Science.gov

Sample records for silicate weathering rates

  1. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  2. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales

    PubMed Central

    Hilley, George E.; Porder, Stephen

    2008-01-01

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO2. While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9–4.6 × 1013 mols of Si weathered globally per year, within a factor of 4–10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4–18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01–0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO2, 1.5–3.3 × 108 tons/year of CO2 is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales. PMID:18952842

  3. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    PubMed

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  4. Inferring silicate weathering rates over recent timescales (less than 100 years) in crystalline aquifers by calibrating lumped parameters models with atmospheric tracers

    NASA Astrophysics Data System (ADS)

    Marçais, J.; Labasque, T.; Gauvain, A.; De Dreuzy, J. R.; Aquilina, L.; Abbott, B. W.

    2016-12-01

    Silicate minerals (e.g. feldspars, micas and olivines) are ubiquitous in crystalline rocks such as granite and schist. Groundwater dissolves some of this silica via weathering processes as it passes through the catchment, increasing silica concentration with residence time. However, quantifying weathering rates is complicated by the fact that groundwater residence time distributions (RTD) are typically unknown. Batch experiments can characterize weathering reaction type and provide estimates of dissolution rates, but weathering timescales in the field are far greater than what can be simulated in the laboratory (White and Brantley, 2003). Here we implement a novel approach coupling chlorofluorocarbons (CFC) and dissolved silica concentrations to infer timescales of silica weathering processes at the watershed scale. We investigated 6 crystalline aquifers in Brittany with contrasting lithology. We quantified silicate weathering at the watershed scale based on individual measurements from multiple wells, assuming first-order reaction kinetics. For each well, we used a lumped parameter model to determined RTD with inverse gaussian distributions, which allow two degrees of freedom. Production rate and initial silicate concentration were then optimized at the watershed scale with the calibrated model. Weathering rates were relatively similar among watersheds, varying for most sites from 0.16 to 0.42 mg/L/yr (SD = 0.09 mg/L/yr), and estimates of weathering rates were not significantly influenced by single well measurements. This work demonstrates how atmospheric tracers can be used with dissolved silica concentration to inform both RTD and first order kinetics of weathering reactions. Together these results suggest that dissolved silica could be a robust and cheap groundwater age proxy for recent timescales (less than 100 years). ------------------ White, Art F, and Susan L Brantley. 2003. « The effect of time on the weathering of silicate minerals: why do weathering

  5. Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25)

    NASA Astrophysics Data System (ADS)

    Opolot, E.; Finke, P. A.

    2015-08-01

    Silicate mineral dissolution rates depend on the interaction of a number of factors categorized either as intrinsic (e.g. mineral surface area, mineral composition) or extrinsic (e.g. climate, hydrology, biological factors, physical weathering). Estimating the integrated effect of these factors on the silicate mineral dissolution rates therefore necessitates the use of fully mechanistic soil evolution models. This study applies a mechanistic soil evolution model (SoilGen) to explore the sensitivity of silicate mineral dissolution rates to the integrated effect of other soil forming processes and factors. The SoilGen soil evolution model is a 1-D model developed to simulate the time-depth evolution of soil properties as a function of various soil forming processes (e.g. water, heat and solute transport, chemical and physical weathering, clay migration, nutrient cycling and bioturbation) driven by soil forming factors (i.e., climate, organisms, relief, parent material). Results from this study show that although soil solution chemistry (pH) plays a dominant role in determining the silicate mineral dissolution rates, all processes that directly or indirectly influence the soil solution composition equally play an important role in driving silicate mineral dissolution rates. Model results demonstrated a decrease of silicate mineral dissolution rates with time, an obvious effect of texture and an indirect but substantial effect of physical weathering on silicate mineral dissolution rates. Results further indicated that clay migration and plant nutrient recycling processes influence the pH and thus the silicate mineral dissolution rates. Our silicate mineral dissolution rates results fall between field and laboratory rates but were rather high and more close to the laboratory rates owing to the assumption of far from equilibrium reaction used in our dissolution rate mechanism. There is therefore need to include secondary mineral precipitation mechanism in our formulation

  6. Evaluating sensitivity of silicate mineral dissolution rates to physical weathering using a soil evolution model (SoilGen2.25)

    NASA Astrophysics Data System (ADS)

    Opolot, E.; Finke, P. A.

    2015-11-01

    Silicate mineral dissolution rates depend on the interaction of a number of factors categorized either as intrinsic (e.g. mineral surface area, mineral composition) or extrinsic (e.g. climate, hydrology, biological factors, physical weathering). Estimating the integrated effect of these factors on the silicate mineral dissolution rates therefore necessitates the use of fully mechanistic soil evolution models. This study applies a mechanistic soil evolution model (SoilGen) to explore the sensitivity of silicate mineral dissolution rates to the integrated effect of other soil-forming processes and factors. The SoilGen soil evolution model is a 1-D model developed to simulate the time-depth evolution of soil properties as a function of various soil-forming processes (e.g. water, heat and solute transport, chemical and physical weathering, clay migration, nutrient cycling, and bioturbation) driven by soil-forming factors (i.e., climate, organisms, relief, parent material). Results from this study show that although soil solution chemistry (pH) plays a dominant role in determining the silicate mineral dissolution rates, all processes that directly or indirectly influence the soil solution composition play an equally important role in driving silicate mineral dissolution rates. Model results demonstrated a decrease of silicate mineral dissolution rates with time, an obvious effect of texture and an indirect but substantial effect of physical weathering on silicate mineral dissolution rates. Results further indicated that clay migration and plant nutrient recycling processes influence the pH and thus the silicate mineral dissolution rates. Our silicate mineral dissolution rates results fall between field and laboratory rates but were rather high and more close to the laboratory rates possibly due to the assumption of far from equilibrium reaction used in our dissolution rate mechanism. There is therefore a need to include secondary mineral precipitation mechanism in our

  7. Chemical weathering rates of a soil chronosequence on granitic alluvium: I. Quantification of mineralogical and surface area changes and calculation of primary silicate reaction rates

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Bullen, T.D.; Harden, J.W.; Peterson, M.L.

    1996-01-01

    Mineral weathering rates are determined for a series of soils ranging in age from 0.2-3000 Ky developed on alluvial terraces near Merced in the Central Valley of California. Mineralogical and elemental abundances exhibit time-dependent trends documenting the chemical evolution of granitic sand to residual kaolinite and quartz. Mineral losses with time occur in the order: hornblende > plagioclase > K-feldspar. Maximum volume decreases of >50% occur in the older soils. BET surface areas of the bulk soils increase with age, as do specific surface areas of aluminosilicate mineral fractions such as plagioclase, which increases from 0.4-1.5 m2 g-1 over 600 Ky. Quartz surface areas are lower and change less with time (0.11-0.23 m2 g-1). BET surface areas correspond to increasing external surface roughness (?? = 10-600) and relatively constant internal surface area (??? 1.3 m2 g-1). SEM observations confirm both surface pitting and development of internal porosity. A numerical model describes aluminosilicate dissolution rates as a function of changes in residual mineral abundance, grain size distributions, and mineral surface areas with time. A simple geometric treatment, assuming spherical grains and no surface roughness, predicts average dissolution rates (plagioclase, 10-17.4; K-feldspar, 10-17.8; and hornblende, 10-17.5 mol cm-1 s-1) that are constant with time and comparable to previous estimates of soil weathering. Average rates, based on BET surface area measurements and variable surface roughnesses, are much slower (plagioclase, 10-19.9; K-feldspar, 10-20.5; and hornblende 10-20.1 mol cm-2 s-1). Rates for individual soil horizons decrease by a factor of 101.5 over 3000 Ky indicating that the surface reactivities of minerals decrease as the physical surface areas increase. Rate constants based on BET estimates for the Merced soils are factors of 103-104 slower than reported experimental dissolution rates determined from freshly prepared silicates with low surface

  8. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering

    PubMed Central

    Quirk, Joe; Beerling, David J.; Banwart, Steve A.; Kakonyi, Gabriella; Romero-Gonzalez, Maria E.; Leake, Jonathan R.

    2012-01-01

    Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth's atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to ‘trenching’ of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth's long-term CO2 and climate history. PMID:22859556

  9. Impact of atmospheric CO2 levels on continental silicate weathering

    NASA Astrophysics Data System (ADS)

    Beaulieu, E.; GoddéRis, Y.; Labat, D.; Roelandt, C.; Oliva, P.; Guerrero, B.

    2010-07-01

    Anthropogenic sources are widely accepted as the dominant cause for the increase in atmospheric CO2 concentrations since the beginning of the industrial revolution. Here we use the B-WITCH model to quantify the impact of increased CO2 concentrations on CO2 consumption by weathering of continental surfaces. B-WITCH couples a dynamic biogeochemistry model (LPJ) and a process-based numerical model of continental weathering (WITCH). It allows simultaneous calculations of the different components of continental weathering fluxes, terrestrial vegetation dynamics, and carbon and water fluxes. The CO2 consumption rates are estimated at four different atmospheric CO2 concentrations, from 280 up to 1120 ppmv, for 22 sites characterized by silicate lithologies (basalt, granite, or sandstones). The sensitivity to atmospheric CO2 variations is explored, while temperature and rainfall are held constant. First, we show that under 355 ppmv of atmospheric CO2, B-WITCH is able to reproduce the global pattern of weathering rates as a function of annual runoff, mean annual temperature, or latitude for silicate lithologies. When atmospheric CO2 increases, evapotranspiration generally decreases due to progressive stomatal closure, and the soil CO2 pressure increases due to enhanced biospheric productivity. As a result, vertical drainage and soil acidity increase, promoting CO2 consumption by mineral weathering. We calculate an increase of about 3% of the CO2 consumption through silicate weathering (mol ha-1 yr-1) for 100 ppmv rise in CO2. Importantly, the sensitivity of the weathering system to the CO2 rise is not uniform and heavily depends on the climatic, lithologic, pedologic, and biospheric settings.

  10. Shaken and Stirred: A Combined Reaction-Diffusion and Random Rate Model for the Temporal Evolution and Earthquake-induced Hydrodynamics of Silicate Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Evaristo, J. A.; Willenbring, J.

    2013-12-01

    The time dependency of silicate mineral weathering has been explored in the literature in terms of processes and features that are intrinsic and extrinsic to the mineral [1]. However, although the advent of sophisticated reactive transport models has allowed for coupling increasingly complex reaction and transport processes [2,3], a simple and fundamental understanding of the temporal evolution of weathering is lacking. Here, we propose that a purely deterministic approach may not be sufficient given the inherent differences in reactivity over space and time. Therefore, we explore how a combined reaction-diffusion and random rate model - informed by a stochastic distribution of weathering rates K (T-1) - might be able to explain not only the temporal evolution but also the hydrodynamics of weathering during earthquakes; the latter being purportedly described by time-dependent property permeability (L2). Preliminary model results show that (1) an increase in dimensionless quantity βrp, where β is the diffusion length (L-1) and rp is the distance between pores (L), leads to a decrease in minimum reaction rate with time from the relation Kmin ∝ e-βrp/rp ; (2) at a given porosity, a time-dependent decrease in reactivity arises as permeability decreases due to decreasing pore size (and therefore increasing rp), which in turn may be related to the time-dependent feedback between dissolution and precipitation; (3) while permeability is lower in older soils, transient stresses as during earthquakes [4], may induce more efficient "declogging" of pores in these soils than in younger soils due to higher hydrodynamic viscous shear stress, thereby, resulting in a coseismic change in stream discharge Q; and (4) subsequent weathering beyond t~Kmin-1 exhibits a fall in rates, marking the cessation of logarithmic decay possibly due to dissolution-precipitation feedback. [1] White and Brantley (2003), Chem. Geol. 202, 479. [2] Lichtner P.C. (1996), Mineralogical Society of

  11. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma

    NASA Astrophysics Data System (ADS)

    Wan, Shiming; Clift, Peter D.; Li, Anchun; Yu, Zhaojie; Li, Tiegang; Hu, Dengke

    2012-08-01

    Determining the interplay between tectonic deformation, climate, atmospheric CO2 concentrations and continental weathering and erosion is key to understanding the mechanisms that forced Cenozoic global cooling. In contrast with studies of paleo-climate and pCO2, the history of long-term silicate weathering in the Himalaya and Tibetan Plateau (HTP) during the late Cenozoic remains unclear. We reconstruct 5 m.y. of silicate sedimentary records at Ocean Drilling Program (ODP) Site 1143 in the South China Sea to explore the weathering history of the Mekong River basin that supplied the sediment. Coherent variation of weathering proxies from the South China Sea, Bay of Bengal, Loess Plateau, as well as the Yangtze and Yellow Rivers, indicates weakening chemical weathering intensity since the late Pliocene, as the climate cooled. This cooling, coupled with tectonic activity, shifted the dominant weathering regime from more transport-limited to more weathering-limited, causing less chemical depletion of silicate minerals. While silicate weathering rates became strongly correlated to erosion rates, they were decoupled from chemical weathering intensity. Physical denudation and associated silicate weathering rates in the HTP area increased in the Pliocene, driven by both rock uplift and stronger monsoon precipitation, decreasing atmospheric CO2 concentrations, and so contributing to Northern Hemisphere Glaciation (NHG).

  12. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma

    NASA Astrophysics Data System (ADS)

    Wan, S.; Clift, P. D.; Li, A.; Yu, Z.; Li, T.; Hu, D.

    2012-12-01

    Determining the interplay between tectonic deformation, climate, atmospheric CO2 concentrations and continental weathering and erosion is key to understanding the mechanisms that forced Cenozoic global cooling. In contrast with studies of paleo-climate and pCO2, the history of long-term silicate weathering in the Himalaya and Tibetan Plateau (HTP) during the late Cenozoic remains unclear. We reconstruct 5 m.y. of silicate sedimentary records at Ocean Drilling Program (ODP) Site 1143 in the South China Sea to explore the weathering history of the Mekong River basin that supplied the sediment. Coherent variation of weathering proxies from the South China Sea, Bay of Bengal, Loess Plateau, as well as the Yangtze and Yellow Rivers, indicates weakening chemical weathering intensity since the late Pliocene, as the climate cooled. This cooling, coupled with tectonic activity, shifted the dominant weathering regime from more transport-limited to more weathering-limited, causing less chemical depletion of silicate minerals. While silicate weathering rates became strongly correlated to erosion rates, they were decoupled from chemical weathering intensity. Physical denudation and associated silicate weathering rates in the HTP area increased in the Pliocene, driven by both rock uplift and stronger monsoon precipitation, decreasing atmospheric CO2 concentrations, and so contributing to Northern Hemisphere Glaciation (NHG).

  13. Silicate weathering in the Ganges alluvial plain

    NASA Astrophysics Data System (ADS)

    Frings, Patrick J.; Clymans, Wim; Fontorbe, Guillaume; Gray, William; Chakrapani, Govind J.; Conley, Daniel J.; De La Rocha, Christina

    2015-10-01

    The Ganges is one of the world's largest rivers and lies at the heart of a body of literature that investigates the interaction between mountain orogeny, weathering and global climate change. Three regions can be recognised in the Ganges basin, with the Himalayan orogeny to the north and the plateaus of peninsular India to the south together delimiting the Ganges alluvial plain. Despite constituting approximately 80% of the basin, weathering processes in the peninsula and alluvial plain have received little attention. Here we present an analysis of 51 water samples along a transect of the alluvial plain, including all major tributaries. We focus on the geochemistry of silicon and its isotopes. Area normalised dissolved Si yields are approximately twice as high in rivers of Himalaya origin than the plain and peninsular tributaries (82, 51 and 32 kmol SiO2 km-2 yr-1, respectively). Such dissolved Si fluxes are not widely used as weathering rate indicators because a large but variable fraction of the DSi mobilised during the initial weathering process is retained in secondary clay minerals. However, the silicon isotopic composition of dissolved Si (expressed as δ30Si) varies from + 0.8 ‰ in the Ganges mainstem at the Himalaya front to + 3.0 ‰ in alluvial plain streams and appears to be controlled by weathering congruency, i.e. by the degree of incorporation of Si into secondary phases. The higher δ30Si values therefore reflect decreasing weathering congruency in the lowland river catchments. This is exploited to quantify the degree of removal using a Rayleigh isotope mass balance model, and consequently derive initial silica mobilisation rates of 200, 150 and 107 kmol SiO2 km-2 yr-1, for the Himalaya, peninsular India and the alluvial plain, respectively. Because the non-Himalayan regions dominate the catchment area, the majority of initial silica mobilisation from primary minerals occurs in the alluvial plain and peninsular catchment (41% and 34%, respectively).

  14. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer?

    SciTech Connect

    Gaillardet, J.; Dupre, B.; Allegre, C.J.

    1999-12-01

    This study focuses on the major and trace element composition of suspended sediments transported by the world's largest rivers. Its main purpose is to answer the following question: is the degree of weathering of modern river-borne particles consistent with the estimated river dissolved loads derived from silicate weathering? In agreement with the well known mobility of elements during weathering of continental rocks, the authors confirm that river sediments are systematically depleted in Na, K, Ba with respect to the Upper Continental Crust. For each of these mobile elements, a systematics of weathering indexes of river-borne solids is attempted. A global consistency is found between all these indexes. Important variations in weathering intensities exist. A clear dependence of weathering intensities with climate is observed for the rivers draining mostly lowlands. However, no global correlation exists between weathering intensities and climatic or relief parameters because the trend observed for lowlands is obscured by rivers draining orogenic zones. An inverse correlation between weathering intensities and suspended sediment concentrations is observed showing that the regions having the highest rates of physical denudation produce the least weathered sediments. Finally, chemical and physical weathering are compared through the use of a simple steady state model. The authors show that the weathering intensities of large river suspended sediments can only be reconciled with the (silicate-derived) dissolved load or rivers, by admitting that most of the continental rocks submitted to weathering in large river basins have already suffered previous weathering cycles. A simple graphical method is proposed for calculating the proportion of sedimentary recycling in large river basins. Finally, even if orogenic zones produce weakly weathered sediments, the authors emphasize the fact that silicate chemical weathering rates (and hence CO{sub 2} consumption rates by silicate

  15. Modeling Silicate Weathering for Elevated CO2 and Temperature

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.

    2016-12-01

    A reactive transport model (RTM) is used to assess CO2 drawdown by silicate weathering over a wide range of temperature, pCO2, and infiltration rates for basalts and granites. Although RTM's have been used extensively to model weathering of basalts and granites for present-day conditions, we extend such modeling to higher CO2 that could have existed during the Archean and Proterozoic. We also consider a wide range of surface temperatures and infiltration rates. We consider several model basalt and granite compositions. We normally impose CO2 in equilibrium with the various atmospheric ranges modeled and CO2 is delivered to the weathering zone by aqueous transport. We also consider models with fixed CO2 (aq) throughout the weathering zone as could occur in soils with partial water saturation or with plant respiration, which can strongly influence pH and mineral dissolution rates. For the modeling, we use Kinflow: a model developed at Yale that includes mineral dissolution and precipitation under kinetic control, aqueous speciation, surface erosion, dynamic porosity, permeability, and mineral surface areas via sub-grid-scale grain models, and exchange of volatiles at the surface. Most of the modeling is done in 1D, but some comparisons to 2D domains with heterogeneous permeability are made. We find that when CO2 is fixed only at the surface, the pH tends toward higher values for basalts than granites, in large part due to the presence of more divalent than monovalent cations in the primary minerals, tending to decrease rates of mineral dissolution. Weathering rates increase (as expected) with increasing CO2 and temperature. This modeling is done with the support of the Virtual Planetary Laboratory.

  16. Combined effect of carbonate and biotite dissolution in landslides biases silicate weathering proxies

    NASA Astrophysics Data System (ADS)

    Emberson, R.; Galy, A.; Hovius, N.

    2017-09-01

    Long-term estimates of the dissolution of silicate rock are generally derived from a range of isotopic proxies, such as the radiogenic strontium isotope ratio (87Sr/86Sr), which are preserved in sediment archives. For these systems to fairly represent silicate weathering, the changes in isotopic ratios in terrestrial surface waters should correspond to changes in the overall silicate dissolution. This assumes that the silicate mineral phases that act as sources of a given isotope dissolve at a rate that is proportional to the overall silicate weathering. Bedrock landsliding exhumes large quantities of fresh rock for weathering in transient storage, and rapid weathering in these deposits is controlled primarily by dissolution of the most reactive phases. In this study, we test the hypothesis that preferential weathering of these labile minerals can decouple the dissolution of strontium sources from the actual silicate weathering rates in the rapidly eroding Western Southern Alps (WSA) of New Zealand. We find that rapid dissolution of relatively radiogenic calcite and biotite in landslides leads to high local fluxes in strontium with isotopic ratios that offer no clear discrimination between sources. These higher fluxes of radiogenic strontium are in contrast to silicate weathering rates in landslides that are not systematically elevated. On a mountain belt scale, radiogenic strontium fluxes are not coupled to volumes of recent landslides in large (>100 km2) catchments, but silicate weathering fluxes are. Such decoupling is likely due first to the broad variability in the strontium content of carbonate minerals, and second to the combination of radiogenic strontium released from both biotite and carbonate in recent landslides. This study supports previous work suggesting the limited utility of strontium isotopes as a system to study silicate weathering in the WSA. Crucially however, in settings where bedrock landsliding is a dominant erosive process there is

  17. Geoengineering potential of artificially enhanced silicate weathering of olivine.

    PubMed

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A

    2010-11-23

    Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO(2) sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1-5 Pg of C per year for the 21st century by this technique.

  18. Geoengineering potential of artificially enhanced silicate weathering of olivine

    PubMed Central

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A.

    2010-01-01

    Geoengineering is a proposed action to manipulate Earth’s climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO2 sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1–5 Pg of C per year for the 21st century by this technique. PMID:21059941

  19. The geoengineering potential of artificially enhanced silicate weathering of olivine

    NASA Astrophysics Data System (ADS)

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A.

    2010-05-01

    Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate in more detail the potential of a specific geoengineering technique, the carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. We here show the consequences of this technique for the chemistry of the surface ocean at rates necessary for geoengineering. We calculate that olivine dissolution has the potential to sequestrate up to one Pg C yr-1 directly, if olivine is distributed as fine powder over land areas of the humid tropics. The carbon sequestration potential is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg C yr-1. Open water dissolution of fine grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1 to 5 Pg C yr-1 for the 21st century by this technique. At maximum this technique would reduce global warming by 1 K and counteract ocean acidification by a rise in surface ocean pH by 0.1 in the year 2100.

  20. Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.; Britton, Clare

    2006-09-01

    Increasing atmospheric CO2 and surface temperatures should increase carbonate and silicate weathering rates, directly via warming, and indirectly via the CO2 fertilization effect enhancing plant productivity. Enhanced weathering should in turn increase alkalinity input to the ocean and accelerate long-term CO2 uptake. We added silicate and carbonate weathering and carbonate sediments to an existing global carbon cycle and surface temperature model and subjected it to a range of long-term fossil fuel emissions scenarios, spanning 1100-15,000 GtC in total. Emissions of ≥7350 GtC dissolve all carbonate sediments, and enhanced carbonate and silicate weathering accelerate subsequent CO2 removal from the atmosphere by up to a factor of 4. For 1100-4000 GtC emissions, enhanced weathering accelerates CO2 removal by a factor of 1.5-2.5. However, it takes >1 Myr for silicate weathering to stabilize atmospheric CO2. If land use tends to suppress vegetation and weathering rates on this timescale, then CO2 will stabilize above preindustrial levels.

  1. Climate control on silicate weathering and physical erosion rates in young orogenic belts: Case study along a runoff gradient in Pacific and Amazonian Andean basins based on SNO-HYBAM Monitoring Program data

    NASA Astrophysics Data System (ADS)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Viers, Jérôme; Crave, Alain; Morera, Sergio; Rau, Pedro; Armijos, Elisa; Lagane, Christelle; Sven Lavado Casimiro, Waldo; Pombosa, Rodrigo; Fraizy, Pascal; Santini, William; Timouk, Franck; Vauchel, Philippe; Martinez, Jean-Michel

    2017-04-01

    At the global scale and on geological time scales, mechanical erosion and chemical weathering budgets are linked. Together, these processes contribute to the formation and the degradation of the Earth's critical zone and to the biogeochemical cycles of elements. In young orogenic belts, climate and tectonic subsidence control together the rate of these matter balance budget and their relationships. The climate gradient observed along the Andean basin in both the Pacific and the Atlantic slopes offers the opportunity to explore the role of the climate variability on the erosion and weathering budgets and on their reciprocal relationships. Based on the SNO-HYBAM Monitoring Program database (Geodynamical, hydrological and Biogeochemical control of erosion/weathering and material transport in the Amazon, Orinoco and Congo basins), we explore the relationship between climate, the lithology, silicate weathering rates and physical erosion rates along a runoff gradient in Andean basins of the Amazon River (13 gauging stations) and Pacific drainage rivers (5 gauging stations). No homogenous relationship between erosion rates (E) and chemical weathering rate (W) is observed over the monitored basins. Only the volcanic basins respond to a global relationship defined in the literature while the other basins budget may depend on anthropogenic interferences on erosion/sedimentation budget, a lithology dependence of the W-E relationship parameters or/and on the existence of a threshold in this relationship. The results presented here contribute to better understanding the role of mountains belt formation in the biogeochemical cycles and in particular in the long-term carbon cycle.Your presentation type preference.

  2. Grasslands, silicate weathering and diatoms: Cause and effect

    SciTech Connect

    Johansson, A.K. . Dept. of Geological Sciences)

    1993-03-01

    Diatoms are silica-limited, photosynthetic, single-celled eukaryotes that today occupy a wide variety of habitats both in freshwater and marine environments. Ultimately the silica they use is derived from the weathering of silicates on land. Although marine diatoms first appear in the Jurassic, the fossil record shows a remarkable correlation between the Mid-Miocene appearance of widespread grasslands and the drastic increase in diatom-rich deposits in freshwater, as well as in marine environments throughout the world. Grasses actively weather silicates, accumulating soluble silica into their leaves. Decomposing grasses release this soluble silica into the soil from whence it is transported into lakes and oceans and made available to diatoms. Grasses also probably increased chemical weathering, and hence the release of soluble silica, in previously weakly vegetated semi-arid areas. Increased weathering of silicates also led to cooler climates as evidenced by the Mid-Miocene [delta][sup 18]O record. The author suggests that the Tertiary expansion of grasslands is responsible for the explosive increase in diversity and abundance of diatoms in the oceans and freshwaters of the Mid-Miocene.

  3. Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China.

    PubMed

    Song, Zhaoliang; Liu, Hongyan; Strömberg, Caroline A E; Wang, Hailong; Strong, Peter James; Yang, Xiaomin; Wu, Yuntao

    2017-09-29

    During silicate weathering, atmospheric carbon dioxide (CO2) is consumed and base cations are released from silicate minerals to form carbonate and bicarbonate ions, which are finally deposited as carbonate complexes. Continental silicate weathering constitutes a stable carbon sink that is an important influence on long-term climate change, as it sequesters atmospheric carbon dioxide at a million-year time scale. Traditionally, CO2 sequestered through silicate weathering is estimated by measuring the flux of the base cations to watersheds. However, plants also absorb considerable amounts of base cations. Plant biomass is often removed from ecosystems during harvesting. The base cations are subsequently released after decomposition of the harvested plant materials, and thereby enhance CO2 consumption related to weathering. Here, we analyze plant biomass storage-harvest fluxes (production and removal of biomass from forests) of base cations in forests across China to quantify the relative contribution of forest trees to the terrestrial weathering-related carbon sink. Our data suggest that the potential CO2 consumption rate for biomass-related silicate weathering (from the combined action of with afforestation/reforestation, controlled harvesting and rock powder amendment) in Chinese forests is 7.9±4.1Tg CO2yr(-1). This represents ~34% of the chemical weathering rate in China. Globally, forests may increase CO2 sequestration through biologically-mediated silicate weathering by ~32%. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Weather Balloon Ascent Rate

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  5. An Evaluation of Ethyl Silicate-Based Grouts for Weathered Silicate Stones

    NASA Astrophysics Data System (ADS)

    Dolph, Brittany Helen

    Culturally significant monuments made of weathered siliceous stone often display sub-surface condition issues such as cracks and voids. These issues require grouts that are ideally compatible with the composition and properties of the substrate. Based on the successful application of ethyl silicates as consolidants in recent literature, this study examines possible formulation pathways for the development of a grout incorporating ethyl silicate. Tetraethylorthosilicate (TEOS), dibutyltin dilaurate (DBTL) as a catalyst, silicone oil (PDMS), various grades of ground quartz, sepiolite, and hollow glass spheres were used in differing concentrations to create samples. These were visually and physically assessed on workability, separation, shrinkage, cracking, strength, and flexibility. Quantitative analysis was performed on selected formulations using UV-Vis-NIR reflectance spectroscopy in coordination with a weight loss experiment to investigate kinetics, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Successful formulations tended to include oligomeric TEOS, crushed quartz of mixed grades, sepiolite powder, and PDMS, and show promise for future investigations.

  6. Lithium isotope ratios measured in scottish rivers and weathering of old silicate rocks.

    NASA Astrophysics Data System (ADS)

    Vigier, N.; Reynolds, B. C.; Burton, K. W.; Rogers, N. W.

    2003-04-01

    Silicate weathering is often considered as one of the most important sinks of atmospheric CO2 over geological timescales, but the palaeovariations of the silicate weathering rates are still debated and depend on the reliability of the chosen proxies. It has recently been suggested that Li isotopes significantly fractionate during continental erosion (Huh et al., 1999), and that 7Li measured in large rivers could mainly reflect the degree of silicate weathering at large scales. Two main reasons have been proposed, the high Li contents in silicate minerals relative to carbonates, and the preferential uptake of 6Li by secondary clay minerals. Nevertheless, very few measurements have been made either on source minerals or on weathering products. In principle, the study of small silicated catchments should allow us to better constrain the factors controlling the fractionation of Li isotopes. A previous study has shown that 7Li measured in Icelandic basaltic rivers displays a large range (from 10 to 25.3) which correlates well with estimated weathering rates (Gislason et al., 1996). Here we present results for about 15 rivers located in Northern Scotland, which show little evidence for anthropogenic contamination, and draining mainly old silicated terrains (>500Ma). These rivers have been sampled twice, in May and in October 2002, in order to constrain the seasonal variations of the Li signature. Major and trace elements have also been measured, as well as the dissolved organic carbon. All rivers have very low Ca/Na and Mg/Na ratios (average of 0.38 and 0.17 respectively), that corresponds to the end-member previously defined for silicate rivers (Gaillardet et al, 1999), suggesting negligible contribution from carbonate dissolution. Li contents range between 0.2 and 1.2 ppb and are significantly greater than in Iceland rivers (up to 0.09 ppb). First results for the May 2002 samples show a restricted range in 7Li (from 16 to 22

  7. Negative CO2 emissions via enhanced silicate weathering in coastal environments.

    PubMed

    Meysman, Filip J R; Montserrat, Francesc

    2017-04-01

    Negative emission technologies (NETs) target the removal of carbon dioxide (CO2) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5-2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to exploit the natural process of mineral weathering for the removal of CO2 from the atmosphere. Here, we discuss the potential of applying ESW in coastal environments as a climate change mitigation option. By deliberately introducing fast-weathering silicate minerals onto coastal sediments, alkalinity is released into the overlying waters, thus creating a coastal CO2 sink. Compared with other NETs, coastal ESW has the advantage that it counteracts ocean acidification, does not interfere with terrestrial land use and can be directly integrated into existing coastal management programmes with existing (dredging) technology. Yet presently, the concept is still at an early stage, and so two major research challenges relate to the efficiency and environmental impact of ESW. Dedicated experiments are needed (i) to more precisely determine the weathering rate under in situ conditions within the seabed and (ii) to evaluate the ecosystem impacts-both positive and negative-from the released weathering products. © 2017 The Authors.

  8. Negative CO2 emissions via enhanced silicate weathering in coastal environments

    PubMed Central

    Montserrat, Francesc

    2017-01-01

    Negative emission technologies (NETs) target the removal of carbon dioxide (CO2) from the atmosphere, and are being actively investigated as a strategy to limit global warming to within the 1.5–2°C targets of the 2015 UN climate agreement. Enhanced silicate weathering (ESW) proposes to exploit the natural process of mineral weathering for the removal of CO2 from the atmosphere. Here, we discuss the potential of applying ESW in coastal environments as a climate change mitigation option. By deliberately introducing fast-weathering silicate minerals onto coastal sediments, alkalinity is released into the overlying waters, thus creating a coastal CO2 sink. Compared with other NETs, coastal ESW has the advantage that it counteracts ocean acidification, does not interfere with terrestrial land use and can be directly integrated into existing coastal management programmes with existing (dredging) technology. Yet presently, the concept is still at an early stage, and so two major research challenges relate to the efficiency and environmental impact of ESW. Dedicated experiments are needed (i) to more precisely determine the weathering rate under in situ conditions within the seabed and (ii) to evaluate the ecosystem impacts—both positive and negative—from the released weathering products. PMID:28381634

  9. Silicate Mineral Weathering Reponses to Increasing Atmospheric CO2, Plants and Climate Evolution

    NASA Astrophysics Data System (ADS)

    Banwart, S. A.; Taylor, L.; Leake, J.; Beerling, D.

    2009-04-01

    Mathematical modelling results of weathering processes in modern soils shed light on the role of land plants in weathering processes. Application to catchments in the boreal coniferous region of northern Europe demonstrates a stabilising biological feedback mechanism between hypothesised increasing atmospheric CO2 levels and silicate mineral weathering rates. The modelled feedback response agrees within a factor of 2 to that calculated by a weathering feedback function of the type generally used in global geochemical carbon cycle models of the Earth's Phanerozoic atmospheric CO2 history. Sensitivity analysis to model parameters indicate that the weathering feedback response is particularly sensitive to soil structure; its porosity, depth and water content. This suggests that the role of land plants to influence these soil characteristics are an important factor in the feedback to atmospheric CO2 levels. The model yields a relatively low sensitivity of soil pH to plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The conceptual model of linkages between biological, geochemical and hydrological processes is based on the influence of land plants and their associated soil microbial populations to influence the dynamics of nutrient elements in soil pore waters and the resulting impact of soil pore water composition on silicate mineral weathering rates. The translation to the mathematical description of these processes is through application of mass and flux balance from first principles. Sources and sinks for elements are based on stoichiometric mass balance equations that described coupled element transformations during biomass production and decomposition, microbial decomposition of dissolved organic carbon and element mass transfer

  10. Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; Hensen, Christian; Schmidt, Mark; Geersen, Jacob

    2013-01-01

    In order to investigate how submarine weathering processes may affect the water balance of sediments at convergent plate margins, six sediment cores were retrieved off Central Chile at water depth between ˜800 and 4000 m. The sediment solid phase was analyzed for its major element composition and the pore fluids were analyzed for dissolved sulfate, sulfide, total alkalinity, major cations, chloride, bromide, iodide, hydrocarbons as well as the carbon isotopic composition of methane. Because of negligible weathering on land, surface sediments off Central Chile are rich in reactive silicate minerals and have a bulk composition similar to volcanic rocks in the adjacent Andes. Deep-sourced fluxes of alkalinity, cations and chloride indicate that silicate minerals are subject to weathering in the forearc during burial. Comparison of deep-sourced signals with data from nearby Ocean Drilling Program Sites reveals two different types of weathering processes: In shallow (tens of meters), methanic sediments of slope basins with high organic carbon burial rates, reactive silicate minerals undergo incongruent dissolution through reaction with CO2 from methanogenesis. At greater burial depth (hundreds of meters), silicate weathering is dominated by authigenic smectite formation. This process is accompanied by uptake of water into the clay interlayers thus leading to elevated salinities in the surrounding pore water. Deep-seated smectite formation is more widespread than shallow silicate dissolution, as it is independent from the availability of CO2 from methanogenesis. Although solute transport is not focused enough to form cold seeps in the proper sense, tectonically induced, diffuse fluid flow transfers the deep-seated signal of smectite formation into the shallow sediments. The temperature-controlled conversion of smectite to illite is considered the most important dehydration process in marine forearc environments (depth of kilometers). However, in agreement with other

  11. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Wan, Shiming; Clift, Peter D.; Zhao, Debo; Hovius, Niels; Munhoven, Guy; France-Lanord, Christian; Wang, Yinxi; Xiong, Zhifang; Huang, Jie; Yu, Zhaojie; Zhang, Jin; Ma, Wentao; Zhang, Guoliang; Li, Anchun; Li, Tiegang

    2017-03-01

    Atmospheric CO2 and global climate are closely coupled. Since 800 ka CO2 concentrations have been up to 50% higher during interglacial compared to glacial periods. Because of its dependence on temperature, humidity, and erosion rates, chemical weathering of exposed silicate minerals was suggested to have dampened these cyclic variations of atmospheric composition. Cooler and drier conditions and lower non-glacial erosion rates suppressed in situ chemical weathering rates during glacial periods. However, using systematic variations in major element geochemistry, Sr-Nd isotopes and clay mineral records from Ocean Drilling Program Sites 1143 and 1144 in the South China Sea spanning the last 1.1 Ma, we show that sediment deposited during glacial periods was more weathered than sediment delivered during interglacials. We attribute this to subaerial exposure and weathering of unconsolidated shelf sediments during glacial sealevel lowstands. Our estimates suggest that enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands can account for ∼9% of the carbon dioxide removed from the atmosphere during the glacial and thus represent a significant part of the observed glacial-interglacial variation of ∼80 ppmv. As a result, if similar magnitudes can be identified in other tropical shelf-slope systems, the effects of increased sediment exposure and subsequent silicate weathering during lowstands could have potentially enhanced the drawdown of atmospheric CO2 during cold stages of the Quaternary. This in turn would have caused an intensification of glacial cycles.

  12. Negligible glacial-interglacial variation in continental chemical weathering rates.

    PubMed

    Foster, Gavin L; Vance, Derek

    2006-12-14

    Chemical weathering of the continents is central to the regulation of atmospheric carbon dioxide concentrations, and hence global climate. On million-year timescales silicate weathering leads to the draw-down of carbon dioxide, and on millennial timescales chemical weathering affects the calcium carbonate saturation state of the oceans and hence their uptake of carbon dioxide. However, variations in chemical weathering rates over glacial-interglacial cycles remain uncertain. During glacial periods, cold and dry conditions reduce the rate of chemical weathering, but intense physical weathering and the exposure of carbonates on continental shelves due to low sea levels may increase this rate. Here we present high-resolution records of the lead isotope composition of ferromanganese crusts from the North Atlantic Ocean that cover the past 550,000 years. Combining these records with a simple quantitative model of changes in the lead isotope composition of the deep North Atlantic Ocean in response to chemical weathering, we find that chemical weathering rates were two to three times lower in the glaciated interior of the North Atlantic Region during glacial periods than during the intervening interglacial periods. This decrease roughly balances the increase in chemical weathering caused by the exposure of continental shelves, indicating that chemical weathering rates remained relatively constant on glacial-interglacial timescales. On timescales of more than a million years, however, we suggest that enhanced weathering of silicate glacial sediments during interglacial periods results in a net draw-down of atmospheric carbon dioxide, creating a positive feedback on global climate that, once initiated, promotes cooling and further glaciation.

  13. Lithium isotopes in speleothems: Temperature-controlled variation in silicate weathering during glacial cycles

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, Philip A. E.; Vaks, Anton; Bar-Matthews, Miryam; Ayalon, Avner; Jacob, Ezekiel; Henderson, Gideon M.

    2017-07-01

    Terrestrial chemical weathering of silicate minerals is a fundamental component of the global cycle of carbon and other elements. Past changes in temperature, rainfall, ice cover, sea-level and physical erosion are thought to affect weathering but the relative impact of these controls through time remains poorly constrained. This problem could be addressed if the nature of past weathering could be constrained at individual sites. In this study, we investigate the use of speleothems as local recorders of the silicate weathering proxy, Li isotopes. We analysed δ7 Li and [Li] in speleothems that formed during the past 200 ka in two well-studied Israeli caves (Soreq and Tzavoa), as well as in the overlying soils and rocks. Leaching and mass balance of these soils and rocks show that Li is dominantly sourced from weathering of the overlying aeolian silicate soils. Speleothem δ7 Li values are ubiquitously higher during glacials (∼23‰) than during interglacials (∼10‰), implying more congruent silicate weathering during interglacials (where ;congruent; means a high ratio of primary mineral dissolution to secondary mineral formation). These records provide information on the processes controlling weathering in Israel. Consideration of possible processes causing this change of weathering congruency indicates a primary role for temperature, with higher temperatures causing more congruent weathering (lower δ7Lispeleo). The strong relationship observed between speleothem δ7 Li and climate at these locations suggests that Li isotopes may be a powerful tool with which to understand the local controls on weathering at other sites, and could be used to assess the distribution of weathering changes accompanying climate change, such as that of Pleistocene glacial cycles.

  14. Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change

    NASA Astrophysics Data System (ADS)

    Banwart, Steven A.; Berg, Astrid; Beerling, David J.

    2009-12-01

    A mathematical model describes silicate mineral weathering processes in modern soils located in the boreal coniferous region of northern Europe. The process model results demonstrate a stabilizing biological feedback mechanism between atmospheric CO2 levels and silicate weathering rates as is generally postulated for atmospheric evolution. The process model feedback response agrees within a factor of 2 of that calculated by a weathering feedback function of the type generally employed in global geochemical carbon cycle models of the Earth's Phanerozoic CO2 history. Sensitivity analysis of parameter values in the process model provides insight into the key mechanisms that influence the strength of the biological feedback to weathering. First, the process model accounts for the alkalinity released by weathering, whereby its acceleration stabilizes pH at values that are higher than expected. Although the process model yields faster weathering with increasing temperature, because of activation energy effects on mineral dissolution kinetics at warmer temperature, the mineral dissolution rate laws utilized in the process model also result in lower dissolution rates at higher pH values. Hence, as dissolution rates increase under warmer conditions, more alkalinity is released by the weathering reaction, helping maintain higher pH values thus stabilizing the weathering rate. Second, the process model yields a relatively low sensitivity of soil pH to increasing plant productivity. This is due to more rapid decomposition of dissolved organic carbon (DOC) under warmer conditions. Because DOC fluxes strongly influence the soil water proton balance and pH, this increased decomposition rate dampens the feedback between productivity and weathering. The process model is most sensitive to parameters reflecting soil structure; depth, porosity, and water content. This suggests that the role of biota to influence these characteristics of the weathering profile is as important, if not

  15. Glacial-interglacial variability of atmospheric CO2 due to changing continental silicate rock weathering: A model study

    NASA Astrophysics Data System (ADS)

    Munhoven, Guy; FrançOis, Louis M.

    1996-09-01

    An 11-box model of the oceanic carbon cycle including sedimentary processes is used to explore the role chemical weathering of continental silicate rocks might play in driving atmospheric CO2 levels on glacial-interglacial timescales. Histories for the consumption of CO2 by silicate rock weathering processes are derived from the marine Ge/Si record. Taking the major uncertainties in the knowledge of the Ge and Si cycles into account, several histories for the evolution of the riverine dissolved silica fluxes are calculated from this record. The investigation of the systematics between riverine dissolved silica and bicarbonate fluxes under different weathering regimes leads us to the tentative conclusion that although there is no correlation between dissolved silica and total bicarbonate concentrations in the major rivers, there may exist a negative correlation between weathering intensity and the ratio of dissolved silica to bicarbonate derived from silicate weathering alone. With this correlation as a working hypothesis, it is possible to interpret the dissolved silica fluxes in terms of equivalent CO2 consumption rates. The calculated histories indicate that glacial rates of CO2 consumption by chemical silicate rock weathering could have been twice, and possibly up to 3.5 times, as high as they are today. When used to force the carbon cycle model, they are responsible for glacial-interglacial pCO2 variations in the atmosphere of typically 50-60 ppm and up to 95-110 ppm. These variations are superimposed to a basic oscillation of 60 ppm generated by the model, mainly in response to coral reef buildup and erosion processes. The total pCO2 signal has an amplitude of about 80-90 ppm and up to 125-135 ppm. Although these large amplitudes indicate that silicate weathering processes should be taken into account when studying glacial-interglacial changes of CO2 in the atmosphere, it also raises new problems, such as too high CO2 levels during the period from 110-70 kyr B

  16. Microbial control of silicate weathering in organic-rich ground water

    USGS Publications Warehouse

    Hiebert, Franz K.; Bennett, Philip C.

    1992-01-01

    An in situ microcosm study of the influence of surface-adhering bacteria on silicate diagenesis in a shallow petroleum-contaminated aquifer showed that minerals were colonized by indigenous bacteria and chemically weathered at a rate faster than theoretically predicted. Feldspar and quartz fragments were placed in anoxic, organic-rich ground water, left for 14 months, recovered, and compared to unreacted controls with scanning electron microscopy. Ground-water geochemistry was characterized before and after the experiment. Localized mineral etching probably occurred in a reaction zone at the bacteria-mineral interface where high concentrations of organic acids, formed by bacteria during metabolism of hydrocarbon, selectively mobilized silica and aluminum from the mineral surface.

  17. Assessing Silicate Weathering in Permafrost-Dominated Catchments Using Lithium Isotopes: The Lena River, Siberia

    NASA Astrophysics Data System (ADS)

    Murphy, M. J.; Pogge von Strandmann, P.; Porcelli, D.; Katchinoff, J. A.; Moreras Martí, A.; Hirst, C. A.; Andersson, P. S.; Maximov, T. C.

    2015-12-01

    -dominated region, and provides rates on how quickly water-rock interaction can affect silicate weathering.

  18. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin

    USDA-ARS?s Scientific Manuscript database

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologi...

  19. Silicate versus carbonate weathering in Iceland: New insights from Ca isotopes

    NASA Astrophysics Data System (ADS)

    Jacobson, Andrew D.; Grace Andrews, M.; Lehn, Gregory O.; Holmden, Chris

    2015-04-01

    Several studies have measured riverine fluxes of Ca and carbonate alkalinity in Iceland with the aim of quantifying the role of basalt weathering in the long-term carbon cycle. A major assumption is that all of the Ca and alkalinity originates from the dissolution of Ca-bearing silicate minerals, such as plagioclase and clinopyroxene. However, hydrothermal calcite occurs throughout Iceland, and even trace levels are expected to impact river geochemistry owing to the mineral's high solubility and fast dissolution rate. To test this hypothesis, we used a new, high-precision Ca isotope MC-TIMS method (δ44/40Ca; 2σSD = ± 0.04 ‰) to trace sources of Ca in Icelandic rivers. We report elemental and Ca isotope data for rivers, high- and low-temperature groundwater, basalt, hydrothermal calcite (including Iceland Spar), and stilbite and heulandite, which are two types of zeolites commonly formed during low-grade metamorphism of basalt. In agreement with previous research, we find that rivers have higher δ44/40Ca values than basalt, with a maximum difference of ∼0.40‰. This difference may reflect isotope fractionation in the weathering zone, i.e., preferential uptake of 40Ca during clay mineral formation, adsorption, and other geochemical processes that cycle Ca. However, calcite δ44/40Ca values are also up to ∼0.40‰ higher than bedrock values, and on a diagram of δ44/40Ca versus Sr/Ca, nearly all waters plot within a plausible mixing domain bounded by the measured compositions of basalt and calcite, with glacial rivers plotting closer to calcite than non-glacial rivers. Calcite and heulandite form during hydrothermal alteration of basalt in the deep lava pile and often occur together in metabasalts now exposed at the surface. Because heulandite δ44/40Ca values are ∼1-2‰ lower than basalt, we suggest that 40Ca uptake by heudlandite explains the relatively high δ44/40Ca values of calcite and that calcite weathering in turn elevates riverine δ44/40Ca

  20. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fortner, S. K.; Lyons, W. B.; Carey, A. E.; Shipitalo, M. J.; Welch, S. A.; Welch, K. A.

    2012-03-01

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3-, and total alkalinity were measured in water samples collected from five small (0.0065 to 0.383 km2) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ year stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (2210-3080 kg km-2 yr-1) were similar to the median of annual averages between 1979-2009 for the much larger Ohio-Tennessee River Basin (2560 kg km-2 yr-1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<530 kg km-2 yr-1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2++Mg2+)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer

  1. The time scale of the silicate weathering negative feedback on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Colbourn, G.; Ridgwell, A.; Lenton, T. M.

    2015-05-01

    The ultimate fate of CO2 added to the ocean-atmosphere system is chemical reaction with silicate minerals and burial as marine carbonates. The time scale of this silicate weathering negative feedback on atmospheric pCO2 will determine the duration of perturbations to the carbon cycle, be they geological release events or the current anthropogenic perturbation. However, there has been little previous work on quantifying the time scale of the silicate weathering feedback, with the primary estimate of 300-400 kyr being traceable to an early box model study by Sundquist (1991). Here we employ a representation of terrestrial rock weathering in conjunction with the "GENIE" (Grid ENabled Integrated Earth system) model to elucidate the different time scales of atmospheric CO2 regulation while including the main climate feedbacks on CO2 uptake by the ocean. In this coupled model, the main dependencies of weathering—runoff, temperature, and biological productivity—were driven from an energy-moisture balance atmosphere model and parameterized plant productivity. Long-term projections (1 Myr) were conducted for idealized scenarios of 1000 and 5000 PgC fossil fuel emissions and their sensitivity to different model parameters was tested. By fitting model output to a series of exponentials we determined the e-folding time scale for atmospheric CO2 drawdown by silicate weathering to be ˜240 kyr (range 170-380 kyr), significantly less than existing quantifications. Although the time scales for reequilibration of global surface temperature and surface ocean pH are similar to that for CO2, a much greater proportion of the peak temperature anomaly persists on this longest time scale; ˜21% compared to ˜10% for CO2.

  2. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering.

    PubMed

    Misra, Sambuddha; Froelich, Philip N

    2012-02-17

    Weathering of uplifted continental rocks consumes carbon dioxide and transports cations to the oceans, thereby playing a critical role in controlling both seawater chemistry and climate. However, there are few archives of seawater chemical change that reveal shifts in global tectonic forces connecting Earth ocean-climate processes. We present a 68-million-year record of lithium isotopes in seawater (δ(7)Li(SW)) reconstructed from planktonic foraminifera. From the Paleocene (60 million years ago) to the present, δ(7)Li(SW) rose by 9 per mil (‰), requiring large changes in continental weathering and seafloor reverse weathering that are consistent with increased tectonic uplift, more rapid continental denudation, increasingly incongruent continental weathering (lower chemical weathering intensity), and more rapid CO(2) drawdown. A 5‰ drop in δ(7)Li(SW) across the Cretaceous-Paleogene boundary cannot be produced by an impactor or by Deccan trap volcanism, suggesting large-scale continental denudation.

  3. Initial effects of vegetation on Hawaiian basalt weathering rates

    SciTech Connect

    Cochran, M.F.; Berner, R.A. )

    1992-01-01

    Weathering of Ca and Mg silicates on land and ensuing precipitation and burial of Ca and Mg carbonates in marine sediments is the principal sink for carbon dioxide from the atmosphere/ocean system on geologic time scales. Model calculations of ancient atmospheric CO[sub 2] partial pressure depend strongly on the authors assumptions about the enhancement of silicate weathering rates first by primitive terrestrial biota, then by the appearance and evolution of the vascular plants. Aa and pahoehoe basalts were collected from Mauna Loa and Kilauea volcanoes on the island of Hawaii. Flows ranged in age (one year to several thousand years) and in ambient climate. Where possible, each flow was sampled beneath a suite of current plant covers: none, lichens, and higher plants. Rocks were embedded in epoxy to preserve the plant-rock interface, then sectioned and subjected to electron probe microanalysis. During initial weathering, vascular plants appeared to promote congruent dissolution of minerals (particularly olivine and Ca-rich plagioclase) and glass near the surfaces of underlying basalts. In the neighborhood of roots, primary cracks widened with time into networks of open channels. This effect was observed prior to the formation of measurable leached zones in exterior grains and prior to the appearance of secondary minerals. As a result, initial mass loss from young, plant-covered basalts appeared to be up to one or more orders of magnitude greater than from bare-rock controls. Despite earlier reports of substantial enhancement of Hawaiian basalt weathering rates by the lichen Stereocaulon vulcani, weathering observed beneath this lichen was comparable to that of unvegetated rocks.

  4. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Implicit in the mnemonic 'MSATT' (Mars surface and atmosphere through time) is that rates of surface processes on Mars through time should be investigated, including studies of the kinetics and mechanism of oxidative weathering reactions occurring in the Martian regolith. Such measurements are described. Two major elements analyzed in the Viking Lander XRF experiment that are most vulnerable to atmospheric oxidation are iron and sulfur. Originally, they occurred as Fe(2+)-bearing silicate and sulfide minerals in basaltic rocks on the surface of Mars. However, chemical weathering reactions through time have produced ferric- and sulfate-bearing assemblages now visible in the Martian regolith. Such observations raise several question about: (1) when the oxidative weathering reactions took place on Mars; (2) whether or not the oxidized regolith is a fossilized remnant of past weathering processes; (3) deducting chemical interactions of the ancient Martian atmosphere with its surface from surviving phases; (4) possible weathering reactions still occurring in the frozen regolith; and (5) the kinetics and mechanism of past and present-day oxidative reactions on Mars. These questions may be addressed experimentally by studying reaction rates of dissolution and oxidation of basaltic minerals, and by identifying reaction products forming on the mineral surfaces. Results for the oxidation of pyrrhotite and dissolved ferrous iron are reported.

  5. 40K-40Ca systematics as a tracer of silicate weathering in the Himalayas

    NASA Astrophysics Data System (ADS)

    Davenport, J.; Caro, G.; France-Lanord, C.

    2015-12-01

    Increased weathering resulting from the uplift of the Himalayan Mountains has been cited as one cause (among others) of late Cenozoic cooling. Orogenic uplift generally results in the development of high relief and enhanced erosion, which in turn induces rapid chemical weathering and uptake of atmospheric CO2. Tracing these processes can be accomplished using techniques such as the budget of major element and/or Sr isotopes of the dissolved load. However, in the Himalaya, Sr isotopic compositions are extreme even in carbonate phases, making it difficult to produce realistic estimates of silicate and carbonate inputs to Himalayan rivers. In this study, we explore the potential of the 40K-40Ca system to quantify the relative contributions of silicate and carbonate weathering to river dissolved loads. To this end, we analysed a suite of 40 rivers draining the main litho-tectonic units of the Himalaya, sediments, bedrock, mineral separates and soil and gravel. Our results show that Himalayan carbonates exhibit no radiogenic 40Ca excess despite highly variable 87Sr/86Sr signatures (0.73-0.85). The silicate fraction of bedload sediments is variably radiogenic (+1 to +4), with ɛ40Ca correlating with the 87Sr/86Sr ratio. Analyses of plagioclase, biotite and muscovite separates from a HHC gneiss and greywacke show homogeneous ɛ40Ca despite highly variable K/Ca ratios, indicating recent metamorphic equilibration on a mineral scale. Thus, incongruent weathering of high K/Ca minerals should not represent a significant factor when considering the transfer of radiogenic calcium to the dissolved load. The ɛ40Ca signatures of dissolved river material are significantly influenced by silicate lithologies, and range from +0.1 in carbonate dominated catchments to >+2 ɛ-units in rivers draining predominantly silicate catchments. The silicate contributions estimated from our 40Ca results are in line with major element budgets when considering small catchments but largely exceeds

  6. Climatic and landscape controls on water transit times and silicate mineral weathering in the critical zone

    NASA Astrophysics Data System (ADS)

    Zapata-Rios, Xavier; McIntosh, Jennifer; Rademacher, Laura; Troch, Peter A.; Brooks, Paul D.; Rasmussen, Craig; Chorover, Jon

    2015-08-01

    The critical zone (CZ) can be conceptualized as an open system reactor that is continually transforming energy and water fluxes into an internal structural organization and dissipative products. In this study, we test a controlling factor on water transit times (WTT) and mineral weathering called Effective Energy and Mass Transfer (EEMT). We hypothesize that EEMT, quantified based on local climatic variables, can effectively predict WTT within—and mineral weathering products from—the CZ. This study tests whether EEMT or static landscape characteristics are good predictors of WTT, aqueous phase solutes, and silicate weathering products. Our study site is located around Redondo Peak, a rhyolitic volcanic resurgent dome, in northern New Mexico. At Redondo Peak, springs drain slopes along an energy gradient created by differences in terrain aspect. This investigation uses major solute concentrations, the calculated mineral mass undergoing dissolution, and the age tracer tritium and relates them quantitatively to EEMT and landscape characteristics. We found significant correlations between EEMT, WTT, and mineral weathering products. Significant correlations were observed between dissolved weathering products (Na+ and DIC), 3H concentrations, and maximum EEMT. In contrast, landscape characteristics such as contributing area of spring, slope gradient, elevation, and flow path length were not as effective predictive variables of WTT, solute concentrations, and mineral weathering products. These results highlight the interrelationship between landscape, hydrological, and biogeochemical processes and suggest that basic climatic data embodied in EEMT can be used to scale hydrological and hydrochemical responses in other sites.

  7. Dual-Rate Transmission Reduces Weather Effects

    NASA Technical Reports Server (NTRS)

    Posner, E. C.

    1984-01-01

    Scheme ensures maximum data received on average. Dual-rate scheme for maximizing data returned during spacecraft mission, adaptable, as is or with modifications, to high-frequency terrestrial data transmission. Data rate fixed in advance at minimum value guarantees reasonable prospect of success during bad weather. Dualrate strategy yields net data rate 2.5 times best achievable with single transmission rate.

  8. Dual-Rate Transmission Reduces Weather Effects

    NASA Technical Reports Server (NTRS)

    Posner, E. C.

    1984-01-01

    Scheme ensures maximum data received on average. Dual-rate scheme for maximizing data returned during spacecraft mission, adaptable, as is or with modifications, to high-frequency terrestrial data transmission. Data rate fixed in advance at minimum value guarantees reasonable prospect of success during bad weather. Dualrate strategy yields net data rate 2.5 times best achievable with single transmission rate.

  9. Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

    NASA Astrophysics Data System (ADS)

    Fortner, S. K.; Lyons, W. B.; Carey, A. E.; Shipitalo, M. J.; Welch, S. A.; Welch, K. A.

    2011-09-01

    Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3-, and total alkalinity were measured in water samples collected from five small (0.65 to 38.3 ha) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ yr stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (22.1-30.8 kg ha-1 a-1) were similar to the median of annual averages between 1979-2009 for the much larger Ohio-Tennessee River Basin (25.6 kg ha-1 a-1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<5.3 kg ha-1 a-1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2+ + Mg2)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer additions

  10. Hydrochemistry, weathering and weathering rates on Madeira island

    NASA Astrophysics Data System (ADS)

    Van der Weijden, Cornelis H.; Pacheco, Fernando A. L.

    2003-12-01

    Madeira island consists of Miocene to Pleistocene lavas and pyroclasts. Major rock types are alkali-basalts, basanites and hawaiites; principal soil types are leptosols, andosols and cambisols. Our main objective was to link the chemistry of ground waters to weathering reactions and rates. We collected 40 shallow groundwater samples, remote from human activities. With a few exceptions, the ranges of electrical conductivities were 29-176 μS/cm and of pH 5.8-8.5. The calculated PCO 2 was generally higher than the atmospheric value. The contribution of sea salt to the water chemistry was 30±9%. Corrected for sea salt, the cation concentrations (in meq/l) decrease in the order Ca 2+≈Mg 2+>Na +>>>K +. The concentrations of SO 42- and NO 3- are very low. We calculated that the total annual chemical denudation rate in the studied area amounts to 37±12 g/m 2, consuming 0.86±0.38 mol CO 2/m 2. To achieve our main objective, a set of mole balance equations— ( AX= B)—was used, where A is a composite matrix of coefficients, including ratios between stoichiometric coefficients as determined by the weathering reactions and coefficients accounting for unconstrained contributions, B is the vector with a water composition, and X is the set of mole fractions of dissolved primary minerals plus the residual concentrations of the unconstrained contributions. Olivine (Ol), pyroxene (Py) and plagioclase (Pl) were considered to be the major primary minerals, and smectite, vermiculite, halloysite, allophane, gibbsite and hematite the secondary minerals in the weathering reactions. Using iterative procedures, whereby mixtures of secondary products as well as the composition of plagioclase are allowed to change, we selected one best-fit set of weathering reactions for each spring by checking all possible solutions of the mole balances against predefined boundary conditions. At odds with Goldich (1938) sequence, our model results indicate—for most best-fit sets—a weathering rate

  11. Isolation and the interaction between a mineral-weathering Rhizobium tropici Q34 and silicate minerals.

    PubMed

    Wang, Rong Rong; Wang, Qi; He, Lin Yan; Qiu, Gang; Sheng, Xia Fang

    2015-05-01

    The purposes of this study were to isolate and evaluate the interaction between mineral-weathering bacteria and silicate minerals (feldspar and biotite). A mineral-weathering bacterium was isolated from weathered rocks and identified as Rhizobium tropici Q34 based on 16S rRNA gene sequence analysis. Si and K concentrations were increased by 1.3- to 4.0-fold and 1.1- to 1.7-fold in the live bacterium-inoculated cultures compared with the controls respectively. Significant increases in the productions of tartaric and succinic acids and extracellular polysaccharides by strain Q34 were observed in cultures with minerals. Furthermore, significantly more tartaric acid and polysaccharide productions by strain Q34 were obtained in the presence of feldspar, while better growth and more citric acid production of strain Q34 were observed in the presence of biotite. Mineral dissolution experiments showed that the organic acids and polysaccharides produced by strain Q34 were also capable of promoting the release of Si and K from the minerals. The results showed that the growth and metabolite production of strain Q34 were enhanced in the presence of the minerals and different mineral exerted distinct impacts on the growth and metabolite production. The bio-weathering process is probably a synergistic action of organic acids and extracellular polysaccharides produced by the bacterium.

  12. Orbital-scale changes in the global silicate weathering intensity: the Mesozoic bedded chert sequence in Japan as its potential measure

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Tada, R.; Olsen, P. E.

    2012-12-01

    Silicate weathering is one of the most important regulators of the Earth system dynamics through nutrient supply and consumption of atmospheric CO2. However, its changes in the geologic past using geologic records have been controversial due to the lack of appropriate method to quantitatively reconstruct the past global silicate weathering intensity. One way for its measurement would be an estimation of the pelagic biogenic silica burial rate, because the silicate weathering and pelagic biogenic silica burial are the major source and major sink of dissolved silica in the present ocean, respectively (e.g. Treguer et al., 1995). During the Mesozoic, the pelagic bedded chert is the potential major sink of the biogenic silica in the ocean. We therefore first estimate the biogenic silica burial rate for the Inuyama bedded chert in Japan based on the major elements chemical analysis of individual chert and shale beds on the continuous sequence with bed-by-bed resolution. The rhythmically alternation of chert and shale beds were reflected by the precession cycle (Ikeda et al., 2010). By using the chert-shale couplet as time scale, we reconstructed the variation in the biogenic silica burial rate for the Inuyama bedded chert from the Early Triassic to Early Jurassic. Together with paleogeographic distribution of bedded chert compiled from previous studies, the biogenic silica burial rate in the low latitude Panthalassa ocean in the form of bedded chert was several times higher than the biogenic silica burial rate in the modern global ocean (DeMaster, 2002). This result suggests that bedded chert was the major sink of the dissolved silica in the ocean at least during the early Mesozoic. Therefore, the variations in the biogenic silica burial rate for bedded chert should be proportional to the variations in the dissolved silica input to the ocean in time-scales longer than its residence time in the ocean (15 kyr; Treguer et al., 1995). The variation in 87Sr/86Sr isotopic

  13. Differential rates of feldspar weathering in granitic regoliths

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    time. Differential feldspar weathering in the low-permeability Panola bedrock environment is more dependent on relative feldspar solubilities than on differences in kinetic reaction rates. Such weathering is very sensitive to primary and secondary hydraulic conductivities (qp and qs), which control both the fluid volumes passing through the regolith and the thermodynamic saturation of the feldspars. Bedrock permeability is primarily intragranular and is created by internal weathering of networks of interconnected plagioclase phenocrysts. Saprolite permeability is principally intergranular and is the result of dissolution of silicate phases during isovolumetric weathering. A secondary to primary hydraulic conductivity ratio of qs/qp = 150 in the Panola bedrock results in kinetically controlled plagioclase dissolution but thermodynamically inhibited K-feldspar reaction. This result is in accord with calculated chemical saturation states for groundwater sampled in the Panola Granite. In contrast, greater secondary conductivities in the Davis Run saprolite, qs/qp = 800, produces both kinetically controlled plagioclase and K-feldspar dissolution. Faster plagioclase reaction, leading to bedrock weathering in the Panola Granite but not at Davis Run, is attributed to a higher anorthite component of the plagioclase and a wetter and warmer climate. In addition, the Panola Granite has an abnormally high content of disseminated calcite, the dissolution of which precedes the plagioclase weathering front, thus creating additional secondary permeability. Copyright ?? 2001 Elsevier Science Ltd.

  14. 40K-40Ca systematics as a Tracer of Silicate Weathering: A Himalayan case study

    NASA Astrophysics Data System (ADS)

    Davenport, Jesse; Caro, Guillaume; France-Lanord, Christian

    2015-04-01

    This study investigates the use of the 40K-40Ca system as a tracer to better quantify the contributions of silicate and carbonate lithologies in the dissolved load of major Himalayan rivers. Previous work using Sr isotopes as a proxy for silicate weathering has been complicated by the redistribution of radiogenic 87Sr between silicate and carbonate lithologies, particularly in the Lesser Himalaya, where dolomites exhibit 87Sr/86Sr ratios as high as 0.85. The 40Ca signature of carbonates, on the other hand, appears to be remarkably resistant to metamorphism and dolomitization [1]. It was therefore anticipated that the 40K-40Ca system could circumvent issues associated with such secondary events, and yield more robust constraints on the relative contribution of silicate vs. carbonate lithologies in dissolved river loads. The main difficulty in applying the 40K-40Ca decay scheme as a tracer lies in the analytical precision required to measure small variations (~1 ɛ-unit) on the large 40Ca isotope (96.9%). This difficulty can now be overcome using the Finnigan Triton TIMS, which allows measurements of the 40Ca/44Ca ratio with external precision of 0.35 ɛ-unit in multidynamic mode. Using this method, we generated high-precision 40Ca data on carbonates/dolomites, bedload sediments, dissolved load, and clay samples originating from and representing the main litho-tectonic units of the Himalaya. Our results show that metamorphosed dolomites from the Lesser Himalaya (LH) exhibit no radiogenic 40Ca excess despite highly variable 87Sr/86Sr signatures (0.73-0.85). Thus, all Himalayan carbonates appear to be characterized by a homogeneous ɛ40Ca=0. In contrast, silicate material is radiogenic, with ɛ40Ca averaging +1 in the Tethyan Sedimentary Series (TSS), +1.6 in the High Himalaya crystalline (HHC) and +4 ɛ-units in the LH. Results obtained from a series of 35 Himalayan rivers (including the Brahmaputra, Ganga and its main tributaries) show that ɛ40Ca in the

  15. Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada

    NASA Astrophysics Data System (ADS)

    Millot, Romain; Gaillardet, J. érôme; Dupré, Bernard; Allègre, Claude Jean

    2003-04-01

    The main scope of this study is to investigate parameters controlling chemical weathering rates for a large river system submitted to subarctic climate. More than 110 river water samples from the Mackenzie River system (northern Canada) have been sampled and analyzed for major and trace elements and Sr isotopic ratios in the dissolved phase. The three main morphological units are reflected in water chemistry. Rivers from the Canadian Shield are very dilute, dominated by silicate weathering (Millot et al., 2002), whereas the rivers of the Rocky and Mackenzie Mountains as well as the rivers of the sedimentary Interior Platform are dominated by carbonate weathering and are SO 4 rich. Compared to the rivers of the Mackenzie and Rocky Mountains, the rivers of the interior plains are organic, silica, and Na rich and constitute the dominant input term to the Mackenzie River mainstream. Rivers of the Canadian Shield area do not significantly contribute to the Mackenzie River system. Using elemental ratios and Sr isotopic ratios, a mathematical inversion procedure is presented that distinguishes between solutes derived from silicate weathering and solutes derived from carbonate weathering. Carbonate weathering rates are mostly controlled by runoff, which is higher in the mountainous part of the Mackenzie basin. These rates are comparable to the carbonate weathering rates of warmer areas of the world. It is possible that part of the carbonate weathering is controlled by sulfide oxidative weathering, but its extent remains difficult to assess. Conversely to what was stated by Edmond and Huh (1997), overall silicate weathering rates in the Mackenzie basin are low, ranging from 0.13 to 4.3 tons/km 2/yr (Na + K + Ca + Mg), and confirm the negative action of temperature on silicate weathering rates for river basins in cold climates. In contrast to what has been observed in other large river systems such as the Amazon and Ganges Rivers, silicate weathering rates appear 3 to 4

  16. Marine silicate weathering in the anoxic sediment of the Ulleung Basin: Evidence and consequences

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Hoon; Torres, Marta E.; Haley, Brian A.; Ryu, Jong-Sik; Park, Myong-Ho; Hong, Wei-Li; Choi, Jiyoung

    2016-08-01

    Marine silicate weathering (MSiW) in anoxic sediments has been recently shown to be a significant sink for CO2 generated by methanogenesis. Independently, the roles of clay dehydration (illitization) in producing water and driving upward fluid advection have been well established in deep marine sediments, but to date the K+ source required for the reaction has not been established. Here we present chemical and strontium isotope properties of pore fluids from seven cores in the Ulleung Basin, which show radiogenic 87Sr/86Sr values (up to ˜0.71045), very high alkalinity values (maximum ˜130 mM), and enrichment in H4SiO4, Na+, K+, and Mg2+, consistent with MSiW. This reaction consumes CO2, generates alkalinity, and acts as a K+ source for illitization; water released from MSiW-supported illitization drives upward fluid flow. Our results highlight the importance of MSiW along continental margins and its underappreciated role in carbon cycling, silicate diagenesis, and hydrogeology of marine systems.

  17. Silicate Weathering and Pervasive Authigenic Carbonate Precipitation Coupled to Methanogenesis in the Krishna-Godavari Basin, Offshore India

    NASA Astrophysics Data System (ADS)

    Solomon, E. A.; Spivack, A. J.; Kastner, M.; Torres, M. E.

    2014-12-01

    The cycling of methane in marine sediments has been actively studied for the past several decades, but less attention has been paid to the cycling of CO2 produced in methanogenic sediments. The National Gas Hydrate Program Expedition 01 cored 10 sites with the Joides Resolution drillship in the Krishna-Godavari basin, located on the southeastern margin of India. A comprehensive suite of pore water solute concentrations and isotope ratios were analyzed to investigate the distribution and concentration of gas hydrate along the margin, in situ diagenetic and metabolic reactions, fluid migration and flow pathways, and fluid and gas sources. This represents one of the most comprehensive pore water geochemical datasets collected at a continental margin to date, and provides the necessary tracers to better understand the processes and sinks controlling CO2 in margin sediments. Our results show that the CO2 produced through net microbial methanogenesis is effectively neutralized through silicate weathering throughout the sediment column drilled at each site (~100-300 m), buffering the pH of the sedimentary pore water and generating excess alkalinity through the same reaction sequence as continental silicate weathering. Most of the excess alkalinity produced through silicate weathering in the Krishna-Godavari basin is sequestered in Ca- and Fe-carbonates as a result of ubiquitous calcium release from weathering detrital silicates and Fe-reduction within the methanogenic sediments. Formation of secondary hydrous silicates (e.g. smectite) related to incongruent primary silicate dissolution acts as a significant sink for pore water Mg, K, Li, Rb, and B. The consumption of methane through anaerobic oxidation of methane, sequestration of methane in gas hydrate, and sequestration of dissolved inorganic carbon in authigenic carbonates keeps methanogenesis as a thermodynamically feasible catabolic pathway. Our results combined with previous indications of silicate weathering in

  18. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1993-01-01

    A model of acid weathering is proposed for the iron-rich basalts on Mars. Aqueous oxidation of iron sulfides released SO4(2-) and H(+) ions that initiated the dissolution of basaltic ferromagnesian silicates and released Fe(2+) ions. The Fe(2+) ions eventually underwent ferrolysis reactions and produced insoluble hydrous ferric oxide phases. Measurements of the time-dependence of acid weathering reactions show that pyrrhotite is rapidly converted to pyrite plus dissolved ferrous iron, the rate of pyrite formation decreasing with rising pH and lower temperatures. On Mars, oxidation rates of dissolved Fe(2+) ions in equatorial melt-waters in contact with the atmosphere are estimated to lie in the range 0.3-3.0 ppb Fe/yr over the pH range 2 to 6. Oxidation of Fe(2+) ions is estimated to be extremely slow in brine eutectic solutions that might be present on Mars and to be negligible in the frozen regolith.

  19. BET surface area distributions in polar stream sediments: Implications for silicate weathering in a cold-arid environment

    USGS Publications Warehouse

    Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L

    2014-01-01

    BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.

  20. On the silicate crystallinities of oxygen-rich evolved stars and their mass-loss rates

    NASA Astrophysics Data System (ADS)

    Liu, Jiaming; Jiang, B. W.; Li, Aigen; Gao, Jian

    2017-04-01

    For decades ever since the early detection in the 1990s of the emission spectral features of crystalline silicates in oxygen-rich evolved stars, there is a long-standing debate on whether the crystallinity of the silicate dust correlates with the stellar mass-loss rate. To investigate the relation between the silicate crystallinities and the mass-loss rates of evolved stars, we carry out a detailed analysis of 28 nearby oxygen-rich stars. We derive the mass-loss rates of these sources by modelling their spectral energy distributions from the optical to the far-infrared. Unlike previous studies in which the silicate crystallinity was often measured in terms of the crystalline-to-amorphous silicate mass ratio, we characterize the silicate crystallinities of these sources with the flux ratios of the emission features of crystalline silicates to that of amorphous silicates. This does not require the knowledge of the silicate dust temperatures, which are the major source of uncertainties in estimating the crystalline-to-amorphous silicate mass ratio. With a Pearson correlation coefficient of ∼-0.24, we find that the silicate crystallinities and the mass-loss rates of these sources are not correlated. This supports the earlier findings that the dust shells of low mass-loss rate stars can contain a significant fraction of crystalline silicates without showing the characteristic features in their emission spectra.

  1. Does mineral surface area affect chemical weathering rates?

    NASA Astrophysics Data System (ADS)

    Salome Eiriksdottir, Eydis; Reynir Gislason, Sigurdur; Oelkers, Eric H.

    2010-05-01

    Iceland is a basaltic volcanic island representative of the high relief, volcanic and tectonic active islands that contribute over 45% of river suspended material to the oceans worldwide (Milliman and Syvitski, 1992). These islands have enormous mechanical and chemical weathering rates due to the combined effects of high relief, high runoff, the presence of glaciers and easily weathered volcanic rocks, and a lack of sedimentary traps. In total, Iceland delivers 0.7% of the worldwide river suspended matter flux to the ocean, which is approximately one fourth that of Africa (Tómasson, 1990). River suspended matter from volcanic islands is highly reactive in seawater and might play an important role in the global carbon cycle (Gislason et al., 2006). Thus it is important to define and understand the mechanical and chemical weathering rates of these islands. Experimental dissolution experiments performed in the laboratory suggest that chemical weathering rates should be proportional to rock-water interfacial surface area. This hypothesis is tested in the present study through a study of the chemical composition of suspended material collected from rivers located in Northeast Iceland. These rivers were selected for this study because their catchments essentially monolithic, consisting of uniform compositioned and aged basalts. Gaillardet (1999) described weathering intensities of the worlds river systems to be from 1 (low weathering intensity) to 25 (high weathering intensity). These indexes were calculated to be from 1.8 to 3.2 in rivers in NE-Iceland (Eiriksdottir et al., 2008). The surface area of sediments is inversely proportional to particle size; smaller particles have larger specific surface areas. As a result, smaller particles should weather faster. This trend is confirmed by the measured compositions of analyzed suspended material. The concentration of insoluble elements (Zr, Fe, Cu, Ni, Y) is found to increase in the suspended material, whereas the

  2. Rock-weathering rates as functions of time

    USGS Publications Warehouse

    Colman, Steven M.

    1981-01-01

    The scarcity of documented numerical relations between rock weathering and time has led to a common assumption that rates of weathering are linear. This assumption has been strengthened by studies that have calculated long-term average rates. However, little theoretical or empirical evidence exists to support linear rates for most chemical-weathering processes, with the exception of congruent dissolution processes. The few previous studies of rock-weathering rates that contain quantitative documentation of the relation between chemical weathering and time suggest that the rates of most weathering processes decrease with time. Recent studies of weathering rinds on basaltic and andesitic stones in glacial deposits in the western United States also clearly demonstrate that rock-weathering processes slow with time. Some weathering processes appear to conform to exponential functions of time, such as the square-root time function for hydration of volcanic glass, which conforms to the theoretical predictions of diffusion kinetics. However, weathering of mineralogically heterogeneous rocks involves complex physical and chemical processes that generally can be expressed only empirically, commonly by way of logarithmic time functions. Incongruent dissolution and other weathering processes produce residues, which are commonly used as measures of weathering. These residues appear to slow movement of water to unaltered material and impede chemical transport away from it. If weathering residues impede weathering processes then rates of weathering and rates of residue production are inversely proportional to some function of the residue thickness. This results in simple mathematical analogs for weathering that imply nonlinear time functions. The rate of weathering becomes constant only when an equilibrium thickness of the residue is reached. Because weathering residues are relatively stable chemically, and because physical removal of residues below the ground surface is slight

  3. Determining mineral weathering rates based on solid and solute weathering gradients and velocities: Application to biotite weathering in saprolites

    USGS Publications Warehouse

    White, A.F.

    2002-01-01

    Chemical weathering gradients are defined by the changes in the measured elemental concentrations in solids and pore waters with depth in soils and regoliths. An increase in the mineral weathering rate increases the change in these concentrations with depth while increases in the weathering velocity decrease the change. The solid-state weathering velocity is the rate at which the weathering front propagates through the regolith and the solute weathering velocity is equivalent to the rate of pore water infiltration. These relationships provide a unifying approach to calculating both solid and solute weathering rates from the respective ratios of the weathering velocities and gradients. Contemporary weathering rates based on solute residence times can be directly compared to long-term past weathering based on changes in regolith composition. Both rates incorporate identical parameters describing mineral abundance, stoichiometry, and surface area. Weathering gradients were used to calculate biotite weathering rates in saprolitic regoliths in the Piedmont of Northern Georgia, USA and in Luquillo Mountains of Puerto Rico. Solid-state weathering gradients for Mg and K at Panola produced reaction rates of 3 to 6 x 10-17 mol m-2 s-1 for biotite. Faster weathering rates of 1.8 to 3.6 ?? 10-16 mol m-2 s-1 are calculated based on Mg and K pore water gradients in the Rio Icacos regolith. The relative rates are in agreement with a warmer and wetter tropical climate in Puerto Rico. Both natural rates are three to six orders of magnitude slower than reported experimental rates of biotite weathering. ?? 2002 Elsevier Science B.V. All rights reserved.

  4. Electrochemical Acceleration of Carbonate and Silicate Weathering for CO2 Mitigation

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Carroll, S.

    2011-12-01

    Carbonate and many silicate minerals dissolve in strong acids, and such acids are commonly generated at the anode of a conventional saline water electrolysis cell. It was therefore reasoned that encasing such an anode with base minerals would lead to enhanced mineral dissolution and hence increased hydroxide (base) generation at the cathode, formed in course of splitting water, generating H2 and OH-. Subsequent exposue of the alkalized solution to CO2 (e.g., as in air) would lead to absorption of the CO2 and formation of stable dissolved or solid (bi)carbonates for carbon sequestration. Previously, it has been demonstrated that mineral carbonate encasement of a seawater electrolysis cell anode indeed generated basic solutions in excess of pH 9 that were subsequently neutralized via contact with air CO2, increasing the carbon content of the initial seawater by 30% (Rau, G.H. 2008. Environ Sci. Techol. 42, 8935-). To test such a weathering/CO2 capture scheme using silicate minerals, either powdered wollastonite or ultramafic rock standard (UM-4) was encased around the anode of an electrolysis cell composed of graphite electrodes and a 0.25M Na2SO4 electrolyte solution. After 0.5 to 1.5 hrs of electricity application (3.5Vdc, 5-10mA), the electrolyte pH rose to as much as 11.1 (initial and blank solution pH's <6.6). Subequent bubbling of these basic solutions with air lowered pH by at least 2 units and increased dissolve carbon content (primarily bicarbonate) by as much as 50X that of the blanks. While Ca2+ and Mg2+ concentrations were elevated, these were insufficient to balance the majority of the bicarbonate anions formed in solution. This suggests that in these experiments the silicate minerals acted as a neutralizer of the anolyte acid, H2SO4, forming mostly insoluble CaSO4 and MgSO4 at the anode. This then allowed NaOH normally produced at the cathode to accumulate in solution, in turn reacting with air CO2 to form NaHCO3. Longer electrolysis times and

  5. Effects of climate and mineral supply rates on long-term chemical weathering rates in granitic landscapes

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Kirchner, J. W.; Finkel, R. C.

    2003-12-01

    We used cosmogenic nuclide and geochemical mass balance methods to measure long-term rates of chemical weathering and physical erosion of granitic terrain. Our 43 study sites encompass widely varying climates and denudation rates; mean annual temperatures vary from 2 to 32\\deg C, average annual precipitation spans a 20-fold range (from 22 to 420 cm/yr), and denudation rates vary by 32-fold across our sites. Long-term chemical weathering rates for these 43 sites range from 0 to 173 t km-2 yr-1, in several cases exceeding the highest granitic weathering rates on record from previous work. Chemical weathering rates are highest at sites with rapid denudation rates, consistent with strong coupling between rates of chemical weathering and mineral supply from physical erosion of rock. To account for effects of mineral supply in analyzing how climate affects chemical weathering, we introduce the "Weathering Intensity Factor" (WIF), the ratio of chemical weathering rate to physical erosion rate. WIF's increase systematically with average annual precipitation and mean annual temperature, both for the soil as a whole, and for individual component elements including Si, Na, and Ca. Between 59 and 79 percent of the variance in WIF's can be explained by a simple Arrhenius-like relationship based on mean annual temperature and average annual precipitation. Moreover, when we couple this Arrhenius relationship with our measurements of long-term erosion rates, we obtain a simple prediction equation that explains between 79 and 93 percent of the variance in long-term chemical weathering rates. The temperature-dependence of WIF is roughly half what one would expect from laboratory measurements of activation energies for feldspar weathering. Our results imply that the strength of climate change feedbacks between temperature and silicate weathering rates may be weaker than previously thought, at least in actively eroding, unglaciated terrain similar to our study sites. Our results

  6. Space Weather Receives First "Impact Rating"

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2007-08-01

    Journal Citation Reports, published by Thomson Scientific (http://scientific.thomson.com/isi/), has issued its first impact factor for Space Weather. It is 1.610. I consider this number to be very good, strongly validating the impact that Space Weather has already made in its short life within the community of space weather professionals.

  7. Sensitivity of mineral dissolution rates to physical weathering : A modeling approach

    NASA Astrophysics Data System (ADS)

    Opolot, Emmanuel; Finke, Peter

    2015-04-01

    There is continued interest on accurate estimation of natural weathering rates owing to their importance in soil formation, nutrient cycling, estimation of acidification in soils, rivers and lakes, and in understanding the role of silicate weathering in carbon sequestration. At the same time a challenge does exist to reconcile discrepancies between laboratory-determined weathering rates and natural weathering rates. Studies have consistently reported laboratory rates to be in orders of magnitude faster than the natural weathering rates (White, 2009). These discrepancies have mainly been attributed to (i) changes in fluid composition (ii) changes in primary mineral surfaces (reactive sites) and (iii) the formation of secondary phases; that could slow natural weathering rates. It is indeed difficult to measure the interactive effect of the intrinsic factors (e.g. mineral composition, surface area) and extrinsic factors (e.g. solution composition, climate, bioturbation) occurring at the natural setting, in the laboratory experiments. A modeling approach could be useful in this case. A number of geochemical models (e.g. PHREEQC, EQ3/EQ6) already exist and are capable of estimating mineral dissolution / precipitation rates as a function of time and mineral mass. However most of these approaches assume a constant surface area in a given volume of water (White, 2009). This assumption may become invalid especially at long time scales. One of the widely used weathering models is the PROFILE model (Sverdrup and Warfvinge, 1993). The PROFILE model takes into account the mineral composition, solution composition and surface area in determining dissolution / precipitation rates. However there is less coupling with other processes (e.g. physical weathering, clay migration, bioturbation) which could directly or indirectly influence dissolution / precipitation rates. We propose in this study a coupling between chemical weathering mechanism (defined as a function of reactive area

  8. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.

    PubMed

    Willenbring, Jane K; von Blanckenburg, Friedhelm

    2010-05-13

    Over geologic timescales, CO(2) is emitted from the Earth's interior and is removed from the atmosphere by silicate rock weathering and organic carbon burial. This balance is thought to have stabilized greenhouse conditions within a range that ensured habitable conditions. Changes in this balance have been attributed to changes in topographic relief, where varying rates of continental rock weathering and erosion are superimposed on fluctuations in organic carbon burial. Geological strata provide an indirect yet imperfectly preserved record of this change through changing rates of sedimentation. Widespread observations of a recent (0-5-Myr) fourfold increase in global sedimentation rates require a global mechanism to explain them. Accelerated uplift and global cooling have been given as possible causes, but because of the links between rates of erosion and the correlated rate of weathering, an increase in the drawdown of CO(2) that is predicted to follow may be the cause of global climate change instead. However, globally, rates of uplift cannot increase everywhere in the way that apparent sedimentation rates do. Moreover, proxy records of past atmospheric CO(2) provide no evidence for this large reduction in recent CO(2) concentrations. Here we question whether this increase in global weathering and erosion actually occurred and whether the apparent increase in the sedimentation rate is due to observational biases in the sedimentary record. As evidence, we recast the ocean dissolved (10)Be/(9)Be isotope system as a weathering proxy spanning the past approximately 12 Myr (ref. 14). This proxy indicates stable weathering fluxes during the late-Cenozoic era. The sum of these observations shows neither clear evidence for increased erosion nor clear evidence for a pulse in weathered material to the ocean. We conclude that processes different from an increase in denudation caused Cenozoic global cooling, and that global cooling had no profound effect on spatially and

  9. Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps

    NASA Astrophysics Data System (ADS)

    Drever, James I.; Zobrist, Jürg

    1992-08-01

    Surface water and soil samples were collected from a series of small catchments on granitic gneiss in the Canton of Ticino in southern Switzerland. Elevations of the sampling points ranged from 220 to 2400 m; vegetation varied correspondingly from deciduous forest through coniferous forest to alpine pasture and essentially unvegetated rock and talus. Annual precipitation averaged 1.9 to 2.4 m. The concentrations of the major cations and silica in surface waters decreased more or less exponentially with elevation. The cationic denudation rate decreased from about 500 meq/m 2 · y at the lower elevations to about 20 meq/m 2 · y at the highest. Alkalinity decreased from 250 to about -7 μeq/1. Although total concentrations decreased with elevation, there were no clear systematic trends in the ratios of the concentrations of the major cations and silica. This suggests that the nature of the secondary minerals formed during weathering in the area does not change with elevation, despite great changes in soil type and environmental conditions. The clay mineralogy of the soils is dominated by unweathered and slightly weathered bedrock minerals: mica and chlorite, hydrobiotite, and poorly characterized mixed-layer material. Small amounts of kaolinite and smectite were observed in a few samples, but there do not appear to be any systematic trends in clay mineralogy with elevation. Mass-balance arguments suggest that the major (in terms of solute generation) weathering product is either kaolinite or a mixture of A1(OH) 3 and 2:1 clays. The lack of dependence of weathering stoichiometry on elevation (a surrogate for several environmental variables) or solute concentrations perhaps reflects the importance of local relief, which did not vary systematically with elevation.

  10. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    SciTech Connect

    Stauffer, R.E.; Wittchen, B.D. )

    1991-11-01

    The authors use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) US. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. The authors attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by So{sub 4} because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m{sup {minus}2}yr{sup {minus}1}) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks.

  11. Effects of silicate weathering on water chemistry in forested, upland, felsic terrane of the USA

    NASA Astrophysics Data System (ADS)

    Stauffer, Robert E.; Wittchen, Bruce D.

    1991-11-01

    We use data from the US EPA National Surface Water Survey (NSWS), the USGS Bench-Mark Station monitoring program, and the National Acid Deposition Program (NADP) to evaluate the role of weathering in supplying base cations to surface waters in forested, upland, felsic terrane of the northeastern, northcentral, and northwestern (Idaho batholith) United States. Multivariate regression reveals differential effects of discharge on individual base cations and silica, but no secular trend in the Ca/Na denudation rate over 24 yr (1965-1988) for the Wild River catchment in the White Mountains. Because the turn-over time for Na in the soil-exchange complex is only ca. 1.5 yr, the long-term behavior of the ratios Ca/Na and Si/Na in waters leaving this catchment indicates that weathering is compensating for base cation export. In every subregion, Ca and Mg concentrations in lakes are statistically linked to nonmarine Na, but the median Ca/Na ratio is greater than the ratio in local plagioclase. We attribute this inequality to nonstoichiometric weathering of calcium in juvenile (formerly glaciated) terrane, not to leaching of exchangeable cations by SO 4, because intraregional and cross-regional statistical analysis reveals no effect of atmospherically derived sulfate ion. The median base cation denudation rates (meq m -2 yr -1) for these American lake regions are: Maine granites (108); western Adirondack felsic gneiss (85); Vermilion batholith (42); Idaho batholith (52). The regional rates are high enough to compensate for present wet deposition of acidifying anions except in some vulnerable lake watersheds in the western Adirondacks.

  12. Transport properties of interfacial Si-rich layers formed on silicate minerals during weathering: Implications for environmental concerns

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Rémusat, Laurent; Bernard, Sylvain; Wild, Bastien; Micha, Jean-Sébastien; Rieutord, François; Fernandez-Martinez, Alejandro

    2015-04-01

    The dissolution of silicate minerals is of primary importance for various processes ranging from chemical weathering to CO2 sequestration. Whether it determines the rates of soil formation, CO2 uptake and its impact on climate change, channeling caused by hydrothermal circulation in reservoirs of geothermal power plants, durability of radioactive waste confinement glasses or geological sequestration of CO2, the same strategy is commonly applied for determining the long term evolution of fluid-rock interactions. This strategy relies on a bottom-up approach, where the kinetic rate laws governing silicate mineral dissolution are determined from laboratory experiments. However, a long-standing problem regarding this approach stems from the observation that laboratory-derived dissolution rates overestimate their field counterparts by orders of magnitude, casting doubt on the accuracy and relevance of predictions based on reactive-transport simulations. Recently [1], it has been suggested that taking into account the formation of amorphous Si-rich surface layers (ASSL) as a consequence of mineral dissolution may contribute to decrease the large gap existing between laboratory and natural rates. Our ongoing study is aimed at deciphering the extent to which ASSL may represent a protective entity which affects the dissolution rate of the underlying minerals, both physically (passivation) and chemically (by promoting the formation of a local chemical medium which significantly differs from that of the bulk solution). Our strategy relies on the nm-scale measurement of the physicochemical properties (diffusivity, thickness and density) of ASSL formed on cleavages of a model mineral (wollastonite) and their evolution as a function of reaction progress. Our preliminary results indicate that the diffusivity of nm-thick ASSL formed on wollastonite surface is ~1,000,000 times smaller than that reported for an aqueous medium, as estimated from the monitoring of the progression of a

  13. Silicate or Carbonate Weathering: Fingerprinting Sources of Dissolved Inorganic Carbon Using δ13C in a Tropical River, Southern India

    NASA Astrophysics Data System (ADS)

    Bhagat, H.; Ghosh, P.

    2015-12-01

    Rivers are an inherently vital resource for the development of any region and their importance is highlighted by the presence of many ancient human civilizations adjacent to river systems. δ13C - Si/HCO3 systematics has been applied to large south Indian rivers which drain the Deccan basaltic traps in order to quantify their relative contributions from silicate and carbonate weathering. This study investigates δ13C - Si/HCO3 systematics of the Cauvery River basin which flows through silicate lithology in the higher reaches and carbonate lithology with pedogenic and marine carbonates dominating the terrain in the lower reaches of the basin. The samples for the present study were collected at locations within the watershed during Pre-Monsoon and Monsoon Season 2014. The measurements of stable isotope ratios of δ13CDIC and were accomplished through a Thermo Scientific GasBench II interface connected to a MAT 253 IRMS. We captured a large spatial variation in δ13C and Si/HCO3 values during both seasons; Pre-Monsoon δ13C values ranges between -17.57‰ to -4.02‰ and during Monsoon it varies between -9.19‰ to +0.61‰. These results indicate a two end-member mixing component i.e. a silicate and a carbonate end member; governing the weathering interactions of the Cauvery River. Within the drainage basin, we identified silicate and carbonate dominating sources by using contributions of DIC and δ13C. Si/HCO3 values for Pre-Monsoon ranges between 0.028 - 0.67 and for Monsoon it varies between 0.073 - 0.80. Lighter δ13C composition was observed at sampling sites at higher altitude in contrast to sampling sites at flood plain which show relatively enriched δ13C which indicate mixing of soil derived CO2 with C4 plants. Result suggests dominance of carbonate weathering during the Monsoon Period, while silicate weathering is pronounced during Pre- Monsoon period.

  14. Chemical weathering on Mars: Rate of oxidation of iron dissolved in brines

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1993-01-01

    Salts believed to occur in Martian regolith imply that brines occur on Mars, which may have facilitated the oxidation of dissolved Fe(2+) ions after they were released during chemical weathering of basaltic ferromagnesian silicate and iron sulfide minerals. Calculations show that the rate of oxidation of Fe(2+) ions at -35 C in a 6M chloride-sulfate brine that might exist on Mars is about 10(exp 6) times slower that the oxidation rate of iron in ice-cold terrestrial seawater.

  15. Chemical weathering on Mars: Rate of oxidation of iron dissolved in brines

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1993-01-01

    Salts believed to occur in Martian regolith imply that brines occur on Mars, which may have facilitated the oxidation of dissolved Fe(2+) ions after they were released during chemical weathering of basaltic ferromagnesian silicate and iron sulfide minerals. Calculations show that the rate of oxidation of Fe(2+) ions at -35 C in a 6M chloride-sulfate brine that might exist on Mars is about 10(exp 6) times slower that the oxidation rate of iron in ice-cold terrestrial seawater.

  16. Rates of biotite weathering, and clay mineral transformation and neoformation, determined from watershed geochemical mass-balance methods for the Coweeta Hydrologic Laboratory, Southern Blue Ridge Mountains, North Carolina, USA

    Treesearch

    Jason R. Price; Michael A. Velbel

    2013-01-01

    Biotite is a common constituent of silicate bedrock. Its weathering releases plant nutrients and consumes atmospheric CO2. Because of its stoichiometric relationship with its transformational weathering product and sensitivity to botanical activity, calculating biotite weathering rates using watershed mass-balance methods has proven challenging....

  17. Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering and their controls

    NASA Astrophysics Data System (ADS)

    Das, A.; Krishnaswami, S.; Sarin, M. M.; Pande, K.

    2005-04-01

    Rates of chemical and silicate weathering of the Deccan Trap basalts, India, have been determined through major ion measurements in the headwaters of the Krishna and the Bhima rivers, their tributaries, and the west flowing streams of the Western Ghats, all of which flow almost entirely through the Deccan basalts. Samples ( n = 63) for this study were collected from 23 rivers during two consecutive monsoon seasons of 2001 and 2002. The Total dissolved solid (TDS) in the samples range from 27 to 640 mg l -1. The rivers draining the Western Ghats that flow through patches of cation deficient lateritic soils have lower TDS (average: 74 mg l -1), whereas the Bhima (except at origin) and its tributaries that seem to receive Na, Cl, and SO 4 from saline soils and anthropogenic inputs have values in excess of 170 mg l -1. Many of the rivers sampled are supersaturated with respect to calcite. The chemical weathering rates (CWR) of "selected" basins, which exclude rivers supersaturated in calcite and which have high Cl and SO 4, are in range of ˜3 to ˜60 t km -2 y -1. This yields an area-weighted average CWR of ˜16 t km -2 y -1 for the Deccan Traps. This is a factor of ˜2 lower than that reported for the Narmada-Tapti-Wainganga (NTW) systems draining the more northern regions of the Deccan. The difference can be because of (i) natural variations in CWR among the different basins of the Deccan, (ii) "selection" of river basin for CWR calculation in this study, and (iii) possible contribution of major ions from sources, in addition to basalts, to rivers of the northern Deccan Traps. Silicate weathering rates (SWR) in the selected basins calculated using dissolved Mg as an index varies between ˜3 to ˜60 t km -2 y -1, nearly identical to their CWR. The Ca/Mg and Na/Mg in these rivers, after correcting for rain input, are quite similar to those in average basalts of the region, suggesting near congruent release of Ca, Mg, and Na from basalts to rivers. Comparison of

  18. Comparative ratings of 1951 forest fire weather in western Oregon.

    Treesearch

    Owen P. Cramer; Robert. Kirkpatrick

    1951-01-01

    The 1951 forest fire weather in western Oregon is generally conceded to have been unusually severe. In order to compare this season with others, this report uses a scheme for rating fire seasons recently developed by the Fire Research section of the Experiment Station, The rating is based on indices of three weather characteristics which generally control burning...

  19. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO₂ concentrations compared to primordial values.

    PubMed

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-13

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO₂ concentration. The results show that the expression of CA genes is negatively correlated with both CO₂ concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO₂ concentration show that the magnitudes of the effects of CA and CO₂ concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO₂ concentration compared to 3 billion years ago.

  20. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    PubMed Central

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  1. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    NASA Astrophysics Data System (ADS)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago.

  2. Hydrochemistry of inland rivers in the north Tibetan Plateau: Constraints and weathering rate estimation.

    PubMed

    Wu, Weihua

    2016-01-15

    The geographic region around the northern and northeastern Tibetan Plateau is the source of several inland rivers (e.g. Tarim River) of worldwide importance that are generated in the surrounding mountains systems of Tianshan, Pamir, Karakorum, and Qilian. To characterize chemical weathering and atmospheric CO2 consumption in these regions, water samples from the Tarim, Yili, Heihe, Shule, and Shiyang Rivers were collected and analyzed for major ion concentrations. The hydrochemical characteristics of these inland rivers pronouncedly distinguish them from large exorheic rivers (e.g., the Yangtze River and the Yellow River), as reflected in very high total dissolution solids (TDS) values. TDS was 115-4345 mg l(-1) with an average of 732 mg l(-1), which is an order of magnitude higher than the mean value for world rivers (65 mg l(-1)). The Cheerchen River, Niya River, Keliya River and the terminal lakes of the Tarim River and the Heihe River have TDS values higher than 1 gl(-1), indicating saline water that cannot be directly consumed. Therefore, the problem of sufficient and safe drinking water has become increasingly prominent in the northwestern China arid zone. According to an inversion model, the contribution from evaporite dissolution to the dissolved loads in these rivers is 12.5%-99% with an average of 54%. The calculated silicate and carbonate weathering rates are 0.02-4.62 t km(-2)y(-1) and 0.01-11.7 t km(-2)y(-1) for these rivers. To reduce the influence of lithology, only the silicate weathering rates in different parts of the Tibetan Plateau are compared. A rough variation tendency can be seen in the rates: northern regional (0.15-1.73 t km(-2)y(-1))weathering rates did not show a noticeable correlation with a single influencing factor, such as temperature, elevation, vegetation, and physical

  3. Space Weathering Rates in Lunar and Itokawa Samples

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.

    2017-01-01

    Space weathering alters the chemistry, microstructure, and spectral proper-ties of grains on the surfaces of airless bodies by two major processes: micrometeorite impacts and solar wind interactions. Investigating the nature of space weathering processes both in returned samples and in remote sensing observations provides information fundamental to understanding the evolution of airless body regoliths, improving our ability to determine the surface composition of asteroids, and linking meteorites to specific asteroidal parent bodies. Despite decades of research into space weathering processes and their effects, we still know very little about weathering rates. For example, what is the timescale to alter the reflectance spectrum of an ordinary chondrite meteorite to resemble the overall spectral shape and slope from an S-type asteroid? One approach to answering this question has been to determine ages of asteroid families by dynamical modeling and determine the spectral proper-ties of the daughter fragments. However, large differences exist between inferred space weathering rates and timescales derived from laboratory experiments, analysis of asteroid family spectra and the space weathering styles; estimated timescales range from 5000 years up to 108 years. Vernazza et al. concluded that solar wind interactions dominate asteroid space weathering on rapid timescales of 10(exp 4)-10(exp 6) years. Shestopalov et al. suggested that impact-gardening of regolith particles and asteroid resurfacing counteract the rapid progress of solar wind optical maturation of asteroid surfaces and proposed a space weathering timescale of 10(exp 5)-10(exp 6) years.

  4. Fundamental Study on Temperature Dependence of Deposition Rate of Silicic Acid - 13270

    SciTech Connect

    Shinmura, Hayata; Niibori, Yuichi; Mimura, Hitoshi

    2013-07-01

    The dynamic behavior of the silicic acid is one of the key factors to estimate the condition of the repository system after the backfill. This study experimentally examined the temperature dependence of dynamic behavior of supersaturated silicic acid in the co-presence of solid phase, considering Na ions around the repository, and evaluated the deposition rate constant, k, of silicic acid by using the first-order reaction equation considering the specific surface area. The values of k were in the range of 1.0x10{sup -11} to 1.0x10{sup -9} m/s in the temperature range of 288 K to 323 K. The deposition rate became larger with increments of temperature under the Na ion free condition. Besides, in the case of Na ions 0.6 M, colloidal silicic acid decreased dramatically at a certain time. This means that the diameter of the colloidal silicic acid became larger than the pore size of filter (0.45 μm) due to bridging of colloidal silicic acid. Furthermore, this study estimated the range of altering area and the aperture of flow-path in various value of k corresponding to temperature by using advection-dispersion model. The concentration in the flow-path became lower with increments of temperature, and when the value of k is larger than 1.0x10{sup -11} m/s, the deposition range of supersaturated silicic acid was estimated to be less than 20 m around the repository. In addition, the deposition of supersaturated silicic acid led the decrement of flow-path aperture, which was remarkable under the condition of relatively high temperature. Such a clogging in flow paths is expected as a retardation effect of radionuclides. (authors)

  5. Forest soil mineral weathering rates: use of multiple approaches

    Treesearch

    Randy K. Kolka; D.F. Grigal; E.A. Nater

    1996-01-01

    Knowledge of rates of release of base cations from mineral dissolution (weathering) is essential to understand ecosystem elemental cycling. Although much studied, rates remain enigmatic. We compared the results of four methods to determine cation (Ca + Mg + K) release rates at five forested soils/sites in the northcentral U.S.A. Our premise was that multiple...

  6. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes

    NASA Astrophysics Data System (ADS)

    Riebe, Clifford S.; Kirchner, James W.; Finkel, Robert C.

    2004-08-01

    We used cosmogenic nuclide and geochemical mass balance methods to measure long-term rates of chemical weathering and total denudation in granitic landscapes in diverse climatic regimes. Our 42 study sites encompass widely varying climatic and erosional regimes, with mean annual temperatures ranging from 2 to 25 °C, average precipitation ranging from 22 to 420 cm·year -1, and denudation rates ranging from 23 to 755 t·km -2·year -1. Long-term chemical weathering rates range from 0 to 173 t·km -2 year -1, in several cases exceeding the highest granitic weathering rates on record from previous work. Chemical weathering rates are highest at the sites with rapid denudation rates, consistent with strong coupling between rates of chemical weathering and mineral supply from breakdown of rock. A simple empirical relationship based on temperature, precipitation and long-term denudation rates explains 89-95% of the variation in long-term weathering rates across our network of sites. Our analysis shows that, for a given precipitation and temperature, chemical weathering rates increase proportionally with fresh-material supply rates. We refer to this as "supply-limited" weathering, in which fresh material is chemically depleted to roughly the same degree, regardless of its rate of supply from breakdown of rock. The temperature sensitivity of chemical weathering rates is two to four times smaller than what one would expect from laboratory measurements of activation energies for feldspar weathering and previous inter-comparisons of catchment mass-balance data from the field. Our results suggest that climate change feedbacks between temperature and silicate weathering rates may be weaker than previously thought, at least in actively eroding, unglaciated terrain similar to our study sites. To the extent that chemical weathering rates are supply-limited in mountainous landscapes, factors that regulate rates of mineral supply from erosion, such as tectonic uplift, may lead to

  7. Iron speciation and isotope fractionation during silicate weathering and soil formation in an alpine glacier forefield chronosequence

    NASA Astrophysics Data System (ADS)

    Kiczka, Mirjam; Wiederhold, Jan G.; Frommer, Jakob; Voegelin, Andreas; Kraemer, Stephan M.; Bourdon, Bernard; Kretzschmar, Ruben

    2011-10-01

    The chemical weathering of primary Fe-bearing minerals, such as biotite and chlorite, is a key step of soil formation and an important nutrient source for the establishment of plant and microbial life. The understanding of the relevant processes and the associated Fe isotope fractionation is therefore of major importance for the further development of stable Fe isotopes as a tracer of the biogeochemical Fe cycle in terrestrial environments. We investigated the Fe mineral transformations and associated Fe isotope fractionation in a soil chronosequence of the Swiss Alps covering 150 years of soil formation on granite. For this purpose, we combined for the first time stable Fe isotope analyses with synchrotron-based Fe-EXAFS spectroscopy, which allowed us to interpret changes in Fe isotopic composition of bulk soils, size fractions, and chemically separated Fe pools over time in terms of weathering processes. Bulk soils and rocks exhibited constant isotopic compositions along the chronosequence, whereas soil Fe pools in grain size fractions spanned a range of 0.4‰ in δ 56Fe. The clay fractions (<2 μm), in which newly formed Fe(III)-(hydr)oxides contributed up to 50% of the total Fe, were significantly enriched in light Fe isotopes, whereas the isotopic composition of silt and sand fractions, containing most of the soil Fe, remained in the range described by biotite/chlorite samples and bulk soils. Iron pools separated by a sequential extraction procedure covered a range of 0.8‰ in δ 56Fe. For all soils the lightest isotopic composition was observed in a 1 M NH 2OH-HCl-25% acetic acid extract, targeting poorly-crystalline Fe(III)-(hydr)oxides, compared with easily leachable Fe in primary phyllosilicates (0.5 M HCl extract) and Fe in residual silicates. The combination of the Fe isotope measurements with the speciation data obtained by Fe-EXAFS spectroscopy permitted to quantitatively relate the different isotope pools forming in the soils to the mineral

  8. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico III: Quartz dissolution rates

    USGS Publications Warehouse

    Schulz, M.S.; White, A.F.

    1999-01-01

    The paucity of weathering rates for quartz in the natural environment stems both from the slow rate at which quartz dissolves and the difficulty in differentiating solute Si contributed by quartz from that derived from other silicate minerals. This study, a first effort in quantifying natural rates of quartz dissolution, takes advantage of extremely rapid tropical weathering, simple regolith mineralogy, and detailed information on hydrologic and chemical transport. Quartz abundances and grain sizes are relatively constant with depth in a thick saprolite. Limited quartz dissolution is indicated by solution rounding of primary angularity and by the formation of etch pits. A low correlation of surface area (0.14 and 0.42 m2 g-1) with grain size indicates that internal microfractures and pitting are the principal contributors to total surface area. Pore water silica concentration increases linearly with depth. On a molar basis, between one and three quarters of pore water silica is derived from quartz with the remainder contributed from biotite weathering. Average solute Si remains thermodynamically undersaturated with respect to recently revised estimates of quartz solubility (17-81 ??M). Etch pitting is more abundant on grains in the upper saprolite and is associated with pore waters lower in dissolved silica. Rate constants describing quartz dissolution increase with decreasing depth (from 10-14.5-10-15.1 mol m-2 s-1), which correlate with both greater thermodynamic undersaturation and increasing etch pit densities. Unlike for many aluminosilicates, the calculated natural weathering rates of quartz fall slightly below the rate constants previously reported for experimental studies (10-12.4-10-14.2 mol m-2 s-1). This agreement reflects the structural simplicity of quartz, dilute solutes, and near-hydrologic saturation.

  9. Rates of weathering rind formation on Costa Rican basalt

    NASA Astrophysics Data System (ADS)

    Sak, Peter B.; Fisher, Donald M.; Gardner, Thomas W.; Murphy, Katherine; Brantley, Susan L.

    2004-04-01

    Weathering rind thicknesses were measured on ˜ 200 basaltic clasts collected from three regionally extensive alluvial fill terraces (Qt 1, Qt 2, and Qt 3) preserved along the Pacific coast of Costa Rica. Mass balance calculations suggest that conversion of unweathered basaltic core minerals (plagioclase and augite) to authigenic minerals in the porous rind (kaolinite, allophane, gibbsite, Fe oxyhydroxides) is iso-volumetric and Ti and Zr are relatively immobile. The hierarchy of cation mobility (Ca ≈ Na > K ≈ Mg > Si > Al > Fe ≈ P) is similar to other tropical weathering profiles and is indicative of differential rates of mineral weathering (anorthite > albite ≈ hypersthene > orthoclase ≫ apatite). Alteration profiles across the cm-thick rinds document dissolution of plagioclase and augite and the growth of kaolinite, with subsequent dissolution of kaolinite and precipitation of gibbsite as weathering rinds age. The rate of weathering rind advance is evaluated using a diffusion-limited model which predicts a parabolic rate law for weathering rind thickness, r r, as a function of time, t( r r = κt), and an interface-limited model which predicts a linear rate law for weathering rind thickness as a function of time ( r r = k appt ). In these rate laws, κ is a diffusion parameter and k app is an apparent rate constant. The rate of advance is best fit by the interface model. Terrace exposures are confined to the lower reaches of streams draining the Pacific slope near the coast where the stream gradient is less than ˜3 m/km, and terrace deposition is influenced by eustatic sea level fluctuations. Geomorphological evidence is consistent with terrace deposition coincident with sea level maxima when the stream gradient would be lowest. Assigning the most weathered regionally extensive terrace Qt 1 (mean rind thickness 6.9 ± 0. 6cm) to oxygen isotope stage (OIS) 7 (ca. 240 ka), and assuming that at time = 0 rind thickness = 0, it is inferred that terrace Qt 2

  10. Heating Rate Effect on the Activation of Viscoelastic Relaxation in Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurèlien; Ory, Sandra; Vaills, Yann

    Here we present a direct investigation of the heating rate effect on structural relaxation of sodium silicate glass near the glass transition by means of differential scanning calorimetry, and show the sensitivity of Brillouin light spectroscopy to the dynamic of structural relaxation in the medium range order (∼100 nm).

  11. The effect of an exchanger phase, carbon dioxide, and mineralogy on the rate of geochemical weathering

    SciTech Connect

    Amrhein, C.

    1984-01-01

    The dissolution (weathering) of soil minerals can have an appreciable effect on soil water chemistry. The rate at which mineral dissolution in water approaches equilibrium is dependent upon the type of minerals present, the surface area/solution volume ratio, the ionic composition of the solution, the nature of the exchanger phase of the soil, the temperature and the local partial pressure of carbon dioxide. Geochemical weathering has an important effect on the processes relating to sodic soil reclamation, nutrient availability, soil genesis, management of overburden materials from mining activities, and salt loading to surface and ground waters. Research was conducted to determine, quantitatively, the effects of CO{sub 2} and exchanger phase composition on the kinetics of calcium mineral dissolution. It was found that the presence of exchangeable sodium greatly increased the initial rate of mineral dissolution by acting to keep the soil solution low in Ca{sup 2+} ions. The kinetics of calcite dissolution were controlled by the gas transfer reaction, CO{sub 2}(gas) {yields} CO{sub 2}(ag), at CO{sub 2} levels below .03 atmospheres. A mechanistic kinetic model was proposed that included the CO{sub 2} reaction kinetics and an adsorption/hydration reaction with the calcite surface. In general, mineral weathering was found to rarely obey a diffusion controlled model and was better described by mechanistic kinetics invoking elementary chemical reactions. In addition, it was found that the weathering rate of anorthite (a calcium silicate) was too slow to contribute significant amounts of Ca{sup 2+} ions to the soil solution and the phenomenon of calcite supersaturation commonly found in soil solutions is attributed to carbon dioxide dynamics.

  12. Limestone weathering rates accelerated by micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Levenson, Y.

    2014-12-01

    The weathering rates of carbonate rocks is often thought to be controlled by chemical dissolution, although some studies have suggested that mechanical erosion could also play an important role. Quantifying the rates of the different processes has proved challenging due to the high degree of variability encountered in both field and lab settings. To determine the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Weathering rates in fine-grained micritic limestone blocks are up to 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these higher reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained rocks in many carbonate terrains.

  13. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    USGS Publications Warehouse

    White, Arthur F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-01-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds—Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico—were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt. %), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2 to 3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages.Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of

  14. Long-term flow-through column experiments and their relevance to natural granitoid weathering rates

    NASA Astrophysics Data System (ADS)

    White, Art F.; Schulz, Marjorie S.; Lawrence, Corey R.; Vivit, Davison V.; Stonestrom, David A.

    2017-04-01

    Four pairs of fresh and partly-weathered granitoids, obtained from well-characterized watersheds-Merced River, CA, USA; Panola, GA, USA; Loch Vale, CO, USA, and Rio Icacos, Puerto Rico-were reacted in columns under ambient laboratory conditions for 13.8 yrs, the longest running experimental weathering study to date. Low total column mass losses (<1 wt.%), correlated with the absence of pitting or surface roughening of primary silicate grains. BET surface area (SBET) increased, primarily due to Fe-oxyhydroxide precipitation. Surface areas returned to within factors of 2-3 of their original values after dithionite extraction. Miscible displacement experiments indicated homogeneous plug flow with negligible immobile water, commonly cited for column experiments. Fresh granitoid effluent solute concentrations initially declined rapidly, followed by much slower decreases over the next decade. Weathered granitoid effluent concentrations increased modestly over the same time period, indicating losses of natural Fe-oxide and/or clay coatings and the increased exposure of primary mineral surfaces. Corresponding (fresh and weathered) elemental effluent concentrations trended toward convergence during the last decade of reaction. NETPATH/PHREEQC code simulations indicated non-stoichiometric dissolution involving Ca release from disseminated calcite and excess K release from interlayer biotite. Effluent 87Sr/85Sr ratios reflected a progressive weathering sequence beginning and ending with 87Sr/85Sr values of plagioclase with an additional calcite input and a radiogenic biotite excursion proportional to the granitoid ages. Effluents became thermodynamically saturated with goethite and gibbsite, slightly under-saturated with kaolinite and strongly under-saturated with plagioclase, consistent with kinetically-limited weathering in which solutes such as Na varied with column flow rates. Effluent Na concentrations showed no clear trend with time during the last decade of reaction

  15. Chemical weathering rate laws and global geochemical cycles

    NASA Astrophysics Data System (ADS)

    Lasaga, Antonio C.; Soler, Josep M.; Ganor, Jiwchar; Burch, Timothy E.; Nagy, Kathryn L.

    1994-05-01

    In this paper, we discuss the recent kinetic work on water-rock interactions. Standard activity-activity diagrams are reinterpreted, using a mass transfer kinetic model and recent data on the relative rates of mineral reactions. The development of a fully integrated rate law is discussed, with special attention to the important effects of deviation from equilibrium on the rates of mineral-water reactions. The combined effects of temperature, pH, ionic strength, and saturation conditions on the overall dissolution and precipitation rates of minerals must be properly described before any seriously quantitative model of coupled fluid flow and chemical reaction can be undertaken. A rate law that integrates these effects is proposed. The functional dependence of the rate on ΔGr, the free energy change for the mineral reaction, is discussed, based on recent experimental work. An important result is the presence of a surface transition in the reaction mechanism leading to a very strong nonlinear dependence of the dissolution rates on ΔGr. The possible role of dislocation defects in this surface transition is discussed. The relation of global weathering rates and geochemical cycles to the recent experimental and theoretical water-rock kinetic work is explored. The temperature effect on the silica content of streams is reevaluated. The variation of silica concentration with runoff in the rivers of the world is quantified, using a coupled fluid flow and reaction model and the full rate law developed for a proto-granite system by the kinetic experiments. Implications of the water-rock kinetic data for the current geochemical cycles models are discussed with especial emphasis on the link between physical weathering and chemical weathering.

  16. Does atmospheric CO2 police the rate of chemical weathering?

    NASA Astrophysics Data System (ADS)

    Broecker, Wallace S.; Sanyal, Abhijit

    1998-09-01

    A case is made that in the absence of an effective feedback control on the rate of delivery of CaO to the oceans, the CO2 content of the Earth's atmosphere would have wandered over a large range threatening life either by overheating or by carbon dioxide starvation. In this paper, we defend the suggestion by Walker et al. [1981] that control is exerted by the interaction between the CO2 content of the atmosphere and the continental weathering rates. We contend that in spite of the arguments raised against it [Raymo and Ruddiman, 1992; Edmond and Huh, 1997] the CO2- chemical weathering feedback is the dominant mechanism that stabilizes the atmospheric carbon dioxide content.

  17. Origins of Deviations from Transition-State Theory: Formulating a New Kinetic Rate Law for Dissolution of Silicates

    SciTech Connect

    Andreas Luttge; Jonathan Icenhower

    2005-12-20

    Present models for dissolution of silicate minerals and glasses, based on Transition-State Theory (TST), overestimate the reaction rate as solution compositions approach saturation with respect to the rate-governing solid.

  18. Rates of Space Weathering in Lunar Regolith Grains

    NASA Technical Reports Server (NTRS)

    Zhang, S.; Keller, L. P.

    2012-01-01

    While the processes and products of lunar space weathering are reasonably well-studied, their accumulation rates in lunar soils are poorly constrained. Previously, we showed that the thickness of solar wind irradiated rims on soil grains is a smooth function of their solar flare particle track density, whereas the thickness of vapor-deposited rims was largely independent of track density [1]. Here, we have extended these preliminary results with data on additional grains from other mature soils.

  19. What do nm-scale characterizations of silicate surface tell us about macroscopic dissolution rate laws? New insights based on diopside

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Hellmann, Roland; Saldi, Giuseppe; Wirth, Richard; Knauss, Kevin

    2013-04-01

    The interfacial zone between a bulk fluid and a mineral surface is where all exchange of matter and energy occurs during chemical weathering. However, our knowledge is still limited with respect to understanding where and how the rate-determining dissolution reactions take place. A complicating factor is the commonplace formation of amorphous Si-rich surface layers (ASSL), which may hinder contact between the fluid and the mineral surface. Previous studies showed that the protective ability of ASSL critically depended on properties inherited from the parent silicate mineral, which remain yet to be unraveled. To address the role of ASSL, we investigated the dissolution of a common silicate (diopside), and related the bulk dissolution rate (determined in classical flow-through experiments) with the nanoscale dissolution rate and surface chemistry of its individual prevalent faces (determined by combining vertical scanning interferometry (VSI) measurements of the topography of reacted cleavages and transmission electron microscopy (TEM) characterizations of the ASSL). While ASSL were evidenced on all of the investigated faces, only those formed on (110) and (1-10) were passivating, thereby controlling the reactivity of the underlying faces. The (110) and (1-10) faces intersect the highest density of Mg-O-Si and Fe-O-Si bonds, and this specificity may explain the passivating behavior of the corresponding ASSL. Moreover, we evidenced an inverse relation between aqueous silica concentration and the bulk dissolution rate of crushed diopside grains, which suggest that the (110) and (1-10) faces are predominant in a powder. By considering ASSL as a separate phase that can control silicate dissolution rates, extrapolated laboratory-based rates at conditions relevant to the field can be lowered by up to several orders of magnitude, thereby decreasing the large gap between laboratory and natural rates. This has important implications for more accurately modeling chemical

  20. Increases in leach rate due to possible cracking in silicate glasses

    SciTech Connect

    Sang, J.C.; Barkatt, A.; Talmy, I.G.; Norr, M.K.

    1993-12-31

    Comparative studies of two multi-component silicate glasses have confirmed the observation that glasses with a relatively low SiO{sub 2} + AlO{sub 3/2} content may exhibit temporary increases in leach rate during the initial stages of their exposure to water. SEM studies of the leached glass surfaces strongly support the assumption that this phenomenon is due to cracking of the leached glass and a consequent increase of the exposed surface area.

  1. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: II. Rate and mechanism of biotite weathering

    USGS Publications Warehouse

    Murphy, S.F.; Brantley, S.L.; Blum, A.E.; White, A.F.; Dong, H.

    1998-01-01

    Samples of soil, saprolite, bedrock, and porewater from a lower montane wet forest, the Luquillo Experimental Forest (LEF) in Puerto Rico, were studied to investigate the rates and mechanisms of biotite weathering. The soil profile, at the top of a ridge in the Rio Icacos watershed, consists of a 50-100-cm thick layer of unstructured soil above a 600-800 cm thick saprolite developed on quartz diorite. The only minerals present in significant concentration within the soil and saprolite are biotite, quartz, kaolinite, and iron oxides. Biotite is the only primary silicate releasing significant K and Mg to porewaters. Although biotite in samples of the quartz diorite bedrock is extensively chloritized, chlorite is almost entirely absent in the saprolite phyllosilicates. Phyllosilicate grains are present as 200-1000 ??m wide books below about 50 cm depth. X-ray diffraction (XRD) and electron microprobe analyses indicate that the phyllosilicate grains contain a core of biotite surrounded by variable amounts of kaolinite. Lattice fringe images under transmission electron microscope (TEM) show single layers of biotite altering to two layers of kaolinite, suggesting dissolution of biotite and precipitation of kaolinite at discrete boundaries. Some single 14-A?? layers are also observed in the biotite under TEM. The degree of kaolinitization of individual phyllosilicate grains as observed by TEM decreases with depth in the saprolite. This TEM work is the first such microstructural evidence of epitaxial growth of kaolinite onto biotite during alteration in low-temperature environments. The rate of release of Mg in the profile, calculated as a flux through the soil normalized per watershed land area, is approximately 500 mol hectare-1 yr-1 (1.6 ?? 10-9 molMg m-2soil s-1). This rate is similar to the flux estimated from Mg discharge out the Rio Icacos (1000 mol hectare-1 yr-1, or 3.5 ?? 10-9 molMg m-2soil s-1), indicating that scaling up from the soil to the watershed is

  2. Weather.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1996-01-01

    This theme issue of "The Goldfinch" focuses on weather in Iowa and weather lore. The bulletin contains historical articles, fiction, activities, and maps. The table of contents lists: (1) "Wild Rosie's Map"; (2) "History Mystery"; (3) "Iowa's Weather History"; (4) "Weather Wonders"; (6)…

  3. Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals and industrial wastes as a Novel Carbon Capture and Storage Technology

    NASA Astrophysics Data System (ADS)

    Park, A. H. A.

    2014-12-01

    Increasing concentration of CO2 in the atmosphere is attributed to rising consumption of fossil fuels around the world. The development of solutions to reduce CO2 emissions to the atmosphere is one of the most urgent needs of today's society. One of the most stable and long-term solutions for storing CO2 is via carbon mineralization, where minerals containing metal oxides of Ca or Mg are reacted with CO2 to produce thermodynamically stable Ca- and Mg-carbonates that are insoluble in water. Carbon mineralization can be carried out in-situ or ex-situ. In the case of in-situ mineralization, the degree of carbonation is thought to be limited by both mineral dissolution and carbonate precipitation reaction kinetics, and must be well understood to predict the ultimate fate of CO2 within geological reservoirs. While the kinetics of in-situ mineral trapping via carbonation is naturally slow, it can be enhanced at high temperature and high partial pressure of CO2. The addition of weak organic acids produced from food waste has also been shown to enhance mineral weathering kinetics. In the case of the ex-situ carbon mineralization, the role of these ligand-bearing organic acids can be further amplified for silicate mineral dissolution. Unfortunately, high mineral dissolution rates often lead to the formation of a silica-rich passivation layer on the surface of silicate minerals. Thus, the use of novel solvent mixture that allows chemically catalyzed removal of this passivation layer during enhanced Mg-leaching surface reaction has been proposed and demonstrated. Furthermore, an engineered biological catalyst, carbonic anhydrase, has been developed and evaluated to accelerate the hydration of CO2, which is another potentially rate-limiting step of the carbonation reaction. The development of these novel catalytic reaction schemes has significantly improved the overall efficiency and sustainability of in-situ and ex-situ mineral carbonation technologies and allowed direct

  4. The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Bullen, T.D.; Vivit, D.V.; Schulz, M.; Fitzpatrick, J.

    1999-01-01

    The effects of climatic temperature variations (5-35??C) on chemical weathering are investigated both experimentally using flow-through columns containing fresh and weathered granitoid rocks and for natural granitoid weathering in watersheds based on annual solute discharge. Although experimental Na and Si effluent concentrations are significantly higher in the fresh relative to the weathered granitoids, the proportional increases in concentration with increasing temperature are similar. Si and Na exhibit comparable average apparent activation energies (E(a)) of 56 and 61 kJ/mol, respectively, which are similar to those reported for experimental feldspar dissolution measured over larger temperature ranges. A coupled temperature-precipitation model, using an expanded database for solute discharge fluxes from a global distribution of 86 granitoid watersheds, produces an apparent activation energy for Si (51 kJ/mol), which is also comparable to those derived from the experimental study. This correlation reinforces evidence that temperature does significantly impact natural silicate weathering rates. Effluent K concentrations in the column study are elevated with respect to other cations compared to watershed discharge due to the rapid oxidation/dissolution of biotite. K concentrations are less sensitive to temperature, resulting in a lower average E(a) value (27 kJ/mol) indicative of K loss from lower energy interlayer sites in biotite. At lower temperatures, initial cation release from biotite is significantly faster than cation release from plagioclase. This agrees with reported higher K/Na ratios in cold glacial watersheds relative to warmer temperate environments. Increased release of less radiogenic Sr from plagioclase relative to biotite at increasing temperature produces corresponding decreases in 87Sr/86Sr ratios in the column effluents. A simple mixing calculation using effluent K/Na ratios, Sr concentrations and 87Sr/86Sr ratios for biotite and plagioclase

  5. Estimating 1 min rain rate distributions from numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Paulson, Kevin S.

    2017-01-01

    Internationally recognized prognostic models of rain fade on terrestrial and Earth-space EHF links rely fundamentally on distributions of 1 min rain rates. Currently, in Rec. ITU-R P.837-6, these distributions are generated using the Salonen-Poiares Baptista method where 1 min rain rate distributions are estimated from long-term average annual accumulations provided by numerical weather prediction (NWP). This paper investigates an alternative to this method based on the distribution of 6 h accumulations available from the same NWPs. Rain rate fields covering the UK, produced by the Nimrod network of radars, are integrated to estimate the accumulations provided by NWP, and these are linked to distributions of fine-scale rain rates. The proposed method makes better use of the available data. It is verified on 15 NWP regions spanning the UK, and the extension to other regions is discussed.

  6. Effects of Climate on Long-term Rates of Physical Erosion and Chemical Weathering: Evidence from Cosmogenic Nuclides and Geochemical Mass Balance

    NASA Astrophysics Data System (ADS)

    Kirchner, J. W.; Riebe, C. S.; Ferrier, K. L.; Finkel, R. C.

    2004-12-01

    Cosmogenic nuclides such as 10Be and 26Al have recently become important tools for measuring long-term denudation rates. We have recently shown how cosmogenic nuclide measurements of denudation fluxes can be partitioned into their physical and chemical components, using the enrichment of insoluble tracers in regolith relative to its parent rock. We used these methods to measure long-term rates of physical erosion and chemical weathering for 42 sites, encompassing widely varying climates and denudation rates. Across these sites, mean annual temperatures vary from 2 to 25 ° C, average annual precipitation spans a 20-fold range (from 22 to 420 cm/yr), and denudation rates vary by 32-fold (from 23 to 755 t km-2 yr-2). Our measurements show that chemical weathering rates are tightly coupled with physical erosion rates, such that the relationship between climate and chemical weathering rates may be obscured by site-to-site differences in the rate that minerals are supplied to soil by physical erosion of rock. The relative importance of chemical weathering can be quantified using the "Weathering Intensity Factor" (WIF), the ratio of the chemical weathering rate to the physical erosion rate. Over 60 percent of the variance in WIF's can be explained by a simple Arrhenius-like relationship based on mean annual temperature and average annual precipitation. The temperature-dependence of WIF is roughly half of what one would expect from laboratory measurements of activation energies for feldspar weathering and previous inter-comparisons of short-term average weathering rates from the field. Our results imply that the strength of climate change feedbacks between temperature and silicate weathering rates may be weaker than previously thought, at least in actively eroding, unglaciated granitic terrain similar to our study sites.

  7. Weathering rates as a function of flow through an alpine soil

    USGS Publications Warehouse

    Clow, D.W.; Drever, J.I.

    1996-01-01

    The effect of flow on release rates of solutes from soil in a 39-m2 alpine catchment in the Colorado Rockies was measured during the summers of 1990-1994. Flow rates through the soil were varied by augmenting natural rainfall with deionized irrigation water. Daily water inputs averaged between 96 and 216 1 day-1 during the five field seasons, and mean discharge (inputs minus evapotranspiration) varied from 35 to 175 1 day-1. Volume-weighted mean concentrations of base cations and silica decreased only moderately in response to the increased water inputs. Input fluxes of solutes in precipitation were similar in each of the study seasons, but output fluxes of base cations and silica in surface outflow increased substantially in conjunction with the average water input rate for the season. Weathering rates calculated from the chemical fluxes increased substantially in response to increases in water input rates. The increases appear to be largely attributable to enhanced transport of solutes from the soil matrix under high flow conditions. At high flow, physical flushing of micropores presumably occurs to a greater extent than during low-flow periods because of greater soil wetness and higher hydrologic head. Increased flushing would also cause an increased rate of diffusion of solutes from microcracks in mineral surfaces and constricted pore spaces in response to an increased concentration gradient between those regions and adjacent areas in the soil matrix. Another consequence of the increased flushing that occurs during periods of high flow is that concentrations throughout the soil matrix tend to be lower, which might increase chemical weathering rates of some silicate minerals such as microcline, which are relatively close to saturation. Decreased Si concentrations under high-flow conditions appear to promote dissolution of amorphous aluminosilicates or desorption of Si from mineral surfaces, buffering Si concentrations in the soil solutions. Thus, both physical

  8. Role of fractures in weathering of solid rocks: narrowing the gap between laboratory and field weathering rates

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando A. L.; Alencoão, Ana M. P.

    2006-01-01

    A weathering study of a fractured environment composed of granites and metasediments was conducted in Trás-os-Montes and Alto Douro (north of Portugal) and covered the hydrographic basin of Sordo river. Within the basin, a number of perennial springs were monitored for discharge rate, which allowed for the estimation of annual recharges. A small area of the basin was characterized for parameters such as hydraulic conductivity and effective porosity, which, in combination with the previously calculated recharges, allowed for the calculation of a fracture surface area. The monitored springs were also sampled and analyzed for major inorganic compounds, and using a mole balance model the chemistry of the water samples was explained by weathering to kaolinite of albite-oligoclase plus biotite (granites) or of albite plus chlorite (metasediments). The number of moles of dissolved primary minerals (e.g. albite) could be calculated using this method. These mass transfers were then multiplied by the spring's median discharge rate and divided by the fracture surface area to obtain a weathering rate. Another weathering rate was determined, but using a BET surface area as normalizing factor. Comparing both rates with a representative record of laboratory as well as of field-based weathering rates, it has been noted that rates normalized by the BET were, as expected, similar to commonly reported field-based rates, whereas rates normalized by the fracture surface area were unexpectedly relatively close to laboratory rates (one order of magnitude smaller). The monitored springs are of the fracture artesian type, which means that water emerging at the spring site flowed preferentially through joints and fractures and that weathering took place predominantly at their walls. Consequently, it was concluded that the most realistic weathering rates are those normalized by the fracture surface area, and as a corollary that the gap between laboratory and field weathering rates might not

  9. Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments

    NASA Astrophysics Data System (ADS)

    Li, Xin; Song, Weiying; Yang, Kai; Krishnan, N. M. Anoop; Wang, Bu; Smedskjaer, Morten M.; Mauro, John C.; Sant, Gaurav; Balonis, Magdalena; Bauchy, Mathieu

    2017-08-01

    Although molecular dynamics (MD) simulations are commonly used to predict the structure and properties of glasses, they are intrinsically limited to short time scales, necessitating the use of fast cooling rates. It is therefore challenging to compare results from MD simulations to experimental results for glasses cooled on typical laboratory time scales. Based on MD simulations of a sodium silicate glass with varying cooling rate (from 0.01 to 100 K/ps), here we show that thermal history primarily affects the medium-range order structure, while the short-range order is largely unaffected over the range of cooling rates simulated. This results in a decoupling between the enthalpy and volume relaxation functions, where the enthalpy quickly plateaus as the cooling rate decreases, whereas density exhibits a slower relaxation. Finally, we show that, using the proper extrapolation method, the outcomes of MD simulations can be meaningfully compared to experimental values when extrapolated to slower cooling rates.

  10. The Beryllium-10(meteoric)/ Beryllium-9 ratio as a new tracer of weathering and erosion rates

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, F.; Bouchez, J.; Wittmann, H.; Dannhaus, N.

    2012-04-01

    A perfect clock of the stability of the Earth surface is one that combines a first isotope the flux of which depends on the release rate during erosion, and a second isotope produced at constant rate. The ratio of the meteoric cosmogenic nuclide 10Be to stable 9Be, suggested to serve as proxy for weathering and erosion over the late Cenozoic [1], is such a system. We provide a quantitative framework for its use. In a weathering zone some of the 9Be, present typically in 2ppm concentrations in silicate minerals, is released and partitioned between a reactive phase (adsorbed to clay and hydroxide surfaces, given the high partition coefficients at intermediate pH), and into the dissolved phase. The combined mass flux of both phases is defined by the soil formation rate and a mineral dissolution rate - and is hence proportional to the chemical weathering rate and the denudation rate. At the same time, the surface of the weathering zone is continuously exposed to fallout of meteoric 10Be. This 10Be percolates into the weathering zone where it mixes with dissolved 9Be. Both isotopes may exchange with the adsorbed Be, given that equilibration rate of Be is fast relative to soil residence times. Hence a 10Be/9Be(reactive) ratio results from which the total denudation rate can be calculated. A prerequisite is that the flux of meteoric 10Be is known from field experiments or from global production models [2]. In rivers, when reactive Be and dissolved Be equilibrate, a catchment-wide denudation rate can be determined from both sediment and a sample of filtered river water. We have tested this approach in sediment-bound Be [3] and dissolved Be in water [4] of the Amazon and Orinoco basin. The reactive Be was extracted from sediment by combined hydroxylamine and HCl leaches. In the Amazon trunk stream, the Orinoco, Apure, and La Tigra river 10Be/9Be(dissolved) agrees well with 10Be/9Be(reactive), showing that in most rivers these two phases equilibrate. 10Be/9Be ratios range

  11. Mass-balance modeling of mineral weathering rates and CO2 consumption in the forested, metabasaltic Hauver Branch watershed, Catoctin Mountain, Maryland, USA

    USGS Publications Warehouse

    Rice, Karen; Price, Jason R.; Szymanski, David W.

    2013-01-01

    Mineral weathering rates and a forest macronutrient uptake stoichiometry were determined for the forested, metabasaltic Hauver Branch watershed in north-central Maryland, USA. Previous studies of Hauver Branch have had an insufficient number of analytes to permit determination of rates of all the minerals involved in chemical weathering, including biomass. More equations in the mass-balance matrix were added using existing mineralogic information. The stoichiometry of a deciduous biomass term was determined using multi-year weekly to biweekly stream-water chemistry for a nearby watershed, which drains relatively unreactive quartzite bedrock.At Hauver Branch, calcite hosts ~38 mol% of the calcium ion (Ca2+) contained in weathering minerals, but its weathering provides ~90% of the stream water Ca2+. This occurs in a landscape with a regolith residence time of more than several Ka (kiloannum). Previous studies indicate that such old regolith does not typically contain dissolving calcite that affects stream Ca2+/Na+ ratios. The relatively high calcite dissolution rate likely reflects dissolution of calcite in fractures of the deep critical zone.Of the carbon dioxide (CO2) consumed by mineral weathering, calcite is responsible for approximately 27%, with the silicate weathering consumption rate far exceeding that of the global average. The chemical weathering of mafic terrains in decaying orogens thus may be capable of influencing global geochemical cycles, and therefore, climate, on geological timescales. Based on carbon-balance calculations, atmospheric-derived sulfuric acid is responsible for approximately 22% of the mineral weathering occurring in the watershed. Our results suggest that rising air temperatures, driven by global warming and resulting in higher precipitation, will cause the rate of chemical weathering in the Hauver Branch watershed to increase until a threshold temperature is reached. Beyond the threshold temperature, increased recharge would

  12. Linking nm-scale measurements of the anisotropy of silicate surface reactivity to macroscopic dissolution rate laws: New insights based on diopside

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Hellmann, Roland; Saldi, Giuseppe D.; Wirth, Richard; Knauss, Kevin G.

    2013-04-01

    The interfacial zone between a bulk fluid and a mineral surface is where all exchange of matter and energy occurs during chemical weathering. However, our knowledge is still limited with respect to understanding where and how the rate-determining dissolution reactions take place. A complicating factor is the commonplace formation of amorphous Si-rich surface layers (ASSLs), which may hinder contact between the fluid and the mineral surface. To address the role of ASSL, we investigated the dissolution of a common silicate (diopside), and related the bulk dissolution rate with the nanoscale dissolution rate and surface chemistry of its individual prevalent faces. While ASSL were evidenced on all of the investigated faces, only those formed on (1 1 0) and (11¯0) were passivating, thereby controlling the reactivity of the underlying faces. The (1 1 0) and (11¯0) faces intersect the highest density of Mg-O-Si and Fe-O-Si bonds, and this specificity may explain the passivating behavior of the corresponding ASSL. Moreover, we evidenced an inverse relation between aqueous silica concentration and the bulk dissolution rate of crushed diopside grains, which suggest that the (1 1 0) and (11¯0) faces are predominant in a powder. By considering ASSL as a separate phase that can control silicate dissolution rates, extrapolated laboratory-based rates at conditions relevant to the field can be lowered by up to several orders of magnitude, thereby decreasing the large gap between laboratory and natural rates. This has important implications for more accurately modeling chemical weathering reactions, so important today for the C cycle and CO2 sequestration.

  13. Present weathering rates in a humid tropical watershed: Nsimi, South Cameroon

    NASA Astrophysics Data System (ADS)

    Braun, Jean-Jacques; Ngoupayou, Jules Remy Ndam; Viers, Jérôme; Dupre, Bernard; Bedimo Bedimo, Jean-Pierre; Boeglin, Jean-Loup; Robain, Henri; Nyeck, Brunot; Freydier, Rémi; Nkamdjou, Luc Sigha; Rouiller, James; Muller, Jean-Pierre

    2005-01-01

    The study of biogeochemical and hydrological cycles in small experimental watersheds on silicate rocks, common for the Temperate Zone, has not yet been widely applied to the tropics, especially humid areas. This paper presents an updated database for a six-year period for the small experimental watershed of the Mengong brook in the humid tropics (Nsimi, South Cameroon). This watershed is developed on Precambrian granitoids (North Congo shield) and consists of two convexo-concave lateritic hills surrounding a large flat swamp covered by hydromorphic soils rich in upward organic matter. Mineralogical and geochemical investigations were carried out in the protolith, the saprolite, the hillside lateritic soils, and the swamp hydromorphic soils. Biomass chemical analyses were done for the representative species of the swamp vegetation. The groundwater was analysed from the parent rock/saprolite weathering front to the upper fringe in the hillside and swamp system. The chemistry of the wet atmospheric and throughfall deposits and the Mengong waters was monitored. In the Nsimi watershed the carbon transfer occurs primarily in an organic form and essentially as colloids produced by the slow biodegradation of the swamp organic matter. These organic colloids contribute significantly to the mobilization and transfer of Fe, Al, Zr, Ti, and Th in the uppermost first meter of the swamp regolith. When the organic colloid content is low (i.e., in the hillside groundwater), Th and Zr concentrations are extremely low (<3 pmol/L, ICP-MS detection limits). Strongly insoluble secondary thorianite (ThO 2) and primary zircon (ZrSiO 4) crystals control their mobilization, respectively. This finding thus justifies the potential use of both these elements as inert elements for isoelement mass balance calculations pertaining to the hillside regolith. Chloride can not be used as a conservative tracer of hydrological processes and chemical weathering in this watershed. Biogenic recycling

  14. The rate and causes of lunar space weathering: Insights from Lunar Reconnaissance Orbiter Wide Angle Camera ultraviolet observations

    NASA Astrophysics Data System (ADS)

    Denevi, B. W.; Robinson, M. S.; Sato, H.; Hapke, B. W.; McEwen, A. S.; Hawke, B. R.

    2011-12-01

    Lunar Reconnaissance Orbiter Wide Angle Camera global ultraviolet and visible imaging provides a unique opportunity to examine the rate and causes of space weathering on the Moon. Silicates typically have a strong decrease in reflectance toward UV wavelengths (<~450 nm) due to strong bands at 250 nm and in the far UV. Metallic iron is relatively spectrally neutral, and laboratory spectra suggest that its addition to mature soils in the form of submicroscopic iron (also known as nanophase iron) flattens silicate spectra, significantly reducing spectral slope in the ultraviolet. Reflectance at ultraviolet wavelengths may be especially sensitive to the surface coatings that form due to exposure to space weathering because scattering from the surfaces of grains contributes a larger fraction to the reflectance spectrum at short wavelengths. We find that the UV slope (as measured by the 320/415 nm ratio) is a more sensitive measure of maturity than indexes based on visible and near-infrared wavelengths. Only the youngest features (less than ~100 Ma) retain a UV slope that is distinct from mature soils of the same composition. No craters >20 km have UV slopes that approach those observed in laboratory spectra of fresh lunar materials (powdered lunar rocks). While the 320/415 nm ratio increases by ~18% from powdered rocks to mature soils in laboratory samples, Giordano Bruno, the freshest large crater, only shows a 3% difference between fresh and mature materials. At the resolution of our UV data (400 m/pixel), we observe some small (<5 km) craters that show a ~14% difference in 320/415 nm ratio from their mature surroundings. UV observations show that Reiner Gamma has had significantly lower levels of space weathering than any of the Copernican craters we examined, and was the only region we found with a UV slope that approached laboratory values for fresh powdered rock samples. This is consistent with the hypothesis that its high albedo is due to magnetic shielding from

  15. Stable carbon isotopes in dissolved inorganic carbon: extraction and implications for quantifying the contributions from silicate and carbonate weathering in the Krishna River system during peak discharge.

    PubMed

    Laskar, Amzad H; Gandhi, Naveen; Thirumalai, Kaustubh; Yadava, Madhusudan G; Ramesh, Rengaswamy; Mahajan, Ramakant R; Kumar, Dharmendra

    2014-06-01

    We present a comparative study of two offline methods, a newly developed method and an existing one, for the measurement of the stable carbon isotopic composition (δ(13)C) of dissolved inorganic carbon (DIC; δ(13)CDIC) in natural waters. The measured δ(13)CDIC values of different water samples, prepared from laboratory Na2CO3, ground and oceanic waters, and a laboratory carbonate isotope standard, are found to be accurate and reproducible to within 0.5 ‰\\ (1σ). The extraction of CO2 from water samples by these methods does not require pre-treatment or sample poisoning and can be applied to a variety of natural waters to address carbon cycling in the hydrosphere. In addition, we present a simple method (based on a two-end-member mixing model) to estimate the silicate-weathering contribution to DIC in a river system by using the concentration of DIC and its δ(13)C. This approach is tested with data from the Krishna River system as a case study, thereby quantifying the contribution of silicate and carbonate weathering to DIC, particularly during peak discharge.

  16. The Weathering of Antarctic Meteorites: Climatic Controls on Weathering Rates and Implications for Meteorite Accumulation

    NASA Technical Reports Server (NTRS)

    Benoit, P. H.; Akridge, J. M. C.; Sears, D. W. G.; Bland, P. A.

    1995-01-01

    Weathering of meteorites includes a variety of chemical and mineralogical changes, including conversion of metal to iron oxides, or rust. Other changes include the devitrification of glass, especially in fusion crust. On a longer time scale, major minerals such as olivine, pyroxene, and feldspar are partially or wholly converted to various phyllosilicates. The degree of weathering of meteorite finds is often noted using a qualitative system based on visual inspection of hand specimens. Several quantitative weathering classification systems have been proposed or are currently under development. Wlotzka has proposed a classification system based on mineralogical changes observed in polished sections and Mossbauer properties of meteorite powders have also been used. In the current paper, we discuss induced thermoluminescence (TL) as an indicator of degree of weathering of individual meteorites. The quantitative measures of weathering, including induced TL, suffer from one major flaw, namely that their results only apply to small portions of the meteorite.

  17. Characterizing englacial and subglacial weathering processes in a silicate-carbonate system at Robertson Glacier, Canada: Combining field measurements and remote sensing

    NASA Astrophysics Data System (ADS)

    Rutledge, A. M.; Christensen, P. R.

    2012-12-01

    Geologic weathering processes in cold environments, especially processes acting on subglacial and englacial sediments and rocks, are not well characterized due to the difficulty of accessing these environments. However, subglacial and englacial weathering of geologic materials contributes to the solute flux in meltwater and provides a potential source of energy to chemotrophic microbes, and is thus an important component to understand. In this study, we characterize the weathering products present in a glaciated silicate-carbonate system using infrared spectroscopy, x-ray diffraction, and geochemical analyses. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data to determine whether glacial weathering products can be detected from remotely detected infrared spectra. The major goals of the project are to quantify weathering inputs to the glacial energy budget, and to link in situ sampling with remote sensing capabilities. Robertson Glacier, Alberta, Canada (115°20'W, 50°44'N) provides an excellent field site for this technique as it is accessible, and its retreating stage allows sampling of fresh subglacial and englacial sediments. This site is also of great significance to microbiology studies due to the recent detection of methanogens in the local subglacial till. Samples of glacially altered rock and sediments were collected on a downstream transect of the glacier in September 2011. Infrared laboratory spectroscopy and x-ray diffraction were used to determine the composition and abundance of minerals present. Infrared imagery of the region was collected at the time of sampling with the ASTER satellite instrument. Geochemical data were also collected at each location, and ice and water samples were analyzed for major and minor elements. pH values decreased in the downstream direction, and Ca+2 and SO4-2 in solution increased downstream. This is initially consistent with earlier studies of similar systems; however, the majority of

  18. Soil production rates on silicate parent material in high-mountains: different approaches - different results?

    NASA Astrophysics Data System (ADS)

    Egli, Markus; Dahms, Dennis; Norton, Kevin

    2013-04-01

    High-mountain soils develop in particularly sensitive environments. Consequently, deciphering and predicting what drives the rates of soil formation in such environments is a major challenge. In terms of soil production from chemical weathering, the predominating perception for high-mountain soils and cold environments often is that the chemical weathering 'portion' of soil development is temperature-inhibited, often to the point of non-occurrence. Several concepts exist to determine long-term rates of soil formation and development. We present three different approaches: (1) quantification of soil formation from minimally eroded soils of known age using chronosequences (known surface age and soil thickness - SAST), (2) determination of soil residence times (SRT) and production rates through chemical weathering using (un)stable isotopes (e.g. 230Th / 234U activity ratios), and (3) a steady state approach using cosmogenic isotopes (e.g. 10Be). Data form different climate zones, and particularly from high-mountains (alpine environment), were compared. The SAST and steady state approach gave quite similar results for alpine environments (European Alps and the Wind River Range (Rocky Mountains USA)). Soil formation rates in mountain areas (but having a temperate climate) using the SRT approach, did not differ greatly from the SAST and Steady State approaches. Independent of the chosen approach, the results seem moderately comparable. Soil formation rates in high-mountain areas (alpine climate) ranged from very low to extremely high values and showed a clear decreasing tendency with time. Very young soils have up to 3 - 4 orders of magnitude higher rates of development than old soils (105 to 106 years). This is due to the fact that weathering is kinetically limited in regions having young surfaces and supply limited on old surfaces. Soil production rates cannot be infinitely high. Consequently, a speed limit must exist. In the literature, this limit has been set at

  19. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    NASA Astrophysics Data System (ADS)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  20. Modeling relative frost weathering rates at geomorphic scales

    NASA Astrophysics Data System (ADS)

    Rempel, Alan W.; Marshall, Jill A.; Roering, Joshua J.

    2016-11-01

    amplitudes, with a broad maximum centered on a mean annual temperature near the threshold required for crack growth. Warmer mean annual temperatures lead to less damage because of the reduction in time during which it is cold enough for cracking, whereas colder mean annual temperatures are accompanied by reduced water supply due to the temperature dependence of permeability. All of the controlling parameters in our model are tied explicitly to physical properties that can in principle be measured independently, which suggests promise for informing geomorphic interpretations of the role of frost weathering in evolving landforms and determining erosion rates.

  1. Modeling the influence of physical heterogeneity on the time dependence of anorthite weathering rates

    NASA Astrophysics Data System (ADS)

    Jung, H.; Navarre-Sitchler, A.

    2016-12-01

    Several orders of magnitude difference between laboratory measured and field estimated weathering rates is a well-known knowledge gap that hampers extrapolating laboratory-measured weathering rates to natural systems. The influence of hydrologic heterogeneity has been recognized as an important factor affecting this discrepancy, but it has not been quantitatively linked to the time dependence of weathering rates. We evaluate the impact of heterogeneous fluid flow on the time dependence of anorthite weathering rate with fully coupled reactive transport simulator, Crunchflow. Simulations performed in correlated random permeability fields with log-normal distribution are compared to homogeneous permeability fields. Preliminary results reveal that flux-weighted weathering rates measured at the outlet of the domain are constant and independent to the degree of heterogeneity when the weathering front reside inside of the domain. However, the weathering rate starts to decrease with different reduction rate depending on the degree of heterogeneity after the front leaves the domain. The higher the degree of heterogeneity (i.e. the higher variance of the permeability distribution) the earlier the weathering front exits the domain and thus the earlier the reduction in weathering rate is observed, but the rate of reduction in weathering rate of this case is lower than the case with a low degree of heterogeneity. This is because of the development of a larger area of initially non-reactive zones that participate in the dissolution reaction at later time for the higher degree of heterogeneity case. The differences in the rate and timing of reduction lead to the reversal of the weathering rate over time. We are expecting this type of conceptual modeling approach to help elucidate hydrologic controls on the time dependence of effective reaction rates at field scales and improve the application of laboratory measured rates to numerical simulations of field scale systems.

  2. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    NASA Astrophysics Data System (ADS)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; D'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  3. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  4. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates

    USGS Publications Warehouse

    Roger, Jennifer Roberts; Bennett, Philip C.

    2004-01-01

    Microorganisms play an important role in the weathering of silicate minerals in many subsurface environments, but an unanswered question is whether the mineral plays an important role in the microbial ecology. Silicate minerals often contain nutrients necessary for microbial growth, but whether the microbial community benefits from their release during weathering is unclear. In this study, we used field and laboratory approaches to investigate microbial interactions with minerals and glasses containing beneficial nutrients and metals. Field experiments from a petroleum-contaminated aquifer, where silicate weathering is substantially accelerated in the contaminated zone, revealed that phosphorus (P) and iron (Fe)-bearing silicate glasses were preferentially colonized and weathered, while glasses without these elements were typically barren of colonizing microorganisms, corroborating previous studies using feldspars. In laboratory studies, we investigated microbial weathering of silicates and the release of nutrients using a model ligand-promoted pathway. A metal-chelating organic ligand 3,4 dihydroxybenzoic acid (3,4 DHBA) was used as a source of chelated ferric iron, and a carbon source, to investigate mineral weathering rate and microbial metabolism.In the investigated aquifer, we hypothesize that microbes produce organic ligands to chelate metals, particularly Fe, for metabolic processes and also form stable complexes with Al and occasionally with Si. Further, the concentration of these ligands is apparently sufficient near an attached microorganism to destroy the silicate framework while releasing the nutrient of interest. In microcosms containing silicates and glasses with trace phosphate mineral inclusions, microbial biomass increased, indicating that the microbial community can use silicate-bound phosphate inclusions. The addition of a native microbial consortium to microcosms containing silicates or glasses with iron oxide inclusions correlated to

  5. Quantifying present-day and long-term shale weathering rates across a latitudinal climosequence

    NASA Astrophysics Data System (ADS)

    Dere, A. L. D.; Andrews, E.; White, T. S.

    2015-12-01

    A transect of shale sites was established across the Northern Hemisphere as part of the Susquehanna Shale Hills Critical Zone Observatory (SSHO) to investigate the role of climate in shale weathering. Mean annual temperature and precipitation vary across sites located in Wales, New York, Pennsylvania, Virginia, Tennessee, Alabama and Puerto Rico. Long-term weathering rates were quantified by comparing bulk soil geochemistry with original parent shale composition and cosmogenic 10Be inventories to estimate weathering duration. Present-day weathering rates were obtained by burying approximately 2 cm by 1 cm shale chips at multiple depths in soil pit walls. Shale chip samples were exhumed after two and five years of burial, washed and mass loss measured. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to determine surface chemistry and physical alteration of the recovered shale. Long-term weathering rates increase with increasing temperature across the transect. Similarly, after two years of burial, exhumed shale chip weathering rates increased from 2.9 ± 0.9 in Wales to 11.2 ± 3.7 m Ma-1 in Puerto Rico. Average weathering rates after two years of burial were similar in Virginia, Tennessee and Alabama (8.6 - 10.6 m Ma-1). Many shale chips in Alabama and Puerto Rico, however, retained soil particles even after washing, therefore total mass loss, and thus weathering rates, at these sites could be even greater. After five years of burial, mass loss across the Appalachian sites was greatest in Tennessee while weathering rates were overall generally similar to two year rates (3.0 to 12.6 m Ma-1). Evidence of physical and chemical changes, especially Na and Mg loss, from shale chip surfaces was greater on shale chips buried at warmer and wetter sites. Quantifying weathering rates as a function of climate at multiple scales will contribute to understanding the effects of global climate change on soil formation rates in the Critical

  6. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.

    PubMed

    Berelson, W M; Corsetti, F A; Pepe-Ranney, C; Hammond, D E; Beaumont, W; Spear, J R

    2011-09-01

    Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility. © 2011 Blackwell Publishing Ltd.

  7. Chemical weathering rates in deep-sea sediments: Comparison of multicomponent reactive transport models and estimates based on 234U

    NASA Astrophysics Data System (ADS)

    Maher, K.; Steefel, C. I.; Depaolo, D. J.

    2004-12-01

    Chemical weathering rates in natural systems are typically much slower than expected based on experiments and theory. There are several possible explanations. However, because it has been difficult to determine what effects in particular reduce the rates in specific settings, natural rates remain difficult to predict. Silicate-rich deep-sea sediments provide an ideal in-situ laboratory for investigating weathering rates because certain potentially important factors, such as advective transport through heterogeneous media, limitations on the availability of reactive surface area due to low porosity and/or cementation, unsaturated flow conditions, and seasonal variations in fluid flux and temperature, do not occur in this setting. Geochemical profiles from Site 984 in the North Atlantic are modeled using a multi-component reactive transport model (CRUNCH) to determine in-situ rates of plagioclase dissolution and other diagenetic processes, including sulfate reduction and anaerobic methane oxidation. Various possible processes which might contribute to slower rates in the field are considered, including the effect of mineral saturation state, secondary precipitation of clays, inhibition by dissolved aluminum, and the availability of reactive surface area. The reactive transport model includes an isotopic solid-solution formulation that tracks the isotopic composition of precipitating (calcite) and dissolving (plagioclase and calcite) phases, thus allowing the determination of plagioclase dissolution rates. The rate constants for plagioclase determined by geochemical transport modeling of major element profiles are within the same range determined from U-series calculations and suggest that natural weathering rates for this system are on the order of 10-17.5 to 10-17.7 mol/m2/sec assuming estimates of reactive surface area are correct, several orders of magnitude slower than laboratory-derived rates. The slow plagioclase rates are most likely due to the fact that

  8. Quantifying the VNIR Effects of Nanophase Iron Generated through the Space Weathering of Silicates: Reconciling Modeled Data with Laboratory Observations

    NASA Astrophysics Data System (ADS)

    Legett, C., IV; Glotch, T. D.; Lucey, P. G.

    2015-12-01

    Space weathering is a diverse set of processes that occur on the surfaces of airless bodies due to exposure to the space environment. One of the effects of space weathering is the generation of nanophase iron particles in glassy rims on mineral grains due to sputtering of iron-bearing minerals. These particles have a size-dependent effect on visible and near infrared (VNIR) reflectance spectra with smaller diameter particles (< 50 nm) causing both reddening and darkening of the spectra with respect to unweathered material (Britt-Pieters particle behavior), while larger particles (> 300 nm) darken without reddening. Between these two sizes, a gradual shift between these two behaviors occurs. In this work, we present results from the Multiple Sphere T-Matrix (MSTM) scattering model in combination with Hapke theory to explore the particle size and iron content parameter spaces with respect to VNIR (700-1700 nm) spectral slope. Previous work has shown that the MSTM-Hapke hybrid model offers improvements over Mie-Hapke models. Virtual particles are constructed out of an arbitrary number of spheres, and each sphere is assigned a refractive index and extinction coefficient for each wavelength of interest. The model then directly solves Maxwell's Equations at every wave-particle interface to predict the scattering, extinction and absorption efficiencies. These are then put into a simplified Hapke bidirectional reflectance model that yields a predicted reflectance. Preliminary results show an area of maximum slopes for iron particle diameters < 80 nm and iron concentrations of ~1-10wt% in an amorphous silica matrix. Further model runs are planned to better refine the extent of this region. Companion laboratory work using mixtures of powdered aerogel and nanophase iron particles provides a point of comparison to modeling efforts. The effects on reflectance and emissivity values due to particle size in a nearly ideal scatterer (aerogel) are also observed with comparisons to

  9. Estimating The Rate of Technology Adoption for Cockpit Weather Information Systems

    NASA Technical Reports Server (NTRS)

    Kauffmann, Paul; Stough, H. P.

    2000-01-01

    In February 1997, President Clinton announced a national goal to reduce the weather related fatal accident rate for aviation by 80% in ten years. To support that goal, NASA established an Aviation Weather Information Distribution and Presentation Project to develop technologies that will provide timely and intuitive information to pilots, dispatchers, and air traffic controllers. This information should enable the detection and avoidance of atmospheric hazards and support an improvement in the fatal accident rate related to weather. A critical issue in the success of NASA's weather information program is the rate at which the market place will adopt this new weather information technology. This paper examines that question by developing estimated adoption curves for weather information systems in five critical aviation segments: commercial, commuter, business, general aviation, and rotorcraft. The paper begins with development of general product descriptions. Using this data, key adopters are surveyed and estimates of adoption rates are obtained. These estimates are regressed to develop adoption curves and equations for weather related information systems. The paper demonstrates the use of adoption rate curves in product development and research planning to improve managerial decision processes and resource allocation.

  10. Estimating The Rate of Technology Adoption for Cockpit Weather Information Systems

    NASA Technical Reports Server (NTRS)

    Kauffmann, Paul; Stough, H. P.

    2000-01-01

    In February 1997, President Clinton announced a national goal to reduce the weather related fatal accident rate for aviation by 80% in ten years. To support that goal, NASA established an Aviation Weather Information Distribution and Presentation Project to develop technologies that will provide timely and intuitive information to pilots, dispatchers, and air traffic controllers. This information should enable the detection and avoidance of atmospheric hazards and support an improvement in the fatal accident rate related to weather. A critical issue in the success of NASA's weather information program is the rate at which the market place will adopt this new weather information technology. This paper examines that question by developing estimated adoption curves for weather information systems in five critical aviation segments: commercial, commuter, business, general aviation, and rotorcraft. The paper begins with development of general product descriptions. Using this data, key adopters are surveyed and estimates of adoption rates are obtained. These estimates are regressed to develop adoption curves and equations for weather related information systems. The paper demonstrates the use of adoption rate curves in product development and research planning to improve managerial decision processes and resource allocation.

  11. Rare Earth Element Behavior During Incongruent Weathering and Varying Discharge Conditions in Silicate Dominated River Systems: The Australian Victorian Alps

    NASA Astrophysics Data System (ADS)

    Hagedorn, K. B.; Cartwright, I.

    2008-12-01

    The distribution of rare earth elements (REE) and trace elements was measured by ICP-MS on fresh, slightly weathered and weathered granite and surface water samples from a network of 11 pristine rivers draining the Australian Victorian Alps during (i) high and (ii) low discharge conditions. River water REE concentrations are largely derived from atmospheric precipitation (rain, snow), as indicated by similar Chondrite normalized REE patterns (higher LREE over HREE; negative Ce anomalies, positive Eu anomalies) and similar total REE concentrations during both dry and wet seasons. Calculations based on the covariance between REE and Cl concentrations and oxygen and hydrogen isotopes indicate precipitation input coupled with subsequent evaporation may account for 30% o 100% of dissolved REE in stream waters. The dissolved contribution to the granitic substratum to stream water comes mainly from the transformation of plagioclase to smectite, kaolinite and gibbsite and minor apatite dissolution. However, since most REE of the regional granite are present in accessory minerals (titanite, zircon, etc.) they do not significantly contribute to the river REE pool. REE concentrations drop sharply downstream as a result of dilution and chemical attenuation. A trend of downstream enrichment of the heavier REE is due to selective partitioning of the lighter REE (as both free REE or REECO3 complexes) to hydrous oxides of suspended Al which, in turn, is controlled by a downstream increase of pH to values > 6.1 (for free REE) and > 7.3 (for REECO3 complexes). Although most circumneutral waters were supersaturated with REE phosphate compounds, precipitation of LnPO4 is not believed to have been a dominant process because the predicted phosphate fractionation pattern is inconsistent with the observed trends. Negative saturation indices of hydrous ferric oxides also militate against surface complexation onto goethite. Instead, REE attenuation most likely resulted from adsorption onto

  12. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: New insight from U-series isotopes in weathering rinds

    NASA Astrophysics Data System (ADS)

    Engel, Jacqueline M.; Ma, Lin; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-12-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite. Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds. This is the first time

  13. Amazonian Chemical Weathering Rate Derived from Stony Meteorite Finds at Meridiani Planum on Mars

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Bland, P. A.; Golombek, M. P.; Ashley, J. W.; Warner, N. H.; Grant, J. A.

    2016-08-01

    We used the ferric iron content in stony meteorite finds discovered with the MER Opportunity at Meridiani Planum and constrained their exposure age through related surface features to derive, we believe, the first chemical weathering rate for Mars.

  14. Direct Determination of the Space Weathering Rates in Lunar Soils and Itokawa Regolith from Sample Analyses

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.; Zhang, S.

    2016-01-01

    Space weathering effects on airless bodies result largely from micrometeorite impacts and solar wind interactions. Decades of research have provided insights into space weathering processes and their effects, but a major unanswered question still remains: what is the rate at which these space weathering effects are acquired in lunar and asteroidal regolith materials? To determine the space weathering rate for the formation of rims on lunar anorthite grains, we combine the rim width and type with the exposure ages of the grains, as determined by the accumulation of solar flare particle tracks. From these analyses, we recently showed that space weathering effects in mature lunar soils (both vapor-deposited rims and solar wind amorphized rims) accumulate and attain steady state in 10(sup 6)-10(sup 7) y. Regolith grains from Itokawa also show evidence for space weathering effects, but in these samples, solar wind interactions appear to dominate over impactrelated effects such as vapor-deposition. While in our lunar work, we focused on anorthite, given its high abundance on the lunar surface, for the Itokawa grains, we focused on olivine. We previously studied 3 olivine grains from Itokawa and determined their solar flare track densities and described their solar wind damaged rims]. We also analyzed olivine grains from lunar soils, measured their track densities and rim widths, and used this data along with the Itokawa results to constrain the space weathering rate on Itokawa. We observe that olivine and anorthite have different responses to solar wind irradiation.

  15. Kinetically limited weathering at low denudation rates in semi-arid climates

    NASA Astrophysics Data System (ADS)

    Vanacker, V.; Schoonejans, J.; Opfergelt, S.; Ameijeiras-Marino, Y.; Christl, M.

    2016-12-01

    On Earth, the Critical Zone supports terrestrial life, being the near-surface environment where interactions between the atmosphere, lithosphere, hydrosphere, and biosphere take place Quantitative understanding of the interaction between mechanical rock breakdown, chemical weathering, and physical erosion is essential for unraveling Earth's biogeochemical cycles. In this study, we explore the role of soil water balance on regulating soil chemical weathering under water deficit regimes. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We present and compare quantitative information on soil weathering, chemical depletion and total denudation that were derived based on geochemical mass balance, 10Be cosmogenic nuclides and U-series disequilibria. Soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) are of the same order of magnitude as 10Be-derived denudation rates, suggesting steady state soil thickness, in two out of three sampling sites. The chemical weathering intensities are relatively low (˜5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Soil weathering extents increase (nonlinearly) with soil thickness and decrease with increasing surface denudation rates, consistent with kinetically limited or controlled weathering. Our study suggests that soil residence time and water availability limit weathering processes in semi-arid climates, which has not been validated previously with field data. An important implication of this finding is that climatic regimes may strongly regulate soil weathering by modulating soil solute fluxes.

  16. Impact of land use on weathering rates in Guadeloupe, Caribbean islands

    NASA Astrophysics Data System (ADS)

    Rad, S.; Cerdan, O.; Gaillardet, J.; Grandjean, G.; Allegre, C. J.

    2010-12-01

    Guadeloupe is located in Lesser Antilles with a tropical climate with very high precipitation, temperature, very dense vegetation (forest on the steepest slopes, agricultural on the lowlands) and sharp relief. Rivers present torrential hydrological regime with extreme erosion conditions. The tropical context contributes to important development of saprolitic profile, with extreme chemical weathering rates (e.g. 100 to 600 t/km2/yr). As for many volcanic islands erodible lithology such as pyroclastic flows with ashes or even massif lava flows involve important material transported during the erosion processes. The lithyology is also very porous with high infiltration rates, which induces that most of the elements fluxes are produced on subsurface as the chemical erosion rates are 2 to 5 time higher than the rates from surface water (Rad et al., 2007). Moreover kinetic of chemical weathering rates depends on the age of the lava flows (with a NS gradient of age) and subsurface circulation with local hydrothermal springs, which highly increases chemical weathering rates. It appears that first stage of erosion are characterized by high chemical denudation rates and high physical denudation rates, the erosion products chemical compositions are then close to the bedrock one. It is then followed in a second stage by constant chemical weathering rates and lower mechanical denudation rates. Moreover Guadeloupe islands is highly impacted by agriculture (banana and sugar cane plantations), which significantly influence the hydrological cycle. It is therefore interesting to asses the impact of such influence on the weathering rates on this island. Chemical and physical weathering rates will be correlated to the different land use to quantify the impact of human activities and explain its role in the evolution of the Critical Zone.

  17. Weathering rates of marble in laboratory and outdoor conditions

    SciTech Connect

    Yerrapragada, S.S.; Chirra, S.R.; Jaynes, J.H.; Bandyopadhyay, J.K.; Gauri, K.L.; Li, S.

    1996-09-01

    In the modern urban atmosphere SO{sub 2} and NO{sub 2} attack calcite (CaCO{sub 3}) in marble exposed at rain-sheltered surfaces creating largely gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O) crusts that eventually exfoliate. In combination with CO{sub 2} these gases erode the marble at unsheltered surfaces. the authors report the development of mathematical models to predict the rate of growth of crust and the rate of surface recession. To determine the rate of growth of crust the kinetic rate constant, diffusion rate, and the order of reaction were determined by the application of the shrinking-core model applied to data generated in laboratory experiments. Based on these parameters /and average ambient levels of 10 parts per billion (ppb) SO{sub 2} and 25 ppb NO{sub 2} in Louisville, Ky., the rate of crust formation for this metro area was calculated to be 1.8 {micro}m in the first year. However, the rate of recession was modeled from data obtained by exposing marble slabs to rainfalls. A surface recession of 15 {micro}m/yr was calculated. The models predicted well the rate of growth of crust observed at several sites in Louisville and the predicted surface recession compared well with values reported in the literature.

  18. Geomorphic controls on chemical weathering rates in the High Himalayas of Nepal

    NASA Astrophysics Data System (ADS)

    Gabet, E.; Langner, H.; Burbank, D.; Barros, A.; Pratt-Situala, B.

    2004-12-01

    Evaluating the competing roles of climate and topography in controlling chemical weathering rates is critical to understanding the linkages between tectonic activity, surface processes, and the atmosphere. Rivers issuing from ten watersheds in the Annapurna region of Nepal, with drainage areas ranging from 6 to 2700 sq-km, were monitored during the 2002 monsoon season to estimate discharge and to collect weekly water samples. Chemical denudation rates of bedrock were estimated from the cation and anion load. We find a strong inverse linear relationship (r-sqrd = 0.83) between rates of chemical denudation and average watershed hillslope angle. We propose that this relationship is due to the effects of soil depth (ie. steep slopes = thin soils, gentle slopes = thick soils) on chemical weathering rates in an interface-limited weathering environment. These results also support Gilbert's hypothesis on the relationship between soil depth and the rate of soil production.

  19. Temperature dependence of basalt weathering

    NASA Astrophysics Data System (ADS)

    Li, Gaojun; Hartmann, Jens; Derry, Louis A.; West, A. Joshua; You, Chen-Feng; Long, Xiaoyong; Zhan, Tao; Li, Laifeng; Li, Gen; Qiu, Wenhong; Li, Tao; Liu, Lianwen; Chen, Yang; Ji, Junfeng; Zhao, Liang; Chen, Jun

    2016-06-01

    The homeostatic balance of Earth's long-term carbon cycle and the equable state of Earth's climate are maintained by negative feedbacks between the levels of atmospheric CO2 and the chemical weathering rate of silicate rocks. Though clearly demonstrated by well-controlled laboratory dissolution experiments, the temperature dependence of silicate weathering rates, hypothesized to play a central role in these weathering feedbacks, has been difficult to quantify clearly in natural settings at landscape scale. By compiling data from basaltic catchments worldwide and considering only inactive volcanic fields (IVFs), here we show that the rate of CO2 consumption associated with the weathering of basaltic rocks is strongly correlated with mean annual temperature (MAT) as predicted by chemical kinetics. Relations between temperature and CO2 consumption rate for active volcanic fields (AVFs) are complicated by other factors such as eruption age, hydrothermal activity, and hydrological complexities. On the basis of this updated data compilation we are not able to distinguish whether or not there is a significant runoff control on basalt weathering rates. Nonetheless, the simple temperature control as observed in this global dataset implies that basalt weathering could be an effective mechanism for Earth to modulate long-term carbon cycle perturbations.

  20. Hydrologic regulation of chemical weathering and the geologic carbon cycle.

    PubMed

    Maher, K; Chamberlain, C P

    2014-03-28

    Earth's temperature is thought to be regulated by a negative feedback between atmospheric CO2 levels and chemical weathering of silicate rocks that operates over million-year time scales. To explain variations in the strength of the weathering feedback, we present a model for silicate weathering that regulates climatic and tectonic forcing through hydrologic processes and imposes a thermodynamic limit on weathering fluxes, based on the physical and chemical properties of river basins. Climate regulation by silicate weathering is thus strongest when global topography is elevated, similar to the situation today, and lowest when global topography is more subdued, allowing planetary temperatures to vary depending on the global distribution of topography and mountain belts, even in the absence of appreciable changes in CO2 degassing rates.

  1. The influence of weather conditions on the relative incident rate of fishing vessels.

    PubMed

    Wu, Yue; Pelot, Ronald P; Hilliard, Casey

    2009-07-01

    There is a long history of studying the relationship between weather and maritime activities. This article analyzes the link between relative incident rate (RIR) and general weather factors within certain gridded areas and time periods. The study area, which encompasses a broad extent of Atlantic Canadian waters, includes fishing incidents recorded by the Canadian Coast Guard from 1997 to 1999. Methodologies used for traffic track generation in a geographical information system and aggregation of all relevant weather data needed for the statistical analyses are presented. Ultimately, a regression tree was built to illustrate the relationship between incident rate and the following six weather factors: wave height; sea surface temperature; air temperature; ice concentration; fog presence; and precipitation. Results from the regression tree reveal that the RIR defined as (incident number per area-day)/(traffic amount per area-day) across grid cells with incidents, increases as the weather conditions deteriorate in a general way, and the concentration of ice has the biggest influence on the magnitude of incident rates for a given level of traffic exposure. The results from this analysis may assist administrators of maritime traffic, especially those associated with fishing activities, through a better understanding of the influence on RIR of certain weather conditions within given areas in specific time periods.

  2. Hydroecological Connections: Hyporheic Zone Weathering of Silicate Minerals Controls Diatom Biodiversity in Microbial Mats in Glacial Meltwater Streams of the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Dyson, I.; Esposito, R. M.; Gooseff, M. N.; Lyons, W. B.; Welch, K. A.

    2015-12-01

    The McMurdo Dry Valleys of Antarctica is comprised of alpine and terminal glaciers, large expanses of patterned ground, and ice-covered lakes in the valley floors, which are linked by glacial meltwater streams that flow during the austral summer. As part of the McMurdo Dry Valleys Long-Term Ecological research project, we have observed stream ecosystem response to a sustained 18 year cool period with low flows, which has been recently interrupted by three "flood events" during sunny, warm summers. Many of these streams contain thriving microbial mats comprised of cyanobacteria and endemic diatoms, the most diverse group of eukaryotic organisms in the valleys. Of the 45 diatom taxa, some common taxa are heavily silicified, Hantzschia amphioxys f. muelleri, while others are only lightly silicified. By comparing diatom communities in streams which flow every summer with those in streams that only flow during flood events, we found that hydrologic flow regime acts as a strong environmental filter on diatom community composition. Following the first flood event in 2001/02, mat biomass was two-fold lower due to scouring and recovered over several years, with lesser declines following the subsequent floods. In the longer streams, the diatom community composition remained stable through the flood events, whereas in two of the shorter streams, Green and Bowles Creeks, the diatom community shifted after the first flood event to a greater abundance of lightly silicified taxa. Water quality monitoring and reactive transport modeling have shown that rapid weathering of silicate minerals in the hyporheic zone accounts for the downstream increases in Si concentration which are observed in the longer streams. One mechanism driving this greater abundance of lightly silicified diatoms in shorter streams could be the greater dilution of the Si supply from hyporheic weathering in shorter streams under high flows. Given that the stream diatom community is well preserved in the 40

  3. Chemically Accelerated Carbon Mineralization: Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage

    SciTech Connect

    2010-07-01

    IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.

  4. Spatial patterns and controls of soil chemical weathering rates along a transient hillslope

    USGS Publications Warehouse

    Yoo, K.; Mudd, S.M.; Sanderman, J.; Amundson, Ronald; Blum, A.

    2009-01-01

    Hillslopes have been intensively studied by both geomorphologists and soil scientists. Whereas geomorphologists have focused on the physical soil production and transport on hillslopes, soil scientists have been concerned with the topographic variation of soil geochemical properties. We combined these differing approaches and quantified soil chemical weathering rates along a grass covered hillslope in Coastal California. The hillslope is comprised of both erosional and depositional sections. In the upper eroding section, soil production is balanced by physical erosion and chemical weathering. The hillslope then transitions to a depositional slope where soil accumulates due to a historical reduction of channel incision at the hillslope's base. Measurements of hillslope morphology and soil thickness were combined with the elemental composition of the soil and saprolite, and interpreted through a process-based model that accounts for both chemical weathering and sediment transport. Chemical weathering of the minerals as they moved downslope via sediment transport imparted spatial variation in the geochemical properties of the soil. Inverse modeling of the field and laboratory data revealed that the long-term soil chemical weathering rates peak at 5 g m- 2 yr- 1 at the downslope end of the eroding section and decrease to 1.5 g m- 2 yr- 1 within the depositional section. In the eroding section, soil chemical weathering rates appear to be primarily controlled by the rate of mineral supply via colluvial input from upslope. In the depositional slope, geochemical equilibrium between soil water and minerals appeared to limit the chemical weathering rate. Soil chemical weathering was responsible for removing 6% of the soil production in the eroding section and 5% of colluvial influx in the depositional slope. These were among the lowest weathering rates reported for actively eroding watersheds, which was attributed to the parent material with low amount of weatherable

  5. Chemical weathering rates of a soil chronosequence on granitic alluvium: III. Hydrochemical evolution and contemporary solute fluxes and rates

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, D.A.; Harden, J.W.

    2005-01-01

    Although long-term changes in solid-state compositions of soil chronosequences have been extensively investigated, this study presents the first detailed description of the concurrent hydrochemical evolution and contemporary weathering rates in such sequences. The most direct linkage between weathering and hydrology over 3 million years of soil development in the Merced chronosequence in Central California relates decreasing permeability and increasing hydrologic heterogeneity to the development of secondary argillic horizons and silica duripans. In a highly permeable, younger soil (40 kyr old), pore water solutes reflect seasonal to decadal-scale variations in rainfall and evapotranspiration (ET). This climate signal is strongly damped in less permeable older soils (250 to 600 kyr old) where solutes increasingly reflect weathering inputs modified by heterogeneous flow. Elemental balances in the soils are described in terms of solid state, exchange and pore water reservoirs and input/output fluxes from precipitation, ET, biomass, solute discharge and weathering. Solute mineral nutrients are strongly dependent on biomass variations as evidenced by an apparent negative K weathering flux reflecting aggradation by grassland plants. The ratios of solute Na to other base cations progressively increase with soil age. Discharge fluxes of Na and Si, when integrated over geologic time, are comparable to solid-state mass losses in the soils, implying similar past weathering conditions. Similarities in solute and sorbed Ca/Mg ratios reflect short-term equilibrium with the exchange reservoir. Long-term consistency in solute ratios, when contrasted against progressive decreases in solid-state Ca/Mg, requires an additional Ca source, probably from dry deposition. Amorphous silica precipitates from thermodynamically-saturated pore waters during periods of high evapotranspiration and result in the formation of duripans in the oldest soils. The degree of feldspar and secondary

  6. Experimental high strain-rate deformation products of carbonate-silicate rocks: Comparison with terrestrial impact materials

    NASA Astrophysics Data System (ADS)

    van der Bogert, C. H.; Schultz, P. H.; Spray, J. G.

    2008-09-01

    Introduction. The response of carbonate to impact processes has thus far been investigated using a combination of thermodynamic modelling, shock experiments, and impact experiments. Localized shear deformation was suggested to play an important role in the failure of carbonate during some shock experiments [1,2], and was invoked to explain significant degassing of carbonates during oblique impact experiments [3]. The results of the impact experiments are at odds with experiments [4] that show back-reaction of CO2 with CaO and MgO could significantly reduce CO2 degassing during impact events. We performed a frictional-welding experiment in order to investigate the effects of high strain-rate deformation on carbonate-silicate target materials, exclusive of shock deformation effects, and to investigate the differing results of other experiments. Samples and Techniques. A frictional melting experiment was performed using dolomitic marble and quartzite samples to simulate conditions during an impact into carbonate-silicate target rocks. The experiment followed the method of Spray (1995) [5]. The 1.5 cm3 samples were mounted onto separate steel cylinders with epoxy. Using a Blacks FWH-3 axial friction-welding rig, the samples were brought into contact at room temperature and under dry conditions with ~5 MPa applied pressure. Contact was maintained for two seconds at 750 rpm for a sustained strain-rate of 102 to 103 s-1. Results. Vapor or fine dust escaped from the interface during the experiment. Immediately after sample separation, the interfaces were incandescent. Once cooled, opaque white material adhered to both the quartzite and dolomitic marble samples. Quartzite sample. Material was injected into cracks that formed in the quartzite sample. Cooling and crystallization of the friction products resulted in the formation of submicron-sized minerals such as periclase and Ca- and Ca,Mg-silicates (Fig. 1) including merwinite and åkermanite. While periclase was observed

  7. The rate of dielectric breakdown weathering of lunar regolith in permanently shadowed regions

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N. A.; Spence, H. E.

    2017-02-01

    Large solar energetic particle events may cause dielectric breakdown in the upper 1 mm of regolith in permanently shadowed regions (PSRs). We estimate how the resulting breakdown weathering compares to meteoroid impact weathering. Although the SEP event rates measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) are too low for breakdown to have significantly affected the regolith over the duration of the LRO mission, regolith gardened by meteoroid impacts has been exposed to SEPs for ∼106 yr. Therefore, we estimate that breakdown weathering's production rate of vapor and melt in the coldest PSRs is up to 1.8 - 3.5 ×10-7 kg m-2 yr-1 , which is comparable to that produced by meteoroid impacts. Thus, in PSRs, up to 10-25% of the regolith may have been melted or vaporized by dielectric breakdown. Breakdown weathering could also be consistent with observations of the increased porosity ("fairy castles") of PSR regolith. We also show that it is conceivable that breakdown-weathered material is present in Apollo soil samples. Consequently, breakdown weathering could be an important process within PSRs, and it warrants further investigation.

  8. The Rate of Dielectric Breakdown Weathering of Lunar Regolith in Permanently Shadowed Regions

    NASA Technical Reports Server (NTRS)

    Jordan, A. P.; Stubbs, T. J.; Wilson, J. K.; Schwadron, N. A.; Spence, H. E.

    2016-01-01

    Large solar energetic particle events may cause dielectric breakdown in the upper 1 mm of regolith in permanently shadowed regions (PSRs). We estimate how the resulting breakdown weathering compares to meteoroid impact weathering. Although the SEP event rates measured by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) are too low for breakdown to have significantly affected the regolith over the duration of the LRO mission, regolith gardened by meteoroid impacts has been exposed to SEPs for approx.10(exp 6 yr. Therefore, we estimate that breakdown weathering's production rate of vapor and melt in the coldest PSRs is up to 1.8-3. 5 ×10(exp -7) kg/sq m/yr, which is comparable to that produced by meteoroid impacts. Thus, in PSRs, up to 10-25% of the regolith may have been melted or vaporized by dielectric breakdown. Breakdown weathering could also be consistent with observations of the increased porosity ("fairy castles") of PSR regolith. We also show that it is con- ceivable that breakdown-weathered material is present in Apollo soil samples. Consequently, breakdown weathering could be an important process within PSRs, and it warrants further investigation.

  9. Melting mountains of Appalachia: exceptionally high weathering rates in mined watersheds

    NASA Astrophysics Data System (ADS)

    Ross, M. R.; Nippgen, F.; Hassett, B.; McGlynn, B. L.; Bernhardt, E. S.

    2016-12-01

    Mountaintop mining operations excavate ridges as deep as 200 m and bury adjacent valleys and streams beneath fractured bedrock and coal residues. Post-mining, landscapes have lower slopes, greatly increased water storage potential, and an abundance of acid-generating pyrite, which is intentionally mixed with neutralizing calcareous bedrock. Together these design features of mountaintop mined lands create ideal conditions for long water residence times and rapid weathering rates, leading to widely documented and substantial increases in streamwater ion concentrations. To date, these concentration changes have not been linked to rates of watershed scale element flux. In a paired catchment study, we documented a 4,000% increase in the export of total dissolved solids from a mined watershed, and estimate that pyrite and carbonate weathering in reclaimed mines can export 9,000 kg ha-1 y-1 of dissolved rock to receiving streams. Such high rates of element flux after a disturbance are not only much higher than other watershed disturbances, but are among the highest rates of weathering ever reported globally. Sulfuric acid weathering of carbonate rock drives these patterns of chemical erosion. This strong acid weathering changes Appalachian geology from a slight net geologic CO2 sink-sequestering 800-1,500 kg CO2 km-2 yr-1 through carbonic acid weathering of carbonates-to a substantial net geologic source of CO2, releasing 170,000 kg CO2 km-2 yr-1. Over the more than 4,000 km2 area of Central Appalachia that has undergone mountaintop mining, this rapid weathering represents 4 million tons of dissolved rock being delivered to the streams of West Virginia, potentially releasing 680,000 tons of CO2 in the process.

  10. Assessing Wind Farm Reliability Using Weather Dependent Failure Rates

    NASA Astrophysics Data System (ADS)

    Wilson, G.; McMillan, D.

    2014-06-01

    Using reliability data comprising of two modern, large scale wind farm sites and wind data from two onsite met masts, a model is developed which calculates wind speed dependant failure rates which are used to populate a Markov Chain. Monte Carlo simulation is then exercised to simulate three wind farms which are subjected to controlled wind speed conditions from three separate potential UK sites. The model then calculates and compares wind farm reliability due to corrective maintenance and component failure rates influenced by the wind speed of each of the sites. Results show that the components affected most by changes in average daily wind speed are the control system and the yaw system. A comparison between this model and a more simple estimation of site yield is undertaken. The model takes into account the effects of the wind speed on the cost of operation and maintenance and also includes the impact of longer periods of downtime in the winter months and shorter periods in the summer. By taking these factors into account a more detailed site assessment can be undertaken. There is significant value to this model for operators and manufacturers.

  11. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars

    PubMed Central

    Schröder, Christian; Bland, Phil A.; Golombek, Matthew P.; Ashley, James W.; Warner, Nicholas H.; Grant, John A.

    2016-01-01

    Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth. PMID:27834377

  12. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars.

    PubMed

    Schröder, Christian; Bland, Phil A; Golombek, Matthew P; Ashley, James W; Warner, Nicholas H; Grant, John A

    2016-11-11

    Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth.

  13. Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars

    NASA Astrophysics Data System (ADS)

    Schröder, Christian; Bland, Phil A.; Golombek, Matthew P.; Ashley, James W.; Warner, Nicholas H.; Grant, John A.

    2016-11-01

    Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ~1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth.

  14. The role of nitrification in silicate hydrolysis in soils near Santa Cruz, CA

    NASA Astrophysics Data System (ADS)

    Kyker-Snowman, E.; White, A.; Lawrence, C. R.; Schulz, M. S.

    2013-12-01

    In some ecosystems, nitrification (microbial conversion of ammonium to nitrate) may supplant carbonic acid as a source of acidity and drive silicate weathering. Recent studies have explored the impact that ammonium fertilizer addition to soils has on weathering of various mineral types (Pacheco et al. 2013) and demonstrated directly that ammonium addition to soils can increase carbonate weathering (Gandois et al. 2011). Some evidence points to a role for nitrification in silicate weathering at a series of coastal grassland terraces near Santa Cruz, CA. Weathering rates in these soils have been estimated using the byproducts of silicate hydrolysis (Cl--adjusted Na+ and other cations). If carbonic acid from dissolved CO2 is the source of acidity in silicate hydrolysis, bicarbonate should balance the cations produced during weathering. However, in the Santa Cruz soils nitrate is the dominant anion balancing cation concentrations. High concentrations of CO2 (>1%) at depths greater than 1m may provide additional support for nitrification-based silicate hydrolysis at Santa Cruz. We evaluate the role of nitrification in silicate weathering for soils from the Santa Cruz Marine Terrace Chronosequence using a column ammonium-addition experiment and a basic weathering model. The column experiment uses ammonium inputs in excess of natural inputs and measures weathering products in eluted fluids over time. The model incorporates more realistic estimates of ammonium input and explores whether the observed concentrations of cations, nitrate and CO2 seen at Santa Cruz can be explained by nitrification-driven acidity or if other inputs need to be considered. Gandois, L, Perrin, A-S, and Probst, A. 2011. Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: A column experiment. Geochimica et Cosmochimica Acta 75 pp. 1185-1198. Pacheco, F, Landim, P, and Szocs, T. 2013. Anthropogenic impacts on mineral weathering: A

  15. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance

    NASA Astrophysics Data System (ADS)

    Riebe, Clifford S.; Kirchner, James W.; Finkel, Robert C.

    2003-11-01

    Quantifying long-term rates of chemical weathering and physical erosion is important for understanding the long-term evolution of soils, landscapes, and Earth's climate. Here we describe how long-term chemical weathering rates can be measured for actively eroding landscapes using cosmogenic nuclides together with a geochemical mass balance of weathered soil and parent rock. We tested this approach in the Rio Icacos watershed, Puerto Rico, where independent studies have estimated weathering rates over both short and long timescales. Results from the cosmogenic/mass balance method are consistent with three independent sets of weathering rate estimates, thus confirming that this approach yields realistic measurements of long-term weathering rates. This approach can separately quantify weathering rates from saprolite and from overlying soil as components of the total. At Rio Icacos, nearly 50% of Si weathering occurs as rock is converted to saprolite; in contrast, nearly 100% of Al weathering occurs in the soil. Physical erosion rates are measured as part of our mass balance approach, making it particularly useful for studying interrelationships between chemical weathering and physical erosion. Our data show that chemical weathering rates are tightly coupled with physical erosion rates, such that the relationship between climate and chemical weathering rates may be obscured by site-to-site differences in the rate that minerals are supplied to soil by physical erosion of rock. One can normalize for variations in physical erosion rates using the ;chemical depletion fraction,; which measures the fraction of total denudation that is accounted for by chemical weathering. This measure of chemical weathering intensity increases with increasing average temperature and precipitation in data from climatically diverse granitic sites, including tropical Rio Icacos and six temperate sites in the Sierra Nevada, California. Hence, across a wide range of climate regimes, analysis of

  16. Low Rates of Weathering and Erosion in Wet, Steep, Tropical Highlands

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, F.; Hewawasam, T.

    2003-12-01

    The Central Highlands of the island of Sri Lanka feature all the ingredients usually thought to promote high rates of weathering: crystalline rocks, warm climate, high rates of precipitation. Also the high relief (steep mountains of up to 2500m altitude) would potentially generate high rates of physical erosion, which in turn promotes weathering by providing fresh mineral surfaces. An analysis of the rates of total erosion, using cosmogenic nuclides, excluding the effects of anthropogenic perturbance [1], was performed on various parts of the landscape (bedrock, surface soil, river sediment). The results suggest that all parts of the Highlands erode at 5-15mm/ky only. Rates of chemical weathering, determined by analysing major cations in river water, further suggest that most of this denudation is chemical. These rates of erosion are amongst the lowest world-wide for any sloping area analysed to date with cosmogenic nuclides. No relationship between climate and erosion is apparent for these areas. For Sri Lanka, we suggest that rock weathering has been low for millions of years due to (a) development of a clay-rich surface layer protecting rocks from corrosive fluids; (b) thick vegetation inhibiting removal of this layer; and (c), most importantly, absence of recent tectonic activity that would rejuvenate the landscape and promote physical erosion. Therefore, climate does not appear to exert controls over rock weathering if active tectonic forcing is absent. 1 T. Hewawasam, F. von Blanckenburg, M. Schaller and W. Kubik, Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides, Geology 31, 795-600, 2003.

  17. Comparison of field and laboratory weathering rates in carbonate rocks from an Eastern Mediterranean drainage basin

    NASA Astrophysics Data System (ADS)

    Levenson, Yael; Ryb, Uri; Emmanuel, Simon

    2017-05-01

    The rates of carbonate rock weathering affect the global carbon cycle over timescales of hundreds to thousands of years. While field measurements show that the rate of carbonate denudation increases with rainfall, significant variability exists. To determine whether the mineralogical composition of the rocks causes this variability, we compare published long-term field denudation rates determined from cosmogenic isotopes (36Cl) with the weathering rates measured in laboratory experiments conducted on the same rock samples. The samples were collected from natural-rock outcrops across the Soreq drainage basin (Israel) that experience similar mean annual precipitation, but exhibit long-term denudation rates that vary from 6 mm ky-1 to 20 mm ky-1. In laboratory experiments, we found that the laboratory rates also varied, decreasing as the ratio of dolomite to calcite increased. However, no correlation was evident between the long-term denudation rates and mineral composition, suggesting that the variability in field rates was not controlled by the kinetics of dissolution. Other factors, such as rain intensity, biological activity, and mechanical erosion are likely to control the variability in the rates by inhibiting or accelerating the weathering of carbonate surfaces in natural settings.

  18. Chemical weathering and erosion rates in the Lesser Antilles: An overview in Guadeloupe, Martinique and Dominica

    NASA Astrophysics Data System (ADS)

    Rad, Sétareh; Rivé, Karine; Vittecoq, Benoit; Cerdan, Olivier; Allègre, Claude Jean

    2013-08-01

    Guadeloupe, Martinique and Dominica islands, like numerous tropical environments, have extreme weathering regimes. Physical denudation is mainly controlled by landslides, which reflect the torrential dynamics of the rivers. In Guadeloupe, the mechanical weathering rates vary between 800 and 4000 t/km2/yr. The lithology is very porous with high infiltration rates, which suggests that most of the element fluxes are produced in the subsurface, with chemical erosion rates 2-5 times higher than the rates from surface water. We show how the kinetics of chemical weathering rates depend on the age of the lava and subsurface circulation. In addition, erosion timescales were calculated from U-series analyses of river sediments. Our results show a broad range: 0-150 ka in Martinique and 0-60 ka in Guadeloupe. We evaluated residence times in river water on the basis of the dissolved load analyses. It appears that water circulation is globally 3-fold longer for subsurface water than for surficial water (Rad et al. 2011a,b). Moreover, these islands are highly impacted by agriculture. However, contrary to what one might think, our results show that human activity does not disturb critical zone processes. Indeed, we show that among the combined impacts of all parameters (climate, runoff, slope, vegetation, etc.), the basin's age seems to be the control parameter for chemical weathering and land use—the younger the basin, the higher the weathering rates. We could observe a combined effect between the higher erodibility and a higher climate erosivity of the younger reliefs.

  19. URBAN WET-WEATHER FLOW MICROBIAL CONTAMINATION: HIGH-RATE TREATMENT APPROACHES

    EPA Science Inventory

    fThis presentation is on high-rate disinfection of wet-weather flow (WWF) and pretreatment processes of suspended solids to enhance the disinfection. A discussion of pretreatment processes and of the newest disinfection technologies used for WWF is included, along with the feasib...

  20. Subcritical crack growth and mechanical weathering: a new consideration of how moisture influences rock erosion rates.

    NASA Astrophysics Data System (ADS)

    Eppes, Martha-Cary; Keanini, Russell; Hancock, Gregory S.

    2016-04-01

    The contributions of moisture to the mechanical aspects of rock weathering and regolith production are poorly quantified. In particular, geomorphologists have largely overlooked the role of subcritical crack growth processes in physical weathering and the fact that moisture strongly influences the rates of those processes. This influence is irrespective of the function that moisture plays in stress loading mechanisms like freezing or hydration. Here we present a simple numerical model that explores the efficacy of subcritical crack growth in granite rock subaerially exposed under a range of moisture conditions. Because most weathering-related stress loading for rocks found at, or near, Earth's surface (hereafter surface rocks) is cyclic, we modeled crack growth using a novel combination of Paris' Law and Charles' Law. This combination allowed us to apply existing empirically-derived data for the stress corrosion index of Charles' Law to fatigue cracking. For stress, we focused on the relatively straightforward case of intergranular stresses that arise during solar-induced thermal cycling by conductive heat transfer, making the assumption that such stresses represent a universal minimum weathering stress experienced by all surface rocks. Because all other tensile weathering-related stresses would be additive in the context of crack growth, however, our model can be adapted to include other stress loading mechanisms. We validated our calculations using recently published thermal-stress-induced cracking rates. Our results demonstrate that 1) weathering-induced stresses as modeled herein, and as published by others, are sufficient to propagate fractures subcritically over long timescales with or without the presence of water 2) fracture propagation rates increase exponentially with respect to moisture, specifically relative humidity 3) fracture propagation rates driven by thermal cycling are strongly dependent on the magnitude of diurnal temperature ranges and the

  1. CO2 diffusion into pore spaces limits weathering rate of an experimental basalt landscape

    USGS Publications Warehouse

    van Haren, Joost; Dontsova, Katerina; Barron-Gafford, Greg A.; Troch, Peter A.; Chorover, Jon; DeLong, Stephen B.; Breshears, David D.; Huxman, Travis E.; Pelletier, Jon D.; Saleska, Scott; Zeng, Xubin; Ruiz, Joaquin

    2017-01-01

    Basalt weathering is a key control over the global carbon cycle, though in situ measurements of carbon cycling are lacking. In an experimental, vegetation-free hillslope containing 330 m3 of ground basalt scoria, we measured real-time inorganic carbon dynamics within the porous media and seepage flow. The hillslope carbon flux (0.6–5.1 mg C m–2 h–1) matched weathering rates of natural basalt landscapes (0.4–8.8 mg C m–2 h–1) despite lacking the expected field-based impediments to weathering. After rainfall, a decrease in CO2 concentration ([CO2]) in pore spaces into solution suggested rapid carbon sequestration but slow reactant supply. Persistent low soil [CO2] implied that diffusion limited CO2 supply, while when sufficiently dry, reaction product concentrations limited further weathering. Strong influence of diffusion could cause spatial heterogeneity of weathering even in natural settings, implying that modeling studies need to include variable soil [CO2] to improve carbon cycling estimates associated with potential carbon sequestration methods.

  2. Machine learning and linear regression models to predict catchment-level base cation weathering rates across the southern Appalachian Mountain region, USA

    NASA Astrophysics Data System (ADS)

    Povak, Nicholas A.; Hessburg, Paul F.; McDonnell, Todd C.; Reynolds, Keith M.; Sullivan, Timothy J.; Salter, R. Brion; Cosby, Bernard J.

    2014-04-01

    Accurate estimates of soil mineral weathering are required for regional critical load (CL) modeling to identify ecosystems at risk of the deleterious effects from acidification. Within a correlative modeling framework, we used modeled catchment-level base cation weathering (BCw) as the response variable to identify key environmental correlates and predict a continuous map of BCw within the southern Appalachian Mountain region. More than 50 initial candidate predictor variables were submitted to a variety of conventional and machine learning regression models. Predictors included aspects of the underlying geology, soils, geomorphology, climate, topographic context, and acidic deposition rates. Low BCw rates were predicted in catchments with low precipitation, siliceous lithology, low soil clay, nitrogen and organic matter contents, and relatively high levels of canopy cover in mixed deciduous and coniferous forest types. Machine learning approaches, particularly random forest modeling, significantly improved model prediction of catchment-level BCw rates over traditional linear regression, with higher model accuracy and lower error rates. Our results confirmed findings from other studies, but also identified several influential climatic predictor variables, interactions, and nonlinearities among the predictors. Results reported here will be used to support regional sulfur critical loads modeling to identify areas impacted by industrially derived atmospheric S inputs. These methods are readily adapted to other regions where accurate CL estimates are required over broad spatial extents to inform policy and management decisions.

  3. Chemical weathering of flat continents

    NASA Astrophysics Data System (ADS)

    Maffre, Pierre; Goddéris, Yves; Ladant, Jean-Baptiste; Carretier, Sébastien; Moquet, Jean-Sébastien; Donnadieu, Yannick; Labat, David; Vigier, Nathalie

    2017-04-01

    Mountain uplift is often cited as the main trigger of the end Cenozoic glacial state. Conversely, the absence of major uplift is invoked to explain the early Eocene warmth. This hypothesis relies on the fact that mountain uplift increases the supply of "fresh" silicate rocks through enhanced physical erosion, and boosts CO2 consumption by chemical weathering. Atmospheric CO2 —and therefore climate— then adjust to compensate for the changes in weatherability and keep the geological carbon cycle balanced (Walker's feedback). Yet, orography also strongly influences the global atmospheric and oceanic circulation. Consequently, building mountains does not only change the weathering regime in the restricted area of the orogen, but also modifies the worldwide distribution of the weathering flux. We conduct a numerical experiment in which we simulate the climate of the present day world, with all mountain ranges being removed. Up-to-date weathering and erosion laws (West, 2012; Carretier et al., 2014) are then used to quantify the global weathering for a "flat world". Specifically, the parameters of the weathering law are first carefully calculated such that the present day distribution of the weathering fluxes matches the riverine geochemical data. When removing mountains, we predict a warmer and wetter climate, especially in geographic spots located in the equatorial band. The calculated response of the global weathering flux ranges from an increase by 50% to a decrease by 70% (relative to the present day with mountains). These contrasted responses are pending on the parameterisation of the weathering model, that makes it more sensitive to reaction rate (kinetically-limited mode) or to rock supply by erosion (supply-limited mode). The most likely parameterisation —based on data-model comparison— predicts a decrease of CO2 consumption by weathering by 40% when mountains are removed. These results show that (1) the behaviour of the weathering engine depends on the

  4. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    NASA Astrophysics Data System (ADS)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  5. Quantifying chemical weathering rates along a precipitation gradient on Basse-Terre Island, French Guadeloupe: new insight from U-series isotopes in weathering rinds

    USGS Publications Warehouse

    Engel, Jacqueline M.; May, Linda; Sak, Peter B.; Gaillardet, Jerome; Ren, Minghua; Engle, Mark A.; Brantley, Susan L.

    2016-01-01

    Inside soil and saprolite, rock fragments can form weathering clasts (alteration rinds surrounding an unweathered core) and these weathering rinds provide an excellent field system for investigating the initiation of weathering and long term weathering rates. Recently, uranium-series (U-series) disequilibria have shown great potential for determining rind formation rates and quantifying factors controlling weathering advance rates in weathering rinds. To further investigate whether the U-series isotope technique can document differences in long term weathering rates as a function of precipitation, we conducted a new weathering rind study on tropical volcanic Basse-Terre Island in the Lesser Antilles Archipelago. In this study, for the first time we characterized weathering reactions and quantified weathering advance rates in multiple weathering rinds across a steep precipitation gradient. Electron microprobe (EMP) point measurements, bulk major element contents, and U-series isotope compositions were determined in two weathering clasts from the Deshaies watershed with mean annual precipitation (MAP) = 1800 mm and temperature (MAT) = 23 °C. On these clasts, five core-rind transects were measured for locations with different curvature (high, medium, and low) of the rind-core boundary. Results reveal that during rind formation the fraction of elemental loss decreases in the order: Ca ≈ Na > K ≈ Mg > Si ≈ Al > Zr ≈ Ti ≈ Fe. Such observations are consistent with the sequence of reactions after the initiation of weathering: specifically, glass matrix and primary minerals (plagioclase, pyroxene) weather to produce Fe oxyhydroxides, gibbsite and minor kaolinite.Uranium shows addition profiles in the rind due to the infiltration of U-containing soil pore water into the rind as dissolved U phases. U is then incorporated into the rind as Fe-Al oxides precipitate. Such processes lead to significant U-series isotope disequilibria in the rinds

  6. The influence of herbivory and weather on the vital rates of two closely related cactus species.

    PubMed

    Sauby, Kristen E; Kilmer, John; Christman, Mary C; Holt, Robert D; Marsico, Travis D

    2017-09-01

    Herbivory has long been recognized as a significant driver of plant population dynamics, yet its effects along environmental gradients are unclear. Understanding how weather modulates plant-insect interactions can be particularly important for predicting the consequences of exotic insect invasions, and an explicit consideration of weather may help explain why the impact can vary greatly across space and time. We surveyed two native prickly pear cactus species (genus Opuntia) in the Florida panhandle, USA, and their specialist insect herbivores (the invasive South American cactus moth, Cactoblastis cactorum, and three native insect species) for five years across six sites. We used generalized linear mixed models to assess the impact of herbivory and weather on plant relative growth rate (RGR) and sexual reproduction, and we used Fisher's exact test to estimate the impact of herbivory on survival. Weather variables (precipitation and temperature) were consistently significant predictors of vital rate variation for both cactus species, in contrast to the limited and varied impacts of insect herbivory. Weather only significantly influenced the impact of herbivory on Opuntia humifusa fruit production. The relationships of RGR and fruit production with precipitation suggest that precipitation serves as a cue in determining the trade-off in the allocation of resources to growth or fruit production. The presence of the native bug explained vital rate variation for both cactus species, whereas the invasive moth explained variation only for O. stricta. Despite the inconsistent effect of herbivory across vital rates and cactus species, almost half of O. stricta plants declined in size, and the invasive insect negatively affected RGR and fruit production. Given that fruit production was strongly size-dependent, this suggests that O. stricta populations at the locations surveyed are transitioning to a size distribution of predominantly smaller sizes and with reduced sexual

  7. Denudation rates and the degree of chemical weathering in the Ganga River basin from ratios of meteoric cosmogenic 10Be to stable 9Be

    NASA Astrophysics Data System (ADS)

    Rahaman, Waliur; Wittmann, Hella; von Blanckenburg, Friedhelm

    2017-07-01

    The ratio of the meteoric cosmogenic nuclide 10Be, precipitated from the atmosphere, to the stable nuclide 9Be, released by silicate weathering, was measured in suspended sediment of the Ganga River basin to determine denudation rates, degrees of weathering, and sediment storage in the floodplain. The 10Be precipitated and the 9Be released are carried to ca. 90% by amorphous and to 10% by crystalline Fe-hydroxides, as revealed by chemical extractions, whereas the dissolved Be transport is negligible due to the river pH of 8. Resulting 10Be/9Be ratios increase from 0.75 ×10-9 for the northern and Himalaya-draining rivers to 1.7 ×10-9 in the downstream basin. The increase in 10Be/9Be ratios results from two compounding effects: with 1) average denudation rates decrease from 0.5 mm yr-1 in the Himalayas to 0.17 mm yr-1 for the Ganga main stem in the lowlands, 2) the southern tributaries draining the low-relief craton contribute sediment with a ratio of 2.0 ×10-9, corresponding to a denudation rate of 0.03 mm yr-1. We find that at the spatial scale of the entire basin, the atmospheric delivery flux of 10Be equals its sedimentary export flux. Hence fluxes can be considered to be at steady state and radioactive decay of 10Be during sediment storage is not discernible. The lack of a resolvable increase in 10Be concentration during sediment transfer along the floodplain stretch furthermore suggests that the sediment transfer time is indeed short. We also cannot resolve any additional release of silicate-bound 9Be there, testifying to the lower degree of weathering there. When multiplied with the basin area the 10Be/9Be-derived denudation rate of 0.14 mm yr-1 corresponds to a sediment flux of 350 Mt yr-1 which is in good agreement with gauging-derived sediment fluxes (ca. 400 Mt yr-1). Because they integrate over the entire basin, denudation rates from 10Be/9Be are lower than floodplain-corrected denudation rates from in situ cosmogenic 10Be that reflect the rates of the

  8. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    SciTech Connect

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces and corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.

  9. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    DOE PAGES

    Pandey, Sachin; Rajaram, Harihar

    2016-12-05

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less

  10. Modeling the influence of preferential flow on the spatial variability and time-dependence of mineral weathering rates

    NASA Astrophysics Data System (ADS)

    Pandey, Sachin; Rajaram, Harihar

    2016-12-01

    Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. We present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces and corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a 1/t dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. The DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.

  11. Denudation and Weathering Rates from Meteoric 10Be/9Be Ratios in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Wittmann, H.; von Blanckenburg, F.; Dannhaus, N.; Bouchez, J.; Gaillardet, J.; Guyot, J. L., Sr.; Maurice, L.; Roig, H.; Filizola, N.; Christl, M.

    2016-12-01

    Quantification of river dissolved and particulate fluxes is essential for understanding the role of weathering and erosion in geochemical cycles. The Amazon River is a natural laboratory where novel methods to quantify riverine fluxes can be tested, because of the density of published data on present-day sediment and dissolved loads [e.g.1-3] and millenial-scale denudation rates from in situ-10Be [4]. In this study we present extentive testing of a new method derived from the meteoric 10Be over 9Be (stable) ratio. This new proxy combines a known atmospheric flux tracer, meteoric cosmogenic 10Be, with 9Be that is released from rocks by weathering. We show that long-term erosion (E), denudation (D), and weathering (W) rates can be determined from only sub gram-sized amounts of fine-grained sediment, or from river water. Denudation rates from 10Be/9Be ratios measured in bedload, suspended sediment, and water samples from Amazon Rivers agree within a factor of ca. 2 with published in situ-10Be denudation rates [4]. Erosion rates using 10Be concentrations from depth-integrated suspended sediment (DSS) agree well with meteoric denudation rates, implying a minor chemical weathering intensity in most Amazon tributaries. Indeed, the Be-specific weathering intensity, calculated from mobilized 9Be comprising reactive and dissolved fractions that are released during weathering, is constant at ca. 40% of the total denudation from the Andes across the lowlands to the Amazon mouth. We anticipate that our promising results will lead to a broad application of this new proxy as former restrictive issues, such as retentivity and grain size, are now better understood and the bias on D from 10Be/9Be ratios is small. [1] Guyot et al. (1996) IAHS 236, 55-63. [2] Moquet et al. (2011) Chem. Geol. 287, 1-26. [3] Dunne ete al. (1998) Geol. Soc. Am. Bull. 110, 450-467. [4] Wittmann et al. (2011) Geol. Soc. Am. Bull. 123, 934-950.

  12. From the surface to the deep critical zone: Linking soil carbon, fluid saturation and weathering rate

    NASA Astrophysics Data System (ADS)

    Druhan, Jennifer; Lawrence, Corey; Oster, Jessica; Rempe, Daniella; Dietrich, William

    2017-04-01

    Shallow soils from a wide range of ecosystems demonstrate a clear and consistent relationship between effective fluid saturation and the rate at which organic carbon is converted to CO2. While the underlying mechanisms contributing to this dependence are diverse, a consistent pattern of maximum CO2 production at intermediate soil moisture supports a generalized functional relationship, which may be incorporated into a quantitative reactive transport framework. A key result of this model development is a prediction of the extent to which the inorganic carbon content of water in biologically active soils varies as a function of hydrologic parameters (i.e. moisture content and residence time), and in turn influences weathering reactions. Deeper in the CZ, the consistency of this relationship and the influence of hydrologically - regulated CO2 production on the rates of water - rock interaction are largely unknown. Here, we use a novel reactive transport model incorporating this functional relationship to consider how variations in the reactive potential of water entering the vadose zone influences subsurface weathering rates. We leverage two examples of variably saturated natural systems to consider (1) CO2 production and associated weathering potential regulated by seasonal hydrologic shifts and (2) the preservation of soil carbon signatures in the deep CZ over millennial timescales. First, at the Eel River CZ Observatory in Northern California, USA, a novel Vadose Zone Monitoring System (VMS) installed in a 14 - 20 m thick unsaturated section offers an unprecedented view into the physical, chemical and biological behavior of the depth profile separating soils from groundwater. Based on soil moisture, gas and fluid phase samples, we demonstrate a predictive relationship between seasonal hydrologic variations and the location and magnitude of geochemical weathering rates. Second, an environmental monitoring project in the Blue Springs Cave, Sparta, TN, USA, provides

  13. Stable runoff and weathering fluxes into the oceans over Quaternary climate cycles

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, Friedhelm; Bouchez, Julien; Ibarra, Daniel E.; Maher, Kate

    2015-07-01

    Throughout the Quaternary period, the Earth’s surface has been subject to large changes in temperature and precipitation associated with fluctuations between glacial and interglacial states that have affected biogeochemical cycling. However, the effect of these climate oscillations on weathering is debated, with climate modelling efforts using empirical relationships between measures of climate and weathering suggesting minimal changes in global weathering rates between these two climate states. The ratio of the cosmogenic isotope 10Be, which is produced in the atmosphere and deposited to the oceans and the land surface, to 9Be, which is introduced to the oceans by the riverine silicate weathering flux, can be used to track relative weathering fluxes. Here we apply this proxy to marine sediment beryllium records spanning the past two million years, and find no detectable shifts in inputs from global silicate weathering into the oceans. Using climate model simulations of the Last Glacial Maximum along with a model for silicate weathering, we find that there was large regional variability in runoff between glacial and interglacial periods, but that this regional variability was insufficient to shift global weathering fluxes. We suggest that this stability in weathering explains the observation that the removal of CO2 from the atmosphere by silicate weathering has been in approximate balance with CO2 degassing over the past 600,000 years.

  14. Determining rates of chemical weathering in soils - Solute transport versus profile evolution

    USGS Publications Warehouse

    Stonestrom, D.A.; White, A.F.; Akstin, K.C.

    1998-01-01

    SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses that have occurred during regolith development. Climates at the three profiles range from Mediterranean to humid to tropical. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. This allows current SiO2 fluxes below the zone of seasonal variations to be estimated from pore-water concentrations and average hydraulic flux densities. Mean-annual SiO2 concentrations were 0.1-1.5 mM. Hydraulic conductivities for the investigated range of soil-moisture saturations ranged from 10-6 m s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6 x 10-9 to 14 x 10-9 m s-1 based on Darcy's law and field measurements of moisture saturations and pressure heads. Corresponding fluid-residence times in the profiles ranged from 10 to 44 years. Total SiO2 losses, based on chemical and volumetric changes in the respective profiles, ranged from 19 to 110 kmoles SiO2 m-2 of land surface as a result of 0.2-0.4 Ma of chemical weathering. Extrapolation of contemporary solute fluxes to comparable time periods reproduced these SiO2 losses to about an order of magnitude. Despite the large range and non-linearity of measured hydraulic conductivities, solute transport rates in weathering regoliths can be estimated from characterization of hydrologic conditions at sufficiently large depths. The agreement suggests that current weathering rates are representative of long-term average weathering rates in the regoliths.SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses during regolith development. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform

  15. Seasonal weather patterns drive population vital rates and persistence in a stream fish.

    PubMed

    Kanno, Yoichiro; Letcher, Benjamin H; Hitt, Nathaniel P; Boughton, David A; Wofford, John E B; Zipkin, Elise F

    2015-05-01

    Climate change affects seasonal weather patterns, but little is known about the relative importance of seasonal weather patterns on animal population vital rates. Even when such information exists, data are typically only available from intensive fieldwork (e.g., mark-recapture studies) at a limited spatial extent. Here, we investigated effects of seasonal air temperature and precipitation (fall, winter, and spring) on survival and recruitment of brook trout (Salvelinus fontinalis) at a broad spatial scale using a novel stage-structured population model. The data were a 15-year record of brook trout abundance from 72 sites distributed across a 170-km-long mountain range in Shenandoah National Park, Virginia, USA. Population vital rates responded differently to weather and site-specific conditions. Specifically, young-of-year survival was most strongly affected by spring temperature, adult survival by elevation and per-capita recruitment by winter precipitation. Low fall precipitation and high winter precipitation, the latter of which is predicted to increase under climate change for the study region, had the strongest negative effects on trout populations. Simulations show that trout abundance could be greatly reduced under constant high winter precipitation, consistent with the expected effects of gravel-scouring flows on eggs and newly hatched individuals. However, high-elevation sites would be less vulnerable to local extinction because they supported higher adult survival. Furthermore, the majority of brook trout populations are projected to persist if high winter precipitation occurs only intermittently (≤3 of 5 years) due to density-dependent recruitment. Variable drivers of vital rates should be commonly found in animal populations characterized by ontogenetic changes in habitat, and such stage-structured effects may increase population persistence to changing climate by not affecting all life stages simultaneously. Yet, our results also demonstrate that

  16. Elemental weathering fluxes and saprolite production rate in a Central African lateritic terrain (Nsimi, South Cameroon)

    NASA Astrophysics Data System (ADS)

    Braun, Jean-Jacques; Marechal, Jean-Christophe; Riotte, Jean; Boeglin, Jean-Loup; Bedimo Bedimo, Jean-Pierre; Ndam Ngoupayou, Jules Remy; Nyeck, Brunot; Robain, Henri; Sekhar, M.; Audry, Stéphane; Viers, Jérôme

    2012-12-01

    The comparison between contemporary and long-term weathering has been carried out in the Small Experimental Watershed (SEW) of Nsimi, South Cameroon in order to quantify the export fluxes of major and trace elements and the residence time of the lateritic weathering cover. We focus on the hillside system composed of a thick lateritic weathering cover topped by a soil layer. This study is built on the recent improvements of the hillside hydrological functioning and on the analyses of major and trace elements. The mass balance calculation at the weathering horizon scale performed with the parent rock as reference indicates (i) strong depletion profiles for alkalis (Na, K, Rb) and alkaline earths (Mg, Ca, Sr, Ba), (ii) moderate depletion profiles for Si, P, Cd, Cu, Zn, Ni and Co, (iii) depletion/enrichment profiles for Al, Ga, Ge, Sn, Pb, LREE, HREE, Y, U, Fe, V, Cr, Mn. It is noteworthy that (i) Mn and Ce are not significantly redistributed according to oxidative processes as it is the case for Fe, V and Cr, and (ii) Ge is fractionated compared to silica with enrichment in Fe-rich horizons. The calculations performed for the topsoil with iron crust as parent material reference reveal that the degradation of the iron crust is accompanied by the loss of most of the constituting elements, among which are those specifically accumulated as the redox sensitive elements (Fe, V, Cr) and iron oxide related elements like Th. The overall current elemental fluxes from the hillside system at the springs and the seepage zones are extremely low due to the inert lateritic mineralogy. Ninety-four percent of the whole Na flux generated from the hillside corrected from atmospheric deposits (77 mol/ha/yr) represents the current weathering rates of plagioclase (oligoclase) in the system, the other remaining 6% may be attributed to the dissolution of hornblende. The silica hillside flux is 300 mol/ha/yr and can be mostly attributed to the plagioclase and kaolinite dissolution. Al and Ga

  17. Apparent I-Xe Cooling Rates of Chondrules Compared with Silicates from the Colomera Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Hohenberg, C. M.; Meshik, A. P.; Pravdivseva, O. V.

    2004-01-01

    In I-Xe dating, a regular pattern of increasing Xe-129/128Xe-128 ratio with increasing extraction temperature is often observed. If one makes the crude assumption that the temperatures at which the Xe is extracted in the laboratory is approximately the same as the temperature at which those sites closed 4.6 Ga ago, a (zeroth order) model cooling rate can be found. In order to test and refine this model we can apply the cooling theory of Dodson to those extraction steps approaching the I-Xe isochrons. Using an Arrhenius plot for these temperature fractions, and assuming that an only single phase is involved, the effective diffusion parameters can be estimated (frequency factor and activation energy). From the apparent (zeroth order) cooling rate, the closure temperature can be estimated from the Dodson equation. This model closure temperature can then be compared with the actual laboratory temperature at which the isochron begins. The ratio of the closure temperature and the temperature corresponding to the start of the isochron provides the ratio of the two temperature scales, incorporation and extraction. The actual cooling rate is then given by the apparent (zeroth order) cooling rate times the temperature scale factor. Figure 1 shows Arrhenius plots for I-Xe data

  18. Extreme limestone weathering rates due to micron-scale grain detachment

    NASA Astrophysics Data System (ADS)

    Emmanuel, Simon; Levenson, Yael

    2014-05-01

    Chemical dissolution is often assumed to control the weathering rates of carbonate rocks, although some studies have indicated that mechanical erosion could also play a significant role. Quantifying the rates of the different processes is challenging due to the high degree of variability encountered in both field and lab settings. To measure the rates and mechanisms controlling long-term limestone weathering, we analyse a lidar scan of the Western Wall, a Roman period edifice located in Jerusalem. Surface retreat rates in fine-grained micritic limestone blocks are found to be as much as 2 orders of magnitude higher than the average rates estimated for coarse-grained limestone blocks at the same site. In addition, in experiments that use atomic force microscopy to image dissolving micritic limestone, we show that these elevated reaction rates could be due to rapid dissolution along micron-scale grain boundaries, followed by mechanical detachment of tiny particles from the surface. Our analysis indicates that micron-scale grain detachment, rather than pure chemical dissolution, could be the dominant erosional mode for fine-grained carbonate rocks.

  19. Putting weathering into a landscape context: Variations in exhumation rates across the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Anderson, Suzanne P.; Foster, Melissa A.; Anderson, Scott W.; Dühnforth, Miriam; Anderson, Robert S.

    2015-04-01

    Erosion rates are expected vary with lithology, climate, and topographic slope, yet assembling these variations for an entire landscape is rarely done. The Front Range of the southern Rocky Mountains in Colorado, USA, exhibits contrasts in all three parameters. The range comprises ~2300 m in relief from the Plains to the crags of the Continental Divide. Its abrupt mountain front coincides closely with the boundary between marine sedimentary rocks to the east and Proterozoic crystalline rocks (primarily granodiorite and gneiss) to the west. Mean annual temperature declines and mean annual precipitation increases with elevation, from ~11° C/490 mm at the western edge of the Plains to -3.7° C/930 mm on Niwot Ridge near the range crest. The range contains regions of low relief with rolling topography, in which slopes rarely exceed 20° , as well as deeply incised glacial valleys and fluvial canyons lined by steep slopes (>25° ). Cosmogenic 10Be based erosion rates vary by a factor of ~5 within crystalline rock across the range. The lowest rates (5-10 mm/ka) are found on low relief summit tors in the alpine, where temperatures are low and precipitation is high. Slightly higher erosion rates (20-30 mm/ka) are found in low relief crystalline rock areas with montane forest cover. Taken together, these rates suggest that on low slopes, rock-weathering rates (which place a fundamental limit on erosion rates) are lower in cold alpine settings. Over the 40-150 ka averaging time of 10Be erosion rates, lower rates are found where periglacial/tundra conditions have prevailed, while moderate rates occur where conditions have varied from periglacial/tundra in the past to frigid regime/montane forest in the Holocene. Higher basin-averaged erosion rates of 40-60 mm/ka are reported for 'canyon edge' basins (Dethier et al., 2014, Geology), which are small, steep basins responding to fluvial bedrock incision that formed the canyons in the late Cenozoic. Are higher erosion rates in

  20. Permian Minimum and the Following Major Rise in Seawater 87Sr/86Sr Linked to the Glaciation/Deglaciation and Resultant Change in Weathering Rate

    NASA Astrophysics Data System (ADS)

    Kani, T.; Isozaki, Y.

    2014-12-01

    We report a detailed secular change of the middle Middle to early Late Permian seawater 87Sr/86Sr ratio for and Akasaka and Kamura carbonates (Japan) deposited on mid-Pansalassan seamounts and for Shizipo carbonates (South China) deposited on the shallow marine shelf. In these coeval sections, extremely low values (<0.7069; the lowest values of the Phanerozoic) continued from upper Wordian (middle Middle Permian) to the topmost Capitanian (upper Middle Permian) barren interval immediately below the Middle-Late Permian boundary characterized by the major crisis of large-tested fusulines and rugose corals. Immediately after ca. 5 m.y.-long minimum interval, the major rise in 87Sr/86Sr was started and the rate of the rise (0.00007/m.y.) continued in period of time containing 21 m.y. until early Triassic (~239 Ma), that is faster than the Cenozoic major rise (0.00003/m.y.). The most significant shift through Phanerozoic in Sr isotope trend can be explained by the remarkable changes in continental erosion/weathering rate; in particular, by the onset of glaciation and the following deglaciation, that is supported by global sea level change, in addition to the initial doming/rifting of Pangea. After the Capitanian cooling, the long-term climatic regime shifted to a warmer one during which inland ice sheet was removed to expose old crustal silicates for to erosion/weathering. A mantle plume impingiment might lead a domal uplift that accelerate weathering. Highly radiogenic continental Sr could enter the ocean along the new drainage systems developed with the rifting.

  1. Erosion rates of wood during natural weathering. Part II, Earlywood and latewood erosion rates

    Treesearch

    R. Sam Williams; Mark T. Knaebe; William C. Feist

    2001-01-01

    This is the second in a series of reports on the erosion rates of wood exposed outdoors near Madison, Wisconsin. In the work reported here, the erosion rates of earlywood and latewood were determined for smooth-planed vertical-grained lumber for an exposure period of 14 years. The specimens were oriented vertically, facing south; erosion was measured annually for the...

  2. Erosion rates of wood during natural weathering. Part III, Effect of exposure angle on erosion rate

    Treesearch

    R. Sam Williams; Mark T. Knaebe; James W. Evans; William C. Feist

    2001-01-01

    This is the third in a series of reports on the erosion rates of wood exposed outdoors near Madison, Wisconsin. The specimens were exposed at an orientation of 90* or 45* facing south or horizontally (0*) for 10 years. Erosion was measured annually for the first 8 years and after 10 years. The erosion rates of earlywood (springwood) and latewood (summerwood) were...

  3. Impact of space weather on human heart rate during the years 2011-2013

    NASA Astrophysics Data System (ADS)

    Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K.

    2017-08-01

    During the last years a possible link between different levels of solar and geomagnetic disturbances and human physiological parameters is suggested by several published studies. In this work the examination of the potential association between heart rate variations and specific space weather activities was performed. A total of 482 individuals treated at Hippocratio General Hospital in Athens, the Cardiology clinics of Nikaia General Hospital in Piraeus and the Heraklion University Hospital in Crete, Greece, were assessed from July 2011 to April 2013. The heart rate of the individuals was recorded by a Holter monitor on a n hourly basis, while the hourly variations of the cosmic ray intensity measured by the Neutron Monitor Station of the Athens University and of the geomagnetic index Dst provided by the Kyoto Observatory were used. The ANalysis Of VAriance (ANOVA) and the Multiple Linear Regression analysis were used for analysis of these data. A statistically significant effect of both cosmic rays and geomagnetic activity on heart rate was observed, which may indicate that changes in space weather could be linked to heart rate variations.

  4. Experimental correlation of melt structures, nucleation rates, and thermal histories of silicate melts

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK

    1987-01-01

    The theory and measurement of the structure of liquids is an important aspect of modern metallurgy and igneous petrology. Liquid structure exerts strong controls on both the types of crystals that may precipitate from melts and on the chemical composition of those crystals. An interesting aspect of melt structure studies is the problem of melt memories; that is, a melt can retain a memory of previous thermal history. This memory can influence both nucleation behavior and crystal composition. This melt memory may be characterized quantitatively with techniques such as Raman, infrared and NMR spectroscopy to provide information on short-range structure. Melt structure studies at high temperature will take advantage of the microgravity conditions of the Space Station to perform containerless experiments. Melt structure determinations at high temperature (experiments that are greatly facilitated by containerless technology) will provide invaluable information for materials science, glass technology, and geochemistry. In conjunction with studies of nucleation behavior and nucleation rates, information relevant to nucleation in magma chambers in terrestrial planets will be acquired.

  5. Chemical weathering in the Three Rivers region of Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Noh, Hyonjeong; Huh, Youngsook; Qin, Jianhua; Ellis, Andre

    2009-04-01

    Three large rivers - the Chang Jiang (Yangtze), Mekong (Lancang Jiang) and Salween (Nu Jiang) - originate in eastern Tibet and run in close parallel over 300 km near the eastern Himalayan syntaxis. Seventy-four river water samples were collected mostly during the summer season from 1999 to 2004. Their major element compositions vary widely, with total dissolved solids (TDS) ranging from 31 to 3037 mg/l, reflecting the complex geologic makeup of the vast drainage basins. The major ion distribution of the main channel samples primarily reflects the weathering of carbonates. Evaporite dissolution prevails in the headwater samples of the Chang Jiang in the Tibetan Plateau interior, as evidenced by the high TDS (928 and 3037 mg/l) and the Na-Cl dominant major element composition. Local tributary samples of the Mekong and Salween, draining the Lincang Batholith and the Tengchong Volcano, show distinctive silicate weathering signatures. We used five reservoirs - rain, halite, sulfate, carbonate, and silicate - in a forward model to calculate the contribution from silicate weathering to the total dissolved load and to estimate the consumption rate of atmospheric CO 2 by silicate weathering. Carbonate weathering accounts for about 50% of the total cationic charge (TZ +) in the samples of the Mekong and the Salween exiting the Tibetan Plateau. In the "exit" sample of the Chang Jiang, 45% of TZ + is from halite dissolution inherited from the extreme headwater tributaries in the interior of the plateau, and carbonates contribute only 26% to the TZ +. The net rate of CO 2 consumption by silicate weathering is (103-121) × 10 3 mol km -2 year -1, lower than the rivers draining the Himalayan front. GIS-based analyses indicate that runoff and relief can explain 52% of the spread in the rate of atmospheric CO 2 drawdown by silicate weathering, but other climatic (temperature, precipitation, potential evapotranspiration) and geomorphic (elevation, slope) factors also show

  6. Effect of Dissolved Organic Matter on Basalt Weathering Rates under Flow Conditions

    NASA Astrophysics Data System (ADS)

    Dontsova, K.; Steefel, C. I.; Chorover, J. D.

    2009-12-01

    Rock weathering is an important aspect of soil formation that is tightly coupled to the progressive colonization of grain surfaces by microorganisms and plant tissue, both of which are associated with the exudation of complexing ligands and reducing equivalents that are incorporated into dissolved organic matter. As part of a larger hillslope experimental study being designed for Biosphere 2 (Oracle, AZ), we seek to determine how the presence and concentration of dissolved organic matter affects the incongruent dissolution rates of basaltic tuff. Saturated flow column experiments are being conducted using plant-derived soluble organic matter solutions of variable concentrations, and comparisons are being made to experiments conducted with malic acid, a low-molecular weight organic acid commonly exuded into the rhizosphere. Dissolved organic matter was extracted from Ponderosa Pine forest floor and was characterized for aqueous geochemical parameters (pH, EC, ion balance, DOC/TN) and also for DOC composition (UV-Vis, FTIR spectroscopy). Column effluents are being analyzed for major and trace cations, anions, silica and organic solutes. Dissolution rates of primary minerals and precipitation rates of secondary phases will be estimated by fitting the data to a numerical reactive transport model, CrunchFlow2007. At the end of the fluid flow experiment, column materials will be analyzed for biogeochemical composition to detect preferential dissolution of specific phases, the precipitation of new ones, and to monitor the associated formation of biofilms. The influence of organic solutions on weathering patterns of basalt will be discussed.

  7. Lithium isotope behaviour during weathering in the Ganges Alluvial Plain

    NASA Astrophysics Data System (ADS)

    Pogge von Strandmann, Philip A. E.; Frings, Patrick J.; Murphy, Melissa J.

    2017-02-01

    The Ganges river system is responsible for the transportation of a large flux of dissolved materials derived from Himalayan weathering to the oceans. Silicate weathering-driven cooling resulting from uplift of the Himalayas has been proposed to be a key player in Cenozoic climate variation. This study has analysed Li isotope (δ7Li) ratios from over 50 Ganges river waters and sediments, in order to trace silicate weathering processes. Sediments have δ7Li of ∼0‰, identical to bulk continental crust, however suspended sediment depth profiles do not display variations associated with grain size that have been observed in other large river systems. Dissolved δ7Li are low (∼11‰) in the Ganges headwaters, but reach a constant value of 21 ± 1.6‰ within a relatively short distance downstream, which is then maintained for almost 2000 km to the Ganges mouth. Given that Li isotopes are controlled by the ratio of primary mineral dissolution to secondary mineral formation, this suggests that the Ganges floodplain is at steady-state in terms of these processes for most of its length. Low δ7Li in the mountainous regions suggest silicate weathering is therefore at its most congruent where uplift and fresh silicate exposure rates are high. However, there is no correlation between δ7Li and the silicate weathering rate in these rivers, suggesting that Li isotopes cannot be used as a weathering-rate tracer, although they do inform on weathering congruency and intensity. The close-to-constant δ7Li values for the final 2000 km of Ganges flow also suggest that once the size of the alluvial plain reached more than ∼500 km (the flow distance after which riverine δ7Li stops varying), the Ganges exerted little influence on the changing Cenozoic seawater δ7Li, because riverine δ7Li attained a near steady-state composition.

  8. Controls on weathering rates at the Susquehanna Shale Hills Critical Zone Observatory, Pennsylvania, USA

    NASA Astrophysics Data System (ADS)

    Jin, L.; Andrews, D.; Lin, H.; Brantley, S. L.

    2009-04-01

    Shale Hills, a V-shaped forested catchment located in central Pennsylvania, is the center for collaborative efforts directed towards understanding the creation, function and evolution of soils in a Critical Zone Observatory (CZO). Shales are one of the most weathering-resistant rock types at the Earth surface, and our study at Shale Hills will provide a baseline to evaluate weathering as an important process in global elemental cycles. Here, we compare chemistry and mineralogy in representative soil profiles to the chemistry of streams, groundwaters and soil waters to investigate shale weathering rates on geologic and contemporary timescales. The dominant chemical reactions during regolith formation are clay transformation: from chlorite and illite to kaolinite, with vermiculite and hydroxy interlayered vermiculite as intermediate phases. The chemistries of soil waters and first-order stream are controlled by chemical weathering reactions. Generally, soil waters become more concentrated from the ridge top to valley floor along flow paths, as mineral dissolution progresses. The chemistries of soil waters also vary with landscape positions and soil thickness. The depth variation of water chemistry is distinctively different among the sites and is controlled by soil texture relationships along the hillslope. The stream reflects mixing among soil waters of different chemistry (shallow versus deep), and mixing of soil waters and groundwaters. The concentrations of Fe and Al in soil waters are elevated in shallow soils, with mobility and transport promoted by acidic soil conditions and higher dissolved organic carbon concentrations near the surface environment. Depth to bedrock in the catchment varies with landscape position, with thinner soils observed at the ridge tops and much thicker soils at the valley floors and topographical depressions. All major elements show depletion within soil profiles. Assuming soils along a planar transect are at steady-state, a hillslope

  9. Estimating Erosion Rates in Reunion Island: Time Scales, Weathering and Sediment Transport.

    NASA Astrophysics Data System (ADS)

    Gayer, E.; Louvat, P.; Sy, A.; Bouchez, J.; Michon, L.; Gaillardet, J.

    2015-12-01

    Understanding the mechanisms that modify landscapes is essential foridentifying feedbacks between climate, tectonic andtopography. Because measurements of erosion rates are critical forquantifying landform evolution, the coupling of different techniqueshas often been used. However, different methods often estimate erosionrates over different time scales, and are sensitive to different erosionprocesses.In this study we estimate erosion rates of three highly erodingdrainage areas of Reunion Island. We compare three methods: i) from cosmogenic 3He concentrations, ii) from rivergeochemistry and iii) from landforms reconstruction. Our aim is to derivethe message provided by each method in terms of chemical weathering and mechanical erosion.Helium concentrations and isotopic ratios were measured inolivine-rich sands from the Langevin and Remparts rivers, and fromlandslide products. Digital elevation model derivatives and K-Argeochronological data were used to reconstruct basins initialtopographies and to calculate the volumes of material eroded over thepast ~65Ka. Finally, dissolved loads, suspended loads and riverbottom sediments were analyzed for their major and trace elements contents, and a geochemical mass balance was built inorder to quantify both chemical and mechanical erosion rates.Results show a good agreement between long-term erosion rates derivedfrom initial topography reconstructions and so called short-termerosion rates from the geochemical mass balance analyses of dissolved andsuspended load. The cosmogenic method largely underestimates erosion rates, but comparison with the geochemical mass balance shows that episodic landslides dominate erosion of the basins.Finally a new approach of the geochemical mass balance with a systematicstudy along the range of river sediment grain size allows to depict weathering vs genesis and transport of sediments.

  10. Hydrochemistry and weathering rates on Corumbataí River basin, São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Bonotto, Daniel Marcos; Lima, Jorge Luis Nepomuceno de

    2010-03-01

    SummaryThis work was held at the Corumbataí River basin that is inserted within the giant Paraná sedimentary basin (Paleozoic-Cenozoic) in South America. The Corumbataí River is the major river draining the area and its water is extensively used by water supply systems in the basin. Its surface waters were collected at two sampling points, upstream and downstream from Rio Claro city, the principal municipality within the basin. We report chemical and radionuclides ( 222Rn and 210Po) analyses for rainwater and river water samples in order to estimate chemical weathering fluxes. All major chemical data indicated poorer conditions of the water quality in Corumbataí River after reaching Rio Claro city. However, one very important finding was that the weighted mean of the 210Po activity concentration is the same (0.21 dpm/L) upstream and downstream from Rio Claro city, indicating that 210Po is a conservative nuclide. The net output flux in Corumbataí River basin estimated from the difference between the total discharge flux and the input flux based on wet precipitation yielded a negative value for polonium as it is a very particle-reactive radionuclide, tending to accumulate into fluvial sediments. The chemical weathering rate (removed material quantity) corresponded to 76.5 t/km 2 yr when Po data in sediments and rocks were utilized in the calculations. This rate is compatible with others determined elsewhere, indicating the usefulness of Po in studies of weathering processes, even in areas characterized by anthropogenic inputs.

  11. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    SciTech Connect

    Maher, K.; Steefel, C. I.; White, A.F.; Stonestrom, D.A.

    2009-02-25

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total

  12. Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando A. L.; Van der Weijden, Cornelis H.

    2012-03-01

    SummaryWeathering rate models designed for watersheds combine chemical data of discharging waters with morphologic and hydrologic parameters of the catchments. At the spring watershed scale, evaluation of morphologic parameters is subjective due to difficulties in conceiving the catchment geometry. Besides, when springs emerge from crystalline massifs, rock structure must be accounted in formulas describing the area of minerals exposed to the percolating fluids, for a realistic evaluation of the rates. These particular features are not included in the available approaches and for that reason a new model was developed, coined THROW model. This is a lumped approach that integrates (T)opography, (H)ydrology, (RO)ck structure and (W)eathering in a single algorithm. The study area comprises several stream watersheds and spring sites of the Vouga River basin (northern Portugal), shaped on granites. Firstly, the THROW model couples a terrain modeling analysis with hydrologic models based on discharge rates, to determine hydraulic conductivities (K), effective porosities (ne) and annual recharges (Vr) at the stream watershed scale. Subsequently, these parameters are used in a water balance model to estimate concomitant groundwater travel times (t). The mean K [(4.7 ± 3.2) × 10-7 m s-1] and ne [(2.0 ± 1.3) × 10-2] values are adopted as proxies for the spring watersheds and a firm regression equation is defined between time and stream watershed area (A). Secondly, two more runs of terrain modeling analysis are executed to extrapolate morphologic parameters for the spring watersheds. The first run hinges on scaling properties of the drainage networks, known as Horton laws, and is used to scale watershed areas across stream orders (i). The scaling function is described by another regression equation. The second run evaluates the order of a spring watershed, defined as equivalent order (ieq) and equated to the mean order of the surrounding stream watersheds. Having

  13. Role of hydraulic diffusivity in the decrease of weathering rates over time

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando A. L.; Van der Weijden, Cornelis H.

    2014-05-01

    Springs emerging within massifs of crystalline rocks were monitored for discharge rate (Q), and the Q values combined with geomorphic and hydrographic parameters in a hydrologic model to calculate hydraulic conductivity (K) and effective porosity (ne) of the spring watersheds. The spring waters, several borehole waters and rain water were analyzed for major dissolved compounds, strontium and isotopes (δ18O, δ2H, δ13C and 87Sr/86Sr). With a shift to less negative values, δ18O and δ2H were fitted by a line approximately parallel to the GMWL, but no significant dependence on altitude was found. The δ18O and δ2H values correlate better with those of precipitation amount. The 87Sr/86Sr ratios in drilled well waters correlate positively with the depth of water circulation reported in the borehole logs. The corresponding regression equations were used to extrapolate the depth of hydraulic circuits within the spring watersheds. The previous data, together with groundwater travel times calculated by a water balance model, and with reactions of granite/metassediment plagioclase and biotite precipitating halloysite, gibbsite and vermiculite, were assembled in a mass balance model to calculate solute-flux weathering rates of plagioclase (WPl). The WPl's were described as a function of √{D}∝√{K/n}, where D is the hydraulic diffusivity. The discrepancies between the WPl values and solid-state rates, based on the differences between elemental, isotopic and mineral compositions measured in present-day regoliths and in the assumed protolith, were assigned to a decrease in D over time, from values in the protolith to values in the weathered aquifer.

  14. Snowfall Rate Retrieval Using Passive Microwave Measurements and Its Applications in Weather Forecast and Hydrology

    NASA Technical Reports Server (NTRS)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Yan, Banghua; Zavodsky, Bradley; Zhao, Limin; Dong, Jun; Wang, Nai-Yu

    2015-01-01

    (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has also been developed. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. It employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derives the probability of snowfall. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model. A method adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. The SFR products are being used mainly in two communities: hydrology and weather forecast. Global blended precipitation products traditionally do not include snowfall derived from satellites because such products were not available operationally in the past. The ATMS and AMSU/MHS SFR now provide the winter precipitation information for these blended precipitation products. Weather forecasters mainly rely on radar and station observations for snowfall forecast. The SFR products can fill in gaps where no conventional snowfall data are available to forecasters. The products can also be used to confirm radar and gauge snowfall data and increase forecasters' confidence in their prediction.

  15. Fresh and weathered crude oil effects on potential denitrification rates of coastal marsh soil.

    PubMed

    Pietroski, Jason P; White, John R; DeLaune, Ronald D; Wang, Jim J; Dodla, Syam K

    2015-09-01

    On April 20, 2010, the Deepwater Horizon oil platform experienced an explosion which triggered the largest marine oil spill in US history, resulting in the release of ∼795 million L of crude oil into the Gulf of Mexico. Once oil reached the surface, changes in overall chemical composition occurred due to volatilization of the smaller carbon chain compounds as the oil was transported onshore by winds and currents. In this study, the toxic effects of both fresh and weathered crude oil on denitrification rates of coastal marsh soil were determined using soil samples collected from an unimpacted coastal marsh site proximal to areas that were oiled in Barataria Bay, LA. The 1:10 ratio of crude oil:field moist soil fully coated the soil surface mimicking a heavy oiling scenario. Potential denitrification rates at the 1:10 ratio, for weathered crude oil, were 46 ± 18.4% of the control immediately after exposure and 62 ± 8.0% of the control following a two week incubation period, suggesting some adaptation of the denitrifying microbial consortium over time. Denitrification rates of soil exposed to fresh crude oil were 51.5 ± 5.3% of the control after immediate exposure and significantly lower at 10.9 ± 1.1% after a 2 week exposure period. Results suggest that fresh crude oil has the potential to more severely impact the important marsh soil process of denitrification following longer term exposure. Future studies should focus on longer-term denitrification as well as changes in the microbial consortia in response to oil exposure.

  16. Geochemical mass-balance to study the relative weathering rates of various formations in a complex watershed of lower Himalayas

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Pallavi; Kar, Swagat; Chouhan, Ramesh

    2017-04-01

    Weathering of rocks is a major process and believed to have the potential to alter Earth's surface. Aglar, a watershed in Garhwal Lesser Himalayas is identified and various formations of this complex geology are studied to understand the weathering process. A stream passes through the fault that divides the watershed into two slopes which have different lithotectonic units. Paligar and Belgar are the two main tributaries of Aglar stream flowing along the slopes respectively and joining at the valley near Thatyur village, India. Rocks like quartzite and limestone are generally hard, massive and resistant to weathering. However, sedimentary rocks are vulnerable to weathering and erosion. On the other hand, phyllites and schists are characterized by flaky minerals which weather quickly and promote instability . Aglar has all of them. The weathering processes are studied first using the hydrochemistry of Aglar river through major cations (Ca2+, Mg2+, Na+, K+) and major anions (SO42-, HCO-3, Cl-, NO3-). The discharges at various sampling points are calculated using area - velocity method. The basic idea in describing the discharge of material in a river is to estimate the mass of the substances transported through a cross section of the river per second. Dominance of Ca2+, Mg2+ and HCO-3 indicates that carbonate weathering is the major chemical weathering process near Belgar river. Paligar river has lower conductivity values compared to Belgar river which illustrates lower ionic concentrations. Mass-balance calculations are found often skewed and suggest the role of subsurface groundwater flow to explain the uncharacterized load. Southern side of the watershed with higher percentage of forest cover is found to have higher chemical weathering rates compared to the other slope having relatively lesser vegetation. These higher rates demonstrate the higher stream discharge load in that slope.

  17. Diabatic heating rate estimates from European Centre for Medium-Range Weather Forecasts analyses

    NASA Technical Reports Server (NTRS)

    Christy, John R.

    1991-01-01

    Vertically integrated diabatic heating rate estimates (H) calculated from 32 months of European Center for Medium-Range Weather Forecasts daily analyses (May 1985-December 1987) are determined as residuals of the thermodynamic equation in pressure coordinates. Values for global, hemispheric, zonal, and grid point H are given as they vary over the time period examined. The distribution of H is compared with previous results and with outgoing longwave radiation (OLR) measurements. The most significant negative correlations between H and OLR occur for (1) tropical and Northern-Hemisphere mid-latitude oceanic areas and (2) zonal and hemispheric mean values for periods less than 90 days. Largest positive correlations are seen in periods greater than 90 days for the Northern Hemispheric mean and continental areas of North Africa, North America, northern Asia, and Antarctica. The physical basis for these relationships is discussed. An interyear comparison between 1986 and 1987 reveals the ENSO signal.

  18. Chemical Weathering in the San Gabriel Mountains of California: The influence of erosion rates, soil depth, and transport processes on soil chemical losses (Invited)

    NASA Astrophysics Data System (ADS)

    Dixon, J. L.; Hartshorn, A. S.; Heimsath, A. M.; Dibiase, R. A.; Whipple, K. X.

    2010-12-01

    What controls the chemical weathering of soils in actively eroding landscapes? In this study, we explore the tectonic signature on soil weathering in the San Gabriel Mountains (SGM) of California, where propagating waves of incision triggered by increasing rock uplift have resulted in distinctly different hillslope morphologies and erosion rates across the range. We quantify downslope patterns of soil weathering across this landscape using sites that bracket low-gradient hillslopes of the stable upland plateau and hillslopes near the margins of the incising landscape. We use elemental mass balances in rock and soil to index the weathered extent of soils, and couple these extents with previously measured 10Be-derived soil production rates to calculate rates of soil weathering and erosion. Across all sites, Tau-Si—the fractional loss or gain of Si from parent material—averages -0.32±0.04, and the weathered extent of soils generally increases with increasing distance from the hillcrest. However, weathering intensities decrease as hillslope gradients steepen beyond 30°. Chemical weathering extents on slopes < 30° averaged 0.35±0.04, 50% more than steeper slopes (0.23±0.05). Similarly, the relationships between soil weathering and erosion rates show distinct patterns on high and low gradient slopes. Erosion and weathering rates are positively correlated on low gradient hillslopes, and negatively correlated on high gradient hillslopes, likely due to the role of erosion rates in controlling mineral supply and residence time. These patterns are consistent with previously published predictive models for denudation-weathering relationships based on mineral weathering kinetics. Variable weathering extents in soils indicate that soil weathering in the SGM is largely kinetically limited. This work provides a field-based quantification of the complex relationship between soil erosion and chemical weathering, and together our data suggest that tectonic forcing strongly

  19. Seafloor Weathering As a Long-Term Climate Regulation Mechanism

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Abbot, D. S.; Archer, D. E.

    2014-12-01

    The global carbon cycle determines the distribution of carbon between the atmosphere, ocean, and solid earth. Carbon from the mantle enters the Earth's surficial environment as CO2 by volcanic outgassing, and carbon is buried in the oceanic crust as carbonate rocks during silicate rock weathering. The subduction of carbonate-rich oceanic plates returns carbon to the mantle, closing the cycle. Subtle adjustments in continental silicate weathering, widely held to consume atmospheric CO2 at a rate controlled by climate, are believed to have maintained habitable conditions throughout Earth's history. This long term climate regulation mechanism is known as a climate-weathering feedback. Seafloor weathering, low-temperature basalt alteration and carbonate precipitation in the permeable upper oceanic crust, has been proposed as a climate-weathering feedback as well, but the link to climate is presently poorly understood. Such a climate regulation mechanism would be particularly important on waterworld planets where continental silicate weathering cannot regulate climate. It has so far not been possible to determine whether changes in seafloor weathering could contribute to climate regulation on Earth or in a waterworld scenario because the necessary modeling framework has not yet been developed. However, advances in porous media flow modeling and reactive transport modeling, as well as the availability of inexpensive computational power, allow the seafloor weathering problem to be looked at in greater detail. We have developed a spatially resolved two-dimmensional (2D) numerical model of seafloor weathering in the permeable upper oceanic crust. This model simulates 2D off-axis hydrothermal flow coupled to geochemical alteration of seafloor basalt by modeling reactive transport of chemical species in seawater-derived hydrothermal fluids. The focus of this research is to use the model to determine the effect of geological and climatic factors on seafloor weathering, which

  20. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    USGS Publications Warehouse

    Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, D.A.

    2009-01-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at

  1. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    NASA Astrophysics Data System (ADS)

    Maher, Kate; Steefel, Carl I.; White, Art F.; Stonestrom, Dave A.

    2009-05-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at the

  2. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates

    NASA Astrophysics Data System (ADS)

    White, Art F.; Schulz, Marjorie S.; Stonestrom, David A.; Vivit, Davison V.; Fitzpatrick, John; Bullen, Tom D.; Maher, Kate; Blum, Alex E.

    2009-05-01

    The spatial and temporal changes in hydrology and pore water elemental and 87Sr/ 86Sr compositions are used to determine contemporary weathering rates in a 65- to 226-kyr-old soil chronosequence formed from granitic sediments deposited on marine terraces along coastal California. Soil moisture, tension and saturation exhibit large seasonal variations in shallow soils in response to a Mediterranean climate. These climate effects are dampened in underlying argillic horizons that progressively developed in older soils, and reached steady-state conditions in unsaturated horizons extending to depths in excess of 15 m. Hydraulic fluxes ( q h), based on Cl mass balances, vary from 0.06 to 0.22 m yr -1, resulting in fluid residence times in the terraces of 10-24 yrs. As expected for a coastal environment, the order of cation abundances in soil pore waters is comparable to sea water, i.e., Na > Mg > Ca > K > Sr, while the anion sequence Cl > NO 3 > HCO 3 > SO 4 reflects modifying effects of nutrient cycling in the grassland vegetation. Net Cl-corrected solute Na, K and Si increase with depth, denoting inputs from feldspar weathering. Solute 87Sr/ 86Sr ratios exhibit progressive mixing of sea water-dominated precipitation with inputs from less radiogenic plagioclase. While net Sr and Ca concentrations are anomalously high in shallow soils due to biological cycling, they decline with depth to low and/or negative net concentrations. Ca/Mg, Sr/Mg and 87Sr/ 86Sr solute and exchange ratios are similar in all the terraces, denoting active exchange equilibration with selectivities close to unity for both detrital smectite and secondary kaolinite. Large differences in the magnitudes of the pore waters and exchange reservoirs result in short-term buffering of the solute Ca, Sr, and Mg. Such buffering over geologic time scales can not be sustained due to declining inputs from residual plagioclase and smectite, implying periodic resetting of the exchange reservoir such as by past

  3. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California. Part II: Solute profiles, gradients and the comparisons of contemporary and long-term weathering rates

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Stonestrom, D.A.; Vivit, D.V.; Fitzpatrick, J.; Bullen, T.D.; Maher, K.; Blum, A.E.

    2009-01-01

    The spatial and temporal changes in hydrology and pore water elemental and 87Sr/86Sr compositions are used to determine contemporary weathering rates in a 65- to 226-kyr-old soil chronosequence formed from granitic sediments deposited on marine terraces along coastal California. Soil moisture, tension and saturation exhibit large seasonal variations in shallow soils in response to a Mediterranean climate. These climate effects are dampened in underlying argillic horizons that progressively developed in older soils, and reached steady-state conditions in unsaturated horizons extending to depths in excess of 15 m. Hydraulic fluxes (qh), based on Cl mass balances, vary from 0.06 to 0.22 m yr-1, resulting in fluid residence times in the terraces of 10-24 yrs. As expected for a coastal environment, the order of cation abundances in soil pore waters is comparable to sea water, i.e., Na > Mg > Ca > K > Sr, while the anion sequence Cl > NO3 > HCO3 > SO4 reflects modifying effects of nutrient cycling in the grassland vegetation. Net Cl-corrected solute Na, K and Si increase with depth, denoting inputs from feldspar weathering. Solute 87Sr/86Sr ratios exhibit progressive mixing of sea water-dominated precipitation with inputs from less radiogenic plagioclase. While net Sr and Ca concentrations are anomalously high in shallow soils due to biological cycling, they decline with depth to low and/or negative net concentrations. Ca/Mg, Sr/Mg and 87Sr/86Sr solute and exchange ratios are similar in all the terraces, denoting active exchange equilibration with selectivities close to unity for both detrital smectite and secondary kaolinite. Large differences in the magnitudes of the pore waters and exchange reservoirs result in short-term buffering of the solute Ca, Sr, and Mg. Such buffering over geologic time scales can not be sustained due to declining inputs from residual plagioclase and smectite, implying periodic resetting of the exchange reservoir such as by past vegetational

  4. Stable runoff and weathering fluxes into the oceans over Quaternary climate cycles

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, Friedhelm; Bouchez, Julien; Ibarra Daniel, E.; Kate, Maher

    2016-04-01

    Throughout the Quaternary, erosion and biogeochemical cycles at the Earth surface responded to large oscillations in temperature and precipitation. Such changes are recorded in sedimentary archives and radiogenic isotope mass balances. In contrast, climate models combined with empirical relationships between measures of climate and weatheringindicate minimal change in global weathering rates. Here we resolve the extent to which the supply of dissolved elements to oceans was altered by glacial-interglacial oscillations with a new weathering proxy. We estimate relative weathering fluxes from the ratio of cosmogenic beryllium-10, produced in the atmosphere, to the stable isotope beryllium-9, introduced into the oceans by the riverine silicate weathering flux [1]. Using sedimentary Be records,we show over multiple glacial-interglacial cycles, and over the last 2 Myr, shifts in global silicate weathering inputs are not detectable [2]. Combining climate model simulations of the Last Glacial Maximum with a new model for silicate weathering, we show how large regional variability in runoff between glacial and interglacial periods was insufficient to shift global weathering fluxes. The observed and modeled stability explains why removal of atmospheric CO2 by silicate weathering has been balanced to within 2% of net CO2 degassing over the last 600 kyr. Because over >104 yr time scales weathering and erosion are also coupled, our study provides additional evidence that global erosion rates did not shift along any long-term trend over the Quaternary [3]. [1] von Blanckenburg, F. and Bouchez, J. (2014). "River fluxes to the sea from the oceans 10Be/9Be ratio." Earth and Planetary Science Letters 387: 34-43. [2] von Blanckenburg, F., Bouchez. J. Ibarra, D.E., Maher, K. (2015). "Stable runoff and weathering fluxes into the oceans over Quaternary climate cycles." Nature Geosciences 10.1038/ngeo2452. [3] Willenbring, J. K. and von Blanckenburg, F. (2010). "Long-term stability of

  5. The significance of mid-latitude rivers for weathering rates and chemical fluxes: Evidence from northern Xinjiang rivers

    NASA Astrophysics Data System (ADS)

    Zhu, Bingqi; Yu, Jingjie; Qin, Xiaoguang; Rioual, Patrick; Liu, Ziting; Zhang, YiChi; Jiang, Fengqing; Mu, Yan; Li, Hongwei; Ren, Xiaozong; Xiong, Heigang

    2013-04-01

    signatures of dissolution of carbonates and evaporites and of continental playa deposits. Carbonates are the general predominant lithology undergoing dissolution particularly within the lesser arid areas. The pCO2 in the study rivers is out of equilibrium with respect to atmospheric pCO2, about up to ˜20 times supersaturated relative to the atmosphere but not to such an extent as the Amazon in the floodplain. A roughly positive relationship is observed between solute concentrations and the drought index (DI) for natural waters in the region, indicating a coupled mountain-basin climate has a direct effect. The relative contributions of end-member solute sources to the total dissolved cations from each watershed have been quantitatively estimated using dissolved load balance models, showing the results as evaporite dissolution > carbonate weathering > silicate weathering > atmospheric input for the whole catchment. The areal total dissolved fluxes range from 0.05 to 2.53 × 106 mol/km2/yr, 0.02-2.09 × 106 mol/km2/yr and 0.01-1.04 × 106 mol/km2/yr in the Yili, Zhungarer and Erlqis, respectively, comparable to those of Chinese and Siberia rivers draining sedimentary platforms, even though they are in drastically different climatic regimes. In general, the fluxes from rivers in sedimentary basins are comparable to those from orogenic zones, but are much higher than in the shield regions. The CO2 consumption by aluminosilicate weathering (0.2-284 × 103 mol/km2/yr) is much smaller than in active orogenic belts (19-1750 × 103 mol/km2/yr in similar latitudes and 143-1000 × 103 mol/km2/yr in the tropical basins), but comparable to those of the Chinese (7-106 × 103 mol/km2/yr) and Siberia (16-112 × 103 mol/km2/yr) rivers.

  6. The Cretaceous Okhotsk-Chukotka Volcanic Belt (NE Russia): Geology, geochronology, magma output rates, and implications on the genesis of silicic LIPs

    NASA Astrophysics Data System (ADS)

    Tikhomirov, P. L.; Kalinina, E. A.; Moriguti, T.; Makishima, A.; Kobayashi, K.; Cherepanova, I. Yu.; Nakamura, E.

    2012-04-01

    The Cretaceous Okhotsk-Chukotka volcanic belt (OCVB) is a prominent subduction-related magmatic province, having the remarkably high proportion of silicic rocks (ca. 53% of the present-day crop area, and presumably over 70% of the total volcanic volume). Its estimated total extrusive volume ranges between 5.5 × 105 km3 (the most conservative estimate) and over 106 km3. This article presents a brief outline of the geology of OCVB, yet poorly described in international scientific literature, and results of a geochronological study on the northern part of the volcanic belt. On the base of new and published U-Pb and 40Ar/39Ar age determinations, a new chronological model is proposed. Our study indicates that the activity of the volcanic belt was highly discontinuous and comprised at least five main episodes at 106-98 Ma, 94-91 Ma, 89-87 Ma, 85.5-84 Ma, and 82-79 Ma. The new data allow a semi-quantitative estimate of the volcanic output rate for the observed part of the OCVB (area and volume approximately 105 km2 and 2.5 × 105 km3, respectively). The average extrusion rate for the entire lifetime of the volcanic belt ranges between 1.6 and 3.6 × 10- 5 km3yr- 1 km- 1, depending on the assumed average thickness of the volcanic pile; the optimal value is 2.6 × 10- 5 km3yr- 1 km- 1. Despite imprecise, such estimates infer the time-averaged volcanic productivity of the OCVB is similar to that of silicic LIPs and most active recent subduction-related volcanic areas of the Earth. However, the most extensive volcanic flare-ups at 89-87 and 85.5-84 Ma had higher rates of over 9.0 × 10- 5 km3yr- 1 km- 1. The main volumetric, temporal and compositional parameters of the OCVB are similar to those of silicic LIPs. This gives ground for discussion about the geodynamic setting of the latters, because the widely accepted definition of a LIP implies a strictly intraplate environment. Considering the genesis of the OCVB and other large provinces of silicic volcanism, we propose that

  7. Time Series Analyses of Integrated Terminal Weather System Effects on System Airport Efficiency Ratings

    DTIC Science & Technology

    2007-10-01

    provide a suite of weather informational products for improving air terminal planning, capacity, and safety” (evans & Ducot , 1994, p . 449) . in...intervention is the integrated Terminal Weather System (iTWS) . evans and Ducot (1994) described iTWS as being designed to “provide a suite of...and Aerospace Meteorology. hyannis, MA . evans, J .e . & Ducot , e .r . (1994) . The integrated termi- nal weather system (iTWS) . The Lincoln

  8. Development of a Weather Radar Signal Simulator to Examine Sampling Rates and Scanning Schemes

    DTIC Science & Technology

    2005-09-01

    Chandrasekar, Polarimetric Doppler weather radar : principles and applications, Cambridge; New York: Cambridge University Press, 2001. [15] W.L...THE FIRST THREE DOPPLER MOMENTS?....63 G. CAN THE OUTPUT OF THE WEATHER RADAR SIGNAL SIMULATOR BE USED TO STUDY THE UTILITY OF ESTIMATORS FOR...estimators for the first three Doppler moments? 7. Can the output of the weather radar signal simulator be used to study the utility of estimators

  9. Seafloor weathering buffering climate: numerical experiments

    NASA Astrophysics Data System (ADS)

    Farahat, N. X.; Archer, D. E.; Abbot, D. S.

    2013-12-01

    Continental silicate weathering is widely held to consume atmospheric CO2 at a rate controlled in part by temperature, resulting in a climate-weathering feedback [Walker et al., 1981]. It has been suggested that weathering of oceanic crust of warm mid-ocean ridge flanks also has a CO2 uptake rate that is controlled by climate [Sleep and Zahnle, 2001; Brady and Gislason, 1997]. Although this effect might not be significant on present-day Earth [Caldeira, 1995], seafloor weathering may be more pronounced during snowball states [Le Hir et al., 2008], during the Archean when seafloor spreading rates were faster [Sleep and Zahnle, 2001], and on waterworld planets [Abbot et al., 2012]. Previous studies of seafloor weathering have made significant contributions using qualitative, generally one-box, models, and the logical next step is to extend this work using a spatially resolved model. For example, experiments demonstrate that seafloor weathering reactions are temperature dependent, but it is not clear whether the deep ocean temperature affects the temperature at which the reactions occur, or if instead this temperature is set only by geothermal processes. Our goal is to develop a 2-D numerical model that can simulate hydrothermal circulation and resulting alteration of oceanic basalts, and can therefore address such questions. A model of diffusive and convective heat transfer in fluid-saturated porous media simulates hydrothermal circulation through porous oceanic basalt. Unsteady natural convection is solved for using a Darcy model of porous media flow that has been extensively benchmarked. Background hydrothermal circulation is coupled to mineral reaction kinetics of basaltic alteration and hydrothermal mineral precipitation. In order to quantify seafloor weathering as a climate-weathering feedback process, this model focuses on hydrothermal reactions that influence carbon uptake as well as ocean alkalinity: silicate rock dissolution, calcium and magnesium leaching

  10. Chemical weathering in response to tectonic uplift and denudation rate in a semi-arid environment, southeast Spain

    NASA Astrophysics Data System (ADS)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2014-05-01

    Soil thickness reflects the balance between soil production and denudation by chemical weathering and physical erosion. At topographic steady state, the soil weathering intensity is expected to be higher at low denudation rate (transport-limited) than at high denudation rate (weathering-limited). We tested this hypothesis for the first time in a semi-arid environment where chemical weathering processes are generally slow. The study site is the Internal Zone of the Betic Cordillera in Southeast Spain, Almeria province. The lithology is mainly mica-schist and quartzite with local presence of phyllite. Three catchments (EST, FIL, CAB) were selected upstream local faults along a gradient of increasing uplift rates (10-170 mm/kyr) and increasing denudation rates (20-250 mm/kyr), following the sequence ESTweathering intensity. Three independent indices were used to compare soil weathering intensity across the EST, FIL and CAB catchments: the Total Reserve in Bases (TRB = [Ca2+] + [Na+] + [K+] + [Mg2+]); the soil Fed/Fet ratio that reflects the formation of secondary Fe-oxides, and the Cation Exchange Capacity (CEC) that varies with the amount of secondary clay minerals and organic matter. The difference in TRB between the soil and the bedrock (ΔTRB = TRB soil - TRB bedrock) should be more negative as weathering increases, whereas the Fed/Fet ratio is expected to augment with the intensity of weathering. Since these soils have low organic carbon content, the CEC should increase with weathering degree. Our results indicate that the ΔTRB (cmolc.kg-1) is -8±14 (n=8), -79±2 (n=8) and -51±38 (n=9) for CAB, FIL and EST, respectively. The Fed/Fet ratio for CAB, FIL and EST is 0.20±0.05 (n=8), 0.20±0.03 (n=8) and 0.29±0.05 (n=9), respectively. The CEC (cmolc.kg-1) increases from 3.3

  11. Carbon dioxide efficiency of terrestrial enhanced weathering.

    PubMed

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  12. Isotopic ratios and release rates of strontium measured from weathering feldspars

    NASA Astrophysics Data System (ADS)

    Brantley, S. L.; Chesley, J. T.; Stillings, L. L.

    1998-05-01

    Based upon dissolution of feldspars under controlled laboratory conditions, we conclude that Sr release, at pH 3, is neither consistently stoichiometric nor constant for the feldspars measured. Bytownite, microcline, and albite all initially release Sr at rates which are 5 (bytownite) to 160 (microcline) times faster than steady-state release rates. The Sr/Si ratios in the early effluents are significantly elevated compared to the bulk mineral values. The 87Sr/ 86Sr measured in effluent early in dissolution is higher than the bulk mineral 87Sr/ 86Sr for bytownite, but lower than bulk mineral ratios for microcline and albite. 87Sr/ 86Sr ratios for the feldspar powders also changed markedly during dissolution of the three phases. In part, nonstoichiometric release of Sr can be explained by the presence of secondary phases (exsolution lamellae or minute quantities of accessory phases) or by surface leaching. Although we infer that these feldspars eventually release Sr with isotopic composition roughly equal to that of the bulk mineral at steady-state, the feldspars dissolve at extremely different rates (bytownite releases Sr at a steady-state rate ˜10 2 to 10 3 times faster than albite and microcline, at pH 3). Therefore, a mixture of these feldspars, or of other minerals exhibiting vast differences in dissolution rate, will release 87Sr/ 86Sr ratios distinctly different from the bulk whole rock. In addition, initial Sr release rates of the minerals (bytownite > microcline > albite) differ from steady-state release rates (bytownite > albite > microcline), complicating analysis of weathering solutions. Log (rate constants) for bytownite, albite, and microcline decrease from -13.5 to -16.4 to -17.2 (mol Sr cm -2 s -1). Interpretation of catchment scale riverine 87Sr/ 86Sr ratios on the basis of whole-rock Sr isotopes is, therefore, problematic at best, and would require normalization of bulk isotopic ratios by relative rates of dissolution of Sr-contributing phases. We

  13. The rate of chemical weathering of pyrite on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Lodders, K.

    1993-01-01

    This abstract reports results of an experimental study of the chemical weathering of pyrite (FeS2) under Venus-like conditions. This work, which extends the earlier study by Fegley and Treiman, is part of a long range research program to experimentally measure the rates of thermochemical gas-solid reactions important in the atmospheric-lithospheric sulfur cycle on Venus. The objectives of this research are (1) to measure the kinetics of thermochemical gas-solid reactions responsible for both the production (e.g., anhydrite formation) and destruction (e.g., pyrrhotite oxidation) of sulfur-bearing minerals on the surface of Venus and (2) to incorporate these and other constraints into holistic models of the chemical interactions between the atmosphere and surface of Venus. Experiments were done with single crystal cubes of natural pyrite (Navajun, Logrono, Spain) that were cut and polished into slices of known weight and surface area. The slices were isothermally heated at atmospheric pressure in 99.99 percent CO2 (Coleman Instrument Grade) at either 412 C (685 K) or 465 C (738 K) for time periods up to 10 days. These two isotherms correspond to temperatures at about 6 km and 0 km altitude, respectively, on Venus. The reaction rate was determined by measuring the weight loss of the reacted slices after removal from the furnace. The reaction products were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy on the SEM.

  14. Mass discharge rate retrieval combining weather radar and thermal camera observations

    NASA Astrophysics Data System (ADS)

    Vulpiani, Gianfranco; Ripepe, Maurizio; Valade, Sebastien

    2016-08-01

    The mass discharge rate is a key parameter for initializing volcanic ash dispersal models. Commonly used empirical approaches derive the discharge rate by the plume height as estimated by remote sensors. A novel approach based on the combination of weather radar observations and thermal camera imagery is presented here. It is based on radar ash concentration estimation and the retrieval of the vertical exit velocities of the explosive cloud using thermal camera measurements. The applied radar retrieval methodology is taken from a revision of previously presented work. Based on the analysis of four eruption events of the Mount Etna volcano (Sicily, Italy) that occurred in December 2015, the proposed methodology is tested using observations collected by three radar systems (at C and X band) operated by the Italian Department of Civil Protection. The total erupted mass was estimated to be about 9·109 kg and 2.4·109 kg for the first and second events, respectively, while it was about 1.2·109 kg for both the last two episodes. The comparison with empirical approaches based on radar-retrieved plume height shows a reasonably good agreement. Additionally, the comparative analysis of the polarimetric radar measurements provides interesting information on the vertical structure of the ash plume, including the size of the eruption column and the height of the gas thrust region.

  15. Weathering and denudation rates determined by the combined analysis of Uranium series nuclides and in situ Beryllium in a weathering profile (Vosges massif, Strengbach catchment, France)

    NASA Astrophysics Data System (ADS)

    Ackerer, Julien; Chabaux, François; Van der Woerd, Jerome; Pelt, Eric; Kali, Elise; Pierret, Marie Claire; Viville, Daniel; Wyns, Robert; Negrel, Philippe

    2015-04-01

    The determination of soil sustainability is a major issue for societies. It is crucial to estimate the soil formation and denudation rates to evaluate the landscapes stability and their response to natural or anthropological forcings. In this work, we propose to combine the analysis of Uranium-Thorium-Radium isotopes with the cosmogenic in situ Beryllium in a weathering profile located in the Strengbach catchment to estimate both production rate of regolith and denudation rate of soil and to establish a soil mass balance at millennial timescales. The weathering profile is located on the summit of the watershed and extending from the top soil to the granitic fractured bedrock at 2 m depth. Whole rock data shows different trends of variation of major and trace element concentrations and also of U-Th-Ra disequilibria in the upper part of the regolith (0-80 cm) and the deeper part of the fractured saprolith and/or bedrock (100cm-200cm). Modeling of the U-Th-Ra data in this deeper part of the profile, using a particle swarm optimization model dedicated to isotopic ratios leads to a regolith production rate at the summit of the watershed of 35 ± 9 T/km²/year. In addition, a numerical optimization for nonlinear inverse problem has been performed to estimate the regolith residence time and the mean denudation rate at the summit from the Beryllium data. The results show that the regolith residence time is about 14 000 years and the mean denudation rate is 32 ± 8 T/km²/year. The consistency between the regolith production rate and the soil denudation rate suggests therefore that in such a temperate context, the long-term mass balance of soil developed on granitic bedrock would be close to a steady state. The data also highlights that the determination of a weathering production rate from analysis of Uranium series nuclides in whole rock samples cannot be easily obtained by analyzing only surficial soil samples, and requires the analysis of the deeper fractured saprolith

  16. Long-term rates of chemical weathering and physical erosion in extreme climates, measured by cosmogenic nuclides and geochemical mass balance

    NASA Astrophysics Data System (ADS)

    Riebe, C. S.; Kirchner, J. W.; Finkel, R. C.

    2001-12-01

    Chemical weathering and physical erosion jointly regulate soil development and deliver sediment and solutes to riverine habitats. Chemical weathering also generates nutrients and helps regulate global climate over million year timescales. Thus it is important to quantify long-term rates of weathering and erosion in different environments. New cosmogenic nuclide and geochemical mass balance techniques can be widely applied to measure long-term rates of chemical weathering and physical erosion. In previous work, we used those techniques to show that both physical erosion and chemical weathering rates are insensitive to differences in climate across a set of granitic Sierra Nevada study sites that span 20-145 cm/yr in average precipitation and 4-15 ° C in mean annual temperature. Our measurements also showed that long-term rates of chemical weathering and physical erosion are tightly coupled, possibly because chemical weathering rates are regulated by rates of fresh mineral supply by physical erosion of rock. Here we present long-term rates of chemical weathering and physical erosion from new sites with more extreme climates, including both temperate and tropical rainforests. Overall, mean annual temperature spans 4-22 ° C and average precipitation span 20-420 cm/yr across our sites. Our new weathering and erosion data should reveal whether climatic effects on rates of weathering and erosion are more pronounced over a greatly extended range of climates.

  17. Effects of paleogeology, chemical weathering, and climate on the global geochemical cycle of carbon dioxide

    SciTech Connect

    Bluth, G.J.S.

    1990-01-01

    A new method of geologic reconstruction has been developed that determines areas of exposure for each epoch of the Phanerozoic. The paleogeologic maps reveal that the relative proportions of exposed rock types show few abrupt changes through Phanerozoic time, compared to the secular changes in areal extent of rock deposition. Chemical weathering of silicate minerals acts as a long-term transfer of CO{sub 2} from the atmosphere to carbonate sediments via river runoff. Thus, the roles of silicate and non-silicate rocks must be differentiated. Chemical records of streams draining monolithologic basins confirm that the relative weathering susceptibility of lithologies clearly favors carbonate over silicate rocks; surprisingly, among the silicates (clastic and igneous) there is no significant distinction. A survey of basalt catchments shows no correlation between temperature and weathering. Although a warm, wet climate promotes mineral weathering, this may be countered over time by soil shielding of bedrock-groundwater interactions. Mean annual runoff rates are 60% higher at {minus}100 my (using 4x current CO{sub 2}) from CCM simulations but, since Cretaceous land area is 30% smaller, total runoff changes very little. However, in a spatially distributed model of the Earth the annual bicarbonate flux of the Cretaceous (4x CO{sub 2}) is 59 {times} 10{sup 12}eq, compared to 39 {times} 10{sup 12}eq for the present-day. Net HCO{sub 3}{sup {minus}} flux from silicate weathering is 25% higher in the Cretaceous, because the distribution of silicate exposures coincides with regions of intense runoff. Thus, by adding spatial dimensions of runoff and geology to preexisting models, the balance of CO{sub 2} levels by silicate dissolution can be achieved without severe changes in either atmospheric chemistry or rock proportions.

  18. Chemical weathering rate, denudation rate, and atmospheric and soil CO2 consumption of Paraná flood basalts in São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    da Conceição, Fabiano Tomazini; dos Santos, Carolina Mathias; de Souza Sardinha, Diego; Navarro, Guillermo Rafael Beltran; Godoy, Letícia Hirata

    2015-03-01

    The chemical weathering rate and atmospheric/soil CO2 consumption of Paraná flood basalts in the Preto Stream basin, São Paulo State, Brazil, were evaluated using major elements as natural tracers. Surface and rain water samples were collected in 2006, and analyses were performed to assess pH, temperature, dissolved oxygen (DO), electrical conductivity (EC) and total dissolved solids (TDS), including SO42-, NO3-, PO43 -, HCO3-, Cl-, SiO2, Ca2 +, Mg2 +, Na+ and K+. Fresh rocks and C horizon samples were also collected, taking into account their geological context, abundance and spatial distribution, to analyze major elements and mineralogy. The Preto Stream, downstream from the city of Ribeirão Preto, receives several elements/compounds as a result of anthropogenic activities, with only sulfate yielding negative flux values. The negative flux of SO42 - can be attributed to atmospheric loading that is mainly related to anthropogenic inputs. After corrections were made for atmospheric inputs, the riverine transport of dissolved material was found to be 30 t km- 2 y- 1, with the majority of the dissolved material transported during the summer (wet) months. The chemical weathering rate and atmospheric/soil CO2 consumption were 6 m/Ma and 0.4 · 106 mol km- 2 y- 1, respectively. The chemical weathering rate falls within the lower range of Paraná flood basalt denudation rates between 135 and 35 Ma previously inferred from chronological studies. This comparison suggests that rates of basalt weathering in Brazil's present-day tropical climate differ by at most one order of magnitude from those prevalent at the time of hothouse Earth. The main weathering process is the monosiallitization of anorthoclase, augite, anorthite and microcline. Magnetite is not weathered and thus remains in the soil profile.

  19. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.; Chibisov, S. M.; Blagonravov, M. L.; Khodorovich, N. A.; Demurov, E. A.; Goryachev, V. A.; Kharlitskaya, E. V.; Eremina, I. S.; Meladze, Z. A.

    2016-11-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  20. Influence of geomagnetic activity and earth weather changes on heart rate and blood pressure in young and healthy population

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.; Chibisov, S. M.; Blagonravov, M. L.; Khodorovich, N. A.; Demurov, E. A.; Goryachev, V. A.; Kharlitskaya, E. V.; Eremina, I. S.; Meladze, Z. A.

    2017-05-01

    There are many references in the literature related to connection between the space weather and the state of human organism. The search of external factors influence on humans is a multi-factor problem and it is well known that humans have a meteo-sensitivity. A direct problem of finding the earth weather conditions, under which the space weather manifests itself most strongly, is discussed in the present work for the first time in the helio-biology. From a formal point of view, this problem requires identification of subset (magnetobiotropic region) in three-dimensional earth's weather parameters such as pressure, temperature, and humidity, corresponding to the days when the human body is the most sensitive to changes in the geomagnetic field variations and when it reacts by statistically significant increase (or decrease) of a particular physiological parameter. This formulation defines the optimization of the problem, and the solution of the latter is not possible without the involvement of powerful metaheuristic methods of searching. Using the algorithm of differential evolution, we prove the existence of magnetobiotropic regions in the earth's weather parameters, which exhibit magneto-sensitivity of systolic, diastolic blood pressure, and heart rate of healthy young subjects for three weather areas (combinations of atmospheric temperature, pressure, and humidity). The maximum value of the correlation confidence for the measurements attributable to the days of the weather conditions that fall into each of three magnetobiotropic areas is an order of 0.006, that is almost 10 times less than the confidence, equal to 0.05, accepted in many helio-biological researches.

  1. Primary weathering rates, water transit times and concentration-discharge relations: A theoretical analysis for the critical zone

    NASA Astrophysics Data System (ADS)

    Ameli, Ali; Erlandsson, Martin; Beven, Keith; Creed, Irena; McDonnell, Jeffrey; Bishop, Kevin

    2017-04-01

    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flowpath dynamics drive the spatio-temporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flowpaths are complex and difficult to map quantitatively. Here, we couple a new integrated flow and particle tracking transport model with a general reversible Transition-State-Theory style dissolution rate-law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration to intrinsic weathering rate, vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As the ratio of equilibrium concentration to intrinsic weathering rate decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behaviour, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as the ratio of equilibrium concentration to intrinsic weathering rate decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time)

  2. Comparison of Clinical and Radiographic Success Rates of Pulpotomy in Primary Molars using Ferric Sulfate and Bioactive Tricalcium Silicate Cement: An in vivo Study.

    PubMed

    Sirohi, Kavita; Marwaha, Mohita; Gupta, Anil; Bansal, Kalpana; Srivastava, Ankit

    2017-01-01

    Formocresol has been a popular pulpotomy medicament for many years. It is considered the "gold standard" in pediatric dentistry. However, concerns have been raised over its use in children. It has been reported that formocresol has toxic and mutagenic effects in cell culture, dental crypts, and precancerous epithelial cells. Therefore, additional biocompatible treatment alternatives are required to replace formocresol pulpotomy. This study compared the clinical and radiographic success rates of ferric sulfate (FS) and bioactive tricalcium silicate cement (Biodentine, Septodont) as pulpotomy agents in primary molar teeth over a period of 9 months. Fifty primary molar teeth, symptom free, requiring pulpotomy in children aged 4 to 8 years were treated with conventional pulpotomy procedures. Ferric sulfate 15.5% solution (applied for 15 second for 25 teeth) and Biodentine (for 25 teeth) were used as pulpotomy agents. Permanent restorations were stainless steel crowns in most cases, in both groups. Patients were recalled for follow-up at 1, 3, 6, and 9 months intervals. The data were statistically analysed using chi-square test. At 9 months, 96% clinical success rate was observed in the FS and 100% in the Biodentine group. Radiographic success rate in the FS group was 84%, whereas 92% in the Biodentine group at 9 months. No statistically significant difference was found between the two groups. Biodentine can be used as a pulpotomy agent but further long-term studies are required. Sirohi K, Marwaha M, Gupta A, Bansal K, Srivastava A. Comparison of Clinical and Radiographic Success Rates of Pulpotomy in Primary Molars using Ferric Sulfate and Bioactive Tricalcium Silicate Cement: An in vivo Study. Int J Clin Pediatr Dent 2017;10(2):147-151.

  3. Comparison of Clinical and Radiographic Success Rates of Pulpotomy in Primary Molars using Ferric Sulfate and Bioactive Tricalcium Silicate Cement: An in vivo Study

    PubMed Central

    Sirohi, Kavita; Gupta, Anil; Bansal, Kalpana; Srivastava, Ankit

    2017-01-01

    Introduction Formocresol has been a popular pulpotomy medicament for many years. It is considered the “gold standard“ in pediatric dentistry. However, concerns have been raised over its use in children. It has been reported that formocresol has toxic and mutagenic effects in cell culture, dental crypts, and precancerous epithelial cells. Therefore, additional biocompatible treatment alternatives are required to replace formocresol pulpotomy. Aims This study compared the clinical and radiographic success rates of ferric sulfate (FS) and bioactive tricalcium silicate cement (Biodentine, Septodont) as pulpotomy agents in primary molar teeth over a period of 9 months. Materials and methods Fifty primary molar teeth, symptom free, requiring pulpotomy in children aged 4 to 8 years were treated with conventional pulpotomy procedures. Ferric sulfate 15.5% solution (applied for 15 second for 25 teeth) and Biodentine (for 25 teeth) were used as pulpotomy agents. Permanent restorations were stainless steel crowns in most cases, in both groups. Patients were recalled for follow-up at 1, 3, 6, and 9 months intervals. The data were statistically analysed using chi-square test. Results At 9 months, 96% clinical success rate was observed in the FS and 100% in the Biodentine group. Radiographic success rate in the FS group was 84%, whereas 92% in the Biodentine group at 9 months. No statistically significant difference was found between the two groups. Conclusion Biodentine can be used as a pulpotomy agent but further long-term studies are required. How to cite this article Sirohi K, Marwaha M, Gupta A, Bansal K, Srivastava A. Comparison of Clinical and Radiographic Success Rates of Pulpotomy in Primary Molars using Ferric Sulfate and Bioactive Tricalcium Silicate Cement: An in vivo Study. Int J Clin Pediatr Dent 2017;10(2):147-151. PMID:28890614

  4. The null hypothesis: steady rates of erosion, weathering and sediment accumulation during Late Cenozoic mountain uplift and glaciation

    NASA Astrophysics Data System (ADS)

    Willenbring, J. K.; Jerolmack, D. J.

    2015-12-01

    At the largest time and space scales, the pace of erosion and chemical weathering is determined by tectonic uplift rates. Deviations from this equilibrium condition arise from the transient response of landscape denudation to climatic and tectonic perturbations, and may be long lived. We posit that the constraint of mass balance, however, makes it unlikely that such disequilibrium persists at the global scale over millions of years, as has been proposed for late Cenozoic erosion. To support this contention, we synthesize existing data for weathering fluxes, global sedimentation rates, sediment yields and tectonic motions. The records show a remarkable constancy in the pace of Earth-surface evolution over the last 10 million years. These findings provide strong support for the null hypothesis; that global rates of landscape change have remained constant over the last ten million years, despite global climate change and massive mountain building events. Two important implications are: (1) global climate change may not change global denudation rates, because the nature and sign of landscape responses are varied; and (2) tectonic and climatic perturbations are accommodated in the long term by changes in landscape form. This work undermines the hypothesis that increased weathering due to late Cenozoic mountain building or climate change was the primary agent for a decrease in global temperatures.

  5. Tectonic uplift and denudation rate influence soil chemical weathering intensity in a semi-arid environment, southeast Spain: physico-chemical and mineralogical evidence

    NASA Astrophysics Data System (ADS)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2015-04-01

    Tectonic uplift is known to influence denudation rates. Denudation, including chemical weathering and physical erosion, affects soil production rates and weathering intensities. At topographic steady state, weathering can be transport- or weathering-limited. In the transport-limited regime, low denudation rates should lead to comparatively high weathering intensities, while in the weathering-limited case high denudation rates are associated with lower weathering intensities. Here, we test if this relationship applies to semi-arid environments where chemical weathering is generally slow. Three catchments (EST, FIL and CAB) were studied in the Internal Zone of the Betic Cordillera in southeast Spain, spanning a range of increasing uplift rates (10-170 mm/kyr) and increasing denudation rates (20-250 mm/kyr) from EST to CAB. In each catchment, two ridgetop soil profiles were sampled down to the bedrock. The three catchments have similar vegetation and climatic conditions, with precipitation of 250- 315 mm/yr and mean annual temperature of 15-17 °C. The mineralogy of the bedrock, as determined by XRD, is similar across the three catchments and is characterized by the presence of quartz, muscovite, clinochlore, biotite and plagioclase. This primary mineral assemblage is also found in the catchment soils, indicating that the soils studied derive from the same parent material. The soil clay-size fraction is dominated by kaolinite, vermiculite and illite. However, the proportions of the soil primary and secondary minerals vary between the catchment sites. The abundance of biotite decreases from CAB (14%) to EST (4%), whereas the quartz and clay contents show an opposite tendency (from 30 to 69% and 9.9 to 14.3%, respectively). Further, the abundance of vermiculite increases from CAB to EST. The results are interpreted in terms of increasing weathering intensity from CAB to EST by weathering of biotite into vermiculite and enrichment of soils on more weathering resistant

  6. Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

    SciTech Connect

    Steefel, Carl; Hausrath, E.M.; Navarre-Sitchler, A.K.; Sak, P.B.; Steefel, C.; Brantley, S.L.

    2008-03-15

    Where Martian rocks have been exposed to liquid water, chemistry versus depth profiles could elucidate both Martian climate history and potential for life. The persistence of primary minerals in weathered profiles constrains the exposure time to liquid water: on Earth, mineral persistence times range from {approx}10 ka (olivine) to {approx}250 ka (glass) to {approx}1Ma (pyroxene) to {approx}5Ma (plagioclase). Such persistence times suggest mineral persistence minima on Mars. However, Martian solutions may have been more acidic than on Earth. Relative mineral weathering rates observed for basalt in Svalbard (Norway) and Costa Rica demonstrate that laboratory pH trends can be used to estimate exposure to liquid water both qualitatively (mineral absence or presence) and quantitatively (using reactive transport models). Qualitatively, if the Martian solution pH > {approx}2, glass should persist longer than olivine; therefore, persistence of glass may be a pH-indicator. With evidence for the pH of weathering, the reactive transport code CrunchFlow can quantitatively calculate the minimum duration of exposure to liquid water consistent with a chemical profile. For the profile measured on the surface of Humphrey in Gusev Crater, the minimum exposure time is 22 ka. If correct, this estimate is consistent with short-term, episodic alteration accompanied by ongoing surface erosion. More of these depth profiles should be measured to illuminate the weathering history of Mars.

  7. The effect of wet-dry weathering on the rate of bedrock river channel erosion by saltating gravel

    NASA Astrophysics Data System (ADS)

    Inoue, Takuya; Yamaguchi, Satomi; Nelson, Jonathan M.

    2017-05-01

    Previous work has shown that the bedrock erosion rate E because of collisions of saltating bedload can be expressed by E = βqb(1-Pc), where qb is the sediment transport rate, Pc is the extent of alluvial cover, and β is the abrasion coefficient. However, the dependence of the abrasion coefficient on the physical characteristics of the bedrock material is poorly known, and in particular, the effects of wet-dry weathering on the saltation-abrasion bedrock incision has not been specifically characterized. Observation suggests that the typical wet-dry cycling of exposed bedrock in river beds gives rise to cracks and voids that are likely to alter the incision rate of the material when subjected to impacts of moving sediment. In this study, flume experiments are performed to develop an understanding of how wet-dry cycling affects the rock tensile strength and the bedrock erosion rate. To represent the physical effects of weathering, boring cores taken from natural bedrock channel are exposed to artificial wet-dry cycles. The experimental results suggest the following: (1) the abrasion coefficient for fresh bedrock is estimated by β = 1.0 × 10- 4σT- 2(d/ksb)0.5, where σT is the tensile strength, d is the diameter of colliding gravel, and ksb is the hydraulic roughness height of bedrock; (2) the tensile strength of the bedrock decreases exponentially as a result of repeated wet-dry cycles, σT/σT0 = exp (-CTNWa0/σT0), where σT0 is the initial tensile strength, Wa0 is the initial normalized rate of water absorption., N is the number of wet-dry cycles, and CT is a constant; (3) the erosion rate of fresh bedrock depends on the inverse of the square of tensile strength, but the erosion rate of weathered bedrock depends on the - 1.5 power of tensile strength.

  8. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Fu, Hailuo; Liu, Xin

    2010-10-01

    Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3.

  9. Local weather is associated with rates of online searches for musculoskeletal pain symptoms.

    PubMed

    Telfer, Scott; Obradovich, Nick

    2017-01-01

    Weather conditions are commonly believed to influence musculoskeletal pain, however the evidence for this is mixed. This study aimed to examine the relationship between local meteorological conditions and online search trends for terms related to knee pain, hip pain, and arthritis. Five years of relative online search volumes for these terms were obtained for the 50 most populous cities in the contiguous United States, along with corresponding local weather data for temperature, relative humidity, barometric pressure, and precipitation. Methods from the climate econometrics literature were used to assess the casual impact of these meteorological variables on the relative volumes of searches for pain. For temperatures between -5°C and 30°C, search volumes for hip pain increased by 12 index points, and knee pain increased by 18 index points. Precipitation had a negative effect on search volumes for these terms. At temperatures >30°C, search volumes for arthritis related pain decreased by 7 index points. These patterns were not seen for pain searches unrelated to the musculoskeletal system. In summary, selected local weather conditions are significantly associated with online search volumes for specific musculoskeletal pain symptoms. We believe the predominate driver for this to be the relative changes in physical activity levels associated with meteorological conditions.

  10. Anomalous effects of radioactive decay rates and capacitance values measured inside a modified Faraday cage: Correlations with space weather

    NASA Astrophysics Data System (ADS)

    Scholkmann, F.; Milián-Sánchez, V.; Mocholí-Salcedo, A.; Milián, C.; Kolombet, V. A.; Verdú, G.

    2017-03-01

    Recently we reported (Milián-Sánchez V. et al., Nucl. Instrum. Methods A, 828 (2016) 210) our experimental results involving 226Ra decay rate and capacitance measurements inside a modified Faraday cage. Our measurements exhibited anomalous effects of unknown origin. In this letter we report new results regarding our investigation into the origins of the observed effects. We report preliminary findings of a correlation analysis between the radioactive decay rates and capacitance time series and space weather related variables (geomagnetic field disturbances and cosmic-ray neutron counts). A significant correlation was observed for specific data sets. The results are presented and possible implications for future work discussed.

  11. Cosmogenic nuclide evidence for low weathering and denudation in the wet, tropical highlands of Sri Lanka

    NASA Astrophysics Data System (ADS)

    von Blanckenburg, Friedhelm; Hewawasam, Tilak; Kubik, Peter W.

    2004-09-01

    Some of the lowest weathering and erosion rates in any mountain range in the world have been measured using cosmogenic nuclides in the steep, humid, tropical highlands of Sri Lanka. The total preanthropogenic denudation rates were measured in creek sediments and soil samples from unperturbed rain forest sites, bedrock from mountain crests, and bedrock from inselbergs. Denudation rates are in the range of 5-30 t km-2 yr-1 (2-11 mm ky-1). These rates average denudation over the last 50-250 ky. Weathering exports in rivers draining the mountainous Central Highlands show that silicate weathering rates are also low, varying from 5 to 20 t km-2 yr-1 today (2-7 mm ky-1), but they represent a significant fraction of the total denudation. All these observations run contrary to the conventional geomorphologic and geochemical wisdom that would predict rapid erosion for highlands of high relief, temperatures, and precipitation. We speculate that the high relief in Sri Lanka represents the remnant of a geomorphic block that was uplifted during rifting at 130 Ma or even earlier and that was reduced to the interior of the island by rapid receding of escarpments after continental breakup. It is possible that throughout this history, hillslopes, where not exposing bare bedrock, were protected by thick weathered profiles. Such clay-rich layers would inhibit silicate weathering by shielding bedrock from weathering agents. In the absence of landscape rejuvenation, physical erosion rates are low, and fresh mineral surfaces are not being supplied. The observation that wet, steep, tropical highlands can have low rates of rock weathering and erosion has some potentially profound implications for the long-term controls of atmospheric CO2 budgets: High temperature and precipitation, which are much invoked though controversial agents for silicate dissolution and CO2 drawdown, become ineffective in promoting weathering in areas that are not tectonically active.

  12. Chemical weathering and CO₂ consumption in the Lower Mekong River.

    PubMed

    Li, Siyue; Lu, X X; Bush, Richard T

    2014-02-15

    Data on river water quality from 42 monitoring stations in the Lower Mekong Basin obtained during the period 1972-1996 was used to relate solute fluxes with controlling factors such as chemical weathering processes. The total dissolved solid (TDS) concentration of the Lower Mekong varied from 53 mg/L to 198 mg/L, and the median (114 mg/L) was compared to the world spatial median value (127 mg/L). Total cationic exchange capacity (Tz(+)) ranged from 729 to 2,607 μmolc/L, and the mean (1,572 μmolc/L) was 1.4 times higher than the world discharge-weighted average. Calcium and bicarbonate dominated the annual ionic composition, accounting for ~70% of the solute load that equalled 41.2×10(9)kg/y. TDS and major elements varied seasonally and in a predictable way with river runoff. The chemical weathering rate of 37.7t/(km(2)y), with respective carbonate and silicate weathering rates of 27.5t/(km(2) y) (13.8mm/ky) and 10.2t/(km(2) y) (3.8mm/ky), was 1.5 times higher than the global average. The CO2 consumption rate was estimated at 191×10(3)molCO2/(km(2)y) for silicate weathering, and 286×10(3)molCO2/(km(2)y) by carbonate weathering. In total, the Mekong basin consumed 228×10(9)molCO2/y and 152×10(9)molCO2/y by the combined weathering of carbonate and silicate, constituting 1.85% of the global CO2 consumption by carbonate weathering and 1.75% by silicates. This is marginally higher than its contribution to global water discharge ~1.3% and much higher than (more than three-fold) its contribution to world land surface area. Remarkable CO2 consumed by chemical weathering (380×10(9)mol/y) was similar in magnitude to dissolved inorganic carbon as HCO3(-) (370×10(9)mol/y) exported by the Mekong to the South China Sea. In this landscape, atmospheric CO2 consumption by rock chemical weathering represents an important carbon sink with runoff and physical erosion controlling chemical erosion. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Bal, B Sonny; Bonewald, Lynda F; Kuroki, Keiichi; Brown, Roger F

    2010-10-01

    In Part I, the in vitro degradation of bioactivAR52115e glass scaffolds with a microstructure similar to that of human trabecular bone, but with three different compositions, was investigated as a function of immersion time in a simulated body fluid. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. This work is an extension of Part I, to investigate the effect of the glass composition on the in vitro response of osteogenic MLO-A5 cells to these scaffolds, and on the ability of the scaffolds to support tissue infiltration in a rat subcutaneous implantation model. The results of assays for cell viability and alkaline phosphatase activity showed that the slower degrading silicate 13-93 and borosilicate 13-93B1 scaffolds were far better than the borate 13-93B3 scaffolds in supporting cell proliferation and function. However, all three groups of scaffolds showed the ability to support tissue infiltration in vivo after implantation for 6 weeks. The results indicate that the required bioactivity and degradation rate may be achieved by substituting an appropriate amount of SiO2 in 13-93 glass with B2O3, and that these trabecular glass scaffolds could serve as substrates for the repair and regeneration of contained bone defects.

  14. Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China.

    PubMed

    Sun, Huiguo; Han, Jingtai; Li, Dong; Zhang, Shurong; Lu, Xixi

    2010-09-15

    Seasonal sampling was conducted on 13 sites involving the lower stem of the Xijiang river and its three tributaries to determine the spatial patterns of the riverine water chemistry and to quantify the chemical weathering rates of carbonate and silicate of the bedrock. Results indicate that the major ions in the Xijiang river system are dominated by Ca(2+) and HCO(3)(-) with a higher concentration of total dissolved solids, characteristic of the drainages developed on typical carbonate regions. Obvious spatial variations of major ion concentrations are found at various spatial scales, which are dominantly controlled by the lithology particularly carbonate distribution in the region. The four selected rivers show similar seasonal variations in major ions, with lower concentrations during the rainy season. Runoff is the first important factor for controlling the weathering rate in the basin, although increasing temperature and duration of water-rock interaction could make positive contributions to the enhancement of chemical weathering. The chemical weathering rates range from 52.6 to 73.7 t/km(2)/yr within the lower Xijiang basin and carbonate weathering is over one order of magnitude higher than that of silicates. CO(2) consumption rate by rock weathering is 2.0 x 10(11) mol/yr, of which more than 60% is contributed by carbonate weathering. The flux of CO(2) released to the atmosphere-ocean system by sulfuric acid-induced carbonate weathering is 1.1 x 10(5) mol/km(2)/yr, comparable with the CO(2) flux consumed by silicate weathering. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  16. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  17. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: Interpreting rates and controls based on soil concentration-depth profiles

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, D.A.; Anderson, S.P.

    2008-01-01

    The spatial and temporal changes in element and mineral concentrations in regolith profiles in a chronosequence developed on marine terraces along coastal California are interpreted in terms of chemical weathering rates and processes. In regoliths up to 15 m deep and 226 kyrs old, quartz-normalized mass transfer coefficients indicate non-stoichiometric preferential release of Sr > Ca > Na from plagioclase along with lesser amounts of K, Rb and Ba derived from K-feldspar. Smectite weathering results in the loss of Mg and concurrent incorporation of Al and Fe into secondary kaolinite and Fe-oxides in shallow argillic horizons. Elemental losses from weathering of the Santa Cruz terraces fall within the range of those for other marine terraces along the Pacific Coast of North America. Residual amounts of plagioclase and K-feldspar decrease with terrace depth and increasing age. The gradient of the weathering profile bs is defined by the ratio of the weathering rate, R to the velocity at which the profile penetrates into the protolith. A spreadsheet calculator further refines profile geometries, demonstrating that the non-linear regions at low residual feldspar concentrations at shallow depth are dominated by exponential changes in mineral surface-to-volume ratios and at high residual feldspar concentrations, at greater depth, by the approach to thermodynamic saturation. These parameters are of secondary importance to the fluid flux qh, which in thermodynamically saturated pore water, controls the weathering velocity and mineral losses from the profiles. Long-term fluid fluxes required to reproduce the feldspar weathering profiles are in agreement with contemporary values based on solute Cl balances (qh = 0.025-0.17 m yr-1). During saturation-controlled and solute-limited weathering, the greater loss of plagioclase relative to K-feldspar is dependent on the large difference in their respective solubilities instead of the small difference between their respective

  18. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Jansen, Nils; Dürr, Hans H.; Kempe, Stephan; Köhler, Peter

    2010-05-01

    CO2-consumption by chemical weathering of silicates and resulting silicate/carbonate weathering ratios influences the terrestrial lateral inorganic carbon flux to the ocean and long-term climate changes. However, little is known of the spatial extension of highly active weathering regions and their proportion of global CO2-consumption. As those regions may be of significant importance for global climate change, global CO2-consumption is calculated here at high resolution, to adequately represent them. In previous studies global CO2-consumption is estimated using two different approaches: i) a reverse approach based on hydrochemical fluxes from large rivers and ii) a forward approach applying spatially explicit a function for CO2-consumption. The first approach results in an estimate without providing a spatial resolution for highly active regions and the second approach applied six lithological classes while including three sediment classes (shale, sandstone and carbonate rock) based at a 1° or 2° grid resolution. It remained uncertain, if the applied lithological classification schemes represent adequately CO2-consumption from sediments on a global scale (as well as liberation of other elements like phosphorus or silicon by chemical weatheirng). This is due to the large variability of sediment properties, their diagenetic history and the contribution from carbonates apparent in silicate dominated lithological classes. To address these issues, a CO2-consumption model, trained at high-resolution data, is applied here to a global vector based lithological map with 15 lithological classes. The calibration data were obtained from areas representing a wide range of weathering rates. Resulting global CO2-consumption by chemical weathering is similar to earlier estimates (237 Mt C a-1) but the proportion of silicate weathering is 63%, and thus larger than previous estimates (49 to 60%). The application of the enhanced lithological classification scheme reveals that it

  19. FTIR Spectra of Possible End Products of Martian Surface Weathering

    NASA Astrophysics Data System (ADS)

    Maxe, L. P.

    2008-03-01

    Comparative analysis of IR spectra shows that martian weathering can lead to separating destruction of surface rocks. The semi-cosmic martian weathering results in amorphous silica dust and open unique ferry aluminum/ferry silicate martian rocks.

  20. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering

    PubMed Central

    Mills, Benjamin; Lenton, Timothy M.; Watson, Andrew J.

    2014-01-01

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered—contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500–500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time. PMID:24927553

  1. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.

    PubMed

    Mills, Benjamin; Lenton, Timothy M; Watson, Andrew J

    2014-06-24

    A shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered--contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500-500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time.

  2. Weathering profiles in granitoid rocks of the Sila Massif uplands, Calabria, southern Italy: New insights into their formation processes and rates

    NASA Astrophysics Data System (ADS)

    Scarciglia, Fabio; Critelli, Salvatore; Borrelli, Luigi; Coniglio, Sabrina; Muto, Francesco; Perri, Francesco

    2016-05-01

    soil formation rates was achieved for different depths of corresponding weathering profile zones. Soil formation rates ranged from 0.01-0.07 mm a- 1 for A and Bw horizons (weathering class VI) to 0.04-0.36 mm a- 1 for the underlying saprolite (C and Cr layers; class V). By comparing these results with the corresponding erosion rates available in the literature for the study area, that range from < 0.01-0.05 to 0.10-0.21 mm a- 1, we suggest that the upland landscape of the Sila Massif is close to steady-state conditions between weathering and erosive processes.

  3. A variable data rate satellite user terminal for multimedia communication able to react against weather impairments (DASIA 2002)

    NASA Astrophysics Data System (ADS)

    Bux, W.; Ferrari, M.; D'Ambrosio, A.

    2002-07-01

    In the frame of Ground Segment products LABEN - a Finmeccanica Company - is developing an advanced Satellite User Terminal for Multimedia Communication able to react against weather impairments. LABEN has been responsible during the Phase B for the design of the Resource Sharing Experiment (RSE) Earth Terminal of the DAVID Program (ASI). The RSE shall demonstrate conceptual and operational feasibility of the variable data rate link with a LEO satellite (DAVID). This abstract wants to provide a brief description of the proposed system and to outline the near future evolution of these Multimedia Earth Terminals linked to new services and applications.

  4. Major ion chemistry in the headwaters of the Yamuna river system:. Chemical weathering, its temperature dependence and CO 2 consumption in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dalai, T. K.; Krishnaswami, S.; Sarin, M. M.

    2002-10-01

    The Yamuna river and its tributaries in the Himalaya constitute the Yamuna River System (YRS). The YRS basin has a drainage area and discharge comparable in magnitude to those of the Bhagirathi and the Alaknanda rivers, which merge to form the Ganga at the foothills of the Himalaya. A detailed geochemical study of the YRS was carried out to determine: (i) the relative significance of silicate, carbonate and evaporite weathering in contributing to its major ion composition; (ii) CO 2 consumption via silicate weathering; and (iii) the factors regulating chemical weathering of silicates in the basin. The results show that the YRS waters are mildly alkaline, with a wide range of TDS, ˜32 to ˜620 mg l-1. In these waters, the abundances of Ca, Mg and alkalinity, which account for most of TDS, are derived mainly from carbonates. Many of the tributaries in the lower reaches of the Yamuna basin are supersaturated with calcite. In addition to carbonic acid, sulphuric acid generated by oxidation of pyrites also seems to be supplying protons for chemical weathering. Silicate weathering in YRS basin contributes, on average, ˜25% (molar basis) of total cations on a basin wide scale. Silicate weathering, however, does not seem to be intense in the basin as evident from low Si/(Na*+K) in the waters, ˜1.2 and low values of chemical index of alteration (CIA) in bed sediments, ˜60. CO 2 drawdown resulting from silicate weathering in the YRS basin in the Himalaya during monsoon ranges between (4 to 7) × 10 5 moles km -2 y -1. This is higher than that estimated for the Ganga at Rishikesh for the same season. The CO 2 consumption rates in the Yamuna and the Ganga basins in the Himalaya are higher than the global average value, suggesting enhanced CO 2 drawdown in the southern slopes of the Himalaya. The impact of this enhanced drawdown on the global CO 2 budget may not be pronounced, as the drainage area of the YRS and the Ganga in the Himalaya is small. The CO 2 drawdown by

  5. Prevalence rates of health and welfare conditions in broiler chickens change with weather in a temperate climate

    PubMed Central

    Edwards, Phil; Hajat, Shakoor

    2016-01-01

    Climate change impact assessment and adaptation research in agriculture has focused primarily on crop production, with less known about the potential impacts on livestock. We investigated how the prevalence of health and welfare conditions in broiler (meat) chickens changes with weather (temperature, rainfall, air frost) in a temperate climate. Cases of 16 conditions were recorded at approved slaughterhouses in Great Britain. National prevalence rates and distribution mapping were based on data from more than 2.4 billion individuals, collected between January 2011 and December 2013. Analysis of temporal distribution and associations with national weather were based on monthly data from more than 6.8 billion individuals, collected between January 2003 and December 2013. Ascites, bruising/fractures, hepatitis and abnormal colour/fever were most common, at annual average rates of 29.95, 28.00, 23.76 and 22.29 per 10 000, respectively. Ascites and abnormal colour/fever demonstrated clear annual cycles, with higher rates in winter than in summer. Ascites prevalence correlated strongly with maximum temperature at 0 and −1 month lags. Abnormal colour/fever correlated strongly with temperature at 0 lag. Maximum temperatures of approximately 8°C and approximately 19°C marked the turning points of curve in a U-shaped relationship with mortality during transportation and lairage. Future climate change research on broilers should focus on preslaughter mortality. PMID:27703686

  6. Physical and chemical weathering. [of Martian surface and rocks

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Arvidson, Raymond E.; Zolotov, Mikhail IU.

    1992-01-01

    Physical and chemical weathering processes that might be important on Mars are reviewed, and the limited observations, including relevant Viking results and laboratory simulations, are summarized. Physical weathering may have included rock splitting through growth of ice, salt or secondary silicate crystals in voids. Chemical weathering probably involved reactions of minerals with water, oxygen, and carbon dioxide, although predicted products vary sensitively with the abundance and physical form postulated for the water. On the basis of kinetics data for hydration of rock glass on earth, the fate of weathering-rind formation on glass-bearing Martian volcanic rocks is tentatively estimated to have been on the order of 0.1 to 4.5 cm/Gyr; lower rates would be expected for crystalline rocks.

  7. Physical and chemical weathering. [of Martian surface and rocks

    NASA Technical Reports Server (NTRS)

    Gooding, James L.; Arvidson, Raymond E.; Zolotov, Mikhail IU.

    1992-01-01

    Physical and chemical weathering processes that might be important on Mars are reviewed, and the limited observations, including relevant Viking results and laboratory simulations, are summarized. Physical weathering may have included rock splitting through growth of ice, salt or secondary silicate crystals in voids. Chemical weathering probably involved reactions of minerals with water, oxygen, and carbon dioxide, although predicted products vary sensitively with the abundance and physical form postulated for the water. On the basis of kinetics data for hydration of rock glass on earth, the fate of weathering-rind formation on glass-bearing Martian volcanic rocks is tentatively estimated to have been on the order of 0.1 to 4.5 cm/Gyr; lower rates would be expected for crystalline rocks.

  8. The effect of wet-dry weathering on the rate of bedrock river channel erosion by saltating gravel

    USGS Publications Warehouse

    Inoue, Takuya; Yamaguchi, Satomi; Nelson, Jonathan M.

    2017-01-01

    Previous work has shown that the bedrock erosion rate E because of collisions of saltating bedload can be expressed by E = βqb(1-Pc), where qb is the sediment transport rate, Pc is the extent of alluvial cover, and β is the abrasion coefficient. However, the dependence of the abrasion coefficient on the physical characteristics of the bedrock material is poorly known, and in particular, the effects of wet-dry weathering on the saltation-abrasion bedrock incision has not been specifically characterized. Observation suggests that the typical wet-dry cycling of exposed bedrock in river beds gives rise to cracks and voids that are likely to alter the incision rate of the material when subjected to impacts of moving sediment. In this study, flume experiments are performed to develop an understanding of how wet-dry cycling affects the rock tensile strength and the bedrock erosion rate. To represent the physical effects of weathering, boring cores taken from natural bedrock channel are exposed to artificial wet-dry cycles. The experimental results suggest the following: (1) the abrasion coefficient for fresh bedrock is estimated by β = 1.0 × 10− 4σT− 2(d/ksb)0.5, where σT is the tensile strength, d is the diameter of colliding gravel, and ksb is the hydraulic roughness height of bedrock; (2) the tensile strength of the bedrock decreases exponentially as a result of repeated wet-dry cycles, σT/σT0 = exp (-CTNWa0/σT0), where σT0 is the initial tensile strength, Wa0 is the initial normalized rate of water absorption., N is the number of wet-dry cycles, and CT is a constant; (3) the erosion rate of fresh bedrock depends on the inverse of the square of tensile strength, but the erosion rate of weathered bedrock depends on the − 1.5 power of tensile strength.

  9. Water geochemistry of the Qiantangjiang River, East China: Chemical weathering and CO2 consumption in a basin affected by severe acid deposition

    NASA Astrophysics Data System (ADS)

    Liu, Wenjing; Shi, Chao; Xu, Zhifang; Zhao, Tong; Jiang, Hao; Liang, Chongshan; Zhang, Xuan; Zhou, Li; Yu, Chong

    2016-09-01

    The chemical composition of the Qiantangjiang River, the largest river in Zhejiang province in eastern China, was measured to understand the chemical weathering of rocks and the associated CO2 consumption and anthropogenic influences within a silicate-dominated river basin. The average total dissolved solids (TDS, 113 mg l-1) and total cation concentration (TZ+, 1357 μeq l-1) of the river waters are comparable with those of global major rivers. Ca2+ and HCO3- followed by Na2+ and SO42-, dominate the ionic composition of the river water. There are four major reservoirs (carbonates, silicates, atmospheric and anthropogenic inputs) contributing to the total dissolved load of the investigated rivers. The dissolved loads of the rivers are dominated by both carbonate and silicate weathering, which together account for about 76.3% of the total cationic load origin. The cationic chemical weathering rates of silicate and carbonate for the Qiantangjiang basin are estimated to be approximately 4.9 ton km-2 a-1 and 13.9 ton km-2 a-1, respectively. The calculated CO2 consumption rates with the assumption that all the protons involved in the weathering reaction are provided by carbonic acid are 369 × 103 mol km-2 a-1 and 273 × 103 mol km-2 a-1 by carbonate and silicate weathering, respectively. As one of the most severe impacted area by acid rain in China, H2SO4 from acid precipitation is also an important proton donor in weathering reactions. When H2SO4 is considered, the CO2 consumption rates for the river basin are estimated at 286 × 103 mol km-2 a-1 for carbonate weathering and 211 × 103 mol km-2 a-1 for silicate weathering, respectively. The results highlight that the drawdown effect of CO2 consumption by carbonate and silicate weathering can be largely overestimated if the role of sulfuric acid is ignored, especially in the area heavily impacted by acid deposition like Qiantangjiang basin. The actual CO2 consumption rates (after sulfuric acid weathering effect

  10. Atmospheric CO2 Removal by Enhancing Weathering

    NASA Astrophysics Data System (ADS)

    Koster van Groos, A. F.; Schuiling, R. D.

    2014-12-01

    The increase of the CO2 content in the atmosphere by the release of anthropogenic CO2 may be addressed by the enhancement of weathering at the surface of the earth. The average emission of mantle-derived CO2 through volcanism is ~0.3 Gt/year (109 ton/year). Considering the ~3.000 Gt of CO2 present in the atmosphere, the residence time of CO2 in the earth's atmosphere is ~10,000 years. Because the vast proportion of carbon in biomass is recycled through the atmosphere, CO2 is continuously removed by a series of weathering reactions of silicate minerals and stored in calcium and magnesium carbonates. The addition of anthropogenic CO2 from fossil fuel and cement production, which currently exceeds 35 Gt/year and dwarfs the natural production 100-fold, cannot be compensated by current rates of weathering, and atmospheric CO2 levels are rising rapidly. To address this increase in CO2 levels, weathering rates would have to be accelerated on a commensurate scale. Olivine ((Mg,Fe)2SiO4) is the most reactive silicate mineral in the weathering process. This mineral is the major constituent in relatively common ultramafic rocks such as dunites (olivine content > 90%). To consume the current total annual anthropogenic release of CO2, using a simplified weathering reaction (Mg2SiO4 + 4CO2 + 4H2O --> 2 Mg2+ + 4HCO3- + H4SiO4) would require ~30 Gt/year or ~8-9 km3/year of dunite. This is a large volume; it is about double the total amount of ore and gravel currently mined (~ 17 Gt/year). To mine and crush these rocks to <100 μm costs ~ 8/ton. The transport and distribution over the earth's surface involves additional costs, that may reach 2-5/ton. Thus, the cost of remediation for the release of anthropogenic CO2 is 300-400 billion/year. This compares to a 2014 global GDP of ~80 trillion. Because weathering reactions require the presence of water and proceed more rapidly at higher temperatures, the preferred environments to enhance weathering are the wet tropics. From a socio

  11. Time series analysis of sferics rate data associated with severe weather patterns

    NASA Technical Reports Server (NTRS)

    Wang, P. P.; Burns, R. C.

    1976-01-01

    Data obtained by an electronic transducer measuring the rate of occurrence of electrical disturbances in the atmosphere (the sferic rate in the form of a time series) over the life of electrical storms are analyzed. It is found that the sferic rate time series are not stationary. The sferics rate time series has a complete life cycle associated with a particular storm. The approach to recognition of a spectral pattern is somewhat similar to real-time recognition of the spoken word.

  12. Time series analysis of sferics rate data associated with severe weather patterns

    NASA Technical Reports Server (NTRS)

    Wang, P. P.; Burns, R. C.

    1976-01-01

    Data obtained by an electronic transducer measuring the rate of occurrence of electrical disturbances in the atmosphere (the sferic rate in the form of a time series) over the life of electrical storms are analyzed. It is found that the sferic rate time series are not stationary. The sferics rate time series has a complete life cycle associated with a particular storm. The approach to recognition of a spectral pattern is somewhat similar to real-time recognition of the spoken word.

  13. Artificial Weathering as a Function of CO2 Injection in Pahang Sandstone Malaysia: Investigation of Dissolution Rate in Surficial Condition

    NASA Astrophysics Data System (ADS)

    Jalilavi, Madjid; Zoveidavianpoor, Mansoor; Attarhamed, Farshid; Junin, Radzuan; Mohsin, Rahmat

    2014-01-01

    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca2+ to 17.42% for Mg2+, with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.

  14. Artificial Weathering as a Function of CO2 Injection in Pahang Sandstone Malaysia: Investigation of Dissolution Rate in Surficial Condition

    PubMed Central

    Jalilavi, Madjid; Zoveidavianpoor, Mansoor; Attarhamed, Farshid; Junin, Radzuan; Mohsin, Rahmat

    2014-01-01

    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca2+ to 17.42% for Mg2+, with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection. PMID:24413195

  15. Artificial weathering as a function of CO2 injection in Pahang Sandstone Malaysia: investigation of dissolution rate in surficial condition.

    PubMed

    Jalilavi, Madjid; Zoveidavianpoor, Mansoor; Attarhamed, Farshid; Junin, Radzuan; Mohsin, Rahmat

    2014-01-13

    Formation of carbonate minerals by CO2 sequestration is a potential means to reduce atmospheric CO2 emissions. Vast amount of alkaline and alkali earth metals exist in silicate minerals that may be carbonated. Laboratory experiments carried out to study the dissolution rate in Pahang Sandstone, Malaysia, by CO2 injection at different flow rate in surficial condition. X-ray Powder Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDX), Atomic Absorption Spectroscopy (AAS) and weight losses measurement were performed to analyze the solid and liquid phase before and after the reaction process. The weight changes and mineral dissolution caused by CO2 injection for two hours CO2 bubbling and one week' aging were 0.28% and 18.74%, respectively. The average variation of concentrations of alkaline earth metals in solution varied from 22.62% for Ca(2+) to 17.42% for Mg(2+), with in between 16.18% observed for the alkali earth metal, potassium. Analysis of variance (ANOVA) test is performed to determine significant differences of the element concentration, including Ca, Mg, and K, before and after the reaction experiment. Such changes show that the deposition of alkali and alkaline earth metals and the dissolution of required elements in sandstone samples are enhanced by CO2 injection.

  16. Effects of climate on chemical weathering in watersheds

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.

    1995-01-01

    Climatic effects on chemical weathering are evaluated by correlating variations in solute concentrations and fluxes with temperature, precipitation, runoff, and evapotranspiration (ET) for a worldwide distribution of sixty-eight watersheds underlain by granitoid rock types. Stream solute concentrations are strongly correlated with proportional ET loss, and evaporative concentration makes stream solute concentrations an inapprorpiate surrogate for chemical weathering. Chemical fluxes are unaffected by ET, and SiO2 and Na weathering fluxes exhibit systematic increases with precipitation, runoff, and temperature. However, warm and wet watersheds produce anomalously rapid weathering rates. A proposed model that provides an improved prediction of weathering rates over climatic extremes is the product of linear precipitation and Arrhenius temperature functions. The resulting apparent activation energies based on SiO2 and Na fluxes are 59.4 and 62.5 kJ.mol-1, respectively. The coupling between temperature and precipitation emphasizes the importance of tropical regions in global silicate weathering fluxes, and suggests it is not representative to use continental averages for temperature and precipitation in the weathering rate functions of global carbon cycling and climatic change models. Fluxes of K, Ca, and Mg exhibit no climatic correlation, implying that other processes, such as ion exchange, nutrient cycling, and variations in lithology, obscure any climatic signal. -from Authors

  17. Geochemistry of the dissolved loads of the Liao River basin in northeast China under anthropogenic pressure: Chemical weathering and controlling factors

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Liu, Cong-Qiang; Zhao, Zhi-Qi; Li, Si-Liang; Lang, Yun-Chao; Li, Xiao-Dong; Hu, Jian; Liu, Bao-Jian

    2017-05-01

    This study focuses on the chemical and Sr isotopic compositions of the dissolved load of the rivers in the Liao River basin, which is one of the principal river systems in northeast China. Water samples were collected from both the tributaries and the main channel of the Liao River, Daling River and Hun-Tai River. Chemical and isotopic analyses indicated that four major reservoirs (carbonates (+gypsum), silicates, evaporites and anthropogenic inputs) contribute to the total dissolved solutes. Other than carbonate (+gypsum) weathering, anthropogenic inputs provide the majority of the solutes in the river water. The estimated chemical weathering rates (as TDS) of silicate, carbonate (+gypsum) and evaporites are 0.28, 3.12 and 0.75 t/km2/yr for the main stream of the Liao River and 7.01, 25.0 and 2.80 t/km2/yr for the Daliao River, respectively. The associated CO2 consumption rates by silicate weathering and carbonate (+gypsum) weathering are 10.1 and 9.94 × 103 mol/km2/yr in the main stream of the Liao River and 69.0 and 80.4 × 103 mol/km2/yr in the Hun-Tai River, respectively. The Daling River basin has the highest silicate weathering rate (TDSsil, 3.84 t/km2/yr), and the Hun-Tai River has the highest carbonate weathering rate (TDScarb, 25.0 t/km2/yr). The Raoyang River, with an anthropogenic cation input fraction of up to 49%, has the lowest chemical weathering rates, which indicates that human impact is not a negligible parameter when studying the chemical weathering of these rivers. Both short-term and long-term study of riverine dissolved loads are needed to a better understanding of the chemical weathering and controlling factors.

  18. Weathering, Soil Production, and Erosion Across Climatic and Tectonic Gradients

    NASA Astrophysics Data System (ADS)

    Norton, K. P.; Larsen, I. J.

    2014-12-01

    Weathering is one of the fundamental processes that sustain life on our planet. Physical weathering breaks down rock for soil production and chemical weathering is thought to operate as the ultimate long-term negative feedback on atmospheric CO2 concentrations. There remains, however, uncertainty as to the relationship between chemical and physical weathering at very fast rates. If chemical weathering becomes kinetically limited at rapid erosion rates, as has been shown in a number of locations around the globe, then the fastest erosion rates will be associated with reduced chemical weathering. This has led to a debate as to whether tectonically active mountain ranges or rolling plains are the main source of CO2 drawdown through silicate weathering. At the heart of this debate is the dearth of chemical weathering data at fast erosion rates. New cosmogenic nuclide-derived denudation rates from the West Coast of the New Zealand Southern Alps are among the fastest in the world and are linearly correlated with chemical weathering rates. The associated soil production rates reach an order of magnitude faster than previous estimates and far exceed the suggested maximum soil production rate. This suggests that very fast weathering and soil production is possible in such active landscapes and extreme climates. We investigate the controls on these rapid rates with a climate-driven soil production model. At the most basic level, soil production requires chemical weathering of primary minerals to secondary minerals. We apply soil production models with both exponential and hump-shaped dependencies on soil thickness. Mean annual temperature and precipitation are incorporated in the form of a modified Arrhenius equation that controls the maximum soil production rate. When applied to the Southern Alps, the model predicts very rapid soil production that matches the magnitude of the cosmogenic nuclide-derived rates. High annual precipitation in the Southern Alps supports rapid

  19. The effect of pH, grain size, and organic ligands on biotite weathering rates

    NASA Astrophysics Data System (ADS)

    Bray, Andrew W.; Oelkers, Eric H.; Bonneville, Steeve; Wolff-Boenisch, Domenik; Potts, Nicola J.; Fones, Gary; Benning, Liane G.

    2015-09-01

    Biotite dissolution rates were determined at 25 °C, at pH 2-6, and as a function of mineral composition, grain size, and aqueous organic ligand concentration. Rates were measured using both open- and closed-system reactors in fluids of constant ionic strength. Element release was non-stoichiometric and followed the general trend of Fe, Mg > Al > Si. Biotite surface area normalised dissolution rates (ri) in the acidic range, generated from Si release, are consistent with the empirical rate law:

  20. Primary weathering rates, water transit times, and concentration-discharge relations: A theoretical analysis for the critical zone

    NASA Astrophysics Data System (ADS)

    Ameli, Ali A.; Beven, Keith; Erlandsson, Martin; Creed, Irena F.; McDonnell, Jeffrey J.; Bishop, Kevin

    2017-01-01

    The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flow path dynamics drive the spatiotemporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flow paths are complex and difficult to map quantitatively. Here we couple a new integrated flow and particle tracking transport model with a general reversible Transition State Theory style dissolution rate law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration (Ceq) to intrinsic weathering rate (Rmax), vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As CeqRmax decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behavior, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as CeqRmax decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time).

  1. Erosion rates of wood during natural weathering. Part I, Effects of grain angle and surface texture

    Treesearch

    R. Sam Williams; Mark T. Knaebe; Peter G. Sotos; William C. Feist

    2001-01-01

    This is the first in a series of reports on the erosion rates of wood exposed outdoors near Madison, Wisconsin. The specimens were oriented vertically, facing south; erosion was measured annually for the first several years and biannually for the remainder of the exposure. In the work reported here, the erosion rates of earlywood and latewood were determined for smooth...

  2. Suicide and Homicide Rates: Their Relationship to Latitude and Longitude and to the Weather.

    ERIC Educational Resources Information Center

    Lester, David

    1986-01-01

    Explored variation of suicide and homicide rates in the major standard metropolitan statistical areas of the United States to see whether regional variations in temperature and precipitation could account for some of the variation. Only the correlation between precipitation and homicide rates survived controls for latitude and longitude.…

  3. Suicide and Homicide Rates: Their Relationship to Latitude and Longitude and to the Weather.

    ERIC Educational Resources Information Center

    Lester, David

    1986-01-01

    Explored variation of suicide and homicide rates in the major standard metropolitan statistical areas of the United States to see whether regional variations in temperature and precipitation could account for some of the variation. Only the correlation between precipitation and homicide rates survived controls for latitude and longitude.…

  4. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals.

    PubMed

    Wang, Yifeng; Jove-Colon, Carlos F; Kuhlman, Kristopher L

    2016-07-22

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruent dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). Our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.

  5. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    SciTech Connect

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-22

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruent dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). In conclusion, our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.

  6. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    DOE PAGES

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-22

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruentmore » dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). In conclusion, our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.« less

  7. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    PubMed Central

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-01-01

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruent dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). Our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications. PMID:27443508

  8. Nonlinear dynamics and instability of aqueous dissolution of silicate glasses and minerals

    NASA Astrophysics Data System (ADS)

    Wang, Yifeng; Jove-Colon, Carlos F.; Kuhlman, Kristopher L.

    2016-07-01

    Aqueous dissolution of silicate glasses and minerals plays a critical role in global biogeochemical cycles and climate evolution. The reactivity of these materials is also important to numerous engineering applications including nuclear waste disposal. The dissolution process has long been considered to be controlled by a leached surface layer in which cations in the silicate framework are gradually leached out and replaced by protons from the solution. This view has recently been challenged by observations of extremely sharp corrosion fronts and oscillatory zonings in altered rims of the materials, suggesting that corrosion of these materials may proceed directly through congruent dissolution followed by secondary mineral precipitation. Here we show that complex silicate material dissolution behaviors can emerge from a simple positive feedback between dissolution-induced cation release and cation-enhanced dissolution kinetics. This self-accelerating mechanism enables a systematic prediction of the occurrence of sharp dissolution fronts (vs. leached surface layers), oscillatory dissolution behaviors and multiple stages of glass dissolution (in particular the alteration resumption at a late stage of a corrosion process). Our work provides a new perspective for predicting long-term silicate weathering rates in actual geochemical systems and developing durable silicate materials for various engineering applications.

  9. Changing Energy Inputs at Earth's Surface Translates to Differences in Water Availability, Weathering Rates, and Biotic Activity at Depth

    NASA Astrophysics Data System (ADS)

    McIntosh, J. C.; Zapata-Rios, X.; Rasmussen, C.; Brooks, P. D.; Gallery, R. E.; Pelletier, J. D.; Chorover, J.

    2016-12-01

    The Critical Zone (CZ), the thin skin of the Earth, from the top of canopies down to saturated bedrock, provides vital environmental and human services, including water storage, elemental cycling and climate regulation. CZ structure develops over both long (geologic) timescales in response to variations in water, energy and carbon availability, or short (episodic) timescales due to disturbance, such as fire and land use change. This structural heterogeneity in turn mediates dissipative products of CZ development altering water and solute fluxes, transit times and flowpaths. Understanding how these coupled process control CZ evolution across timescales is one of the grand challenges for CZ science. Here, we investigate how microclimate and hydrologic fluxes related to aspect and landscape position influence CZ structure and function across time scales in seasonally water-limited montane catchments. We show how CZ topographic structure interacts with climate change and associated disturbance to control inputs of water, energy and carbon into the CZ, which translates to differences in water availability, weathering rates, and biotic activity at depth. Beyond temporal and elevational trends in climatic forcing, we observe strong impacts of aspect variation on biological productivity in water-limited systems, largely because of the aspect induced diurnal covariation of solar radiation with temperature, that increases potential ET on S- or W-facing slopes relative to N- or E-facing slopes. This directly impacts the amount of water, carbon and energy available for subsurface weathering, leading to deeper regolith on N- and E-facing slopes. Consequently, we see longer water transit times and greater weathering fluxes in N-facing slopes. Higher weathering fluxes and microbial activity are also seen in convergent areas characterized by higher values of topographic wetness index, due to greater lateral fluxes of water and DOC. In so far as CZ evolution depends on meteorologic

  10. The natural weathering of staurolite: crystal-surface textures, relative stability, and the rate-determining step

    Treesearch

    Michael A. Velbel; Charles L. Basso; Michael J. Zieg

    1996-01-01

    Mineral surface-textures on naturally weathered crystals of staurolite [monoclinic, pseudo-orthorhombic; Fe4Al18Si8O46(OH)2] indicate that staurolite weathering is generally interface-limited. Etch pits on naturally weathered staurolites are disk-shaped,...

  11. New sedimentary records of enhanced weathering during the PETM

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Kirtland Turner, S.; Sexton, P. F.; Dickson, A.; Keller, A. L.; Ridgwell, A.; Zeebe, R. E.; Hull, P. M.; D'haenens, S.; Zachos, J. C.; Norris, R. D.

    2016-12-01

    During the Paleocene-Eocene Thermal Maximum (PETM), thousands of gigatons of carbon were released into the ocean and atmosphere over thousands of years, giving us the opportunity to elucidate the response of long-term carbon cycle processes to an anthropogenically comparable release of CO2. In particular, we can critically assess the long-held assumption that the rate of CO2 consumption by terrestrial silicate weathering responds to climate, thus forming a long-term stabilizing feedback that drives the recovery of carbon cycle and climate system from perturbation. The products of silicate weathering (dissolved inorganic carbon, alkalinity, and dissolved silica) are delivered to the oceans, where they are biomineralized by calcareous and siliceous organisms and eventually buried in sediments. The occurrence of enhanced silicate weathering during the PETM must therefore leave behind evidence in the sedimentary record in the form of elevated carbonate and silica burial during the event and its recovery. We present new records from IODP Expedition 342 in the North Atlantic that show a clear increase in carbonate and silica content at the P-E boundary. Site U1403 (at 4.5 km paleo-water depth, the deepest record of the PETM recovered to date) features a transition from carbonate-barren Upper Paleocene clay to carbonate-bearing Lower Eocene sediments, representing the first direct evidence for an "overshoot" in the calcite compensation depth (CCD), a phenomenon predicted by carbon cycle model simulations of the event. Stable isotope records across this transition allow us to correlate the onset of carbonate sedimentation to the early stages of the PETM recovery ( 70 thousand years after the event's onset), coincident with an increase in carbonate accumulation at shallower sites globally. Sites U1403, U1408, and U1409 each contain anomalous silica-rich facies (siliceous limestones and claystones, porcellainite, and chert) at the P-E boundary, apparently representing the

  12. The Influence of Radon (Gas and Progeny) and Weather Conditions on Ambient Dose Equivalent Rate.

    PubMed

    Márquez, J L; Benito, G; Saez, J C; Navarro, N; Alvarez, A; Quiñones, J

    2016-08-13

    The purpose of this study is to identify the influence of radon (gas and progeny) on the ambient dose equivalent rate measured at the reference station ESMERALDA, where continuous measurements of the ambient dose equivalent rate (every 10 min) combined with activity concentration measurements of radon gas and radon progeny as well as meteorological parameters have been collected. This study has been performed using a correlation study based on a principal components analysis and the Spearman's rank correlation coefficient.

  13. Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate weathering

    USGS Publications Warehouse

    Brady, P.V.; Dorn, R.I.; Brazel, A.J.; Clark, J.; Moore, R.B.; Glidewell, T.

    1999-01-01

    A key uncertainty in models of the global carbonate-silicate cycle and long-term climate is the way that silicates weather under different climatologic conditions, and in the presence or absence of organic activity. Digital imaging of basalts in Hawaii resolves the coupling between temperature, rainfall, and weathering in the presence and absence of lichens. Activation energies for abiotic dissolution of plagioclase (23.1 ?? 2.5 kcal/mol) and olivine (21.3 ?? 2.7 kcal/mol) are similar to those measured in the laboratory, and are roughly double those measured from samples taken underneath lichen. Abiotic weathering rates appear to be proportional to rainfall. Dissolution of plagioclase and olivine underneath lichen is far more sensitive to rainfall.

  14. Pedestrian behavior and safety on a two-stage crossing with a center refuge island and the effect of winter weather on pedestrian compliance rate.

    PubMed

    Li, Yue; Fernie, Geoff

    2010-07-01

    Despite a burgeoning research effort directed at understanding the effects of age, gender, disability, group size, traffic control condition and street width on pedestrian safety and compliance rate as they cross a signalized intersection, remarkably little is known about the compliance rate at a signal controlled two-stage crossing and how pedestrians react to different weather conditions. The purpose of this study was to determine whether pedestrian behavior becomes more risky in inclement weather through the investigation of street crossing behavior and compliance under different weather and road surface conditions at a busy two-stage crossing. Road crossing behavior was filmed at one eight-lane divided road strip at a downtown site in Toronto metropolitan area. The intersection was filmed unobtrusively from a rooftop by one camera set to record both oncoming near-side traffic and pedestrian movements. Pedestrian behavior and compliance rate were scored for a number of determinants of safe road crossing actions. Overall, the results show that road crossing behavior in inclement weather conditions was less safe than in fine weather. The designs of signal timing and configuration of the center refuge island also adversely influenced pedestrian behavior at this crossing, and adverse weather conditions further exacerbated the noncompliance rate. This paper presents new information on compliance rate at a two-stage crossing that emphasizes the need to consider the influence of traffic signal design and weather conditions on pedestrians' behavior. More studies are needed to develop traffic control techniques to allow pedestrians to cross wide two-stage crossings in safety. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2

    USGS Publications Warehouse

    Sundquist, E.T.

    1991-01-01

    Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.

  16. Range profiling of the rain rate by an airborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Nakamura, Kenji

    1990-01-01

    A class of methods based on a measure of path attenuation that is used to constrain the Hitschfeld-Bordan solution is investigated. Such methods are investigated for lidar, radar, and combined radar-radiometer applications. Their function is to allocate the attenuation in proportion to the strength of the measured reflectivity. A description is provided of four estimates of rain rate that have been tested using data from a dual-wavelength airborne radar at 10 GHz and 35 GHz. It is concluded, that when attenuation is significant, the estimates are generally more accurate than those without attenuation correction. Thus, such methodologies can be utilized to extend the effective dynamic range of the radar to higher rain rates.

  17. TEM Analyses of Itokawa Regolith Grains and Lunar Soil Grains to Directly Determine Space Weathering Rates on Airless Bodies

    NASA Technical Reports Server (NTRS)

    Berger, Eve L.; Keller, Lindsay P.; Christoffersen, Roy

    2016-01-01

    Samples returned from the moon and Asteroid Itokawa by NASA's Apollo Missions and JAXA's Hayabusa Mission, respectively, provide a unique record of their interaction with the space environment. Space weathering effects result from micrometeorite impact activity and interactions with the solar wind. While the effects of solar wind interactions, ion implantation and solar flare particle track accumulation, have been studied extensively, the rate at which these effects accumulate in samples on airless bodies has not been conclusively determined. Results of numerical modeling and experimental simulations do not converge with observations from natural samples. We measured track densities and rim thicknesses of three olivine grains from Itokawa and multiple olivine and anorthite grains from lunar soils of varying exposure ages. Samples were prepared for analysis using a Leica EM UC6 ultramicrotome and an FEI Quanta 3D dual beam focused ion beam scanning electron microscope (FIB-SEM). Transmission electron microscope (TEM) analyses were performed on the JEOL 2500SE 200kV field emission STEM. The solar wind damaged rims on lunar anorthite grains are amorphous, lack inclusions, and are compositionally similar to the host grain. The rim width increases as a smooth function of exposure age until it levels off at approximately 180 nm after approximately 20 My (Fig. 1). While solar wind ion damage can only accumulate while the grain is in a direct line of sight to the Sun, solar flare particles can penetrate to mm-depths. To assess whether the track density accurately predicts surface exposure, we measured the rim width and track density in olivine and anorthite from the surface of rock 64455, which was never buried and has a surface exposure age of 2 My based on isotopic measurements. The rim width from 64455 (60-70nm) plots within error of the well-defined trend for solar wind amorphized rims in Fig. 1. Measured solar flare track densities are accurately reflecting the

  18. Differential weathering of basaltic and granitic catchments from concentration-discharge relationships

    NASA Astrophysics Data System (ADS)

    Ibarra, Daniel E.; Caves, Jeremy K.; Moon, Seulgi; Thomas, Dana L.; Hartmann, Jens; Chamberlain, C. Page; Maher, Kate

    2016-10-01

    A negative feedback between silicate weathering rates and climate is hypothesized to play a central role in moderating atmospheric CO2 concentrations on geologic timescales. However, uncertainty regarding the processes that regulate the operation of the negative feedback limits our ability to interpret past variations in the ocean-atmosphere carbon cycle. In particular, the mechanisms that determine the flux of weathered material for a given climatic state are still poorly understood. Here, we quantify the processes that determine catchment-scale solute fluxes for two lithologic end-members-basalt and granite-by applying a recently developed solute production model that links weathering fluxes to both discharge and the reactivity of the weathering material. We evaluate the model against long-term monitoring of concentration-discharge relationships from basaltic and granitic catchments to determine the parameters associated with solute production in each catchment. Higher weathering rates in basaltic catchments relative to granitic catchments are driven by differing responses to increases in runoff, with basaltic catchments showing less dilution with increasing runoff. In addition, results from the solute production model suggest that thermodynamic constraints on weathering reactions could explain higher concentrations in basaltic catchments at lower runoff compared to granitic catchments. To understand how the response to changing discharge controls weathering fluxes under different climatic states, we define basalt/granite weatherability as the ratio of the basalt catchment flux to the granite catchment flux. This weatherability is runoff-dependent and increases with increasing runoff. For HCO3- and SiO2(aq) fluxes, for modern global runoff, the derived mean basalt/granite weatherability is 2.2 (1.3-3.7, 2σ) and 1.7 (1.6-2.1, 2σ), respectively. Although we cannot determine the array of individual processes resulting in differences among catchments, the relative

  19. Emergent relation between surface vapor conductance and relative humidity profiles yields evaporation rates from weather data.

    PubMed

    Salvucci, Guido D; Gentine, Pierre

    2013-04-16

    The ability to predict terrestrial evapotranspiration (E) is limited by the complexity of rate-limiting pathways as water moves through the soil, vegetation (roots, xylem, stomata), canopy air space, and the atmospheric boundary layer. The impossibility of specifying the numerous parameters required to model this process in full spatial detail has necessitated spatially upscaled models that depend on effective parameters such as the surface vapor conductance (C(surf)). C(surf) accounts for the biophysical and hydrological effects on diffusion through the soil and vegetation substrate. This approach, however, requires either site-specific calibration of C(surf) to measured E, or further parameterization based on metrics such as leaf area, senescence state, stomatal conductance, soil texture, soil moisture, and water table depth. Here, we show that this key, rate-limiting, parameter can be estimated from an emergent relationship between the diurnal cycle of the relative humidity profile and E. The relation is that the vertical variance of the relative humidity profile is less than would occur for increased or decreased evaporation rates, suggesting that land-atmosphere feedback processes minimize this variance. It is found to hold over a wide range of climate conditions (arid-humid) and limiting factors (soil moisture, leaf area, energy). With this relation, estimates of E and C(surf) can be obtained globally from widely available meteorological measurements, many of which have been archived since the early 1900s. In conjunction with precipitation and stream flow, long-term E estimates provide insights and empirical constraints on projected accelerations of the hydrologic cycle.

  20. Sr isotopic characteristics in two small watersheds draining typical silicate and carbonate rocks: implication for the studies on seawater Sr isotopic evolution

    NASA Astrophysics Data System (ADS)

    Wu, W. H.; Zheng, H. B.; Yang, J. D.

    2013-06-01

    We systematically investigated Sr isotopic characteristics of small silicate watershed - the tributary Xishui River of the Yangtze River, and small carbonate watershed - the tributary Guijiang River of the Pearl River. The results show that the Xishui River has relatively high Sr concentrations (0.468-1.70 μmol L-1 in summer and 1.30-3.17 μmol L-1 in winter, respectively) and low 87Sr/86Sr ratios (0.708686-0.709148 in summer and 0.708515-0.709305 in winter), which is similar to the characteristics of carbonate weathering. The Guijiang River has low Sr concentrations (0.124-1.098 μmol L-1) and high 87Sr/86Sr ratios (0.710558-0.724605), being characterized by silicate weathering. In the Xishui River catchment, chemical weathering rates in summer are far higher than those in winter, indicating significant influence of climate regime. However, slight differences of 87Sr/86Sr ratios between summer and winter show that influence of climate on Sr isotope is uncertainty owing to very similar Sr isotope values in silicate and carbonate bedrocks. As 87Sr/86Sr ratios in the Xishui River are lower than those in seawater, they will decrease 87Sr/86Sr ratio of seawater after transported into oceans. Previous studies also showed that some basaltic watersheds with extremely high chemical weathering rates reduced the seawater Sr isotope ratios. In other words, river catchments with high silicate weathering rates do not certainly transport highly radiogenic Sr into oceans. Therefore, it may be questionable that using the variations of seawater 87Sr/86Sr ratio to indicate the continental silicate weathering intensity. In the Guijiang River catchment, 87Sr/86Sr ratios of carbonate rocks and other sources (rainwater, domestic and industrial waste water, and agricultural fertilizer) are lower than 0.71. In comparison, some non-carbonate components, such as, sand rocks, mud rocks, shales, have relatively high Sr isotopic compositions. Moreover, granites accounted for only 5% of the

  1. The weather-beaten dorsal hand clinical rating, shadow casting optical profilometry, and skin capacitance mapping.

    PubMed

    Delvenne, Marie; Piérard-Franchimont, Claudine; Seidel, Laurence; Albert, Adelin; Piérard, Gérald E

    2013-01-01

    Laypeople commonly perceive some skin xerosis and withering (roughness) changes during winter on some parts of the body, particularly on the dorsal hands. The aim of the study was to assess the withered skin surface changes occurring during the four seasons. A total of 47 menopausal women completed the study. A group of 31 volunteers were on hormone replacement therapy (HRT) and 16 were out of HRT. Skin xerosis and scaliness were rated clinically. In addition, skin whitening was assessed by computerized shadow casting optical profilometry and by skin capacitance mapping. The volunteers were not using topical creams and over-the-counter products on their hands. Marked changes, recorded over the successive seasons, corresponded to patchy heterogeneous stratum corneum hydration and heterogeneous skin surface roughness changing over seasons; they likely resulted from changes in the environmental temperature and atmosphere moisture. The severity of the changes revealed by clinical inspection was not supported by similar directions of fluctuations in the instrumental assessments. This seemingly contradiction was in fact due to different levels of scale observation. The clinical centimetric scale and the instrumental inframillimetric scale possibly provide distinct aspects of a given biological impact.

  2. The Weather-Beaten Dorsal Hand Clinical Rating, Shadow Casting Optical Profilometry, and Skin Capacitance Mapping

    PubMed Central

    Delvenne, Marie; Piérard-Franchimont, Claudine; Seidel, Laurence; Albert, Adelin; Piérard, Gérald E.

    2013-01-01

    Laypeople commonly perceive some skin xerosis and withering (roughness) changes during winter on some parts of the body, particularly on the dorsal hands. The aim of the study was to assess the withered skin surface changes occurring during the four seasons. A total of 47 menopausal women completed the study. A group of 31 volunteers were on hormone replacement therapy (HRT) and 16 were out of HRT. Skin xerosis and scaliness were rated clinically. In addition, skin whitening was assessed by computerized shadow casting optical profilometry and by skin capacitance mapping. The volunteers were not using topical creams and over-the-counter products on their hands. Marked changes, recorded over the successive seasons, corresponded to patchy heterogeneous stratum corneum hydration and heterogeneous skin surface roughness changing over seasons; they likely resulted from changes in the environmental temperature and atmosphere moisture. The severity of the changes revealed by clinical inspection was not supported by similar directions of fluctuations in the instrumental assessments. This seemingly contradiction was in fact due to different levels of scale observation. The clinical centimetric scale and the instrumental inframillimetric scale possibly provide distinct aspects of a given biological impact. PMID:24222921

  3. Weathering and dissolution rates among Pb shot pellets of differing elemental compositions exposed to various aqueous and soil conditions.

    PubMed

    Takamatsu, Takejiro; Murata, Tomoyoshi; Koshikawa, Masami K; Watanabe, Mirai

    2010-07-01

    The present study was performed to investigate the weathering and dissolution rates of Pb shot pellets differing in elemental composition (Pb, Sb, and As) exposed under various aqueous and soil conditions using five commercial shot pellet preparations. Upon immersion in distilled water, the dissolution rates of shot pellets, calculated from the difference in weight before versus after immersion, decreased with increasing Sb + As contents and the dominant precipitate was hydrocerussite. These subsidiary ingredients may be related to the difficulty of metallic Pb oxidation (transformation to PbO). Weight losses standardized by the amount of rainfall upon exposure to rainfall on open grassland and under canopies of Japanese cedar (Cryptomeria japonica) and bamboo-leafed oak (Quercus myrsinaefolia) were 1.11, 1.07, and 7.35 mg g pellets(-1) year(-1) L(-1), respectively, and was also related to Sb + As contents in shot pellets. However, annual dissolution rates of Pb standardized by the amount of rainfall as the soluble fraction at the same sites were 0.72, 0.33, and 0.40 mg Pb g pellets(-1) year(-1) L(-1) in the same order. These trends seemed to be related to the rainfall pH, which induces precipitation of Pb dissolved as PbCO(3) under conditions of higher pH at the Q. myrsinaefolia site or organic matter released from leaves, etc., which can form metal complexes. Dissolution rates of shot pellets buried in soils (Cambisol, Fluvisol, Regosol, Andosol) also seemed to be related to the soil pH and dissolved organic matter contents but were about sixfold faster than those with exposure to rainfall.

  4. Soil weathering and accumulation rates of oxalate-extractable phases derived from alpine chronosequences of up to 1 Ma in age

    NASA Astrophysics Data System (ADS)

    Dahms, Dennis; Favilli, Filippo; Krebs, Rolf; Egli, Markus

    2012-05-01

    In this study we compare newly-developed chemical weathering data with previously published data from soils developed along two chronosequences of glacial deposits in the European Alps and the Rocky Mountains (Wind River Range, USA). By combining these chronosequences, we are able to present a comprehensive dataset that represents a time period of > 1 Ma. We describe weathering trends of important elements using a number of weathering indices (e.g., K + Ca/Ti ratio, the weathering 'index B' of Kronberg and Nesbitt (1981) and the open mass transport function). Further, we describe the accumulation of Al, Fe, Si and Mn oxyhydroxides (including partially organic phases) as a function of time, and derive the corresponding accumulation rates. We calculated pedogenetically formed oxyhydroxides using an approach based on immobile elements. Our study represents one of only a few studies that describe rates of soil chemical weathering over a period as long as ~ 1 Ma. Results show that rates of chemical weathering clearly decrease along the chronosequences with increasing age of the soils. We find weathering rates are nearly four orders of magnitude lower in the 1 Ma-old soils than in the young soils. Our results suggest that the older soils may be reaching a steady state for these chemical properties in their present environments. A power function best explains the measured time-trends of the 'index B' and (K + Ca)/Ti) ratios in the soils. The best time-trend model for pedogenic weakly- to poorly crystalline phases and the relative losses/gains (based on the open-system mass transport function) were obtained with an exponential decay model function. In terms of the soil system, the decreases in the accumulation rate of the oxyhydroxides appears to be influenced not only by the factor of time but by climate as well (increased precipitation at higher altitudes slows the decrease in weathering rate over time). Thus, our ~ 1 Ma chronosequences also become pedogenic gradients

  5. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  6. Enhanced weathering strategies for stabilizing climate and averting ocean acidification

    NASA Astrophysics Data System (ADS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2016-04-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m-2 yr-1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  7. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  8. Landscape controls on pore water chemistry and chemical weathering rates in the Critical Zone Observatory: Shale Hills Catchment (Central Pennsylvania, USA)

    NASA Astrophysics Data System (ADS)

    Jin, L.; Brantley, S. L.

    2009-12-01

    We investigate controls, mechanisms and rates of shale weathering and soil formation at the Susquehanna/Shale Hills Critical Zone Observatory of central Pennsylvania. The Shale Hills is forested and V-shaped catchment, with slopes around 16-18%. The parent shales, of Silurian Rose Hill Formation, are comprised of primarily illite, quartz, and chlorite. The dominant chemical reactions in the soil profiles are dissolution of chlorite and illite to form more stable kaolinite, through intermediate phases vermiculite and hydroxy interlayered vermiculite. Previous hydrologic studies have included monitoring the soil moisture contents and modeling the water flow dynamics in the unsaturated zones. Depth to the bedrock in the catchment depends mainly on the landscape positions, with thinner soils observed at the ridge tops, and much thicker soils at the valley floors and topographically depressional areas. Study sites were selected to investigate the propagation rates of the weathering front (the interface between intact bedrock and weathered material) with increasing complexity: fluid flow above the bedrock interface is largely vertical at ridgetop (1D site), downslope along a planar transect (2D site), and convergent downslope along a swale transect (3D site). Weekly soil waters were collected at these sites and the soil water chemistry and mineral dissolution kinetics are integrated at these characteristic landscapes, to investigate weathering scenario for the whole catchment. Soil at the 1D site is only 20 cm thick, with soils slightly depleted relative to parent composition. Here, porewater chemistry is controlled by chemical weathering reactions with some contribution from rainfall. At the 2D planar transect, soil thickness increases from the ridge top to valley floor, and soil waters become more concentrated downslope as mineral dissolution progresses. The depth variation of water chemistry is distinctively different among the sites, which is closely related to soil

  9. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  10. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  11. Space weathering on airless bodies

    NASA Astrophysics Data System (ADS)

    Pieters, Carle M.; Noble, Sarah K.

    2016-10-01

    Space weathering refers to alteration that occurs in the space environment with time. Lunar samples, and to some extent meteorites, have provided a benchmark for understanding the processes and products of space weathering. Lunar soils are derived principally from local materials but have accumulated a range of optically active opaque particles (OAOpq) that include nanophase metallic iron on/in rims formed on individual grains (imparting a red slope to visible and near-infrared reflectance) and larger iron particles (which darken across all wavelengths) such as are often found within the interior of recycled grains. Space weathering of other anhydrous silicate bodies, such as Mercury and some asteroids, produces different forms and relative abundance of OAOpq particles depending on the particular environment. If the development of OAOpq particles is minimized (such as at Vesta), contamination by exogenic material and regolith mixing become the dominant space weathering processes. Volatile-rich bodies and those composed of abundant hydrous minerals (dwarf planet Ceres, many dark asteroids, and outer solar system satellites) are affected by space weathering processes differently than the silicate bodies of the inner solar system. However, the space weathering products of these bodies are currently poorly understood and the physics and chemistry of space weathering processes in different environments are areas of active research.

  12. Global warming and ocean acidification through halted weathering feedback during the Middle Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    van der Ploeg, R.; Selby, D. S.; Cramwinckel, M.; Bohaty, S. M.; Sluijs, A.; Middelburg, J. J.

    2016-12-01

    The Middle Eocene Climatic Optimum (MECO) represents a 500 kyr period of global warming 40 million years ago associated with a rise in atmospheric CO2 concentrations, but its cause remains enigmatic. Moreover, on the timescale of the MECO, an increase in silicate weathering rates on the continents is expected to balance carbon input and restore the alkalinity of the oceans, but this is in sharp disagreement with observations of extensive carbonate dissolution. Here we show, based on osmium isotope ratios of marine sediments from three different sites, that CO2 rise and warming did not lead to enhanced continental weathering during the MECO, in contrast to expectations from carbon cycle theory. Remarkably, a minor shift to lower, more unradiogenic osmium isotope ratios rather indicates an episode of increased volcanism or reduced continental weathering. This disproves silicate weathering as a geologically constant feedback to CO2 variations. Rather, we suggest that global Early and Middle Eocene warmth diminished the weatherability of continental rocks, ultimately leading to CO2 accumulation during the MECO, and show the plausibility of this scenario using carbon cycle modeling simulations. We surmise a dynamic weathering feedback might explain multiple enigmatic phases of coupled climate and carbon cycle change in the Cretaceous and Cenozoic.

  13. The role of sediments stored in valleys in modulating the Quaternary weathering flux variations

    NASA Astrophysics Data System (ADS)

    Carretier, Sebastien; Goddéris, Yves; Vigier, Nathalie; Maffre, Pierre

    2017-04-01

    Silicate weathering is known to be central to the regulation of atmospheric CO2. Yet it is unclear how weathering responds to climatic variations. Data sets based on different proxies in sediment cores suggest either negligible Quaternary silicate weathering variations, or more weathering during wet and hot periods, or even the reverse. For example, a recent study based on d7Li in clay of Himalayan river terraces suggests, counter-intuitively, a less intense weathering during hot and wet periods compared to dry periods for the last 40 ka, with no clear physical explanation. We analyse catchment scale weathering signals using the numerical model Cidre, coupling landscape evolution with chemical weathering. Chemical weathering occurs within a regolith, either produced in situ at a rate depending on regolith thickness, temperature and precipitation, or corresponding to a deposit. The chemical flux is calculated from the dissolution of granitoid clasts, first exhumed on the hillslopes and then transported and potentially stocked in the valleys. This approach accounts for part of the stochastic nature of grain weathering within a catchment. We prescribe an uplift to an initial horizontal surface to reach a dynamic equilibrium under a constant climate. Then, we vary the precipitation rate and the temperature, alternating cold and dry periods with hot and wet periods (10 to 400 ka tested). When these variations are applied to an equilibrium mountain covered by a regolith ("transport-limited"), the weathering outlfux and the erosion flux are larger during wet and hot periods. On the contrary, for less weatherable conditions such that the mountain is not covered by regolith ("kinetically-limited"), the weathering is the highest at the beginning of the dry, cold and low erosive periods. This apparent paradox is explained by the temporary accumulation of sediment in the valleys in response to the drought. The hillslopes being striped, these valley deposits constitute the only

  14. Reconnaissance of Field Sites for the Study of Chemical Weathering on the Guayana Shield, South America

    SciTech Connect

    Steefell, C I

    2003-02-01

    Despite the fact that chemical weathering of silicate rocks plays an important role in the draw-down of CO{sub 2} over geologic time scales (Berner and Berner, 1996), the overall controls on the rate of chemical weathering are still not completely understood. Lacking a mechanistic understanding of these controls, it remains difficult to evaluate a hypothesis such as that presented by Raymo and Ruddiman (1992), who suggested that enhanced weathering and CO{sub 2} draw-down resulting from the uplift of the Himalayas contributed to global cooling during the Cenozoic. At an even more fundamental level, the three to four order of magnitude discrepancy between laboratory and field weathering rates is still unresolved (White et al., 1996). There is as yet no comprehensive, mechanistic model for silicate chemical weathering that considers the coupled effects of precipitation, vadose zone flow, and chemical reactions. The absence of robust process models for silicate weathering and the failure to resolve some of these important questions may in fact be related-the controls on the overall rates of weathering cannot be understood without considering the weathering environment as one in which multiple, time-dependent chemical and physical processes are coupled (Malmstrom, 2000). Once chemical weathering is understood at a mechanistic process level, the important controls on chemical weathering (physical erosion, temperature, precipitation) can be folded into larger scale models tracking the global carbon cycle. Our goal in this study was to carry out the preliminary work needed to establish a field research site for chemical weathering om the Cuayana Shield in South America. The Guayana Shield is a Precambrian province greater than 1.5 billion years old covering portions of Venezuela, Guyana (the country), Surinam, French Guiana, and Brazil (Figure 1). More important than the age of the rocks themselves, however, is the age of the erosion surface developed on the Shield, with

  15. Isotopic exchange in mineral-fluid systems. IV. The crystal chemical controls on oxygen isotope exchange rates in carbonate-H 2O and layer silicate-H 2O systems

    NASA Astrophysics Data System (ADS)

    Cole, David R.

    2000-03-01

    Oxygen isotope exchange between minerals and water in systems far from chemical equilibrium is controlled largely by surface reactions such as dissolution-precipitation. In many cases, this behavior can be modeled adequately by a simple pseudo-first order rate model that accounts for changes in surface area of the solid. Previous modeling of high temperature isotope exchange data for carbonates, sulfates, and silicates indicated that within a given mineral group there appears to be a systematic relationship between rate and mineral chemistry. We tested this idea by conducting oxygen isotope exchange experiments in the systems, carbonate-H 2O and layer silicate-H 2O at 300 and 350°C, respectively. Witherite (BaCO 3), strontianite (SrCO 3) and calcite (CaCO 3) were reacted with pure H 2O for different lengths of time (271-1390 h) at 300°C and 100 bars. The layer silicates, chlorite, biotite and muscovite were reacted with H 2O for durations ranging from 132 to 3282 h at 350°C and 250 bars. A detailed survey of grain sizes and grain habits using scanning electron microscopy (SEM) indicated that grain regrowth occurred in all experiments to varying extents. Changes in the mean grain diameters were particularly significant in experiments involving withertite, strontianite and biotite. The variations in the extent of oxygen isotope exchange were measured as a function of time, and fit to a pseudo-first order rate model that accounted for the change in surface area of the solid during reaction. The isotopic rates (ln r) for the carbonate-H 2O system are -20.75 ± 0.44, -18.95 ± 0.62 and -18.51 ± 0.48 mol O m -2 s -1 for calcite, strontianite and witherite, respectively. The oxygen isotope exchange rates for layer silicate-H 2O systems are -23.99 ± 0.89, -23.14 ± 0.74 and -22.40 ± 0.66 mol O m -2 s -1 for muscovite, biotite and chlorite, respectively. The rates for the carbonate-H 2O systems increase in order from calcite to strontianite to witherite. This order

  16. Continental weathering response to climate change: a modelling study (Invited)

    NASA Astrophysics Data System (ADS)

    Godderis, Y.; Williams, J. Z.; Schott, J.; Pollard, D.; Brantley, S. L.

    2009-12-01

    Chemical weathering is dependent on the climatic conditions, including air temperature and rainfall. Although obvious at the geological scale, this dependence has been recently evidenced at millenia to decadal timescales. In the present contribution, we explore the link between climate and weathering at these shorter timescales through numerical modelling. The rates of mineral weathering in loess deposited 23 ky ago in the Mississippi valley and experiencing soil formation for 10 ky are estimated using the WITCH model for weathering and the GENESIS model for climate simulation. The initial mineralogical composition of the loess is uniform along the Mississippi valley and mixes dolomite and alumino-silicates. Over the 10 kyr of the simulation, temperature at the soil surface is rising by up to 4°C, while the increase in the drainage of the loess section ranges from 10 to 40 % depending on the latitude of the simulated site. The calculated mineralogical evolution of the loess section is impacted, the main feature being the fast deepening of the dolomite weathering front by about 4 meters and the formation of a shallow plagioclase weathering front. The time evolution of the dissolved species production (hence the CO2 consumption) is calculated over the simulations. The exported dissolved silica output may rise by up to 25 %, but depends heavily on the latitude of the site. This coupled climatic-weathering study is then extended 200 years in the future to estimate the impact of the anthropogenic climate change on a weathering profile and on the CO2 consumption by weathering.

  17. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  18. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  19. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  20. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  1. Caura River basin: Weathering rates, CO2 consumption, and chemistry of major and trace elements in an Orinoco River tributary coming from the Precambrian Guayana Shield, Venezuela

    NASA Astrophysics Data System (ADS)

    Mora, Abrahan; Alfonso, Juan A.; Baquero, Juan Carlos; Balza, Laura; Pisapia, Daniel

    2010-11-01

    This study describes the geochemistry of dissolved elements in the Caura River and gives information about weathering rates and associated CO2 consumption in an Orinoco River subbasin. Physicochemical variables (pH, conductivity, HCO3-, dissolved O2, and temperature), dissolved elements (Na, K, Ca, Mg, Si, Al, Fe, Cu, Mn, Zn, and Cr), total suspended sediments (TSS), and dissolved organic carbon (DOC) concentrations were measured monthly from June 2007 to August 2008 in the Caura River. Major element concentrations (Na, Ca, Mg, and Si) showed an inverse correlation with discharge, whereas K showed high concentration values during the rising waters, probably due to biogenic sources. All these elements are provided mainly from weathering of plagioclases and K feldspars. The weathering rate (riverine flux of dissolved major cations and SiO2 derived from weathering per unit area) and the CO2 consumption rate in the Caura basin (15.4 tons km-2 yr-1 and 1.1 × 105 mol km-2 yr-1, respectively) were higher than those reported for the Orinoco basin and other black water river basins. This fact can be due to several factors such as lithology (volcanic rocks), high runoff, and the presence of organic acids, which can enhance the chemical weathering. The variability of the trace elements showed a different behavior than major elements. Fe and Al concentrations were correlated with DOC. Dissolved Mn content was correlated with pH, whereas the low concentrations of Cu and Cr are possibly associated with the low content of small size organic colloids. The high values of Zn observed during the decreasing stage suggest biogenic input of Zn to river waters.

  2. Quantifying regolith production rates with Uranium-series isotopes at Shale Hills Critical Zone Observatory: implications for chemical weathering and landscape evolution

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Chabaux, Francois; Pelt, Eric; Blaes, Estelle; Jin, Lixin; Brantley, Susan

    2010-05-01

    Quantifying regolith production rates is essential in understanding many important Earth's surface processes such as nutrient cycling, carbon sequestration, erosion, and acid rain mitigation. Over the long term, the rates of weathering and erosion also combine to control the evolution of surface landscapes. Uranium-series isotopes offer a powerful tool to investigate regolith production rates and weathering timescales within a weathering system because of their well-documented fractionation behavior during chemical weathering and transport by water. To quantify regolith formation rates on shale lithology, we measured U-series isotopes (238U, 234U, and 230Th) in three weathering soil profiles along a planar north-facing hillslope at the Susquehanna Shale Hills Observatory (SSHO) in central Pennsylvania. All regolith samples show significant U-series disequilibrium: (234U/238U) and (230Th/238U) activity ratios range from 0.934 to 1.072 and from 0.903 to 1.096, respectively. These values display depth trends that are consistent with fractionation of U-series isotopes during chemical weathering, i.e., the relative mobility decreases in the order 234U > 238U >> 230Th. The activity ratios observed in the soils are explained by i) loss of U-series isotopes during water-rock interactions and ii) re-precipitation of 234U and 238U downslope. Regolith production rates calculated with U-series isotopes for these soil profiles decrease systematically with increasing distance from the ridge: from ~45 m/Myr at the ridge top, the highest point along the hillslope, to ~26 m/Myr at the middle slope site, and to ~15 m/Myr at the valley floor. Soil weathering timescales within these profiles range from 7 kyr to 45 kyr, increasing from the ridge to the valley floor. Given that the SSHO experienced peri-glacial climate ~15 ky ago, we conclude that the hillslope retains regolith formed before that glacial period and that the hillslope is not at geomorphological steady state. The regolith

  3. Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.; Watson, Andrew J.

    2004-03-01

    It has been suggested that biological colonization of the land surface began in the Neoproterozoic 1000-544 million years ago (Ma). We hypothesize that this colonization involved selective weathering of P from rocks, as well as an amplification of overall weathering rates. We show that two recent models, despite differences in the feedback mechanisms represented, predict that an increase in the weathering flux of P to the ocean would have caused a rise in atmospheric O2 in the Neoproterozoic. This in turn may have provided a necessary condition for the evolution of animals with hard skeletons seen in the 'Cambrian explosion'. Increased weathering of silicate rocks would also have caused a decline in atmospheric CO2, which could have been a causal factor in the Neoproterozoic glaciations.

  4. Harnessing the agricultural critical zone for climate change mitigation through enhanced rock weathering with croplands

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Taylor, L.; Banwart, S. A.; Kantzas, E. P.; Kelland, M.; Leake, J.; Lomas, M.; Mueller, C.; Hodson, M.; Ridgwell, A.; Quegan, S.

    2016-12-01

    In an agricultural context, enhanced rock weathering resulting from the application of crushed silicates to soils is driven by climate and photosynthate energy exported by crops below ground to roots and their associated mycorrhizal partners. Detailed mechanisms involved are increasingly well resolved for natural soils but not for agriculturally managed soils supplemented with crushed silicates. Assessment of the potential of the approach is made first with controlled environment studies using the mycorrhizal C4 crop sorghum grown in agricultural soil with and without the addition of crushed basalt. We then extend these findings with simulations capturing regional-to-global rates of enhanced basalt weathering by root system-microbial processes for the major crop functional types. Resulting global carbon cycle simulations indicate significant capacity for sequestering anthropogenic CO2 emissions through manipulating the agricultural critical zone in this way with multiple co-benefits, including remediating acidic soils, fertilization of crop production and crop protection from herbivores and biotrophs.

  5. The acid and alkalinity budgets of weathering in the Andes-Amazon system: Insights into the erosional control of global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Torres, Mark A.; West, A. Joshua; Clark, Kathryn E.; Paris, Guillaume; Bouchez, Julien; Ponton, Camilo; Feakins, Sarah J.; Galy, Valier; Adkins, Jess F.

    2016-09-01

    The correlation between chemical weathering fluxes and denudation rates suggests that tectonic activity can force variations in atmospheric pCO2 by modulating weathering fluxes. However, the effect of weathering on pCO2 is not solely determined by the total mass flux. Instead, the effect of weathering on pCO2 also depends upon the balance between 1) alkalinity generation by carbonate and silicate mineral dissolution and 2) sulfuric acid generation by the oxidation of sulfide minerals. In this study, we explore how the balance between acid and alkalinity generation varies with tectonic uplift to better understand the links between tectonics and the long-term carbon cycle. To trace weathering reactions across the transition from the Peruvian Andes to the Amazonian foreland basin, we measured a suite of elemental concentrations (Na, K, Ca, Mg, Sr, Si, Li, SO4, and Cl) and isotopic ratios (87Sr/86Sr and δ34S) on both dissolved and solid phase samples. Using an inverse model, we quantitatively link systematic changes in solute geochemistry with elevation to downstream declines in sulfuric acid weathering as well as the proportion of cations sourced from silicates. With a new carbonate-system framework, we show that weathering in the Andes Mountains is a CO2 source whereas foreland weathering is a CO2 sink. These results are consistent with the theoretical expectation that the ratio of sulfide oxidation to silicate weathering increases with increasing erosion. Altogether, our results suggest that the effect of tectonically-enhanced weathering on atmospheric pCO2 is strongly modulated by sulfide mineral oxidation.

  6. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    NASA Astrophysics Data System (ADS)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  7. Weather & Weather Maps. Teacher's Manual.

    ERIC Educational Resources Information Center

    Metro, Peter M.; Green, Rachel E.

    This guide is intended to provide an opportunity for students to work with weather symbols used for reporting weather. Also included are exercises in location of United States cities by latitude and longitude, measurement of distances in miles and kilometers, and prediction of weather associated with various types of weather fronts. (RE)

  8. Weather & Weather Maps. Teacher's Manual.

    ERIC Educational Resources Information Center

    Metro, Peter M.; Green, Rachel E.

    This guide is intended to provide an opportunity for students to work with weather symbols used for reporting weather. Also included are exercises in location of United States cities by latitude and longitude, measurement of distances in miles and kilometers, and prediction of weather associated with various types of weather fronts. (RE)

  9. Modeling weather and stocking rate threshold effects on forage and steer production in northern mixed-grass prairie

    USDA-ARS?s Scientific Manuscript database

    Model evaluations of forage production and yearling steer weight gain (SWG) responses to stocking density (SD) and seasonal weather patterns are presented for semi-arid northern mixed-grass prairie. We used the improved Great Plains Framework for Agricultural Resource Management-Range (GPFARM-Range)...

  10. Effects of oil sands tailings compounds and harsh weather on mortality rates, growth and detoxification efforts in nestling tree swallows (Tachycineta bicolor).

    PubMed

    Gentes, Marie-Line; Waldner, Cheryl; Papp, Zsuzsanna; Smits, Judit E G

    2006-07-01

    Oil sands mining companies in Alberta, Canada, are evaluating the feasibility of using wetlands to detoxify oil sands process material (OSPM) as a reclamation strategy. Reproductive success, nestling growth, survival and ethoxyresorufin-o-deethylase (EROD) activity were measured in tree swallows (Tachycineta bicolor) on experimental wetlands. In 2003, harsh weather triggered a widespread nestling die-off. Mortality rates on the control site reached 48% while they ranged from 59% to 100% on reclaimed wetlands. The odds of dying on the most process-affected sites were more than ten times higher than those on the control site. In 2004, weather was less challenging. Mortality rates were low, but nestlings on reclaimed wetlands weighed less than those on the control site, and had higher EROD activity. These results indicate that compared with reference birds, nestlings from OSPM-impacted wetlands may be less able to withstand additional stressors, which could decrease their chances of survival after fledging.

  11. Quantifying shale weathering by Li isotopes at the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Steinhoefel, Grit; Fantle, Matthew S.; Brantley, Sue L.

    2017-04-01

    Lithium isotopes have emerged as a powerful tool to investigate abiotic weathering processes because isotope fraction is controlled by silicate weathering depending on the weathering rate. In this study, we explore Li isotopes as a proxy for shale weathering in the well-investigated Susquehanna Shale Hills Critical Zone Observatory (USA), which is a first-order catchment in a temperate climate in the Appalachian Mountain. Groundwater, soil and stream water reveal large variation in δ7Li (14.5 to 40.0‰) controlled by variable but high degrees of Li retention by kaolinite and vermiculite formation. Parental shales, bulk soils and stream sediments reveal similar isotope signatures with little variations giving average δ7Li values of -0.6, 0.5 and -0.3‰, respectively which is in the typical range for shales dominated by structural-bound Li and consistent with high Li retention. An isotope mass balance approach reveal that Li is virtually quantitatively exported by erosional weathering from the system. This result is consisted with a high depletion of Li along with clay minerals in soils whereas both is enriched in stream sediments. Overall shale weathering is dominated by clay transformation forming kaolinite through intermediate phases under highly incongruent weathering conditions followed by preferentially loss of fine-grained weathering products, a processes which is likely an important mechanism in the modern global Li cycle.

  12. Using U-series isotopes to quantify regolith formation and chemical weathering rates along a climosequence associated with the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Ma, L.; Chabaux, F. J.; Dere, A. L.; White, T.; Jin, L.; Brantley, S. L.

    2012-12-01

    Regolith formation and chemical weathering are important Critical Zone processes and are responsible for soil development. Despite their fundamental importance, we still lack effective tools to quantify these processes. U-series isotopes offer a powerful geochronometer to quantify regolith production rates and weathering duration. This is largely due to improvements in analytical methods and mathematical approaches made over the last decade in measuring U-series isotopes and interpreting their fractionation during chemical weathering. Here, we present a systematic study of U-series isotopes (238U, 234U and 230Th) in shale-derived soils from five small watersheds in the eastern USA to understand the rates of regolith formation as a function of climate. The selected watersheds in Pennsylvania, Virginia, Tennessee, Alabama, and Puerto Rico are part of the shale transect established as part of the Susquehanna Shale Hills Critical Zone Observatory. We first measured U-series isotopes in six regolith profiles from two planar hill-slopes (north vs. south) within the Shale Hills CZO in central PA to evaluate the role of aspect on regolith formation in the small watershed. All regolith samples display significant U-series disequilibrium. These U-series disequilibrium values are explained by two processes acting on U-series isotopes during weathering: a loss of 234U, 238U, and 230Th during water-rock interactions and a gain from circulating soil water and/or downslope particle transport. Regolith production rates and weathering durations were calculated with a U-series isotope mass balance model. On the southern (shaded) slope, regolith production rates decrease systematically with increasing soil thickness and distance from the ridge: from ~44.5 m/Myr at the ridge top to ~15.0 m/Myr at the valley floor. Durations of chemical weathering within these profiles range from 6.7 kyr to 44.7 kyr, increasing from the ridge to the valley floor. The regolith profiles on the northern

  13. Detection and estimation of volcanic eruption onset and mass flow rate using weather radar and infrasonic array

    NASA Astrophysics Data System (ADS)

    Marzano, Frank S.; Mereu, Luigi; Montopoli, Mario; Picciotti, Errico; Di Fabio, Saverio; Bonadonna, Costanza; Marchetti, Emanuele; Ripepe, Maurizio

    2015-04-01

    The explosive eruption of sub-glacial Eyjafjallajökull volcano in 2010 was of modest size, but ash was widely dispersed over Iceland and Europe. The Eyjafjallajökull pulsating explosive activity started on April 14 and ended on May 22. The combination of a prolonged and sustained ejection of volcanic ash and persistent northwesterly winds resulted in dispersal the volcanic cloud over a large part of Europe. Tephra dispersal from an explosive eruption is a function of multiple factors, including magma mass flow rate (MFR), degree of magma fragmentation, vent geometry, plume height, particle size distribution (PSD) and wind velocity. One of the most important geophysical parameters, derivable from the analysis of tephra deposits, is the erupted mass, which is essential for the source characterization and assessment of the associated hazards. MFR can then be derived by dividing the erupted mass by the eruption duration (if known) or based on empirical and analytical relations with plume height. Microwave weather radars at C and X band can provide plume height, ash concentration and loading, and, to some extent, PSD and MFR. Radar technology is well established and can nowadays provide fast three-dimensional (3D) scanning antennas together with Doppler and dual polarization capabilities. However, some factors can limit the detection and the accuracy of the radar products aforementioned. For example, the sensitivity of microwave radar measurements depends on the distance between the radar antenna and the target, the transmitter central wavelength, receiver minimum detachable power and the resolution volume. In addition, radar measurements are sensitive to particle sizes larger than few tens of microns thus limiting the radar-based quantitative estimates to the larger portion of the PSD. Volcanic activity produces infrasonic waves (i.e., acoustic waves below 20 Hz), which can propagate in the atmosphere useful for the remote monitoring of volcanic activity. Infrasound

  14. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.

    PubMed

    ten Berge, Hein F M; van der Meer, Hugo G; Steenhuizen, Johan W; Goedhart, Paul W; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  15. Soil Organic Carbon Loss: An Overlooked Factor in the Carbon Sequestration Potential of Enhanced Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Dietzen, Christiana; Harrison, Robert

    2016-04-01

    Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.

  16. Subarctic weathering of mineral wastes provides a sink for atmospheric CO(2).

    PubMed

    Wilson, Siobhan A; Dipple, Gregory M; Power, Ian M; Barker, Shaun L L; Fallon, Stewart J; Southam, Gordon

    2011-09-15

    The mineral waste from some mines has the capacity to trap and store CO(2) within secondary carbonate minerals via the process of silicate weathering. Nesquehonite [MgCO(3)·3H(2)O] forms by weathering of Mg-silicate minerals in kimberlitic mine tailings at the Diavik Diamond Mine, Northwest Territories, Canada. Less abundant Na- and Ca-carbonate minerals precipitate from sewage treatment effluent deposited in the tailings storage facility. Radiocarbon and stable carbon and oxygen isotopes are used to assess the ability of mine tailings to trap and store modern CO(2) within these minerals in the arid, subarctic climate at Diavik. Stable isotopic data cannot always uniquely identify the source of carbon stored within minerals in this setting; however, radiocarbon isotopic data provide a reliable quantitative estimate for sequestration of modern carbon. At least 89% of the carbon trapped within secondary carbonate minerals at Diavik is derived from a modern source, either by direct uptake of atmospheric CO(2) or indirect uptake though the biosphere. Silicate weathering at Diavik is trapping 102-114 g C/m(2)/y within nesquehonite, which corresponds to a 2 orders of magnitude increase over the background rate of CO(2) uptake predicted from arctic and subarctic river catchment data.

  17. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event.

    PubMed

    Them, Theodore R; Gill, Benjamin C; Selby, David; Gröcke, Darren R; Friedman, Richard M; Owens, Jeremy D

    2017-07-10

    Chemical weathering consumes atmospheric carbon dioxide through the breakdown of silicate minerals and is thought to stabilize Earth's long-term climate. However, the potential influence of silicate weathering on atmospheric pCO2 levels on geologically short timescales (10(3)-10(5) years) remains poorly constrained. Here we focus on the record of a transient interval of severe climatic warming across the Toarcian Oceanic Anoxic Event or T-OAE from an open ocean sedimentary succession from western North America. Paired osmium isotope data and numerical modelling results suggest that weathering rates may have increased by 215% and potentially up to 530% compared to the pre-event baseline, which would have resulted in the sequestration of significant amounts of atmospheric CO2. This process would have also led to increased delivery of nutrients to the oceans and lakes stimulating bioproductivity and leading to the subsequent development of shallow-water anoxia, the hallmark of the T-OAE. This enhanced bioproductivity and anoxia would have resulted in elevated rates of organic matter burial that would have acted as an additional negative feedback on atmospheric pCO2 levels. Therefore, the enhanced weathering modulated by initially increased pCO2 levels would have operated as both a direct and indirect negative feedback to end the T-OAE.

  18. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    PubMed

    Epihov, Dimitar Z; Batterman, Sarah A; Hedin, Lars O; Leake, Jonathan R; Smith, Lisa M; Beerling, David J

    2017-08-16

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N2) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO2). Here we hypothesize that the increasing abundance of N2-fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N2-fixation and nodule formation. © 2017 The Author(s).

  19. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    PubMed Central

    Hedin, Lars O.; Leake, Jonathan R.

    2017-01-01

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58–42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N2) and higher leaf N compared with non-legumes (35–65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO2). Here we hypothesize that the increasing abundance of N2-fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N2-fixation and nodule formation. PMID:28814651

  20. Demographic effects of extreme weather events: snow storms, breeding success, and population growth rate in a long-lived Antarctic seabird

    PubMed Central

    Descamps, Sébastien; Tarroux, Arnaud; Varpe, Øystein; Yoccoz, Nigel G; Tveraa, Torkild; Lorentsen, Svein-Håkon

    2015-01-01

    Weather extremes are one important element of ongoing climate change, but their impacts are poorly understood because they are, by definition, rare events. If the frequency and severity of extreme weather events increase, there is an urgent need to understand and predict the ecological consequences of such events. In this study, we aimed to quantify the effects of snow storms on nest survival in Antarctic petrels and assess whether snow storms are an important driver of annual breeding success and population growth rate. We used detailed data on daily individual nest survival in a year with frequent and heavy snow storms, and long term data on petrel productivity (i.e., number of chicks produced) at the colony level. Our results indicated that snow storms are an important determinant of nest survival and overall productivity. Snow storm events explained 30% of the daily nest survival within the 2011/2012 season and nearly 30% of the interannual variation in colony productivity in period 1985–2014. Snow storms are a key driver of Antarctic petrel breeding success, and potentially population dynamics. We also found state-dependent effects of snow storms and chicks in poor condition were more likely to die during a snow storm than chicks in good condition. This stresses the importance of considering interactions between individual heterogeneity and extreme weather events to understand both individual and population responses to climate change. PMID:25691959

  1. Demographic effects of extreme weather events: snow storms, breeding success, and population growth rate in a long-lived Antarctic seabird.

    PubMed

    Descamps, Sébastien; Tarroux, Arnaud; Varpe, Øystein; Yoccoz, Nigel G; Tveraa, Torkild; Lorentsen, Svein-Håkon

    2015-01-01

    Weather extremes are one important element of ongoing climate change, but their impacts are poorly understood because they are, by definition, rare events. If the frequency and severity of extreme weather events increase, there is an urgent need to understand and predict the ecological consequences of such events. In this study, we aimed to quantify the effects of snow storms on nest survival in Antarctic petrels and assess whether snow storms are an important driver of annual breeding success and population growth rate. We used detailed data on daily individual nest survival in a year with frequent and heavy snow storms, and long term data on petrel productivity (i.e., number of chicks produced) at the colony level. Our results indicated that snow storms are an important determinant of nest survival and overall productivity. Snow storm events explained 30% of the daily nest survival within the 2011/2012 season and nearly 30% of the interannual variation in colony productivity in period 1985-2014. Snow storms are a key driver of Antarctic petrel breeding success, and potentially population dynamics. We also found state-dependent effects of snow storms and chicks in poor condition were more likely to die during a snow storm than chicks in good condition. This stresses the importance of considering interactions between individual heterogeneity and extreme weather events to understand both individual and population responses to climate change.

  2. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  3. Chemical weathering fluxes from volcanic islands and the importance of groundwater: The Hawaiian example

    NASA Astrophysics Data System (ADS)

    Schopka, Herdis Helga; Derry, Louis A.

    2012-07-01

    We investigated the products and rates of chemical weathering on the Hawaiian Islands, sampling streams on Kaua'i and both streams and groundwater wells on the island of Hawai'i. Dissolved silica was used to investigate the flowpaths of water drained into streams. We found that flowpaths exert a major control on the observed chemical weathering rates. A strong link exists between the degree of landscape dissection and flowpaths of water through the landscape, with streams in undissected landscapes receiving water mainly from surface runoff and streams in highly dissected landscapes receiving a considerable fraction of their water from groundwater (springs and/or seepage). Total alkalinity in Hawaiian streams and groundwater is produced exclusively by silicate chemical weathering. We find that fluxes of total alkalinity (often called "CO2 consumption rate" in the geochemical literature), from the islands are lower than those observed in basaltic regions elsewhere. Groundwater is, overall, the major transport vector for products of chemical weathering from the Hawaiian Islands. On the youngest and largest island, submarine groundwater discharge (SGD) transports more than an order of magnitude more solutes to the ocean than surface water and on the youngest part of the youngest island, SGD is the only link between the terrestrial weathering system and the ocean. These results suggest that groundwater, and particularly SGD, needs to be included in geochemical weathering budgets of volcanic islands.

  4. The Climate and its Impacts on deterioration and weathering rate of EI-Nadura Temple in El- Kharga Oasis, Western Desert of Egypt.

    NASA Astrophysics Data System (ADS)

    Ismael, Hossam

    2015-04-01

    Undoubtedly, El-Kharga Oasis monumental sites are considered an important part of our world's cultural heritage in the South Western Desert of Egypt. These sites are scattered on the floor of the oasis representing ancient civilizations. The Roman stone monuments in Kharga represent cultural heritage of an outstanding universal value. Such those monuments have suffered weathering deterioration. There are various elements which affect the weathering process of stone monuments: climate conditions, shapes of cultural heritages, exposed time periods, terrains, and vegetation around them, etc. Among these, climate conditions are the most significant factor affecting the deterioration of Archeological sites in Egypt. El- Kharga Oasis belongs administratively to the New Valley Governorate. It is located in the southern part of the western desert of Egypt, lies between latitudes 22°30'14" and 26°00'00" N, and between 30°27'00" and 30°47'00" E. The area of El Kharga Oasis covers about 7500 square kilometers. Pilot studies were carried out on the EI-Nadura Temple, composed of sandstones originating from the great sand sea. The major objective of this study is to monitor and measure the weathering features and the weathering rate affecting the building stones forming El-Nadora Roman building rocks in cubic cm. To achieve these aims, the present study used analysis of climatic data such as annual and seasonal solar radiation, Monthly average number of hours of sunshine, maximum and minimum air temperatures, wind speed, which have obtained from actual field measurements and data Meteorological Authority of El-Kharga station for the period 1977 to 2010 (33 years), and from the period 1941-2050 (110 years) as a long term of temperature data. Several samples were collected and examined by polarizing microscopy (PLM), X-ray diffraction analysis (XRD) and scanning electron microscopy equipped with an energy dispersive X-ray analysis system (SEM-EDX). The results were in

  5. Comparison of Experimenal Photooxidation Rates and Patterns in Glass- and Water-Based Oil Slicks with Daily Weathering Observed in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Sharpless, C.; Aeppli, C.; Reddy, C. M.; Swarthout, B.; Stewart, O. C.; Walters, M.; Valentine, D. L.

    2016-02-01

    Photooxidation is a well-known degradation route for toxic components of oil (e.g., PAHs). However, recent research suggests that it may play a broader role by enhancing oil's dark1 and photo-toxicity2 and producing persistent, oxidized hydrocarbons.3To better understand photooxidation's importance to oil weathering in marine systems, we are combining laboratory studies with field measurements of compositional changes under controlled conditions. Lab experiments have employed a solar simulator to photooxidize slicks of Dorado Well crude oil on water (Instant Ocean) and glass surfaces. Qualitatively similar compositional changes were seen in both systems, such as rapid loss of aromatics and production of oxidized hydrocarbons as assessed by GCMS, GCxGC, TLC-FID, and FTIR. Rates were much faster on water, a finding tentatively ascribed to the film on glass ( 750 um) being much thicker than on water ( 140 um). Further experiments have been conducted with thinner films on glass, and the results are being analyzed to clarify the importance of film thickness versus surface substrate for photoxidation kinetics. Naturally weathered samples were also collected in the Gulf during a cruise in June, 2015. Surface slicks from natural seeps were tracked and sampled daily under very calm seas with full sun, and solar irradiance was simultaneously measured. These samples, currently undergoing GCxGC and TLC-FID analyses, provide a unique reference with which to assess in-situ transformation rates and compositional changes due to photooxidation. Comparison between results from the field samples and lab experiments should help clarify the absolute contribution of photooxidation to marine oil weathering and improve efforts to use lab results to constrain estimates of environmental transformation rates. 1. D. Rial et al. J. Haz. Mat. 2013, 260, 67 2. J.P. Incardona et al. Proc. Natl. Acad. Sci. 2012, 109, E51 3. C. Aeppli et al. Environ. Sci. Technol. 2012, 46, 8799

  6. Stream geochemistry, chemical weathering and CO 2 consumption potential of andesitic terrains, Dominica, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Goldsmith, Steven T.; Carey, Anne E.; Johnson, Brent M.; Welch, Susan A.; Lyons, W. Berry; McDowell, William H.; Pigott, Jeffrey S.

    2010-01-01

    Recent studies of chemical weathering of andesitic-dacitic material on high-standing islands (HSIs) have shown these terrains have some of the highest observed rates of chemical weathering and associated CO 2 consumption yet reported. However, the paucity of stream gauge data in many of these terrains has limited determination of chemical weathering product fluxes. In July 2006 and March 2008, stream water samples were collected and manual stream gauging was performed in watersheds throughout the volcanic island of Dominica in the Lesser Antilles. Distinct wet and dry season solute concentrations reveal the importance of seasonal variations on the weathering signal. A cluster analysis of the stream geochemical data shows the importance of parent material age on the overall delivery of solutes. Observed Ca:Na, HCO 3:Na and Mg:Na ratios suggest crystallinity of the parent material may also play an important role in determining weathering fluxes. From total dissolved solids concentrations and mean annual discharge calculations we calculate chemical weathering yields of (6-106 t km -2 a -1), which are similar to those previously determined for basalt terrains. Silicate fluxes (3.1-55.4 t km -2 a -1) and associated CO 2 consumption (190-1575 × 10 3 mol km -2 a -1) determined from our study are among the highest determined to date. The calculated chemical fluxes from our study confirm the weathering potential of andesitic-dacitic terrains and that additional studies of these terrains are warranted.

  7. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes

    USGS Publications Warehouse

    White, A.F.; Blum, A.E.; Schulz, M.S.; Vivit, D.V.; Stonestrom, D.A.; Larsen, M.; Murphy, S.F.; Eberl, D.

    1998-01-01

    The pristine Rio Icacos watershed in the Luquillo Mountains in eastern Puerto Rico has the fastest documented weathering rate of silicate rocks on the Earth's surface. A regolith propagation rate of 58 m Ma-1 calculated from iso-volumetric saprolite formation from quartz diorite, is comparable to the estimated denudation rate (25-50 Ma-1) but is an order of magnitude faster than the global average weathering rate (6 Ma-1). Weathering occurs in two distinct environments; plagioclase and hornblende react at the saprock interface and biotite and quartz weather in the overlying thick saprolitic regolith. These environments produce distinctly different water chemistries, with K, Mg, and Si increasing linearly with depth in saprolite porewaters and with stream waters dominated by Ca, Na, and Si. Such differences are atypical of less intense weathering in temperate watersheds. Porewater chemistry in the shallow regolith is controlled by closed-system recycling of inorganic nutrients such as K. Long-term elemental fluxes through the regolith (e.g., Si = 1.7 ?? 10-8 moles m-2 s-1) are calculated from mass losses based on changes in porosity and chemistry between the regolith and bedrock and from the age of the regolith surface (200 Ma). Mass losses attributed to solute fluxes are determined using a step-wise infiltration model which calculates mineral inputs to the shallow and deep saprolite porewaters and to stream water. Pressure heads decrease with depth in the shallow regolith (-2.03 m H2O m-1), indicating that both increasing capillary tension and graviometric potential control porewater infiltration. Interpolation of experimental hydraulic conductivities produces an infiltration rate of 1 m yr-1 at average field moisture saturation which is comparable with LiBr tracer tests and with base discharge from the watershed. Short term weathering fluxes calculated from solute chemistries and infiltration rates (e.g., Si = 1.4 ?? 10-8 moles m-2 s-1) are compared to watershed

  8. Theoretical studies of the infrared emission from circumstellar dust shells: the infrared characteristics of circumstellar silicates and the mass-loss rate of oxygen-rich late-type giants.

    PubMed

    Schutte, W A; Tielens, A G

    1989-08-01

    We have modeled the infrared emission of spherically symmetric, circumstellar dust shells with the aim of deriving the infrared absorption properties of circumstellar silicate grains and the mass-loss rates of the central stars. As a basis for our numerical studies, a simple semianalytical formula has been derived that illustrates the essential characteristics of the infrared emission of such dust shells. A numerical radiative transfer program has been developed and applied to dust shells around oxygen-rich late-type giants. Free parameters in such models include the absorption properties and density distribution of the dust. An approximate, analytical expression is derived for the density distribution of circumstellar dust driven outward by radiation pressure from a central source. A large grid of models has been calculated to study the influence of the free parameters on the emergent spectrum. These results form the basis for a comparison with near-infrared observations. Observational studies have revealed a correlation between the near-infrared color temperature, Tc, and the strength of the 10 micrometers emission or absorption feature, A10. This relationship, which essentially measures the near-infrared optical depth in terms of the 10 micrometers optical depth, is discussed. Theoretical A10-Tc relations have been calculated and compared to the observations. The results show that this relation is a sensitive way to determine the ratio of the near-infrared to 10 micrometers absorption efficiency of circumstellar silicates. These results as well as previous studies show that the near-infrared absorption efficiency of circumstellar silicate grains is much higher than expected from terrestrial minerals. We suggest that this enhanced absorption is due to the presence of ferrous iron (Fe2+) color centers dissolved in the circumstellar silicates. By using the derived value for the ratio of the near-infrared to 10 micrometers absorption efficiency, the observed A10-Tc

  9. Theoretical studies of the infrared emission from circumstellar dust shells: the infrared characteristics of circumstellar silicates and the mass-loss rate of oxygen-rich late-type giants

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Tielens, A. G.; Allamandola, L. J. (Principal Investigator)

    1989-01-01

    We have modeled the infrared emission of spherically symmetric, circumstellar dust shells with the aim of deriving the infrared absorption properties of circumstellar silicate grains and the mass-loss rates of the central stars. As a basis for our numerical studies, a simple semianalytical formula has been derived that illustrates the essential characteristics of the infrared emission of such dust shells. A numerical radiative transfer program has been developed and applied to dust shells around oxygen-rich late-type giants. Free parameters in such models include the absorption properties and density distribution of the dust. An approximate, analytical expression is derived for the density distribution of circumstellar dust driven outward by radiation pressure from a central source. A large grid of models has been calculated to study the influence of the free parameters on the emergent spectrum. These results form the basis for a comparison with near-infrared observations. Observational studies have revealed a correlation between the near-infrared color temperature, Tc, and the strength of the 10 micrometers emission or absorption feature, A10. This relationship, which essentially measures the near-infrared optical depth in terms of the 10 micrometers optical depth, is discussed. Theoretical A10-Tc relations have been calculated and compared to the observations. The results show that this relation is a sensitive way to determine the ratio of the near-infrared to 10 micrometers absorption efficiency of circumstellar silicates. These results as well as previous studies show that the near-infrared absorption efficiency of circumstellar silicate grains is much higher than expected from terrestrial minerals. We suggest that this enhanced absorption is due to the presence of ferrous iron (Fe2+) color centers dissolved in the circumstellar silicates. By using the derived value for the ratio of the near-infrared to 10 micrometers absorption efficiency, the observed A10-Tc

  10. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth

    NASA Astrophysics Data System (ADS)

    Cox, Grant M.; Halverson, Galen P.; Stevenson, Ross K.; Vokaty, Michelle; Poirier, André; Kunzmann, Marcus; Li, Zheng-Xiang; Denyszyn, Steven W.; Strauss, Justin V.; Macdonald, Francis A.

    2016-07-01

    Atmospheric CO2 levels and global climate are regulated on geological timescales by the silicate weathering feedback. However, this thermostat has failed multiple times in Earth's history, most spectacularly during the Cryogenian (c. 720-635 Ma) Snowball Earth episodes. The unique middle Neoproterozoic paleogeography of a rifting, low-latitude, supercontinent likely favored a globally cool climate due to the influence of the silicate weathering feedback and planetary albedo. Under these primed conditions, the emplacement and weathering of extensive continental flood basalt provinces may have provided the final trigger for runaway global glaciation. Weathering of continental flood basalts may have also contributed to the characteristically high carbon isotope ratios (δ13 C) of Neoproterozoic seawater due to their elevated P contents. In order to test these hypotheses, we have compiled new and previously published Neoproterozoic Nd isotope data from mudstones in northern Rodinia (North America, Australia, Svalbard, and South China) and Sr isotope data from carbonate rocks. The Nd isotope data are used to model the mafic detrital input into sedimentary basins in northern Rodinia. The results reveal a dominant contribution from continental flood basalt weathering during the ca. 130 m.y. preceding the onset of Cryogenian glaciation, followed by a precipitous decline afterwards. These data are mirrored by the Sr isotope record, which reflects the importance of chemical weathering of continental flood basalts on solute fluxes to the early-middle Neoproterozoic ocean, including a pulse of unradiogenic Sr input into the oceans just prior to the onset of Cyrogenian glaciation. Hence, our new data support the hypotheses that elevated rates of flood basalt weathering contributed to both the high average δ13 C of seawater in the Neoproterozoic and to the initiation of the first (Sturtian) Snowball Earth.

  11. MSATT Workshop on Chemical Weathering on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger (Editor); Banin, Amos (Editor)

    1992-01-01

    The topics covered with respect to chemical weathering on Mars include the following: Mars soil, mineralogy, spectroscopic analysis, clays, silicates, oxidation, iron oxides, water, chemical reactions, geochemistry, minerals, Mars atmosphere, atmospheric chemistry, salts, planetary evolution, volcanology, Mars volcanoes, regolith, surface reactions, Mars soil analogs, carbonates, meteorites, and reactivity.

  12. Turbulence Dissipation Rates in the Planetary Boundary Layer from Wind Profiling Radars and Mesoscale Numerical Weather Prediction Models during WFIP2

    NASA Astrophysics Data System (ADS)

    Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.

    2016-12-01

    When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.

  13. The Carbonate-Silicate Cycle on Earth-like Planets Near The End Of Their Habitable Lifetimes

    NASA Astrophysics Data System (ADS)

    Rushby, A. J.; Mills, B.; Johnson, M.; Claire, M.

    2016-12-01

    The terrestrial cycle of silicate weathering and metamorphic outgassing buffers atmospheric CO2 and global climate over geological time on Earth. To first order, the operation of this cycle is assumed to occur on Earth-like planets in the orbit of other main-sequence stars in the galaxy that exhibit similar continent/ocean configurations. This has important implications for studies of planetary habitability, atmospheric and climatic evolution, and our understanding of the potential distribution of life in the Universe. We present results from a simple biogeochemical carbon cycle model developed to investigate the operation of the carbonate-silicate cycle under conditions of differing planet mass and position within the radiative habitable zone. An active carbonate-silicate cycle does extend the length of a planet's habitable period through the regulation of the CO2 greenhouse. However, the breakdown of the negative feedback between temperature, pCO2, and weathering rates towards the end of a planet's habitable lifespan results in a transitory regime of `carbon starvation' that would inhibit the ability of oxygenic photoautotrophs to metabolize, and result in the collapse of any putative biosphere supported by these organisms, suggesting an earlier limit for the initiation of inhabitable conditions than when considering temperature alone. This conclusion stresses the importance of considering the full suite of planetary properties when determining potential habitability. A small sample of exoplanets was tested using this model, and the length of their habitable periods were found to be significantly longer than that of the Earth, primarily as a function of the differential rates of stellar evolution expected from their host stars. Furthermore, we carried out statistical analysis of a series of model input parameters, determining that both the mass of the planet and the sensitivity of seafloor weathering processes to dissolved CO2 exhibit significant controls on the

  14. Spatial variations in chemical weathering and CO 2 consumption in Nepalese High Himalayan catchments during the monsoon season

    NASA Astrophysics Data System (ADS)

    Wolff-Boenisch, Domenik; Gabet, Emmanuel J.; Burbank, Douglas W.; Langner, Heiko; Putkonen, Jaakko

    2009-06-01

    The major ion chemistry of the Marsyandi basin and six of its tributaries in the Nepalese Himalaya have been investigated during the monsoon months of 2002. Weekly water samples taken at 10 river monitoring stations in the Annapurna watershed over the course of 4 months provide chemical weathering data for the region at an unprecedented temporal and spatial resolution. The river chemistry of all but one basin is heavily dominated by carbonate weathering which, compared to silicate weathering, contributes 80 to 97% of the total solute load. This prevalence is due to a combination of (a) intrinsically faster dissolution kinetics of carbonates, (b) relatively high runoff and (c) glacial meltwater and low temperatures at high altitudes resulting in enhanced carbonate solubilities. Monitoring stations with headwaters in the Tethyan Sedimentary Series (TSS) are particularly carbonate-rich and slightly supersaturated with respect to calcite through half of the monsoon season. Silicate weathering in the TSS is driven largely by sulfuric acid and therefore does not contribute significantly to the drawdown of atmospheric CO 2. With respect to the tributaries in the Greater Himalayan Sequence (GHS), carbonate weathering is practically as predominant as for the TSS, in spite of the largely felsic lithology of the GHS. Relative to the TSS, the primary proton source in the GHS has shifted, with at least 80% of the protons derived from carbonic acid. Averaged over the whole field area, the CO 2 fluxes, based on silicate-derived Ca and Mg, are considerably lower than the global average. Assuming that this study area is representative of the entire range, we conclude that in situ weathering of the High Himalayas does not represent a significant sink of atmospheric carbon dioxide, despite the presence of a watershed south of the GHS that is characterized by a four times higher CO 2 consumption rate than the global average. Silicate weathering rates of all basins appear to be climate

  15. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  16. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  17. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  18. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  19. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  20. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  1. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  2. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification - Supplementary Information

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp. -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  3. Enhanced Weathering Strategies for Stabilizing Climate and Averting Ocean Acidification - Supplementary Information

    NASA Technical Reports Server (NTRS)

    Taylor, Lyla L.; Quirk, Joe; Thorley, Rachel M. S.; Kharecha, Pushker A.; Hansen, James; Ridgwell, Andy; Lomas, Mark R.; Banwart, Steve A.; Beerling, David J.

    2015-01-01

    Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation) indicates that enhanced weathering could lower atmospheric CO2 by 30-300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m(exp. -2) yr (exp -1)) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions.

  4. Electrochemical acceleration of chemical weathering as an energetically feasible approach to mitigating anthropogenic climate change.

    PubMed

    House, Kurt Zenz; House, Christopher H; Schrag, Daniel P; Aziz, Michael J

    2007-12-15

    We describe an approach to CO2 capture and storage from the atmosphere that involves enhancing the solubility of CO2 in the ocean by a process equivalent to the natural silicate weathering reaction. HCl is electrochemically removed from the ocean and neutralized through reaction with silicate rocks. The increase in ocean alkalinity resulting from the removal of HCI causes atmospheric CO2 to dissolve into the ocean where it will be stored primarily as HCO3- without further acidifying the ocean. On timescales of hundreds of years or longer, some of the additional alkalinity will likely lead to precipitation or enhanced preservation of CaCO3, resulting in the permanent storage of the associated carbon, and the return of an equal amount of carbon to the atmosphere. Whereas the natural silicate weathering process is effected primarily by carbonic acid, the engineered process accelerates the weathering kinetics to industrial rates by replacing this weak acid with HCI. In the thermodynamic limit--and with the appropriate silicate rocks--the overall reaction is spontaneous. A range of efficiency scenarios indicates that the process should require 100-400 kJ of work per mol of CO2 captured and stored for relevant timescales. The process can be powered from stranded energy sources too remote to be useful for the direct needs of population centers. It may also be useful on a regional scale for protection of coral reefs from further ocean acidification. Application of this technology may involve neutralizing the alkaline solution that is coproduced with HCI with CO2 from a point source or from the atmosphere prior to being returned to the ocean.

  5. Acceleration of Fe-silicate mineral dissolution for CO2 sequestration via microbial siderophore production

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Nealson, K. H.; West, A.

    2013-12-01

    While the dissolution of silicate minerals will ultimately neutralize anthropogenic CO2 emissions, the slow natural timescale of this process limits its ability to mitigate any of the societal impacts of high atmospheric pCO2. As a result, much research has been focused on developing ways to significantly accelerate silicate mineral dissolution rates. Harnessing the effects of microbial activity is one particularly attractive strategy because research has shown that microbes can appreciably accelerate mineral dissolution rates and they require little external energy input. At present, one major hurdle in the development of microbe-based CO2 sequestration techniques is the observation that bacteria only accelerate dissolution rates under particular culturing conditions. In this work, natural and genetic mutant strains of the bacterial genera Shewanella, Pseudomonas, and Marinobacter are used to identify the geochemical and genetic factors that underlie the 'accelerated-weathering phenotype' in order to support the development of microbe-based CO2 sequestration techniques using olivine as a model mineral. Preliminary results suggest that microbial siderophore production at circum-neutral pH results in significantly accelerated olivine dissolution rates.

  6. The Effects of Heat Exchange and Thermal Advection on the Rate of Change of Temperature at Ocean Weather Station NOVEMBER.

    DTIC Science & Technology

    The effects of heat exchange across the sea surface and heat advection on the observed rate of change of temperature were examined using a physical...NOVEMBER during 1954 through 1970 were used. A three-dimensional plot of the annual variations of the monthly means of observed rate of change of...temperature produced three distinct trends. Heat exchange primarily contributed to the modification of the observed rate of change of temperature during the

  7. Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment

    PubMed Central

    ten Berge, Hein F. M.; van der Meer, Hugo G.; Steenhuizen, Johan W.; Goedhart, Paul W.; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO2 sequestration (‘enhanced weathering’). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha−1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha−1 (14.8% of dose, OLIV1) to 2240 kg ha−1 (1.1%, OLIV4). This corresponds to gross CO2 sequestration of 290 to 2690 kg ha−1 (29 103 to 269 103 kg km−2.) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the ‘enhanced weathering’ concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop. PMID:22912685

  8. The extent of disorder and properties of silicate glasses, melts and layer-silicates: Spectroscopic analysis and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun

    Silicate glasses and melts have long been studied not only because of their geologic relevance to natural magmas but also because of their technological applications to the glass industry. The inherent aspect of silicate glasses and melts are extent of disorder among framework units and the distribution of internal structural variables. This dissertation is for a systematic exploration of the extent of disorder in silicate glasses, melts and layer-silicates using NMR spectroscopy and analysis both by theoretical prediction based on statistical thermodynamics and by quantum chemical calculations. The objective of the dissertation includes exploration of the consequences of the degree of disorder of the system on physical properties of interest to geologists and material scientists. The degree of randomness in framework in silicate glasses including borosilicate and aluminosilicates was quantified using the models introducing order parameters such as the degree of Al avoidance and the degree of inter-mixing. The model in conjunction with input from high-resolution NMR and quantum chemical calculations was used to calculate the configurational thermodynamic properties in these glasses. We presented general framework for understanding the extent of short-range order in framework silicates, demonstrating that a more complete description of the macroscopic thermodynamic properties of silicates can be derived from information on the degree of framework disorder and provides another strong link between structures of melts and properties. Bond angle and length distributions, one aspect of topological disorder in this system, were also quantified using these methods. 17O MQ (multiple quantum) MAS NMR at high fields were applied to better understand reactivity of oxygen sites in layer silicates which are one of the most dominant constituents of the Earth's surfaces. Several basal and apical oxygen sites in model clay minerals were resolved, providing improved prospects for

  9. Some topics on geochemistry of weathering: a review.

    PubMed

    Formoso, Milton L L

    2006-12-01

    Weathering is a complex process comprising physical disaggregation, chemical and biological decomposition of rocks and minerals transforming complex structure minerals in simpler ones. Hydrolysis of silicates is perhaps the most important process but associated certainly to biological weathering. It is discussed the role ofwaters: activities/concentrations of chemical species, pH, Eh, importance of complexes. Weathering is not only a destructive process. It can concentrate chemical species and form mineral deposits (kaolin, bauxite, Fe, Mn, P, Nb, Au). Weathering studies are important in pedology, engineering geology, hydrogeology, paleoclimatology and ecology. The use of stonemeal is based upon the study of rock weathering.

  10. Enhanced oxidative weathering in glaciated mountain catchments: A stabilising feedback on atmospheric carbon dioxide?

    NASA Astrophysics Data System (ADS)

    Horan, K.; Hilton, R. G.; Burton, K. W.; Selby, D. S.; Ottley, C. J.

    2015-12-01

    Mountain belts act as sources of carbon dioxide (CO2) to the atmosphere if physical erosion and exhumation expose rock-derived organic carbon ('petrogenic' organic carbon, OCpetro) to chemical weathering. Estimates suggest 15x1021g of carbon is stored in rocks globally as OCpetro, ~25,000 times the amount of carbon in the pre-industrial atmosphere. Alongside volcanic and metamorphic degassing, OCpetro weathering is thought to be the main source of CO2 to the atmosphere over geological timescales. Erosion in mountain river catchments has been shown to enhance oxidative weathering and CO2 release. However, we still lack studies which quantify this process. In addition, it is not clear how glaciation may impact OCpetro oxidation. In analogy with silicate weathering, large amounts of fine sediment in glacial catchments may enhance oxidative weathering. Here we quantify oxidative weathering in nine catchments draining OCpetro bearing rocks in the western Southern Alps, New Zealand. Using rhenium (Re) as a tracer of oxidative weathering, we develop techniques to precisely measure Re concentration at sub-ppt levels in river waters. Using [Re]water/[Re]rock as a weathering tracer, we estimate that the weathering efficiency in glacial catchments is >4 times that of non-glacial catchments. Combining this with the OCpetro content of rocks and dissolved Re flux, we estimate the CO2 release by OCpetro oxidation. The analysis suggests that non-glacial catchments in the western Southern Alps release similar amounts of CO2 as catchments in Taiwan where erosion rates are comparable. In this mountain belt, the CO2 release does not negate CO2 drawdown by silicate weathering and by riverine transfer of organic matter. Based on our results, we propose that mountain glaciation may greatly enhance OCpetro oxidation rates. Depending on the global fluxes involved, this provides a feedback to damp low atmospheric CO2 levels and global cooling. During glacial periods (low CO2, low global

  11. VERIFICATION OF HIGH-RATE SEPARATION DEVICES UNDER THE WET-WEATHER FLOW TECHNOLOGIES PILOT - ETV PROGRAM

    EPA Science Inventory

    This paper presents performance verification data on two types of high-rate separation devices utilized for solids removal: Vortex separation devices (a class of physical treatment technologies that use cylindrical chambers to create centrifugal forces that separate settleable so...

  12. VERIFICATION OF HIGH-RATE SEPARATION DEVICES UNDER THE WET-WEATHER FLOW TECHNOLOGIES PILOT - ETV PROGRAM

    EPA Science Inventory

    This paper presents performance verification data on two types of high-rate separation devices utilized for solids removal: Vortex separation devices (a class of physical treatment technologies that use cylindrical chambers to create centrifugal forces that separate settleable so...

  13. The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite.

    PubMed

    Olsson-Francis, K; Simpson, A E; Wolff-Boenisch, D; Cockell, C S

    2012-09-01

    The weathering of volcanic rocks contributes significantly to the global silicate weathering budget, effecting carbon dioxide drawdown and long-term climate control. The rate of chemical weathering is influenced by the composition of the rock. Rock-dwelling micro-organisms are known to play a role in changing the rate of weathering reactions; however, the influence of rock composition on bio-weathering is unknown. Cyanobacteria are known to be a ubiquitous surface taxon in volcanic rocks. In this study, we used a selection of fast and slow growing cyanobacterial species to compare microbial-mediated weathering of bulk crystalline rocks of basaltic and rhyolitic composition, under batch conditions. Cyanobacterial growth caused an increase in the pH of the medium and an acceleration of rock dissolution compared to the abiotic controls. For example, Anabaena cylindrica increased the linear release rate (R(i)(l)) of Ca, Mg, Si and K from the basalt by more than fivefold (5.21-12.48) and increased the pH of the medium by 1.9 units. Although A. cylindrica enhanced rhyolite weathering, the increase in R(i)(l) was less than threefold (2.04-2.97) and the pH increase was only 0.83 units. The R(i)(l) values obtained with A. cylindrica were at least ninefold greater with the basalt than the rhyolite, whereas in the abiotic controls, the difference was less than fivefold. Factors accounting for the slower rate of rhyolite weathering and lower biomass achieved are likely to include the higher content of quartz, which has a low rate of weathering and lower concentrations of bio-essential elements, such as, Ca, Fe and Mg, which are known to be important in controlling cyanobacterial growth. We show that at conditions where weathering is favoured, biota can enhance the difference between low and high Si-rock weathering. Our data show that cyanobacteria can play a significant role in enhancing rock weathering and likely have done since they evolved on the early Earth. © 2012

  14. Continental igneous rock composition: A major control of past global chemical weathering.

    PubMed

    Bataille, Clément P; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-03-01

    The composition of igneous rocks in the continental crust has changed throughout Earth's history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [((87)Sr/(86)Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of ((87)Sr/(86)Sr)seawater variations to the strontium isotopic composition ((87)Sr/(86)Sr) in igneous rocks generated through time. We demonstrate that the (87)Sr/(86)Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the (87)Sr/(86)Sr ratio in zircon-bearing igneous rocks. The reconstructed (87)Sr/(86)Sr variations in igneous rocks are strongly correlated with the ((87)Sr/(86)Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on ((87)Sr/(86)Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the ((87)Sr/(86)Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the ((87)Sr/(86)Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times.

  15. Continental igneous rock composition: A major control of past global chemical weathering

    PubMed Central

    Bataille, Clément P.; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-01-01

    The composition of igneous rocks in the continental crust has changed throughout Earth’s history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition (87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times. PMID:28345044

  16. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture.

    PubMed

    Edwards, David P; Lim, Felix; James, Rachael H; Pearce, Christopher R; Scholes, Julie; Freckleton, Robert P; Beerling, David J

    2017-04-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. © 2017 The Author(s).

  17. Carbon Dioxide Weathering Flux Since the Last Glacial Maximum to the Present, its Control of River Water Composition, and its Role in the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Lerman, A.; Wu, L.; MacKenzie, F. T.

    2006-12-01

    A weathering potential ψ = (net CO2 consumed)/(HCO3- produced) describes the consumption of CO2 in mineral weathering reactions. Based on the reaction stoichiometry, ψ = 0.5 for pure carbonates and 1.0 for the crystalline silicate continental crust, with intermediate values for mixed- mineralogy rocks. Carbon dioxide is the main driver of mineral weathering reactions as an acid derived from the atmosphere and(or) remineralization of organic matter in soil, and it is supplemented by small, but perhaps regionally important, amounts of H2SO4 forming in the oxidation of pyrite. The projected anthropogenic emissions of SO2 to the atmosphere may provide H2SO4 to the continental surface at a rate that is 3 to 5 times greater than its natural production by the oxidation of sedimentary pyrite. The higher H2SO4 input may increase the main ionic concentrations in rivers by ~13%, without significantly affecting the CO2 weathering consumption. Sulfuric acid produces HCO3- or CO2 by reactions with the carbonates. In the global carbon cycle from the Last Glacial Maximum to the present, the CO2 uptake in the weathering layer is comparable to other major fluxes in the atmosphere-land-ocean system. The weathering layer thickness depends on the mineral dissolution rates, reactive mineral surface area, particle size, and rock porosity, not all of which are generally well known. In an average world river, the mass proportions of the main cations and anions differ from those in the weathering source consisting of the sediments and part of the continental crust, because of the differences in mineral solubilities and dissolution rates. A dissolution model of a weathering source (63 weight % average sediment and 37% upper continental crust) gives an average river water composition that agrees very well with the composition ranges of other investigators. This dissolution model gives an average CO2 consumption potential of ψ = 0.72 and a sequence of relative stability or persistence in

  18. The radiogenic and stable Sr isotope geochemistry of basalt weathering in Iceland: Role of hydrothermal calcite and implications for long-term climate regulation

    NASA Astrophysics Data System (ADS)

    Andrews, M. Grace; Jacobson, Andrew D.

    2017-10-01

    volcanic C flux introduced to the atmosphere-ocean system as HCO3- after subsurface silicate weathering does not regulate long-term climate. Because hydrothermal calcite simply sequesters some of this HCO3- and delays its transmission to the atmosphere-ocean system until it dissolves at the surface later in time, it can be concluded the weathering of hydrothermal calcite bearing non-atmospheric C also has no effect on long-term climate regulation. Icelandic riverine HCO3- fluxes should be corrected for the hydrothermal calcite weathering contribution prior to quantifying atmospheric CO2 consumption rates by basalt weathering at the Earth's surface.

  19. Weatherizing America

    ScienceCinema

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony

    2016-07-12

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  20. Weatherizing America

    SciTech Connect

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony

    2009-01-01

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  1. Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    NASA Astrophysics Data System (ADS)

    Quirk, J.; Leake, J. R.; Banwart, S. A.; Taylor, L. L.; Beerling, D. J.

    2014-01-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 concentrations ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation. However, the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  2. Weathering by tree root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline

    NASA Astrophysics Data System (ADS)

    Quirk, J.; Leake, J. R.; Banwart, S. A.; Taylor, L. L.; Beerling, D. J.

    2013-10-01

    Trees dominate terrestrial biotic weathering of silicate minerals by converting solar energy into chemical energy that fuels roots and their ubiquitous nutrient-mobilising fungal symbionts. These biological activities regulate atmospheric CO2 ([CO2]a) over geologic timescales by driving calcium and magnesium fluvial ion export and marine carbonate formation, but the important stabilising feedbacks between [CO2]a and biotic weathering anticipated by geochemical carbon cycle models remain untested. We report experimental evidence for a negative feedback across a declining Cenozoic [CO2]a range from 1500 ppm to 200 ppm, whereby low [CO2]a curtails mineral surface alteration via trenching and etch pitting by arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal partners of tree roots. Optical profile imaging using vertical scanning interferometry reveals changes in nanoscale surface topography consistent with a dual mode of attack involving delamination and trenching by AM and EM fungal hyphae on phyllosilicate mineral flakes. This is consistent with field observations of micropores in feldspar, hornblende and basalt, purportedly caused by EM fungi, but with little confirmatory evidence. Integrating these findings into a process-based biotic weathering model revealed that low [CO2]a effectively acts as a "carbon starvation" brake, causing a three-fold drop in tree-driven fungal weathering fluxes of calcium and magnesium from silicate rock grains as [CO2]a falls from 1500 ppm to 200 ppm. The feedback is regulated through the action of low [CO2]a on host tree productivity and provides empirical evidence for the role of [CO2]a starvation in diminishing the contribution of trees and mycorrhizal fungi to rates of biological weathering. More broadly, diminished tree-driven weathering under declining [CO2]a may provide an important contributory mechanism stabilising Earth's [CO2]a minimum over the past 24 million years.

  3. Topological Control on Silicates' Dissolution Kinetics.

    PubMed

    Pignatelli, Isabella; Kumar, Aditya; Bauchy, Mathieu; Sant, Gaurav

    2016-05-10

    Like many others, silicate solids dissolve when placed in contact with water. In a given aqueous environment, the dissolution rate depends on the composition and the structure of the solid and can span several orders of magnitude. Although the kinetics of dissolution depends on the complexities of both the dissolving solid and the solvent, a clear understanding of which structural descriptors of the solid control its dissolution rate is lacking. By pioneering dissolution experiments and atomistic simulations, we correlate the dissolution rates-ranging over 4 orders of magnitude-of a selection of silicate glasses and crystals to the number of chemical topological constraints acting between the atoms of the dissolving solid. The number of such constraints serves as an indicator of the effective activation energy, which arises from steric effects, and prevents the network from reorganizing locally to accommodate intermediate units forming over the course of the dissolution.

  4. Cockpit weather information system

    NASA Technical Reports Server (NTRS)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  5. Calibration and evaluation of the Canadian Forest Fire Weather Index (FWI) System for improved wildland fire danger rating in the United Kingdom

    NASA Astrophysics Data System (ADS)

    de Jong, Mark C.; Wooster, Martin J.; Kitchen, Karl; Manley, Cathy; Gazzard, Rob; McCall, Frank F.

    2016-05-01

    Wildfires in the United Kingdom (UK) pose a threat to people, infrastructure and the natural environment. During periods of particularly fire-prone weather, wildfires can occur simultaneously across large areas, placing considerable stress upon the resources of fire and rescue services. Fire danger rating systems (FDRSs) attempt to anticipate periods of heightened fire risk, primarily for early-warning and preparedness purposes. The UK FDRS, termed the Met Office Fire Severity Index (MOFSI), is based on the Fire Weather Index (FWI) component of the Canadian Forest FWI System. The MOFSI currently provides daily operational mapping of landscape fire danger across England and Wales using a simple thresholding of the final FWI component of the Canadian FWI System. However, it is known that the system has scope for improvement. Here we explore a climatology of the six FWI System components across the UK (i.e. extending to Scotland and Northern Ireland), calculated from daily 2km × 2km gridded numerical weather prediction data and supplemented by long-term meteorological station observations. We used this climatology to develop a percentile-based calibration of the FWI System, optimised for UK conditions. We find this approach to be well justified, as the values of the "raw" uncalibrated FWI components corresponding to a very "extreme" (99th percentile) fire danger situation vary by more than an order of magnitude across the country. Therefore, a simple thresholding of the uncalibrated component values (as is currently applied in the MOFSI) may incur large errors of omission and commission with respect to the identification of periods of significantly elevated fire danger. We evaluate our approach to enhancing UK fire danger rating using records of wildfire occurrence and find that the Fine Fuel Moisture Code (FFMC), Initial Spread Index (ISI) and FWI components of the FWI System

  6. The importance of terrestrial weathering changes in multimillennial recovery of the global carbon cycle: a two-dimensional perspective

    NASA Astrophysics Data System (ADS)

    Brault, Marc-Olivier; Damon Matthews, H.; Mysak, Lawrence A.

    2017-06-01

    In this paper, we describe the development and application of a new spatially explicit weathering scheme within the University of Victoria Earth System Climate Model (UVic ESCM). We integrated a dataset of modern-day lithology with a number of previously devised parameterizations for weathering dependency on temperature, primary productivity, and runoff. We tested the model with simulations of future carbon cycle perturbations, comparing a number of emission scenarios and model versions with each other and with zero-dimensional equivalents of each experiment. Overall, we found that our two-dimensional weathering model versions were more efficient in restoring the carbon cycle to its pre-industrial state following the pulse emissions than their zero-dimensional counterparts; however, in either case the effect of this weathering negative feedback on the global carbon cycle was small on timescales of less than 1000 years. According to model results, the largest contribution to future changes in weathering rates came from the expansion of tropical and mid-latitude vegetation in grid cells dominated by weathering-vulnerable rock types, whereas changes in temperature and river runoff had a more modest direct effect. Our results also confirmed that silicate weathering is the only mechanism that can lead to a full recovery of the carbon cycle to pre-industrial levels on multimillennial timescales.

  7. Strontium stable isotope behaviour accompanying basalt weathering

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  8. Re-Assessing The Weathering Signature Of Continental Waters: Constraints from Mg and Li isostope ratios

    NASA Astrophysics Data System (ADS)

    Tipper, E.

    2015-12-01

    Chemical weathering mediates Earth's carbon cycle and hence global climate over geological time-scales. Ca and Mg from silicate minerals are released to the solute phase during dissolution with carbonic acid and subsequenty buried as marine carbonate. This mechanism has provided the climatic feedback that has maintained Earth's climate equable over geological history. Quantitative models of contemporary silicate weathering processes coupled to estimates of modern day carbon fluxes associated with silicate weathering are thus fundamental to understanding the feedbacks between the carbon cycle, climate and chemical weathering. Estimating the Ca and Mg released from silicate weathering is not straightforward because their fluxes are dominated by carbonate weathering. Instead, contemporary silicate weathering fluxes are typically quantified based on Na and K fluxes in river waters because these elements are considered to be derived from silicate weathering. Silicate Ca fluxes are based on the product of the Na flux and an average Ca/Na ratio of silicate rocks. This relies on the assumption that Na and K are predominantly released by silicate mineral dissolution. However, it has been proposed that Na-Ca exchange reactions with clay on mineral surfaces could account for 80% of the Na in rivers waters. At present, none of the methods to estimate silicate weathering fluxes and associated CO2 consumption account for cation-exchange reactions largely because physical and chemical weathering were assumed to be steady state processes implying that cation exchange has no net influence on weathering fluxes. In tandem, there are numerous reports of stable isotope fractionation of the elements Mg and Li that are inferred to be induced by clay minerals. At present it is not clear whether this fractionation is associated with mineral surfaces (exchange) or structural incorporation into the clays. Here we will report Mg and Li isotope analyses on dissolved, exchangeable and

  9. Weathering, mineralogical evolution and soil organic matter along a Holocene soil toposequence developed on carbonate-rich materials

    NASA Astrophysics Data System (ADS)

    Egli, Markus; Merkli, Christian; Sartori, Giacomo; Mirabella, Aldo; Plötze, Michael

    2008-05-01

    A toposequence of Holocene soils located between 1100-2400 m asl in the Italian Alps served as the basis for the following analyses: the weathering of limestone and dolomite, the calculation of mass balances, understanding the formation of pedogenic Fe and Al, the determination of soil mineral and clay mineral reactions and transformation and the measurement of accumulation and stabilisation mechanisms of soil organic matter. Leaching of carbonates is most intense at the lower elevations, although calcite and dolomite have a higher solubility at low temperatures. The pCO 2 in the soil is higher at lower elevations and weathering is driven mainly by carbonic acids. At higher elevations, organic acids appear to determine the mineral transformations and weathering reactions to a greater extent. This suggests that two very different weathering regimes (carbonic and organic acid weathering) exist along the toposequence. The transformation of mica into vermiculite is the main process in both the clay and fine-earth fraction. Weathering of silicate minerals started even before the carbonates had been completely removed from the soils. The transformation mechanisms of silicate minerals in the A and O horizon at higher elevations was at least as intensive as that at the climatically warmer sites. The neoformation of pedogenetic clays at climatically cooler sites was slightly greater than that at the warmer sites. However, the formation rate of secondary Fe and Al phases was more pronounced at lower elevation, which means that this process seemed to be driven dominantly by carbonic acid (weathering of primary minerals). Soil organic matter (SOM) abundance in the mineral soil is nearly 15 kg/m 2 at all sites and, surprisingly, no climate-driven effect could be detected. In general, the preservation and stabilisation of SOM was due to poorly crystalline Al and Fe phases and vermiculite, regardless of some variations in the composition of the parent material (varying calcite

  10. Weather investments

    NASA Astrophysics Data System (ADS)

    In the offing, “business as usual” may come to imply the use of weather data, according to National Oceanic and Atmospheric Administration officials. “Climate data are part of this country's infrastructure,” says Kenneth Hadeen, director of the National Climatic Data Center, now in Asheville, N.C. “These data play a major role in decisions that businesses make every day; they are vital to our economy.” Touted as the world's largest collection of weather data, the National Climatic Data Center, has more than 150 years of weather data on file. Data originating from everything from 19th century handwritten observations to state-of-the-art equipment can be found in the center's archives.

  11. Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of CaO-saturated solutions

    SciTech Connect

    Grant, Steven A. . E-mail: steven.a.grant@usace.army.mil; Boitnott, Ginger E.; Korhonen, Charles J.; Sletten, Ronald S.

    2006-04-15

    Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changes in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature.

  12. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  13. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  14. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  15. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  16. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  17. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  18. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  19. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  20. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation. This substance is generally recognized as safe when used in table salt...

  1. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Elsworth, Geneviève; Galbraith, Eric; Halverson, Galen; Yang, Simon

    2017-01-01

    On timescales significantly greater than 105 years, atmospheric pCO2 is controlled by the rate of mantle outgassing relative to the set-point of the silicate weathering feedback. The weathering set-point has been shown to depend on the distribution and characteristics of rocks exposed at the Earth's surface, vegetation types and topography. Here we argue that large-scale climate impacts caused by changes in ocean circulation can also modify the weathering set-point and show evidence suggesting that this played a role in the establishment of the Antarctic ice sheet at the Eocene-Oligocene boundary. In our simulations, tectonic deepening of the Drake Passage causes freshening and stratification of the Southern Ocean, strengthening the Atlantic meridional overturning circulation and consequently raising temperatures and intensifying rainfall over land. These simulated changes are consistent with late Eocene tectonic reconstructions that show Drake Passage deepening, and with sediment records that reveal Southern Ocean stratification, the emergence of North Atlantic Deep Water, and a hemispherically asymmetric temperature change. These factors would have driven intensified silicate weathering and can thereby explain the drawdown of carbon dioxide that has been linked with Antarctic ice sheet growth. We suggest that this mechanism illustrates another way in which ocean-atmosphere climate dynamics can introduce nonlinear threshold behaviour through interaction with the geologic carbon cycle.

  2. Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study.

    PubMed

    Hobson, Andrew J; Stewart, Douglas I; Bray, Andrew W; Mortimer, Robert J G; Mayes, William M; Rogerson, Michael; Burke, Ian T

    2017-07-18

    Basic oxygen furnace (BOF) steelmaking slag is enriched in potentially toxic V which may become mobilized in high pH leachate during weathering. BOF slag was weathered under aerated and air-excluded conditions for 6 months prior to SEM/EDS and μXANES analysis to determine V host phases and speciation in both primary and secondary phases. Leached blocks show development of an altered region in which free lime and dicalcium silicate phases were absent and Ca-Si-H was precipitated (CaCO3 was also present under aerated conditions). μXANES analyses show that V was released to solution as V(V) during dicalcium silicate dissolution and some V was incorporated into neo-formed Ca-Si-H. Higher V concentrations were observed in leachate under aerated conditions than in the air-excluded leaching experiment. Aqueous V concentrations were controlled by Ca3(VO4)2 solubility, which demonstrate an inverse relationship between Ca and V concentrations. Under air-excluded conditions Ca concentrations were controlled by dicalcium silicate dissolution and Ca-Si-H precipitation, leading to relatively high Ca and correspondingly low V concentrations. Formation of CaCO3 under aerated conditions provided a sink for aqueous Ca, allowing higher V concentrations limited by kinetic dissolution rates of dicalcium silicate. Thus, V release may be slowed by the precipitation of secondary phases in the altered region, improving the prospects for slag reuse.

  3. Deposition rates of oxidized iron on Mars

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The reddened oxidized surface of Mars is indicative of temporal interactions between the Martian atmosphere and its surface. During the evolution of the Martian regolith, primary ferromagnesian silicate and sulfide minerals in basaltic rocks apparently have been oxidized to secondary ferric-bearing assemblages. To evaluate how and when such oxidized deposits were formed on Mars, information about the mechanisms and rates of chemical weathering of Fe(2+)-bearing minerals has been determined. In this paper, mechanisms and rates of deposition of ferric oxide phases on the Martian surface are discussed.

  4. Weathering of almandine garnet: influence of secondary minerals on the rate-determining step, and implications for regolith-scale Al mobilization

    Treesearch

    Jason R. Price; Debra S. Bryan-Ricketts; Diane Anderson; Michael A. Velbel

    2013-01-01

    Secondary surface layers form by replacement of almandine garnet during chemical weathering. This study tested the hypothesis that the kinetic role of almandine's weathering products, and the consequent relationships of primary-mineral surface texture and specific assemblages of secondary minerals, both vary with the solid-solution-controlled variations in Fe and...

  5. Machine learning and linear regression models to predict catchment-level base cation weathering rates across the southern Appalachian Mountain region, USA

    Treesearch

    Nicholas A. Povak; Paul F. Hessburg; Todd C. McDonnell; Keith M. Reynolds; Timothy J. Sullivan; R. Brion Salter; Bernard J. Crosby

    2014-01-01

    Accurate estimates of soil mineral weathering are required for regional critical load (CL) modeling to identify ecosystems at risk of the deleterious effects from acidification. Within a correlative modeling framework, we used modeled catchment-level base cation weathering (BCw) as the response variable to identify key environmental correlates and predict a continuous...

  6. Mechanisms for chemostatic behavior in catchments: implications for CO2 consumption by mineral weathering

    USGS Publications Warehouse

    Clow, David W.; Mast, M. Alisa

    2010-01-01

    Concentrations of weathering products in streams often show relatively little variation compared to changes in discharge, both at event and annual scales. In this study, several hypothesized mechanisms for this “chemostatic behavior” were evaluated, and the potential for those mechanisms to influence relations between climate, weathering fluxes, and CO2 consumption via mineral weathering was assessed. Data from Loch Vale, an alpine catchment in the Colorado Rocky Mountains, indicates that cation exchange and seasonal precipitation and dissolution of amorphous or poorly crystalline aluminosilicates are important processes that help regulate solute concentrations in the stream; however, those processes have no direct effect on CO2 consumption in catchments. Hydrograph separation analyses indicate that old water stored in the subsurface over the winter accounts for about one-quarter of annual streamflow, and almost one-half of annual fluxes of Na and SiO2 in the stream; thus, flushing of old water by new water (snowmelt) is an important component of chemostatic behavior. Hydrologic flushing of subsurface materials further induces chemostatic behavior by reducing mineral saturation indices and increasing reactive mineral surface area, which stimulate mineral weathering rates. CO2 consumption by carbonic acid mediated mineral weathering was quantified using mass-balance calculations; results indicated that silicate mineral weathering was responsible for approximately two-thirds of annual CO2 consumption, and carbonate weathering was responsible for the remaining one-third. CO2 consumption was strongly dependent on annual precipitation and temperature; these relations were captured in a simple statistical model that accounted for 71% of the annual variation in CO2 consumption via mineral weathering in Loch Vale.

  7. Calibration and evaluation of the Canadian Forest Fire Weather Index (FWI) System for improved wildland fire danger rating in the UK

    NASA Astrophysics Data System (ADS)

    De Jong, M. C.; Wooster, M. J.; Kitchen, K.; Manley, C.; Gazzard, R.

    2015-11-01

    Wildfires in the United Kingdom (UK) can pose a threat to people, infrastructure and the natural environment (e.g. to the carbon in peat soils), and their simultaneous occurrence within and across UK regions can periodically place considerable stress upon the resources of Fire and Rescue Services. "Fire danger" rating systems (FDRS) attempt to anticipate periods of heightened fire risk, primarily for early-warning purposes. The UK FDRS, termed the Met Office Fire Severity Index (MOFSI) is based on the Fire Weather Index (FWI) component of the Canadian Forest FWI System. MOFSI currently provides operational mapping of landscape fire danger across England and Wales using a simple thresholding of the final FWI component of the Canadian System. Here we explore a climatology of the full set of FWI System components across the entire UK (i.e. extending to Scotland and Northern Ireland), calculated from daily 2 km gridded numerical weather prediction data, supplemented by meteorological station observations. We used this to develop a percentile-based calibration of the FWI System optimised for UK conditions. We find the calibration to be well justified, since for example the values of the "raw" uncalibrated FWI components corresponding to a very "extreme" (99th percentile) fire danger situation can vary by up to an order of magnitude across UK regions. Therefore, simple thresholding of the uncalibrated component values (as is currently applied) may be prone to large errors of omission and commission with respect to identifying periods of significantly elevated fire danger compared to "routine" variability. We evaluate our calibrated approach to UK fire danger rating against records of wildfire occurrence, and find that the Fine Fuel Moisture Code (FFMC), Initial Spread Index (ISI) and final FWI component of the FWI system generally have the greatest predictive skill for landscape fires in Great Britain, with performance varying seasonally and by land cover type. At the

  8. Weather Specialist (AFSC 25120).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This correspondence course is designed for self-study to help military personnel to attain the rating of weather specialist. The course is organized in three volumes. The first volume, containing seven chapters, covers background knowledge, meteorology, and climatology. In the second volume, which also contains seven chapters, surface…

  9. The contribution of weathering of the main Alpine rivers on the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Donnini, Marco; Probst, Jean-Luc; Probst, Anne; Frondini, Francesco; Marchesini, Ivan; Guzzetti, Fausto

    2013-04-01

    classification of Meybeck (1986, 1987). Then for each basin we computed Rsil weighted average considering the surface and the mean precipitation for the surface area of each lithology. Lastly, we estimated the (Ca+Mg) originating from carbonate weathering as the remaining cations after silicate correction. Depending on time-scales of the phenomena (shorter than about 1 million year i.e., correlated to the short term carbon cycle, or longer than about 1 million years i.e., correlated to the long-term carbon cycle), we considered different equations for the quantification of the atmospheric CO2 consumed by weathering (Huh, 2010). The results show the net predominance of carbonate weathering on fixing atmospheric CO2 and that, considering the long-term carbon cycle, the amount of atmospheric CO2 uptake by weathering is about one order of magnitude lower than considering the short-term carbon cycle. Moreover, considering the short-term carbon cycle, the mean CO2 consumed by Alpine basins is of the same order of magnitude of the mean CO2 consumed by weathering by the 60 largest rivers of the world estimated by Gaillardet et al. (1999). References Amiotte-Suchet, P. "Cycle Du Carbone, Érosion Chimique Des Continents Et Transfert Vers Les Océans." Sci. Géol. Mém. Strasbourg 97 (1995): 156. Amiotte-Suchet, P., and J.-L. Probst. "Origins of dissolved inorganic carbon in the Garonne river waters: seasonal and interannual variations." Sci. Géologiques Bull. Strasbourg 49, no. 1-4 (1996): 101-126. Berner, E.K., and R.A. Berner. The Global Water Cycle. Geochemistry and Environment. Prentice Halle. Engelwood Cliffs, NJ, 1987. Drever, J.L. The Geochemistry of Natural Waters. Prentice Hall, 1982. Gaillardet, J., B. Dupré, P. Louvat, and C.J. Allègre. "Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers." Chemical Geology 159 (1999): 3-30. Garrels, R.M., and F.T. Mackenzie. Evolution of Sedimentary Rocks. New York: W.W. Nortonand, 1971. Huh, Y

  10. The relationship between riverine U-series disequilibria and erosion rates in a basaltic terrain

    NASA Astrophysics Data System (ADS)

    Vigier, N.; Burton, K. W.; Gislason, S. R.; Rogers, N. W.; Duchene, S.; Thomas, L.; Hodge, E.; Schaefer, B.

    2006-09-01

    U-series isotopes have been measured in the dissolved phase, suspended load and bedload of the main rivers draining basaltic catchments in Iceland. For the dissolved phase, ( 234U/ 238U) and ( 238U/ 230Th) range between 1.08 and 2.2, and 7.4 and 516, respectively. For the suspended load and bedload, ( 234U/ 238U) and ( 238U/ 230Th) range from 0.97 to 1.09 and from 0.93 to 1.05, respectively. Chemical erosion rates, calculated from dissolved major elements, range between 13 and 333 t km - 2 yr - 1 . Physical erosion rates have also been estimated, from existing data, and range between 21 and 4864 t/km 2/yr, with an average of 519 t km - 2 yr - 1 . U-series disequilibria indicate that weathering in Iceland operates at close to steady-state conditions. A model of continuous weathering indicates a maximum weathering timescale of 10 kyr, with an average rate of uranium release into water of 1.6 · 10 - 4 yr - 1 , which is significant when compared to granitic terrains located at similar latitudes and to tropical basaltic terrains. All river waters display ( 234U/ 238U) greater than secular equilibrium, consistent with the effects of alpha-recoil. The same dissolved phase ( 234U/ 238U) exhibit a negative trend with physical erosion rates, explained by the dominant effect of close-to-congruent chemical weathering of hyaloclastites in the younger basaltic terrains. Therefore, chemical erosion rate and mineral weathering susceptibility play a major role in determining 234U- 238U disequilibria in basaltic river waters. Comparison of global data for river basins in which weathering was recently strongly limited indicates a negative correlation between silicate weathering rates estimated with major elements and the age of weathering estimated with U-series disequilibria. This strongly suggests a key role of time and soil thickness on the chemical erosion of silicates.

  11. Can enhanced weathering remove carbon dioxide from the atmosphere to prevent climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Renforth, P.; Pogge von Strandmann, P.; Henderson, G. M.

    2013-12-01

    On long timescales, silicate weathering provides the ultimate sink for CO2 released by volcanic degassing and, because the rate of such weathering is temperature dependant, this sink is thought to respond to climate change to provide a strong negative feedback stabilising Earth's climate. An increase of global weathering rates is expected in response to anthropogenic warming and this increased weathering will ultimately (on the timescale of hundreds of thousands of years) serve to remove additional CO2 and return the climate system to lower temperatures. Some have proposed that accelerating this natural process by adding ground minerals to the land surface may help to prevent climate change. However, a major challenge in assessing such a proposal is the lack of experimental kinetic data for minerals added to the environment. Here we will present results from an experiment in which a forsterite rich olivine (Mg2SiO4) was added to the top of a soil column extracted from an agricultural field. A solution was passed through the columns over a period of 5 months and the drainage waters were collected and analysed. The greater flux of Mg measured eluting from the treated soil can be used to constrain the weathering rate of the olivine. A weathering rate can be determined by normalising the rate of magnesium flux to the surface area of olivine in the soil. By combining this information with a simple shrinking core model, we can estimate that an average particle size less than 1 μm would be required in order for the olivine to completely dissolve in a year. Therefore, the energy requirements for enhanced weathering are large >2 GJ(electrical) per net tonne of CO2 sequestered, but it is at least comparable to direct air capture technologies. These preliminary results suggest limited carbon capture potential for enhanced weathering in temperate agricultural soils. However, some environments may be better suited (e.g. humid tropical agricultural soils) and additional

  12. Effects of different cations in the solution on the weathering of biotite

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, J.

    2012-12-01

    Knowlege of the mecahnisms of silicate weathering is very important to understand the cycles of elements on the surface of the earth. Biotite is one of the most important rock-forming minerals and vulnerable to weathering. Certain elements such as K and F can be greatly affected by the weathering of biotite. Most studies on the weathering of biotite have been on the weathering processes and weathering rates. However, the effects of different solution compositions including cations in the solution have not been throughly studied. For our study, biotite sample was cut into small particles by scissors and a blender, and finally ground by mortar agate. The biotite with particle size between 55 and 100 μm was used for our weathering experiment. Biotite of 0.1 g was reacted in 50 ml solution of 1 M Na, K, Rb, Cs, Ca, and Mg. The weathering experiment was performed at pH 2 and 4 and at 40 oC to increase the reaction rate. Different reaction time, 20, 40, 60, 80, 100, and 120 days were used. From XRD results, the most significant change was oberved for the samples reacted with Na solution. Even with short period of time of 20 days at both pH 2 and 4, small peak at 12.2 Å, which corresponds to (001) peak of hydrobiotite was identified, indicating that the reaction rate of biotite reacted with Na solution was the highest. The other observed change after reaction was increasing (001) peak width of biotite reacted with K and Ca solutions. However, no noticeable peak width change was observed for the biotite reacted with Rb and Cs solutions. Our results indicate that the cations in the solution play important roles in the weathering rate and possbly weathering product of biotite. Rb and Cs have large ion raidii to fit into the frayed edge site of biotite and they probably prevent the release of K from the interlayer while that of Na does not block K due to its small radius. The effects of Ca and Mg are not clear at this stage. More detailed results including the reaction rate

  13. Weathering of sulfides on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1987-01-01

    Pyrrhotite-pentlandite assemblages in mafic and ultramafic igneous rocks may have contributed significantly to the chemical weathering reactions that produce degradation products in the Martian regolith. By analogy and terrestrial processes, a model is proposed whereby supergene alteration of these primary Fe-Ni sulfides on Mars has generated secondary sulfides (e.g., pyrite) below the water table and produced acidic groundwater containing high concentrations of dissolved Fe, Ni, and sulfate ions. The low pH solutions also initiated weathering reactions of igneous feldspars and ferromagnesian silicates to form clay silicate and ferric oxyhydroxide phases. Near-surface oxidation and hydrolysis of ferric sulfato-and hydroxo-complex ions and sols formed gossan above the water table consisting of poorly crystalline hydrated ferric sulfates (e.g., jarosite), oxides (ferrihydrite, goethite), and silica (opal). Underlying groundwater, now permafrost contains hydroxo sulfato complexes of Fe, Al, Mg, Ni, which may be stabilized in frozen acidic solutions beneath the surface of Mars. Sublimation of permafrost may replenish colloidal ferric oxides, sulfates, and phyllosilicates during dust storms on Mars.

  14. Using a paleo perspective to demonstrate climate controls on glacial-interglacial weathering: insights from Little Lake, OR.

    NASA Astrophysics Data System (ADS)

    Schachtman, N. S.; Roering, J. J.; Marshall, J. A.; Gavin, D. G.; Granger, D. E.

    2016-12-01

    While global chemical weathering of silicate minerals has long been postulated to modulate climate over long time scales, the connection between chemical weathering, climate, tectonics and lithology is complex. Thus, the functional relationships between climate and weathering fluxes remain unclear due to difficulty isolating or quantifying pertinent variables. Investigating chemical weathering at the catchment scale provides us with an opportunity to work in a closed system, where many of the relevant parameters, such as source rock, paleoclimate and even erosion history can be well constrained. We used an 50 kyr lake sediment archive to investigate climate controls on ­­chemical weathering at Little Lake, OR in the Oregon Coastal Range. A uniform sandstone lithology in our approximately 6 km2 catchment allows us to use geochemical-mass balance techniques, such as the chemical depletion fraction (CDF) and the chemical index of alteration (CIA) to evaluate weathering intensity and rate. Previous work has shown increased rates of erosion during the Last Glacial Maximum (LGM; 26-23 ka) due to pervasive frost cracking, while soil creep and tree throw are the dominant controls on erosion during the late Holocene ( 2.5 ka to present). We analyzed sections of the core for major and trace elements as well as grainsize. Preliminary results show CDF values in late Holocene and present-day soils coincide (supporting our methodology) and average 0.18, while CDFs are indistinguishable from zero during the LGM. CIA values show a similar trend, ranging from 66 in the sandstone bedrock to >75 in the modern soils and late Holocene lake sediments. Relative concentrations of Zr, Nb, and Ti in bedrock, soil and lake sediment show strong, positive correlation with the CIA. These data imply a weak weathering regime (and low silicate fluxes) during the last glacial interval, possibly due to cool dry conditions, and short residence time of minerals in soils as rates of erosion were high

  15. Comparison of different representations of physical erosion on modeling chemical weathering in landslide-dominated region

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Hao; Huang, -Chuan, Jr.; Teng, Tse-Yang; Shih, Yu-Ting; Lee, Tsung-Yu

    2016-04-01

    Chemical weathering, characterized by CO2 consumption, attracts much attention, particularly in landslide-dominated regions where the physical erosion rate (PER) may enhance the chemical weathering rate (CWR) which influences the stability of hillslope and nutrient supply of ecosystem. Recently, a great debate is on the coupling or decoupling with CWR and PER in high erosion area, particularly in the landslide-dominated region. However, the representations of PER either by sediment yield (West et al., 2005) or estimated by landslide distribution (Gabet, 2007) in such regions is rarely evaluated and discussed. Hence, we combined these two models on 29 catchments in Taiwan, famous for rapid erosion and weathering, to clarify how representations of PER affected estimation of chemical weathering in landslide-dominated regions. The results showed that in the sediment yield-based model, the coupling between CWR and PER in terms of power function (α, from CWR=PERα) were 0.09, 0.26, 0.22 for silicate weathering (CWRsil), carbonate weathering (CWRcarb), total chemical weathering (CWRtot), respectively. The R2 values were 0.48, 0.49, 0.57 for CWRsil, CWRcarb and CWRtot, respectively. Meanwhile, in the landslide-based model, α of CWRsil, CWRcarb and CWRtot were 0.78, 0.79, 0.79, respectively. The R2 values were 0.41, 0.58, 0.67, respectively. In sum, both model could perform the linkage between CWR and PER satisfactorily. The sediment yield-based model revealed CWR might be strongly kinetically limited. Besides, despite of lower performance than the landslide-based model, it distinguished relationships between different CWR(CWRsil, CWRcarb, CWRtot) and PER, but simulations of the landslide-based model were reversed. The α of the landslide-based model is significantly higher than previous studies. It implies that on perspective of landslides, PER may enhance CWR and matches with current researches.

  16. Variable Quaternary chemical weathering fluxes and imbalances in marine geochemical budgets.

    PubMed

    Vance, Derek; Teagle, Damon A H; Foster, Gavin L

    2009-03-26

    Rivers are the dominant source of many elements and isotopes to the ocean. But this input from the continents is not balanced by the loss of the elements and isotopes through hydrothermal and sedimentary exchange with the oceanic crust, or by temporal changes in the marine inventory for elements that are demonstrably not in steady state. To resolve the problem of the observed imbalance in marine geochemical budgets, attention has been focused on uncertainties in the hydrothermal and sedimentary fluxes. In recent Earth history, temporally dynamic chemical weathering fluxes from the continents are an inevitable consequence of periodic glaciations. Chemical weathering rates on modern Earth are likely to remain far from equilibrium owing to the physical production of finely ground material at glacial terminations that acts as a fertile substrate for chemical weathering. Here we explore the implications of temporal changes in the riverine chemical weathering flux for oceanic geochemical budgets. We contend that the riverine flux obtained from observations of modern rivers is broadly accurate, but not representative of timescales appropriate for elements with oceanic residence longer than Quaternary glacial-interglacial cycles. We suggest that the pulse of rapid chemical weathering initiated at the last deglaciation has not yet decayed away and that weathering rates remain about two to three times the average for an entire late Quaternary glacial cycle. Taking into account the effect of the suggested non-steady-state process on the silicate weathering flux helps to reconcile the modelled marine strontium isotope budget with available data. Overall, we conclude that consideration of the temporal variability in riverine fluxes largely ameliorates long-standing problems with chemical and isotopic mass balances in the ocean.

  17. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  18. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  19. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  20. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  1. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 172.410 Section 172.410 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used in food in accordance with...

  2. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  3. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  4. The surface of Mercury: space weathering effects

    NASA Astrophysics Data System (ADS)

    Baratta, G.; Kanuchova, Z.; Palumbo, M. E.; Sangiorgio, I.; Strazzulla, G.

    2011-10-01

    We present some results of an ongoing experimental research aimed at simulating the effects of ion bombardment (space weathering) in solid objects of the Solar System. In particular we have investigated the color changes induced by the ion bombardment in the UV-Vis-IR In this contribution we focus on materials (silicates) and spectral range (200-300 nanometers) particularly relevant to the study of the Mercury's surface.

  5. THE BIOCOMPATIBILITY OF MESOPOROUS SILICATES

    PubMed Central

    Hudson, Sarah; Padera, Robert F.; Langer, Robert; Kohane, Daniel S.

    2008-01-01

    Micro- and nano- mesoporous silicate particles are considered potential drug delivery systems because of their ordered pore structures, large surface areas and the ease with which they can be chemically modified. However, few cytotoxicity or biocompatibility studies have been reported, especially when silicates are administered in the quantities necessary to deliver low-potency drugs. The biocompatibility of mesoporous silicates of particle sizes ~ 150 nm, ~ 800 nm and ~ 4 µm and pore sizes of 3 nm, 7 nm and 16 nm respectively are examined here. In vitro, mesoporous silicates showed a significant degree of toxicity at high concentrations with mesothelial cells. Following subcutaneous injection of silicates in rats, the amount of residual material decreased progressively over three months, with good biocompatibility on histology at all time points. In contrast, intra peritoneal and intra venous injections in mice resulted in death or euthanasia. No toxicity was seen with subcutaneous injection of the same particles in mice. Microscopic analysis of the lung tissue of the mice indicates that death may be due to thrombosis. Although local tissue reaction to mesoporous silicates was benign, they caused severe systemic toxicity. This toxicity could be mitigated by modification of the materials. PMID:18675454

  6. Laser processing of siliceous materials

    NASA Astrophysics Data System (ADS)

    Panzner, Michael; Lenk, Andreas; Wiedemann, Guenter R.; Hauptmann, Jan; Weiss, Hans J.; Ruemenapp, Thomas; Morgenthal, Lothar; Beyer, Eckhard

    2000-08-01

    Laser processing of siliceous materials becomes increasingly important. Analogous to the laser processing of conventional materials there are applications in the fields of cleaning, surface processing, cutting, etc. The present paper concerns the state of the art and new applications: (1) Laser cleaning of natural stone surfaces. The good disability allows restoration work to be carried out conveniently, as for example the complete removal of crusts or the removal to such degree that moisture is not trapped beneath. (2) Non-slip finish of polished natural stone surfaces: The excellent focusing of laser beams on spots as small as 100 micrometer and below can be exploited to produce macroscopically invisible structures on the surfaces of different materials. This permits microscopically small craters and lentil shaped depressions to be generated on the stone surface. Therefore it is possible to provide a non-slip finish to polished natural stone surfaces without noticeably impairing the gloss. (3) Concrete cutting: In Europe, and particularly in Germany, there is a growing demand for redevelopment of concrete apartment buildings, involving the removal of non-bearing walls and the cutting of openings. The temporal relocation of residents due to the noise and moisture from the use of diamond tools could be avoided by applying a laser cutting technology. With a 3 kW-Nd-YAG-laser, 70 mm concrete can be cut with rates up to 25 mm/min.

  7. National Weather Service

    MedlinePlus

    ... Heat Hurricanes Lightning Rip Currents Safe Boating Thunderstorms Space Weather Sun (Ultraviolet Radiation) Safety Campaigns Wind Drought ... Outlook Hurricanes Fire Weather Outlooks UV Alerts Drought Space Weather NOAA Weather Radio NWS CAP Feeds PAST ...

  8. Activities in Teaching Weather

    ERIC Educational Resources Information Center

    Tonn, Martin

    1977-01-01

    Presented is a unit composed of activities for teaching weather. Topics include cloud types and formation, simple weather instruments, and the weather station. Illustrations include a weather chart and instruments. A bibliography is given. (MA)

  9. Responses of gas-exchange rates and water relations to annual fluctuations of weather in three species of urban street trees.

    PubMed

    Osone, Yoko; Kawarasaki, Satoko; Ishida, Atsushi; Kikuchi, Satoshi; Shimizu, Akari; Yazaki, Kenichi; Aikawa, Shin-Ichi; Yamaguchi, Masahiro; Izuta, Takeshi; Matsumoto, Genki I

    2014-10-01

    The frequency of extreme weather has been rising in recent years. A 3-year study of street trees was undertaken in Tokyo to determine whether: (i) street trees suffer from severe water stress in unusually hot summer; (ii) species respond differently to such climatic fluctuations; and (iii) street trees are also affected by nitrogen (N) deficiency, photoinhibition and aerosol pollution. During the study period (2010-12), midsummers of 2010 and 2012 were unusually hot (2.4-2.8 °C higher maximum temperature than the long-term mean) and dry (6-56% precipitation of the mean). In all species, street trees exhibited substantially decreased photosynthetic rate in the extremely hot summer in 2012 compared with the average summer in 2011. However, because of a more conservative stomatal regulation (stomatal closure at higher leaf water potential) in the hot summer, apparent symptoms of hydraulic failure were not observed in street trees even in 2012. Compared with Prunus × yedoensis and Zelkova serrata, Ginkgo biloba, a gymnosperm, was high in stomatal conductance and midday leaf water potential even under street conditions in the unusually hot summer, suggesting that the species had higher drought resistance than the other species and was less susceptible to urban street conditions. This lower susceptibility might be ascribed to the combination of higher soil-to-leaf hydraulic conductance and more conservative water use. Aside from meteorological conditions, N deficiency affected street trees significantly, whereas photoinhibition and aerosol pollution had little effect. The internal CO2 and δ(13)C suggested that both water and N limited the net photosynthetic rate of street trees simultaneously, but water was more limiting. From these results, we concluded that the potential risk of hydraulic failure caused by climatic extremes could be low in urban street trees in temperate regions. However, the size of the safety margin might be different between species.

  10. Weathering Feedbacks and Atmospheric CO2 during a Silurian Icehouse World: Insights from Os and Li Isotopes

    NASA Astrophysics Data System (ADS)

    Sproson, A. D.; Selby, D. S.; Pogge von Strandmann, P.; Hladil, J.; Jarochowska, E.; Fryda, J.; Loydell, D.; Slavik, L.

    2016-12-01

    The Silurian through to the early Devonian is marked by four large-amplitude positive carbon and oxygen isotope excursions, with the δ13Ccarb exceeding +5‰ immediately after the Ireviken, Mulde, Lau and Klonk faunal events, indicating that the climate system and carbon cycle were probably more unstable than any other Phanerozoic period when considering the ocean-atmosphere system. Theories behind the cause of these events include changes in ocean circulation, volcanism, sea-level and ice volume. However, despite two decades of research, none has been unequivocally proven. We have utilised osmium (187Os/188Os) and lithium (δ7Li) isotope values of organic-rich shales and carbonates from geological formations that span these events. These values reflect interplay between weathering of continental crust and hydrothermal inputs. However, due to the short residence time of Os (≤10kyrs) and Li ( 1Myr) in the ocean, it is possible to capture short-periodic fluctuations in Earth system processes through the Silurian and help distinguish between these theories. Os isotope curves for the Ireviken, Mulde, Lau and Klonk events are similar to those published for the Hirnatian glaciation. There is an initial rise in continental weathering potentially associated with the Caledonian Orogeny, drawing CO2 out of the atmosphere, leading to an expansion of continental ice. Under glacial maximum, weathering rates decline, allowing CO2 to build up in the atmosphere, inducing rapid deglaciation and exposing rocks to weathering. This is inferred by Li isotope data, which suggests a decline in silicate weathering during cooling, reaching a minimum under glacial maximum. This data suggests that the Silurian climatic perturbations are associated with glaciation events potentially induced by abrupt uplift during the Caledonian Orogeny. It also provides evidence for a negative feedback mechanism within the surficial Earth that maintains a habitable planet, whereby a strong global cooling

  11. Fate of silicate minerals in a peat bog

    USGS Publications Warehouse

    Bennett, Philip C.; Siegel, Donald I.; Hillier, Barbara M.; Glaser, Paul H.

    1991-01-01

    An investigation of silicate weathering in a Minnesota mire indicates that quartz and aluminosilicates rapidly dissolve in anoxic, organic-rich, neutral- pH environments. Vertical profiles of pH, dissolved silicon, and major cations were obtained at a raised bog and a spring fen and compared. Profiles of readily extractable silicon, diatom abundance, ash mineralogy, and silicate surface texture were determined from peat cores collected at each site.In the bog, normally a recharge mound, dissolved silicon increases with depth as pH increases, exceeding the background silicon concentration by a factor of two. Silicate grain surfaces, including quartz, are chemically etched at this location, despite being in contact with pore water at neutral pH with dissolved silicon well above the equilibrium solubility of quartz. The increasing silica concentrations at circum-neutral pH are consistent with a system where silicate solubility is influenced by silica-organic-acid complexes. Silica-organic-acid complexes therefore may be the cause of the almost complete absence of diatoms in decomposed peat and contribute to the formation of silica-depleted underclays commonly found beneath coal.

  12. Tin in silicate melts

    NASA Astrophysics Data System (ADS)

    Paparoni, Guido

    An experimental technique that uses Re metal capsules as containers for tin-bearing systems has been developed and successfully used in the study of the compositional dependence of SnO2 solubility in silicate melts. These experiments have been performed in the absence of an aqueous fluid phase and oxygen fugacity (fO2) has been established by the addition of tin-metal to SnO2. This approach solves three long-standing problems in the study of SnO 2 solubility in silicate melts: (1) Alloying of noble-metal crucibles and corrosion of ceramic crucibles is avoided; (2) fO 2 is established by direct contact of a metal-oxide oxygen buffer; (3) Gaseous SnO is not lost to the furnace atmosphere. The Re-capsule technique, combined with evacuated silica-tube experiments, has been applied to the study of the system SnO-SiO2 at pressures of 1 atm and 10 kbar. SnO2 solubilities of up to 95 wt% SnO are reported. The system SnO-SiO2 is found to be a pseudo-binary of the ternary system Sn°-SnO2-SiO2. A revised phase diagram for the system SnO-SiO2 at a pressure ≈1 atm is provided, and a new phase diagram for the system SnOSiO2 at a pressure = 10 kbar has been constructed. These results are used to suggest the topology of the ternary system Sn°-SnO2SiO2. The Re-capsule technique has also been applied to the study of the subaluminous haplogranite system (SiO2NaAlSi3O8-KAlSi 3O8) at T = 1100°C, P = 10 kbar and fO 2 at Sn°-SnO2. Solubilities span the range of 41 to 80 wt% SnO. In the haplogranite system, the solubility of SnO2 increases with the proportion of normative SiO2, and SnO is found to expand the stability field of SiO2. In the feldspar join, Na-based melts dissolve a larger proportion of SnO than K-based melts. This effect is lost as SiO2 is progressively added to the feldspar join. Small amounts of F (1 wt%) are found to increase the solubility of SnO 2 by an equivalent 15 wt% normative quartz as shown with the Spor Mountain rhyolite. A comparison of SnO2 solubilities

  13. Viscoelastic properties of polymer based layered-silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Ren, Jiaxiang

    Polymer based layered-silicate nanocomposites offer the potential for dramatically improved mechanical, thermal, and barrier properties while keeping the material density low. Understanding the linear and non-linear viscoelastic response for such materials is crucial because of the ability of such measurements to elucidate the mesoscale dispersion of layered-silicates and changes in such dispersion to applied flows as would be encountered in processing of these materials. A series of intercalated polystyrene (and derivatives of polystyrene) layered-silicate nanocomposites are studied to demonstrate the influence of mesoscale dispersion and organic---inorganic interactions on the linear and non-linear viscoelastic properties. A layered-silicate network structure is exhibited for the nanocomposites with strong polymer-silicate interaction such as montmorillonite (2C18M) and fluorohectorite (C18F) and the percolation threshold is ˜ 6 wt % for the 2C18M based hybrids. However, the nanocomposites based on hectorite (2C18H) with weak polymer-silicate interaction exhibit liquid-like terminal zone behavior. Furthermore, the enhanced terminal zone elastic modulus and viscosity of high brominated polystyrene and high molecular weight polystyrene based 2C18M nanocomposites suggest an improved delamination and dispersion of layered-silicates in the polymer matrix. The non-linear viscoelastic properties, specifically, the non-linear stress relaxation behavior and the applicability of time---strain separability, the effect of increasing strain amplitude on the oscillatory shear flow properties, and the shear rate dependence of the steady shear flow properties are examined. The silicate sheets (or collections of sheets) exhibit the ability to be oriented by the applied flow. Experimentally, the empirical Cox - Merz rule is demonstrated to be inapplicable for the hybrids. Furthermore, the K-BKZ constitutive model is used to model the steady shear properties. While being able to

  14. Thermochemistry of Silicate Speciation in Aqueous Sodium Silicate Solutions: Ionization and Polymerization of Small Silicate Ion

    DTIC Science & Technology

    1993-07-12

    reasonable success, but a number of simplifications were used. For instance, the polymerization equilibrium constants were assumed to be independent of...Another weakness lies in the functionality assumed for the ionization equilibrium constants . As will be discussed below, experimental data that the free...characterize silicate species in fairly complex alkaline silicate solutions and thereby to estimate a large number of equilibrium constants [27,28

  15. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Meyer, Kevin J.; Carey, Anne E.; You, Chen-Feng

    2017-10-01

    Chemical weathering source provenance changes associated with Typhoon Mindulle (2004) were identified for the Choshui River Watershed in west-central Taiwan using radiogenic Sr isotope (87Sr/86Sr) and major ion chemistry analysis of water samples collected before, during, and following the storm event. Storm water sampling over 72 h was conducted in 3 h intervals, allowing for novel insight into weathering regime changes in response to intense rainfall events. Chemical weathering sources were determined to be bulk silicate and disseminated carbonate minerals at the surface and silicate contributions from deep thermal waters. Loss on ignition analysis of collected rock samples indicate disseminated carbonate can compose over 25% by weight of surface mineralogy, but typically makes up ∼2-3% of watershed rock. 87Sr/86Sr and major element molar ratios indicate that Typhoon Mindulle caused a weathering regime switch from normal flow incorporating a deep thermal signature to that of a system dominated by surface weathering. The data suggest release of silicate solute rich soil pore waters during storm events, creating a greater relative contribution of silicate weathering to the solute load during periods of increased precipitation and runoff. Partial depletion of this soil solute reservoir and possible erosion enhanced carbonate weathering lead to increased importance of carbonates to the weathering regime as the storm continues. Major ion data indicate that complex mica weathering (muscovite, biotite, illite, chlorite) may represent an important silicate weathering pathway in the watershed. Deep thermal waters represent an important contribution to river solutes during normal non-storm flow conditions. Sulfuric acid sourced from pyrite weathering is likely a major weathering agent in the Choshui River watershed.

  16. Dissolution rates of subsoil limestone in a doline on the Akiyoshi-dai Plateau, Japan: An approach from a weathering experiment, hydrological observations, and electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Akiyama, Sanae; Hattanji, Tsuyoshi; Matsushi, Yuki; Matsukura, Yukinori

    2015-10-01

    This study aims at estimating the controlling factors for the denudation rates of limestone, which often forms solution dolines on karst tablelands. Our approaches include (1) electrical resistivity tomography (ERT) to reveal shallow subsurface structures and hydrological settings, (2) automated monitoring of volumetric water content in soil profiles and manual measurements of subsurface CO2 concentrations and soil water chemistry, and (3) a field weathering experiment using limestone tablets with the micro-weight loss technique for determining current denudation rates. The field experiment and monitoring were carried out over 768 days from 2009-2011 at four sites with varying topographic and hydrological conditions along the sideslope of a doline on the Akiyoshi-dai karst plateau in SW-Japan. The installation depths of the limestone tablets were 15 cm or 50 cm below the slope surface. The soil moisture conditions varied site by site. Water-saturated conditions continued for 40-50% of the whole experimental period at 50-cm depth of upper and middle sites, while only 0-10% of the experimental period was water-saturated at the other sites. Chemical analysis revealed that the soil water was chemically unsaturated with calcite for all the sites. Spatial differences in concentrations of CO2 in soil pore air were statistically less significant. The denudation rates of the buried limestone tablets were 17.7-21.9 mg cm- 2 a- 1 at the upper and middle slopes, where the soil was water-saturated for a long time after precipitation. The lowest denudation of 3.9 mg cm- 2 a- 1 was observed on lower slopes where soil was not capable of maintaining water at a near saturation level even after precipitation. Statistical analysis revealed that the denudation rates of the tablets were strongly controlled by the duration for which soil pores were saturated by water (the conditions defined here are degrees of water saturation greater than 97%). Electrical resistivity tomography

  17. Practical Weathering for Geology Students.

    ERIC Educational Resources Information Center

    Hodder, A. Peter

    1990-01-01

    The design and data management of an activity to study weathering by increasing the rate of mineral dissolution in a microwave oven is described. Data analysis in terms of parabolic and first-order kinetics is discussed. (CW)

  18. Practical Weathering for Geology Students.

    ERIC Educational Resources Information Center

    Hodder, A. Peter

    1990-01-01

    The design and data management of an activity to study weathering by increasing the rate of mineral dissolution in a microwave oven is described. Data analysis in terms of parabolic and first-order kinetics is discussed. (CW)

  19. Apatite grain weathering and soil phosphorus availability in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Heindel, R. C.; Spickard, A. M.; Virginia, R. A.

    2016-12-01

    The soils of the McMurdo Dry Valleys exist in an arid, cold, and basic environment where mineral weathering is often thought to be negligible. In wetted sediments along stream margins, however, silicate mineral weathering rates are higher than anticipated. Here we focus on the mineral apatite to better understand weathering in an extreme environment and to better explain spatial variation in phosphorus availability in dry valley soils. In an environment devoid of vascular plants, the dissolution of primary apatite is likely a key component of soil phosphorus cycling and a control of soil, stream, and lake productivity. We separated loose apatite grains from glacial drift from the Lake Fryxell and Bonney Basins of Taylor Valley. We used Scanning Electron Microscopy and ImageJ to analyze grain morphology and surface etch features. Apatite grains varied markedly in morphology and degree of etching, and showed signs of significant chemical alteration. In Bonney Basin soils, where extractable phosphorus tends to be low, apatite grains were elongated and retained intact crystal faces. Grain surface etch pits were mostly restricted to grains from wetted soils. In contrast, in Fryxell Basin soils, where extractable phosphorus is high, apatite grains were rounded and lacked intact crystal faces. Here, etch pits were found on grains from both dry and wetted soils. Apatite grains from both basins had unusual etch-pit morphologies in comparison with published images. Our results indicate that apatite weathering occurs in dry valley soils, and that there are significant differences in the rate of apatite weathering between the Fryxell and Bonney Basins related to environment. Future work should explore variation in the etch-pit morphologies and the chemical or biological mechanisms behind their formation. With climate warming, increases in liquid water availability and stream flow may increase rates of apatite weathering, potentially delivering more phosphorus to phosphorus

  20. Hydrological controls on chemical weathering in the typical carbonated river basin, SW China

    NASA Astrophysics Data System (ADS)

    LI, S. L.; Jin, L.; Zhong, J., Sr.

    2016-12-01

    The dynamics of dissolved load in the riverine system could provide an insight in understanding the surface processes, such as chemical weathering and carbon cycle. The Xijiang River is a typical carbonated river basin, located at southwestern China. The Xijiang River catchment is controlled by a humid subtropical climate. In spite of being impacted by monsoonal climate and with significant variations of discharge, the temporal variations of compositions of main ions and chemical weathering of Xijiang River are rarely documented. In this study, a systematic investigation on the seasonal and episodic water geochemistry (major ions and d13CDIC) of the major branch and outlet of Xijiang River were carried out with the purpose of 1) characterizing temporal variations of aqueous geochemistry and its controlling factors, 2) exploring the impact of hydrological controls on chemical weathering of the Xijiang River Basin. The results show that the concentrations of Cl, Na, Ca, Mg, and HCO3 are generally decreased during monsoon season, which should be mainly caused by dilution. However, the dilution effect does not strictly follow the theoretical dilution curve. Moreover, d13CDIC in the high-flow period has more negative values than in low-flow period. More negative δ13CDIC values in the river during the wet season reflected the influx of rain water with biological CO2 during the rain event. This study suggested that hydrochemistry and d13CDIC had a large variation responding to rainstorm events. The calculated results show that the weathering rates of silicate and carbonate as well as that of related CO2 consumption have a positive relation with water discharge, highlighting the hydrological controls on chemical weathering and CO2 consumption rates. The results indicated carbonated weathering rate responding to hydrological condition sensitivity in the typical carbonate river basin. This work was supported by The China National Science Fund for Outstanding Young Scholars

  1. Silicate Removal in Aluminum Hydroxide Co-Precipitation Process

    PubMed Central

    Tokoro, Chiharu; Suzuki, Shinya; Haraguchi, Daisuke; Izawa, Sayaka

    2014-01-01

    The removal mechanisms of silicate using an aluminum hydroxide co-precipitation process was investigated and compared with an adsorption process, in order to establish an effective and validated method for silicate removal from wastewater. Adsorption isotherms, XRD and FT-IR analyses showed that silicate uptake occurred by adsorption to boehmite for initial Si/Al molar ratios smaller than two, but by precipitation of poorly crystalline kaolinite for the ratios larger than two, in both co-precipitation and adsorption processes. Silicate was removed by two steps: (i) an initial rapid uptake in a few seconds; and (ii) a slow uptake over several hours in both processes. The uptake rate in the first step was higher in the co-precipitation process than in adsorption process, presumably due to increased silicate adsorption to boehmite and rapid precipitation of kaolinite. These results suggest that silicate removal using aluminum salts could be effectively achieved if the pH adjustment and aluminum concentration are strictly controlled. PMID:28788501

  2. Using WITCH to determine the factors that govern shale weathering and solute fluxes in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Sullivan, P. L.; Godderis, Y.; Shi, Y.; Gu, X.; Schott, J.; Duffy, C.; Brantley, S. L.

    2015-12-01

    Quantifying the effects of climate and biota on silicate and carbonate mineral weathering rates is crucial for predicting regolith formation and global weathering fluxes. Recent efforts demonstrate that geochemical, vegetation and climate models can be linked to understand the controls on solute fluxes in the critical zone. These efforts also elucidate field weathering rates and mineralogical evolution. To investigate the controls on shale weathering and solute flux, we developed a baseline shale weathering and solute flux model utilizing field observations from the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO). Our modeling approach linked the physically-based land surface hydrologic model, Flux-PIHM (Penn State Integrated Hydrologic Model), to the numerical chemical weathering model WITCH. We are progressively testing the importance of mineral reactive surface area, aspect, clay thermodynamic constants, and vegetation cycling (uptake and decomposition) on soil water solute fluxes. Under baseline conditions, WITCH simulated the range in soil water Mg2+ concentrations observed on the sun-facing hillslope but slightly underestimated the concentrations observed on the shaded slope. The baseline WITCH modeling suggests Mg2+ solute concentrations are primarily controlled by clay weathering but that Ca2+, K+, Na+ and Si are driven by other critical zone processes. The inclusion of aspect resulted in lower recharge rates on the sun-facing side because ET was higher on that side. This in turn also resulted in lower soil water solute concentrations on the shaded hillslope. Cooler temperatures on that side also reduced the simulated chlorite and illite dissolution rates. When a vegetation cycling module was incorporated in WITCH, the simulation reproduced the range in Ca2+, K+, and Si concentrations in soil waters as observed in the field for both hillslopes. Modeling results suggest the inclusion of aspect and vegetation cycling are key in simulating soils

  3. Magnetic parameters of rivers sands as tracers of weathering

    NASA Astrophysics Data System (ADS)

    Meynadier, L.; Salomé, A. L.; Allègre, C. J.; Gaillardet, J.; Hautevelle, Y.

    2003-04-01

    Magnetic susceptibility of sediments is now widely use as a tool for paleoclimatology and to decipher changes in the intensity of winds strength or of oceanic currents. Actually, studies dealing with oceanic sediment are restricted to the final product of the processes of weathering and/or erosion. Surprisingly, only a few studies attempted to document the variability inherent to the erosion factors, which depend on the nature and origin of the source but also on the processes occurring during river transportation. This requires investigating the magnetic changes in sands and in the suspended load of material transported by non-polluted river from the sources to the sea. Mass normalized magnetic susceptibility of samples from the suspended load of the world major rivers has been studied. Rivers draining basaltic terrains have a susceptibility signal 10 to 100 higher than those draining granites. Taking into account the fact that weathering rates of basalts are much higher than continental silicates, the susceptibility signal of oceanic sediments is clearly directly linked to the basaltic inputs in the sea. The second goal of this study is to determine how much rock weathering can affect the magnetic parameters, more specifically magnetic susceptibility, and if it is possible to link these effects with some chemical parameters. Six volcanic islands, scattered around the globe and associated with very different climatic conditions have been selected (Iceland, Reunion, Guadeloupe, Martinique, Java, San Miguel). Magnetic mineralogy, magnetic parameters and grains sizes of the parent rocks and the sands resulting from the weathering of these rocks will be compared.

  4. Deducing Weathering Processes Using Silicon Isotopes in the Ganges Alluvial Plain, India

    NASA Astrophysics Data System (ADS)

    Frings, P.; De La Rocha, C. L.; Fontorbe, G.; Chakrapani, G.; Clymans, W.; Conley, D. J.

    2014-12-01

    The Ganges Alluvial Plain ('GAP') is the sedimentary infill of the foreland basin created during Himalayan orogeny. Freshly eroded material from the Himalaya and southern cratonic tributaries is deposited into a system with long water-sediment interaction times, creating potential for further generation of river weathering fluxes. To quantify weathering processes in the GAP, 51 sites including all major tributaries were sampled in a September 2013 campaign and analysed for major and minor ions, Ge/Si ratios and δ30Si, δ13C and δ18O. Net dissolved Si (DSi) and major cation yields are 2 to 5 times lower in the GAP than the Himalaya, and at a whole basin scale approximate the global average, indicating that the plain apparently moderates the efficiency of Himalayan weathering rates. Mainstem δ30Si spans 0.81 to 1.93‰ (see figure) and gives the impression of a system buffered to moderate DSi and δ30Si. Ge/Si ratios (µmol/mol) are higher than expected in the Himalaya (>3), reflecting input of Ge-enriched water from hot springs, and decline to ~1.4 in the GAP. For the Himalayan sourced rivers, δ30Si increases with distance from the Himalayan front, and can not be explained entirely by conservative mixing with higher δ30Si peninsular and GAP streams. To a first degree, the δ30Si data suggest incorporation of Si into secondary minerals as the key fractionating process, and that this occurs both in situ during initial weathering and progressively in the GAP. Partitioning of solutes between sources is complicated in the GAP. Consistent with previous work, carbonate weathering dominates the ion fluxes, but with substantial contributions from saline/alkaline soil salts, the chlorination of wastewater and highly variable rainfall chemistry. Due to these contributions, precisely inferring the input from silicate weathering is difficult. We introduce a novel method to infer silicate-weathering rates that exploits the fractionation of Si during clay formation to account

  5. Comparative pathology of silicate pneumoconiosis.

    PubMed Central

    Brambilla, C.; Abraham, J.; Brambilla, E.; Benirschke, K.; Bloor, C.

    1979-01-01

    A simple pneumoconiosis with lamellar birefringent crystals was observed in animals dying in the San Diego Zoo. We studied 100 autopsies from 11 mammalian and eight avian species. In mammals, mild pulmonary lesions comprised crystal-laden macrophages in alveoli and lymphatics. Interstitial fibrosis was present in 20% of cases. There were no nodules. In birds, dust retention produced large granulomas around tertiary bronchi without fibrosis. Mineralogic analysis using scanning and transmission electron microscopy showed most of the crystals to be silicates. Ninety percent were complex silicates, with aluminum-potassium silicates comprising 70% of the analyzed particles. Electron and x-ray diffraction showed the silicates to be muscovite mica and its hydrothermal degradation product, ie, illite clay. This mica was also present on filtration membranes of atmospheric air samples obtained from the San Diego Zoo. The amount of dust retention was related to the animal's age, anatomic or ecologic variances, and length of stay in the San Diego Zoo. Its semidesert atmosphere is rich in silicates, which are inhaled and deposited in the lungs. Similar mica-induced lesions are found in humans living in this region or the Southwest of the USA. This simple pneumoconiosis is likely to be widespread in human populations living in desert or semidesert climates. Images Figure 9 Figure 10 Figure 7 Figure 8 Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:223447

  6. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  7. Bay of Bengal: Recording the Weathering Evolution of the Ganga and Brahmaputra Basin during Deglaciation

    NASA Astrophysics Data System (ADS)

    Lupker, M.; France-Lanord, C.; Galy, V.; Kudrass, H.

    2010-12-01

    Continental weathering has been the focus of intense research for the past decades highlighting its central role in earth surface processes: weathering releases the elements that are essential to various biogeochemical cycles, it favors physical erosion through mineral break-down that in turn creates new reactive surfaces making physical and chemical erosion closely linked. Silicate weathering also uptakes atmospheric CO2 that eventually precipitates as carbonates in the ocean. Hitherto, only few studies have addressed the response of weathering intensity to changes in external forcing. Here we report the evolution of sediment chemistry in sediment cores from the Bay of Bengal (BoB) spanning from the last glacial maximum to present. These cores document the sedimentary repository of Himalayan erosion products transported by the Ganga and Brahmaputra (G&B) through the Gangetic plain. The morphology and tectonic setting of the G&B basin remained essentially constant over the Quaternary; hence the impact of climate change on continental-scale weathering can be assessed. In the G&B system, silicate weathering mainly releases Na and K. The loss of Na and K relative to immobile elements can be easily traced in river sediments. In the marine environment, however, tracing Na is hampered by marine Na adsorption onto the sediment. Here we therefore trace weathering via: (1) sediment hydration (H2O+) and, (2) K/Al ratio. Hydration is directly linked to the weathering state of the sediments because mineral hydrolysis and secondary mineral formation result in an increase of hydration. This tracer can thus be used both on- and off-shore. We measured hydration of bulk sediments from the BoB by CF-IRMS, along with D/H isotopic composition. A composite record of five 14C-dated short cores from the BoB (Galy et al. 2008) reveals that weathering during late glacial times was significantly less intense compared to that observed in sediments currently exported by the G&B and Holocene