hill (TEL-1) and 269.5 ± 1.8 Ma in Veľká Stožka-Dudlavka (SD-2) rhyolites. The results indicate that the formation of A-type rhyolites and their plutonic equivalents are connected to magmatic activity during the Permian extensional tectonics and most likely related to the Pangea supercontinent break-up.

  14. A Crustal Rock Clast in Magnesian Anorthositic Breccia, Dhofar 489 and Its Excavation from a Large Basin

    NASA Technical Reports Server (NTRS)

    Takeda, Hiroshi; Bogard, D. D.; Yamaguchi, Akira; Ohtake, Makiko; Saiki, Kazuto

    2004-01-01

    We report the mineralogy and Ar-Ar age of a spinel troctolite clast with a granulitic texture found in the Dofar 489 lunar meteorite. This anothositic breccia contained magnesian mafic silicates not common in ferroan anorthosites (FAN) from the Feldspathic Highlands Terrane (FHT) of Joliff et al. The Ar-Ar ages of most FANs in the Apollo sample collection from the Procellarum KREEP Terrane (PKT) and FHT of the near-side of the Moon were reset at around 3.9 Gyr. by the basin forming event of Imbrium. From the older Ar-Ar age of Dho 489, we propose that a large basin formation other than the Imbrium basin may have mixed deep crustal rocks such as spinel troctolites with "pure" anrthosites to produce a magnesian anorthosite brecca. This model is in line with a proposal by Bussey and Spudis, who reported that inner rings of large basins display massifs of nearly pure anorthosites.

  15. Single Pulse Remote Raman Detection of Minerals and Organics Under Illuminated Condition from 10 Meters Distance

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Sharma, S. K.; Lucey, P. G.

    2005-01-01

    A directly coupled portable remote Raman instrument developed by the University of Hawaii has been shown here to identify several minerals, chemicals and organics from a distance of 10 m using a single laser pulse in a well illuminated background. Raman spectra, obtained during a very short period of time, of common minerals e.g., dolomite, calcite, marble, barite, gypsum, quarts, rutile, fluorapatite etc. clearly show Raman features which could be used as fingerprints for mineral identification. Raman features of organics such as benzene, cyclohexane, 2-propanol, naphthalene, etc. and other chemicals containing various functional groups like oxides, silicates, sulphates, nitrates, phosphates and carbonates were also easily detected. Ability to measure Raman spectra with a single laser pulse would be promising for future space missions where power consumption is critical and a rapid survey of the minerals with moderate to high Raman cross section might be desirable for selecting rocks that would provide high scientific return or for acquiring rocks for sample return to the Earth.

  16. Miocene magmatism in the Bodie Hills volcanic field, California and Nevada: A long-lived eruptive center in the southern segment of the ancestral Cascades arc

    USGS Publications Warehouse

    John, David A.; du Bray, Edward A.; Blakely, Richard J.; Fleck, Robert J.; Vikre, Peter; Box, Stephen E.; Moring, Barry C.

    2012-01-01

    The Middle to Late Miocene Bodie Hills volcanic field is a >700 km2, long-lived (∼9 Ma) but episodic eruptive center in the southern segment of the ancestral Cascades arc north of Mono Lake (California, U.S.). It consists of ∼20 major eruptive units, including 4 trachyandesite stratovolcanoes emplaced along the margins of the field, and numerous, more centrally located silicic trachyandesite to rhyolite flow dome complexes. Bodie Hills volcanism was episodic with two peak periods of eruptive activity: an early period ca. 14.7–12.9 Ma that mostly formed trachyandesite stratovolcanoes and a later period between ca. 9.2 and 8.0 Ma dominated by large trachyandesite-dacite dome fields. A final period of small silicic dome emplacement occurred ca. 6 Ma. Aeromagnetic and gravity data suggest that many of the Miocene volcanoes have shallow plutonic roots that extend to depths ≥1–2 km below the surface, and much of the Bodie Hills may be underlain by low-density plutons presumably related to Miocene volcanism.Compositions of Bodie Hills volcanic rocks vary from ∼50 to 78 wt% SiO2, although rocks with <55 wt% SiO2 are rare. They form a high-K calc-alkaline series with pronounced negative Ti-P-Nb-Ta anomalies and high Ba/Nb, Ba/Ta, and La/Nb typical of subduction-related continental margin arcs. Most Bodie Hills rocks are porphyritic, commonly containing 15–35 vol% phenocrysts of plagioclase, pyroxene, and hornblende ± biotite. The oldest eruptive units have the most mafic compositions, but volcanic rocks oscillated between mafic and intermediate to felsic compositions through time. Following a 2 Ma hiatus in volcanism, postsubduction rocks of the ca. 3.6–0.1 Ma, bimodal, high-K Aurora volcanic field erupted unconformably onto rocks of the Miocene Bodie Hills volcanic field.At the latitude of the Bodie Hills, subduction of the Farallon plate is inferred to have ended ca. 10 Ma, evolving to a transform plate margin. However, volcanism in the region continued until 8 Ma without an apparent change in rock composition or style of eruption. Equidimensional, polygenetic volcanoes and the absence of dike swarms suggest a low differential horizontal stress regime throughout the lifespan of the Bodie Hills volcanic field. However, kinematic data for veins and faults in mining districts suggest a change in the stress field from transtensional to extensional approximately coincident with the inferred cessation of subduction.Numerous hydrothermal systems were operative in the Bodie Hills during the Miocene. Several large systems caused alteration of volcaniclastic rocks in areas as large as 30 km2, but these altered rocks are mostly devoid of economic mineral concentrations. More structurally focused hydrothermal systems formed large epithermal Au-Ag vein deposits in the Bodie and Aurora mining districts. Economically important hydrothermal systems are temporally related to intermediate to silicic composition domes.Rock types, major and trace element compositions, petrographic characteristics, and volcanic features of the Bodie Hills volcanic field are similar to those of other large Miocene volcanic fields in the southern segment of the ancestral Cascade arc. Relative to other parts of the ancestral arc, especially north of Lake Tahoe in northeastern California, the scarcity of mafic rocks, relatively K-rich calc-alkaline compositions, and abundance of composite dome fields in the Bodie Hills may reflect thicker crust beneath the southern ancestral arc segment. Thicker crust may have inhibited direct ascent and eruption of mafic, mantle-derived magma, instead stalling its ascent in the lower or middle crust, thereby promoting differentiation to silicic compositions and development of porphyritic textures characteristic of the southern ancestral arc segment.

  17. Melting in super-earths.

    PubMed

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  18. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    PubMed

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Petrologic evolution of divergent peralkaline magmas from the Silent Canyon caldera complex, southwestern Nevada volcanic field

    USGS Publications Warehouse

    Sawyer, D.A.; Sargent, K.A.

    1989-01-01

    The Silent Canyon volcanic center consists of a buried Miocene peralkaline caldera complex and outlying peralkaline lava domes. Two widespread ash flow sheets, the Tub Spring and overlying Grouse Canyon members of the Miocene Belted Range Tuff, were erupted from the caldera complex and have volumes of 60-100 km3 and 200 km3, respectively. Eruption of the ash flows was preceded by widespread extrusion of precaldera comendite domes and was followed by extrusion of postcollapse peralkaline lavas and tuffs within and outside the caldera complex. Lava flows and tuffs were also deposited between the two major ash flow sheets. Rocks of the Silent Canyon center vary significantly in silica content and peralkalinity. Weakly peralkaline silicic comendites (PI 1.0-1.1) are the most abundant precaldera lavas. Postcollapse lavas range from trachyte to silicic comendite; some have anomalous light rare earth element (LREE) enrichments. Silent Canyon rocks follow a common petrologic evolution from trachyte to low-silica comendite; above 73% SiO2, compositions of the moderately peralkaline comendites diverge from those of the weakly peralkaline silicic comendites. The development of divergent peralkaline magmas, toward both pantelleritic and weakly peralkaline compositions, is unusual in a single volcanic center. -from Authors

  20. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering

    NASA Astrophysics Data System (ADS)

    Goddéris, Yves; Donnadieu, Yannick; Carretier, Sébastien; Aretz, Markus; Dera, Guillaume; Macouin, Mélina; Regard, Vincent

    2017-04-01

    The onset of the late Palaeozoic ice age about 340 million years ago has been attributed to a decrease in atmospheric CO2 concentrations associated with expansion of land plants, as plants both enhance silicate rock weathering--which consumes CO2--and increase the storage of organic carbon on land. However, plant expansion and carbon uptake substantially predate glaciation. Here we use climate and carbon cycle simulations to investigate the potential effects of the uplift of the equatorial Hercynian mountains and the assembly of Pangaea on the late Palaeozoic carbon cycle. In our simulations, mountain uplift during the Late Carboniferous caused an increase in physical weathering that removed the thick soil cover that had inhibited silicate weathering. The resulting increase in chemical weathering was sufficient to cause atmospheric CO2 concentrations to fall below the levels required to initiate glaciation. During the Permian, the lowering of the mountains led to a re-establishment of thick soils, whilst the assembly of Pangaea promoted arid conditions in continental interiors that were unfavourable for silicate weathering. These changes allowed CO2 concentrations to rise to levels sufficient to terminate the glacial event. Based on our simulations, we suggest that tectonically influenced carbon cycle changes during the late Palaeozoic were sufficient to initiate and terminate the late Palaeozoic ice age.

  1. LOW VELOCITY SHPERE IMPACT OF SODA LIME SILICATE GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrissey, Timothy G; Fox, Ethan E; Wereszczak, Andrew A

    2012-01-01

    This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity ( 30 m/s or 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted in contextmore » to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations.« less

  2. Evolution of silicic magma in the upper crust: the mid-Tertiary Latir volcanic field and its cogenetic granitic batholith, northern New Mexico, USA

    USGS Publications Warehouse

    Lipman, P.W.

    1988-01-01

    Structural and topographic relief along the eastern margin of the Rio Grande rift, northern New Mexico, provides a remarkable cross-section through the 26-Ma Questa caldera and cogenetic volcanic and plutonic rocks of the Latir field. Exposed levels increase in depth from mid-Tertiary depositional surfaces in northern parts of the igneous complex to plutonic rocks originally at 3-5 km depths in the S. Erosional remnants of an ash-flow sheet of weakly peralkaline rhyolite (Amalia Tuff) and andesitic to dactitic precursor lavas, disrupted by rift-related faults, are preserved as far as 45 km beyond their sources at the Questa caldera. Broadly comagmatic 26 Ma batholithic granitic rocks, exposed over an area of 20 by 35 km, range from mesozonal granodiorite to epizonal porphyritic granite and aplite; shallower and more silicic phases are mostly within the caldera. Compositionally and texturally distinct granites defined resurgent intrusions within the caldera and discontinuous ring dikes along its margins: a batholithic mass of granodiorite extends 20 km S of the caldera and locally grades vertically to granite below its flat-lying roof. A negative Bouguer gravity anomaly (15-20 mgal), which encloses exposed granitic rocks and coincides with boundaries of the Questa caldera, defined boundaries of the shallow batholith, emplaced low in the volcanic sequence and in underlying Precambrian rocks. Paleomagnetic pole positions indicate that successively crystallised granitic plutons cooled through Curie temperatures during the time of caldera formation, initial regional extension, and rotational tilting of the volcanic rocks. Isotopic ages for most intrusions are indistinguishable from the volcanic rocks. These relations indicate that the batholithic complex broadly represents the source magma for the volcanic rocks, into which the Questa caldera collapsed, and that the magma was largely liquid during regional tectonic disruption. -from Author

  3. Processes involved in the formation of magnesian-suite plutonic rocks from the highlands of the Earth's Moon

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Neal, Clive R.; Taylor, Lawrence A.; Halliday, Alex N.

    1995-01-01

    The earliest evolution of the Moon likely included the formation of a magma ocean and the subsequent development of anorthositic flotation cumulates. This primary anorthositic crust was then intruded by mafic magmas which crystallized to form the lunar highlands magnesian suite. The present study is a compilation of petrologic, mineral-chemical, and geochemical information on all pristine magnesian-suite plutonic rocks and the interpretation of this data in light of 18 'new' samples. Of these 18 clasts taken from Apollo 14 breccias, 12 are probably pristine and include four dunites, two norites, four troctolites, and two anorthosites. Radiogenic isotopic whole rock data also are reported for one of the 'probably pristine' anorthositic troctolites, sample 14303,347. The relatively low Rb content and high Sm and Nd abundances of 14303,347 suggest that this cumulate rock was derived from a parental magma which had these chemical characteristics. Trace element, isotopic, and mineral-chemical data are used to interpret the total highlands magnesian suite as crustal precipitates of a primitive KREEP (possessing a K-, rare earth element (REE)-, and P-enriched chemical signature) basalt magma. This KREEP basalt was created by the mixing of ascending ultramafic melts from the lunar interior with urKREEP (the late, K-, REE-, and P-enriched residuum of the lunar magma ocean). A few samples of the magnesian suite with extremely elevated large-ion lithophile elements (5-10x other magnesian-suite rocks) cannot be explained by this model or any other model of autometasomatism, equilibrium crystallization, or 'local melt-pocket equilibrium' without recourse to an extremely large-ion lithophile element-enriched parent liquid. It is difficult to generate parental liquids which are 2-4 x higher in the REE than average lunar KREEP, unless the liquids are the basic complement of a liquid-liquid pair, i.e., the so-called 'REEP-fraction,' from the silicate liquid immiscibility of urKREEP. Scarce age information on lunar rocks suggests that magnesian-suite magmatism was initiated at progressively more recent time from the northeast to the southwest on the lunar nearside from 4.45 to 4.25 Ga.

  4. Mapping of hydrothermally altered rocks using airborne multispectral scanner data, Marysvale, Utah, mining district

    USGS Publications Warehouse

    Podwysocki, M.H.; Segal, D.B.; Jones, O.D.

    1983-01-01

    Multispectral data covering an area near Marysvale, Utah, collected with the airborne National Aeronautics and Space Administration (NASA) 24-channel Bendix multispectral scanner, were analyzed to detect areas of hydrothermally altered, potentially mineralized rocks. Spectral bands were selected for analysis that approximate those of the Landsat 4 Thematic Mapper and which are diagnostic of the presence of hydrothermally derived products. Hydrothermally altered rocks, particularly volcanic rocks affected by solutions rich in sulfuric acid, are commonly characterized by concentrations of argillic minerals such as alunite and kaolinite. These minerals are important for identifying hydrothermally altered rocks in multispectral images because they have intense absorption bands centered near a wavelength of 2.2 ??m. Unaltered volcanic rocks commonly do not contain these minerals and hence do not have the absorption bands. A color-composite image was constructed using the following spectral band ratios: 1.6??m/2.2??m, 1.6??m/0.48??m, and 0.67??m/1.0??m. The particular bands were chosen to emphasize the spectral contrasts that exist for argillic versus non-argillic rocks, limonitic versus nonlimonitic rocks, and rocks versus vegetation, respectively. The color-ratio composite successfully distinguished most types of altered rocks from unaltered rocks. Some previously unrecognized areas of hydrothermal alteration were mapped. The altered rocks included those having high alunite and/or kaolinite content, siliceous rocks containing some kaolinite, and ash-fall tuffs containing zeolitic minerals. The color-ratio-composite image allowed further division of these rocks into limonitic and nonlimonitic phases. The image did not allow separation of highly siliceous or hematitically altered rocks containing no clays or alunite from unaltered rocks. A color-coded density slice image of the 1.6??m/2.2??m band ratio allowed further discrimination among the altered units. Areas containing zeolites and some ash-fall tuffs containing montmorillonite were readily recognized on the color-coded density slice as having less intense 2.2-??m absorption than areas of highly altered rocks. The areas of most intense absorption, as depicted in the color-coded density slice, are dominated by highly altered rocks containing large amounts of alunite and kaolinite. These areas form an annulus, approximately 10 km in diameter, which surrounds a quartz monzonite intrusive body of Miocene age. The patterns of most intense alteration are interpreted as the remnants of paleohydrothermal convective cells set into motion during the emplacement of the central intrusive body. ?? 1983.

  5. Veins in the northern part of the Boulder batholith, Montana

    USGS Publications Warehouse

    Pinckney, D.M.

    1965-01-01

    About 20 miles north of Butte and extending nearly to Helena, is an area of 350 square miles containing hundreds of veins and altered zones. The bedrock of the area is 1) late Cretaceous volcanic rocks, forerunners of the Boulder batholith, 2) the Boulder batholith of late Cretaceous to early Tertiary age and 3) two groups of Tertiary volcanic rocks lying on the eroded batholith. The veins are post-batholith and pre-Tertiary in age. The veins are largely either quartz-sulfide veins of mesothermal type or chalcedony veins of epithermal type. The relations of these two types of veins have been the subject of conflicting ideas for 60 years. Three workers have proposed three different genetic classifications. This report shows that the quartz veins and the chalcedony veins are closely related parts of a strongly zoned hypogene vein system. Strong zonal patterns were established using the grain size of quartz (or pyrite vs. carbonate in one district) as well as features of the altered rocks. The scale of the zoning ranges from single veins through groups of veins or mining districts to the entire mineralized area. Single veins are zoned around a core of coarse-grained quartz; the quartz outward from the core becoming progressively finer-grained. The cores are zoned around eight major centers and several lesser ones. The centers and their nearby related veins are assigned to central, intermediate, and peripheral zones. Nearly all of the veins around the edge of the mineralized area are chalcedony. Envelopes of altered rocks consist of seven major bands representing three major groups of constituents, aluminum silicates, iron-bearing minerals, and silica. Plagioclase altered successively to montomorillite, kaolinite, and sericite; potassium feldspar altered to sericite (aluminum silicate group). Biotite released iron which formed successively, iron oxides, iron-bearing carbonate, and pyrite (iron-bearing minerals). Excess silica formed silicified bands. Constituents for which no stable phase occurs were largely leached from the rocks. A model has been constructed showing the arrangement of zoned veins and altered rocks in which the minerals produced by alteration are arranged in bands on each side of the vein, similar to the Butte pattern. Along strike from the cores, the inner bands thin and pinch out against the vein so that the vein becomes enclosed successively in the next outer bands. The sequence of alteration minerals along the veins is sericite, kaolinite, and montmorillonite for the aluminum silicates; and pyrite, carbonate, and iron oxides for the iron-bearing minerals. Alteration is thought to be controlled by reactions between wallrock minerals and the pore solution. In the aluminum silicate reactions, H+ was added to the rock and Na+ and Ca++ were removed. Carbon and sulfur from the vein were added to iron of the wallrock to produce pyrite and iron carbonate. Carbon, sulfur, and hydrogen moved into the wallrock, while Ca++, Na+, and some SiO2 moved toward the vein along concentration or activity gradients. Temperatures during mineralization ranged from below 200? C to about 350? C.

  6. Chemical composition and geologic history of saline waters in Aux Vases and Cypress Formations, Illinois Basin

    USGS Publications Warehouse

    Demir, I.; Seyler, B.

    1999-01-01

    Seventy-six samples of formation waters were collected from oil wells producing from the Aux Vases or Cypress Formations in the Illinois Basin. Forty core samples of the reservoir rocks were also collected from the two formations. Analyses of the samples indicated that the total dissolved solids content (TDS) of the waters ranged from 43,300 to 151,400 mg/L, far exceeding the 35,400 mg/mL of TDS found in typical seawater. Cl-Br relations suggested that high salinities in the Aux Vases and Cypress formation waters resulted from the evaporation of original seawater and subsequent mixing of the evaporated seawater with concentrated halite solutions. Mixing with the halite solutions increased Na and Cl concentrations and diluted the concentration of other ions in the formation waters. The elemental concentrations were influenced further by diagenetic reactions with silicate and carbonate minerals. Diagenetic signatures revealed by fluid chemistry and rock mineralogy delineated the water-rock interactions that took place in the Aux Vases and Cypress sandstones. Dissolution of K-feldspar released K into the solution, leading to the formation of authigenic illite and mixed-layered illite/smectite. Some Mg was removed from the solution by the formation of authigenic chlorite and dolomite. Dolomitization, calcite recrystallization, and contribution from clay minerals raised Sr levels significantly in the formation waters. The trend of increasing TDS of the saline formation waters with depth can be explained with density stratification. But, it is difficult to explain the combination of the increasing TDS and increasing Ca/Na ratio with depth without invoking the controversial 'ion filtration' mechanism.

  7. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering

    PubMed Central

    Quirk, Joe; Beerling, David J.; Banwart, Steve A.; Kakonyi, Gabriella; Romero-Gonzalez, Maria E.; Leake, Jonathan R.

    2012-01-01

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to ‘trenching’ of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO2 and climate history. PMID:22859556

  8. Fluid-rock interactions during UHP metamorphism: A review of the Dabie-Sulu orogen, east-central China

    NASA Astrophysics Data System (ADS)

    Zhang, Z. M.; Shen, K.; Liou, J. G.; Dong, X.; Wang, W.; Yu, F.; Liu, F.

    2011-08-01

    Comprehensive review on the characteristics of petrology, oxygen isotope, fluid inclusion and nominally anhydrous minerals (NAMs) for many Dabie-Sulu ultrahigh-pressure (UHP) metamorphic rocks including drill-hole core samples reveals that fluid has played important and multiple roles during complicated fluid-rock interactions attending the subduction and exhumation of supracrustal rocks. We have identified several distinct stages of fluid-rock interactions as follows: (1) The Neoproterozoic supercrustal protoliths of UHP rocks experienced variable degrees of hydration through interactions with cold meteoric water with extremely low oxygen isotope compositions during Neoproterozoic Snow-ball Earth time. (2) A series of dehydration reactions took place during Triassic subduction of the Yangtze plate beneath the Sino-Korean plate; the released fluid entered mainly into volatile-bearing high-pressure (HP) and UHP minerals, such as phengite, zoisite-epidote, talc, lawsonite and magnesite, as well as into UHP NAMs, such as garnet, omphacite and rutile. (3) Silicate-rich supercritical fluid (hydrous melt) existed during the UHP metamorphism at mantle depths >100 km which mobilized many normally fluid-immobile elements and caused unusual element fractionation. (4) The fluid exsolved from the NAMs during the early exhumation of the Dabie-Sulu terrane was the main source for HP hydrate retrogression and generation of HP veins. (5) Local amphibolite-facies retrogression at crustal depths took place by infiltration of aqueous fluid of various salinities possibly derived from an external source. (6) The greenschist-facies overprinting and low-pressure (LP) quartz veins were generated by fluid flow along ductile shear zones and brittle faults during late-stage uplift of the UHP terrane.

  9. Coupled Nd-142, Nd-143 and Hf-176 Isotopic Data from 3.6-3.9 Ga Rocks: New Constraints on the Timing of Early Terrestrial Chemical Reservoirs

    NASA Technical Reports Server (NTRS)

    Bennett, Vickie C.; Brandon, alan D.; Hiess, Joe; Nutman, Allen P.

    2007-01-01

    Increasingly precise data from a range of isotopic decay schemes, including now extinct parent isotopes, from samples of the Earth, Mars, Moon and meteorites are rapidly revising our views of early planetary differentiation. Recognising Nd-142 isotopic variations in terrestrial rocks (which can only arise from events occurring during the lifetime of now extinct Sm-146 [t(sub 1/2)=103 myr]) has been an on-going quest starting with Harper and Jacobsen. The significance of Nd-142 variations is that they unequivocally reflect early silicate differentiation processes operating in the first 500 myr of Earth history, the key time period between accretion and the beginning of the rock record. The recent establishment of the existence of Nd-142 variations in ancient Earth materials has opened a new range of questions including, how widespread is the evidence of early differentiation, how do Nd-142 compositions vary with time, rock type and geographic setting, and, combined with other types of isotopic and geochemical data, what can Nd-142 isotopic variations reveal about the timing and mechanisms of early terrestrial differentiation? To explore these questions we are determining high precision Nd-142, Nd-143 and Hf-176 isotopic compositions from the oldest well preserved (3.63- 3.87 Ga), rock suites from the extensive early Archean terranes of southwest Greenland and western Australia.

  10. Origin and age of the Eisenkappel gabbro to granite suite (Carinthia, SE Austrian Alps)

    PubMed Central

    Miller, C.; Thöni, M.; Goessler, W.; Tessadri, R.

    2011-01-01

    The northern part of the Karawanken plutonic belt is a gabbro–granite complex located just north of the Periadriatic lineament near the Slovenian–Austrian border. Petrographic and geochemical studies of the Eisenkappel intrusive complex indicate that this multiphase plutonic suite developed by a combination of crystal accumulation, fractional crystallization and assimilation processes, magma mixing and mingling. The mafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from an enriched mantle source. The mafic melts triggered partial melting of the crust and the formation of granite. The granitic rocks are alkalic, metaluminous and have the high Fe/Fe + Mg characteristics of within-plate plutons. Temperature and pressure conditions, derived from amphibole-plagioclase and different amphibole thermobarometers, suggest that the analysed Eisenkappel gabbros crystallized at around 1000 ± 20 °C and 380–470 MPa, whereas the granitic rock crystallized at T ≤ 800 ± 20 °C and ≤ 350 MPa. Mineral-whole rock Sm–Nd analyses of two cumulate gabbros yielded 249 ± 8.4 Ma and 250 ± 26 Ma (εNd: + 3.6), garnet-whole rock Sm–Nd analyses of two silicic samples yielded well-constrained ages of 238.4 ± 1.9 Ma and 242.1 ± 2.1 Ma (εNd: − 2.6). PMID:26525511

  11. Basis for paleoenvironmental interpretation of magnetic properties of sediment from Upper Klamath Lake (Oregon): Effects of weathering and mineralogical sorting

    USGS Publications Warehouse

    Rosenbaum, J.G.; Reynolds, R.L.

    2004-01-01

    Studies of magnetic properties enable reconstruction of environmental conditions that affected magnetic minerals incorporated in sediments from Upper Klamath Lake. Analyses of stream sediment samples from throughout the catchment of Upper Klamath Lake show that alteration of Fe-oxide minerals during subaerial chemical weathering of basic volcanic rocks has significantly changed magnetic properties of surficial deposits. Titanomagnetite, which is abundant both as phenocrysts and as microcrystals in fresh volcanic rocks, is progressively destroyed during weathering. Because fine-grained magnetite is readily altered due to large surface-to-volume ratios, weathering causes an increase in average magnetic grain size as well as reduction in the quantity of titanomagnetite both absolutely and relative to hematite. Hydrodynamic mineralogical sorting also produces differences in magnetic properties among rock and mineral grains of differing sizes. Importantly, removal of coarse silicate and Fe-oxide grains by sorting concentrated extremely fine-grained magnetite in the resulting sediment. The effects of weathering and sorting of minerals cannot be completely separated. These processes combine to produce the magnetic properties of a non-glacial lithic component of Upper Klamath Lake sediments, which is characterized by relatively low magnetite content and coarse magnetic grain size. Hydrodynamic sorting alone causes significant differences between the magnetic properties of glacial flour in lake sediments and of fresh volcanic rocks in the catchment. In comparison to source volcanic rocks, glacial flour in the lake sediment is highly enriched in extremely fine-grained magnetite.

  12. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina

    NASA Astrophysics Data System (ADS)

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.

    2017-07-01

    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  13. Spectral chemistry of green glass-bearing 15426 regolith

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Dyar, M. D.

    1983-01-01

    The detection of appreciable concentrations of ferric iron in a synthetic green glass equilibrated at an oxygen fugacity of 10 to the -11th atm prompted a Moessbauer spectral study of pristine emerald-green glass spherules carefully handpicked from regolith sample 15426. No Fe(3+) ions were detected in this lunar sample or in a synthetic green glass simulant equilibrated at fO2 = 10 to the -14th atm, suggesting that the green glass clods in rock 15426 formed under conditions of correspondingly low oxygen fugacities. The Moessbauer spectra indicated the presence of olivine crystallites in the lunar emerald green glass spherules. Measurements of homogeneous and partially devitrified synthetic silicate glasses revealed that significant changes of coordination environment about Fe(2+) ions in the glass structure occur during crystallization of olivine crystals from the melt.

  14. Reconstructing the Jurassic Talkeetna Intra-oceanic Arc of Alaska Using Thermobarometry

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Mehl, L.; Kelemen, P. B.; Rioux, M.; Greene, A.

    2005-12-01

    The Talkeetna arc is one of two intra-oceanic arcs where the entire section from the upper mantle tectonite through the sediments capping the volcanic carapace is well exposed. The objective of this study is to reconstruct the vertical section of the Talkeetna arc by determining the (re) crystallization pressures at various structural levels. This information is crucial if the Talkeetna arc is to be exploited as an archetypal cross section for purposes as diverse as understanding the evolution of the Earth's crust, assessing rates and mechanisms of arc growth, and understanding the tectonic history arcs in general. The base of the arc crust exposed at Bernard and Scarp Mtns includes rare gabbro(norites) with metamorphic garnets-mineral assemblages excellent for thermobarometry. Broad core-to-rim garnet zoning toward lower Mg#, pyroxenes with near-rim, steep increases in Mg# and Al2O3, and unzoned plagioclase document cooling following core crystallization at ~900- 1025 °C and 0.9-1.0 GPa. Hornblende gabbros with magmatic garnet exposed in the Klanelneechena klippe indicate significantly lower P-T of ~700-835°C, 0.69- 0.77 GPa. Hornblende gabbro (norites) that comprise the bulk of the arc were studied in the Tazlina, Barnette, Scarp, and Pippin Ridge sections. Differences in mineral composition indicate qualitatively that the Tazlina, Barnette, and Scarp sections crystallized at successively greater depths. Temperature was calculated using hbl- plg [Holland and Blundy, 1994] and cpx-opx [QUILF; Andersen et al., 1993] net- transfer equilibria, and P was constrained using high δV/δS equilibria among plg, amph, opx, and cpx. Poorly known amphibole and pyroxene Tschermak-component activity models yield large uncertainties for P, but relative P differences can be anchored to the better-determined garnet gabbro P's, revealing that the rocks from the Barnette Creek section crystallized at ~0.40-0.55 GPa and the Tazlina and Pippin sections formed at ~0.25-0.35 GPa. Al-in-hornblende barometry indicates 0.23 GPa for granodiorites intruding the volcanic section. Calc-silicate rocks within the arc include metasedimentary wall rocks and carbonate veins cutting igneous rock. Grossular-andradite + diopside + calcite +/- sphene + quartz +/- wollastonite +/- scapolite mineral assemblages were strongly overprinted by a prehnite-pumpellyite facies alteration that includes datolite. Calculating P-T for the calc-silicate rocks is tenuous for several reasons-including large calculated Fe3+ in garnet and cpx, complete replacement of plagioclase, extreme partitioning of Mg into cpx, and ill-constrained aCO2--but a general correspondence between P-T inferred for the calc-silicate rocks and nearby metamafic rocks suggests that the calc-silicate assemblages grew during the magmatic development of the arc. Metamorphic rocks in float of the McHugh Complex(?) structurally beneath the Klanelneechena Klippe contain a strong amphibolite-facies fabric formed at 500°C and 1.0 ± 0.1 GPa. In summary, the granodiorites intruded at c. 6-10 km into a volcanic section estimated from stratigraphy to be 7 km thick [Clift et al., 2005]. The shallowest, Tazlina and Pippin, gabbros cooled at ~9-12 km; the Barnette section at ~14-19 km; the Klanelneechena klippe at ~24-26 km; and the base of the arc at ~30-34 km depth. Thus, the arc consists of a volcanic:plutonic ratio of ~28:72, and the current 5-7 km structural thickness of the plutonic section of the arc is ~20-35% of the original 20-26 km thickness.

  15. Using titanite petrochronology to monitor CO2-degassing episodes from the Himalayas

    NASA Astrophysics Data System (ADS)

    Rapa, Giulia; Groppo, Chiara; Rolfo, Franco; Petrelli, Maurizio; Mosca, Pietro

    2017-04-01

    Metamorphic degassing from active collisional orogens supplies a significant fraction of CO2 to the atmosphere, playing a fundamental role in the long-term (> 1 Ma) global carbon cycle (Gaillardet & Galy, 2008). The petro-chronologic study of the CO2-source rocks (e.g. calc-silicate rocks) in collisional settings is therefore fundamental to understand the nature, timing, duration and magnitude of the orogenic carbon cycle. So far, the incomplete knowledge of these systems hindered a reliable quantitative modelling of metamorphic CO2 fluxes. A detailed petrological modelling of a clinopyroxene + scapolite + K-feldspar + plagioclase + biotite + zoisite ± calcite calc-silicate rock from central Nepal Himalaya allowed us to identify and fully characterize - for the first time - different metamorphic reactions that led to the simultaneous growth of titanite and production of CO2. These reactions involve biotite (rather than rutile) as the Ti-bearing reactant counterpart of titanite. The results of petrological modelling combined with Zr-in-Ttn thermometry and U-Pb geochronology suggest that in the studied sample, most titanite grains grew during two nearly continuous episodes of titanite formation: a near-peak event at 730-740°C, 10 kbar, 25.5±1.5 Ma, and a peak event at 740-765°C, 10.5 kbar, 22±3 Ma. Both episodes of titanite growth are correlated to specific CO2-producing reactions, thus allowing to constrain the timing, duration and P-T conditions of the main CO2-producing events, as well as the amounts of CO2 produced. Assuming that fluids released at a depth of ca. 30 km are able to reach the Earth's surface 10 Ma after their production, it is therefore possible to speculate on the role exerted by the Himalayan orogenesis on the climate in the past. Gaillardet J. & Galy A. (2008): Himalaya-carbon sink or source? Science, 320, 1727-1728.

  16. Geochemical prospecting for rare earth elements using termite mound materials

    NASA Astrophysics Data System (ADS)

    Horiuchi, Yu; Ohno, Tetsuji; Hoshino, Mihoko; Shin, Ki-Cheol; Murakami, Hiroyasu; Tsunematsu, Maiko; Watanabe, Yasushi

    2014-12-01

    The Blockspruit fluorite prospect, located in North West State of the Republic of South Africa, occurs within an actinolite rock zone that was emplaced into the Kenkelbos-type granite of Proterozoic age. There are a large number of termite mounds in the prospect. For geochemical prospecting for rare earth elements (REEs), in total, 200 samples of termite mound material were collected from actinolite rock and granite zones in the prospect. Geochemical analyses of these termite mound materials were conducted by two methods: portable X-ray fluorescence (XRF) spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). Comparison of the two methods broadly indicates positive correlations of REEs (La, Ce, Pr, Nd, and Y), in particular Y and La having a strong correlation. As the result of modal abundance analyses, the actinolite rock at surface mainly consists of ferro-actinolite (89.89 wt%) and includes xenotime (0.26 wt%) and monazite (0.21 wt%) grains as REE minerals. Termite mound materials from actinolite rock also contain xenotime (0.27 wt%) and monazite (0.41 wt%) grains. In addition, termite mound materials from the actinolite rock zone have high hematite and Fe silicate contents compared to those from granite zone. These relationships suggest that REE minerals in termite mound materials originate form actinolite rock. Geochemical anomaly maps of Y, La, and Fe concentrations drawn based on the result of the portable XRF analyses show that high concentrations of these elements trend from SW to NE which broadly correspond to occurrences of actinolite body. These results indicate that termite mounds are an effective tool for REE geochemical prospection in the study area for both light REEs and Y, but a more detailed survey is required to establish the distribution of the actinolite rock body.

  17. Stratigraphy and structure of the Strawberry Mine roof pendant, central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, W.J.

    1981-01-01

    The Strawberry mine roof pendant, 90 km northeast of Fresno, Calif., is composed of a sequence of metasedimentary rocks of probable Early Jurassic age and a sequence of metaigneous rocks of middle Cretaceous age. The metasedimentary rocks are a former miogeosynclinal sequence of marl and limestone now metamorphosed to calc-silicate hornfels and marble. A pelecypod found in the calc-silicate hornfels has been tentatively identified as a Mesozoic bivalve, possibly Inoceramus pseudomytiloides of Early Jurassic age. These metasedimentary rocks are similar in lithology, structure, and gross age to the metasedimentary rocks of the Boyden Cave roof pendant and are assigned to the Lower Jurassic Kings sequence. The younger metaigneous rocks are metamorphosed shallow-in trusi ve rocks that range in composi tion from granodiorite to rhyolite. These rocks are similar in composition and age to the metavolcanic rocks of the surrounding Merced Peak quadrangle and nearby Ritter Range, and probably represent necks or dikes that were one source for the meta volcanic rocks. The roof pendant is intruded by several plutons, ranging in composition from dioritic to highly felsic, that constitute part of the granodiorite of Jackass Lakes, also M middle Cretaceous age. The contemporaneous suites of metaigneous, metavolcanic, and plutonic rocks in the region represent a middle Cretaceous period of calc-alkalic volcanism and plutonism in the central Sierra Nevada and are interpreted as part of an Andean-type volcanic-plutonic arc. Three deformations are documented in the roof pendant. The first deformation is reflected only in the metasedimentary rocks and consists of northeast-to east-west-trending folds. Similar structures occur in the Boyden Cave roof pendant and in the Calaveras Formation and represent a Middle Jurassic regional deformation. Evidence of the second deformation occurs in the metasedimentary and metaigneous rocks and consists of folds, faults, minor structures, and regional metamorphism along N. 25? W. trends. Crosscutting of these structures by the contemporaneous granodiorite of Jackass Lakes indicates that this deformation occurred simultaneously with volcanism and plutonism during the middle Cretaceous. The third deformation involved both the roof pendant and adjacent plutonic rocks and consists of folds, faults, schistosities, and regional metamorphism along N. 65? -900 W. trends. Crosscutting of similar structures in other middle Cretaceous plutonic rocks of the Merced Peak quadrangle by undeformed late Cretaceous plutonic rocks indicates a regional deformation of middle to late Cretaceous age. Structures of similar style, orientation, and age occur elsewhere in metavolcanic and plutonic rocks throughout the central Sierra Nevada.

  18. Mechanical erosion of xenoliths by magmatic shear flow

    NASA Astrophysics Data System (ADS)

    Del Gaudio, Piero; Ventura, Guido

    2008-05-01

    We focus on the role of mechanical erosion by magmatic shear flow in the formation of xenoliths occurring in lava flows. The process is analyzed by combining the physics of fragmentation and erosion to the concept of rock mass. The conditions for the country rock fragmentation are analyzed as a function of the magma viscosity, strain rate and tensile strength of the rock mass. In reservoirs, mechanical processes play a subordinate role and thermal erosion processes prevail. In conduits, intermediate and silicic magmas may erode and, eventually, fragment good to poor quality country rock masses. Basalts may erode poor quality country rocks. A crystal-rich magma has more chance to break up the conduit walls with respect to a vesiculated melt. The variety of xenoliths of a lava reflects a set of wall-rocks with similar mechanical properties and may not mirror the stratigraphy of the substratum of a volcanic area.

  19. Syntectic Reactions involving Limestones and Limestone-Derived Carbonatitic Melts in the Generation of some Peralkalic Magmas: Reflections on Reginald Daly's Insights 100 Years Later

    NASA Astrophysics Data System (ADS)

    Lentz, D.

    2017-12-01

    The theoretical analysis of how sedimentary limestones and marbles could melt as a result of infiltrative contact metasomatism associated with silicate magmas, enables reconsideration of the limestone syntectic (assimilation) hypothesis for the origin of some peralkalic rocks. Reginald Daly's syntectic model published in detail in early 1918 fell out of favor because experimental evidence from the early 1960's suggested; 1) that limestone assimilation would increase P(CO2) and cause solidification of the silicate intrusion, 2) that there is a thermal barrier between silica-saturated and undersaturated magmas that would inhibit extensive desilication of the magma, and 3) the endothermic decarbonation reactions would require heat via magmatic crystallization of near-solidus magmas. However, these concerns were not as critical for high-T mafic melts relative to more low-T silicic melts, although most subsequent researchers dismissed syntexis as isotopic arguments also seemed robust. However, skarn-related limestone melts can interact much more easily with silicate magma, resulting in calc-silicate-forming (endoskarn-like) limestone syntectic (desilication - calcification-magnesification processes) decarbonation reactions with compositional evolution into the silica-undersaturated field. If mafic in composition originally when syntectically modified, then the CO2-bearing derivative peralkalic melt may subsequently react with the dominant volume magma or fractionate separately into a more evolved composition. As well, an increase in P(CO2) within the modified silicate fraction coupled with compositional evolution to more silica-undersaturated compositions enhances the stability of the immiscible, extremely low viscosity carbonate melt fraction. In addition, dynamic interaction of these co-existing immiscible melts (analogous to the current hypothesis) would partition elements, as well as isotopic signatures, such that they would be virtually unrecognizable as having a crustal level syntectic origin, based on mass-balance principles and Rayleigh decarbonation isotopic equilibria, as they do in many infiltrative skarn systems. Essentially, this partly vindicates the basic premise of Daly's limestone syntectic hypothesis for the origin of some peralkalic igneous rocks.

  20. The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico

    USGS Publications Warehouse

    Verplanck, P.L.; Farmer, G.L.; McCurry, M.; Mertzman, S.A.

    1999-01-01

    Major and trace element, and Nd and Sr isotopic compositions of whole rocks and mineral separates from the Oligocene, alkaline Organ Needle pluton (ONP), southern New Mexico, constrain models for the differentiation of the magma body parental to this compositionally zoned and layered epizonal intrusive body. The data reveal that the pluton is rimmed by lower ??(Nd) (~-5) and higher 87Sr/86Sr (~0.7085) syenitic rocks than those in its interior (??(Nd) ~ 2, 87Sr/86Sr ~0.7060) and that the bulk compositions of the marginal rocks become more felsic with decreasing structural depth. At the deepest exposed levels of the pluton, the ??(Nd)~-5 lithology is a compositionally heterogeneous inequigranular syenite. Modal, compositional and isotopic data from separates of rare earth element (REE)-bearing major and accesory mineral phases (hornblende, titanite, apatite, zircon) demonstrate that this decoupling of trace and major elements in the inequigranular syenite results from accumulation of light REE (LREE)-bearing minerals that were evidently separated from silicic magmas as the latter rose along the sides of the magma chamber. Chemical and isotopic data for microgranular mafic enclaves, as well as for restite xenoliths of Precambrian granite wall rock, indicate that the isotopic distinction between the marginal and interior facies of the ONP probably reflects assimilation of the wall rock by ??(Nd) ~-2 mafic magmas near the base of the magma system. Fractional crystallization and crystal liquid separation of the crystally contaminated magma at the base and along the margins of the chamber generated the highly silicic magmas that ultimately pooled at the chamber top.

  1. Historical volcanic eruptions in the Canary Islands, tephra composition, and insights into the crystal cargo of basaltic magmas

    NASA Astrophysics Data System (ADS)

    Longpre, M. A.; Muller, J.; Beaudry, P.; Andronikides, A.; Felpeto, A.

    2017-12-01

    Since the 16th century, at least 13 volcanic eruptions have occurred in the Canary Islands that formed monogenetic cinder cones and lava flow fields: 2 on Lanzarote, 4 on Tenerife, 6 on La Palma, and 1 on the submarine flank of El Hierro. Here we present a comprehensive new dataset of tephra composition for all 13 eruptions, comprising major and trace element data for bulk rocks and matrix glasses, as well as vesicularity and crystallinity measurements. In addition, we compile available volcanological and petrological information for specific eruptions, including estimates of lava flow area and volume. All lapilli samples show a vesicularity of 40-50 vol% and a vesicle-free crystallinity (crystals ≥ 250 µm) of 5-15 vol%. Modal mineralogy varies significantly between samples, typically consisting of olivine ± clinopyroxene ± Fe-Ti oxide ± plagioclase ± amphibole in different proportions. All but 2 tephras have basanite-tephrite bulk rock compositions. Lapilli from vents of the AD 1730-1736 Timanfaya eruption, Lanzarote, largely are basaltic, whereas the AD 1798 Chahorra eruption, Tenerife, produced phonotephrite tephra. These results are in agreement with published bulk lava flow data. Unsurprisingly, glass compositions are more evolved than bulk rocks and MgOglass is weakly positively correlated to MgObulk (MgOglass = 0.30*MgObulk + 2.11, R2 = 0.54). Both bulk rocks and glasses show strikingly similar multi-element diagram patterns, with strong enrichment relative to the bulk-silicate Earth and marked positive Nb and Ta and negative Pb anomalies — typical for ocean island basalts. Glass/bulk rock elemental ratios reveal systematic differences between samples that relate to their mineralogy; for example, Lanzarote tephras that lack significant clinopyroxene and Fe-Ti oxide crystals have higher Scglass/Scbulk and Vglass/Vbulk than Tenerife, La Palma and El Hierro samples that typically contain these minerals. Among all elements, K and P display the greatest average glass/bulk rock enrichment factors (1.41 ± 0.18 and 1.47 ± 0.17, respectively). This work provides an internally consistent framework for the comparison of historical Canary Island eruptions and offers novel insights into the relationships between trace element signatures and the crystal cargo of basaltic magmas.

  2. Rhenium Concentration Variations in the Non-flood Period of the Yangtze River Water and Estimation of the Oxidation Rate of Organic Carbon

    NASA Astrophysics Data System (ADS)

    Xu, P.; Chen, Y.; Li, S.; Wang, K.

    2017-12-01

    In geological history, the uplift of the Tibet plateau has accelerated the silicate weathering and organic carbon burial at the same time, which made great influence on the global carbon cycle by increasing the carbon sink. Because of the vital connection between tectonic uplift and carbon cycle, more and more attention was casted on rivers originating from orogens. The Yangtze River, as an important large river in the world, is one of them. However, although silicate weathering has been studied thoroughly, researches on organic carbon cycle are much less, and oxidation of fossil organic carbon remained poorly constrained. In this study, we try to use rhenium(Re) as a proxy to estimate the oxidation rate of fossil organic carbon and thus proceed our understanding towards the carbon cycle, the silicate weathering. This is because Re has a close relationship with organic carbon in the sediments and will be released into hydrological network in the mountain river catchments by being oxidized and exist as soluble ReO4-, so that we can use Re concentration in river water to estimate the oxidation rate of organic carbon. We collected water samples from the Yangtze River fortnightly at Banqiao Ferry and the sampling date cover the non-flood period. In this way, we are able to have a rough estimate of the amount of carbon dioxide that released to the atmosphere by the oxidation of organic carbon, using the data of non-flood period we got. We found that Re concentration in Yangtze River ranges approximately from 45 to 85 pmol/L. The rate of organic carbon weathering is estimated using the expression, ΦCO2,fossil=[Re]×runoff×[OC/Re]rock, and according to researches on the black shale of Yangtze River, the value 2.86×106 is chosen as the ratio OC(organic carbon) to Re in the black shale. The result is a really high flux, up to 152×109mol/y, just a little less than of the CO2 consumption rates from silicate weathering which is 191×109mol/y and about 166×109mol/y in non-flood period. Our result indicates that in the Yangtze Basin, oxidation of fossil organic carbon can very likely offset the carbon dioxide that removed by silicate weathering.

  3. The Chlorine Isotopic Composition Of Lunar UrKREEP

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-01-01

    Since the long standing paradigm of an anhydrous Moon was challenged there has been a renewed focus on investigating volatiles in a variety of lunar samples. However, the current models for the Moon’s formation have yet to fully account for its thermal evolution in the presence of H2O and other volatiles. When compared to chondritic meteorites and terrestrial rocks, lunar samples have exotic chlorine isotope compositions, which are difficult to explain in light of the abundance and isotopic composition of other volatile species, especially H, and the current estimates for chlorine and H2O in the bulk silicate Moon. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed a comprehensive in situ high precision study of chlorine isotopes, using NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) of lunar apatite from a suite of Apollo samples covering a range of geochemical characteristics and petrologic types.

  4. Titanite-bearing calc-silicate rocks constrain timing, duration and magnitude of metamorphic CO2 degassing in the Himalayan belt

    NASA Astrophysics Data System (ADS)

    Rapa, Giulia; Groppo, Chiara; Rolfo, Franco; Petrelli, Maurizio; Mosca, Pietro; Perugini, Diego

    2017-11-01

    The pressure, temperature, and timing (P-T-t) conditions at which CO2 was produced during the Himalayan prograde metamorphism have been constrained, focusing on the most abundant calc-silicate rock type in the Himalaya. A detailed petrological modeling of a clinopyroxene + scapolite + K-feldspar + plagioclase + quartz ± calcite calc-silicate rock allowed the identification and full characterization - for the first time - of different metamorphic reactions leading to the simultaneous growth of titanite and CO2 production. The results of thermometric determinations (Zr-in-Ttn thermometry) and U-Pb geochronological analyses suggest that, in the studied lithology, most titanite grains grew during two nearly consecutive episodes of titanite formation: a near-peak event at 730-740 °C, 10 kbar, 30-26 Ma, and a peak event at 740-765 °C, 10.5 kbar, 25-20 Ma. Both episodes of titanite growth are correlated with specific CO2-producing reactions and constrain the timing, duration and P-T conditions of the main CO2-producing events, as well as the amounts of CO2 produced (1.4-1.8 wt% of CO2). A first-order extrapolation of such CO2 amounts to the orogen scale provides metamorphic CO2 fluxes ranging between 1.4 and 19.4 Mt/yr; these values are of the same order of magnitude as the present-day CO2 fluxes degassed from spring waters located along the Main Central Thrust. We suggest that these metamorphic CO2 fluxes should be considered in any future attempts of estimating the global budget of non-volcanic carbon fluxes from the lithosphere.

  5. Insights into the emplacement of upper-crustal plutons and their relationship to large silicic calderas, from field relationships, geochronology, and zircon trace element geochemistry in the Stillwater - Clan Alpine caldera complex, western Nevada, USA

    NASA Astrophysics Data System (ADS)

    Colgan, Joseph P.; John, David A.; Henry, Christopher D.; Watts, Kathryn E.

    2018-01-01

    Geologic mapping, new U-Pb zircon ages, and new and published 40Ar/39Ar sanidine ages document the timing and extent of Oligocene magmatism in the southern Stillwater Range and Clan Alpine Mountains of western Nevada, where Miocene extension has exposed at least six nested silicic calderas and underlying granitic plutons to crustal depths locally ≥ 9 km. Both caldera-forming rhyolitic tuffs and underlying plutons were emplaced in two episodes, one from about 30.4-28.2 Ma that included the Deep Canyon, Job Canyon, and Campbell Creek calderas and underlying plutons, and one from about 25.3-24.8 Ma that included the Louderback Mountains, Poco Canyon, and Elevenmile Canyon calderas and underlying plutons. In these two 1-2 m.y. periods, almost the entire Mesozoic upper crust was replaced by Oligocene intrusive and extrusive rocks to depths ≥ 9 km over an estimated total area of 1500 km2 (pre-extension). Zircon trace element geochemistry indicates that some plutonic rock can be solidified residual magma from the tuff eruptions. Most plutons are not solidified residual magma, although they directly underlie calderas and were emplaced along the same structures shortly after to as much as one million years after caldera formation. Magma chambers and plutons grew by floor subsidence accommodated by downward transfer of country rocks. If other Great Basin calderas are similar, the dense concentration of shallowly exposed calderas in central Nevada is underlain by a complexly zoned mid-Cenozoic batholith assembled in discrete pulses that coincided with formation of large silicic calderas up to 2500-5000 km3.

  6. Metamorphism of the Oddanchatram anorthosite, Tamil Nadu, South India

    NASA Technical Reports Server (NTRS)

    Wiebe, R. A.; Janardhan, A. S.

    1988-01-01

    The Oddanchatram anorthosite is located in the Madurai District of Tamil Nadu, near the town of Palni. It is emplaced into a granulite facies terrain commonly presumed to have undergone its last regional metamorphism in the late Archean about 2600 m.y. The surrounding country rock consists of basic granulites, charnockites and metasedimentary rocks including quartzites, pelites and calc-silicates. The anorthosite is clearly intrusive into the country rock and contains many large inclusions of previously deformed basic granulite and quartzite within 100 meters of its contact. Both this intrusion and the nearby Kaduvar anorthosite show evidence of having been affected by later metamorphism and deformation.

  7. Acid digestion of geological and environmental samples using open-vessel focused microwave digestion.

    PubMed

    Taylor, Vivien F; Toms, Andrew; Longerich, Henry P

    2002-01-01

    The application of open vessel focused microwave acid digestion is described for the preparation of geological and environmental samples for analysis using inductively coupled plasma-mass spectrometry (ICP-MS). The method is compared to conventional closed-vessel high pressure methods which are limited in the use of HF to break down silicates. Open-vessel acid digestion more conveniently enables the use of HF to remove Si from geological and plant samples as volatile SiF4, as well as evaporation-to-dryness and sequential acid addition during the procedure. Rock reference materials (G-2 granite, MRG-1 gabbros, SY-2 syenite, JA-1 andesite, and JB-2 and SRM-688 basalts) and plant reference materials (BCR and IAEA lichens, peach leaves, apple leaves, Durham wheat flour, and pine needles) were digested with results comparable to conventional hotplate digestion. The microwave digestion method gave poor results for granitic samples containing refractory minerals, however fusion was the preferred method of preparation for these samples. Sample preparation time was reduced from several days, using conventional hotplate digestion method, to one hour per sample using our microwave method.

  8. Mountain ranges, climate and weathering. Do orogens strengthen or weaken the silicate weathering carbon sink?

    NASA Astrophysics Data System (ADS)

    Maffre, Pierre; Ladant, Jean-Baptiste; Moquet, Jean-Sébastien; Carretier, Sébastien; Labat, David; Goddéris, Yves

    2018-07-01

    The role of mountains in the geological evolution of the carbon cycle has been intensively debated for the last decades. Mountains are thought to increase the local physical erosion, which in turns promotes silicate weathering, organic carbon transport and burial, and release of sulfuric acid by dissolution of sulfides. In this contribution, we explore the impact of mountain ranges on silicate weathering. Mountains modify the global pattern of atmospheric circulation as well as the local erosion conditions. Using an IPCC-class climate model, we first estimate the climatic impact of mountains by comparing the present day climate with the climate when all the continents are assumed to be flat. We then use these climate output to calculate weathering changes when mountains are present or absent, using standard expression for physical erosion and a 1D vertical model for rock weathering. We found that large-scale climate changes and enhanced rock supply by erosion due to mountain uplift have opposite effect, with similar orders of magnitude. A thorough testing of the weathering model parameters by data-model comparison shows that best-fit parameterizations lead to a decrease of weathering rate in the absence of mountain by about 20%. However, we demonstrate that solutions predicting an increase in weathering in the absence of mountain cannot be excluded. A clear discrimination between the solutions predicting an increase or a decrease in global weathering is pending on the improvement of the existing global databases for silicate weathering. Nevertheless, imposing a constant and homogeneous erosion rate for models without relief, we found that weathering decrease becomes unequivocal for very low erosion rates (below 10 t/km2/yr). We conclude that further monitoring of continental silicate weathering should be performed with a spatial distribution allowing to discriminate between the various continental landscapes (mountains, plains …).

  9. Chondritic Meteorites: Nebular and Parent-Body Formation Processes

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Lindstrom, David (Technical Monitor)

    2002-01-01

    It is important to identify features in chondrites that formed as a result of parent-body modification in order to disentangle nebular and asteroidal processes. However, this task is difficult because unmetamorphosed chondritic meteorites are mixtures of diverse components including various types of chondrules, chondrule fragments, refractory and mafic inclusions, metal-sulfide grains and fine-grained matrix material. Shocked chondrites can contain melt pockets, silicate-darkened material, metal veins, silicate melt veins, and impact-melt-rock clasts. This grant paid for several studies that went far in helping to distinguish primitive nebular features from those produced during asteroidal modification processes.

  10. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  11. Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model

    NASA Astrophysics Data System (ADS)

    Gysi, Alexander P.; Williams-Jones, Anthony E.

    2013-12-01

    Petrological and geochemical observations of pegmatites in the Strange Lake pluton, Canada, have been combined with numerical simulations to improve our understanding of fluid-rock interaction in peralkaline granitic systems. In particular, they have made it possible to evaluate reaction paths responsible for hydrothermal mobilization and mineralization of rare earth elements (REE) and Zr. The focus of the study was the B-Zone in the northwest of the pluton, which contains a pegmatite swarm and is the target of exploration for an economically exploitable REE deposit. Many of the pegmatites are mineralogically zoned into a border consisting of variably altered primary K-feldspar, arfvedsonite, quartz, and zirconosilicates, and a core rich in quartz, fluorite and exotic REE minerals. Textural relationships indicate that the primary silicate minerals in the pegmatites were leached and/or replaced during acidic alteration by K-, Fe- and Al-phyllosilicates, aegirine, hematite, fluorite and/or quartz, and that primary zirconosilicates (e.g., elpidite) were replaced by gittinsite and/or zircon. Reaction textures recording coupled dissolution of silicate minerals and crystallization of secondary REE-silicates indicate hydrothermal mobilization of the REE. The mobility of the light (L)REE was limited by the stability of REE-F-(CO2)-minerals (basnäsite-(Ce) and fluocerite-(Ce)), whereas zirconosilicates and secondary gadolinite-group minerals controlled the mobility of Zr and the heavy (H)REE. Hydrothermal fluorite and fluorite-fluocerite-(Ce) solid solutions are interpreted to indicate the former presence of F-bearing saline fluids in the pegmatites. Numerical simulations show that the mobilization of REE and Zr in saline HCl-HF-bearing fluids is controlled by pH, ligand activity and temperature. Mobilization of Zr is significant in both saline HF- and HCl-HF-bearing fluids at low temperature (250 °C). In contrast, the REE are mobilized by saline HCl-bearing fluids, particularly at high temperature (400 °C). The LREE are more mobile than the HREE in saline HCl-bearing fluids due to the greater stability of LREE-chloride complexes. The simulated mineralogy is consistent with the zonation observed in the pegmatites and with fluid-rock interaction at conditions that were rock-buffered in the pegmatite borders (low fluid/rock ratio; and pH > 4) and fluid-buffered in the cores (high fluid/rock ratio; pH ⩽ 2). We propose a model in which saline HCl-HF-bearing fluids created pathways during acidic alteration from the pegmatite cores outward. This led to the mobilization of REE and Zr due to progressive alteration of primary silicate minerals and increased acidity upon cooling. The key requirement for REE and Zr mobilization in peralkaline igneous intrusions is the formation of an acidic subsystem with high fluid/rock ratios that increases the overall permeability of the rocks. In these zones, the extent of late stage hydrothermal redistribution and concentration of REE and Zr depends on the buffering capacity of the rocks and the availability of fluids that may produce autometasomatic rock alteration, interact with external rock units and/or mix with fluids from other sources. b The detection limits of Yb were 1043 ppm for zircon, 380 ppm for gadolinite-group minerals and 380 ppm for REE-F-(CO2)-minerals. bAja et al. (1995). cMigdisov et al. (2011). dTagirov et al. (1997). eTagirov and Schott (2001). fMigdisov et al. (2009) with REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). b Calculated using the methods of the Chermak and Rimstidt (1989), Berman and Brown (1985) and Holland (1989) with molar volume of arfvedsonite from Hawthorne (1976). cZotov et al. (1998). d GEM-Selektor v.3 database (http://gems.web.psi.ch). eMigdisov et al. (2009).

  12. Properties of the Guin ungrouped iron meteorite - The origin of Guin and of group-IIE irons

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Jerde, E. A.; Zong, P.; Wasson, J. T.; Westcott, J. W.; Mayeda, T. K.; Clayton, R. N.

    1986-01-01

    The composition and structure of the Guin ungrouped iron meteorite inclusions have been investigated experimentally. The structural characteristics of polished and etched slabs of the meteorite were studied microscopically in reflected light. Modal abundances of troilite nodules and silicate inclusions were determined by weighing paper traces. The bulk composition of the silicate inclusions was calculated by combining modal phase abundances and mineral compositions. It is found that the largest silicate inclusion (2 x 4 cm) consists mostly of a shock-melted plagioclase-rich matrix surrounding large, partly melted augite grains. The oxygen isotopic composition of the inclusion is near that of LL chondrites. The inclusion is found to be similar in composition to selected melt pocket glasses in ordinary chondrites produced in situ by preferential melting of plagioclase rock due to shock compression. It is suggested that the Guin assemblage was formed by impact melting on a chondritic parent body. Silicate inclusions in IIE irons share many of the compositional and petrological characteristics of the Guin inclusions, indicating that IIE irons also formed by impact-melting of chondritic materials. Black and white photomicrographs of the silicate inclusions are provided.

  13. Generation of volcanic ash: a textural study of ash produced in various laboratory experiments

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Kueppers, Ulrich; Dingwell, Donald B.

    2010-05-01

    In volcanology, ash is commonly understood as a fragment of a bubble wall that gets disrupted during explosive eruptions. Most volcanic ashes are indeed the product of explosive eruptions, but the true definition is however that of a particle size being inferior to 2 mm. The term does not hold any information about its genesis. During fragmentation, particles of all sizes in various amounts are generated. In nature, fragmentation is a brittle response of the material (whether a rock or magma) caused by changes in 1) strain rate and 2) temperature, and/or 3) chemical composition. Here we used different experimental techniques to produce ash and study their physical characteristics. The effects of strain rate were investigated by deforming volcanic rocks and magma (pure silicate melt and crystal-bearing magma) at different temperatures and stresses in a uniaxial compression apparatus. Failure of pure silicate melts is spontaneous and generates more ash particles than fragmentation of crystal-bearing melts. In the latter, the abundance of generated ash correlates positively with the strain rate. We complemented this investigation with a study of particles generated during rapid decompression of porous rocks, using a fragmentation apparatus. Products of decompression experiments at different initial applied pore pressure show that the amount of ash generated by bubble burst increase with the initial applied pressure and the open porosity. The effects of temperature were investigated by dropping pure silicate melts and crystal-bearing magma at 900 and 1100°C in water at room temperature. Quenching of the material is accompanied by rapid contraction and near instantaneous fragmentation. Pure silicate melts respond more violently to the interaction with water and completely fragmented into small particles, including a variety of ash morphologies and surface textures. Crystal-bearing magmas however fragmented only very partially when in contact with water and produced a few ash particles (< 0.05 g). The morphology and surface textures of the experimentally generated ash particles were imaged through scanning electron microscopy, and the observations will be discussed in terms of fragmentation processes.

  14. Uranium-lead isotope systematics of Mars inferred from the basaltic shergottite QUE 94201

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, A M; Borg, L E; Connelly, J N

    2006-12-22

    Uranium-lead ratios (commonly represented as {sup 238}U/{sup 204}Pb = {mu}) calculated for the sources of martian basalts preserve a record of petrogenetic processes that operated during early planetary differentiation and formation of martian geochemical reservoirs. To better define the range of {mu} values represented by the source regions of martian basalts, we completed U-Pb elemental and isotopic analyses on whole rock, mineral and leachate fractions from the martian meteorite Queen Alexandra Range 94201 (QUE 94201). The whole rock and silicate mineral fractions have unradiogenic Pb isotopic compositions that define a narrow range ({sup 206}Pb/{sup 204}Pb = 11.16-11.61). In contrast, themore » Pb isotopic compositions of weak HCl leachates are more variable and radiogenic. The intersection of the QUE 94201 data array with terrestrial Pb in {sup 206}Pb/{sup 204}Pb-{sup 207}Pb/{sup 204}Pb-{sup 208}Pb/{sup 204}Pb compositional space is consistent with varying amounts of terrestrial contamination in these fractions. We calculate that only 1-7% contamination is present in the purified silicate mineral and whole rock fractions, whereas the HCl leachates contain up to 86% terrestrial contamination. Despite the contamination, we are able to use the U-Pb data to determine the initial {sup 206}Pb/{sup 204}Pb of QUE 94201 (11.086 {+-} 0.008) and calculate the {mu} value of the QUE 94201 mantle source to be 1.823 {+-} 0.008. This is the lowest {mu} value calculated for any martian basalt source, and, when compared to the highest values determined for martian basalt sources, indicates that {mu} values in martian source reservoirs vary by at least 100%. The range of source {mu} values further indicates that the {mu} value of bulk silicate Mars is approximately three. The amount of variation in the {mu} values of the mantle sources ({mu} {approx} 2-4) is greater than can be explained by igneous processes involving silicate phases alone. We suggest the possibility that a small amount of sulfide crystallization may generate large extents of U-Pb fractionation during formation of the mantle sources of martian basalts.« less

  15. The Earth's Mantle.

    ERIC Educational Resources Information Center

    McKenzie, D. P.

    1983-01-01

    The nature and dynamics of the earth's mantle is discussed. Research indicates that the silicate mantle is heated by the decay of radioactive isotopes and that the heat energizes massive convention currents in the upper 700 kilometers of the ductile rock. These currents and their consequences are considered. (JN)

  16. Evaluation of crustal recycling during the evolution of Archean-age Matachewan basaltic magmas

    NASA Technical Reports Server (NTRS)

    Nelson, Dennis O.

    1989-01-01

    The simplest model for the Matachewan-Hearst Dike (MHD) magmas is assimilation-fractional crystallization (AFC), presumably occurring at the base of the crust during underplating. Subduction zone enriched mantle sources are not required. Trace elements suggest that the mantle sources for the MHD were depleted, but possessed a degree of heterogeneity. Rates of assimilation were approximately 0.5 (= Ma/Mc); the contaminant mass was less than 20 percent. The contaminant was dominated by tonalites-randodiorites, similar to xenoliths and rocks in the Kapuskasing Structural Zone (KSZ). Assimilation of partial melts of light-rare earth and garnet-bearing basaltic precursors may have produced some the MHD magmas. Apparently, previous underplating-AFC processes had already produced a thick crust. The silicic granitoid assimilant for the MHD magmas was probably produced by earlier processing of underplated mafic crust (4, 5, 10, 21 and 30). Calculations suggest that the derived silicic rocks possess negative Ta and Ti anomalies even though they were not the product of subduction.

  17. Redistribution of Iron and Titanium in High-Pressure Ultramafic Rocks

    NASA Astrophysics Data System (ADS)

    Crossley, Rosalind J.; Evans, Katy A.; Reddy, Steven M.; Lester, Gregory W.

    2017-11-01

    The redox state of iron in high-pressure serpentinites, which host a significant proportion of Fe3+ in subduction zones, can be used to provide an insight into iron cycling and constrain the composition of subduction zone fluids. In this study, we use oxide and silicate mineral textures, interpretation of mineral parageneses, mineral composition data, and whole rock geochemistry of high-pressure retrogressed ultramafic rocks from the Zermatt-Saas Zone to constrain the distribution of iron and titanium, and iron oxidation state. These data provide an insight on the oxidation state and composition of fluids at depth in subduction zones. Oxide minerals host the bulk of iron, particularly Fe3+. The increase in mode of magnetite and observation of magnetite within antigorite veins in the investigated ultramafic samples during initial retrogression is most consistent with oxidation of existing iron within the samples during the infiltration of an oxidizing fluid since it is difficult to reconcile addition of Fe3+ with the known limited solubility of this species. However, high Ti contents are not typical of serpentinites and also cannot be accounted for by simple mixing of a depleted mantle protolith with the nearby Allalin gabbro. Titanium-rich phases coincide with prograde metamorphism and initial exhumation, implying the early seafloor and/or prograde addition and late mobilization of Ti. If Ti addition has occurred, then the introduction of Fe3+, also generally considered to be immobile, cannot be disregarded. We explore possible transport vectors for Ti and Fe through mineral texture analysis.

  18. The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Lowenstern, J. B.; Vivit, D.V.; Bullen, T.D.

    2005-01-01

    Calcite is frequently cited as a source of excess Ca, Sr and alkalinity in solutes discharging from silicate terrains yet, no previous effort has been made to assess systematically the overall abundance, composition and petrogenesis of accessory calcite in granitoid rocks. This study addresses this issue by analyzing a worldwide distribution of more than 100 granitoid rocks. Calcite is found to be universally present in a concentration range between 0.028 to 18.8 g kg-1 (mean = 2.52 g kg-1). Calcite occurrences include small to large isolated anhedral grains, fracture and cavity infillings, and sericitized cores of plagioclase. No correlation exists between the amount of calcite present and major rock oxide compositions, including CaO. Ion microprobe analyses of in situ calcite grains indicate relatively low Sr (120 to 660 ppm), negligible Rb and 87Sr/86Sr ratios equal to or higher than those of coexisting plagioclase. Solutes, including Ca and alkalinity produced by batch leaching of the granitoid rocks (5% CO2 in DI water for 75 d at 25??C), are dominated by the dissolution of calcite relative to silicate minerals. The correlation of these parameters with higher calcite concentrations decreases as leachates approach thermodynamic saturation. In longer term column experiments (1.5 yr), reactive calcite becomes exhausted, solute Ca and Sr become controlled by feldspar dissolution and 87Sr/ 86Sr by biotite oxidation. Some accessory calcite in granitoid rocks is related to intrusion into carbonate wall rock or produced by later hydrothermal alteration. However, the ubiquitous occurrence of calcite also suggests formation during late stage (subsolidus) magmatic processes. This conclusion is supported by petrographic observations and 87Sr/86Sr analyses. A review of thermodynamic data indicates that at moderate pressures and reasonable CO2 fugacities, calcite is a stable phase at temperatures of 400 to 700??C. Copyright ?? 2005 Elsevier Ltd.

  19. Ultra-oxidized rocks in subduction mélanges? Decoupling between oxygen fugacity and oxygen availability in a Mn-rich metasomatic environment

    NASA Astrophysics Data System (ADS)

    Tumiati, Simone; Godard, Gaston; Martin, Silvana; Malaspina, Nadia; Poli, Stefano

    2015-06-01

    The manganese ore of Praborna (Italian Western Alps) is embedded within a metasedimentary sequence belonging to a subduction mélange equilibrated at high-pressure (HP) conditions (ca. 2 GPa) during the Alpine orogenesis. The pervasive veining of the ore and the growth of "pegmatoid" HP minerals suggest that these Mn-rich rocks strongly interacted with slab-derived fluids during HP metamorphism. These rocks are in textural and chemical equilibrium with the veins and in contact with sulphide- and magnetite-bearing metabasites at the bottom of the sequence. They contain braunite (Mn2+Mn3+6SiO12), quartz, pyroxmangite (Mn2+SiO3), and minor hematite, omphacite, piemontite and spessartine-rich garnet. Sulphides are absent in the Mn-rich rocks, whereas sulphates (barite, celestine) occur together with As- and Sb-oxides and silicates. This rock association provides an excellent natural laboratory to constrain the redox conditions in subducting oceanic slab mélanges at HP and fluid-present conditions. Similarly to Fe-bearing minerals, Mn oxides and silicates can be regarded as natural redox-sensors. A thermodynamic dataset for these Mn-bearing minerals is built, using literature data as well as new thermal expansion parameters for braunite aud pyrolusite, derived from experiments. Based on this dataset and the observed assemblages at Praborna, thermodynamic calculations show that these mélange rocks are characterised by ultra-oxidized conditions (∆FMQ up to + 12.7) if the chemical potential of oxygen (or the oxygen fugacity fO2) is accounted for. On the other hand, if the molar quantity of oxygen is used as the independent state variable to quantify the bulk oxidation state, the ore appears only moderately oxidized and comparable to typical subduction-slab mafic eclogites. Such an apparent contradiction may happen in rock systems whenever oxygen is improperly considered as a perfectly mobile component. In the Earth's mantle, redox reactions take place mainly between solid oxides and silicates, because O2 is a negligible species in the fluid phase. Therefore, the description of the redox conditions of most petrological systems requires the introduction of an extensive variable, namely the oxygen molar quantity (nO2). As a consequence, the oxygen chemical potential, and thus fO2, becomes a dependent state variable, not univocally indicative of the redox conditions of the entire rock column of a subduction zone, from the dehydrating oceanic crust to the overlying mantle wedge. On a more general basis, the comparison of fO2 retrieved from different bulk compositions and different phase assemblages is sometimes challenging and should be undertaken with care. From the study of mélange rocks at Praborna, the distribution of oxygen at subduction zones could be modelled as an oxidation gradient, grading from a maximum in the subducted altered oceanic crust to a minimum in the overlying peridotites of the mantle hanging-wall.

  20. Crustal extension and magmatism during the mid-Cenozoic ignimbrite flare-up in the Guazapares Mining District and Cerocahui basin regions, northern Sierra Madre Occidental, western Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Murray, Bryan Patrick

    Silicic large igneous provinces are significant in the geologic record, due to their unusually extensive areal coverage (>100,000 km2) and large volumes (>250,000 km3), and may be characteristic of continental regions undergoing broad lithospheric extension. The Sierra Madre Occidental of northwestern Mexico is the biggest and best-preserved silicic large igneous province of the Cenozoic and is considered part of the extensive mid-Cenozoic ignimbrite flare-up that affected much of the southwestern North American Cordillera. Despite its size and preservation, very little is known about the geology of the Sierra Madre Occidental, and the timing and spatial extent of ignimbrite flare-up volcanism in relation to crustal extension is relatively unknown. This study presents new geologic mapping, stratigraphy, zircon U-Pb laser ablation ICP-MS dating, modal analysis, and geochemical data from the Guazapares Mining District and Cerocahui basin regions, two adjacent areas of the northern Sierra Madre Occidental in western Chihuahua. The rock exposure and topographic relief in this previously unmapped ~450 km2 area make it ideal for studying the relationships between silicic large igneous province volcanism and crustal extension. Three informal formations are identified in the study area: (1) the ca. 27.5 Ma Parajes formation, a ~1-km-thick succession of primarily welded silicic outflow ignimbrite sheets erupted from sources within ~50--100 km of the study area that were active during the Early Oligocene pulse of the mid-Cenozoic ignimbrite flare-up; (2) the ca. 27--24.5 Ma Temoris formation, composed primarily of locally erupted mafic-intermediate lavas and associated intrusions with interbedded alluvial deposits, likely related to rocks of the Southern Cordillera basaltic andesite province that were intermittently erupted across all of the northern Sierra Madre Occidental following the Early Oligocene ignimbrite pulse; and (3) the ca. 24.5--23 Ma Sierra Guazapares formation, composed of silicic vent to proximal facies ignimbrites, lavas, plugs, and reworked equivalents that record the initiation of explosive and effusive silicic fissure magmatism in the study area during the Early Miocene pulse of the mid-Cenozoic ignimbrite flare-up. The Guazapares Mining District and Cerocahui basin regions share this stratigraphy, but the rocks in the Cerocahui basin consist of a much higher proportion of alluvial deposits. The main geologic structures in the Guazapares Mining District and Cerocahui basin regions are NNW-trending normal faults, with an estimated minimum of 20% total horizontal extension. Many normal faults bound half-graben basins that show evidence of syndepositional extension. Normal faulting began by ca. 27.5 Ma during deposition of the youngest ignimbrites of the Parajes formation, concurrent with the end of the Early Oligocene silicic ignimbrite pulse of the ignimbrite flare-up to the east and before magmatism began in the study area. Preexisting normal faults localized mafic-intermediate volcanic vents of the Temoris formation and silicic vents of the Sierra Guazapares formation, and were active during deposition of these formations. In addition, the localization and timing of epithermal mineralization in the Guazapares Mining District appears to be favored where pre-to-synvolcanic extensional structures are in close association with Sierra Guazapares formation rhyolite plugs. The timing of extensional faulting and magmatism in the Guazapares Mining District and Cerocahui regions is consistent with regional-scale Middle Eocene to Early Miocene southwestward migration of active volcanism and extension in the northern Sierra Madre Occidental. Extension accompanied mafic-intermediate and silicic volcanism in the study area, and overlapped with the peak of mid-Cenozoic ignimbrite flare-up in the Sierra Madre Occidental; this supports the interpretation that there is likely a relationship between lithospheric extension and silicic large igneous province magmatism.

  1. Fe-Ti-oxide textures and microstructures in shear zones from oceanic gabbros at Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Till, Jessica; Morales, Luiz F. G.; Rybacki, Erik

    2016-04-01

    Ocean drilling expeditions at several oceanic core complexes formed at slow- and ultra-slow-spreading ridges have recovered cores containing numerous zones of oxide-rich gabbros containing ilmenite and magnetite. In these cores, high modal concentrations of Fe-Ti-oxides are systematically associated with high-temperature plastic deformation features in silicates. We present observations of Fe-Ti-oxide mineral structures and textural characteristics from a series of oxide-rich shear zones from Atlantis Bank (ODP Site 735B) on the Southwest Indian Ridge aimed at determining how oxide mineral abundances relate to strain localization. Fe-Ti-oxide minerals in undeformed oxide gabbros and in highly deformed samples from natural shear zones generally have morphologies characteristic of crystallized melt, including highly cuspate grains and low dihedral angles. Anisotropy of magnetic susceptibility in oxide-rich shear zones is very strong, with fabrics mainly characterized by strong magnetic foliations parallel to the macroscopic foliation. Crystallographic preferred orientations (CPO) in magnetite are generally weak, with occasionally well-defined textures. Ilmenite typically displays well-developed CPOs, however, the melt-like ilmenite grain shapes indicate that at least part of the crystallographic texture results from oriented ilmenite growth during post-deformation crystallization. The oxides are hypothesized to have initially been present as isolated pockets of trapped melt (intercumulus liquid) in a load-bearing silicate framework. Progressive plastic deformation of silicate phases at high-temperature mainly produced two features: (i) elongated melt pockets, which crystallized to form strings of opaque minerals and (ii), interconnected networks of melt regions. The latter lead to intense strain localization of the rock, which appears as oxide-rich mylonites in the samples. In some samples, abundant low-angle grain boundaries in both magnetite and ilmenite suggest that deformation may have continued after crystallization of the late melt, imposing a weak strain on the oxides. Recent experimental deformation results indicate that magnetite and ilmenite should be weaker than most mafic silicates under anhydrous conditions. However, melt-like oxide morphologies observed in Atlantis Bank shear zones indicate that the redistribution of Fe-Ti-oxide melts may have more influence on the strength and strain localization behavior of oceanic gabbros than their solid-state rheology.

  2. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    NASA Astrophysics Data System (ADS)

    Rowland, R. L., II; Vander Kaaden, K. E.; McCubbin, F. M.; Danielson, L. R.

    2017-12-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wüstite (IW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at 1 GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850°C. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-SiO2 buffer, which is 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of elements during the differentiation and thermal evolution of Mercury and other highly reducing planetary bodies.

  3. Sulfate content of Europa's ocean and shell: evolutionary considerations and some geological and astrobiological implications.

    PubMed

    McKinnon, William B; Zolensky, Michael E

    2003-01-01

    Recent models for the origin of Jupiter indicate that the Galilean satellites were mostly derived from largely unprocessed solar nebula solids and planetesimals. In the jovian subnebula the solids that built Europa were first heated and then cooled, but the major effect was most likely partial or total devolatilization, and less likely to have been wholesale thermochemical reprocessing of rock + metal compositions (e.g., oxidation of Fe and hydration of silicates). Ocean formation and substantial alteration of interior rock by accreted water and ice would occur during and after accretion, but none of the formation models predicts or implies accretion of sulfates. Europa's primordial ocean was most likely sulfidic. After accretion and later radiogenic and tidal heating, the primordial ocean would have interacted hydrothermally with subjacent rock. It has been hypothesized that sulfides could be converted to sulfates if sufficient hydrogen was lost to space, but pressure effects and the impermeability of serpentinite imply that extraction of sulfate from thoroughly altered Europa-rock would have been inefficient (if indeed Mg sulfates formed at all). Permissive physical limits on the extent of alteration limit the sulfate concentration of Europa's evolved ocean to 10% by weight MgSO(4) or equivalent. Later oxidation of the deep interior of Europa may have also occurred because of water released by the breakdown of hydrated silicates, ultimately yielding S magma and/or SO(2) gas. Geological and astrobiological implications are considered.

  4. Chemistry of the subalkalic silicic obsidians

    USGS Publications Warehouse

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    Nonhydrated obsidians are quenched magmatic liquids that record in their chemical compositions details of the tectonic environment of formation and of the differentiation mechanisms that affected their subsequent evolution. This study attempts to analyze, in terms of geologic processes, the compositional variations in the subalkalic silicic obsidians (Si02≥70 percent by weight, molecular (Na2O+K20)>Al2O3). New major- and trace-element determinations of 241 samples and a compilation of 130 published major-element analyses are reported and interpreted. Obsidians from five different tectonic settings are recognized: (1) primitive island arcs, (2) mature island arcs, (3) continental margins, (4) continental interiors, and (5) oceanic extensional zones. Tectonomagmatic discrimination between these groups is successfully made on Nb-Ta, Nb-FeOt and Th-Hf-Ta plots, and compositional ranges and averages for each group are presented. The chemical differences between groups are related to the type of crust in which magmas were generated. With increasingly sialic (continental type) crust, the obsidians show overall enrichment in F, Be, Li, Mo, Nb, Rb, Sn, Ta, U, W, Zn, and the rare-earth elements, and depletion in Mg, Ca, Ba, Co, Sc, Sr, and Zr. They become more potassic, have higher Fe/Mg and F/Cl ratios, and lower Zr/Hf, Nb/Ta, and Th/U ratios. Higher values of total rare-earth elements are accompanied by light rare-earth-element enrichment and pronounced negative Eu anomalies. An attempt is made to link obsidian chemistry to genetic mechanlism. Two broad groups of rocks are distinguished: one generated where crystal-liquid processes dominated (CLPD types), which are the products of crustal anatexis, possibly under conditions of low halogen fugacity, ± crystal fractionation ± magma mixing; and a second group represented by rocks formed in the upper parts of large magma chambers by interplays of crystal fractionation, volatile transfer, magma mixing, and possibly various liquid-state differentiation mechanisms, or in other words a complex interaction of petrogenetic processes (CIPP types). Such rocks may also form by volatile-fluxed partial melting of the wallrocks, and subsequent mixing into the magma reservoir. Compositional ranges and averages for CLPD and CIPP obsidians are given. It is shown by analogy with well-documented, zoned ash-flow ruffs that obsidians fractionated by CIPP have very low Mg, P, Ba, and Sr contents, flat rare-earth-element patterns with extensive Eu anomalies, low K/Rb and Zr/Nb ratios, and relatively high Na2O/K2O ratios. There is, however, considerable compositional overlap between CLPD and CIPP obsidians. The effects of magma mixing, assimilation, and vapor-phase transport in producing compositional variations in the obsidians are briefly assessed. The geochemistry of the subalkalic silicic obsidians is described on an element-by-element basis, in order to provide a database for silicic magma compositions that will hopefully contribute to studies of granitic rocks. Attempts are also made to isolate the geochemical effects of tectonic environment and genetic mechanism for each element, by comparison with data from crystal-liquid equilibria-controlled systems, from ash-flow sheets zoned by CIPP, and from mixed-magma series. A final tabulation relates the complexities of obsidian geochemistry to all the tectonic and genetic variables.

  5. Spade: An H Chondrite Impact-melt Breccia that Experienced Post-shock Annealing

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Jones, Rhian H.

    2006-01-01

    The low modal abundances of relict chondrules (1.8 Vol%) and of coarse (i.e. >= 2200 micron-size) isolated mafic silicate grains (1.8 Vol%) in Spade relative to mean H6 chondrites (11.4 and 9.8 vol%, respectively) show Spade to be a rock that has experienced a significant degree of melting. Various petrographic features (e.g., chromite-plagioclase assemblages, chromite veinlets, silicate darkening) indicate that melting was caused by shock. Plagioclase was melted during the shock event and flowed so that it partially to completely surrounded nearby mafic silicate grains. During crystallization, plagioclase developed igneous zoning. Low-Ca pyroxene that crystallized from the melt (or equilibrated with the melt at high temperatures) acquired relatively high amounts of CaO. Metallic Fe-Ni cooled rapidly below the Fe-Ni solws and transformed into martensite. Subsequent reheating of the rock caused transformation of martensite into abundant duplex plessite. Ambiguities exist in the shock stage assignment of Spade. The extensive silicate darkening, the occurrence of chromite-plagioclase assemblages, and the impact-melted characteristics of Spade are consistent with shock stage S6. Low shock (stage S2) is indicated by the undulose extinction and lack of planar fractures in olivine. This suggests that Spade reached a maximum prior shock level equivalent to stage S6 and then experienced post-shock annealing (probably to stage Sl). These events were followed by a less intense impact that produced the undulose extinction in the olivine, characteristic of shock stage S2. Annealing could have occurred if Spade were emplaced near impact melts beneath the crater floor or deposited in close proximity to hot debris within an ejecta blanket. Spade firmly establishes the case for post-shock annealing. This may have been a common process on ordinary chondrites (OC) asteroids.

  6. Amorphous Phases on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Ruff, S. W.; Horgan, B.; Dehouck, E.; Achilles, C. N.; Ming, D. W.; Bish, D. L.; Chipera, S. J.

    2014-01-01

    Both primary (volcanic/impact glasses) and secondary (opal/silica, allophane, hisingerite, npOx, S-bearing) amorphous phases appear to be major components of martian surface materials based on orbital and in-situ measurements. A key observation is that whereas regional/global scale amorphous components include altered glass and npOx, local scale amorphous phases include hydrated silica/opal. This suggests widespread alteration at low water-to-rock ratios, perhaps due to snow/ice melt with variable pH, and localized alteration at high water-to-rock ratios. Orbital and in-situ measurements of the regional/global amorphous component on Mars suggests that it is made up of at least three phases: npOx, amorphous silicate (likely altered glass), and an amorphous S-bearing phase. Fundamental questions regarding the composition and the formation of the regional/global amorphous component(s) still remain: Do the phases form locally or have they been homogenized through aeolian activity and derived from the global dust? Is the parent glass volcanic, impact, or both? Are the phases separate or intimately mixed (e.g., as in palagonite)? When did the amorphous phases form? To address the question of source (local and/or global), we need to look for variations in the different phases within the amorphous component through continued modeling of the chemical composition of the amorphous phases in samples from Gale using CheMin and APXS data. If we find variations (e.g., a lack of or enrichment in amorphous silicate in some samples), this may imply a local source for some phases. Furthermore, the chemical composition of the weathering products may give insight into the formation mechanisms of the parent glass (e.g., impact glasses contain higher Al and lower Si [30], so we might expect allophane as a weathering product of impact glass). To address the question of whether these phases are separate or intimately mixed, we need to do laboratory studies of naturally altered samples made up of mixed phases (e.g., palagonite) and synthetic single phases to determine their short-range order structures and calculate their XRD patterns to use in models of CheMin data. Finally, to address the timing of the alteration, we need to study rocks on the martian surface of different ages that may contain glass (volcanic or impact) with MSL and future rovers to better understand how glass alters on the martian surface, if that alteration mechanism is universal, and if alteration spans across long periods of time or if there is a time past which unaltered glass remains.

  7. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    USGS Publications Warehouse

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake Terreton, is an important contributor of solutes in the Mud Lake-Dubois area. Oxidation-reduction reactions are important influences on the chemistry of groundwater at Camas Meadows and the Camas National Wildlife Refuge. In addition, mixing of different groundwaters or surface water with groundwater appears to be an important physical process influencing groundwater geochemistry in much of the study area, and evaporation may be an important physical process influencing the groundwater geochemistry of the Camas National Wildlife Refuge. The mass-balance modeling results from this study provide an explanation of the natural geochemistry of groundwater in the ESRP aquifer northeast of the INL, and thus provide a starting point for evaluating the natural and anthropogenic geochemistry of groundwater at the INL.

  8. Initiation of the Bukadaban Feng Normal Fault and Implications for the Topographic Evolution of Northern Tibet

    NASA Astrophysics Data System (ADS)

    Niemi, N. A.; Chang, H.; Li, L.; Molnar, P. H.

    2017-12-01

    The Bukadaban Feng massif in northern Tibet forms the footwall of an east-west trending graben that is kinematically linked to the Kunlun fault. Extension across this graben accommodates left-lateral slip on the Kunlun fault, as evidenced by the 2001 Kunlun earthquake rupture. New geochronologic and thermochronologic data from Bukadaban Feng provide insight into the evolution of this normal fault system. The Bukadaban Feng massif is composed of two plutonic units, an eastern unit of dacitic composition and a western unit of rhyolitic composition. Sixty-five LA-ICP-MS zircon U-Pb age determinations on the rhyolitic unit reveal a range of ages from 873 - 6.3 Ma. CA-TIMS U-Pb zircon geochronology on the nine youngest of these zircons yields an emplacement age of 6.8 Ma. Twenty-seven LA-ICP-MS zircon U-Pb ages on the dacite range from 208 to 7.9 Ma. No coherent population of young zircons was observed, and CA-TIMS analysis was not performed. Zircon (U-Th)/He analysis on the dacite and rhyolite yield ages of 3.9 and 5.0 Ma, respectively, while apatite (U-Th-Sm)/He thermochronology on 5 samples collected from both units along the trace of the normal fault yield ages ranging from 1.4 - 2.6 Ma. The emplacement ages and compositions of plutonic rocks at Bukadaban Feng are consistent with the eruptive timing and geochemistry of silicic volcanic rocks in the graben (Zhang et al., 2012). Silicic magmatism is often associated with the onset of crustal extension, and the combination of plutonism and correlative silicic volcanism provides an indirect constraint on the initiation of this graben at 7 Ma. The distinct zircon (U-Pb) and (U-Th)/He ages indicates that the rocks presently exposed at Bukadaban Feng were emplaced at ambient temperatures in excess of 180°C. The zircon and apatite thermochronologic data require exhumation at rates of 1-2 mm/yr since the late Miocene. A 7 Ma initiation age for the Bukadaban Feng normal fault is consistent with both published estimates of total offset across the Kunlun fault ( 70 km; Kidd and Molnar, 1988) and recent fault slip rates ( 10 mm/yr; van der Woerd et al., 2002). To the extent that the onset of extension and strike-slip faulting can be related to the attainment of high topography, these new data imply that northernmost Tibet may have reached maximum elevations as recently as the late Miocene.

  9. Thallium isotope variations in an ore-bearing continental igneous setting: Collahuasi Formation, northern Chile

    NASA Astrophysics Data System (ADS)

    Baker, R. G. A.; Rehkämper, M.; Ihlenfeld, C.; Oates, C. J.; Coggon, R.

    2010-08-01

    Thallium is a highly incompatible element and a large fraction of the bulk silicate Earth Tl budget is, therefore, expected to reside in the continental crust. Nonetheless, the Tl isotope systematics of continental rocks are essentially unexplored at present. Here, we present new Tl isotope composition and concentration data for a suite of 36 intrusive and extrusive igneous rocks from the vicinity of porphyry Cu deposits in the Collahuasi Formation of the Central Andes in northern Chile. The igneous lithologies of the rocks are variably affected by the hydrothermal alteration that accompanied the formation of the Cu deposits. The samples display Tl concentrations that vary by more than an order of magnitude, from 0.1 to 3.2 μg/g, whilst ɛ 205Tl ranges between -5.1 and +0.1 (ɛ 205Tl is the deviation of the 205Tl/ 203Tl isotope ratio of a sample from a standard in parts per 10 4). These variations are primarily thought to be a consequence of hydrothermal alteration processes, including metasomatic transport of Tl, and formation/breakdown of Tl-bearing minerals, which are associated with small but significant Tl isotope effects. The Tl abundances show excellent correlations with both K and Rb concentrations but no co-variation with Cu. This demonstrates that Tl displays only limited chalcophile affinity in the continental crust of the Collahuasi Formation, but behaves as a lithophile element with a distribution that is primarily governed by partitioning of Tl + into K +-bearing phases. Collahuasi samples with propylitic alteration features, which are derived from the marginal parts of the hydrothermal systems, have, on average, slightly lighter Tl isotope compositions than rocks from the more central sericitic and argillic alteration zones. This small but statistically significant difference most likely reflects preferential retention of isotopically heavy Tl in alteration phases, such as white micas and clays, which formed during sericitic and argillic alteration.

  10. Geology of the Barite Hill gold-silver deposit in the southern Carolina slate belt

    USGS Publications Warehouse

    Clark, S.H.B.; Gray, K.J.; Back, J.M.

    1999-01-01

    Barite Hill is a stratiform gold-silver deposit associated with base metal sulfides and barite in greenschist facies rocks. The deposit, southernmost of four recently mined gold deposits in the Carolina slate belt, is located in the Lincolnton-McCormick district of Georgia and South Carolina, which includes several known gold-silver and base metal deposits in a Kuroko-type geological setting along with deposits of kyanite and manganese. Approximately 1,835,000 g of gold was produced mainly from oxidized ores in the Main and Rainsford pits from 1990 until their closing in 1994. Ore is hosted by sericitically altered felsic metavolcanic and metasedimentary rocks of the Late Proterozoic Persimmon Fork Formation. The deposit is stratigraphically below an overturned contact between upper and lower pyroclastic units, which overlie the Lincolnton metarhyolite, an intrusive unit. Gold-silver-rich zones in the Main pit are partly coincident with lenses of siliceous barite rock, but not confined to them, and occur more commonly in pyrite-quartz-altered fragmental rock. The Main pit ore is stratigraphically overlain by a zone of base metal and barite enrichment, which is, in turn, overlain by a talc-tremolite alteration zone locally. Siliceous barite zones are absent in the Rainsford pit, and gold-silver minerals are associated with silicified rocks and chert. The Barite Hill deposit is interpreted to be the result of Kuroko-type, volcanogenic, base metal sulfide mineralization, followed by gold-silver mineralization under epithermal conditions with the following stages of evolution: (1) massive sulfides, barite, and fine-grained siliceous exhalites were deposited during Late Proterozoic to Cambrian submarine volcanism, which was related to plate convergence and subduction in a microcontinental or island-arc setting distant from the North American continental plate; (2) Au-Ag-Te and base and precious metal Te-Se-Bi minerals were deposited either during waning stages of hydrothermal activity in a failed massive sulfide system or in a separate event; (3) sulfides and silica-barite rock recrystallized during regional deformation and greenschist facies metamorphism related to the Middle to Late Ordovician collision of the Carolina terrane with the North American continental plate; (4) quartz, barite, and gold were remobilized and formed veins that cut across cleavage; (5) orebodies were offset along high-angle faults; and (6) during weathering, base metal sulfides and barite dissolved and reprecipitated as supergene euhedral barite crystals that line ferric iron oxide-hydroxide gossans.

  11. Groundwater quality around Tummalapalle area, Cuddapah District, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Sreedhar, Y.; Nagaraju, A.

    2017-11-01

    The suitability of groundwater for drinking and irrigation was assessed in Tummalapalle area. Forty groundwater samples were analysed for major cations, anions and other parameters such as pH, electrical conductivity, total dissolved solids (TDS), total alkalinity and total hardness (TH). The parameters such as sodium adsorption ratio, adjusted sodium adsorption ratio (adj.SAR), per cent sodium, potential salinity, residual sodium carbonate, non-carbonate hardness, Kelly's ratio and permeability index were calculated for the evaluation of irrigation water quality. Groundwater chemistry was also analysed by statistical analysis, USSL, Wilcox, Doneen, Piper and Chadhas diagrams, to find out their suitability for irrigation. TDS and TH were used as main parameters to interpret the suitability of groundwater for drinking purpose. The correlation coefficient matrix between the hydrochemical parameters was carried out using Pearson's correlation to infer the possible water-rock interactions responsible for the variation of groundwater chemistry and this has been supported by Gibbs diagram. The results indicate that the groundwater in Tummalapalle area is alkaline in nature. Ca-Mg-HCO3 is the dominant hydrogeochemical facies. Water chemistry of the study area strongly reflects the dominance of weathering of rock-forming minerals such as bicarbonates and silicates. All parameters and diagrams suggest that the water samples of the study are good for irrigation, and the plots of TDS and TH suggest that 12.5% of the samples are good for human consumption.

  12. A model that helps explain Sr-isotope disequilibrium between feldspar phenocrysts and melt in large-volume silicic magma systems

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1998-01-01

    Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a model by which either more- or less-radiogenic feldspar (or even both within a single eruptive unit) can originate. The model requires a magma body open to interaction with biotite- and feldspar-bearing wall rock. Magma is incrementally contaminated as wall rock melts incongruently. Biotite preferentially melts first, followed by feldspar. Such melting behavior, which is supported by both field and experimental studies, first contaminates magma with a relatively radiogenic addition, followed by a less-radiogenic addition. Feldspar phenocrysts lag behind melt (groundmass of volcanic rock) in incorporating the influx of contaminant, thus resulting in Sr-isotopic disequilibrium between the crystals and melt. The sense of disequilibrium recorded in a volcanic rock depends on when eruption quenches the contamination process. This model is testable by isotopic fingerprinting of individual feldspar crystals. For a given set of geologic boundary conditions, specific core-to-rim Sr-isotopic profiles are expectable. Moreover, phenocrysts that nucleate at different times during the contamination process should record different and predictable parts of the history. Initial results of Sr-isotopic fingerprinting of sanidine phenocrysts from the Taylor Creek Rhyolite are consistent with the model. More tests of the model are desirable.Feldspar phenocrysts of silicic volcanic rocks are commonly in Sr-isotopic disequilibrium with groundmass. In some cases the feldspar is more radiogenic, and in others it is less radiogenic. Several explanations have been published previously, but none of these is able to accommodate both senses of disequilibrium. We present a model by which either more- or less-radiogenic feldspar (or even both within a single eruptive unit) can originate. The model requires a magma body open to interaction with biotite- and feldspar-bearing wall rock. Magma is incrementally contaminated as wall rock melts incongruently. Biotite preferentially melts first, followed by feldspar. Such melting behavior, which is supported by both field and experimental studies, first contaminates magma with a relatively radiogenic addition, followed by a less-radiogenic addition. Feldspar phenocrysts lag behind melt (groundmass of volcanic rock) in incorporating the influx of contaminant, thus resulting in Sr-isotopic disequilibrium between the crystals and melt. The sense of disequilibrium recorded in a volcanic rock depends on when eruption quenches the contamination process. This model is testable by isotopic fingerprinting of individual feldspar crystals. For a given set of geologic boundary conditions, specific core-to-rim Sr-isotopic profiles are expectable. Moreover, phenocrysts that nucleate at different times during the contamination process should record different and predictable parts of the history. Initial results of Sr-isotopic fingerprinting of sanidine phenocrysts from the Taylor Creek Rhyolite are consistent with the model. More tests of the model are desirable.

  13. Analyses of IR-Stealthy and Coated Surface Materials: A Comparison of LIBS and Reflectance Spectra and Their Application to Mars Surface Exploration

    NASA Technical Reports Server (NTRS)

    Wiens, R. C.; Kirkland, L. E.; McKay, C. P.; Cremers, D. A.; Thompson, J.; Maurice, S.; Pinet, P. C.

    2004-01-01

    Identification of non-silicate samples on Mars, such as carbonates, sulfates, nitrates, or evaporites in general, is important because of their association with aqueous processes and their potential as exobiology sites. Infrared (IR) and thermal emission (TE) spectroscopy have been considered the primary tools for remote identification of these minerals. This includes current and future orbital assets such as TES on MGS, THEMIS on Mars Odyssey, OMEGA on Mars Express, CRISM on MRO, and now the Mini-TES on the MER rovers. While reflectance and emission spectroscopy have clearly been the method of choice for these missions, the technique is not always successful in mineral identifications due to dust, surface weathering chemistry, coatings, or surface texture. Here we describe and show IR spectra of several such samples, and then report on the relative success of LIBS analyses in determining the rock type.

  14. ROCK PHYSICS. Rock physics of fibrous rocks akin to Roman concrete explains uplifts at Campi Flegrei Caldera.

    PubMed

    Vanorio, Tiziana; Kanitpanyacharoen, Waruntorn

    2015-08-07

    Uplifts in the Campi Flegrei caldera reach values unsurpassed anywhere in the world (~2 meters). Despite the marked deformation, the release of strain appears delayed. The rock physics analysis of well cores highlights the presence of two horizons, above and below the seismogenic area, underlying a coupled process. The basement is a calc-silicate rock housing hydrothermal decarbonation reactions, which provide lime-rich fluids. The caprock above the seismogenic area has a pozzolanic composition and a fibril-rich matrix that results from lime-pozzolanic reactions. These findings provide evidence for a natural process reflecting that characterizing the cementitious pastes in modern and Roman concrete. The formation of fibrous minerals by intertwining filaments confers shear and tensile strength to the caprock, contributing to its ductility and increased resistance to fracture. Copyright © 2015, American Association for the Advancement of Science.

  15. Observations of silicate reststrahlen bands in lunar infrared spectra

    NASA Technical Reports Server (NTRS)

    Potter, A. E., Jr.; Morgan, T. H.

    1982-01-01

    Thermal emission spectra of three lunar sites (Apollo 11, Descartes Formation, and Tycho central peak) are measured in the 8-14 micron spectral range. Transmission and instrument effects are accounted for by forming ratios of the Descartes and Tycho spectra to the Apollo 11 spectrum. The ratio spectra are compared with ratios of published laboratory spectra of returned lunar samples and also with ratio spectra calculated using the Aronson-Emslie (1975) model. The comparisons show pyroxene bands in the Descartes ratio spectrum and plagioclase bands in the Tycho ratio spectrum. The Tycho spectrum is found to be consistent with the existence of fine plagioclase dust (approximately 1 micron) at the rock surface and a higher-than-usual sodium content of the plagioclase.

  16. Dielectric Constant Measurements on Lunar Soils and Terrestrial Minerals

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Buehler, M. G.; Seshardri, S.; Schaap, M. G.

    2004-01-01

    The return to the Moon has ignited the need to characterize the lunar regolith using in situ methods. An examination of the lunar regolith samples collected by the Apollo astronauts indicates that only a few minerals (silicates and oxides) need be considered for in situ resource utilization (ISRU). This simplifies the measurement requirements and allows a detailed analysis using simple methods. Characterizing the physical properties of the rocks and soils is difficult because of many complex parameters such as soil temperature, mineral type, grain size, porosity, and soil conductivity. In this presentation, we will show that the dielectric constant measurement can provide simple detection for oxides such as TiO2, FeO, and water. Their presence is manifest by an unusually large imaginary permittivity.

  17. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA

    USGS Publications Warehouse

    Townsend, G.N.; Gibson, R.L.; Horton, J. Wright; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.

  18. Episodic growth of a Late Cretaceous and Paleogene intrusive complex of pegmatitic leucogranite, Ruby Mountains core complex, Nevada, USA

    USGS Publications Warehouse

    Howard, Keith A.; Wooden, J.L.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.; Lee, S.-Y.

    2011-01-01

    Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains–East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma. This injection complex consists of deformed sheets and other bodies emplaced syntectonically into a stratigraphic framework of marble, calc-silicate rocks, quartzite, schist, and other granitoids. Bodies of pegmatitic granite coalesce around host-rock remnants, which preserve relict or ghost stratigraphy, thrusts, and fold nappes. Intrusion inflated but did not disrupt the host-rock structure. The pegmatitic granite increases proportionally downward from structurally high positions to the bottoms of 1-km-deep canyons where it constitutes 95%–100% of the rock. Zircon and monazite dated by U-Pb (sensitive high-resolution ion microprobe, SHRIMP) for this rock type cluster diffusely at ages near 92, 82(?), 69, 38, and 29 Ma, and indicate successive or rejuvenated igneous crystallization multiple times over long periods of the Late Cretaceous and the Paleogene. Initial partial melting of unexposed pelites may have generated granite forerunners, which were remobilized several times in partial melting events. Sources for the pegmatitic granite differed isotopically from sources of similar-aged interleaved equigranular granites. Dominant Late Cretaceous and fewer Paleogene ages recorded from some pegmatitic granite samples, and Paleogene-only ages from the two structurally deepest samples, together with varying zircon trace element contents, suggest several disparate ages of final emplacement or remobilization of various small bodies. Folded sills that merge with dikes that cut the same folds suggest that there may have been in situ partial remobilization. The pegmatitic granite intrusions represent prolonged and recurrent generation, assembly, and partial melting modification of a batholithic volume even while the regional tectonic environment varied dramatically from contractile thickening to extension and mafic underplating.

  19. Plutons: Simmer between 350° and 500°C for 10 million years, then serve cold (Invited)

    NASA Astrophysics Data System (ADS)

    Coleman, D. S.; Davis, J.

    2009-12-01

    The growing recognition that continental plutons are assembled incrementally over millions of years requires reexamination of the thermal histories of intrusive rocks. With the exception of the suggestion that pluton magma chambers can be revitalized by mafic input at their deepest structural levels, most aspects of modern pluton petrology are built on the underlying assumption that silicic plutons intrude as discrete thermal packages that undergo subsequent monotonic decay back to a steady-state geothermal gradient. The recognition that homogeneous silicic plutons are constructed over timescales too great to be single events necessitates rethinking pluton intrusion mechanisms, textures, thermochronology, chemical evolution and links to volcanic rocks. Three-dimensional thermal modeling of sheeted (horizontal and vertical) incremental pluton assembly (using HEAT3D by Wohletz, 2007) yields several results that are largely independent of intrusive geometry and may help understand bothersome field and laboratory results from plutonic rocks. 1) All increments cool quickly below hornblende closure temperature. However, late increments are emplaced into walls warmed by earlier increments, and they cycle between hornblende and biotite closure temperatures, a range in which fluid-rich melts are likely to be present. These conditions persist until the increments are far from the region of new magma flux, or the addition of increments stops. These observations are supported by Ar thermochronology and may explain why heterogeneous early marginal intrusive phases often grade into younger homogeneous interior map units. 2) Early increments become the contact metamorphic wall rocks of later increments. This observation suggests that much of the contact metamorphism associated with a given volume of plutonic rock is “lost” via textural modification of early increments during intrusion of later increments. Johnson and Glazner (CMP, in press) argue that mappable variations in pluton texture can result from textural modification during thermal cycling associated with incremental assembly. 3) The thermal structure of the model pluton evolves toward roughly spheroidal isotherms even though the pluton is assembled from thin tabular sheets. The zone of melt-bearing rock and the shape of intrapluton contact metamorphic isograds bear little resemblance to the increments from which the pluton was built. Consequently, pluton contacts mapped by variations in texture that reflect the thermal cycling inherent to incremental assembly will inevitably be “blob” or diapir-like, but will yield little insight into magma intrusion geometry. 4) Although models yield large regions of melt-bearing rock, the melt fraction is low and the melt-bearing volume at any time is small compared to the total volume of the pluton. This observation raises doubts about the connections between zoned silicic plutons and large ignimbrite eruptions.

  20. On the original igneous source of Martian fines

    NASA Technical Reports Server (NTRS)

    Baird, A. K.; Clark, B. C.

    1981-01-01

    The composition of the silicate portion of Martian regolith fines indicates derivation of the fines from mafic to ultramafic rocks, probably rich in pyroxene. Rock types similar in chemical and mineralogical composition include terrestrial Archean basalts and certain achondrite meteorites. If these igneous rocks weathered nearly isochemically, the nontronitic clays proposed earlier as an analog to Martian fines could be formed. Flood basalts of pyroxenitic lavas may be widespread and characteristic of early volcanism on Mars, analogous to maria flood basalts on the moon and early Precambrian basaltic komatiites on earth. Compositional differences between lunar, terrestrial, and Martian flood basalts may be related to differences in planetary sizes and mantle compositions of the respective planetary objects.

  1. Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: Implications for predicting unconventional reservoir attributes of mudstones

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.; Taylor, Kevin G.; Polya, David

    2014-01-01

    Diagenesis significantly impacts mudstone lithofacies. Processes operating to control diagenetic pathways in mudstones are poorly known compared to analogous processes occurring in other sedimentary rocks. Selected organic-carbon-rich mudstones, from the Kimmeridge Clay and Monterey Formations, have been investigated to determine how varying starting compositions influence diagenesis.The sampled Kimmeridge Clay Formation mudstones are organized into thin homogenous beds, composed mainly of siliciclastic detritus, with some constituents derived from water-column production (e.g., coccoliths, S-depleted type-II kerogen, as much as 52.6% total organic carbon [TOC]) and others from diagenesis (e.g., pyrite, carbonate, and kaolinite). The sampled Monterey Formation mudstones are organized into thin beds that exhibit pelleted wavy lamination, and are predominantly composed of production-derived components including diatoms, coccoliths, and foraminifera, in addition to type-IIS kerogen (as much as 16.5% TOC), and apatite and silica cements.During early burial of the studied Kimmeridge Clay Formation mudstones, the availability of detrital Fe(III) and reactive clay minerals caused carbonate- and silicate-buffering reactions to operate effectively and the pore waters to be Fe(II) rich. These conditions led to pyrite, iron-poor carbonates, and kaolinite cements precipitating, preserved organic carbon being S-depleted, and sweet hydrocarbons being generated. In contrast, during the diagenesis of the sampled Monterey Formation mudstones, sulfide oxidation, coupled with opal dissolution and the reduced availability of both Fe(III) and reactive siliciclastic detritus, meant that the pore waters were poorly buffered and locally acidic. These conditions resulted in local carbonate dissolution, apatite and silica cements precipitation, natural kerogen sulfurization, and sour hydrocarbons generation.Differences in mud composition at deposition significantly influence subsequent diagenesis. These differences impact their source rock attributes and mechanical properties.

  2. Major and minor oxide and trace element determination in silicate rocks by direct current plasma optical emission echelle spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankston, D.C.; Humphris, S.E.; Thompson, G.

    1979-07-01

    A technique for the determination of major concentrations of SiO/sub 2/, Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, MgO, CaO, Na/sub 2/O, and K/sub 2/O, minor levels of TiO/sub 2/, P/sub 2/O/sub 5/, and MnO, and trace concentrations of Ba, Cr, Cu, Ni, Sr, V, and Zn, in semi-microsamples 200 mg) of powdered whole rock, is described. Chemically diverse standard reference rocks are used both for calibration and assessment of accuracy. A lithium metaborate fusion melt of each standard or sample is dissolved in dilute HNO/sub 3/ containing Cs/sup +/ at a level of 0.2% (w/v). The resulting solution is usedmore » to perform all analyses except those for Na/sub 2/O and K/sub 2/O, which are determined in a portion of the original sample solution wherein the Cs/sup +/ concentration has been raised to 0.32% (w/v). Analyses of both portions of each sample solution are performed using an optical emission spectrometer/spectrograph equipped with an echelle monochromator and a dc argon plasma excitation source. Trace element detection limits ranged from 2 ppM for Cu to 15 ppM for Zn. A study of precision based on replicate determinations in three splits of the proposed USGS reference basalt BHVO-1 yielded the following results: (1) For analyses of the major and minor oxide constituents, values of the percent relative standard deviation (RSD) ranged from 1 for CaO, to 21 for P/sub 2/O/sub 5/. 2) For trace element determinations, values of the RSD ranged from 2 for Cu, to 19 for Zn. 2 figures, 11 tables.« less

  3. FLUID EVOLUTION AND MINERAL REACTIONS DURING SHEAR ZONE FORMATION AT NUSFJORD, LOFOTEN, NORWAY (Invited)

    NASA Astrophysics Data System (ADS)

    Kullerud, K.

    2009-12-01

    At Nusfjord in Lofoten, Norway, three 0.3 - 3 m thick shear zones occur in a gabbro-anorthosite. During deformation, the shear zones were infiltrated by a hydrous fluid enriched in Cl. In the central parts of the shear zones, fluid-rock interaction resulted in complete break-down of the primary mafic silicates. Complete hydration of these minerals to Cl-free amphibole and biotite suggests that the hydrous fluid was present in excess during deformation in these parts of the shear zones. Along the margins of the shear zones, however, the igneous mafic silicates (Cpx, Bt, Opx) were only partly overgrown by hydrous minerals. Here, Cl-enriched minerals (Amph, Bt, Scp, Ap) can be observed. Amphibole shows compositions covering the range 0.1 - 4.0 wt % Cl within single thin sections. Mineral textures and extreme compositional variations of the Cl-bearing minerals indicate large chemical gradients of the fluid phase. Relics of primary mafic silicates and compositionally zoned reaction coronas around primary mafic silicates suggest that the free fluid was totally consumed before the alteration of the primary phases were completed. The extreme variations in the Cl-content of amphibole are inferred to monitor a gradual desiccation of the Cl-bearing grain-boundary fluid during fluid-mineral reactions accordingly: 1) The first amphibole that formed during the reactions principally extracted water from the fluid, resulting in a slight increase in the Cl content of the fluid. 2) Continued amphibole-forming reactions resulted in gradual consumption of the free fluid phase, principally by extracting water from the fluid, resulting in an increase in its Cl-content. Higher Cl-content of the fluid resulted in higher Cl-content of the equilibrium amphibole. 3) The most Cl-enriched amphibole (4 wt % Cl) formed in equilibrium with the last volumes of the grain-boundary fluid, which had evolved to a highly saline solution. Mineral reactions within a 1-2 thick zone of the host rock along the contact to the shear zones indicate a more complicated involvement of fluids during shear zone formation than described above. Apparently, fluids have been transported laterally from the outer parts of the shear zones into the gabbro-anorthosite along thin recrystallized zones of plagioclase. The fluid that infiltrated the undeformed host rock of the shear zones resulted in formation of Cl-free amphibole and garnet between the primary mafic minerals and plagioclase. A working hypothesis is that narrow fractures formed within the host rock, outside the sheared rock during shear zone formation. During shear zone formation, the central parts of the shear zones were completely hydrated by an externally derived Cl-bearing hydrous fluid. Some of the fluid migrated to the marginal parts of the shear zones and evolved to a highly saline solution. However, during desiccation of the fluid along the marginal parts of the shear zones, some of the fluid escaped along narrow fractures into the host rock of the shear zones. The Cl-free amphibole that formed from this fluid suggests that the narrow pathways of the fluid provided a path for water transport, but acted as a filter for the much larger ions of Cl.

  4. Significance of tourmaline-rich rocks in the north range group of the cuyuna iron range, East-Central Minnesota

    USGS Publications Warehouse

    Cleland, J.M.; Morey, G.B.; McSwiggen, P.L.

    1996-01-01

    Concentrations of tourmaline in Early Proterozoic metasedirnentary rocks of the Cuyuna iron range, east-central Minnesota, provide a basis for redefinition of the evolutionary history of the area. Manganiferous iron ore forms beds within the Early Proterozoic Trommald Formation, between thick-bedded granular iron-formation having shallow-water depositional attributes and thin-bedded, nongranular iron-formation having deeper water attributes. These manganese-rich units were previously assumed to be sedimentary in origin. However, a revaluation of drill core and mine samples from the Cuyuna North range has identified strata-bound tourmaline and tourmalinite, which has led to a rethinking of genetic models for the geology of the North range. We interpret the tourmaline-rich rocks of the area to be a product of submarine-hydrothermal solutions flowing along and beneath the sedirnent-seawater interface. This model for the depositional environment of the tourmaline is supported by previously reported mineral assemblages within the Trommald Formation that comprise aegirine; barium feldspar; manganese silicates, carbonates, and oxides; and Sr-rich barite veins. In many places, tourmaline-rich metasedimentary rocks and tourmalinites are associated locally with strata-bound sulfide deposits. At those localities, the tourmaline-rich strata are thought to be lateral equivalents of exhalative sulfide zones or genetically related subsea-floor replacements. On the basis of the occurrence of the tourmaline-rich rocks and tourmalinites, and on the associated minerals, we suggest that there is a previously unrecognized potential for sediment-hosted sulfide deposits in the Cuyuna North range.

  5. Asbestos. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Evans, Joanna, Comp.

    Asbestos is a generic term that refers to several silicate materials occurring naturally as fibrous rocks. Insignificant amounts of asbestos fiber can be found in ambient air, but this, and materials containing hard asbestos, usually do not create problems. Soft materials, however, can release high amounts of asbestos fibers into the air, and…

  6. The Nature of Mercury's Hollows, and Space Weathering Close to the Sun

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Chabot, N. L.; Denevi, B. W.; Ernst, C. M.

    2018-05-01

    Hollows are a landform that appear to form by loss of a volatile-bearing phase from silicate rock. Hollows are very young and are likely to be forming in the present day. Hollows may be an analog for extreme weathering on near-Sun asteroids.

  7. Acid-neutralizing potential of minerals in intrusive rocks of the Boulder batholith in northern Jefferson County, Montana

    USGS Publications Warehouse

    Desborough, George A.; Briggs, Paul H.; Mazza, Nilah; Driscoll, Rhonda

    1998-01-01

    Experimental studies show that fresh granitic rocks of the Boulder batholith in the Boulder River headwaters near Basin, Montana have significant acid-neutralizing potential and are capable of neutralizing acidic water derived from metal-mining related wastes or mine workings. Laboratory studies show that in addition to the acidneutralizing potential (ANP) of minor amounts of calcite in these rocks, biotite, tremolite, and feldspars will contribute significantly to long-term ANP. We produced 0.45 micrometer-filtered acidic (pH = 2.95) leachate for use in these ANP experiments by exposing metal-mining related wastes to deionized water in a waste:leachate ratio of 1:20. We then exposed these leachates to finely-ground and sized fractions of batholith rocks, and some of their mineral fractions for extended and repeated periods, for which results are reported here. The intent was to understand what reactions of metal-rich acidic water and fresh igneous rocks would produce. The reactions between the acidic leachates and the bulk rocks and mineral fractions are complex. Factors such as precipitation of phases like Fe-hydroxides and Alhydroxides and the balance between dissolved cations and anions that are sulfate dominated complicate analysis of the results. Research by others of acid neutralization by biotite and tremolite attributed a rise in pH to proton (H+) adsorption in sites vacated by K, Mg, and Ca. Destruction of the silicate framework and liberation of associated structural hydroxyl ions may contribute to ANP. Studies by others have indicated that the conversion of biotite to a vermiculite-type structure by removal of K at a pH of 4 consumes about six protons for every mole of biotite, but at a pH of 3 there is pronounced dissolution of the tetrahedral lattice. The ANP of fresh granitic rocks is much higher than anticipated. The three bulk Boulder igneous rock samples studied have minimum ANP equivalent to about 10-14 weight percent calcite. This ANP is in addition to that provided by the 0.36-1.4 weight percent calcite present in these samples. The total rock ANP is thus equivalent to that of many sedimentary rocks that are generally believed to be among the most efficient for attenuation of acidic waters. The long-term ANP contributed by biotite, tremolite, feldspars, and possibly unidentified minerals in these rocks, as well as calcite, are all important with regard to their natural remediation of degraded water quality originating from Fe-sulfide rich mineral deposits and the associated mine wastes and acid-mine drainage water.

  8. Hydrothermal element fluxes from Copahue, Argentina: A “beehive” volcano in turmoil

    NASA Astrophysics Data System (ADS)

    Varekamp, Johan C.; Ouimette, Andrew P.; Herman, Scott W.; Bermúdez, Adriana; Delpino, Daniel

    2001-11-01

    Copahue volcano erupted altered rock debris, siliceous dust, pyroclastic sulfur, and rare juvenile fragments between 1992 and 1995, and magmatic eruptions occurred in July October 2000. Prior to 2000, the Copahue crater lake, acid hot springs, and rivers carried acid brines with compositions that reflected close to congruent rock dissolution. The ratio between rock-forming elements and chloride in the central zone of the volcano-hydrothermal system has diminished over the past few years, reflecting increased water/rock ratios as a result of progressive rock dissolution. Magmatic activity in 2000 provided fresh rocks for the acid fluids, resulting in higher ratios between rock-forming elements and chloride in the fluids and enhanced Mg fluxes. The higher Mg fluxes started several weeks prior to the eruption. Model data on the crater lake and river element flux determinations indicate that Copahue volcano was hollowed out at a rate of about 20000 25000 m3/yr, but that void space was filled with about equal amounts of silica and liquid elemental sulfur. The extensive rock dissolution has weakened the internal volcanic structure, making flank collapse a volcanic hazard at Copahue.

  9. Formation of a low-crystalline Zn-silicate in a stream in SW Sardinia, Italy

    USGS Publications Warehouse

    Wanty, Richard B.; De Giudici, G.; Onnis, P.; Rutherford, D.; Kimball, B.A.; Podda, F.; Cidu, R.; Lattanzi, P.; Medas, D.

    2013-01-01

    n southwestern Sardinia, Italy, the Rio Naracauli drains a catchment that includes several abandoned mines. The drainage from the mines and associated waste rocks has led to extreme concentrations of dissolved Zn, but because of the near-neutral pH, concentrations of other metals remain low. In the reach from approximately 2300 to 3000 m downstream from the headwaters area, an amorphous Zn-silicate precipitates from the water. In this reach, concentrations of both Zn and silica remain nearly constant, but the loads (measured in mass/time) of both increase, suggesting that new Zn and silica are supplied to the stream, likely from emerging groundwater. Zinc isotope signatures of the solid are heavier than the dissolved Zn by about 0.5 permil in 66/64Zn, suggesting that an extracellular biologically mediated adsorption process may be involved in the formation of the Zn-silicate.

  10. The formation of cobalt-bearing ferromanganese crusts under fluid destruction of silicate matter

    NASA Astrophysics Data System (ADS)

    Maksimov, S. O.; Safronov, P. P.

    2016-02-01

    The processes of fluid destruction of various silicate rocks under diffusion of flows of compressed gases (mainly carbonaceous) were studied. The gas condensate nature was ascertained for the forming alumoslilicate and ore (cobalt-iron-manganese hydroxide) substances produced under this fluid destruction in the forms of microcrusts and microconcretions. The ore condensates contained in high concentrations the typomorphic elements of oceanic ferromanganese formations (Mn, Co, Ni, Cu, Pb, Ce, and Pt). The elemental composition of the ore oxide substance formed under the destruction of various silicate matrices exhibits a definite degree of endemism with prevalence of the Co-Mn association. The pronounced concentration of barium is related to the substantially carbonaceous composition of the fluid systems. A cerium paradox is revealed: Ce3+ is oxidized into Ce4+ and absorbed by ferromanganese hydrogel and the minimum of cerium appears in rare-earth phosphates.

  11. Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas

    NASA Astrophysics Data System (ADS)

    Carley, Tamara L.; Miller, Calvin F.; Wooden, Joseph L.; Bindeman, Ilya N.; Barth, Andrew P.

    2011-10-01

    Zoning patterns, U-Th disequilibria ages, and elemental compositions of zircon from eruptions of Askja (1875 AD), Hekla (1158 AD), Öræfajökull (1362 AD) and Torfajökull (1477 AD, 871 AD, 3100 BP, 7500 BP) provide insights into the complex, extended, histories of silicic magmatic systems in Iceland. Zircon compositions, which are correlated with proximity to the main axial rift, are distinct from those of mid-ocean ridge environments and fall at the low-Hf edge of the range of continental zircon. Morphology, zoning patterns, compositions, and U-Th ages all indicate growth and storage in subvolcanic silicic mushes or recently solidified rock at temperatures above the solidus but lower than that of the erupting magma. The eruptive products were likely ascending magmas that entrained a zircon "cargo" that formed thousands to tens of thousands of years prior to the eruptions.

  12. Experimental modeling of the interaction of subducted carbonates and sulfur with mantle silicates

    NASA Astrophysics Data System (ADS)

    Bataleva, Yu. V.; Palyanov, Yu. N.; Borzdov, Yu. M.; Zdrokov, E. V.; Sobolev, N. V.

    2016-09-01

    Experimental studies in the system Fe,Ni-olivine-carbonate-S ( P = 6.3 GPa, T = 1050-1550°C, t = 40-60 h) aimed at modeling of the interaction of subducted carbonates and sulfur with rocks of the silicate mantle and at investigation of the likely mechanism of the formation of mantle sulfides were performed. It is shown that an association of olivine + orthopyroxene + magnesite + pyrite coexisting with a sulfur melt/fluid with dissolved Fe, Ni, and O is formed at T ≤ 1250°C. An association of low-Fe olivine, orthopyroxene, and magnesite and two immiscible melts of the carbonate and S-Fe-Ni-O compositions are formed at T ≥ 1350°C. It is shown that the reduced S-bearing fluids may transform silicates and carbonates, extract metals from the solid-phase matrix, and provide conditions for generation of sulfide melts.

  13. Spectrophotometric determination of vanadium in rutile and in mafic igneous rocks

    USGS Publications Warehouse

    Marinenko, John; Mei, Leung

    1974-01-01

    Minor and major levels of vanadium in rutile are separated from titanium and iron by sample fusion with sodium carbonate followed by water leach and filtration. The filtrate is then acidified with hydrochloric acid. Silicates are decomposed with a mixture of hydrofluoric and hydrochloric acids, and iron is separated by extraction of its chloride with diethyl ether. Sample vanadium in hydrochloric acid is then quantitatively reduced to vanadium(IV) with sulfurous acid. The remaining sulfur dioxide is expelled by heating. Vanadium (IV) then is reacted with excess of iron(III) at reduced acidity (pH 5) in the presence of 1,10-phenanthroline to yield the orange-red iron(II) 1,10-phenanthroline complex. Iron(II) generated by vanadium(IV) is a measure of total vanadium in the sample. The proposed method is free from elemental interferences because the color development cannot take place without the two redox reactions described above, and these are, under the outlined experimental conditions, quantitative only for vanadium.

  14. Development of inverted metamorphic isograds in the western metamorphic belt, Juneau, Alaska

    USGS Publications Warehouse

    Himmelberg, G.R.; Brew, D.A.; Ford, A.B.

    1991-01-01

    An inverted metamorphic gradient is preserved in the western metamorphic belt near Juneau, Alaska. Detailed mapping of pelitic single-mineral isograds, systematic changes in mineral assemblages, and silicate geothermometry indicate that thermal peak metamorphic conditions increase structurally upward over a distance of about 8 km. Silicate geobarometry suggests that the thermal peak metamorphism occurred under pressures of 9-11 kbar. Our preferred interpretation of the cause of the inverted gradient is that it formed during compression of a thickened wedge of relatively wet and cool rocks in response to heat flow associated with the formation and emplacement of tonalite sill magma. -from Authors

  15. Microbial community in a precursory scenario of growing Tagetes patula in a lunar greenhouse

    NASA Astrophysics Data System (ADS)

    Kozyrovska, N. O.; Korniichuk, O. S.; Voznyuk, T. M.; Kovalchuk, M. V.; Lytvynenko, T. L.; Rogutskyy, I. S.; Mytrokhyn, O. V.; Estrella-Liopis, V. R.; Borodinova, T. I.; Mashkovska, S. P.; Foing, B. H.; Kordyum, V. A.

    A confined prototype plant-microbial system is elaborated for demonstration of growing pioneer plants in a lunar greenhouse. A precursory scenario of growing Tagetes patula L. in a substrate anorthosite which is similar mineralogically and chemically to lunar silicate rocks includes the use of a microbial community. Microorganisms served for preventive substrate colonization to avoid infection by deleterious microorganisms as well as for bioleaching and delivering of nutritional elements from anorthosite to plants. A model consortium of a siliceous bacterium, biocontrol agents, and arbuscular mycorrhizal fungi provided an acceptable growth and blossoming of Tagetes patula L. under growth limiting factors in terrestrial conditions.

  16. Calcium Isotope Fractionation during Carbonate Weathering in the Northern Guangdong, South China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Mao, G.; Wei, G.; Zhang, Z.

    2017-12-01

    CO2 is consumed during the weathering of carbonates, whereas carbonates are precipitated rapidly in the oceans, which are pivotal to modulate atmospheric CO2, oceanic pH and climate. Calcium carbonate in limestone is one of the largest reservoirs of carbon at the Earth's surface, so calcium is an important element that links the lithosphere, hydrosphere, biosphere, and the atmosphere. Compared with silicate rocks, carbonate rocks have more rapid rates of physical and chemical erosions, so the carbonate weathering will respond more quickly to the climatic changes. In the southeast of China, enormous of carbonate rocks are widely distributed. Due to the influence of the subtropical monsoon climate, the rocks experienced strong chemical weathering and pedogenic process, resulting in red weathering crust of carbonate rocks. This type of weathering crust is geochemistry-sensitive and ecology-vulnerable, which can provide important insights into the recycle of supergene geochemistry in the karst areas. In this study, we report calcium isotopic compositions of saprolites from a weathering profile developed on argillaceous carbonate rocks in northern Guangdong, South China. The acid-leachable fraction, which was extracted by 1N hydrochloride acid, showed limited variation of δ44/40Ca(NIST 915a) spanning from 0.55 ± 0.06‰ (2SD) to 0.72 ± 0.05‰ (2SD) despite CaO content ranging from 0.01 wt.% to 45.7 wt.%, implying that Ca isotope didn't fractionate much which may due to the congruent dissolution of limestone minerals. In contrast, radiogenic 87Sr/86Sr ratios of the whole rocks changed with depth from 0.710086 ± 6 (2SE) at the base rock to 0.722164± 8 (2SE) at the top-soil, which are possibly attributed to the mixing effect between carbonate and silicate fractions. Sr is an analogue for Ca due to its similar ionic size and charge; however, these two systems can differ in certain respects. The coupled study of Ca and Sr will be helpful to verify sources of Ca and the global Ca and C cycles.

  17. A carbon and nitrogen isotope study of carbonaceous vein material in ureilite meteorites

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Arden, J. W.; Franchi, I. A.; Pillinger, C. T.

    1993-01-01

    The ureilite meteorite group is known to be rich in carbon in the form of graphite/diamond veins that are associated with planetary type noble gases. This paper reports preliminary data from a systematic study of the carbon and nitrogen isotopic composition of this carbonaceous vein material. A previous study focused on the whole rock signatures and reported that the carbon inventory appeared to be dominated by the graphitic/diamond intergrowths, whereas the nitrogen was clearly composed of several distinct components including one that was isotopically light, possibly associated with the carbonaceous material. Recent studies have demonstrated that diamonds in the solar system formed in many different environments. C and N measurements from ureilitic diamond made in a similar way would be a useful addition to this overall study. The methods used for isolating diamonds of possible presolar origin from primitive meteorites are equally applicable to the processing of carbon bearing components in the ureilite group so that their stable isotopic composition can be determined. Herein we discuss conjoint C and N stepped combustion measurements made on crushed whole rock ureilite samples that have been treated with 1M HCl/9M HF to dissolve silicate and free metal. In addition, two samples have been further treated with oxidizing acids to leave a diamond rich residue.

  18. Geologic control of mineral composition of stream waters of the eastern slope of the Southern Coast Ranges, California

    USGS Publications Warehouse

    Davis, G.H.

    1961-01-01

    Chemical analyses of waters of streams that drain the semiarid eastern slope of the southern Coast Ranges in California demonstrate that differences in the anion composition, especially in the ratio of bicarbonate to sulfate, are related chiefly to the lithologic character of the rocks exposed in the tributary drainage area. Where more than hall the drainage area of a typical eastern-slope stream is underlain by clastic marine sedimentary rocks of Jurassic and Cretaceous age, bicarbonate generally predominates over sulfate; the ratio of bicarbonate to sullate, both expressed in equivalents per million, in samples of the streams at low-flow stage ranges from 0.8 to 6. Conversely, where more than hall the drainage area is underlain by marine and continental deposits of Tertiary age and continental deposits of Quaternary age, sulfate predominates over bicarbonate, and the ratio of bicarbonate to sulfate in samples taken during the low-flow stage ranges from 0.02 to 0.7. Organic siliceous marine shale of Tertiary age deposited in a reducing environment is probably the primary source of sullate in the region. Secondary deposits of sulfate minerals, chiefly gypsum, which are abundant in the continental deposits of late Tertiary and Quaternary age, also contribute sullate to the stream waters.

  19. Clay alteration and gold deposition in the genesis and blue star deposits, Eureka County, Nevada

    USGS Publications Warehouse

    Drews-Armitage, S. P.; Romberger, S.B.; Whitney, C.G.

    1996-01-01

    The Genesis and Blue Star sedimentary rock-hosted gold deposits occur within the 40-mile-long Carlin trend and are located in Eureka County, Nevada. The deposits are hosted within the Devonian calcareous Popovich Formation, the siliciclastic Rodeo Creek unit and the siliciclastic Vinini Formation. The host rocks have undergone contact metamorphism, decalcification, silicification, argillization, and supergene oxidation. Detailed characterization of the alteration patterns, mineralogy, modes of occurrence, and associated geochemistry of clay minerals resulted in the following classifications: least altered rocks, found distal to the orebody, consisting of both metamorphosed and unmetamorphosed host rock that has not been completely decalcified; and altered rocks, found proximal to the orebody that have been decalcified. Altered rocks are classified further into the following groups based on clay mineral content: silicic, 1 to 10 percent clay; silicicargillic, 10 to 35 percent clay; and argillic, 35 to 80 percent clay. Clay species identified are 1M illite, 2M1 illite, kaolinite, halloysite, and dioctahedral smectite. An early hydrothermal event resulted in the precipitation of euhedral kaolinite and at least one generation of silica. This event occurred contemporaneously with decalcification which increased rock permeability and porosity. A second clay alteration event resulted in the precipitation of hydrothermal 1M illite which replaced hydrothermal kaolinite and is associated with gold deposition. Silver and silica deposition is also associated with this phase of hydrothermal alteration. Hydrothermal alteration was followed by supergene alteration which resulted in the formation of supergene kaolinite, halloysite, and smectite as well as the oxidation of iron-bearing minerals. Supergene clays are concentrated along faults, dike margins, and within rocks containing carbonate. Gold mineralization is not associated with supergene clay minerals within the Genesis and Blue Star deposits. Rocks classified as silicic-argillic in the Popovich Formation represent the most significant gold host. Silicicargillic rocks commonly exhibit bedding-parallel alteration zones. This pattern of alteration indicates that stratigraphy as well as northwest-trending structures played a significant role in the migration of gold-bearing fluids. Based on K-Ar age determinations of hydrothermal 1M illite associated with gold, the main event of mineralization in the Genesis and Blue Star deposits occurred between 93 and 100 Ma, during mid-Cretaceous time.

  20. Eocene to Oligocene volcanism in the Mariana fore-arc and crustal melting

    NASA Astrophysics Data System (ADS)

    Hartman, B.; Reagan, M.; Hickey-Vargas, R.; Hanan, B.; Blichert-Toft, J.

    2003-04-01

    Recently collected volcanic rocks from the Mariana fore-arc islands of Saipan and Rota provide evidence that the genesis of silicic magmas in the IBM system involves extensive crustal melting. Rhyolites from the island of Saipan are unusually high in silica for an oceanic island arc setting. They also are unique in the Izu-Bonin-Mariana (IBM) system in that they erupted during the earliest stages of subduction (45--46 Ma), but have "mature arc" major element, trace element, and isotopic compositions. For example, the rhyolites have flat REE patterns and pronounced negative Nb anomalies. These trace element patterns are nearly identical to those Oligocene (36--32 Ma) "early arc" andesites and dacites on Saipan, Guam, and Rota. All of the aforementioned lavas also have similar 207Pb/204Pb and 208Pb/204Pb values that plot along a trend that stretches from West Philippine basin basalt compositions toward those Pacific siliceous sediments. In contrast, Eocene volcanic rocks from other locations in the IBM arc are basaltic to boninitic and have U-shaped REE patterns and small to nonexistent Nb anomalies. The Pb isotopic compositions of these samples are similar to Pacific basin volcanics and volcanogenic sediments. Mathematical modeling suggests that the Saipan rhyolites were most likely derived by partial melting of an arc-like amphibolite crust and not through crystal fractionation of a "protoarc" boninite series magma. The data and these modelings suggest that a piece of preexisting arc-like amphibolite crust was trapped in the Mariana fore-arc early in its evolution. The Saipan rhyolites were produced by melting this crust at relatively shallow depths.

  1. Hydrogeochemical Investigation of Recharge Pathways to Intermediate and Regional Groundwater in Canon de Valle and Technical Area 16, Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Brendan W.

    In aquifers consisting of fractured or porous igneous rocks, as well as conglomerate and sandstone products of volcanic formations, silicate minerals actively dissolve and precipitate (Eby, 2004; Eriksson, 1985; Drever, 1982). Dissolution of hydrated volcanic glass is also known to influence the character of groundwater to which it is exposed (White et al., 1980). Hydrochemical evolution, within saturated zones of volcanic formations, is modeled here as a means to resolve the sources feeding a perched groundwater zone. By observation of solute mass balances in groundwater, together with rock chemistry, this study characterizes the chemical weathering processes active along recharge pathwaysmore » in a mountain front system. Inverse mass balance modeling, which accounts for mass fluxes between solid phases and solution, is used to contrive sets of quantitative reactions that explain chemical variability of water between sampling points. Model results are used, together with chloride mass balance estimation, to evaluate subsurface mixing scenarios generated by further modeling. Final model simulations estimate contributions of mountain block and local recharge to various contaminated zones.« less

  2. Geological and geochemical studies in the Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Smith, C.W.; Waters, B.C.; Naqvi, M.; Worl, R.G.; Helaby, A.M.; Flanigan, V.J.; Sadek, H.S.; Samater, R.M.

    1983-01-01

    Geological and geochemical followup studies of airborne electromagnetic anomalies in the Wadi Bidah district, southwestern Saudi Arabia, did not reveal metals of economic grade. Investigation of an anomaly enclosing the Rabathan ancient mine disclosed tightly folded and sheared Proterozoic tuffaceous rocks interlayered mostly with chert, dolomite, carbonaceous rocks, and volcanic wacke including cherty iron-manganese formations slightly anomalous in copper and zinc. Three drill holes placed to test anomalies within these formations yielded negative results. Studies of a long, narrow anomaly north of the Rabathan area indicated a similar geological environment. This northern area also contains limited zones that are highly anomalous in copper and zinc and extensive zones that are slightly anomalous in those metals. Drilling was not undertaken in this area. The Bilajimah airborne electromagnetic anomaly west of Wadi Bidah coincides with a broad synclinorium of layered felsic turfs and gossans. Geochemical studies indicated slightly anomalous copper, zinc, and silver values in gossans within the anomaly area. Two drill holes intersected carbonaceous rock that contained approximately 15 percent pyrrhotite and traces of sphalerite and chalcopyrite. Two geophysically anomalous areas west of Wadi Bidah surround ancient mines at Mahawiyah and Khayal al Masna'ah. Results of geochemical sampling at these workings were positive. An airborne electromagnetic anomaly located in the Assifar area in the southwestern corner of the Wadi Bidah district is underlain principally by metasedimentary rocks that include large linear zones of cherty iron-manganese formation and a few gossans .containing secondary base metal minerals. Detailed mapping and sampling of the Mulhal ancient mine, located west of Wadi Bidah, revealed two types of polymetallic gossans : (1) stratiform deposits interlayered with ignimbrites and mafic volcanic rocks and (2) barite-bearing gossanous material in shear zones that grade into hydrothermally altered shear zones and extend beyond the mine area. The gossans and gossanous shear zones contain anomalous amounts of gold, silver, lead, copper, zinc, barium, and selenium. Two gossans west of Wadi Bidah were mapped and sampled in detail; both gossans are interlayered, with siliceous volcanic rocks. Although the gossan at Jabal Mohr covers a large area, it contains low amounts of precious and base metals. The gossan at Mulhal No. 2 contains moderate to high amounts of gold, silver, copper, lead, and zinc.

  3. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Donaldson, Christopher

    2016-06-01

    Serpentinization of ultramafic rocks is widely recognized as a source of molecular hydrogen (H2) and methane (CH4) to support microbial activity, but the extent and rates of formation of these compounds in low-temperature, near-surface environments are poorly understood. Laboratory experiments were conducted to examine the production of H2 and CH4 during low-temperature reaction of water with ultramafic rocks and minerals. Experiments were performed by heating olivine or harzburgite with aqueous solutions at 90°C for up to 213 days in glass bottles sealed with butyl rubber stoppers. Although H2 and CH4 increased steadily throughout the experiments, the levels were very similar to those found in mineral-free controls, indicating that the rubber stoppers were the predominant source of these compounds. Levels of H2 above background were observed only during the first few days of reaction of harzburgite when CO2 was added to the headspace, with no detectable production of H2 or CH4 above background during further heating of the harzburgite or in experiments with other mineral reactants. Consequently, our results indicate that production of H2 and CH4 during low-temperature alteration of ultramafic rocks may be much more limited than some recent experimental studies have suggested. We also found no evidence to support a recent report suggesting that spinels in ultramafic rocks may stimulate H2 production. While secondary silicates were observed to precipitate during the experiments, formation of these deposits was dominated by Si released by dissolution of the glass bottles, and reaction of the primary silicate minerals appeared to be very limited. While use of glass bottles and rubber stoppers has become commonplace in experiments intended to study processes that occur during serpentinization of ultramafic rocks at low temperatures, the high levels of H2, CH4, and SiO2 released during heating indicate that these reactor materials are unsuitable for this purpose.

  4. Remotely sensed detection of sulfates on Mars: Laboratory measurements and spacecraft observations

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher David

    Visible, near-infrared, and mid-infrared spectroscopic measurements were made of physically realistic analogs of Martian soil containing silicates and sulfates. These measurements indicate that the physical structure of soil will control its spectroscopic properties. Orbital measurements from the Thermal Emission Spectrometer (TES) identified features similar to those seen in the laboratory mixtures. Maps were made of this sulfate-cemented soil which indicated that the presence of this material is not geographically controlled and hints at an origin for duricrust in atmosphere-surface interactions. Further confirmation comes from combining data from TES and the Imaging Spectrometer for Mars (ISM). This data shows a congruence between sulfate spectral features and water features. The likely form of the mappable sulfate in Martian soils is therefore a cemented mixture of hydrated sulfate mixed with silicates and oxides derived from crustal rocks. The combination of ISM and TES spectra in particular and spectra from multiple wavelength regimes in general also is an excellent technique for addressing other problems of interest regarding the geology of Mars. A number of topics including rock coatings in Syrtis Major and the nature of low albedo rock assemblages are addressed. Syrtis Major is found to behave differently in the thermal and near infrared, likely indicating that the spectral features are not related to simple coatings but perhaps processes like penetrative oxidation. TES Type I rocks are found to be high in pyroxene, but TES Type II rocks do not have a correlation with pyroxene. Spectral mixing trends indicate that dust and rock are the dominant two variables in surface composition on a large scale. A smaller mixing trend involves the physical breakup of sulfate-cemented soils into a loose, fine-grained, but still hydrated form. In all, this work provides strong evidence for the global identification and distribution of sulfate minerals in the Martian soil.

  5. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change.

    PubMed

    Farris, David W; Cardona, Agustin; Montes, Camilo; Foster, David; Jaramillo, Carlos

    2017-01-01

    Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21-25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5-0.1 kbar crystallization depths of hot (1100-1190°C) magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5). However, the most silicic lavas (Las Cascadas Fm.) require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the idea that Panama arc crust fractured during collision with South America forming the observed Canal extensional zone.

  6. A multi-proxy isotope study (δ41K, δ26Mg, 87Sr/86Sr) of low-temperature oceanic crust alteration: the Troodos Ophiolite and Ocean Drilling Program Hole 801C

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Higgins, J. A.

    2017-12-01

    Low-temperature alteration of oceanic crust plays an important role in a number of geochemical cycles, thus modulating the chemical composition of the oceans. In particular, it has been established that low-temperature (<150oC) alteration of basalt is a major sink of seawater potassium. However, little is known about the effects of this process on the potassium isotope composition of seawater, which is 0.5‰ enriched relative to bulk silicate Earth (δ41KBSE=-0.54‰). Here we measure a number of isotope systems (δ41K, δ26Mg, 87Sr/86Sr) in both host rock and vein material from the upper volcanic section of Cretaceous (Troodos Ophiolite) and Jurassic (ODP 801C) oceanic crust using a MC-ICP-MS. The goal is to estimate the K isotopic fractionation associated with basalt alteration in low-temperature conditions, and how it might affect the K isotope enrichment of seawater relative to BSE. We find that marine hydrothermal samples from Troodos and ODP site 801C are enriched in potassium relative to the unaltered glass compositions and have δ41K values both higher and lower than BSE, ranging from -0.45‰ to -0.69‰ (n = 9) and -0.32‰ to -0.71‰ (n = 5), respectively. The low measured δ41K values could represent 1) fractionation (α<1) of K isotopes during uptake from seawater (δ41KSW 0‰), or 2) remobilized mantle-sourced K (δ41KBSE=-0.54‰) from deeper within the ophiolite sequence. Measurements of δ26Mg (n=15) and 87Sr/86Sr (n=12) in these samples yield enriched values relative to bulk silicate Earth, suggesting that alteration of oceanic crust likely happened under high water-to-rock ratios in both Troodos and ODP 801C, and that the added potassium is seawater-sourced. We thus suggest that the isotopically light δ41K values measured in both sites are associated with the formation of secondary clays enriched in the 39K isotope. This light isotope enrichment could be intensified if seawater K sourcing is a diffusion-limited process, as aqueous potassium diffusion has been associated with K isotope fractionations between 0.9967 and 0.9984. Our results indicate that the uptake of potassium in altered oceanic crust could be responsible, in part, for the observed K isotope enrichment of seawater relative to bulk silicate Earth.

  7. An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: part 2—geochemistry

    NASA Astrophysics Data System (ADS)

    Bolhar, Robert; Ring, Uwe; Kemp, Anthony I. S.; Whitehouse, Martin J.; Weaver, Steve D.; Woodhead, Jon D.; Uysal, I. Tonguc; Turnbull, Rose

    2012-12-01

    Zircons from 14 compositionally variable granitic rocks were examined in detail using CL image-guided micro-analysis to unravel the complex magmatic history above the southward retreating Hellenic subduction zone system in the Aegean Sea. Previously published U-Pb ages document an episodic crystallisation history from 17 to 11 Ma, with peraluminous (S-type) granitic rocks systematically older than closely associated metaluminous (I-type) granitic rocks. Zircon O- and Hf isotopic data, combined with trace element compositions, are highly variable within and between individual samples, indicative of open-system behaviour involving mantle-derived melts and evolved supracrustal sources. Pronounced compositional and thermal fluctuations highlight the role of magma mixing and mingling, in accord with field observations, and incremental emplacement of distinct melt batches coupled with variable degrees of crustal assimilation. In the course of partial fusion, more fertile supracrustal sources dominated in the earlier stages of Aegean Miocene magmatism, consistent with systematically older crystallisation ages of peraluminous granitic rocks. Differences between zircon saturation and crystallisation temperatures (deduced from zircon Ti concentrations), along with multimodal crystallisation age spectra for individual plutons, highlight the complex and highly variable physico-compositional and thermal evolution of silicic magma systems. The transfer of heat and juvenile melts from the mantle varied probably in response to episodic rollback of the subducting lithospheric slab, as suggested by punctuated crystallisation age spectra within and among individual granitic plutons.

  8. Sulfide in the core and the Nd isotopic composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    McCoy-West, A.; Millet, M. A.; Nowell, G. M.; Wohlers, A.; Wood, B. J.; Burton, K. W.

    2016-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive chondritic meteorites. It now appears, however, that the silicate Earth is not chondritic, but depleted in incompatible elements and a resovable 20 ppm excess is observed in 142Nd relative to chondirtes [1, 2]. This anomaly requires a process that occurred within 30 Myr of solar system formation and has been variably ascribed to: a complementary enriched reservoir in the deep Earth [1]; loss to space through collisional erosion [3]; or the inhertence of nucleosynthetic anomalies [4]. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [5]. The drawback of the short-lived 146Sm-142Nd radiogenic isotope system is that it is not possible to distinguish between fractionations of Sm/Nd that occurs during silicate melting or segregation of a sulfide-melt. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites by 0.3 ‰, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavier values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd stable isotope data for chondritic meteorites and mantle rocks, are consistent with the segregation of sulfide to the core. [1] Boyet & Carlson, Science 309, 576 (2005) [2] Carlson et al. Science 316, 1175 (2007) [3] Campbell& O'Neill Nature 483, 553 (2012) [4] Burkhardt Goldschmidt Ab. 429 (2015) [5] Wohlers &Wood, Nature 520, 337 (2015)

  9. Geoenvironmental factors related to high incidence of human urinary calculi (kidney stones) in Central Highlands of Sri Lanka.

    PubMed

    Abeywickarama, Buddhika; Ralapanawa, Udaya; Chandrajith, Rohana

    2016-10-01

    An area with extremely high incidence of urinary calculi was investigated in the view of identifying the relationship between the disease prevalence and the drinking water geochemistry. The prevalence of the kidney stone disease in the selected Padiyapelella-Hanguranketa area in Central Highlands of Sri Lanka is significantly higher compared with neighboring regions. Drinking water samples were collected from water sources that used by clinically identified kidney stone patients and healthy people. A total of 83 samples were collected and analyzed for major anions and cations. The anions in the area varied in the order HCO3 (-) > Cl(-) > SO4 (2-) > NO3 (-) and cations varied in the order Ca(2+) > Mg(2+) > Na(+) > K(+) > Fe(2+). The dissolved silica that occurs as silicic acid (H4SiO4) in natural waters varied from 8.8 to 84 mg/L in prevalence samples, while it was between 9.7 and 65 mg/L for samples from non-prevalence locations. Hydrogeochemical data obtained from the two groups were compared using the Wilcoxon rank-sum test. It showed that pH, total hardness, Na(+), Ca(2+) and Fe(2+) had significant difference (p < 0.005) between water sources used by patients and non-patients. Elemental ratio plots, Gibbs' plot and factor analysis indicated that the chemical composition of water sources in this area is strongly influenced by rock-water interactions, particularly the weathering of carbonate and silicate minerals. This study reveals a kind of association between stone formation and drinking water geochemistry as evident by the high hardness/calcium contents in spring water used by patients.

  10. Trondhjemite and metamorphosed quartz keratophyre tuff of the Ammonoosuc volcanics (Ordovician), western New Hampshire and adjacent Vermont and Massachusetts.

    USGS Publications Warehouse

    Leo, G.W.

    1985-01-01

    These volcanic rocks consist of a lower, mainly mafic unit of hornblende-plagioclase amphibolite and an upper, mainly felsic metamorphosed quartz keratophyre tuff. They are intruded by sills, dykes and plugs of trondhjemite; which is highly silicic (SiO2, 73-81%), low in Al2O3 (11.3-13.5%) and generally contains <1% K2O. Both trondhjemite and volcanics are calc-alkaline. The major- and minor-element geochemistry of the trondhjemites is closely similar to that of the quartz keratophyre tuff. These rocks were probably produced by partial melting of basaltic source rocks, rather than by fractional crystallization, in view of the virtually bimodal nature of the Ammonoosuc assemblage. The generation of the felsic rocks occurred at deeper levels along a subduction zone dipping eastward.-L.C.H.

  11. Alga-like forms in onverwacht series, South Africa: Oldest recognized lifelike forms on earth

    USGS Publications Warehouse

    Engel, A.E.J.; Nagy, B.; Nagy, L.A.; Engel, C.G.; Kremp, G.O.W.; Drew, C.M.

    1968-01-01

    Spheroidal and cupshaped, carbonaceous alga-like bodies, as well as filamentous structures and amorphous carbonaceous matter occur in sedimentary rocks of the Onverwacht Series (Swaziland System) in South Africa. The Onverwacht sediments are older than 3.2 eons, and they are probably the oldest, little-altered sedimentary rocks on Earth. The basal Onverwacht sediments lie approximutely 10,000 meters stratigraphically below the Fig Tree sedimentary rocks, from which similar organic microstructures have been interpreted as alga-like micro-fossils. The Onverwacht spheroids and filaments are best preserved in black, carbon-rich cherts and siliceous argillites interlayered with thick sequences of lavas. These lifelike forms and the associated carbonaceous substances are probably biological in origin. If so, the origins of unicellular life on Earth are buried in older rocks now obliterated by igneous and metamorphic events.

  12. The effects of metamorphism on iron mineralogy and the iron speciation redox proxy

    NASA Astrophysics Data System (ADS)

    Slotznick, Sarah P.; Eiler, John M.; Fischer, Woodward W.

    2018-03-01

    As the most abundant transition metal in the Earth's crust, iron is a key player in the planetary redox budget. Observations of iron minerals in the sedimentary record have been used to describe atmospheric and aqueous redox environments over the evolution of our planet; the most common method applied is iron speciation, a geochemical sequential extraction method in which proportions of different iron minerals are compared to calibrations from modern sediments to determine water-column redox state. Less is known about how this proxy records information through post-depositional processes, including diagenesis and metamorphism. To get insight into this, we examined how the iron mineral groups/pools (silicates, oxides, sulfides, etc.) and paleoredox proxy interpretations can be affected by known metamorphic processes. Well-known metamorphic reactions occurring in sub-chlorite to kyanite rocks are able to move iron between different iron pools along a range of proxy vectors, potentially affecting paleoredox results. To quantify the effect strength of these reactions, we examined mineralogical and geochemical data from two classic localities where Silurian-Devonian shales, sandstones, and carbonates deposited in a marine sedimentary basin with oxygenated seawater (based on global and local biological constraints) have been regionally metamorphosed from lower-greenschist facies to granulite facies: Waits River and Gile Mountain Formations, Vermont, USA and the Waterville and Sangerville-Vassalboro Formations, Maine, USA. Plotting iron speciation ratios determined for samples from these localities revealed apparent paleoredox conditions of the depositional water column spanning the entire range from oxic to ferruginous (anoxic) to euxinic (anoxic and sulfidic). Pyrrhotite formation in samples highlighted problems within the proxy as iron pool assignment required assumptions about metamorphic reactions and pyrrhotite's identification depended on the extraction techniques utilized. The presence of diagenetic iron carbonates in many samples severely affected the proxy even at low grade, engendering an interpretation of ferruginous conditions in all lithologies, but particularly in carbonate-bearing rocks. Increasing metamorphic grades transformed iron in carbonates into iron in silicate minerals, which when combined with a slight increase in the amount of pyrrhotite, drove the proxy toward more oxic and more euxinic conditions. Broad-classes of metamorphic reactions (e.g. decarbonation, silicate formation) occurred at distinct temperatures-pressures in carbonates versus siliciclastics, and could be either abrupt between metamorphic facies or more gradual in nature. Notably, these analyses highlighted the importance of trace iron in phases like calcite, which otherwise might not be included in iron-focused research i.e. ore-system petrogenesis, metamorphic evolution, or normative calculations of mineral abundance. The observations show that iron is mobile and reactive during diagenesis and metamorphism, and these post-depositional processes can readily overprint primary redox information held by iron speciation. However, in principle, additional mineralogical and petrographic approaches can be combined with iron speciation data to help untangle many of these post-depositional processes and arrive at more accurate estimates of paleoenvironmental redox conditions and processes, even for metamorphosed samples.

  13. In-situ Pb isotope analysis of Fe-Ni-Cu sulphides by laser ablation multi-collector ICPMS: New insights into ore formation in the Sudbury impact melt sheet

    NASA Astrophysics Data System (ADS)

    Darling, J. R.; Storey, C. D.; Hawkesworth, C. J.; Lightfoot, P. C.

    2012-12-01

    Laser-ablation (LA) multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) is ideally suited to in situ determination of isotope ratios in sulphide minerals. Using samples of magmatic sulphide ore from the Sudbury impact structure, we test LA-MC-ICPMS analytical protocols that aim to meet a range of analytical challenges in the analysis of Pb isotopes. These include: potential matrix sensitive isotopic fractionation; interferences on Pb isotopes; low melting points of many sulphide minerals; the availability of standards. Magmatic sulphides of wide ranging mineralogy (pyrrhotite, pentlandite, chalcopyrite, pyrite and sphalerite) were analysed for Pb isotopic composition, using the silicate glass NIST SRM 610 as an external standard to correct for instrumental mass-fractionation. Despite matrix sensitive melting and re-deposition around ablation pits, several lines of evidence indicate that all analyses are accurate, within typical analytical uncertainties of 0.003-2% (2σ), and that the defined approach is insensitive to compositional diversity in sample matrix: (a) laser ablation and dissolution based measurements of sulphide powders are in agreement; (b) analyses from each sample define isochron ages within uncertainty of the known crystallization age (1850 Ma); (c) the results of sulphide measurements by laser ablation are consistent with age-corrected feldspar analyses from the same samples. The results have important implications for ore formation in Sudbury. The Pb isotope data regressions are consistent with age corrected feldspar analyses from each respective sample, which together with time integrated Th/U ratios that match whole rock values (3.1, 4.0 and 6.1 for the Worthington, Copper Cliff and Parkin Offset Dykes, respectively) indicate chemical equilibrium between the silicate and sulphide systems during ore formation. The sulphides within each respective sample have indistinguishable model initial Pb isotope ratios (207Pb/204Pbm), irrespective of mineralogy or texture, indicating a common origin for ores within each of three different Offset Dykes. Furthermore, variations between Offset Dykes (e.g., 207Pb/204Pbm = 15.514 ± 0.012, 15.399 ± 0.009 and 15.275 ± 0.003) show that the ores have differing crustal sources on previously unrecognized scales. Mass balance considerations, particularly for MgO, Ni and Cu, indicate that the spatial distribution of mafic target rocks played a significant role in controlling the mineralization potential in different parts of the melt sheet.

  14. Alteration and geochemical zoning in Bodie Bluff, Bodie mining district, eastern California

    USGS Publications Warehouse

    Herrera, P.A.; Closs, L.G.; Silberman, M.L.

    1993-01-01

    Banded, epithermal quartz-adularia veins have produced about 1.5 million ounces of gold and 7 million ounces of silver from the Bodie mining district, eastern California. The veins cut dacitic lava flows, pyroclastic rocks and intrusions. Sinter boulders occur in a graben structure at the top of Bodie Bluff and fragments of sinter and mineralized quartz veins occur in hydrothermal breccias nearby. Explosive venting evidently was part of the evolution of the ore-forming geothermal systems which, at one time, must had reached the paleosurface. Previous reconnaissance studies at Bodie Bluff suggested that the geometry of alteration mineral assemblages and distribution of some of the major and trace elements throughout the system correspond to those predicted by models of hot-spring, volcanic rock hosted precious metal deposits (Silberman, 1982; Silberman and Berger, 1985). The current study was undertaken to evaluate these sugestions further. About 500 samples of quartz veins and altered rocks, including sinter, collected over a vertical extent of 200 meters within Bodie Bluff were petrographically examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray fluorescence methods. The results of these analyses showed that, in general, alteration mineral assemblage and vertical geochemical zoning patterns follow those predicted for hot-spring deposits, but that geochemical zoning patterns for sinter and quartz veins (siliceous deposits), and altered wall rocks are not always similar. The predicted depth-concentration patterns for some elements, notably Au, Ag, Hg, and Tl in quartz veins, and Hg, As and Ag in wall rocks were not as expected, or were perturbed by the main ore producing zone. For both quartz veins and altered wall rocks, the main ore zone had elevated metal contents. Increased concentration of many of these elements could indicate proximity to this zone. However, irregularities in the distribution of some key elements, such as Au and Ag, relative to the predictive models suggest that a larger suite of elements be considered for exploration for ore zones within the district. ?? 1993.

  15. Modes of planetary-scale Fe isotope fractionation

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; von Blanckenburg, Friedhelm

    2006-12-01

    A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the Fe isotope composition of lithospheric mantle xenoliths are representative for an undisturbed melt source, and second, HED and SNC meteorites, representing melting products of 4Vesta and Mars silicate mantles would be expected to show a similar fractionation towards heavy isotope compositions. This is not observed. Four international granitoid standards with SiO 2 contents between 60 and 70 wt.% yield δ56Fe/ 54Fe values between 0.118‰ and 0.132‰. An investigation of the alpine Bergell igneous rock suite revealed a positive correlation between Fe isotope compositions and SiO 2 contents — from gabbros and tonalites ( δ56Fe/ 54Fe ≈ 0.03 to 0.09‰) to granodiorites and silicic dykes ( δ56Fe/ 54Fe ≈ 0.14 to 0.23‰). Although in this suite δ56Fe/ 54Fe correlates with δ18O values and radiogenic isotopes, open-system behavior to explain the heavy iron is not undisputed. This is because an obvious assimilant with the required heavy Fe isotope composition has so far not been identified. Alternatively, the relatively heavy granite compositions might be obtained by fractional crystallisation of the melt. Ultimately, further detailed studies on natural rocks and the experimental determination of mineral/melt fractionation factors at magmatic conditions are required to unravel whether or not iron isotope fractionation takes place during partial mantle melting and crystal fractionation.

  16. Fault rock texture and porosity type in Triassic dolostones

    NASA Astrophysics Data System (ADS)

    Agosta, Fabrizio; Grieco, Donato; Bardi, Alessandro; Prosser, Giacomo

    2015-04-01

    Preliminary results of an ongoing project aimed at deciphering the micromechanics and porosity evolution associated to brittle deformation of Triassic dolostones are presented. Samples collected from high-angle, oblique-slip, 10's to 100's m-throw normal faults crosscutting Mesozoic carbonates of the Neo Tethys (Campanian-Lucanian Platform) are investigated by mean of field geological mapping, optical microscopy, SEM and image analyses. The goal is to characterize in detail composition, texture and porosity of cataclastic rocks in order to assess the structural architecture of dolomitic fault cores. Moreover, the present study addresses the time-space control exerted by several micro-mechanisms such as intragranular extensional fracturing, chipping and shear fracturing, which took place during grain rolling and crushing within the evolving faults, on type, amount, dimensions and distribution of micropores present within the cataclastic fault cores. Study samples are representative of well-exposed dolomitic fault cores of oblique-slip normal faults trending either NW-SE or NE-SW. The high-angle normal faults crosscut the Mesozoic carbonates of the Campanian-Lucanian Platform, which overrode the Lagonegro succession by mean of low-angle thrust faults. Fault throws are measured by considering the displaced thrust faults as key markers after large scale field mapping (1:10,000 scale) of the study areas. In the field, hand samples were selected according to their distance from main slip surfaces and, in some case, along secondary slip surfaces. Microscopy analysis of about 100 oriented fault rock samples shows that, mostly, the study cataclastic rocks are made up of dolomite and sparse, minute survivor silicate grains deriving from the Lagonegro succession. In order to quantitatively assess the main textural classes, a great attention is paid to the grain-matrix ratio, grain sphericity, grain roundness, and grain sorting. By employing an automatic box-counting technique, the fractal dimension of representative samples is also computed. Results of such a work shows that five main textural types are present: 1) fractured and fragmented dolomites; 2) protocataclasites characterized by intense intragranular extensional fracturing; 3) cataclasites due to a chipping-dominated mechanism; 4) cataclasites and ultracataclasites with pronounced shear fracturing; 5) cemented fault rocks, which localize along the main slip surfaces. The first four textural types are therefore indicative to the fault rock maturity within individual cataclastic fault cores. A negative correlation among grain-matrix ratio and grain sphericity, roundness and sorting is computed, which implies that ultracataclasites are made up of more spherical and rounded smaller grains relative to cataclasites and protocataclasites. Each textural type shows distinct D0-values (box-counting dimension). As expected, a good correlation between the D0-value and fault rock maturity is computed. Ongoing analysis of selected images obtained from representative samples of the five textural classes will shed lights on the relative role played by the aforementioned micro-mechanisms on the porosity evolution within the cataclastic fault cores.

  17. Reactive Fluid Flow and Applications to Diagenesis, Mineral Deposits, and Crustal Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rye, Danny M.; Bolton, Edward W.

    2002-11-04

    The objective is to initiate new: modeling of coupled fluid flow and chemical reactions of geologic environments; experimental and theoretical studies of water-rock reactions; collection and interpretation of stable isotopic and geochemical field data at many spatial scales of systems involving fluid flow and reaction in environments ranging from soils to metamorphic rocks. Theoretical modeling of coupled fluid flow and chemical reactions, involving kinetics, has been employed to understand the differences between equilibrium, steady-state, and non-steady-state behavior of the chemical evolution of open fluid-rock systems. The numerical codes developed in this project treat multi-component, finite-rate reactions combined with advective andmore » dispersive transport in multi-dimensions. The codes incorporate heat, mass, and isotopic transfer in both porous and fractured media. Experimental work has obtained the kinetic rate laws of pertinent silicate-water reactions and the rates of Sr release during chemical weathering. Ab-initio quantum mechanical techniques have been applied to obtain the kinetics and mechanisms of silicate surface reactions and isotopic exchange between water and dissolved species. Geochemical field-based studies were carried out on the Wepawaug metamorphic schist, on the Irish base-metal sediment-hosted ore system, in the Dalradian metamorphic complex in Scotland, and on weathering in the Columbia River flood basalts. The geochemical and isotopic field data, and the experimental and theoretical rate data, were used as constraints on the numerical models and to determine the length and time scales relevant to each of the field areas.« less

  18. Scanning electron microscope view of iron crystal growing on pyroxene crystal

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A scanning electron microscope photograph of a four-micron size iron crystal growing on a pyroxene crystal (calcium-magnesium-iron silicate) from the Apollo 15 Hadley-Apennino lunar landing site. The well developed crystal faces indicate that the crystal was formed from a hot vapor as the rock was cooling.

  19. Mineral resource of the month: diatomite

    USGS Publications Warehouse

    ,

    2013-01-01

    The article discusses the properties and applications of the mineral diatomite. According to the author, diatomite is a soft, friable and very fine-grained siliceous sedimentary rock made of the remains of fossilized diatoms. The author adds that its properties make diatomite very useful as a filtration medium and as a component in cement.

  20. Reconnaissance geology of the Ghazzalah Quadrangle, sheet 26/41 A, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Quick, James E.

    1983-01-01

    The Ghazzalah quadrangle is located in the northern Precambrian shield of Saudi Arabia between lat 26?30' and 27?00' N. and long 41?00' and 41?30' E. The area is underlain by two lithologically distinct, Precambrian volcanosedimentary units and a wide range of dioritoid and granitoid plutonic intrusive rocks. The only Phanerozoic rocks consist of one outcrop of Tertiary(?) basalt and widespread but thin deposits of Quaternary detritus. The Banana greenstone, the oldest rock in the quadrangle, consists of intermediate volcanic and subvolcanic rocks and minor interbedded marble, which have been metamorphosed to greenschist-facies assemblages. Volcanic rocks mainly range in composition from basalt to andesite, and subvolcanic rocks consist of diorite and diabase. The Banana greenstone is unconformably overlain by silicic volcanic rocks and minor arkosic sandstone and breccia of the Hadn formation. Preservation of delicate volcanic textures suggests that the rocks have been only incipiently metamorphosed. Unpublished rubidium/strontium isotopic data for the Hadn formation suggest an age of 620 to 610 Ma. Intrusive rocks are separable according to their ages relative to the Hadn formation. Those that are unconformably overlain by the Hadn formation consist of hornblende quartz diorite and gabbro, which may be consanguineous with the Banana greenstone, and younger tonalite, biotite-hornblende granodiorite, syenogranite, and monzogranite. Plutons of monzogranite, alkali-feldspar g,ranite, syenbgranite, peralkaline granite, and hypabyssal intrusions of granophyre were probably emplaced during a period coincident with and (or) following Hadn volcanism. Uranium-lead and rubidium/strontium isotopic data for two plutons in the adjacent Al Qasr quadrangle suggest that plutonic activity persisted in the region until about 580 to 570 Ma. Faulting appears to postdate all of the plutonic rocks. The dominant faults belong to a northeast-trending system of right-lateral shears; a subordinant system consists of mainly north- to northwest-trending faults. The peralkaline-granite plutons underlying Jibal Ba'gham and Jibal ar Rumman have the most economic potential. Wadi samples from these areas show an anomalous concentrations of tin, lead, niobium, and yttrium. Localized, intense radiometric anomalies in the Ba'gham intrusive complex are associated with high concentrations )f thorium, uranium, andrare-earth elements.

  1. Multistage crack seal vein and hydrothermal Ni enrichment in serpentinized ultramafic rocks (Koniambo massif, New Caledonia)

    NASA Astrophysics Data System (ADS)

    Cathelineau, Michel; Myagkiy, Andrey; Quesnel, Benoit; Boiron, Marie-Christine; Gautier, Pierre; Boulvais, Philippe; Ulrich, Marc; Truche, Laurent; Golfier, Fabrice; Drouillet, Maxime

    2017-10-01

    Sets of fractures and breccia sealed by Ni-rich silicates and quartz occur within saprock of the New Caledonian regolith developed over ultramafic rocks. The crystallization sequence in fractures is as follows: (1) serpentine stage: lizardite > polygonal serpentine > white lizardite; (2) Ni stage: Ni-Mg kerolite followed by red-brown microcrystalline quartz; and (3) supergene stages. The red-brown microcrystalline quartz corresponds to the very last stage of the Ni sequence and is inferred to have precipitated within the 50-95 °C temperature range. It constitutes also the main cement of breccia that has all the typical features of hydraulic fracturing. The whole sequence is therefore interpreted as the result of hydrothermal fluid circulation under medium to low temperature and fluctuating fluid pressure. Although frequently described as the result of a single downward redistribution of Ni and Mg leached in the upper part of the regolith under ambient temperature, the Ni silicate veins thus appear as the result of recurrent crack and seal process, corresponding to upward medium temperature fluid convection, hydraulic fracturing and subsequent fluid mixing, and mineral deposition.

  2. Effects of Irradiation on Albite's Chemical Durability.

    PubMed

    Hsiao, Yi-Hsuan; La Plante, Erika Callagon; Krishnan, N M Anoop; Le Pape, Yann; Neithalath, Narayanan; Bauchy, Mathieu; Sant, Gaurav

    2017-10-19

    Albite (NaAlSi 3 O 8 ), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar + -implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

  3. A case of the tail wagging the dog? Reverse weathering and Earth's CO2 thermostat.

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.

    2017-12-01

    Feedbacks between climate, the global carbon cycle, and the chemistry of seawater stabilize Earth's surface temperature on geologic timescales and are likely responsible for its habitability over billions of years of Earth history. The most important component of the geologic carbon cycle is the precipitation and burial of carbonate sediments. The amount of carbonate sediment produced depends, in turn, on the alkalinity generated during silicate weathering less the amount consumed during the formation of secondary clay minerals both on the continents and in the ocean. In marine enviroments this process, often referred to as reverse weathering, consumes seawater alkalinity (and cations) via reaction with degraded Al-silicate minerals. Because these reactions constitute a sink of seawater alkalinity, changes in the amount of reverse weathering will lead to imbalances between alkalinity sources and sinks. The net effect is that on timescales greater than the timescale of carbonate compensation (< 10 kyr), changes in reverse weathering will lead to changes in the rate of continental silicate weathering through the dependence of continental silicate weathering on atmospheric CO2 and climate. This mechanism is capable of changing rates of continental silicate weathering without changing either the rate of volcanic outgassing or the rate constant for continental silicate weathering (i.e. through mountain-building or the exposure of different rock types) and as a result represents a unique way of modulating the global carbon cycle and Earth's climate on geologic timescales.

  4. Ca isotopes, chemical weathering, and geomorphic controls on long-term climate

    NASA Astrophysics Data System (ADS)

    Moore, J.; Jacobson, A. D.; Holmden, C. E.; Craw, D.

    2009-12-01

    Calcium isotope geochemistry (δ44Ca) offers a unique opportunity to directly quantify proportions of riverine Ca originating from silicate versus carbonate weathering, which is essential for understanding how geomorphic processes affecting landscape evolution, such as tectonic uplift and glaciation, influence the long-term cycling of atmospheric CO2. We measured the elemental and δ44Ca chemistry of river and rock samples from the New Zealand Southern Alps. In combination with our geochemical data, we used runoff and suspended sediment fluxes to elucidate relationships between chemical weathering, mechanical erosion, and long-term climate. The S. Alps have uniform bedrock chemistry but significant tectonic and climatic gradients. West of the main topographic divide, watersheds drain schist and experience high runoff, uplift, and erosion rates. East of the main divide, watersheds drain greywacke or schist and experience lower runoff, uplift, and erosion rates. Glaciated watersheds with high erosion rates are present throughout the mountain range. Both schist and greywacke contain up to 3% metamorphic and hydrothermal calcite. Waters exhibit two-component mixing between calcite and silicate end-members when plotted as δ44Ca versus Ca/Sr. Scatter about the mixing curve is generally smaller than the analytical uncertainty of the measurements and likely reflects variability of the end-member compositions rather than fractionation. We used the mixing relationships to calculate percentages of Ca from silicate weathering. Rivers draining greywacke average 27.6% of Ca from silicate weathering with glaciated and non-glaciated watersheds yielding 41.8 and 19.5%, respectively. Rivers draining schist average 9.8% with glaciated and non-glaciated watersheds yielding 17.7 and 3.9%, respectively. Although Ca fluxes are larger west of the main divide where erosion and runoff are higher, the percentage of Ca from silicate weathering is smaller. Hence, long-term atmospheric CO2 consumption rates do not increase linearly with mechanical erosion because erosion continuously exposes fresh calcite. For non-glacial watersheds, δ44Ca and traditional Ca/Na mixing models yield similar results. However, a substantial difference exists for glacial watersheds. We think δ44Ca is a more sensitive tracer as the difference likely reflects glacial communition, which facilitates rapid and non-stoichiometric release of Ca ions from freshly cleaved silicate surfaces.¶ This study demonstrates the utility of using δ44Ca to trace silicate versus carbonate sources of riverine Ca. Our findings support previous contentions that much of the riverine Ca flux emanating from active orogens originates from carbonate weathering, which is not a sink for atmospheric CO2 over geologic timescales. However, our findings also reveal that silicate weathering and atmospheric CO2 consumption rates in glaciated watersheds are higher than previously realized.

  5. Isotope geochemistry and fluid inclusion study of skarns from Vesuvius

    USGS Publications Warehouse

    Gilg, H.A.; Lima, A.; Somma, R.; Belkin, H.E.; de Vivo, B.; Ayuso, R.A.

    2001-01-01

    We present new mineral chemistry, fluid inclusion, stable carbon and oxygen, as well as Pb, Sr, and Nd isotope data of Ca-Mg-silicate-rich ejecta (skarns) and associated cognate and xenolithic nodules from the Mt. Somma-Vesuvius volcanic complex, Italy. The typically zoned skarn ejecta consist mainly of diopsidic and hedenbergitic, sometimes "fassaitic" clinopyroxene, Mg-rich and Ti-poor phlogopite, F-bearing vesuvianite, wollastonite, gehlenite, meionite, forsterite, clinohumite, anorthite and Mg-poor calcite with accessory apatite, spinell, magnetite, perovskite, baddeleyite, and various REE-, U-, Th-, Zr- and Ti-rich minerals. Four major types of fluid inclusions were observed in wollastonite, vesuvianite, gehlenite, clinopyroxene and calcite: a) primary silicate melt inclusions (THOM = 1000-1050??C), b) CO2 ?? H2S-rich fluid inclusions (THOM = 20-31.3??C into the vapor phase), c) multiphase aqueous brine inclusions (THOM = 720-820??C) with mainly sylvite and halite daughter minerals, and d) complex chloride-carbonate-sulfate-fluoride-silicate-bearing saline-melt inclusions (THOM = 870-890??C). The last inclusion type shows evidence for immiscibility between several fluids (silicate melt - aqueous chloride-rich liquid - carbonate/sulfate melt?) during heating and cooling below 870??C. There is no evidence for fluid circulation below 700??C and participation of externally derived meteoric fluids in skarn formation. Skarns have considerably variable 206Pb/204Pb (19.047-19.202), 207Pb/204Pb (15.655-15.670), and 208Pb/204Pb (38.915-39.069) and relatively low 143Nd/144Nd (0.51211-0.51244) ratios. The carbon and oxygen isotope compositions of skarn calcites (??13CV-PDB = -5.4 to -1.1???; ??18OV-SMOW = 11.7 to 16.4???) indicate formation from a 18O- and 13C-enriched fluid. The isotope composition of skarns and the presence of silicate melt inclusion-bearing wollastonite nodules suggests assimilation of carbonate wall rocks by the alkaline magma at moderate depths (< 5 km) and consequent exsolution of CO2-rich vapor and complex saline melts from the contaminated magma that reacted with the carbonate rocks to form skarns.

  6. Does size matter? Statistical limits of paleomagnetic field reconstruction from small rock specimens

    NASA Astrophysics Data System (ADS)

    Berndt, Thomas; Muxworthy, Adrian R.; Fabian, Karl

    2016-01-01

    As samples of ever decreasing sizes are being studied paleomagnetically, care has to be taken that the underlying assumptions of statistical thermodynamics (Maxwell-Boltzmann statistics) are being met. Here we determine how many grains and how large a magnetic moment a sample needs to have to be able to accurately record an ambient field. It is found that for samples with a thermoremanent magnetic moment larger than 10-11Am2 the assumption of a sufficiently large number of grains is usually given. Standard 25 mm diameter paleomagnetic samples usually contain enough magnetic grains such that statistical errors are negligible, but "single silicate crystal" works on, for example, zircon, plagioclase, and olivine crystals are approaching the limits of what is physically possible, leading to statistic errors in both the angular deviation and paleointensity that are comparable to other sources of error. The reliability of nanopaleomagnetic imaging techniques capable of resolving individual grains (used, for example, to study the cloudy zone in meteorites), however, is questionable due to the limited area of the material covered.

  7. Diagenesis of Miocene siliceous shales, Temblor Range, California

    USGS Publications Warehouse

    Murata, K.J.; Larson, R.R.

    1975-01-01

    Siliceous Monterey Shale and related shales of the Temblor Range, Calif., are subdivided into three depth-controlled zones characterized by different forms of silica. These are, in descending stratigraphic order: (1) Biogenic opal zone, with remains of diatoms and other siliceous organisms, (2) diagenetic cristobalite zone, and (3) diagenetic quartz zone. Using the top of the youngest marine unit, the overlying Etchegoin Formation, as datum, the transition from biogenic opal to disordered cristobalite occurs within the Monterey Shale of Chico Martinez Creek at -730 m, and the ordered cristobalite-to-microquartz transition at about -2,030 m. Temperatures that prevailed at these transition depths while the sedimentary pile lay at the bottom of the sea are estimated at about 50° and 110°C, respectively. Diagenetic cristobalite manifests, downward through a 1,300-m interval of section, a progressive decrease in its d(101) spacing because of a gradual ordering of its internal structure through adjustments in the solid state. Diagenetic microquartz forms only from well-ordered cristobalite that provides the most appropriate concentration of dissolved silica for precipitation of microquartz. Scanning electron micrographs of the silica mineral in pores of rocks made up of disordered cristobalite show aggregates of well-formed bladed crystals, like those described from deep-sea cherts. The pore silica minerals in rocks made up of ordered cristobalite occur as dendritic growths of poorly formed stubby crystals, and the change in crystal habit could be an external expression of the internal ordering process.

  8. Silicate Carbonation in Supercritical CO2 Containing Dissolved H2O: An in situ High Pressure X-Ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; Miller, Quin RS; Thompson, Christopher J.

    2013-06-30

    Technological advances have been significant in recent years for managing environmentally harmful emissions (mostly CO2) resulting from combustion of fossil fuels. Deep underground geologic formations are emerging as reasonable options for long term storage of CO2 but mechanisms controlling rock and mineral stability in contact with injected supercritical fluids containing water are relatively unknown. In this paper, we discuss mineral transformation reactions occurring between supercritical CO2 containing water and the silicate minerals forsterite (Mg2SiO4), wollastonite (CaSiO3), and enstatite (MgSiO3). This study utilizes newly developed in situ high pressure x-ray diffraction (HXRD) and in situ infra red (IR) to examine mineralmore » transformation reactions. Forsterite and enstatite were selected as they are important minerals present in igneous and mafic rocks and have been the subject of a large number of aqueous dissolution studies that can be compared with non-aqueous fluid tests in this study. Wollastonite, classified as a pyroxenoid (similar to a pyroxene), was chosen as a suitably fast reacting proxy for examining silicate carbonation processes associated with a wet scCO2 fluid as related to geologic carbon sequestration. The experiments were conducted under modest pressures (90 to 160 bar), temperatures between 35° to 70° C, and varying concentrations of dissolved water. Under these conditions scCO2 contains up to 3,500 ppm dissolved water.« less

  9. Elemental composition of the Martian crust.

    PubMed

    McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B

    2009-05-08

    The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars.

  10. Lunar breccias, petrology, and earth planetary structure

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.

    1978-01-01

    Topics covered include: (1) petrologic studies of poikiloblastic textured rocks; (2) petrology of aluminous mare basalts in breccia 14063; (3) petrology of Apollo 15 breccia 15459; (4) high-alumina mare basalts; (5) some petrological aspects of imbrium stratigraphy; (6) petrology of lunar rocks and implication to lunar evolution; (7) the crystallization trends of spinels in Tertiary basalts from Rhum and Muck and their petrogenetic significance; (8) the geology and evolution of the Cayman Trench; (9) The petrochemistry of igneous rocks from the Cayman Trench and the Captains Bay Pluton, Unalaska Island and their relation to tectonic processes at plate margins; and (10) the oxide and silicate mineral chemistry of a Kimberlite from the Premier Mine with implications for the evolution of kimberlitic magma.

  11. Reactive transport modeling of Li isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Sonnenthal, E. L.

    2013-12-01

    The fractionation of Li isotopes has been used as a proxy for interaction processes between silicate rocks and any kind of fluids. In particular, Li isotope measurements are powerful because Li is almost exclusively found in silicate minerals. Moreover, the two stable Li isotopes, 6Li and 7Li, differ by 17% in mass introducing a large mass dependent isotope fractionation even at high temperature. Typical applications include Li isotope measurements along soil profiles and of river waters to track silicate weathering patterns and Li isotope measurements of geothermal wells and springs to assess water-rock interaction processes in geothermal systems. For this contribution we present a novel reactive transport modeling approach for the simulation of Li isotope fractionation using the code TOUGHREACT [1]. It is based on a 6Li-7Li solid solution approach similar to the one recently described for simulating Cr isotope fractionation [2]. Model applications include the simulation of granite weathering along a 1D flow path as well as the simulation of a column experiment related to an enhanced geothermal system. Results show that measured δ7Li values are mainly controlled by (i) the degree of interaction between Li bearing primary silicate mineral phases (e.g., micas, feldspars) and the corresponding fluid, (ii) the Li isotope fractionation factor during precipitation of secondary mineral phases (e.g., clays), (iii) the Li concentration in primary and secondary Li bearing mineral phases and (iv) the proportion of dissolved Li that adsorbs to negatively charged surfaces (e.g., clays, Fe/Al-hydroxides). To date, most of these parameters are not very well constrained. Reactive transport modeling thus currently has to rely on many assumptions. Nevertheless, such models are powerful because they are the only viable option if individual contributions of all potential processes on the resulting (i.e., measured) Li isotopic ratio have to be quantitatively assessed. Accordingly, we suggest performing more experimental work in conjunction with reactive transport modeling to better understand Li isotope fractionation processes and to obtain a better understanding of water rock interaction processes, eventually. [1] Xu, T., Spycher, N., Sonnenthal, E. L., Zhang, G., Zheng, L., Pruess, K. (2011), Comput. Geosci. 37, 763-774. [2] Wanner, C., Sonnenthal, E. L. (2013), Chem. Geol. 337, 88-98.

  12. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  13. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    NASA Astrophysics Data System (ADS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-04-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  14. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification - Supplementary Information

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp. -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  15. Mineralogical, chemical and K-Ar isotopic changes in Kreyenhagen Shale whole rocks and <2 μm clay fractions during natural burial and hydrous-pyrolysis experimental maturation

    NASA Astrophysics Data System (ADS)

    Clauer, N.; Lewan, M. D.; Dolan, M. P.; Chaudhuri, S.; Curtis, J. B.

    2014-04-01

    Progressive maturation of the Eocene Kreyenhagen Shale from the San Joaquin Basin of California was studied by combining mineralogical and chemical analyses with K-Ar dating of whole rocks and <2 μm clay fractions from naturally buried samples and laboratory induced maturation by hydrous pyrolysis of an immature outcrop sample. The K-Ar age decreases from 89.9 ± 3.9 and 72.4 ± 4.2 Ma for the outcrop whole rock and its <2 μm fraction, respectively, to 29.7 ± 1.5 and 21.0 ± 0.7 Ma for the equivalent materials buried to 5167 m. The natural maturation does not produce K-Ar ages in the historical sense, but rather K/Ar ratios of relative K and radiogenic 40Ar amounts resulting from a combined crystallization of authigenic and alteration of initial detrital K-bearing minerals of the rocks. The Al/K ratio of the naturally matured rocks is essentially constant for the entire depth sequence, indicating that there is no detectable variation in the crystallo-chemical organization of the K-bearing alumino-silicates with depth. No supply of K from outside of the rock volumes occurred, which indicates a closed-system behavior for it. Conversely, the content of the total organic carbon (TOC) content decreases significantly with burial, based on the progressive increasing Al/TOC ratio of the whole rocks. The initial varied mineralogy and chemistry of the rocks and their <2 μm fractions resulting from differences in detrital sources and depositional settings give scattered results that homogenize progressively during burial due to increased authigenesis, and concomitant increased alteration of the detrital material. Hydrous pyrolysis was intended to alleviate the problem of mineral and chemical variations in initially deposited rocks of naturally matured sequences. However, experiments on aliquots from thermally immature Kreyenhagen Shale outcrop sample did not mimic the results from naturally buried samples. Experiments conducted for 72 h at temperatures from 270 to 365 °C did not induce significant changes at temperatures above 310 °C in the mineralogical composition and K-Ar ages of the rock and <2 μm fraction. The K-Ar ages of the <2 μm fraction range from 72.4 ± 4.2 Ma in the outcrop sample to 62.4 ± 3.4 Ma in the sample heated the most at 365 °C for 216 h. This slight decrease in age outlines some loss of radiogenic 40Ar, together with losses of organic matter as oil, gas, and aqueous organic species. Large amounts of smectite layers in the illite-smectite mixed layers of the pyrolyzed outcrop <2 μm fraction remain during thermal experiments, especially above 310 °C. With no illitization detected above 310 °C, smectite appears to have inhibited rather than promoted generation of expelled oil from decomposition of bitumen. This hindrance is interpreted to result from bitumen impregnating the smectite interlayer sites and rock matrix. Bitumen remains in the <2 μm fraction despite leaching with H2O2. Its presence in the smectite interlayers is apparent by the inability of the clay fraction to fully expand or collapse once bitumen generation from the thermal decomposition of the kerogen is completed, and by almost invariable K-Ar ages confirming for the lack of any K supply and/or radiogenic 40Ar removal. This suggests that once bitumen impregnates the porosity of a progressively maturing source rock, the pore system is no longer wetted by water and smectite to illite conversion ceases. Experimental attempts to evaluate the smectite conversion to illite should preferentially use low-TOC rocks to avoid inhibition of the reaction by bitumen impregnation.

  16. A recipe to create nano-grains on dolomite

    NASA Astrophysics Data System (ADS)

    Røyne, Anja; Pluymakers, Anne

    2017-04-01

    Advances in imaging techniques in recent years have allowed for easy microstructure visualization at nano-resolution, and many studies have observed nano-grains in different materials, including rocks. An important example in geological systems is their seemingly ubiquitous occurrence on so-called mirror-like slip surfaces, produced in natural and experimental earthquakes of both carbonate and silicate rocks. It is, however, not yet clear whether these nano-grains can indeed be used as a reliable indicator of seismic slip. Since carbonates are prone to decarbonation at temperatures exceeding 550 - 600 °C, nano-grain formation may be formed due to heating rather than shear. In this study, we have investigated the effect of elevated temperatures on carbonate fault rocks. We used hand-polished mirror-like dolomite protolith, as well as natural fault mirror surfaces, obtained from the Foiana Fault Zone from the Southern Alps in Italy. The samples were heated to 200 to 800 degC in a 5 hour heating cycle, followed by slow cooling ( 12 h) to room temperature. Subsequently, we imaged the samples using SEM and AFM. Nano-grain formation on the surfaces of hand-polished samples starts around 400 ° C, and is pervasive at and above 600 ° C. Fault mirror samples are initially coated with naturally formed nano-grains and only very local patches on these surfaces display obvious morphological changes due to heating. Exposing both types of sample heated to 600 °C to DI water under the AFM shows rapid recrystallization and the formation of a more porous and blade-like crystal layer on the entire surface. This happens both in hand-polished and naturally polished surfaces. Fault mirror samples that have not been heated do not change when exposed to water. We have shown that nano-grains can form as a result of heating without shear, but that samples that have experienced high shear strain have a water- and heat-resistant coating composed of otherwise morphologically indistinguishable nano-grains. These results show that caution is needed when interpreting laboratory and field microstructures, since there is more than one way to cook up a nano-grain.

  17. Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (∼2.7 Ga) Abitibi Greenstone Belt, Canada

    NASA Astrophysics Data System (ADS)

    Brengman, Latisha A.; Fedo, Christopher M.

    2018-04-01

    We investigated a group of silicified volcanic rocks from the ∼2.72 Ga Hunter Mine Group (HMG), Abitibi Greenstone Belt, Canada, in order to document progressive compositional change associated with alteration in a subaqueous caldera system. Rocks of the HMG divide into three groups based on mineralogy and texture for petrographic and geochemical analyses. Volcanic features (phenocrysts, pseudomorphs after primary glass shards, lapilli, volcanic clasts) are preserved in all groups, despite changing mineralogy from primarily quartz, feldspar, chlorite (Groups 1 and 2), to quartz, hematite and carbonate (Groups 2 and 3). Compositionally, Group 1 rocks resemble volcanic rocks in the region, while Group 2 and 3 rocks show a change in mineralogy to iron, silica, and carbonate minerals, which is associated with depletion of many major and trace elements associated with volcanic rocks (Al2O3, Na2O, K2O, Zr). In addition, rare earth elements display a clear progression from volcanic signatures in Group 1 (PrSN/YbSN = 1.7-2.96, EuSN/EuSN∗ = 0.84-1.72, Y/Ho = 25.20-27.41, LaSN/LaSN∗ = 0.97-1.29, and Zr/Hf = 38.38-42.09) to transitional mixed volcanic, hydrothermal, and seawater signatures in Group 2 (PrSN/YbSN 1.33-2.89, EuSN/EuSN∗ 1.33-2.5, Y/Ho = 23.94-30, LaSN/LaSN∗ 0.93-1.34, and Zr/Hf = 40-70), to mixed hydrothermal and seawater signatures in Group 3 (PrSN/YbSN 0.62-2.88, EuSN/EuSN∗ 1.30-7.15, LaSN/LaSN∗ 1.02-1.86, Y/Ho = 25.56-55, and Zr/Hf = 35-50). We interpret that silicification of volcanic rocks (Group 1) produced transitional altered volcanic rocks (Group 2), and siliceous and jaspilitic rocks (Group 3), based on preservation of delicate volcanic features. Building on this explanation, we interpret that major, trace- and rare-earth element mobility occurred during the process of silicification, during which siliceous and jaspilitic rocks (Group 3) acquired aspects of the rare-earth element geochemical signatures of marine chemical precipitates. We conclude that seafloor silicification in hydrothermal depositional settings is capable of producing rocks that resemble marine chemical precipitates such as banded iron formation, and could be a process that is widespread in the Archean. Consequently, because silicified volcanic rocks from the HMG possess mixed seawater and hydrothermal rare-earth element characteristics similar to Archean iron formations and cherts, we suggest caution must be exercised when interpreting the geochemical information preserved in metamorphosed rocks where original genesis is unknown.

  18. Thermal influences on the development and evolution of large catastrophic caldera-forming magmatic systems

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Gregg, P. M.; Grocke, S.; Kern, J. M.; Kaiser, J. F.; Iriarte, R.; Burns, D. H.; Tierney, C.; Schmitt, A. K.; Gosnold, W. D.

    2012-12-01

    Recent work in the community has emphasized the importance of the thermal environment on the development, evolution, and eventual eruption of large silicic magma systems, commonly referred to as "supervolcanic". With particular reference to the Central Andes, our group has focused on three main themes: thermal preparation of the shallow crust; the importance of temperature-dependent rheology of the host rocks; and time scales of magma evolution. Integrated, these themes provide a useful framework in which to understand supervolcanic systems dominated by crystal-rich silicic magmas such as those also seen in the Great Basin and Southern Rocky Mountain Volcanic Field of the North America and Toba in Sumatra. For both regional and individual systems, the key driver is anomalous high mantle to crust fluxes on time scales of several millions of years. These trigger feedbacks between intermediate melt generation in the lower crust, transport of this melt/magma through the crust, thermal evolution of the crust, and eventual growth and stabilization of silicic upper crustal magma systems. Elevation of geotherms in the upper crust results in conditions that promote the development of large eruptible magma volumes. Specifically, incubation and growth of nascent magma systems is enhanced by the permissive thermal environment and ductile rheology of wall rocks. These conditions are, in our view, the critical ingredients to the formation of the largest systems. Subsequent stabilization and growth of these systems at shallow levels (3 to 7 km) over several hundred of thousands of years results in further, local, feedbacks between chamber volume, temperature, wall rock rheology that cause significant surface uplift (~1 km) above the growing magma system, and long crystallization histories. These conditions lead to mechanically unstable "perched" magma bodies that can reach an advanced state of evolution (high crystallinity) before catastrophic eruption and caldera formation.

  19. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate

    NASA Astrophysics Data System (ADS)

    Hoernle, Kaj; Tilton, George; Le Bas, Mike; Duggen, Svend; Garbe-Schönberg, Dieter

    Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9 Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of 1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ∂13C and ∂18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Δ7/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e.g. limestone) recycled through shallow, subcontinental-lithospheric-mantle and deep, lower-mantle sources.

  20. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate

    NASA Astrophysics Data System (ADS)

    Hoernle, Kaj; Tilton, George; Le Bas, Mike; Duggen, Svend; Garbe-Schönberg, Dieter

    2001-11-01

    Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9 Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of 1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ∂13C and ∂18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Δ7/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e.g. limestone) recycled through shallow, subcontinental-lithospheric-mantle and deep, lower-mantle sources.

  1. Insights into the emplacement of upper-crustal plutons and their relationship to large silicic calderas, from field relationships, geochronology, and zircon trace element geochemistry in the Stillwater – Clan Alpine caldera complex, western Nevada, USA

    USGS Publications Warehouse

    Colgan, Joseph P.; John, David A.; Henry, Christopher D.; Watts, Kathryn E.

    2018-01-01

    Geologic mapping, new U-Pb zircon ages, and new and published 40Ar/39Ar sanidine ages document the timing and extent of Oligocene magmatism in the southern Stillwater Range and Clan Alpine Mountains of western Nevada, where Miocene extension has exposed at least six nested silicic calderas and underlying granitic plutons to crustal depths locally ≥ 9 km. Both caldera-forming rhyolitic tuffs and underlying plutons were emplaced in two episodes, one from about 30.4–28.2 Ma that included the Deep Canyon, Job Canyon, and Campbell Creek calderas and underlying plutons, and one from about 25.3–24.8 Ma that included the Louderback Mountains, Poco Canyon, and Elevenmile Canyon calderas and underlying plutons. In these two 1–2 m.y. periods, almost the entire Mesozoic upper crust was replaced by Oligocene intrusive and extrusive rocks to depths ≥ 9 km over an estimated total area of ~ 1500 km2 (pre-extension). Zircon trace element geochemistry indicates that some plutonic rock can be solidified residual magma from the tuff eruptions. Most plutons are not solidified residual magma, although they directly underlie calderas and were emplaced along the same structures shortly after to as much as one million years after caldera formation. Magma chambers and plutons grew by floor subsidence accommodated by downward transfer of country rocks. If other Great Basin calderas are similar, the dense concentration of shallowly exposed calderas in central Nevada is underlain by a complexly zoned mid-Cenozoic batholith assembled in discrete pulses that coincided with formation of large silicic calderas up to 2500–5000 km3.

  2. Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin)

    NASA Astrophysics Data System (ADS)

    Lupker, Maarten; France-Lanord, Christian; Galy, Valier; Lavé, Jérôme; Gaillardet, Jérôme; Gajurel, Ananta Prasad; Guilmette, Caroline; Rahman, Mustafizur; Singh, Sunil Kumar; Sinha, Rajiv

    2012-05-01

    We present an extensive river sediment dataset covering the Ganga basin from the Himalayan front downstream to the Ganga mainstream in Bangladesh. These sediments were mainly collected over several monsoon seasons and include depth profiles of suspended particles in the river water column. Mineral sorting is the first order control on the chemical composition of river sediments. Taking into account this variability we show that sediments become significantly depleted in mobile elements during their transit through the floodplain. By comparing sediments sampled at the Himalayan front with sediments from the Ganga mainstream in Bangladesh it is possible to budget weathering in the floodplain. Assuming a steady state weathering regime in the floodplain, the weathering of Himalayan sediments in the Gangetic floodplain releases ca. (189 ± 92) × 109 and (69 ± 22) × 109 mol/yr of carbonate bound Ca and Mg to the dissolved load, respectively. Silicate weathering releases (53 ± 18) × 109 and (42 ± 13) × 109 mol/yr of Na and K while the release of silicate Mg and Ca is substantially lower, between ca. 0 and 20 × 109 mol/yr. Additionally, we show that sediment hydration, [H2O+], is a sensitive tracer of silicate weathering that can be used in continental detrital environments, such as the Ganga basin. Both [H2O+] content and the D/H isotopic composition of sediments increases during floodplain transfer in response to mineral hydrolysis and neoformations associated to weathering reactions. By comparing the chemical composition of river sediments across the floodplain with the composition of the eroded Himalayan source rocks, we suggest that the floodplain is the dominant location of silicate weathering for Na, K and [H2O+]. Overall this work emphasizes the role of the Gangetic floodplain in weathering Himalayan sediments. It also demonstrates how detrital sediments can be used as weathering tracers if mineralogical and chemical sorting effects are properly taken into account.

  3. Lead isotopes tracing the life cycle of a catchment: From source rock via weathering to human impact

    NASA Astrophysics Data System (ADS)

    Negrel, P. J.; Petelet-Giraud, E.; Guerrot, C.; Millot, R.

    2015-12-01

    Chemical weathering of rocks involves consumption of CO2, a greenhouse gas with a strong influence on climate. Among rocks exposed to weathering, basalt plays a major role in the carbon cycle as it is more easily weathered than other crystalline silicate rocks. This means that basalt weathering acts as a major atmospheric CO2 sink. The present study investigated the lead isotopes in rock, soil and sediment for constraining the life cycle of a catchment, covering source rocks, erosion processes and products, and anthropogenic activities. For this, we investigated the Allanche river drainage basin in the Massif Central, the largest volcanic areas in France, that offers opportunities for selected geochemical studies since it drains a single type of virtually unpolluted volcanic rock, with agricultural activity increasing downstream. Soil and sediment are derived exclusively from basalt weathering, and their chemistry, coupled to isotope tracing, should shed light on the behavior of chemical species during weathering from parental bedrock. Bedrock samples of the basin, compared to regional bedrock of the volcanic province, resulted from a complex history and multiple mantle reservoir sources and mixing. Regarding soils and sediments, comparison of Pb and Zr normalized to mobile K shows a linear evolution of weathering processes, whereby lead enrichment from atmospheric deposition is the other major contributor. Lead-isotope ratios showed that most of the lead budget in sediment and soil results from bedrock weathering with an influence of past mining and mineral processing of ores in the Massif Central, and deposition of lead-rich particles from gasoline combustion, but no lead input from agricultural activity. A classic box model was used to investigate the dynamics of sediment transfer at the catchment scale, the lead behavior in the continuum bedrock-soil-sediment and the historical evolution of anthropogenic aerosol emissions.

  4. Unravelling the effects of melt depletion and secondary infiltration on mantle Re-Os isotopes beneath the French Massif Central

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Gannoun, A.; Burton, K. W.; Schiano, P.; Rogers, N. W.; Alard, O.

    2010-01-01

    Spinel lherzolite xenoliths from Mont Briançon, French Massif Central, retain evidence for multiple episodes of melt depletion and melt/fluid infiltration (metasomatism). Evidence for primary melt depletion is still preserved in the co-variation of bulk-rock major elements (MgO 38.7-46.1 wt.%; CaO 0.9-3.6 wt.%), and many samples yield unradiogenic bulk-rock Os isotope ratios ( 187Os/ 188Os = 0.11541-0.12626). However, many individual xenoliths contain interstitial glasses and melt inclusions that are not in equilibrium with the major primary minerals. Incompatible trace element mass balance calculations demonstrate that metasomatic components comprise a significant proportion of the bulk-rock budget for these elements in some rocks, ranging to as much as 25% of Nd and 40% of Sr Critically, for Re-Os geochronology, melt/fluid infiltration is accompanied by the mobilisation of sulfide. Consequently, bulk-rock isotope measurements, whether using lithophile (e.g. Rb-Sr, Sm-Nd) or siderophile (Re-Os) based isotope systems, may only yield a perturbed and/or homogenised average of these multiple events. Osmium mass balance calculations demonstrate that bulk-rock Os in peridotite is dominated by contributions from two populations of sulfide grain: (i) interstitial, metasomatic sulfide with low [Os] and radiogenic 187Os/ 188Os, and (ii) primary sulfides with high [Os] and unradiogenic 187Os/ 188Os, which have been preserved within host silicate grains and shielded from interaction with transient melts and fluid. The latter can account for >97% of bulk-rock Os and preserve geochronological information of the melt from which they originally precipitated as an immiscible liquid. The Re-depletion model ages of individual primary sulfide grains preserve evidence for melt depletion beneath the Massif Central from at least 1.8 Gyr ago despite the more recent metasomatic event(s).

  5. Effect of thermal maturation on the K-Ar, Rb-Sr and REE systematics of an organic-rich New Albany Shale as determined by hydrous pyrolysis

    USGS Publications Warehouse

    Clauer, Norbert; Chaudhuri, Sambhudas; Lewan, M.D.; Toulkeridis, T.

    2006-01-01

    Hydrous-pyrolysis experiments were conducted on an organic-rich Devonian-Mississippian shale, which was also leached by dilute HCl before and after pyrolysis, to identify and quantify the induced chemical and isotopic changes in the rock. The experiments significantly affect the organic-mineral organization, which plays an important role in natural interactions during diagenetic hydrocarbon maturation in source rocks. They produce 10.5% of volatiles and the amount of HCl leachables almost doubles from about 6% to 11%. The Rb-Sr and K-Ar data are significantly modified, but not just by removal of radiogenic 40Ar and 87Sr, as described in many studies of natural samples at similar thermal and hydrous conditions. The determining reactions relate to alteration of the organic matter marked by a significant change in the heavy REEs in the HCl leachate after pyrolysis, underlining the potential effects of acidic fluids in natural environments. Pyrolysis induces also release from organics of some Sr with a very low 87Sr/86Sr ratio, as well as part of U. Both seem to have been volatilised during the experiment, whereas other metals such as Pb, Th and part of U appear to have been transferred from soluble phases into stable (silicate?) components. Increase of the K2O and radiogenic 40Ar contents of the silicate minerals after pyrolysis is explained by removal of other elements that could only be volatilised, as the system remains strictly closed during the experiment. The observed increase in radiogenic 40Ar implies that it was not preferentially released as a volatile gas phase when escaping the altered mineral phases. It had to be re-incorporated into newly-formed soluble phases, which is opposite to the general knowledge about the behavior of Ar in supergene natural environments. Because of the strictly closed-system conditions, hydrous-pyrolysis experiments allow to better identify and even quantify the geochemical aspects of organic-inorganic interactions, such as elemental exchanges, transfers and volatilisation, in potential source-rock shales during natural diagenetic hydrocarbon maturation.

  6. Hydrothermal element fluxes from Copahue, Argentina: A "beehive" volcano in turmoil

    USGS Publications Warehouse

    Varekamp, J.C.; Ouimette, A.P.; Herman, S.W.; Bermudez, A.; Delpino, D.

    2001-01-01

    Copahue volcano erupted altered rock debris, siliceous dust, pyroclastic sulfur, and rare juvenile fragments between 1992 and 1995, and magmatic eruptions occurred in July-October 2000. Prior to 2000, the Copahue crater lake, acid hot springs, and rivers carried acid brines with compositions that reflected close to congruent rock dissolution. The ratio between rock-forming elements and chloride in the central zone of the volcano-hydrothermal system has diminished over the past few years, reflecting increased water/rock ratios as a result of progressive rock dissolution. Magmatic activity in 2000 provided fresh rocks for the acid fluids, resulting in higher ratios between rock-forming elements and chloride in the fluids and enhanced Mg fluxes. The higher Mg fluxes started several weeks prior to the eruption. Model data on the crater lake and river element flux determinations indicate that Copahue volcano was hollowed out at a rate of about 20 000-25 000 m3/yr, but that void space was filled with about equal amounts of silica and liquid elemental sulfur. The extensive rock dissolution has weakened the internal volcanic structure, making flank collapse a volcanic hazard at Copahue.

  7. Fatty Acid Detection in Mars-Analogous Rock Samples with the TMAH Wet Chemistry Experiment on the Sample Analysis at Mars (SAM) Instrument

    NASA Astrophysics Data System (ADS)

    Williams, A. J.; Eigenbrode, J. L.; Wilhelm, M. B.; Johnson, S. S.; Craft, K.; O'Reilly, S.; Lewis, J. M. T.; Williams, R.; Summons, R. E.; Benison, K. C.; Mahaffy, P. R.

    2017-12-01

    The Curiosity rover is exploring sedimentary rock sequences in Gale Crater for evidence of habitability and searching for organic compounds using the Sample Analysis at Mars (SAM) instrument suite. SAM includes a gas chromatograph mass spectrometer (GC-MS) and pyrolysis ovens. SAM has the ability to perform wet chemistry experiments, one of which uses tetramethylammonium hydroxide (TMAH) thermochemolysis to liberate bound lipids, making them sufficiently volatile for detection by GC-MS. To determine the effectiveness of the SAM-like TMAH experiment on fatty acid methyl ester (FAME) biomarker identification, rock and sediment samples were collected from a variety of Mars analog environments including iron oxides from a modern mineral precipitate and older surface gossan at Iron Mountain, CA, as well as modern acid salt and neutral lake sediments with mixed iron oxides and clays from Western Australia; siliceous sinter from recently inactive and modern near-vent Icelandic hot springs deposits; modern carbonate ooids from The Bahamas, and organic-rich shale from Germany. Samples underwent pyrolysis with TMAH. Fatty acids were analyzed by pyro-GC-MS using a SAM-like heating ramp (35°C/min) as well as a 500°C flash on a Frontier pyrolyzer and Agilent GC-MS instrument. Results reveal that FAMEs were detectable with the TMAH experiment in nearly all samples. Low molecular weight (MW) C6:0-C10:0 FAMEs were present in all samples, medium MW C11:0-C18:2 FAMEs were present in select samples, and high MW (HMW) C20:0-C30:0 FAMEs were present in the shale sample. Many of these samples exhibited an even-over-odd carbon number preference, indicating biological production. These experiments demonstrate that TMAH thermochemolysis with SAM-like pyro-GC-MS is effective in fatty acid analysis from natural Mars-analog samples that vary in mineralogy, age, and microbial community input. HMW FAMEs are not detected in iron-dominated samples, and may not be detectable at low concentrations. Although mineralogies such as sinter, carbonates, and shales are not likely in Gale Crater, iron oxides mixed with clays are known to be present in the path of the Curiosity rover. Environments with these mineralogies may provide the optimal opportunity to detect fatty acids, if present in Gale Crater.

  8. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Ruiz, Joaquin

    1992-04-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the Taylor Creek Rhyolite is higher than that of their host whole rocks. Covariation of this isotope ratio with sanidine abundance and size indicates positive correlations for all three features with decreasing distance to the roof of the magma reservoir. The sanidine probably is more radiogenic than host whole rock because growing phenocrysts partly incorporated Sr from the first partial melt of roof rocks, which contained the highly radiogenic Sr of Precambrian biotite ± hornblende, whereas diffusion was too slow for sanidine to incorporate much of the Sr from subsequently produced less radiogenic partial melt of roof rocks, before eruption quenched the magma system. Disequilibrium between feldspar phenocrysts and host groundmass is fairly common for ignimbrites, and a process of contamination similar to that for the Taylor Creek Rhyolite may help explain some of these situations.

  9. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the Taylor Creek Rhyolite is higher than that of their host whole rocks. Covariation of this isotope ratio with sanidine abundance and size indicates positive correlations for all three features with decreasing distance to the roof of the magma reservoir. The sanidine probably is more radiogenic than host whole rock because growing phenocrysts partly incorporated Sr from the first partial melt of roof rocks, which contained the highly radiogenic Sr of Precambrian biotite ?? hornblende, whereas diffusion was too slow for sanidine to incorporate much of the Sr from subsequently produced less radiogenic partial melt of roof rocks, before eruption quenched the magma system. Disequilibrium between feldspar phenocrysts and host groundmass is fairly common for ignimbrites, and a process of contamination similar to that for the Taylor Creek Rhyolite may help explain some of these situations. ?? 1992 Springer-Verlag.

  10. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    USGS Publications Warehouse

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and calc-alkaline lava flows overlying the CRBG across the northern and central parts of the LOEA. The Day 2 field route migrates to southern parts of the LOEA, where rocks of the CRBG are associated in space and time with lesser known and more complex silicic volcanic stratigraphy associated with middle Miocene, large-volume, bimodal basalt-rhyolite vent complexes. Key stops will provide a broad overview of the structure and stratigraphy of the middle Miocene Mahogany Mountain caldera and middle to late Miocene calc-alkaline lavas of the Owyhee basalt. Stops on Day 3 will progress westward from the eastern margin of the LOEA, examining a transition linking the Columbia River Basalt-Yellowstone province with a northwestward-younging magmatic trend of silicic volcanism that underlies the High Lava Plains of eastern Oregon. Initial field stops on Day 3 will examine key outcrops demonstrating the intercalated nature of middle Miocene tholeiitic CRBG flood basalts, prominent ash-flow tuffs, and “Snake River-type” large-volume rhyolite lava flows exposed along the Malheur River. Subsequent stops on Day 3 will focus upon the volcanic stratigraphy northeast of the town of Burns, which includes regional middle to late Miocene ash-flow tuffs, and lava flows assigned to the Strawberry Volcanics. The return route to Portland on Day 4 traverses across the western axis of the Blue Mountains, highlighting exposures of the widespread, middle Miocene Dinner Creek Tuff and aspects of Picture Gorge Basalt flows and northwest-trending feeder dikes situated in the central part of the CRBG province.

  11. TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Benzerara, Karim; Menguy, Nicolas; Guyot, François; Vanni, Christian; Gillet, Philippe

    2005-03-01

    The biogeochemical alteration of an Mg-Fe orthopyroxene, reacted for 70 yr under arid conditions in a desert environment, was studied by transmission electron microscopy. For this purpose, an electron transparent cross-section of the interface between a single microorganism, an orthopyroxene and nanometer-sized calcite crystals, was prepared with a focused ion beam system. X-ray energy dispersive spectrometry and electron energy loss spectroscopy allowed one to clearly distinguish the microorganism en route to fossilization from the nanometer-sized calcite crystals, showing the usefulness of such a protocol for identifying unambiguously traces of life in rocks. A 100-nm-deep depression was observed in the orthopyroxene close to the microorganism, suggesting an enhanced dissolution mediated by the microbe. However, an Al- and Si-rich amorphous altered layer restricted to the area just below the microorganism could be associated with decreased silicate dissolution rates at this location, suggesting complex effects of the microorganism on the silicate dissolution process. The close association observed between silicate dissolution and carbonate formation at the micrometer scale suggests that Urey-type CO 2 sequestration reactions could be mediated by microorganisms under arid conditions.

  12. Calcio-carbonatite melts and metasomatism in the mantle beneath Mt. Vulture (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Rosatelli, Gianluigi; Wall, Frances; Stoppa, Francesco

    2007-12-01

    At Mt. Vulture volcano (Basilicata, Italy) calcite globules (5-150 μm) are hosted by silicate glass pools or veins cross-cutting amphibole-bearing, or more common spinel-bearing mantle xenoliths and xenocrysts. The carbonate globules are rounded or elongated and are composed of a mosaic of 2-20 μm crystals, with varying optical orientation. These features are consistent with formation from a quenched calciocarbonatite melt. Where in contact with carbonate amphibole has reacted to form fassaitic pyroxene. Some of these globules contain liquid/gaseous CO 2 bubbles and sulphide inclusions, and are pierced by quench microphenocrysts of silicate phases. The carbonate composition varies from calcite to Mg-calcite (3.8-5.0 wt.% MgO) both within the carbonate globules and from globule to globule. Trace element contents of the carbonate, determined by LAICPMS, are similar to those of carbonatites worldwide including ΣREE up to 123 ppm. The Sr-Nd isotope ratios of the xenolith carbonate are similar to the extrusive carbonatite and silicate rocks of Mt. Vulture testifying to derivation from the same mantle source. Formation of immiscibile silicate-carbonatite liquids within mantle xenoliths occurred via disequilibrium immiscibility during their exhumation.

  13. Mid-to-Lower-level Plutonic Rocks From Crust of the Southern Mariana Forearc: Implications for Growth of Continental Crust

    NASA Astrophysics Data System (ADS)

    Fryer, P.; Reagan, M.

    2006-12-01

    Tonalitic plutonic rocks dredged from the southern Mariana forearc are similar in terms of major element composition to tonalitic plutonic rocks of the Tanzawa Mountains on the Izu Peninsula of Japan. The tonalites of the Tanzawa Mountains have been interpreted to represent mid-lower crustal plutonic rocks that make up the 6.0 to 6.3 km/s layer identified in seismic velocity profiles of the Izu arc at 32°N. The tonalities of the southern Mariana forearc may be analogous to the Tanzawa tonalities in terms of lithology and presumably seismic velocities, but have distinctive trace element and isotopic compositions. The exposure of these rocks on the southern Mariana forearc in a location where it is narrower by up to 80 km than elsewhere along its strike indicates a truncation of the arc lithosphere by tectonic erosion in the southern Mariana forearc. If tectonic processes in the forearc have exposed silicic plutonic rock of the arc lithosphere within 150 km of the volcanic front, then the structure of the Mariana arc and forearc is likely similar to that of the Izu arc, where seismic velocity structure suggests 25% of the arc/forearc lithosphere is comprised of a mid-crustal level tonalitic plutonic complex. The trace element and Sr isotopic compositions of the tonalities dredged from the Mariana forearc links them to a suprasubduction-zone environment. The Pb isotopic compositions, however, are consistent with crystallization ages that may be as old as Cretaceous. The compositions of these tonalites differ markedly from those of silicic volcanic rocks that have erupted throughout the history of the IBM arc and suggest that they represent a minor component of the arc. Nevertheless, the presence of Cretaceous tonalites in the Mariana forearc suggests that a portion of its crust may predate subduction initiation. The presence of silicic mid-to-lower crustal level plutonics beneath the Mariana arc as well as Eocene rhyolites on Saipan indicate that average major element composition of the arc crust may be comparable with average continental crust. This is consistent with estimates of the average composition of the Izu arc crust from seismic velocity studies and petrologic studies of exposures of the Izu arc crust in southern Japan's Izu peninsula. These data imply that the island arc that developed along the entire margin of the Philippine Sea plate may have had a generally similar structure and composition. Most components of the IBM arc crust, however, have relatively flat rare-earth patterns and low rare-earth concentrations compared with average continental crust. The averaged composition of the IBM crust, as a whole, differs markedly from that suggested by studies of the velocity structure of the central Aleutian arc. If the continental crust was generated in oceanic island arc settings throughout the history of the Earth, then its sources were significantly more enriched in LREE than the sources for the Cenozoic IBM arcs.

  14. Petrology of gabbroic rocks from the Mid-Cayman rise spreading center

    NASA Technical Reports Server (NTRS)

    Elthon, Don

    1987-01-01

    Mineral analyses of oxide and silicate phases from a suite (collected with the DSRV Alvin in January 1976 and July 1977) of 48 gabbroic rocks collected from the vicinity of the Mid-Cayman Rise spreading center are reported. Mineral compositions of these anorthosites, leuco-troctolite, leuco-olivine gabbros, olivine gabbros, leuco-gabbros, and gabbros indicate the cumulate rocks have been produced by the crystal fractionation of basaltic liquids. Certain features of these rocks are inconsistent with the occurrence of this fractionation at low pressures (1 atm to 2 kbar). Although the experimental data are not available to conclusively demonstrate that the effects seen were produced at moderate pressures (5-10 kbar), the effects are similar to those predicted thermodynamically and to those observed in limited experimental studies within this pressure range. It is therefore suggested that the most likely scenario for the production of these gabbroic rocks is the moderate-pressure crystallization of basaltic magmas within deep-seated magma chambers underneath this slow-spreading center.

  15. Assessing and calibrating the ATR-FTIR approach as a carbonate rock characterization tool

    NASA Astrophysics Data System (ADS)

    Henry, Delano G.; Watson, Jonathan S.; John, Cédric M.

    2017-01-01

    ATR-FTIR (attenuated total reflectance Fourier transform infrared) spectroscopy can be used as a rapid and economical tool for qualitative identification of carbonates, calcium sulphates, oxides and silicates, as well as quantitatively estimating the concentration of minerals. Over 200 powdered samples with known concentrations of two, three, four and five phase mixtures were made, then a suite of calibration curves were derived that can be used to quantify the minerals. The calibration curves in this study have an R2 that range from 0.93-0.99, a RMSE (root mean square error) of 1-5 wt.% and a maximum error of 3-10 wt.%. The calibration curves were used on 35 geological samples that have previously been studied using XRD (X-ray diffraction). The identification of the minerals using ATR-FTIR is comparable with XRD and the quantitative results have a RMSD (root mean square deviation) of 14% and 12% for calcite and dolomite respectively when compared to XRD results. ATR-FTIR is a rapid technique (identification and quantification takes < 5 min) that involves virtually no cost if the machine is available. It is a common tool in most analytical laboratories, but it also has the potential to be deployed on a rig for real-time data acquisition of the mineralogy of cores and rock chips at the surface as there is no need for special sample preparation, rapid data collection and easy analysis.

  16. Geochemistry of the Birch Creek Drainage Basin, Idaho

    USGS Publications Warehouse

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.

    2003-01-01

    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide models. In the southern part, ground water enters the ESRPA. In this area, the sampling sites were wells with depths and water levels much deeper than those in the northern and central parts of the valley. The calcium and carbon water chemistry in this area was characterized by a simple calcite-carbon dioxide model, but complex calcite-silicate models more accurately accounted for mass transfer in these areas. Throughout the geochemical system, calcite precipitated if it was an active phase in the models. Carbon dioxide either precipitated (outgassed) or dissolved depending on the partial pressure of carbon dioxide in water from the modeled sites. Dolomite was an active phase only in models from the central part of the system. Generally the entire geochemical system could be modeled with either evaporative models, carbonate models, or carbonate-silicate models. In both of the latter types of models, a significant amount of calcite precipitated relative to the mass transfer to and from the other active phases. The amount of calcite precipitated in the more complex models was consistent with the amount of calcite precipitated in the simpler models. This consistency suggests that, although the simpler models can predict calcium and carbon concentrations in Birch Creek Valley ground and surface water, silicate-mineral-based models are required to account for the other constituents. The amount of mass transfer to and from the silicate mineral phases was generally small compared with that in the carbonate phases. It appears that the water chemistry of well USGS 126B represents the chemistry of water recharging the ESRPA by means of underflow from the Birch Creek Valley.

  17. 76 FR 14055 - Notice of Inventory Completion: California State Department of Transportation (Caltrans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... silicate core, 2 lots of debitage, 490 faunal bones, 2 flake tools, 61 tule mat impressions, 20 modified bones, 1 modified shell, 2 modified stones, 20 pieces of ochre, 14 ornaments, 3 pestles, 20 projectile..., 5 faunal bones, 1 flake tool, 1 modified bone, 1 quartz rock, 1 steatite ring, and 5 bone whistles...

  18. Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana

    USGS Publications Warehouse

    Leonard, Robert B.; Janzer, Victor J.

    1978-01-01

    Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross alpha activity and the concentration of adium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60°C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background activity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta activity. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from siliceous veins by ascending thermal waters and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

  19. Anisotropy of magnetic susceptibility of silicic rocks from quarries in the vicinity of São Marcos, Rio Grande do Sul, South Brazil: Implications for emplacement mechanisms

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, Edgardo; Raposo, M. Irene B.

    2018-04-01

    The Paraná-Etendeka Large Igneous Province includes acid volcanic rocks that can be found throughout its extension. Several aspects concerning those rocks remain controversial, including their mechanism of emplacement and location of their eruptive sources. Opening of several quarries of dimension stone near the city of Sao Marcos, Rio Grande do Sul, Brazil, offers a unique opportunity to study in detail the acid products. Here, we present the results of a study of the anisotropy of magnetic susceptibility (AMS) completed in some rocks that had been interpreted as the roots of volcanic conduits. Our results, and reexamination of the textural features of the rocks, lead to a reinterpretation that suggests that these rocks were emplaced subaerially, and involved assimilation and remelting of clastic components of previous products. Due to the inferred conditions of emplacement, it is unlikely that the eruptive vents are located far from the area of study, therefore ruling out the long-travelled nature of these products.

  20. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    NASA Astrophysics Data System (ADS)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  1. Gels composed of sodium-aluminum silicate, Lake Magadi, Kenya

    USGS Publications Warehouse

    Eugster, H.P.; Jones, B.F.

    1968-01-01

    Sodium-aluminum silicate gels are found in surftcial deposits as thick as 5 centimeters in the Magadi area of Kenya. Chemical data indicate they are formed by the interaction of hot alkaline springwaters (67?? to 82??C; pH, about 9) with alkali trachyte flows and their detritus, rather than by direct precipitation. In the process, Na2O is added from and silica is released to the saline waters of the springs. Algal mats protect the gels from erosion and act as thermal insulators. The gels are probably yearly accumulates that are washed into the lakes during floods. Crystallization of these gels in the laboratory yields analcite; this fact suggests that some analcite beds in lacustrine deposits may have formed from gels. Textural evidence indicates that cherts of rocks of the Pleistocene chert series in the Magadi area may have formed from soft sodium silicate gels. Similar gels may have acted as substrates for the accumulation and preservation of prebiological organic matter during the Precambrian.

  2. High-Pressure γ-CaMgSi2O6: Does Penta-Coordinated Silicon Exist in the Earth's Mantle?

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Kiefer, Boris; Bina, Craig R.; Zhang, Dongzhou; Dera, Przemeslaw K.

    2017-11-01

    In situ X-ray diffraction experiments with natural Fe- and Al- bearing diopside single crystals and density functional theory (DFT) calculations on diopside end-member composition indicate the existence of a new high-pressure γ-diopside polymorph with rare penta-coordinated silicon. On compression α-diopside transforms to the γ-phase at ˜50 GPa, which in turn, on decompression is observed to convert to the known β-phase below 47 GPa. The new γ-diopside polymorph constitutes another recent example of penta-coordinated silicon (VSi) in overcompressed metastable crystalline silicates, suggesting that VSi may exist in the transition zone and the uppermost lower mantle in appreciable quantities, not only in silicate glass and melts but also in crystalline phases contained in the coldest parts of subducted stagnant slabs. VSi may have significant influences on buoyancy, wave velocity anomalies, deformation mechanisms, chemical reactivity of silicate rocks, and seismicity within the slab.

  3. Petrologic considerations for hot dry rock geothermal site selection in the Clear Lake Region, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimac, J.; Goff, F.; Hearn, B.C. Jr.

    1992-01-01

    The Clear Lake area is well known for anomalous heat flow, thermal springs, hydrothermal mineral deposits, and Quaternary volcanism. These factors, along with the apparent lack of a large reservoir of geothermal fluid north of Collayomi fault make the Clear Lake area an attractive target for hot dry rock (HDR) geothermal development. Petrologic considerations provide some constraints on site selection for HDR development. Spatial and temporal trends in volcanism in the Coast Ranges indicate that magmatism has migrated to the north with time, paralleling passage of the Mendocino triple junction and propagation of the San Andreas fault. Volcanism in themore » region may have resulted from upwelling of hot asthenosphere along the southern margin of the subducted segment of the Gorda plate. Spatial and temporal trends of volcanism within the Clear Lake volcanic field are similar to larger-scale trends of Neogene volcanism in the Cost Ranges. Volcanism (especially for silicic compositions) shows a general migration to the north over the {approximately}2 Ma history of the field, with the youngest two silicic centers located at Mt. Konocti and Borax Lake. The Mt. Konocti system (active from {approximately} 0.6 to 0.3 Ma) was large and long-lived, whereas the Borax Lake system is much smaller but younger (0.09 Ma). Remnants of silicic magma bodies under Mt. Konocti may be in the latter stages of cooling, whereas a magma body centered under Borax Lake may be in the early stages of development. The existence of an upper crustal silicic magma body of under Borax Lake has yet to be demonstrated by passive geophysics, however, subsurface temperatures in the area as high (> 200{degrees}C at 2000 m) as those beneath the Mt. Konocti area. Based on petrologic considerations alone, the Mt. Konocti-Borax Lake area appears to be the most logical choice for HDR geothermal development in the region.« less

  4. Multi-isotope tracing of CO2 leakage and water-rock interaction in a natural CCS analogue.

    NASA Astrophysics Data System (ADS)

    Kloppmann, Wolfram; Gemeni, Vasiliki; Lions, Julie; Koukouzas, Nikolaos; Humez, Pauline; Vasilatos, Charalampos; Millot, Romain; Pauwels, Hélène

    2015-04-01

    Natural analogues of CO2 accumulation and, potentially, leakage, provide a highly valuable opportunity to study (1) geochemical processes within a CO2-reservoir and the overlying aquifers or aquicludes, i.e. gas-water-rock interactions, (2) geology and tightness of reservoirs over geological timescales, (3) potential or real leakage pathways, (3) impact of leakage on shallow groundwater resources quality, and (4) direct and indirect geochemical indicators of gas leakage (Lions et al., 2014, Humez et al., 2014). The Florina Basin in NW Macedonia, Greece, contains a deep CO2-rich aquifer within a graben structure. The graben filling consists of highly heterogeneous Neogene clastic sediments constituted by components from the adjacent massifs including carbonates, schists, gneiss as well as some ultramafic volcanic rocks. Clay layers are observed that isolate hydraulically the deep, partly artesian aquifer. Organic matter, in form of lignite accumulations, is abundant in the Neogene series. The underlying bedrocks are metamorphic carbonates and silicate rocks. The origin of the CO2 accumulation is controversial (deep, partially mantle-derived D'Allessandro et al., 2008 or resulting from thermal decomposition of carbonates, Hatziyannis and Arvanitis, 2011). Groundwaters have been sampled from springs and borewells over 3 years at different depths. First results on major, minor and trace elements give evidence of water-rock interaction, mainly with carbonates but also with ultramafic components but do not indicate that CO2-seepage is the principal driver of those processes (Gemeni et al., submitted). Here we present isotope data on a selection of groundwaters (δ2H , δ18O, δ13CTDIC, 87Sr/86Sr, δ11B, δ7Li). Stable isotopes of water indicate paleo-recharge for some of the groundwaters, limited exchange with gaseous CO2 and, in one case, possibly thermal exchange processes with silicates. Sr isotope ratios vary between marine ratios and radiogenic values indicating interaction with carbonates and silicates. Both δ11B and δ7Li show a very large range of variation and fairly good correlation, between -29.7 o and +24o vs. NBS951 for boron and -11o and +20.4o vs. L-SVEC for lithium. The negative δ11B and δ7Li values are among the lowest reported in literature for groundwaters, comparable only to values observed for boron in case of geothermal fluids interaction with clay minerals (Pennisi et al., 2009) or in some amphiboles (e.g. Gillis et al., 2003) or lithium in ultramafic rocks (Nishio et al., 2004). Those variations reflect water-rock interaction with the silicate fraction of the highly heterogeneous graben filling but no clear indication of enhanced reactions due to CO2 intrusion has been found. The δ13C values of TDIC are also strongly variable (-10.5 to +15 o vs. PDB), reflecting biogenic inputs (e.g. from lignite layers), dissolution of carbonates and, potentially, methanogenesis through CO2 reduction. D' Alessandro W., Bellomo S., Brusca L., Karakazanis S., Kyriakopoulos K., and Liotta M. (2011) The impact on water quality of the high carbon dioxide contents of the groundwater in the area of Florina (N. Greece), Advances in the Research of Aquatic Environment. Springer. Gillis K. M., Coogan L. A., and Chaussidon M. (2003) Volatile element (B, Cl, F) behaviour in the roof of an axial magma chamber from the East Pacific Rise. Earth and Planetary Science Letters 213, 447-462. Hatziyannis G. and Arvanitits A. (2011) Natural analogues of CO2 leakage in Florina area, N. Greece., 2nd CGS Europe Knowledge Sharing Workshop Natural Analogues, Maria Laach, Germany, October 17-19, 2011, pp. Humez P., Negrel P., Lagneau V., Lions J., Kloppmann W., Gal F., Millot R., Guerrot C., Flehoc C., Widory D., and Girard J. F. (2014) CO2-water-mineral reactions during CO2 leakage: Geochemical and isotopic monitoring of a CO2 injection field test. Chem. Geol. 368, 11-30. Lions J., Humez P., Pauwels H., Kloppmann W., and Czernichowski-Lauriol I. (2014) Tracking leakage from a natural CO2 reservoir (Montmiral, France) through the chemistry and isotope signatures of shallow groundwater. Greenhouse Gases-Science and Technology 4, 225-243. Pennisi M., Bianchini G., Kloppmann W., and Muti A. (2009) Chemical and isotopic (B, Sr) composition of alluvial sediments as archive of a past hydrothermal outflow. Chem. Geol. 266, 123-134. Gemeni V., Vasilatos C., Koukouzas N., Kanellopoulos C. (submitted) Factors controlling the chemistry of the groundwater in a CO2 natural field: The case of Florina Basin, W. Macedonia, Greece. Submitted to Appl. Geochem.

  5. Spectroscopic geochemical study of vanadiferous marine sediments of the Gibellini claims, southern Fish Creek Range, Eureka County, Nevada

    USGS Publications Warehouse

    Böhlke, J.K.; Radtke, A.S.; Heropoulos, Chris; Lamothe, P.J.

    1981-01-01

    Samples of cuttings from three drill holes in the Gibellini claims were analyzed by emission spectroscopic techniques for a large suite of major and trace elements. Unoxidized siliceous "black shale" from drill hole NGA 7 is strongly enriched in Cd, Mo, Sb, Se, V, and Zn, and also contains relatively high concentrations of As, Ba, Cu, Ni, and Tl compared with nonmetalliferous shales. Analyses of 103 samples plotted against depth in drill holes NGA, NG31, and NGA7, and selected XRD data, show the following: 1. Groups of elements with distinct distribution patterns define most of major mineralogic components of the rocks. The "normal shale" component, which includes several detrital and authigenic phases, is indicated by covariations among Ti, Al, Fe, Na, Mg, K, B, Be, Co, Cr, Ga, La, Sc, Sr, and Zr. The shale component is diluted by varying amounts of the following minerals (and associated elements): silica (Si); dolomite (Mg, Ca, Mn, Sr); apatite (Ca, Be, Cr, La, Sr, Y); barite (Ba, Sr); sphalerite (Zn, Cd, Fe?); smithsonite (Cd, Co, Mn, Ni, Zn); bianchite (Cd, Ni, Zn) ; and bokite (V). Pyrite, gypsum, and jarosite were also identified.2. The highly siliceous kerogenous metalliferous Gibellini facies is underlain by argillaceous and (or) dolomitic rocks. The transition zone deduced from the chemical data is not well defined in all instances, but probably represents the bottom of the black shale deposit. 3. Oxidation has reached to variable depths up to at least 150 ft, and has caused profound changes in the distributions of the enriched metals. Molybdenum, Se, and V have been partially removed from the upper parts of the sections and are concentrated near or slightly above the base of the Gibellini facies. Cadmium, Ni, and Zn have been strongly leached and now occur at or below the base of the Gibellini facies. The variable depth of oxidation, the redistribution and separation of the metals, and the complex mineralogy of the deposit may make development of the claim complicated.

  6. Silica-undersaturated reaction zones at a crust-mantle interface in the Highland Complex, Sri Lanka: Mass transfer and melt infiltration during high-temperature metasomatism

    NASA Astrophysics Data System (ADS)

    Fernando, G. W. A. R.; Dharmapriya, P. L.; Baumgartner, Lukas P.

    2017-07-01

    Sri Lanka is a crucial Gondwana fragment mostly composed of granulitic rocks in the Highland Complex surrounded by rocks with granulite to amphibolite grade in the Vijayan and Wanni Complex that were structurally juxtaposed during Pan-African orogeny. Fluids associated with granulite-facies metamorphism are thought to have controlled various lower crustal processes such as dehydration/hydration reactions, partial melting, and high-temperature metasomatism. Chemical disequilibrium in the hybrid contact zone between a near peak post-tectonic ultramafic enclave and siliceous granulitic gneiss at Rupaha within the Highland Complex produced metasomatic reaction zones under the presence of melt. Different reaction zones observed in the contact zone show the mineral assemblages phlogopite + spinel + sapphirine (zone A), spinel + sapphirine + corundum (zone B), corundum ( 30%) + biotite + plagioclase zone (zone C) and plagioclase + biotite + corundum ( 5%) zone (zone D). Chemical potential diagrams and mass balance reveal that the addition of Mg from ultramafic rocks and removal of Si from siliceous granulitic gneiss gave rise to residual enrichment of Al in the metasomatized mineral assemblages. We propose that contact metasomatism between the two units, promoted by melt influx, caused steady state diffusional transport across the profile. Corundum growth was promoted by the strong residual Al enrichment and Si depletion in reaction zone whereas sapphirine may have been formed under high Mg activity near the ultramafic rocks. Modelling also indicated that metasomatic alteration occurred at ca. 850 °C at 9 kbar, which is consistent with post-peak metamorphic conditions reached during the initial stage of exhumation in the lower crust and with temperature calculations based on conventional geothermometry.

  7. Field and petrological study of metasomatism and high-pressure carbonation from lawsonite eclogite-facies terrains, Alpine Corsica

    NASA Astrophysics Data System (ADS)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Ague, Jay J.

    2018-04-01

    This study presents new field and petrological data on carbonated metasomatic rocks from the lawsonite-eclogite units of Alpine Corsica. These rocks form along major, slab-scale lithological boundaries of the subducted Alpine Tethys plate. Our results indicate that a large variety of rocks ranging from metamafic/ultramafic to metafelsic can react with carbon-bearing fluids, leading to carbon sequestration at high-pressure conditions. The process of carbonation includes both replacement of silicates by high-pressure carbonate, and carbonate veining. The field, microstructural and mineralogical data strongly suggest that the metasomatism was mediated by the infiltration of external fluids of mixed origin, including both mafic/ultramafic and metasedimentary sources. Our results support the following three-step evolution: (i) Release of aqueous fluids by lawsonite and/or antigorite breakdown at depth; (ii) Fluid channelization along the base of the metasedimentary pile of the subducted lithospheric plate and related reactive fluid flow leading to carbonate mineral dissolution; (iii) Further interactions of the resulting carbon-bearing fluids with slab-forming rocks at depths of ca. 70 km and carbonation of pre-existing silicate-rich lithologies. This study highlights the importance of carbonate-bearing fluids evolving along down-T, down-P paths, such as along slab-parallel lithological boundaries, for the sequestration of carbon in subduction zones, and suggests that similar processes may also operate in collisional settings. Fig. S2: Petrogenetic grid in the CaFMASH+CO2 system for the antigorite and clinopyroxene carbonation reactions, together with grossular forming reaction during decarbonation. Reactions are written with the high T assemblage to the right of the = sign.

  8. Electrolysis of simulated lunar melts

    NASA Technical Reports Server (NTRS)

    Lewis, R. H.; Lindstrom, D. J.; Haskin, L. A.

    1985-01-01

    Electrolysis of molten lunar soil or rock is examined as an attractive means of wresting useful raw materials from lunar rocks. It requires only hat to melt the soil or rock and electricity to electrolyze it, and both can be developed from solar power. The conductivities of the simple silicate diopside, Mg CaSi2O6 were measured. Iron oxide was added to determine the effect on conductivity. The iron brought about substantial electronic conduction. The conductivities of simulated lunar lavas were measured. The simulated basalt had an AC conductivity nearly a fctor of two higher than that of diopside, reflecting the basalt's slightly higher total concentration of the 2+ ions Ca, Mg, and Fe that are the dominant charge carriers. Electrolysis was shown to be about 30% efficient for the basalt composition.

  9. Feasibility of using S-191 infrared spectra for geological studies from space

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.

    1976-01-01

    Use of the S-191 spectrometer system aboard the SKYLAB(SL3) mission shows that geologically meaningful spectra can be extracted from the data by which terrain target can be differentiated. The Si-O bond in all silicates (which form most surface rocks) produced an emission minimum which is characteristic of a mineral, or a set of minerals, in a rock. The underflight RB57 mission was far more successful, primarily because of its much slower velocity allowing a higher signal/noise, and hence better spectral resolution for any given area terrain. With the RB57 spectra, areas can be differentiated and significant differences in rock targets demonstrated. The geological provenance of some alluvial outwash in the nearby mountains over which the aircraft also flew its flight strip can be indicated.

  10. Jing and King Receive Mineral and Rock Physics Graduate Research Awards

    NASA Astrophysics Data System (ADS)

    Anonymous

    2012-02-01

    Zhicheng Jing and Daniel King have been awarded the 2011 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties. Jing's thesis is entitled "Equation of state of silicate liquids." King's thesis is entitled "Stress-driven melt segregation and reactive melt infiltration in partially molten rocks deformed in torsion with applications to melt extraction from Earth's mantle." They both were formally presented with the award at the 2011 AGU Fall Meeting, held 5-9 December in San Francisco, Calif.

  11. Jing and King Receive Mineral and Rock Physics Graduate Research Awards

    NASA Astrophysics Data System (ADS)

    2012-02-01

    Zhicheng Jing and Daniel King have been awarded the 2011 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties. Jing's thesis is entitled “Equation of state of silicate liquids.” King's thesis is entitled “Stress-driven melt segregation and reactive melt infiltration in partially molten rocks deformed in torsion with applications to melt extraction from Earth's mantle.” They both were formally presented with the award at the 2011 AGU Fall Meeting, held 5-9 December in San Francisco, Calif.

  12. Mount St. Augustine volcano fumarole wall rock alteration: Mineralogy, zoning, composition and numerical models of its formation process

    USGS Publications Warehouse

    Getahun, A.; Reed, M.H.; Symonds, R.

    1996-01-01

    Intensely altered wall rock was collected from high-temperature (640??C) and low-temperature (375??C) vents at Augustine volcano in July 1989. The high-temperature altered rock exhibits distinct mineral zoning differentiated by color bands. In order of decreasing temperature, the color bands and their mineral assemblages are: (a) white to grey (tridymite-anhydrite); (b) pink to red (tridymite-hematite-Fe hydroxide-molysite (FeCl3) with minor amounts of anhydrite and halite); and (c) dark green to green (anhydrite-halite-sylvite-tridymite with minor amounts of molysite, soda and potash alum, and other sodium and potassium sulfates). The alteration products around the low-temperature vents are dominantly cristobalite and amorphous silica with minor potash and soda alum, aphthitalite, alunogen and anhydrite. Compared to fresh 1986 Augustine lava, the altered rocks exhibit enrichments in silica, base metals, halogens and sulfur and show very strong depletions in Al in all alteration zones and in iron, alkali and alkaline earth elements in some of the alteration zones. To help understand the origins of the mineral assemblages in altered Augustine rocks, we applied the thermochemical modeling program, GASWORKS, in calculations of: (a) reaction of the 1987 and 1989 gases with wall rock at 640 and 375??C; (b) cooling of the 1987 gas from 870 to 100??C with and without mineral fractionation; (c) cooling of the 1989 gas from 757 to 100??C with and without mineral fractionation; and (d) mixing of the 1987 and 1989 gases with air. The 640??C gas-rock reaction produces an assemblage consisting of silicates (tridymite, albite, diopside, sanidine and andalusite), oxides (magnetite and hercynite) and sulfides (bornite, chalcocite, molybdenite and sphalerite). The 375??C gas-rock reaction produces dominantly silicates (quartz, albite, andalusite, microcline, cordierite, anorthite and tremolite) and subordinate amounts of sulfides (pyrite, chalcocite and wurtzite), oxides (magnetite), sulfates (anhydrite) and halides (halite). The cooling calculations produce: (a) anhydrite, halite, sylvite; (b) Cu, Mo, Fe and Zn sulfides; (c) Mg fluoride at high temperature (> 370??C); (d) chlorides, fluorides and sulfates of Mn, Fe, Zn, Cu and Al at intermediate temperature (170-370??C); and (e) hydrated sulfates, liquid sulfur, crystalline sulfur, hydrated sulfuric acid and water at low temperature ( 0.41 (> 628??C). This is followed by precipitation of sulfates of Fe, Cu, Pb, Zn and Al at lg/a ratios between 0.41 and -0.4 (628-178??C). At a lg/r ratio of < - 0.4 (178??C), anhydrous sulfates are replaced by their hydrated forms and hygroscopic sulfuric acid forms. At these low g/a ratios, hydrated sulfuric acid becomes the dominant phase in the system. Comparison of the thermochemical modeling results with the natural samples suggests that the alteration assemblages include: (1) minerals that precipitate from direct cooling of the volcanic gas; (2) phases that form by volcanic gases mixing with air; and (3) phases that form by volcanic gas-air-rock reaction. A complex interplay of the three processes produces the observed mineral zoning. Another implication of the numerical simulation results is that most of the observed incrustation and sublimate minerals apparently formed below 700??C.

  13. Multiple techniques for mineral identification of terrestrial evaporites relevant to Mars exploration

    NASA Astrophysics Data System (ADS)

    Stivaletta, N.; Dellisanti, F.; D'Elia, M.; Fonti, S.; Mancarella, F.

    2013-05-01

    Sulfates, commonly found in evaporite deposits, were observed on Mars surface during orbital remote sensing and surface exploration. In terrestrial environments, evaporite precipitation creates excellent microniches for microbial colonization, especially in desert areas. Deposits comprised of gypsum, calcite, quartz and silicate deposits (phyllosilicates, feldspars) from Sahara Desert in southern Tunisia contain endolithic colonies just below the rock surface. Previous optical observations verified the presence of microbial communities and, as described in this paper, spectral visible analyses have led to identification of chlorophylls belonging to photosynthetic bacteria. Spectral analyses in the infrared region have clearly detected the presence of gypsum and phyllosilicates (mainly illite and/or smectite), as well as traces of calcite, but not quartz. X-ray diffraction (XRD) analysis has identified the dominant presence of gypsum as well as that of other secondary minerals such as quartz, feldspars and Mg-Al-rich phyllosilicates, such as chlorite, illite and smectite. The occurrence of a small quantity of calcite in all the samples was also highlighted by the loss of CO2 by thermal analysis (TG-DTA). A normative calculation using XRD, thermal data and X-ray fluorescence (XRF) analysis has permitted to obtain the mineralogical concentration of the minerals occurring in the samples. The combination of multiple techniques provides information about the mineralogy of rocks and hence indication of environments suitable for supporting microbial life on Mars surface.

  14. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.

    PubMed

    Santos, A J G; Mazzilli, B P; Fávaro, D I T; Silva, P S C

    2006-01-01

    Phosphogypsum is a waste produced by the phosphate fertilizer industry. Although phosphogypsum is mainly calcium sulphate dihydrate, it contains elevated levels of impurities, which originate from the source phosphate rock used in the phosphoric acid production. Among these impurities, radionuclides from 238U and 232Th decay series are of most concern due to their radiotoxicity. Other elements, such as rare earth elements (REE) and Ba are also enriched in the phosphogypsum. The bioavailability of radionuclides (226Ra, 210Pb and 232Th), rare earth elements and Ba to the surrounding aquatic system was evaluated by the application of sequential leaching of the phosphogypsum samples from the Brazilian phosphoric acid producers. The sequential extraction results show that most of the radium and lead are located in the "iron oxide" (non-CaSO4) fraction, and that only 13-18% of these radionuclides are distributed in the most labile fraction. Th, REE and Ba were found predominantly in the residual phase, which corresponds to a small fraction of the phosphate rock or monazite that did not react and to insoluble compounds such as sulphates, phosphates and silicates. It can be concluded that although all these elements are enriched in the phosphogypsum samples they are not associated with CaSO4 itself and therefore do not represent a threat to the surrounding aquatic environment.

  15. Chemical Sample Processing for Combined Selenium Isotope and Selenium-Tellurium Elemental Investigation of the Earth's Igneous Reservoirs

    NASA Astrophysics Data System (ADS)

    Yierpan, Aierken; König, Stephan; Labidi, Jabrane; Kurzawa, Timon; Babechuk, Michael G.; Schoenberg, Ronny

    2018-02-01

    The redox-sensitive, chalcophile, and volatile Se stable isotope system offers new perspectives to investigate the origin and evolution of terrestrial volatiles and the roles of magmatic and recycling processes in the development of the redox contrast between Earth's reservoirs. Selenium isotope systematics become more robust in a well-constrained petrogenetic context as can be inferred from Se-Te elemental signatures of sulfides and igneous rocks. In this study, we present a high-yield chemical sample processing method that allows the determination of Se-Te concentrations and Se isotope composition from the same sample digest of silicate rocks by hydride generation isotope dilution (ID) quadrupole inductively coupled plasma mass spectrometry (ICP-MS) and double spike (DS) multicollector (MC)-ICP-MS, respectively. Our procedure yields ˜80% Se-Te recoveries with quantitative separation of relevant interfering elements such as Ge and HG-buffering metals. Replicate analyses of selected international reference materials yield uncertainties better than 0.11‰ (2 s.d.) on δ82/76Se and 3% (r.s.d.) on Se concentration for DS MC-ICP-MS determinations for as low as ˜10 ng sample Se. The precision of Se-Te concentration measurements by ID ICP-MS is better than 3% and 5% (r.s.d.) for total amounts of ˜0.5-1 ng Se and ˜0.2-0.5 ng Te, respectively. The basaltic reference materials have variable Se-Te contents, but their δ82/76Se values are rather uniform (on average 0.23 ± 0.14‰; 2 s.d.) and different from the chondritic value. This altogether provides the methodology and potential to extend the limited data set of coupled Se isotope and Se-Te elemental systematics of samples relevant to study the terrestrial igneous inventory.

  16. Simplified models of rates of CO2 mineralization in Geologic Carbon Storage

    NASA Astrophysics Data System (ADS)

    DePaolo, D. J.; Zhang, S.

    2017-12-01

    Geologic carbon storage (GCS) reverses the flow of carbon to the atmosphere, returning the carbon to long-term geologic storage. Models suggest that most of the injected CO2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO3. The transformation of CO2 to carbonate minerals requires supply of divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are difficult to predict. We show that the chemical kinetic observations and experimental results, when reduced to a single timescale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior that the rates of mineralization can be estimated with reasonable certainty. Rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released by dissolution into pore fluid that has been acidified with dissolved CO2. Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when evaluated in the context of reservoir-scale reactive transport simulations, this range becomes much smaller. Reservoir scale simulations indicate that silicate mineral dissolution and subsequent carbonate mineral precipitation occur at pH 4.5 to 6, fluid flow velocity less than 5m/yr, and 50-100 years or more after the start of injection. These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals (ca. 20%), and confirms that when reservoir rock mineralogy is not favorable the fraction of CO2 converted to carbonate minerals is minimal over 104 years. A sufficient amount of reactive minerals represents the condition by which the available cations per volume of rock plus pore space exceeds the locally trapped CO2 by a factor of two or more. Our approach may allow for rapid evaluation of mineralization potential of subsurface storage reservoirs, and illustrates how reservoir scale modeling can be integrated with other observations to address key issues for engineering geologic systems.

  17. Global perspectives on oxidative weathering of organic carbon in sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Dellinger, M.; Hilton, R. G.; West, A. J.; Horan, K.; Gaillardet, J.

    2016-12-01

    Over geological timescales, the oxidation of organic carbon in sedimentary rocks is major source of carbon dioxide (CO2) to the atmosphere. The global magnitude of this flux remains poorly constrained, but it is likely to be between 40-100 x 1012 g C yr-1, similar to the CO2 emissions from volcanism. The rates of CO2 emission ultimately set the rate of silicate weathering by carbonic acid and new organic carbon burial, which act together to stabilise the climate system. To constrain how the geological carbon cycle operates and modifies Earth's climate over millions of years, we must better understand the controls on the oxidation of sedimentary rock-derived organic carbon (`petrogenic' OC, OCpetro). Here we examine new and published constraints on OCpetro oxidation flux, which come from indirect measurements (e.g. trace element proxies such as rhenium) and direct measurements (e.g. CO2 trapping and 14C). Existing datasets track the gaseous and dissolved products of weathering as well as the solid residues over a range of spatial scales, from soil profiles to large river catchments. Although the datasets are still sparse, they indicate that physical denudation plays a major role in setting OCpetro oxidation flux. These measurements are interrogated in the framework of a catchment-scale numerical model of OCpetro oxidation. By harnessing approaches developed to examine and quantify acid-hydrolysis reactions (i.e. silicate mineral weathering by carbonic acid) the model considers realistic geochemical processes and the links between erosion and weathering. Key parameters emerge, such as the `weathering thickness' which describes a depth to which oxidative waters penetrate. The reaction kinetics of OCpetro remain poorly constrained, but nevertheless, the model predicts that the kinetic limitation of OCpetro oxidation is not reached until physical erosion rates exceed 2 mm yr-1, which is much higher than for CO2 consumption by silicate weathering. These findings mirror data on sulphide oxidation, demonstrating that physical erosion can drive an important CO2 release to the atmosphere both from inorganic and organic reduced phases in sedimentary rocks. The degree to which this release is compensated by CO2 drawdown associated with the erosion and transfer of biospheric OC will also be considered.

  18. Large Calcium Isotopic Variation in Peridotitic Xenoliths from North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, S.; Zhao, X.; Zhang, Z.

    2016-12-01

    Calcium is the fifth most abundant element in the Earth. The Ca isotopic composition of the Earth is important in many aspects, ranging from tracing the Ca cycle on the Earth to comparing the Earth to other terrestrial planets. There is large mass-dependent Ca isotopic variation, measured as δ44/40Ca relative to a standard sample, in terrestrial igneous rocks: about 2 per mil in silicate rocks, compared to 3 per mil in carbonates. Therefore, a good understanding of the Ca isotopic variation in igneous rocks is necessary. Here we report Ca isotopic data on a series of peridotitic xenoliths from North China Craton (NCC). There is about 1 per mil δ44/40Ca variation in these NCC peridotites: The highest δ44/40Ca is close to typical mantle values, and the lowest δ44/40Ca is found in an Fe-rich peridotite, -1.13 relative to normal mantle (or -0.08 on the SRM 915a scale). This represents the lowest δ44/40Ca value ever reported for igneous rocks. Combined with published Fe isotopic data on the same samples, our data show a positive linear correlation between δ44/40Ca and δ57/54Fe in NCC peridotites. This trend is inconsistent with mixing a low-δ44/40Ca and -δ57/54Fe sedimentary component with a normal mantle component. Rather, it is best explained as the result of kinetic isotopic effect caused by melt-peridotite reaction on a time scale of several hundreds of years. In detail, basaltic melt reacts with peridotite, replaces orthopyroxene with clinopyroxene, and increases the Fo number of olivine. Consistent with this interpretation, our on-going Mg isotopic study shows that low-δ44/40Ca and -δ57/54Fe NCC peridotites also have heavier Mg isotopes compared to normal mantle. Our study shows that mantle metasomatism plays an important role generating stable isotopic variations within the Earth's mantle.

  19. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    PubMed

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  20. Evolution of crystalline target rocks and impactites in the chesapeake bay impact structure, ICDP-USGS eyreville B core

    USGS Publications Warehouse

    Horton, J. Wright; Kunk, Michael J.; Belkin, Harvey E.; Aleinikoff, John N.; Jackson, John C.; Chou, I.-Ming

    2009-01-01

    The 1766-m-deep Eyreville B core from the late Eocene Chesapeake Bay impact structure includes, in ascending order, a lower basement-derived section of schist and pegmatitic granite with impact breccia dikes, polymict impact breccias, and cataclas tic gneiss blocks overlain by suevites and clast-rich impact melt rocks, sand with an amphibolite block and lithic boulders, and a 275-m-thick granite slab overlain by crater-fill sediments and postimpact strata. Graphite-rich cataclasite marks a detachment fault atop the lower basement-derived section. Overlying impactites consist mainly of basement-derived clasts and impact melt particles, and coastal-plain sediment clasts are underrepresented. Shocked quartz is common, and coesite and reidite are confirmed by Raman spectra. Silicate glasses have textures indicating immiscible melts at quench, and they are partly altered to smectite. Chrome spinel, baddeleyite, and corundum in silicate glass indicate high-temperature crystallization under silica undersaturation. Clast-rich impact melt rocks contain α-cristobalite and monoclinic tridymite. The impactites record an upward transition from slumped ground surge to melt-rich fallback from the ejecta plume. Basement-derived rocks include amphibolite-facies schists, greenschist(?)-facies quartz-feldspar gneiss blocks and subgreenschist-facies shale and siltstone clasts in polymict impact breccias, the amphibolite block, and the granite slab. The granite slab, underlying sand, and amphibolite block represent rock avalanches from inward collapse of unshocked bedrock around the transient crater rim. Gneissic and massive granites in the slab yield U-Pb sensitive high-resolution ion microprobe (SHRIMP) zircon dates of 615 ± 7 Ma and 254 ± 3 Ma, respectively. Postimpact heating was <~350 °C in the lower basement-derived section based on undisturbed 40Ar/39Ar plateau ages of muscovite and <~150 °C in sand above the suevite based on 40Ar/39Ar age spectra of detrital microcline.

  1. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville-B core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.

  2. Analysis of Shuttle Multispecral Infrared Radiometer measurements of the western Saudi Arabian shield.

    USGS Publications Warehouse

    Rowan, Lawrence C.; Goetz, Alexander F.H.; Abbott, Elsa

    1987-01-01

    During the November 12–14, 1981, mission of the space shuttle Columbia, the Shuttle Multispectral Infrared Radiometer (SMIRR) recorded radiances in ten channels along a 100 m wide groundtrack across the western Saudi Arabian shield. The ten channels are located in the 0.5 to 2.4 μm region, with five positioned between 2.0 and 2.40 μm for measuring absorption features that are diagnostic of OH‐bearing and CO3‐bearing">CO3‐bearing minerals. This exceptionally well exposed area consists of late Proterozoic metamorphic, intermediate to silicic intrusive, and interlayered clastic sedimentary and intermediate silicic volcanic rocks that have not been studied previously using SMIRR data. Plots or traces of unnormalized SMIRR channel ratios were examined before field studies to locate areas with high spectral contrast, especially in the 2.0 μm to 2.40 μm channels. Reflectance spectra were measured in the laboratory for rock and soil samples collected in these areas, and the mineralogic causes of the main absorption features were determined using X‐ray diffraction. Laboratory SMIRR spectra were produced by convolving the ten SMIRR filters with the laboratory spectra. Then, normalized SMIRR reflectance spectra were generated along the groundtrack using normalization coefficients calculated for a field sample representing a uniform, low‐spectral contrast area. Field evaluation shows that unnormalized SMIRR ratio traces are useful, even without specific mineralogic information, for distinguishing rocks that are characterized by Al‐OH, Mg‐OH, and/or CO3">CO3">CO3, Fe3+">Fe3+, and Fe2+ absorption features. Analysis of field samples permits suites of minerals causing absorption features to be identified. However, specific mineral identification cannot be achieved consistently using the SMIRR ratio traces or normalized SMIRR spectra, because the Al‐OH and Mg‐OH absorption features can be caused by more than one of the minerals commonly present. The normalized SMIRR spectra are especially useful for identifying subtle Al‐OH and Mg‐OH absorption features that are difficult to identify in the unnormalized ratio traces and for comparing the relative intensities of absorption features. Al‐OH absorption is related to muscovite, smectite, illite, and kaolinite, whereas Mg‐OH absorption is caused by chlorite, amphibole, and biotite. The principal sources of error in using SMIRR spectral measurements for identifying mineral groups along the orbit 27 groundtrack are inaccuracies in field location and lithologic heterogeneity that is not represented adequately by field samples. Calibration errors may account for systematic albedo and absorption intensity differences between calculated laboratory SMIRR spectra and normalized SMIRR spectra. SMIRR instrument noise and atmospheric factors appear to be less important sources of error. However, as higher spectral and spatial resolution systems are developed for mineral identification, radiometric precision and atmospheric factors will become more important.

  3. Constraining mechanisms of quartz precipitation in the Archean ocean using silicon isotopes

    NASA Astrophysics Data System (ADS)

    Brengman, L. A.; Fedo, C.; Martin, W.

    2017-12-01

    To constrain reservoir values for the Archean silica cycle we measured silicon isotope compositions (δ30Si) of 28 igneous, siliciclastic sedimentary, hydrothermal, and chemical sedimentary rock samples from three Archean greenstone belts representing different times (>3.7 - 2.7 Ga) and tectonic regimes. We posit that silicon isotope compositions of quartz (746 analyses measured in situ by secondary ion mass spectrometry at the NORDSIM facility) are linked to changes in key geochemical parameters that vary within local depositional environments, coupled with a dependency on size and δ30Si composition of the source reservoir. Collectively, siliceous precipitates from even a single basin span a 7‰ range in δ30Si values. Such heterogeneity, regardless of basinal position or presence of Fe-phases demonstrates that δ30Si values of chemical sediments are linked to neither a well-mixed water column representative of a single ocean composition, nor a specific time in Earth history. Combining data from all three greenstone belts we discern that all measured Algoma-type iron formation (IF) and about 50% of associated chert samples possess δ30Si values <0‰, while the majority of silicified volcanic rocks and the remaining 50% of chert samples have δ30Si values >0‰. Negative values of Algoma-type IF can be explained by rate-dependent fractionation during precipitation and/or adsorption to Fe/Al. Combined experimental and natural data for quartz precipitates suggest slow precipitation rates coupled with closed system, Rayleigh type distillation could produce the isotopically heavy values. Such results suggest the quartz-precipitating fluid for these rocks evolves from an open system in disequilibrium, to one that is closed, and in equilibrium with the host rock. In contrast to the static range of values through time for Algoma-type IF, associated cherts and silicified rocks, compiled data for Superior-type IF from 3 - 1.8 Ga record a systematic increasing trend from dominantly 30Si-depleted to 30Si-enriched values over the Archean-Paleoproterozoic transition. Interpreted in the context of our provisional, mass-balance based flux model for the Precambrian silicon cycle, we conclude the 30Si-enrichment to reflect the evolving δ30Si composition of the ocean due to the addition of continentally derived silica.

  4. The Practical Application of Aqueous Geochemistry in Mapping Groundwater Flow Systems in Fractured Rock Masses

    NASA Astrophysics Data System (ADS)

    Bursey, G.; Seok, E.; Gale, J. E.

    2017-12-01

    Flow to underground mines and open pits takes place through an interconnected network of regular joints/fractures and intermediate to large scale structural features such as faults and fracture zones. Large scale features can serve either as high permeability pathways or as barriers to flow, depending on the internal characteristics of the structure. Predicting long term water quality in barrier-well systems and long-term mine water inflows over a mine life, as a mine expands, requires the use of a 3D numerical flow and transport code. The code is used to integrate the physical geometry of the fractured-rock mass with porosity, permeability, hydraulic heads, storativity and recharge data and construct a model of the flow system. Once that model has been calibrated using hydraulic head and permeability/inflow data, aqueous geochemical and isotopic data provide useful tools for validating flow-system properties, when one is able to recognize and account for the non-ideal or imperfect aspects of the sampling methods used in different mining environments. If groundwater samples are collected from discrete depths within open boreholes, water in those boreholes have the opportunity to move up or down in response to the forces that drive groundwater flow, whether they be hydraulic gradients, gas pressures, or density differences associated with variations in salinity. The use of Br/Cl ratios, for example, can be used to determine if there is active flow into, or out of, the boreholes through open discontinuities in the rock mass (i.e., short-circuiting). Natural groundwater quality can also be affected to varying degrees by mixing with drilling fluids. The combined use of inorganic chemistry and stable isotopes can be used effectively to identify dilution signals and map the dilution patterns through a range of fresh, brackish and saline water types. The stable isotopes of oxygen and hydrogen are nearly ideal natural tracers of water, but situations occur when deep groundwater samples can plot to the left of the meteoric water line as a result of isotopic exchange between meteoric water and silicate rock in near-surface environments at low temperatures. These and other examples are considered in the practical application of aqueous geochemistry in helping to map flow systems in fractured-rock systems.

  5. Chemical diagenesis, porosity reduction, and rock strength, IODP Site U1480: Influences on great earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Song, Insun; Milliken, Kitty; Dugan, Brandon; Bourlange, Sylvain; Colson, Tobias; Frederik, Marina; Jeppson, Tamara; Kuranaga, Mebae; Nair, Nisha; Henstock, Timothy

    2017-04-01

    International Ocean Discovery Program (IODP) Expedition 362 drilled two sites, U1480 and U1481, on the Indian oceanic plate ˜250 km west of the Sunda subduction zone to a maximum depth of 1500 meters below seafloor (mbsf). One of the primary objectives was to understand the mechanism of great earthquakes such as the 2004 Sumatra earthquake (Mw 9.0) which showed unexpectedly shallow megathrust slip by establishing the initial and evolving properties of the North Sumatran incoming sedimentary section. Core sampling and logging from the complete sedimentary section at U1480 indicates a distinct change in sedimentation rate from a slowly deposited pelagic system to a rapidly deposited submarine fan system at late Miocene. Following burial, sediments of the Nicobar Fan underwent compaction leading to porosity reduction from 66±9% near seafloor to ˜30% at the base of the sampled Nicobar Fan section (˜1250 mbsf), representing a normal consolidation behavior. Rock strength gradually increases with depth as the sediments are mechanically compacted. Below the fan (1250-1415 mbsf), the pelagic sediments are composed of tuffaceous, calcareous, and siliceous sediments/rocks and their porosity is dependent upon lithology more than upon depth. Tuffaceous materials exhibit high porosity ranging from ˜30-60%, even higher than that of overlying layers. However, porosity of most calcareous samples is lower than 20% at the same depth. The large variation in porosity depends on the degree of cementation, which in turn is controlled by grain assemblage composition and environmental conditions such as slow sedimentation rates and locally high temperatures related to igneous activity as documented by local igneous intrusives and extrusives. The minor cementation in tuffaceous sandy sediments has retained high porosity, but strengthened their skeleton so as to bear the overburden. The low porosity in calcareous rocks is considered to come from extensive cementation rather than mechanical compaction. The rock strengthening by mechanical compaction is dependent on effective stress, and does not facilitate storage of a large amount of elastic energy at shallow depth. However, chemical diagenesis (cementation) can lead to high strength that does not necessarily arise directly from burial. This chemical diagenesis potentially influences sediment strengthening that localizes great earthquakes at shallow depths.

  6. Olivine dissolution in the presence of heterotrophic bacteria (Pseudomonas reactants) extracted from Icelandic groundwater of the CO2 injection pilot site

    NASA Astrophysics Data System (ADS)

    Shirokova, Liudmila; Pokrovsky, Oleg; Benezeth, Pascale; Gerard, Emmanuelle; Menez, Benedicte; Alfredsson, Helgi

    2010-05-01

    This work is aimed at experimental modeling of the effect of heterotrophic bacteria on dissolution of important rock-forming mineral, olivine, at the conditions of CO2 storage and sequestration. Heterotrophic aerobic gram-negative bacteria were extracted from deep underground water (HK31, 1700 m deep and, t = 25-30°C) of basaltic aquifer located within the Hellisheidi CO2 injection pilot site (Iceland). Following this sampling, we separated, using culture on nutrient agar plates, four different groups of gram-negative aerobic bacteria. The enzymatic activity of studied species has been evaluated using Biolog Ecoplates and their genetic identification was performed using 18-S RNA analysis. The optimal growth conditions of bacteria on Brain Hearth Broth nutrient have been determined as 5 to 37°C and growth media pH varied from 7.0-8.2. Culturing experiments allowed determining the optimal physico-chemical conditions for bacteria experiments in the presence of basic Ca, Mg-containing silicates. Olivine (Fo92) was chosen as typical mineral of basalt, widely considered in carbon dioxide sequestration mechanisms. Dissolution experiments were performed in constant-pH (7 to 9), bicarbonate-buffered (0.001 to 0.05 M) nutrient-diluted media in batch reactors at 0-30 bars of CO2 in the presence of various biomass of Pseudomonas reactants. The release rate of magnesium, silica and iron was measured as a function of time in the presence of live, actively growing, dead (autoclaved or glutaraldehyde-treated) cells and bacteria exometabolites. Both nutrient media diluted 10 times (to 100 mg DOC/L) and inert electrolyte (NaCl, no DOC) were used. Our preliminary results indicate that the pH and dissolved organic matter are the first-order parameters that control the element release from olivine at far from equilibrium conditions. The SEM investigation of reacted surfaces reveal formation of surface roughness with much stronger mineral alteration in the presence of live bacteria compared to experiments with dead biomass. Overall, this work allows better understanding of microbially-affected silicate dissolution in basaltic aquifers and provides a firm methodological basis for constructing the mixed-flow reactors for studying the interaction of heterotrophic bacteria with rock-forming silicates at the environmental conditions of CO2-storage.

  7. The Role of Gas-Silicate Chemisorption Reactions in Modifying Planetary Crusts and Surfaces

    NASA Astrophysics Data System (ADS)

    King, P. L.; Henley, R. W.; Wykes, J. L.; Renggli, C.; Troitzsch, U.; Clark, D.; O'Neill, H. S.

    2014-12-01

    Evidence for gas-solid reactions is found throughout the solar system: for example, sulfidation reactions in some meteorites and secondary phases coating lunar pyroclastic glasses. On Earth, the products of gas-solid reactions are documented in volcanic systems, metalliferous mineral deposits, impact craters, and on dust or meteorites after passage through the atmosphere - such reactions are also likely on the surfaces of Mars and Venus. To understand the chemical dynamics of such gas-solid reactions, we are undertaking systematic experiments and thermochemical modelling. Experiments were conducted in a vertical gas-mixing furnace at 600 - 800 °C and 1 bar, using SO2and a range of Ca-bearing materials: labradorite, feldspar glass and anorthosite (rock). In each case, anhydrite formed rapidly. In shorter experiments with labradorite, isolated anhydrite is observed surrounded by 'moats' of Ca-depleted silicate. In longer experiments, anhydrite is found as clusters of crystals that, in some cases, extend from the substrate forming precarious 'towers' (Figure). Anhydrite fills cracks in porous samples. We propose that the nucleation and rapid growth of anhydrite on the surface of these Ca-rich phases occurs by chemisorption of SO2(g) molecules with slightly negatively charged oxygen onto available near-surface calcium with slight positive charge. Anhydrite growth is sustained by SO2(g) chemisorption and Ca migration through the reacting silicate lattice, accelerated by increased bond lengths at high temperature. Significantly, the chemisorption reaction indicates that SO2 disproportionates to form both oxidized sulfur (as anhydrite) and a reduced sulfur species (e.g., an S* radical ion). On Earth, in the presence of H2O, the predominant reduced sulfur species is H2S, through an overall reaction: 3CaAl2Si2O8 + 4 SO2(g)+ H2O(g) → 3CaSO4 + 3Al2SiO5 + 3SiO2 + H2S(g)The reduced sulfur may react with gas phase Fe, Ni, Zn and Cu cluster compounds to form metal sulfides. This is observed on the km-scale through co-existing anhydrite and sulphide in porphyry copper deposits on Earth. Chemisorption reactions with S-gases may also be responsible for sulfide coatings on lunar glass beads; sulfate minerals with volcanic rocks on Mars (e.g., Home Plate); and putative sulfate minerals on Venus and the early Earth.

  8. Uranium concentration and distribution in six peridotite inclusions of probable mantle origin

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Zartman, R. E.

    1973-01-01

    Fission-track activation was used to investigate uranium concentration and distribution in peridotite inclusions in alkali basalt from six localities. Whole-rock uranium concentrations range from 24 to 82 ng/g. Most of the uranium is uniformly distributed in the major silicate phases - olivine, orthopyroxene, and clinopyroxene. Chromian spinels may be classified into two groups on the basis of their uranium content - those which have less than 10 ng/g and those which have 100 to 150 ng/g U. In one sample accessory hydrous phases, phlogopite and hornblende, contain 130 and 300 ng/g U, respectively. The contact between the inclusion and the host basalt is usually quite sharp. Glassy or microcrystalline veinlets found in some samples contain more than 1 microgram/g. Very little uranium is associated with microcrystals of apatite. These results agree with some earlier investigators, who have concluded that suboceanic peridotites contain too little uranium to account for normal oceanic heat flow by conduction alone.

  9. Rapid high-silica magma generation in basalt-dominated rift settings

    NASA Astrophysics Data System (ADS)

    Berg, Sylvia E.; Troll, Valentin R.; Burchardt, Steffi; Deegan, Frances M.; Riishuus, Morten S.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Ellis, Ben S.; Krumbholz, Michael; Gústafsson, Ludvik E.

    2015-04-01

    The processes that drive large-scale silicic magmatism in basalt-dominated provinces have been widely debated for decades, with Iceland being at the centre of this discussion [1-5]. Iceland hosts large accumulations of silicic rocks in a largely basaltic oceanic setting that is considered by some workers to resemble the situation documented for the Hadean [6-7]. We have investigated the time scales and processes of silicic volcanism in the largest complete pulse of Neogene rift-related silicic magmatism preserved in Iceland (>450 km3), which is a potential analogue of initial continent nucleation in early Earth. Borgarfjörður Eystri in NE-Iceland hosts silicic rocks in excess of 20 vol.%, which exceeds the ≤12 vol% usual for Iceland [3,8]. New SIMS zircon ages document that the dominantly explosive silicic pulse was generated within a ≤2 Myr window (13.5 ± 0.2 to 12.2 ± 03 Ma), and sub-mantle zircon δ18O values (1.2 to 4.5 ± 0.2‰, n=337) indicate ≤33% assimilation of low-δ18O hydrothermally-altered crust (δ18O=0‰), with intense crustal melting at 12.5 Ma, followed by rapid termination of silicic magma production once crustal fertility declined [9]. This silicic outburst was likely caused by extensive rift flank volcanism due to a rift relocation and a flare of the Iceland plume [4,10] that triggered large-scale crustal melting and generated mixed-origin silicic melts. High-silica melt production from a basaltic parent was replicated in a set of new partial melting experiments of regional hydrated basalts, conducted at 800-900°C and 150 MPa, that produced silicic melt pockets up to 77 wt.% SiO2. Moreover, Ti-in-zircon thermometry from Borgarfjörður Eystri give a zircon crystallisation temperature ~713°C (Ti range from 2.4 to 22.1 ppm, average=7.7 ppm, n=142), which is lower than recorded elsewhere in Iceland [11], but closely overlaps with the zircon crystallisation temperatures documented for Hadean zircon populations [11-13], hinting at crustal recycling as a key process. Our results therefore provide a mechanism and a time-scale for rapid, voluminous silicic magma generation in modern and ancient basalt-dominated rift setting, such as Afar, Taupo, and potentially early Earth. The Neogene plume-related rift flank setting of NE-Iceland may thus constitute a plausible geodynamic and compositional analogue for generating silicic (continental) crust in the subduction-free setting of a young Earth (e.g. ≥3 Ga [14]). [1] Bunsen, R. 1851. Ann. Phys. Chem. 159, 197-272. [2] MacDonald R., et al., 1987. Mineral. Mag. 51, 183-202. [3] Jonasson, K., 2007. J. Geodyn. 43, 101-117. [4] Martin, E., et al., 2011. Earth Planet. Sci. Lett. 311, 28-38. [5] Charreteur, G., et al., 2013.Contrib. Mineral. Petr. 166, 471- 490. [6] Willbold, E., et al., 2009. Earth Planet. Sci. Lett. 279, 44-52. [7] Reimink, J.R., et al., 2014. Nat. Geosci. 7, 529-533. [8] Gústafsson, L.E., et al., 1989. Jökull 39, 75-89. [9] Meade, F.C., et al., 2014. Nat. comm. 5. [10] Óskarsson, B.V., Riishuus, M.S., 2013. J. Volcanol. Geoth. Res. 267, 92-118. [11] Carley, T.L., et al., 2014. Earth Planet. Sci. Lett. 405, 85-97. [12] Trail, D., et al., 2007. Geochem. Geophys. Geosyst.8, Q06014. [13] Harrison, T.M. et al., 2008. Earth Planet. Sci. Lett.268, 476-486. [14] Kamber, B. S., et al., 2005. Earth Planet. Sci. Lett. 240, 276-290.

  10. The Cretaceous Okhotsk-Chukotka Volcanic Belt (NE Russia): Geology, geochronology, magma output rates, and implications on the genesis of silicic LIPs

    NASA Astrophysics Data System (ADS)

    Tikhomirov, P. L.; Kalinina, E. A.; Moriguti, T.; Makishima, A.; Kobayashi, K.; Cherepanova, I. Yu.; Nakamura, E.

    2012-04-01

    The Cretaceous Okhotsk-Chukotka volcanic belt (OCVB) is a prominent subduction-related magmatic province, having the remarkably high proportion of silicic rocks (ca. 53% of the present-day crop area, and presumably over 70% of the total volcanic volume). Its estimated total extrusive volume ranges between 5.5 × 105 km3 (the most conservative estimate) and over 106 km3. This article presents a brief outline of the geology of OCVB, yet poorly described in international scientific literature, and results of a geochronological study on the northern part of the volcanic belt. On the base of new and published U-Pb and 40Ar/39Ar age determinations, a new chronological model is proposed. Our study indicates that the activity of the volcanic belt was highly discontinuous and comprised at least five main episodes at 106-98 Ma, 94-91 Ma, 89-87 Ma, 85.5-84 Ma, and 82-79 Ma. The new data allow a semi-quantitative estimate of the volcanic output rate for the observed part of the OCVB (area and volume approximately 105 km2 and 2.5 × 105 km3, respectively). The average extrusion rate for the entire lifetime of the volcanic belt ranges between 1.6 and 3.6 × 10- 5 km3yr- 1 km- 1, depending on the assumed average thickness of the volcanic pile; the optimal value is 2.6 × 10- 5 km3yr- 1 km- 1. Despite imprecise, such estimates infer the time-averaged volcanic productivity of the OCVB is similar to that of silicic LIPs and most active recent subduction-related volcanic areas of the Earth. However, the most extensive volcanic flare-ups at 89-87 and 85.5-84 Ma had higher rates of over 9.0 × 10- 5 km3yr- 1 km- 1. The main volumetric, temporal and compositional parameters of the OCVB are similar to those of silicic LIPs. This gives ground for discussion about the geodynamic setting of the latters, because the widely accepted definition of a LIP implies a strictly intraplate environment. Considering the genesis of the OCVB and other large provinces of silicic volcanism, we propose that residual thermal energy preserved in the continental crust after a previous major magmatic event may have been one of major reasons for high proportion of felsic rocks in a volcanic pile. In this scenario, underplating of mantle-derived basalts causes fast and extensive melting of still hot continental crust and generation of voluminous silicic magmas.

  11. Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation

    NASA Astrophysics Data System (ADS)

    Tutolo, Benjamin M.; Tosca, Nicholas J.

    2018-03-01

    Despite their clear economic significance, Cretaceous presalt carbonates of the South Atlantic continental margins are not well-described by published facies models. This knowledge gap arises, in part, because the chemical processes that generate distinctive sedimentary products in alkaline, non-marine environments are poorly understood. Here, we use constraints inferred from reported mineralogical and geochemical features of presalt carbonate rocks to design and perform a suite of laboratory experiments to quantify the processes of alkaline chemical sedimentation. Using real-time observations of in-situ fluid chemistry, post-experiment analysis of precipitated solids, and geochemical modeling tools, we illustrate that spherulitic carbonates and Mg-silicate clays observed in presalt carbonates were likely precipitated from elevated pH (∼10-10.5) waters with high concentrations of silica and alkali cations typical of intermediate to felsic rocks, such as Na+ and K+. Charge balance constraints require that these cations were not counterbalanced to any significant degree by anions typical of seawater, such as Cl- and SO4-, which implies minimal seawater involvement in presalt deposition. Experimental data suggest that, at this alkaline pH, only modest concentrations (i.e., ∼0.5-1 mmol/kg) of Ca++ would have been required to precipitate spheroidal CaCO3. Given the rapid rates of CaCO3 nucleation and growth under such conditions, it is unlikely that Ca++ concentrations in lake waters ever exceeded these values, and sustained chemical fluxes are therefore required for extensive sediment accumulation. Moreover, our experiments indicate that the original mineralogy of presalt CaCO3 could have been calcite or aragonite, but the differing time scales of precipitation between CaCO3 and Mg-silicates would have tended to skew the Mg/Ca ratio in solution towards elevated values which favor aragonite. Mg-silicate nucleation and growth rates measured during our experiments suggest that elevated SiO2(aq) and high pH would have limited (to 1-2 mmol/kg) the Mg++ concentrations required to precipitate poorly crystalline Mg-silicates, which, through time, crystallize to minerals such as sepiolite and stevensite. Although our results provide robust constraints on the geochemistry of Mg-silicate-carbonate interactions during alkaline lake sedimentation, they leave open the potential for biological contributions to sedimentation within the presalt basins, as well as the hydrogeochemical mechanisms that maintained a productive carbonate factory of the scale observed along the South Atlantic margins.

  12. Trondhjemitic melts produced by in-situ differentiation of a tholeiitic lava flow, Reykjanes Peninsula, Iceland.

    NASA Astrophysics Data System (ADS)

    Martin, E.; Sigmarsson, O.

    2006-12-01

    How the continental crust began to form early in Earth's history is unconstrained. However, it is reasonable to presume that higher heat flow in the past, resulted in more frequent interaction of mantle plumes and mid- oceanic ridges. If true, then Iceland could be a good analogue for processes occurring on Earth at its youth stage. This is supported by the relatively high abundance of silicic rocks in Iceland but their rarity on other oceanic hot spots. The origin of Icelandic silicic rocks has been a subject of a lively debate but has been shown to be principally formed by partial melting of hydrothermally altered basaltic crust. However, in rare cases, their origin by fractional crystallization from mantle derived basalts is suggested. Segregation veins in lava flows frequently contain interstitial glasses of silicic compositions. Moreover, they allow an exceptional overview of the fractional crystallization mechanism. These veins form by gas filter pressing during cooling and degassing of solidifying lava flows, after approximately 50% fractional crystallization of anhydrous minerals. Pairs of samples, host lava and associated segregation veins, from Reykjanes Peninsula (Iceland), Lanzarote (Canary Island) and Masaya's volcano (Nicaragua), allow the assessment of a near-complete fractional crystallization of olivine tholeiitic basalt at pressure close to one atmosphere. Interstitial glass patches in segregation veins represent the final product of this process (80 97 % of fractional crystallization). These ultimate liquids are of granitic composition in the case of Lanzarote and Masaya but overwhelmingly trondhjemitic at Reykjanes. It appears that the initial K2O/Na2O of the basaltic liquid controls the evolution path of the residual liquid composition produced at pressure close to 0.1 MPa (1 bar). Granitic liquids are generated from basalts of high initial K2O/Na2O whereas low initial K2O/Na2O leads to trondhjemitic compositions. The trondhjemitic composition of glass patches from the segregation vein at Reykjanes Peninsula differs from Icelandic silicic magmas but is close to those of the Archaean TTG (trondhjemite-tonalite-granodiorite) suite. Taken at face value, this may imply that fractional crystallisation of olivine tholeiites (low K2O/Na2O) could have played a significant role during the formation of the early continental crust. At higher pressure, where garnet is on liquidus, fractional crystallisation can generate the observed trace element patterns observed in TTG. The progressive cooling, crystallization and degassing of basaltic magma ocean, thought to have been prevailing during the Hadean, could have led to high degree of fractional crystallization producing significant volume of trondhjemitic melts that because of its buoyancy contributed to the formation of the earliest continental crust.

  13. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    NASA Astrophysics Data System (ADS)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  14. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  15. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery - Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico

    USGS Publications Warehouse

    Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M.

    2005-01-01

    Remotely sensed multispectral thermal infrared (8-13 ??m) images are increasingly being used to map variations in surface silicate mineralogy. These studies utilize the shift to longer wavelengths in the main spectral feature in minerals in this wavelength region (reststrahlen band) as the mineralogy changes from felsic to mafic. An approach is described for determining the amount of this shift and then using the shift with a reference curve, derived from laboratory data, to remotely determine the weight percent SiO2 of the surface. The approach has broad applicability to many study areas and can also be fine-tuned to give greater accuracy in a particular study area if field samples are available. The approach was assessed using airborne multispectral thermal infrared images from the Hiller Mountains, Nevada, USA and the Tres Virgenes-La Reforma, Baja California Sur, Mexico. Results indicate the general approach slightly overestimates the weight percent SiO2 of low silica rocks (e.g. basalt) and underestimates the weight percent SiO2 of high silica rocks (e.g. granite). Fine tuning the general approach with measurements from field samples provided good results for both areas with errors in the recovered weight percent SiO2 of a few percent. The map units identified by these techniques and traditional mapping at the Hiller Mountains demonstrate the continuity of the crystalline rocks from the Hiller Mountains southward to the White Hills supporting the idea that these ranges represent an essentially continuous footwall block below a regional detachment. Results from the Baja California data verify the most recent volcanism to be basaltic-andesite. ?? 2005 Elsevier Inc. All rights reserved.

  16. Intra-slab COH fluid fluxes evidenced by fluid-mediated decarbonation of lawsonite eclogite-facies altered oceanic metabasalts

    NASA Astrophysics Data System (ADS)

    Vitale Brovarone, Alberto; Chu, Xu; Martin, Laure; Ague, Jay J.; Monié, Patrick; Groppo, Chiara; Martinez, Isabelle; Chaduteau, Carine

    2018-04-01

    The interplay between the processes controlling the mobility of H2O and C-bearing species during subduction zone metamorphism exerts a critical control on plate tectonics and global volatile recycling. Here we present the first study on fresh, carbonate-bearing, lawsonite eclogite-facies metabasalts from Alpine Corsica, France, which reached the critical depths at which important devolatilization reactions occur in subducting slabs. The studied samples indicate that the evolution of oceanic crustal sequences subducted under present-day thermal regimes is dominated by localized fluid-rock interactions that are strongly controlled by the nature and extent of inherited (sub)seafloor hydrothermal processes, and by the possibility of deep fluids to be channelized along inherited or newly-formed discontinuities. Fluid channelization along inherited discontinuities controlled local rehydration and dehydration/decarbonation reactions and the stability of carbonate and silicate minerals at the blueschist-eclogite transition. Fluid-mediated decarbonation was driven by upward, up-temperature fluid flow in the inverted geothermal gradient of a subducting oceanic slab, a process that has not been documented in natural samples to date. We estimate that the observed fluid-rock reactions released 20-60 kg CO2 per m3 of rock (i.e. 0.7-2.1 wt% CO2), which is in line with the values predicted from decarbonation of metabasalts in open systems at these depths. Conversely, the estimated time-integrated fluid fluxes (20-50 t/m2) indicate that the amount of carbon transported by channelized fluid flow within the volcanic part of subducting oceanic plates is potentially much higher than previous numerical estimates, testifying to the percolation of C-bearing fluids resulting from devolatilization/dissolution processes operative in large reservoirs.

  17. Geochemical and stable isotopic data on barren and mineralized drill core in the Devonian Popovich Formation, Screamer sector of the Betze-Post gold deposit, northern Carlin trend, Nevada

    USGS Publications Warehouse

    Christiansen, William D.; Hofstra, Albert H.; Zohar, Pamela B.; Tousignant, Gilles

    2011-01-01

    The Devonian Popovich Formation is the major host for Carlin-type gold deposits in the northern Carlin trend of Nevada. The Popovich is composed of gray to black, thin-bedded, calcareous to dolomitic mudstone and limestone deposited near the carbonate platform margin. Carlin-type gold deposits are Eocene, disseminated, auriferous pyrite deposits characterized by acid leaching, sulfidation, and silicification that are typically hosted in Paleozoic calcareous sedimentary rocks exposed in windows through siliceous sedimentary rocks of the Roberts Mountains allochthon. The Carlin trend currently is the largest gold producer in the United States. The Screamer ore zone is a tabular body on the periphery of the huge Betze-Post gold deposit. Screamer is a good place to study both the original lithogeochemistry of the Popovich Formation and the effects of subsequent alteration and mineralization because it is below the level of supergene oxidation, mostly outside the contact metamorphic aureole of the Jurassic Goldstrike stock, has small, high-grade ore zones along fractures and Jurassic dikes, and has intervening areas with lower grade mineralization and barren rock. In 1997, prior to mining at Screamer, drill core intervals from barren and mineralized Popovich Formation were selected for geochemical and stable isotope analysis. The 332, five-foot core samples analyzed are from five holes separated by as much as 2000 feet (600 meters). The samples extend from the base of the Wispy unit up through the Planar and Soft sediment deformation units into the lower part of the upper Mud unit of the Popovich Formation.

  18. Study of Usage Areas of Clay Samples of Asphaltite Quarries in Sirnak, Turkey

    NASA Astrophysics Data System (ADS)

    Bilgin, Oyku

    2017-12-01

    The asphaltite of Sirnak, Turkey are in the form of 12 veins and their total reserves are anticipated to be approximately 200 million tons in a field of 25.000 hectares. The asphaltites at the Sirnak region are in the form of fault and crack fillings and take place together with clay minerals at their side rock. The main raw materials used in the production of cement are limestone, clay and marn known as sedimentary rocks. Limestone for CaO and clay minerals for SiO2, Al2O3, and Fe2O3, which are the main compounds of clinker production, are the main raw materials. Other materials containing these four oxides like marn are also used as cement raw material. Conformity levels of the raw materials to be used in cement production vary according to their chemical compounds. The rocks to be used as clay mineral are evaluated by taking the rate of silicate and alumina into consideration. The soils suitable for brick-tile productions are named as sandy clay. Their difference from the ceramic clays is that they are richer in terms of iron, silica and carbonate. These soils are also known under the names such as clay, arid, alluvium, silt, loam and argil. Inside these soils, minerals such as quartz, montmorillonite, kaolinite, calcite, limonite, hidromika, sericite, illite, and chlorite are available. Some parts of the soils consist of clays in amorphous structure. Limestone parts, gypsums, organic substances and bulky rock residuals spoil the quality. The soils suitable for brick production may not be suitable for tile production. In this case, their sandy soils should be mixed up with the clays with fine granule structure which is high in plasticity. During asphaltite mining in Sirnak region, clays forming side rock are gathered at dump sites. In this study; SQX analyses of the clay samples taken from Avgamasya, Seridahli and Segürük asphaltite veins run in Sirnak region are carried out and their usage areas are searched.

  19. Natural fault and fracture network versus anisotropy in the Lower Paleozoic rocks of Pomerania (Poland)

    NASA Astrophysics Data System (ADS)

    Haluch, Anna; Rybak-Ostrowska, Barbara; Konon, Andrzej

    2017-04-01

    Knowledge of the anisotropy of rock fabric, geometry and distribution of the natural fault and fracture network play a crucial role in the exploration for unconventional hydrocarbon recourses. Lower Paleozoic rocks from Pomerania within the Polish part of Peri-Baltic Basin, as prospective sequences, can be considered a laboratory for analysis of fault and fracture arrangement in relation to the mineral composition of the host rocks. A microstructural study of core samples from five boreholes in Pomerania indicate that the Silurian succession in the study area is predominantly composed of claystones and mudstones interbedded with thin layers of tuffites. Intervals with a high content of detrital quartz or diagenetic silica also occur. Most of the Silurian deposits are abundant in pyrite framboids forming layers or isolated small concretions. Early diagenetic carbonate concretions are also present. The direction and distribution of natural faults and fractures have resulted not only from paleostress. Preliminary study reveals that the fault and fracture arrangement is related to the mechanical properties of the host rocks that depend on their fabric and mineralogical composition: subvertical fractures in mudstones and limestones show steeper dips than those within the more clayey intervals; bedding-parallel fractures occur within organic-rich claystones and along the boundaries between different lithologies; tuffites and radiolaria-bearing siliceous mudstones are more brittle and show denser nets of fractures or wider mineral apertures; and, fracture refraction is observed at competence contrast or around spherical concretions. The fault and fracture mineralization itself is prone to the heterogenity of the rock profile. Thus, fractures infilled with calcite occur in all types of the studied rocks, but mineral growth is syntaxial within marly mudstones because of chemical uniformity, and antitaxial within sillicous mudstones. Fractures infilled with quartz are restricted to tuffites and claystones with biogenic silica. Matching the complex microstructural and mineralogical data with the geomechanical analysis of the host rocks will be the base for further studies on induced fault and fracture development. The study was supported by grant no.: 13-03-00-501-90-472946, funded by the National Centre for Research and Development (NCBiR)

  20. N2-fixing legumes are linked to enhanced mineral dissolution and microbiome modulations in Neotropical rainforests

    NASA Astrophysics Data System (ADS)

    Epihov, Dimitar; Batterman, Sarah; Hedin, Lars; Saltonstall, Kristin; Hall, Jefferson; Leake, Jonathan; Beerling, David

    2017-04-01

    Legumes represent the dominant family of many tropical forests with estimates of 120 billion legume trees in the Amazon basin alone. Many rainforest legume trees form symbioses with N2-fixing bacteria. In the process of atmospheric N2-fixation large amounts of nitrogen-rich litter are generated, supplying half of all nitrogen required to support secondary rainforest succession. However, it is unclear how N2-fixers affect the biogeochemical cycling of other essential nutrients by affecting the rates of mineral dissolution and rock weathering. Here we show that N2-fixing legumes in young Panamanian rainforests promote acidification and enhance silicate rock weathering by a factor of 2 compared to non-fixing trees. We report that N2-fixers also associate with enhanced dissolution of Al- and Fe-bearing secondary minerals native to tropical oxisols. In legume-rich neighbourhoods, non-fixers benefited from raised weathering rates relative to those of legume-free zones thus suggesting a positive community effect driven by N2-fixers. These changes in weathering potential were tracked by parallel functional and structural changes in the soil and rock microbiomes. Our findings support the view that N2-fixing legumes are central components of biogeochemical cycling, associated with enhanced release of Fe- and Al-bound P and primary mineral products (Mg, Mo). Rainforest legume services therefore bear important implications to short-term C cycling related to forest growth and the long-term C cycle related to marine carbonate deposition fuelled by silicate weathering.

  1. Latest Pleistocene crustal cannibalization at Baekdusan (Changbaishan) as traced by oxygen isotopes of zircon from the Millennium Eruption

    NASA Astrophysics Data System (ADS)

    Cheong, Albert Chang-sik; Sohn, Young Kwan; Jeong, Youn-Joong; Jo, Hui Je; Park, Kye-Hun; Lee, Youn Soo; Li, Xian-Hua

    2017-07-01

    The silicic volcanism of Baekdusan (Changbaishan), which is on the border between North Korea and China, was initiated in the Late Pleistocene and culminated in the 10th century with a powerful (volcanic explosivity index = 7) commendite-trachyte eruption commonly referred to as the "Millennium Eruption." This study presents oxygen isotope data of zircon in trachydacitic pumices ejected during the Millennium Eruption, together with whole-rock geochemical and Sr-Nd-Pb isotopic data that manifest once again the A-type and EM1 affinities of the Millennium Eruption magma. The zircon crystals, dated by previous studies at ca. 12-9 ka, show a moderate inter-grain variation in δ18O from 3.69‰ to 5.03‰. These values are consistently lower than the normal mantle range, and interpreted to have resulted from the digestion of meteoric-hydrothermally altered intracaldera rocks in the shallow magma chamber beneath Baekdusan just prior to the crystallization of the zircons, rather than from derivation from low-δ18O sources deep in the mantle. The whole-rock geochemical/isotopic considerations suggest that the magma mainly self-cannibalized the earlier erupted volcanic carapace around the magma chamber. This study highlights the usefulness of zircon oxygen isotopes for characterizing past volcanic activity that has now been commonly eroded away and implies that the generation of Yellowstone-type low-δ18O magma is not a rare phenomenon in large-volume silicic eruptions.

  2. Thermal infrared (2.5-13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces

    USGS Publications Warehouse

    Salisbury, John W.; Walter, Louis S.

    1989-01-01

    Fundamental molecular vibration bands are significantly diminished by scattering. Thus such bands in spectra of fine particulate regoliths (i.e., dominated by <5-μm particles), or regoliths displaying a similar scale of porosity, are difficult to use for mineralogical or rock type identification. Consequently, other spectral features have been sought that may be more useful in spectroscopic remote sensing of composition. We find that mineralogical information is retained in overtones and combination tones of the fundamental molecular vibrations in the 3.0- to 7.0-μm region, but that relatively few minerals have a sufficiently distinctive band structure to be unambiguously identified with currently available techniques. More significantly, identification of general rock type, as defined by the SCFM chemical index (SCFM = SiO2/SiO2 + CaO + FeO + MgO), is possible using spectral features associated with the principal Christiansen frequency and with a region of relative transparency between the Si-O stretching and bending bands. However, environmental factors may affect the appearance and wavelengths of these features. Finally, prominent absorption bands may result from the presence of relatively small amounts of water, hydroxyl or carbonate, because absorption bands exhibited by these materials in the 2.7- to 4.0-μm region, where silicate spectra are otherwise featureless, increase strongly in spectral contrast with decreasing particle size. Such materials are thus detectable in very small amounts in a particulate regolith composed predominantly of silicate minerals.

  3. Thick sequences of silicate and carbonate rocks of sedimentary origin in North America an interim report

    USGS Publications Warehouse

    Love, John David

    1956-01-01

    Thick sequences of silicate and carbonate rocks of sedimentary origin have been investigated in 64 areas in North America. The areas containing the thickest and most homogeneous stratigraphic sections more than 1,000 feet thick, buried at depths greater than 10,000 feet are: 1. Uinta Basin, Utah, where the Mancos shale is 1,300 to 5,000 feet thick, the Weber sandstone is 1,000 to 1,600 feet thick, and Mississippian limestones are 1,000 to 1,500 feet thick. 2. Washakie Basin, Wyoming, and Sand Wash Ba.sin, Colorado, where the Lewis shale is 1,000 to 2,000 feet thick and the Cody-Mancos shale is 4,500 to 5,500 feet thick. 3. Green River Basin, Wyoming, where the Cody-Hilliard-Baxter-Mancos shale sequence averages more than 3,000 feet, the siltstone and shale of the Chugwater formation totals 1,000 feet, and the Madison limestone ranges from 1,000 to 1,400 feet thick. 4. Red Desert (Great Divide) Basin, Wyoming, where the Cody shale is 4,000 feet thick. 5. Hanna Basin, Wyoming, where the Steele shale is 4,500 feet thick. 6. Wind River Basin, Wyoming, where the Cody shale is 3,600 to 5,000 feet thick. Geochemical characteristics of these rocks in these areas are poorly known but are being investigated. A summary of the most pertinent recent ana1yses is presented.

  4. Geobiology in the Lab

    NASA Astrophysics Data System (ADS)

    José López-Galindo, María

    2017-04-01

    Geobiology is, nowadays, one of the most important lines of research of USGS. It is the interdisciplinary study of the interactions of microorganisms and earth materials (including soil, sediment, the atmosphere, the hydrosphere, minerals, and rocks) (U.S. Geological Survey, 2007). A study about geobiolgical interactions between microorganisms and felsic rock surfaces was carried out in San Blas Secondary School with students, aged 16-17, as an enforcement of a part of this abstract author's thesis work, and developed in the Coruña University. The activity took place in the school laboratory as a complement of the theoretical Spanish curriculum about living things. After visiting a granitic area, near the famous Rio Tinto mining district, students collected different rock samples. They learned about bioweathering on igneous rocks, and how microorganisms can play an essential double role on rock surface: dissolution and mineral deposition. These organisms, living in hard and basic environments, are considered extremophiles (López-Galindo, 2013) which is an important translatable concept to the life beyond the Earth. Afterwards, students had the opportunity to grow these microorganisms under different conditions and examine them through a scholar microscope, comparing these images with SEM ones, taken in Central Services of Research Building in the Coruña University, to determine genus and species, when it was possible. An opportunity to study rare living things, an introduction to geobiology, hostile environments and different physical and chemical conditions out of Earth is hereafter offered, through these simple experiences, to other secondary teachers in the world. U.S. Geological Survey, 2007, Facing tomorrow's challenges—U.S. Geological Survey science in the decade 2007-2017: U.S. Geological Survey Circular 1309, x + 70 p. López-Galindo, M.J. 2013, Bioweathering in Igneous Rocks. Siliceous Speleothems from a Geobiological Viewpoint. Doctoral Dissertation. Coruña University. 323 pp. http://hdl.handle.net/2183/11581.

  5. Petrography and trace element signatures in silicates and Fe-Ti-oxides from the Lanjiahuoshan deposit, Panzhihua layered intrusion, Southwest China

    NASA Astrophysics Data System (ADS)

    Gao, Wenyuan; Ciobanu, Cristiana L.; Cook, Nigel J.; Huang, Fei; Meng, Lin; Gao, Shang

    2017-12-01

    Permian mafic-ultramafic layered intrusions in the central part of the Emeishan Large Igneous Province (ELIP), Southwestern China, host Fe-Ti-V-oxide ores that have features which distinguish them from other large layered intrusion-hosted deposits. The origin of these ores is highly debated. Careful petrographic examination, whole rock analysis, electron probe microanalysis, and measurement and mapping of trace element concentrations by laser ablation inductively coupled plasma mass spectrometry in all major and minor minerals (clinopyroxene, plagioclase, olivine, amphibole, titanomagnetite, ilmenite, pleonaste and pyrrhotite) has been undertaken on samples from the Lanjiahuoshan deposit, representing the Middle, Lower and Marginal Zone of the Panzhihua intrusion. Features are documented that impact on interpretation of intrusion petrology and with implications for genesis of the Fe-Ti-V-oxide ores. Firstly, there is evidence, as symplectites between clinopyroxene and plagioclase, for introduction of complex secondary melts. Secondly, reaction between a late hydrothermal fluid and clinopyroxene is recognized, which has led to formation of hydrated minerals (pargasite, phlogopite), as well as a potassium metasomatic event, postdating intrusion solidification, which led to formation of K-feldspar. Lastly, partitioning of trace elements between titanomagnetite and silicates needs to consider scavenging of metals by ilmenite (Mn, Sc, Zr, Nb, Sn, Hf and Ta) and sulfides, as well as the marked partitioning of Co, Ni, Zn, Ga, As and Sb into spinels exsolved from titanomagnetite. The role of these less abundant phases may have been understated in previous studies, highlighting the importance of petrographic examination of complex silicate-oxide-sulfide assemblages, as well as the need for a holistic approach to trace element analysis, acknowledging all minerals within the assemblage.

  6. Chemical Zoning of Feldspars in Lunar Granitoids: Implications for the Origins of Lunar Silicic Magmas

    NASA Technical Reports Server (NTRS)

    Mills, R. D; Simon, J. I.; Alexander, C.M. O'D.; Wang, J.; Christoffersen, R.; Rahman, Z..

    2014-01-01

    Fine-scale chemical and textural measurements of alkali and plagioclase feldspars in the Apollo granitoids (ex. Fig. 1) can be used to address their petrologic origin(s). Recent findings suggest that these granitoids may hold clues of global importance, rather than of only local significance for small-scale fractionation. Observations of morphological features that resemble silicic domes on the unsampled portion of the Moon suggest that local, sizable net-works of high-silica melt (>65 wt % SiO2) were present during crust-formation. Remote sensing data from these regions suggest high concentrations of Si and heat-producing elements (K, U, and Th). To help under-stand the role of high-silica melts in the chemical differentiation of the Moon, three questions must be answered: (1) when were these magmas generated?, (2) what was the source material?, and (3) were these magmas produced from internal differentiation. or impact melting and crystallization? Here we focus on #3. It is difficult to produce high-silica melts solely by fractional crystallization. Partial melting of preexisting crust may therefore also have been important and pos-sibly the primary mechanism that produced the silicic magmas on the Moon. Experimental studies demonstrate that partial melting of gabbroic rock under mildly hydrated conditions can produce high-silica compositions and it has been suggested by that partial melting by basaltic underplating is the mechanism by which high-silica melts were produced on the Moon. TEM and SIMS analyses, coordinated with isotopic dating and tracer studies, can help test whether the minerals in the Apollo granitoids formed in a plutonic setting or were the result of impact-induced partial melting. We analyzed granitoid clasts from 3 Apollo samples: polymict breccia 12013,141, crystalline-matrix breccia 14303,353, and breccia 15405,78

  7. Geochronological, geochemical, and Sr-Nd-Hf isotopic characteristics of Cretaceous monzonitic plutons in western Zhejiang Province, Southeast China: New insights into the petrogenesis of intermediate rocks

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Qiu, Jian-Sheng; Zhao, Jiao-Long; Yang, Ze-Li

    2014-05-01

    We present comprehensive petrological, geochemical, and Sr-Nd-Hf isotopic data for the Matou and Dalai plutons in western Zhejiang Province, Southeast China, with the aim of constraining the petrogenesis of monzonites and to offer new insights into the deep processes of interaction between crustal- and mantle-derived magmas beneath SE China. The Matou pluton comprises quartz monzonite, whereas the Dalai pluton consists of quartz monzodiorite. Zircon U-Pb ages obtained by laser ablation-inductively coupled plasma-mass spectrometry show that both plutons were emplaced at 99-101 Ma. Rocks of both plutons are intermediate to silicic, metaluminous to weakly peraluminous, subalkaline, and K-rich in composition. Samples of the plutons are enriched in large ion lithophile (e.g., Rb, K, and Pb) and light rare earth elements, depleted in high-field strength elements (e.g., Nb, Ta, and Ti), and have small negative or no Eu anomalies. In addition, the rocks have high Mg# values (up to 53.9), high zircon ɛHf(t) values (up to - 1.4), and low Nb/U and Ta/U ratios. Geochemical evidence suggests that both depleted asthenospheric and metasomatically enriched mantle components were involved in the formation of these monzonitic rocks. The presence of inherited zircons with Palaeoproterozoic ages and zircons with unusually low ɛHf(t) values (- 12.9) in the Matou quartz monzonites indicates that ancient crustal materials were also involved in their petrogenesis. In combination with the presence of abundant mafic microgranular enclaves (MMEs) with spheroidal to ellipsoidal-ovoidal shapes and xenocrysts within the more diffused enclaves, and the results of trace element modelling, we suggest that the Matou quartz monzonites were generated by mixing between mantle-derived mafic magmas and crustally derived silicic magmas. The Dalai pluton is relatively homogeneous and contains fewer MMEs than the Matou pluton. Zircons from the Dalai pluton show no inherited components, indicating that crustal materials have played a limited role in the petrogenesis of the quartz monzodiorites. The Dalai quartz monzodiorites have lower SiO2 contents, higher Mg# values, and considerably higher and variable Cr, Co, and Ni concentrations than the Matou quartz monzonites. Zircon Hf isotopic compositions of the Dalai pluton are relatively homogeneous (ɛHf(t) = - 5.2 to - 3.2). The combined petrological, geochemical, and isotopic features indicate that the Dalai monzodiorites were generated by olivine- and pyroxene-dominated fractional crystallisation from basaltic magmas, which were in turn produced by mixing between melts from depleted asthenosphere and subduction-enriched mantle. Our interpretation implies that Late Mesozoic monzonitic rocks in Southeast China require a significant input of mantle melts, and some may have been generated solely by fractionation of basaltic magmas. This petrogenetic model may be applicable to other monzonitic rocks in Southeast China, and to similar tectonic settings and sites of monzonitic magma generation worldwide.

  8. Generation of Hydrogen and Methane during Experimental Low-Temperature Reaction of Ultramafic Rocks with Water.

    PubMed

    McCollom, Thomas M; Donaldson, Christopher

    2016-06-01

    Serpentinization of ultramafic rocks is widely recognized as a source of molecular hydrogen (H2) and methane (CH4) to support microbial activity, but the extent and rates of formation of these compounds in low-temperature, near-surface environments are poorly understood. Laboratory experiments were conducted to examine the production of H2 and CH4 during low-temperature reaction of water with ultramafic rocks and minerals. Experiments were performed by heating olivine or harzburgite with aqueous solutions at 90°C for up to 213 days in glass bottles sealed with butyl rubber stoppers. Although H2 and CH4 increased steadily throughout the experiments, the levels were very similar to those found in mineral-free controls, indicating that the rubber stoppers were the predominant source of these compounds. Levels of H2 above background were observed only during the first few days of reaction of harzburgite when CO2 was added to the headspace, with no detectable production of H2 or CH4 above background during further heating of the harzburgite or in experiments with other mineral reactants. Consequently, our results indicate that production of H2 and CH4 during low-temperature alteration of ultramafic rocks may be much more limited than some recent experimental studies have suggested. We also found no evidence to support a recent report suggesting that spinels in ultramafic rocks may stimulate H2 production. While secondary silicates were observed to precipitate during the experiments, formation of these deposits was dominated by Si released by dissolution of the glass bottles, and reaction of the primary silicate minerals appeared to be very limited. While use of glass bottles and rubber stoppers has become commonplace in experiments intended to study processes that occur during serpentinization of ultramafic rocks at low temperatures, the high levels of H2, CH4, and SiO2 released during heating indicate that these reactor materials are unsuitable for this purpose. Serpentinization-Hydrogen generation-Abiotic methane synthesis. Astrobiology 16, 389-406.

  9. Magmatic evolution of Panama Canal volcanic rocks: A record of arc processes and tectonic change

    PubMed Central

    Cardona, Agustin; Montes, Camilo; Foster, David; Jaramillo, Carlos

    2017-01-01

    Volcanic rocks along the Panama Canal present a world-class opportunity to examine the relationship between arc magmatism, tectonic forcing, wet and dry magmas, and volcanic structures. Major and trace element geochemistry of Canal volcanic rocks indicate a significant petrologic transition at 21–25 Ma. Oligocene Bas Obispo Fm. rocks have large negative Nb-Ta anomalies, low HREE, fluid mobile element enrichments, a THI of 0.88, and a H2Ocalc of >3 wt. %. In contrast, the Miocene Pedro Miguel and Late Basalt Fm. exhibit reduced Nb-Ta anomalies, flattened REE curves, depleted fluid mobile elements, a THI of 1.45, a H2Ocalc of <1 wt. %, and plot in mid-ocean ridge/back-arc basin fields. Geochemical modeling of Miocene rocks indicates 0.5–0.1 kbar crystallization depths of hot (1100–1190°C) magmas in which most compositional diversity can be explained by fractional crystallization (F = 0.5). However, the most silicic lavas (Las Cascadas Fm.) require an additional mechanism, and assimilation-fractional-crystallization can reproduce observed compositions at reasonable melt fractions. The Canal volcanic rocks, therefore, change from hydrous basaltic pyroclastic deposits typical of mantle-wedge-derived magmas, to hot, dry bi-modal magmatism at the Oligocene-Miocene boundary. We suggest the primary reason for the change is onset of arc perpendicular extension localized to central Panama. High-resolution mapping along the Panama Canal has revealed a sequence of inward dipping maar-diatreme pyroclastic pipes, large basaltic sills, and bedded silicic ignimbrites and tuff deposits. These volcanic bodies intrude into the sedimentary Canal Basin and are cut by normal and subsequently strike-slip faults. Such pyroclastic pipes and basaltic sills are most common in extensional arc and large igneous province environments. Overall, the change in volcanic edifice form and geochemistry are related to onset of arc perpendicular extension, and are consistent with the idea that Panama arc crust fractured during collision with South America forming the observed Canal extensional zone. PMID:28489866

  10. Experimental Study of Porosity Changes in Shale Caprocks Exposed to Carbon Dioxide-Saturated Brine II: Insights from Aqueous Geochemistry

    DOE PAGES

    Miller, Quin R. S.; Wang, Xiuyu; Kaszuba, John P.; ...

    2016-07-18

    Laboratory experiments evaluated two shale caprock formations, the Gothic Shale and Marine Tuscaloosa Formation, at conditions relevant to carbon dioxide (CO 2) sequestration. Both rocks were exposed to CO 2-saturated brines at 160°C and 15 MPa for ~45 days. Baseline experiments for both rocks were pressurized with argon to 15 MPa for ~35 days. Varying concentrations of iron, aqueous silica, sulfate, and initial pH decreases coincide with enhanced carbonate and silicate dissolution due to reaction between CO 2-saturated brine and shale. Saturation indices were calculated and activity diagrams were constructed to gain insights into sulfate, silicate, and carbonate mineral stabilities.more » We found that upon exposure to CO 2-saturated brines, the Marine Tuscaloosa Formation appeared to be more reactive than the Gothic Shale. Evolution of aqueous geochemistry in the experiments is consistent with mineral precipitation and dissolution reactions that affect porosity. Finally, this study highlights the importance of tracking fluid chemistry to clarify downhole physicochemical responses to CO 2 injection and subsequent changes in sealing capacity in CO 2 storage and utilization projects.« less

  11. Phase 3 geophysical studies in the Wadi Bidah District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Flanigan, V.J.; Sadek, Hamdy; Smith, C.W.

    1982-01-01

    Detailed geophysical measurements have been made in the Rabathan area, Wadi Bidah district, Kingdom of Saudi Arabia, at the site of diamond drill holes RAB-1, -2, and -3; these measurements suggest that the causative source for the anomalous EM (electromagnetic) and SP (self-potential) responses is probably highly conductive zones of Precambrian siliceous-carbonaceous rocks. Although many of the zones are no more than a few meters wide, they commonly contain 50 to 80 percent carbonaceous material and locally abundant pyrite. In places, several thin layers of highly concentrated carbonaceous material interlayered with chert form a multiple conductive zone that is seen in the geophysical data as complex anomaly patterns. In the geologic environment of Wadi Bidah, massive sulfide-bearing zones cannot be distinguished from siliceous-carbonaceous zones on the basis of the EM-SP responses. In North America in similar environments, complex resistivity methods used in experimental research have successfully discriminated between sulfide and carbonaceous conductors. Tests of such methods in the Wadi Bidah district are recommended. Geologic, geochemical, and geophysical data at the Jabal Mohr prospect suggest the possibility of mineralized rocks at depth over a possible strike length of 400 m.

  12. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data

    USGS Publications Warehouse

    Rowan, L.C.; Mars, J.C.

    2003-01-01

    Evaluation of an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of the Mountain Pass, California area indicates that several important lithologic groups can be mapped in areas with good exposure by using spectral-matching techniques. The three visible and six near-infrared bands, which have 15-m and 30-m resolution, respectively, were calibrated by using in situ measurements of spectral reflectance. Calcitic rocks were distinguished from dolomitic rocks by using matched-filter processing in which image spectra were used as references for selected spectral categories. Skarn deposits and associated bright coarse marble were mapped in contact metamorphic zones related to intrusion of Mesozoic and Tertiary granodioritic rocks. Fe-muscovite, which is common in these intrusive rocks, was distinguished from Al-muscovite present in granitic gneisses and Mesozoic granite. Quartzose rocks were readily discriminated, and carbonate rocks were mapped as a single broad unit through analysis of the 90-m resolution, five-band surface emissivity data, which is produced as a standard product at the EROS Data Center. Three additional classes resulting from spectral-angle mapper processing ranged from (1) a broad granitic rock class (2) to predominately granodioritic rocks and (3) a more mafic class consisting mainly of mafic gneiss, amphibolite and variable mixtures of carbonate rocks and silicate rocks. ?? 2002 Elsevier Science Inc. All rights reserved.

  13. Vector diagram of the chemical compositions of tektites and earth lavas

    NASA Technical Reports Server (NTRS)

    Kvasha, L. G.; Gorshkov, G. S.

    1978-01-01

    The chemical compositions of tektites and various volcanic glasses, similar in composition to tektites are compared by a petrochemical method. The advantage of the method is that a large number of chemical analyses of igneous rocks can be graphically compared with the help of vectors, plotted in relation to six parameters. These parameters, calculated from ratios of the main oxides given by silicate analysis, reflect the chief characteristics of igneous rock. Material for the study was suppled by data from chemical analysis characterizing tektites of all known locations and data from chemical analyses of obsidians similar in chemical composition to tektites of various petrographical provinces.

  14. Catalli, Sundberg receive Mineral and Rock Physics Graduate Research Awards

    NASA Astrophysics Data System (ADS)

    2011-05-01

    Krystle Catalli and Marshall Sundberg have been awarded the 2010 Mineral and Rock Physics Graduate Research Award, given annually to one or more promising young scientists for outstanding contributions achieved during their Ph.D. research. Recipients of this award are engaged in experimental and/or theoretical studies of Earth and planetary materials with the purpose of unraveling the physics and chemistry that govern their origin and physical properties. Catalli's thesis is entitled “The effect of trivalent cation substitution on the major lower mantle silicates.” Sundberg's thesis is entitled “Chemical interactions amongst phases during diffusion creep: Applications to the Earth's upper mantle.”

  15. ANDREWS MOUNTAIN, MAZOURKA, AND PAIUTE ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    McKee, Edwin H.; Schmauch, Steven W.

    1984-01-01

    On the basis of a mineral survey, local areas near and within the Andrews Mountain, Mazourka, and Paiute Roadless Areas, California have probable and substantiated mineral-resource potential. The principal metallic mineral resources in these roadless areas are gold, copper, and silver with lead, zinc, and tungsten, as lesser resources. A zone of probable resource potential for talc, graphite, and marble is identified in the Mazourka Roadless Area. Metallic mineralization occurs mostly in vein deposits in silicic and carbonate metasedimentary rocks peripheral to Mesozoic plutons and locally in granitic rocks as well. There is little promise for the occurrence of fossil fuel resources in the roadless areas.

  16. Drill hole logging with infrared spectroscopy

    USGS Publications Warehouse

    Calvin, W.M.; Solum, J.G.

    2005-01-01

    Infrared spectroscopy has been used to identify rocks and minerals for over 40 years. The technique is sensitive to primary silicates as well as alteration products. Minerals can be uniquely identified based on multiple absorption features at wavelengths from the visible to the thermal infrared. We are currently establishing methods and protocols in order to use the technique for rapid assessment of downhole lithology on samples obtained during drilling operations. Initial work performed includes spectral analysis of chip cuttings and core sections from drill sites around Desert Peak, NV. In this paper, we report on a survey of 10,000 feet of drill cuttings, at 100 foot intervals, from the San Andreas Fault Observatory at Depth (SAFOD). Data from Blue Mountain geothermal wells will also be acquired. We will describe the utility of the technique for rapid assessment of lithologic and mineralogic discrimination.

  17. Electrochemistry and the Earth's Core-Mantle Boundary

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Walker, D.

    2001-12-01

    The Earth's core-mantle boundary consists of a highly heterogeneous metal-oxide interface subjected to high temperatures, pressures, and additionally, to the presence of a temporally- and spatially-varying electrical field generated by the outer core dynamo. An understanding of the core-mantle boundary should include the nature of its electrical behavior, its electrically induced chemical partitioning, and any resultant core-mantle dynamic coupling. To this end, we have developed a method to measure the electrical behavior of metal-silicate interfaces at high pressures (15-25 kbar) and temperatures (1300-1400° C) in a piston-cylinder apparatus. Platinum electrical leads are placed at each end of the sample, which consists of a layer of iron and/or iron alloy below a layer of silicate. The sample is enclosed in a sintered MgO chamber which is then surrounded by a metal Faraday cage, allowing the sample to be electrically insulated from the AC field of the graphite heater. The platinum electric leads are threaded through the thermocouple tube and connected with an HP4284A LCR meter to measure AC impedance, or to a DC power supply to apply a field such that either the silicate or the metal end is the anode (+). AC impedance measurements performed in-situ on samples consisting of Fe, Fe-Ni-S, and a basalt-olivine mixture in series show that conductivity is strongly dependent on the electrical polarization of the silicate relative to the sulfide. When the silicate is positively charged (silicate is the anode) and when there is no applied charge, the probe-to-probe resistance displays semiconductor behavior, with conductivity ( ~10-2 S/cm) strongly thermally activated. However, when the electrical polarity is reversed, and the sulfide is the anode, the electrical conductivity between the two probes increases dramatically (to ~1 S/cm) over timescales of minutes. If the polarity is removed or reversed, the conductivity returns to its original values over similar timescales. A second set of experiments examined the behavior of iron-silicate interfaces subjected to electric fields of 1-10 V, applied for times ranging from several minutes to several days. The samples were quenched from high temperatures, mounted, and examined using both light and electron microscopy. When the iron/iron-sulfide end is charged positively (+1-2 V) with respect to the silicate, oxides form around the platinum electrode embedded within the iron metal, suggesting the reaction Fe->Fe+2+2e- occurs in the metal. When the electric field is reversed, the silicate and MgO surrounding the + electrode turns red, implying the reaction Fe+2\\rightarrowFe^{+3}+e^{-}$ occurs at the silicate (anode end) of the sample. The richness of electrical and electrically activated chemical behavior observed at metal-silicate interfaces may be relevant to the Earth's core mantle boundary.

  18. The effects of water rock interaction and the human activities on the occurrence of hexavalent chromium in waters. The case study of the Psachna basin, Central Euboea, Greece.

    NASA Astrophysics Data System (ADS)

    Vasileiou, Eleni; Perraki, Maria; Stamatis, George; Gartzos, Efthimios

    2014-05-01

    High concentrations of heavy metals, particularly of the toxic hexavalent chromium, are recorded in surface and ground waters in many areas, and constitute one of the most severe environmental problems nowadays. The natural genesis of chromium is associated with the geological environment (peridotites and serpentintites). Chromium is structured in many minerals, mainly in spinel (e.g. chromite), in silicate minerals such as phyllosilicate serpentine minerals, chlorite, talc and chain-silicate minerals of pyroxene and amphibole group. Chromium is found in two forms in soils, waters and rocks, the hexavalent and the trivalent one. The relation between Cr(III) and Cr(VI) strongly depends on pH and oxidative properties of the area; however, in most cases, Cr(III) is the dominating variant. The natural oxidation of trivalent to hexavalent chromium can be achieved by manganese oxides, H2O2, O2 gas and oxy-hydroxides of trivalent iron. Anthropogenic factors may also cause the process of chromium's oxidation. In the Psachna basin, Central Euboea, Greece, high concentrations of hexavalent chromium were recently measured in spring- and drill- waters. In this work, we study the effect of the geological environment and of the anthropogenic activities on the water quality with emphasis on chromium. A detailed geochemical, petrological and mineralogical study of rocks and soils was carried out by means of optical microscopy, XRF, XRD and SEM/EDS. Ground and surface water samples were physically characterized and hydrochemically studied by means of ICP and AAF. Combined result evaluation indicates a natural source for the trivalent chromium in waters, attributed to the alteration of Cr-bearing minerals of the ultramafic rocks. However the oxidation of trivalent to hexavalent chromium results from anthropogenic activities, mainly from intensive agricultural activities and the extensive use of fertilizers and pesticides causing nitrate pollution in groundwater. It has been shown that there is a strong correlation between the nitrate concentration and the hexavalent chromium one; therefore it is believed that the presence of nitrates operates as oxidant for trivalent to hexavalent chromium. On the contrary, in natural areas, without anthropogenic activities, it was observed that the hexavalent chromium concentration in groundwater is lower. Besides, a strong correlation was also observed between chromium and yttrium concentrations in natural areas, pointing to a natural source of chromium, since chromium and yttrium exist naturally in a strongly bonded form.

  19. Direct dating and characterization of the Pope's Hill REE Deposit, Labrador

    NASA Astrophysics Data System (ADS)

    Chafe, A. N.; Hanchar, J. M.; Fisher, C.; Piccoli, P. M.; Crowley, J. L.; Dimmell, P. M.

    2012-12-01

    The Pope's Hill rare earth element (REE) trend (PHT) is located approximately 100 km southwest of Happy Valley-Goose Bay, along the Trans Labrador Highway, in central Labrador. Whole-rock geochemical analyses of the main REE-bearing unit indicate total rare earth element contents ranging from 1 to 22 weight percent (wt%) REE3+. The REE-enriched unit is hosted within a hydrothermally altered syenite, trending northeast and traceable for approximately 2.8km. Samples of ore, host rock, and country rock, were collected from throughout the trend in order to: 1) quantify which phases concentrate the REE and their abundances and distribution in the ore; and 2) use in situ LA-ICPMS and ID-TIMS U-Pb geochronology and in situ Sm-Nd isotopes using LA-MC-ICPMS in monazite from the ore and host rock to constrain the timing of mineralization and determine the source of the REE. These data will help develop predictive models for this type of mineral deposit elsewhere. The PHT is defined as the host syenite and REE-enriched segregations; two contrasting lithologies. The rare earth element minerals (REE) occur in millimeter- to centimeter-scale pods that are locally discontinuous. The REE are hosted in a variety of silicate, phosphate, carbonate, and niobate phases; with a majority hosted in allanite(-Ce), titanite(-Ce), monazite(-Ce), britholite(-Ce); and a minor percentage in REE-carbonates and fergusonite(-Nd). Both apatite and titanite occur in two different compositional forms that range in chemistry from end-member stoichiometric apatite and titanite to highly REE-enriched - apatite-britholite and titanite(-Ce), where chemical substitutions, such as Si4+ + REE3+ substitute for Ca2+ + P5+ in apatite and REE3+ + Fe3+ substitute for Ca2+ + Ti4+ in titanite in order to incorporate up to ~40 wt% REE2O3 in both minerals. The U-Pb geochronology indicate that allanite, titanite(-Ce), monazite and fergusonite crystallized from ~1060 to ~940 Ma, a period spanning ~120 Ma. Sm-Nd tracer isotope data from the same minerals indicate that the syenite and ore have initial Nd within a single ɛNd unit. This combined with their field relationship to the foliation and the microtextures observed in thin section suggests that the REE minerals experienced syndeformational growth from a hydrothermal fluid, acting on both host and ore, where REEs in aqueous hard ligand complexes became saturated in silicate, phosphate, carbonate, and niobate minerals through the changing T, P and chemical conditions brought on by deformation.

  20. The Abundance and Distribution of Presolar Materials in Cluster IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay; Nakamura-Messenger, Keiko; Ito, Motoo

    2007-01-01

    Presolar grains and remnants of interstellar organic compounds occur in a wide range of primitive solar system materials, including meteorites, interplanetary dust particles (IDPs), and comet Wild-2 samples. Among the most abundant presolar phases are silicate stardust grains and molecular cloud material. However, these materials have also been susceptible to destruction and alteration during parent body and nebular processing. In addition to their importance as direct samples of remote and ancient astrophysical environments, presolar materials thus provide a measure of how well different primitive bodies have preserved the original solar system starting materials. The matrix normalized abundances of presolar silicate grains in meteorites range from 20 ppm in Semarkona and Bishunpur to 170 ppm for Acfer 094. The lower abundances of presolar silicates in Bishunpur and Semarkona has been ascribed to the destruction of presolar silicates during aqueous processes. Presolar silicates appear to be significantly more abundant in anhydrous IDPs, possibly because these materials did not experience parent body hydrothermal alteration. Among IDPs the estimated abundances of presolar silicates vary by more than an order of magnitude, from 480 to 5500 ppm. The wide disparity in the abundances of presolar silicates of IDPs may be a consequence of the relatively small total area analyzed in those studies and the fine grain sizes of the IDPs. Alternatively, there may be a wide range in presolar silicate abundances between different IDPs. This view is supported by the observation that 15N-rich IDPs have higher presolar silicate abundances than those with isotopically normal N.

Top