Science.gov

Sample records for silicon photon detectors

  1. Advantages of gated silicon single photon detectors

    NASA Astrophysics Data System (ADS)

    Legré, Matthieu; Lunghi, Tommaso; Stucki, Damien; Zbinden, Hugo

    2013-05-01

    We present gated silicon single photon detectors based on two commercially available avalanche photodiodes (APDs) and one customised APD from ID Quantique SA. This customised APD is used in a commercially available device called id110. A brief comparison of the two commercial APDs is presented. Then, the charge persistence effect of all of those detectors that occurs just after a strong illumination is shown and discussed.

  2. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    DOEpatents

    Holland, Stephen Edward

    2000-02-15

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.

  3. Sine wave gating silicon single-photon detectors for multiphoton entanglement experiments

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Jiang, Wen-Hao; Chen, Luo-Kan; Fang, Yu-Qiang; Li, Zheng-Da; Liang, Hao; Chen, Yu-Ao; Zhang, Jun; Pan, Jian-Wei

    2017-08-01

    Silicon single-photon detectors (SPDs) are the key devices for detecting single photons in the visible wavelength range. Here we present high detection efficiency silicon SPDs dedicated to the generation of multiphoton entanglement based on the technique of high-frequency sine wave gating. The silicon single-photon avalanche diode components are acquired by disassembling 6 commercial single-photon counting modules (SPCMs). Using the new quenching electronics, the average detection efficiency of SPDs is increased from 68.6% to 73.1% at a wavelength of 785 nm. These sine wave gating SPDs are then applied in a four-photon entanglement experiment, and the four-fold coincidence count rate is increased by 30% without degrading its visibility compared with the original SPCMs.

  4. Sine wave gating silicon single-photon detectors for multiphoton entanglement experiments.

    PubMed

    Zhou, Nan; Jiang, Wen-Hao; Chen, Luo-Kan; Fang, Yu-Qiang; Li, Zheng-Da; Liang, Hao; Chen, Yu-Ao; Zhang, Jun; Pan, Jian-Wei

    2017-08-01

    Silicon single-photon detectors (SPDs) are the key devices for detecting single photons in the visible wavelength range. Here we present high detection efficiency silicon SPDs dedicated to the generation of multiphoton entanglement based on the technique of high-frequency sine wave gating. The silicon single-photon avalanche diode components are acquired by disassembling 6 commercial single-photon counting modules (SPCMs). Using the new quenching electronics, the average detection efficiency of SPDs is increased from 68.6% to 73.1% at a wavelength of 785 nm. These sine wave gating SPDs are then applied in a four-photon entanglement experiment, and the four-fold coincidence count rate is increased by 30% without degrading its visibility compared with the original SPCMs.

  5. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  6. Energy-resolved CT imaging with a photon-counting silicon-strip detector.

    PubMed

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-11-21

    Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5×0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  7. Electronic interfaces to silicon photonics

    NASA Astrophysics Data System (ADS)

    Lentine, Anthony L.; Cox, Jonathan A.; Zortman, William A.; Savignon, Daniel J.

    2014-03-01

    We describe the interface circuits to silicon photonics modulators, optical filters, and detectors that will be required to enable silicon photonics micro-ring and micro-disk devices to be integrated in dense wavelength division multiplexing circuitry.

  8. Energy-resolved CT imaging with a photon-counting silicon-strip detector

    NASA Astrophysics Data System (ADS)

    Persson, Mats; Huber, Ben; Karlsson, Staffan; Liu, Xuejin; Chen, Han; Xu, Cheng; Yveborg, Moa; Bornefalk, Hans; Danielsson, Mats

    2014-03-01

    Photon-counting detectors are promising candidates for use in the next generation of x-ray CT scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose, and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes claimed to be unsuitable for use in computed tomography because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that high-quality energy-resolved CT images can nonetheless be acquired with clinically realistic exposure parameters using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 × 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. We use basis material decomposition to obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.

  9. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-06-21

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

  10. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  11. Spiral silicon drift detectors

    SciTech Connect

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs.

  12. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  13. Photon detectors

    SciTech Connect

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  14. Optical links for detector instrumentation: on-detector multi-wavelength silicon photonic transmitters

    NASA Astrophysics Data System (ADS)

    Karnick, D.; Skwierawski, P.; Schneider, M.; Eisenblätter, L.; Weber, M.

    2017-03-01

    We report on our recent progress in developing an optical transmission system based on wavelength division multiplexing (WDM) to enhance the read-out data rate of future particle detectors. The design and experimental results of the prototype of a monolithically integrated multi-wavelength transmitter are presented as well as temperature studies of electro-optic modulators. Furthermore, we show the successful permanent coupling of optical fibers to photonic chips, which is an essential step towards packaging of the opto-electronic components.

  15. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  16. A silicon photonic wavelength division multiplex system for high-speed data transmission in detector instrumentation

    NASA Astrophysics Data System (ADS)

    Skwierawski, P.; Schneider, M.; Karnick, D.; Eisenblätter, L.; Weber, M.

    2016-01-01

    We propose a new silicon photonics-based optical transmission system utilizing wavelength division multiplexing (WDM) . This technology has the possibility of reading out all raw data from a detector even without massive local data reduction. The transmitter in the detector volume consists of multiple integrated Mach-Zehnder modulators monolithically integrated with wavelength (de-)multiplexers. The first demonstrator currently under development aims for a data rate of 160 Gbit/s per fiber, scalable to 5 Tbit/s and beyond. We report on our recently developed Echelle grating WDM multiplexers with up to 45 channels on an area of 0.5 mm2 and electro-optic modulators providing a bandwidth of 18 GHz.

  17. Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size.

    PubMed

    Bucciolini, M; Buonamici, F Banci; Mazzocchi, S; De Angelis, C; Onori, S; Cirrone, G A P

    2003-08-01

    The aim of this work was to test the suitability of a PTW diamond detector for nonreference condition dosimetry in photon beams of different energy (6 and 25 MV) and field size (from 2.6 cm x 2.6 cm to 10 cm x 10 cm). Diamond behavior was compared to that of a Scanditronix p-type silicon diode and a Scanditronix RK ionization chamber. Measurements included output factors (OF). percentage depth doses (PDD) and dose profiles. OFs measured with diamond detector agreed within 1% with those measured with diode and RK chamber. Only at 25 MV, for the smallest field size, RK chamber underestimated OFs due to averaging effects in a pointed shaped beam profile. Agreement was found between PDDs measured with diamond detector and RK chamber for both 6 MV and 25 MV photons and down to 5 cm x 5 cm field size. For the 2.6 cm x 2.6 cm field size, at 25 MV, RK chamber underestimated doses at shallow depth and the difference progressively went to zero in the distal region. PDD curves measured with silicon diode and diamond detector agreed well for the 25 MV beam at all the field sizes. Conversely, the nontissue equivalence of silicon led, for the 6 MV beam, to a slight overestimation of the diode doses in the distal region, at all the field sizes. Penumbra and field width measurements gave values in agreement for all the detectors but with a systematic overestimate by RK measurements. The results obtained confirm that ion chamber is not a suitable detector when high spatial resolution is required. On the other hand, the small differences in the studied parameters, between diamond and silicon systems, do not lead to a significant advantage in the use of diamond detector for routine clinical dosimetry.

  18. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  19. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  20. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  1. Development of a silicon microstrip detector with single photon sensitivity for fast dynamic diffraction experiments at a synchrotron radiation beam

    NASA Astrophysics Data System (ADS)

    Arakcheev, A.; Aulchenko, V.; Kudashkin, D.; Shekhtman, L.; Tolochko, B.; Zhulanov, V.

    2017-06-01

    Time-resolved experiments on the diffraction of synchrotron radiation (SR) from crystalline materials provide information on the evolution of a material structure after a heat, electron beam or plasma interaction with a sample under study. Changes in the material structure happen within a microsecond scale and a detector with corresponding parameters is needed. The SR channel 8 of the VEPP-4M storage ring provides radiation from the 7-pole wiggler that allows to reach several tens photons within one μs from a tungsten crystal for the most intensive diffraction peak. In order to perform experiments that allow to measure the evolution of tungsten crystalline structure under the impact of powerful laser beam, a new detector is developed, that can provide information about the distribution of a scattered SR flux in space and its evolution in time at a microsecond scale. The detector is based on the silicon p-in-n microstrip sensor with DC-coupled metal strips. The sensor contains 1024 30 mm long strips with a 50 μm pitch. 64 strips are bonded to the front-end electronics based on APC128 ASICs. The APC128 ASIC contains 128 channels that consist of a low noise integrator with 32 analogue memory cells each. The integrator equivalent noise charge is about 2000 electrons and thus the signal from individual photons with energy above 40 keV can be observed. The signal can be stored at the analogue memory with 10 MHz rate. The first measurements with the beam scattered from a tungsten crystal with energy near 60 keV demonstrated the capability of this prototype to observe the spatial distribution of the photon flux with the intensity from below one photon per channel up to 0~10 photons per channel with a frame rate from 10 kHz up to 1 MHz.

  2. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  3. Theoretical comparison of a dual energy system and photon counting silicon detector used for material quantification in spectral CT.

    PubMed

    Yveborg, Moa; Danielsson, Mats; Bornefalk, Hans

    2015-03-01

    Any method using dual energy computed tomography (CT) has to make prior assumptions in order to quantify k-edge contrast agents. This work estimates the mean square error (MSE) in contrast agent quantification employing a method based on assigning each reconstructed voxel a ratio of soft tissue and fat using dual energy CT. The results are compared to the MSE using a photon counting silicon detector with multiple bins. The square root of the MSEs of the quantifications of iodine and gadolinium for an object consisting of soft tissue and fat using the silicon detector and dual energy CT range from below 2% and 1% of the contrast agent content for 100 mg/cm(3) of iodine and gadolinium, up to approximately 10% and 13%, and 6% and 4%, for 5 mg/cm(3) of iodine and gadolinium, respectively. When adding bone with a voxel volume fraction of 2.2%, the square root of the MSEs of the quantifications of iodine and gadolinium using dual energy CT increases to 25% and 6%, respectively, for 5 mg/cm(3) of contrast agent. In conclusion, results indicate that the noise levels of the material quantification using the silicon detector are higher than the noise levels using a dual energy CT when the composition of the object is known. However, using a dual energy CT increases the risk of model specification error and subsequently a large bias in contrast agent quantification, a problem which does not exist when using a multi-bin CT where the number of energy bins is larger than two.

  4. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  5. Label-free silicon photonic biosensor system with integrated detector array.

    PubMed

    Yan, Rongjin; Mestas, Santano P; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S; Lear, Kevin L

    2009-08-07

    An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide's upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip.

  6. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  7. Strained Silicon Photonics

    PubMed Central

    Schriever, Clemens; Bohley, Christian; Schilling, Jörg; Wehrspohn, Ralf B.

    2012-01-01

    A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon. PMID:28817015

  8. Novel Cherenkov photon detectors

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    2005-11-01

    Gaseous detectors using multiple gas electron multiplier (GEM) electrodes permit to attain large amplification factors with a strong suppression of photon and ion-mediated feedback. With the first GEM in a cascade coated with a photosensitive layer, they provide efficient and fast single photon detection, with excellent position resolution. General performances of CsI-coated multi-GEM detectors are described, as well as a promising method of signal readout, the so-called hexaboard, a matrix of interconnected pads that permits to achieve ambiguity-free reconstruction of multi-photon events, a major requirement for RICH applications.

  9. Silicon photonics: optical modulators

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Gardes, F. Y.; Hu, Youfang; Thomson, D.; Lever, L.; Kelsall, R.; Ikonic, Z.

    2010-01-01

    Silicon Photonics has the potential to revolutionise a whole raft of application areas. Currently, the main focus is on various forms of optical interconnects as this is a near term bottleneck for the computing industry, and hence a number of companies have also released products onto the market place. The adoption of silicon photonics for mass production will significantly benefit a range of other application areas. One of the key components that will enable silicon photonics to flourish in all of the potential application areas is a high performance optical modulator. An overview is given of the major Si photonics modulator research that has been pursued at the University of Surrey to date as well as a worldwide state of the art showing the trend and technology available. We will show the trend taken toward integration of optical and electronic components with the difficulties that are inherent in such a technology.

  10. Spectral CT of the extremities with a silicon strip photon counting detector

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Stayman, J. W.; Xu, J.; Taguchi, K.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. Methods: A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. Results: The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was <16% for (50 mg/mL) bone and <8% for (5 mg/mL) iodine with strong regularization. For smaller inserts, errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Conclusion: Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and

  11. Spectral CT of the Extremities with a Silicon Strip Photon Counting Detector.

    PubMed

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Siewerdsen, J H

    2015-02-21

    Photon counting x-ray detectors (PCXDs) are an important emerging technology for spectral imaging and material differentiation with numerous potential applications in diagnostic imaging. We report development of a Si-strip PCXD system originally developed for mammography with potential application to spectral CT of musculoskeletal extremities, including challenges associated with sparse sampling, spectral calibration, and optimization for higher energy x-ray beams. A bench-top CT system was developed incorporating a Si-strip PCXD, fixed anode x-ray source, and rotational and translational motions to execute complex acquisition trajectories. Trajectories involving rotation and translation combined with iterative reconstruction were investigated, including single and multiple axial scans and longitudinal helical scans. The system was calibrated to provide accurate spectral separation in dual-energy three-material decomposition of soft-tissue, bone, and iodine. Image quality and decomposition accuracy were assessed in experiments using a phantom with pairs of bone and iodine inserts (3, 5, 15 and 20 mm) and an anthropomorphic wrist. The designed trajectories improved the sampling distribution from 56% minimum sampling of voxels to 75%. Use of iterative reconstruction (viz., penalized likelihood with edge preserving regularization) in combination with such trajectories resulted in a very low level of artifacts in images of the wrist. For large bone or iodine inserts (>5 mm diameter), the error in the estimated material concentration was <16% for (50 mg/mL) bone and <8% for (5 mg/mL) iodine with strong regularization. For smaller inserts, errors of 20-40% were observed and motivate improved methods for spectral calibration and optimization of the edge-preserving regularizer. Use of PCXDs for three-material decomposition in joint imaging proved feasible through a combination of rotation-translation acquisition trajectories and iterative reconstruction with optimized

  12. The Silicon Cube detector

    NASA Astrophysics Data System (ADS)

    Matea, I.; Adimi, N.; Blank, B.; Canchel, G.; Giovinazzo, J.; Borge, M. J. G.; Domínguez-Reyes, R.; Tengblad, O.; Thomas, J.-C.

    2009-08-01

    A new experimental device, the Silicon Cube detector, consisting of six double-sided silicon strip detectors placed in a compact geometry was developed at CENBG. Having a very good angular coverage and high granularity, it allows simultaneous measurements of energy and angular distributions of charged particles emitted from unbound nuclear states. In addition, large-volume Germanium detectors can be placed close to the collection point of the radioactive species to be studied. The setup is ideally suited for isotope separation on-line (ISOL)-type experiments to study multi-particle emitters and was tested during an experiment at the low-energy beam line of SPIRAL at GANIL.

  13. Silicon nitride membrane photonics

    NASA Astrophysics Data System (ADS)

    Pernice, W. H. P.; Li, M.; Gallagher, D. F. G.; Tang, H. X.

    2009-11-01

    We propose a concept for realizing large area nanophotonic circuits in a silicon nitride membrane. Light is coupled into the membrane using a novel metallic photonic crystal grating coupler. A coupling loss of 5.5 dB is predicted for TE polarized light at 1550 nm. Waveguiding at telecoms wavelengths is achieved by using low loss photonic crystal defect waveguides. The propagation losses of the photonic crystal waveguides are estimated at 8.6 dB mm-1, comparable to early silicon photonic crystal waveguides. Using the proposed approach, photonic circuits can be fabricated using a single lithography and etching step. Thus the design scheme shows a route to low-cost fabrication.

  14. Photon-number resolving detectors

    NASA Astrophysics Data System (ADS)

    Haderka, O.; Peřina, J., Jr.; Hamar, M.; Michálek, V.; Černoch, A.; Soubusta, J.

    2010-12-01

    An overview of current commercial and emerging approaches to single-photon-sensitive detection is given. Special attention is devoted to the detectors providing photon-number resolution with respect to their application in quantum optics and quantum information. Besides detectors offering photon-number resolution intrinsically, also multiplexing detectors are treated. A comparison of the detector technologies is presented.

  15. Hydrogenated amorphous silicon photonics

    NASA Astrophysics Data System (ADS)

    Narayanan, Karthik

    2011-12-01

    Silicon Photonics is quickly proving to be a suitable interconnect technology for meeting the future goals of on-chip bandwidth and low power requirements. However, it is not clear how silicon photonics will be integrated into CMOS chips, particularly microprocessors. The issue of integrating photonic circuits into electronic IC fabrication processes to achieve maximum flexibility and minimum complexity and cost is an important one. In order to minimize usage of chip real estate, it will be advantageous to integrate in three-dimensions. Hydrogenated amorphous silicon (a-Si:H) is emerging as a promising material for the 3-D integration of silicon photonics for on-chip optical interconnects. In addition, a-Si:H film can be deposited using CMOS compatible low temperature plasma-enhanced chemical vapor deposition (PECVD) process at any point in the fabrication process allowing maximum flexibility and minimal complexity. In this thesis, we demonstrate a-Si:H as a high performance alternate platform to crystalline silicon, enabling backend integration of optical interconnects in a hybrid photonic-electronic network-on-chip architecture. High quality passive devices are fabricated on a low-loss a-Si:H platform enabling wavelength division multiplexing schemes. We demonstrate a broadband all-optical modulation scheme based on free-carrier absorption effect, which can enable compact electro-optic modulators in a-Si:H. Furthermore, we comprehensively characterize the optical nonlinearities in a-Si:H and observe that a-Si:H exhibits enhanced nonlinearities as compared to crystalline silicon. Based on the enhanced nonlinearities, we demonstrate low-power four-wave mixing in a-Si:H waveguides enabling high speed all-optical devices in an a-Si:H platform. Finally, we demonstrate a novel data encoding scheme using thermal and all-optical tuning of silicon waveguides, increasing the spectral efficiency in an interconnect link.

  16. Silicon applications in photonics

    NASA Astrophysics Data System (ADS)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  17. Photon detector system

    DOEpatents

    Ekstrom, Philip A.

    1981-01-01

    A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.

  18. Microstructured silicon radiation detector

    DOEpatents

    Okandan, Murat; Derzon, Mark S.; Draper, Bruce L.

    2017-03-14

    A radiation detector comprises a silicon body in which are defined vertical pores filled with a converter material and situated within silicon depletion regions. One or more charge-collection electrodes are arranged to collect current generated when secondary particles enter the silicon body through walls of the pores. The pores are disposed in low-density clusters, have a majority pore thickness of 5 .mu.m or less, and have a majority aspect ratio, defined as the ratio of pore depth to pore thickness, of at least 10.

  19. Characterization and Analysis of Integrated Silicon Photonic Detectors for High-Speed Communications

    DTIC Science & Technology

    2015-03-26

    photodiode. The transient response of the photodiode supported that the non-linear mechanism was photon-induced avalanche-like effect , however, further...investigation is required. Additional work is described to further investigate this behavior, as well to identify potential effects on future...79 4.5 Measurement and Analysis of The Non-Linear Avalanche-Like Effect

  20. Vacuum UV performance of silicon detectors

    NASA Technical Reports Server (NTRS)

    Ohlhaber, R. L.

    1977-01-01

    The sensitivity, time-varying response, and spatial sensitivity of four silicon detectors of vacuum UV were measured by passing a typical flux of 3 x 10 photons/s at the Lyman alpha line of 1215.7 A through an exit aperture of 0.55 mm x 0.8 mm. The detectors tested were: (1) a Fairchild FPM 200 silicon planar passivated photodiode with the window removed so that radiation could directly impinge on the center of the 1.0 mm square silicon chip, (2) a Fairchild FPM 100 silicon NPN planar passivated phototransistor, (3) the Hewlett-Packard 5082-4204 silicon planar PIN photodiode, and (4) the United Detector Technology PIN Spot/2 special sensitive silicon Schottky surface photodiode with the window removed.

  1. Vacuum UV performance of silicon detectors

    NASA Technical Reports Server (NTRS)

    Ohlhaber, R. L.

    1977-01-01

    The sensitivity, time-varying response, and spatial sensitivity of four silicon detectors of vacuum UV were measured by passing a typical flux of 3 x 10 photons/s at the Lyman alpha line of 1215.7 A through an exit aperture of 0.55 mm x 0.8 mm. The detectors tested were: (1) a Fairchild FPM 200 silicon planar passivated photodiode with the window removed so that radiation could directly impinge on the center of the 1.0 mm square silicon chip, (2) a Fairchild FPM 100 silicon NPN planar passivated phototransistor, (3) the Hewlett-Packard 5082-4204 silicon planar PIN photodiode, and (4) the United Detector Technology PIN Spot/2 special sensitive silicon Schottky surface photodiode with the window removed.

  2. Characterization of an Indirect-Detection Amorphous Silicon Detector for Dosimetric Measurement of Intensity Modulated Photon Fields

    NASA Astrophysics Data System (ADS)

    Bailey, Daniel Wayne

    Indirect-detection amorphous silicon electronic imagers show much promise for measurement of radiation dose, particularly for pre-treatment verification of patient-specific intensity modulated radiotherapy plans. These instruments, commonly known as Electronic Portal Imaging Devices (EPIDs), have high data density, large detecting area, convenient electronic read-out, excellent positional reproducibility, and are quickly becoming standard equipment on today's medical megavoltage linear accelerators. However, because these devices were originally intended to be digital radiograph imagers and not dosimeters, the modeling, calibration, and prediction of their response to dose carries a number of challenges. For instance, EPID dose images exhibit off-axis dose errors of up to 18% with increasing distance from the central axis of the imager (as compared to dose predictions calculated by a commercially available treatment planning system). Furthermore, these off-axis errors are asymmetric, with higher errors in the in-plane direction than in the cross-plane direction. In this work, methods are proposed to account for EPID off-axis effects by precisely calculating off-axis output factors from experimental measurements to increase the accuracy of EPID absolute dose measurement. Using these methods, dose readings acquired over the entire surface of the detector agree to within 2% accuracy as compared to respective EPID dose predictions. Similarly, the percentage of measured dose points that agree with respective calculated dose points (using 3%, 3 mm criteria) improves by as much as 60% for off-axis intensity modulated photon fields. Furthermore, a number of clinical applications of EPID dosimetry are investigated, including pixel response constancy, the effect of data density on a common metric for quantitatively comparing measured vs. calculated dose, and the implementation of an electronic portal dosimetry program for radiotherapy quality assurance.

  3. High Resolution Silicon Detector for 1.2-3.1 ev (400-1000 nm) Photons

    NASA Astrophysics Data System (ADS)

    Groom, D. E.; Holland, S. E.; Palio, N. P.; Stover, R. J.; Wei, Mingzhi

    2005-02-01

    Central tracker strip detector R&D for one of the detectors at the Superconducting SuperCollider led to fabrication development at Lawrence Berkeley National Lab (LBNL). A group led by S.E. Holland has now extended the methods, leading to the invention of an innovative and unique charged-coupled device (CCD) with applications in ground-based and space astronomy. It can be viewed as an extremely precise "calorimeter," albeit with a sensitivity range 10 orders of magnitude below that of other EM calorimeters being discussed at CALOR 2004. While the gate structure is about the same as on other scientific CCD's, it has a 200-300 μm totally-depleted high-resistivity Si substrate (~ 1010 Ω-cm n-type rather than ~ 10 Ω-cm p-type Si). Like other astronomical CCD's it is back-illuminated. The sensitive thickness of usual astronomical CCD's is 15-40 μm. Red sensitivity, of particular interest for observing objects at cosmological distances, is extended to beyond 1 μm, and substantially improved spatial resolution is achieved because of the lack of a field-free region. Its superiority has been demonstrated in a spectrometer on the 4-m telescope at Kitt Peak National Observatory and for direct imaging at the 3.5-m telescope. The spatial resolution has extended the reach of planet searches at Lick Observatory 3-m to below a 4 m/s stellar radial velocity uncertainty, enabling the discovery of lower-mass extrasolar planets. The p-channel device also has significantly greater radiation hardness than a conventional n-channel CCD.

  4. Silicon photonics manufacturing.

    PubMed

    Zortman, William A; Trotter, Douglas C; Watts, Michael R

    2010-11-08

    Most demonstrations in silicon photonics are done with single devices that are targeted for use in future systems. One of the costs of operating multiple devices concurrently on a chip in a system application is the power needed to properly space resonant device frequencies on a system's frequency grid. We asses this power requirement by quantifying the source and impact of process induced resonant frequency variation for microdisk resonators across individual die, entire wafers and wafer lots for separate process runs. Additionally we introduce a new technique, utilizing the Transverse Electric (TE) and Transverse Magnetic (TM) modes in microdisks, to extract thickness and width variations across wafers and dice. Through our analysis we find that a standard six inch Silicon on Insulator (SOI) 0.35 μm process controls microdisk resonant frequencies for the TE fundamental resonances to within 1 THz across a wafer and 105 GHz within a single die. Based on demonstrated thermal tuner technology, a stable manufacturing process exhibiting this level of variation can limit the resonance trimming power per resonant device to 231 μW. Taken in conjunction with the power to compensate for thermal environmental variations, the expected power requirement to compensate for fabrication-induced non-uniformities is 17% of that total. This leads to the prediction that thermal tuning efficiency is likely to have the most dominant impact on the overall power budget of silicon photonics resonator technology.

  5. Domestic Development of Single-Photon Emission Computed Tomography (SPECT) Unit with Detector based on Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Grishakov, S.; Ryzhikova, O.; Sergienko, V.; Ansheles, A.; Novikov, S.

    2017-01-01

    The idea of creating a single-photon emission computed tomography unit with solid-state photomultipliers is not new [1], as the problems of analog-to-digital conversion with a lot of noise and a wide range of values of intrinsic spatial resolution of the detector in a center and relevant fields of view could not be solved by means of gamma-camera detector architectures based on vacuum photomultipliers. This paper offers a new SPECT imaging solution that is free from these problems.

  6. Status and perspectives of solid state photon detectors

    NASA Astrophysics Data System (ADS)

    Korpar, Samo

    2011-05-01

    Recent years have seen a considerable progress in the development of solid state photon detectors. In particular it is the Geiger mode avalanche photodiode, also known as the silicon photomultiplier (SiPM), which is much investigated for its single photon sensitivity as well as its other appealing properties. In the present paper we discuss the recent advances of such photon detectors as well as possibilities for their application, mainly in ring imaging Cherenkov detectors.

  7. The Impact of Silicon Photonics

    DTIC Science & Technology

    2007-08-29

    integrated photonics 16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF ABSTRACT 18.NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Richard Soref...The impact of present and potential applications is discussed. key words: silicon, optoelectronics, integrated photonics 1. Introduction Silicon

  8. Looking at single photons using hybrid detectors

    NASA Astrophysics Data System (ADS)

    Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jungmann-Smith, J. H.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.; Tinti, G.

    2015-01-01

    The SLS detector group develops silicon hybrid detectors for X-ray applications used in synchrotron facilities all over the world. Both microstrip and pixel detectors with either single photon counting or charge integrating read out are being developed. Low noise charge integrating detectors can be operated in single photon regime, i.e. with low fluxes and high frame rates in order to detect on average less than one photon per cluster of 2×2 pixels. In this case, the analog signal read out for each single X-ray provides information about the energy of the photon. Moreover the signal from neighboring channels can be correlated in order to overcome or even take advantage of charge sharing. The linear charge collection model describing microstrip detectors and large pixels is unsuitable for the calibration of small pitch pixel detectors due to the large amount of charge sharing occurring also in the corner region. For this reason, the linear charge collection model is extended to the case of small pixels and tested with monochromatic X-ray data acquired using the 25 μm pitch MÖNCH and the 75 μm pitch JUNGFRAU detectors. The successful outcome of the calibration of the MÖNCH detector is proven by the high energy resolution of the spectrum obtained by accumulating the counts from more than 6000 channels after the correction of the gain mismatches using the proposed model.

  9. All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength.

    PubMed

    Haret, Laurent-Daniel; Checoury, Xavier; Han, Zheng; Boucaud, Philippe; Combrié, Sylvain; De Rossi, Alfredo

    2010-11-08

    We demonstrate an all-silicon photodetector working at telecom wavelength. The device is a simple metal-semiconductor-metal detector fabricated on silicon-on-insulator. A two-dimensional photonic crystal nanocavity (Q=60,000) is used to increase the response that arises from the linear and two-photon absorption of silicon. The responsivity of the detector is about 20 mA/W and its bandwidth is larger than 1 GHz.

  10. Silicon-Gas Pixel Detector

    NASA Astrophysics Data System (ADS)

    Bashindzhagyan, G.; Korotkova, N.; Romaniouk, A.; Sinev, N.; Tikhomirov, V.

    2017-01-01

    The proposed Silicon-Gas Pixel Detector (SGPD) combines the advantages of Silicon and Gas-pixel detectors (GPD). 7 micron space resolution and down to 0.2 degree both angles measurements are inside 10 mm thick and very low material detector. Silicon pixels implemented directly into electronic chip structure allow to know exact time when particle crossed the detector and to use SGPD as a completely self-triggered device. Binary readout, advanced data collection and analysis on hardware level allow to obtain all the information in less than 1 microsecond and to use SGPD for the fast trigger generation.

  11. Silicon active photonic devices

    NASA Astrophysics Data System (ADS)

    Dimitropoulos, Dimitrios

    Active photonic devices utilizing the optical nonlinearities of silicon have emerged in the last 5 years and the effort for commercial photonic devices in the material that has been the workhorse of electronics has been building up since. This dissertation presents the theory for some of these devices. We are concerned herein with CW lasers, amplifiers and wavelength converters that are based on the Raman effect. There have already been cursory experimental demonstrations of these devices and some of their limitations are already apparent. Most of the limitations observed are because of the appearance of effects that are competing with stimulated Raman scattering. Under the high optical powers that are necessary for the Raman effect (tens to hundrends of mW's) the process of optical two-photon (TPA) absorption occurs. The absorption of optical power that it causes itself is weak but in the process electrons and holes are generated which can further absorb light through the free-carrier absorption effect (FCA). The effective "lifetime" that these carriers have determines the magnitude of the FCA loss. We present a model for the carrier lifetime in Silicon-On-Insulator (SOI) waveguides and numerical simulations to understand how this critical parameter varies and how it can be controlled. A p-i-n junction built along SOI waveguides can help achieve lifetime of the order of 20--100 ps but the price one has to pay is on-chip electrical power consumption on the order of 100's of mWs. We model CW Raman lasers and we find that the carrier lifetime reduces the output power. If the carrier lifetime exceeds a certain "critical" value optical losses become overwhelming and lasing is impossible. As we show, in amplifiers, the nonlinear loss does not only result in diminished gain, but also in a higher noise figure. Finally the effect of Coherent anti-Stokes Raman scattering (CARS) is examined. The effect is important because with a pump frequency at 1434nm coherent power

  12. Silicon photonics beyond silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Chiles, Jeff; Fathpour, Sasan

    2017-05-01

    The standard platform for silicon photonics has been ridge or channel waveguides fabricated on silicon-on-insulator (SOI) wafers. SOI waveguides are so versatile and the technology built around it is so mature and popular that silicon photonics is almost regarded as synonymous with SOI photonics. However, due to several shortcomings of SOI photonics, novel platforms have been recently emerging. The shortcomings could be categorized into two sets: (a) those due to using silicon as the waveguide core material; and (b) those due to using silicon dioxide as the bottom cladding layer. Several heterogeneous platforms have been developed to address the first set of shortcomings. In such important heterogeneous integrated photonic platforms, the top silicon layer of SOI is typically replaced by a thin film of another optical material with a refractive index higher than the buried oxide (BOX) bottom cladding layer. Silicon is still usually preferred as the substrate of choice, but silicon has no optical functionality. In contrast, the second category of solutions aim at using silicon as the core waveguide material, while resolving issues related to the BOX layer. Particularly, one of the main drawbacks of SOI is that the BOX layer induces high optical loss in the mid-wavelength infrared (mid-IR) range. Accordingly, a host of platforms have been proposed, and some have been demonstrated, in which the BOX is replaced with insulating materials that have low intrinsic loss in the mid-IR. Examples are sapphire, lithium niobate, silicon nitride and air (suspended Si membrane waveguides). Although silicon is still the preferred substrate, sometimes a thin film of silicon, on which the optical waveguide is formed, is directly placed on top of another substrate (e.g., sapphire or lithium niobate). These alternative substrates act as both mechanical support and the lower cladding layer. In addition to the demands of mid-IR photonics, the non-SOI platforms can potentially offer other

  13. Luneburg lens in silicon photonics.

    PubMed

    Di Falco, Andrea; Kehr, Susanne C; Leonhardt, Ulf

    2011-03-14

    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms.

  14. Silicon photonics developments in Europe

    NASA Astrophysics Data System (ADS)

    Fedeli, J. M.; Marti, J.; Van Thourhout, D.; Reed, G.; White, T.

    2009-02-01

    Silicon photonics have generated an increasing interest in the recent year, mainly for optical telecommunications or for optical interconnects in microelectronic circuits. The rationale of silicon photonics is the reduction of the cost of photonic systems through the integration of photonic components and an IC on a common chip, or in the longer term, the enhancement of IC performance with the introduction of optics inside a high performance chip. In order to build a Opto-Electronic Integrated circuit (OEIC), different European project has been launched in Europe. The PICMOS project demonstrated the full optical link on a silicon circuit with InP bonded devices. The following WADIMOS project goes a step further with the demonstration of an optical network on chip with WDM µlaser for on-chip intraconnection between IC cores. The UK silicon photonics project and the European HELIOS project are focalized on telecommunications devices with the aim of photonics and electronics integration which can be done either by wafer bonding of an SOI photonic circuit or by low temperature fabrication of a photonic layer at the metallization levels. Recent development on building blocks will be reported such as low loss couplers, Si and InP µdisk modulators, high speed Ge or InGaAs photodetectors.

  15. SINGLE: single photon sensitive cryogenic light detectors

    NASA Astrophysics Data System (ADS)

    Biassoni, Matteo; SINGLE Collaboration

    2017-09-01

    Thermal detectors operated at few mK as calorimeters are a powerful tool for the study of rare particle physics processes. In order to implement particle identification, light detection can be effectively performed by means of other thermal detectors operated as light sensors. This configuration can be used also in large scale, thousand-channels setups, but the light sensors must be sensitive enough to detect few, possibly a single, photons. The SINGLE project described here aims at producing silicon based, large area devices that can be operated as thermal detectors with single-photon sensitivity, and demonstrate the reliability of the performance, scalability of the production process and integrability with present and next generation cryogenic experiments for the search for rare events.

  16. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, Robert A.; Mendez, Victor P.; Kaplan, Selig N.

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  17. Amorphous silicon ionizing particle detectors

    DOEpatents

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  18. Ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, H. F.-W.; Ely, S.; Fadeyev, V.; Galloway, Z.; Ngo, J.; Parker, C.; Petersen, B.; Seiden, A.; Zatserklyaniy, A.; Cartiglia, N.; Marchetto, F.; Bruzzi, M.; Mori, R.; Scaringella, M.; Vinattieri, A.

    2013-12-01

    We propose to develop a fast, thin silicon sensor with gain capable to concurrently measure with high precision the space (∼10 μm) and time (∼10 ps) coordinates of a particle. This will open up new application of silicon detector systems in many fields. Our analysis of detector properties indicates that it is possible to improve the timing characteristics of silicon-based tracking sensors, which already have sufficient position resolution, to achieve four-dimensional high-precision measurements. The basic sensor characteristics and the expected performance are listed, the wide field of applications are mentioned and the required R&D topics are discussed.

  19. Rad-Hard Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Giorgi, Marco

    2005-06-01

    For the next generation of High Energy Physics (HEP) Experiments silicon microstrip detectors working in harsh radiation environments with excellent performances are necessary. The irradiation causes bulk and surface damages that modify the electrical properties of the detector. Solutions like AC coupled strips, overhanging metal contact, <100> crystal lattice orientation, low resistivity n-bulk and Oxygenated substrate are studied for rad-hard detectors. The paper presents an outlook of these technologies.

  20. Belle II Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Bulla, L.; Caria, G.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; De Pietro, G.; Divekar, S. T.; Doležal, Z.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kambara, N.; Kang, K. H.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kumar, R.; Kun, W.; Kvasnička, P.; La Licata, C.; Lanceri, L.; Lettenbicher, J.; Libby, J.; Lueck, T.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Resmi, P. K.; Rozanska, M.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Watanuki, S.; Watanabe, M.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Zani, L.

    2017-02-01

    The Belle II experiment at the SuperKEKB asymmetric energy e+e‑ collider in KEK, Japan will operate at an instantaneous luminosity 40 times larger than that of its predecessor, Belle. It is built with an aim of collecting a huge amount of data (50 ab‑1 by 2025) for precise CP violation measurements and new physics search. Thus, we need an accurate vertex determination and reconstruction of low momentum tracks which will be achieved with the help of vertex detector (VXD). The Belle II VXD consists of two layers of DEPFET pixels (`Pixel Detector') and four layers of double-sided silicon microstrip sensors (`Silicon Vertex Detector'), assembled over carbon fibre ribs. In this paper, we discuss about the Belle II Silicon Vertex Detector, especially its design and key features; we also present its module (`ladder') assembly and testing procedures.

  1. ePIXfab: the silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Khanna, Amit; Drissi, Youssef; Dumon, Pieter; Baets, Roel; Absil, Philippe; Pozo, J.; Lo Cascio, D. M. R.; Fournier, M.; Fédéli, J.-M.; Fulbert, L.; Zimmermann, L.; Tillack, B.; Aalto, T.; O'Brien, P.; Deptuck, D.; Xu, J.; Gale, D.

    2013-05-01

    ePIXfab-The European Silicon Photonics Support Center continues to provide state-of-the-art silicon photonics solutions to academia and industry for prototyping and research. ePIXfab is a consortium of EU research centers providing diverse expertise in the silicon photonics food chain, from training users in designing silicon photonics chips to fiber pigtailed chips. While ePIXfab provides world-wide users access to advanced silicon photonics it also focuses its attention to expanding the silicon photonics infrastructure through a network of design houses, access partners and industrial collaborations.

  2. The MIC photon counting detector

    NASA Astrophysics Data System (ADS)

    Fordham, J. L. A.; Bone, D. A.; Oldfield, M. K.; Bellis, J. G.; Norton, T. J.

    1992-12-01

    The MIC (Microchannel plate Intensified CCD (Charge Coupled Device)) detector is an advanced performance Micro Channel Plate (MCP) intensified CCD photon counting detector developed for high resolution, high dynamic range, astronomical applications. The heart of the detector is an MCP intensifier developed specifically for photon counting applications. The maximum detector format is 3072 by 2304 pixels. The measured resolution of the detector system is 18 micrometers FWHM at 490 nm. The detector is linear to approximately 1,000,000 events/detector area/sec on a flat field and linear to count rates up to 200 events/object/s on star images. Two versions of the system have been developed. The first for ground based astronomical applications based around a 40 mm diameter intensifier, was proven in trials at a number of large optical telescopes. The second, specifically for the ESA X-Ray Multi Mirror Mission (XMM), where the MIC has been accepted as the blue detector for the incorporated Optical Monitor (OM). For the XMM-OM, the system is based around a 25 mm diameter intensifier. At present, under development, is a 75 mm diameter version of the detector which will have a maximum format of 6144 by 4608 pixels. Details of the MIC detector and its performance are presented.

  3. The UK silicon photonics project

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Wright, N.; Mashanovich, G. Z.; Timotijevic, B.; Krauss, T. F.; White, T. P.; O'Faolain, L.; Kelsall, R. W.; Lever, L.; Ikonic, Z.; Valvanis, A.; Leadley, D.; Findlayson, E.; Jenkins, R. M.

    2010-05-01

    The project is a consortium based activity involving researchers from the UK institutions of the Universities of Surrey, St. Andrews, Leeds, Warwick, and Southampton, as well as the commercial research institution QinetiQ. The aims of the project are to progress the state of the art in Silicon Photonics, in the areas of waveguides, modulators, couplers, detectors, Raman processes, and integration with electronics. Thus the field is vast, and impossible to cover comprehensively in one project, nor indeed in one paper. The programme is run on a truly collaborative basis, with members from each institution running one or more work packages within the project, each co-ordinating work from their own plus other institutions. To date, the most well developed work has emerged from the activity on basic waveguides and their characteristics, the modulator activity, optical filters, and work on Raman Amplifiers. This work will be the main focus of this paper, but an attempt will be made to update the audience on the remaining activities within the project. By the nature of the project, much of the work is medium term, and hence some activities are not expected to yield viable results until at least next year, hence the concentration on some activities rather than all activities at this stage.

  4. Simulation study of an energy sensitive photon counting silicon strip detector for computed tomography: identifying strengths and weaknesses and developing work-arounds

    NASA Astrophysics Data System (ADS)

    Bornefalk, Hans; Xu, Cheng; Svensson, Christer; Danielsson, Mats

    2010-04-01

    We model the effect of signal pile-up on the energy resolution of a photon counting silicon detector designed for high flux spectral CT with sub-millimeter pixel size. Various design parameters, such as bias voltage, lower threshold level for discarding of electronic noise and the entire electronic read out chain are modeled and realistic parameter settings are determined. We explicitly model the currents induced on the collection electrodes of a pixel and superimpose signals emanating from events in neighboring pixels, either due to charge sharing or signals induced during charge collection. Electronic noise is added to the pulse train before feeding it through a model of the read out electronics where the pulse height spectrum is saved to yield the detector energy response function. The main result of this study is that a lower threshold of 5 keV and a rather long time constant of the shaping filter (τ0 = 30 ns) are needed to discard induced pulses from events in neighboring pixels. These induction currents occur even if no charge is being deposited in the analyzed pixel from the event in the neighboring pixel. There is also only a limited gain in energy resolution by increasing the bias voltage to 1000 V from 600 V. We show that with these settings the resulting energy resolution, as measured by the FWHM/E of the photo peak, is 5% at 70 keV.

  5. Silicon photonics: some remaining challenges

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Topley, R.; Khokhar, A. Z.; Thompson, D. J.; Stanković, S.; Reynolds, S.; Chen, X.; Soper, N.; Mitchell, C. J.; Hu, Y.; Shen, L.; Martinez-Jimenez, G.; Healy, N.; Mailis, S.; Peacock, A. C.; Nedeljkovic, M.; Gardes, F. Y.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Mashanovich, G. Z.

    2016-03-01

    This paper discusses some of the remaining challenges for silicon photonics, and how we at Southampton University have approached some of them. Despite phenomenal advances in the field of Silicon Photonics, there are a number of areas that still require development. For short to medium reach applications, there is a need to improve the power consumption of photonic circuits such that inter-chip, and perhaps intra-chip applications are viable. This means that yet smaller devices are required as well as thermally stable devices, and multiple wavelength channels. In turn this demands smaller, more efficient modulators, athermal circuits, and improved wavelength division multiplexers. The debate continues as to whether on-chip lasers are necessary for all applications, but an efficient low cost laser would benefit many applications. Multi-layer photonics offers the possibility of increasing the complexity and effectiveness of a given area of chip real estate, but it is a demanding challenge. Low cost packaging (in particular, passive alignment of fibre to waveguide), and effective wafer scale testing strategies, are also essential for mass market applications. Whilst solutions to these challenges would enhance most applications, a derivative technology is emerging, that of Mid Infra-Red (MIR) silicon photonics. This field will build on existing developments, but will require key enhancements to facilitate functionality at longer wavelengths. In common with mainstream silicon photonics, significant developments have been made, but there is still much left to do. Here we summarise some of our recent work towards wafer scale testing, passive alignment, multiplexing, and MIR silicon photonics technology.

  6. Belle II silicon vertex detector

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-09-01

    The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.

  7. The CDF Silicon Vertex Detector

    SciTech Connect

    Tkaczyk, S.; Carter, H.; Flaugher, B.

    1993-09-01

    A silicon strip vertex detector was designed, constructed and commissioned at the CDF experiment at the Tevatron collider at Fermilab. The mechanical design of the detector, its cooling and monitoring are presented. The front end electronics employing a custom VLSI chip, the readout electronics and various components of the SVX system are described. The system performance and the experience with the operation of the detector in the radiation environment are discussed. The device has been taking colliding beams data since May of 1992, performing at its best design specifications and enhancing the physics program of CDF.

  8. Argon-39 Background in DUNE Photon Detectors

    NASA Astrophysics Data System (ADS)

    Sinev, Gleb; DUNE Collaboration

    2016-03-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kt liquid argon detector that will be constructed 5000 ft underground in the Sanford Underground Research Facility in order to study neutrino and proton decay physics. Instrumenting liquid argon with photon detectors to record scintillation in addition to the ionization signal can significantly improve time and energy resolution of the experiment. Argon produces light with wavelength of 128 nm. The reference design for the photon detectors includes acrylic bars covered in wavelength shifter, where the scintillation light can be captured and reemitted with longer wavelengths, then detected using silicon photomultipliers. Radiological backgrounds may noticeably deteriorate the photon detection system performance, especially for low-energy interactions. A particularly important background comes from argon-39 decays, because argon-39 is present in natural argon that will be used in DUNE and the background rate increases with the size of the experiment. The effect of the argon-39 background has been studied and is presented in this talk.

  9. Performance of ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Cartiglia, N.; Baselga, M.; Dellacasa, G.; Ely, S.; Fadeyev, V.; Galloway, Z.; Garbolino, S.; Marchetto, F.; Martoiu, S.; Mazza, G.; Ngo, J.; Obertino, M.; Parker, C.; Rivetti, A.; Shumacher, D.; F-W Sadrozinski, H.; Seiden, A.; Zatserklyaniy, A.

    2014-02-01

    The development of Low-Gain Avalanche Detectors has opened up the possibility of manufacturing silicon detectors with signal larger than that of traditional sensors. In this paper we explore the timing performance of Low-Gain Avalanche Detectors, and in particular we demonstrate the possibility of obtaining ultra-fast silicon detector with time resolution of less than 20 picosecond.

  10. Silicon Detectors for PET and SPECT

    NASA Astrophysics Data System (ADS)

    Cochran, Eric R.

    Silicon detectors use state-of-the-art electronics to take advantage of the semiconductor properties of silicon to produce very high resolution radiation detectors. These detectors have been a fundamental part of high energy, nuclear, and astroparticle physics experiments for decades, and they hold great potential for significant gains in both PET and SPECT applications. Two separate prototype nuclear medicine imaging systems have been developed to explore this potential. Both devices take advantage of the unique properties of high resolution pixelated silicon detectors, designed and developed as part of the CIMA collaboration and built at The Ohio State University. The first prototype is a Compton SPECT imaging system. Compton SPECT, also referred to as electronic collimation, is a fundamentally different approach to single photon imaging from standard gamma cameras. It removes the inherent coupling of spatial resolution and sensitivity in mechanically collimated systems and provides improved performance at higher energies. As a result, Compton SPECT creates opportunities for the development of new radiopharmaceuticals based on higher energy isotopes as well as opportunities to expand the use of current isotopes such as 131I due to the increased resolution and sensitivity. The Compton SPECT prototype consists of a single high resolution silicon detector, configured in a 2D geometry, in coincidence with a standard NaI scintillator detector. Images of point sources have been taken for 99mTc (140 keV), 131I (364keV), and 22Na (511 keV), demonstrating the performance of high resolution silicon detectors in a Compton SPECT system. Filtered back projection image resolutions of 10 mm, 7.5 mm, and 6.7 mm were achieved for the three different sources respectively. The results compare well with typical SPECT resolutions of 5-15 mm and validate the claims of improved performance in Compton SPECT imaging devices at higher source energies. They also support the potential of

  11. Single photon detector design features

    NASA Astrophysics Data System (ADS)

    Zaitsev, Sergey V.; Kurochkin, Vladimir L.; Kurochkin, Yury V.

    2016-12-01

    In the report are discussed the laboratory test results of SPAD detectors with InGaAs / InP avalanche photodiodes, operating in Geiger mode. Device operating in synchronous mode with the dead timer setting for proper working conditions of photodiodes. The report materials will showing the functional block diagram of the detector, real operating signals in the receiver path and clock circuits and main results of measurements. The input signal of the synchronous detector is the clock, which determines the time positions of expected photons arrival. Increasing the clock speed 1-300 MHz or getting more time positions of the time grid, we provide increased capacity for time position code of signals, when QKD information transmitted over the nets. At the same time, the maximum attainable speed of photon reception is limited by diode dead time. Diode quantum noise are minimized by inclusion of a special time interval - dead time 0.1-10 usec, after each received and registered a photon. The lowest attainable value of the dead time is determined as a compromise between transients in electrical circuits, passive avalanche «quenching» circuit and thermal transients cooling crystal diode, after each avalanche pass though photodiode. Achievable time and speed parameters are discussed with specific examples of detectors.

  12. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip

    PubMed Central

    Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H. X.

    2016-01-01

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips. PMID:26792424

  13. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    PubMed

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  14. VSiPMT a new photon detector

    NASA Astrophysics Data System (ADS)

    Di Capua, F.; Barbarino, G.; Barbato, F. C. T.; Campajola, L.; de Asmundis, R.; De Rosa, G.; Migliozzi, P.; Mollo, C. M.; Vivolo, D.

    2016-04-01

    Photon detection is a key factor to study many physical processes in several areas of fundamental physics research. Focusing the attention on photodetectors for particle astrophysics, the future experiments aimed at the study of very high-energy or extremely rare phenomena (e.g. dark matter, proton decay, neutrinos from astrophysical sources) will require additional improvements in linearity, gain, quantum efficiency and single photon counting capability. To meet the requirements of these class of experiments, we propose a new design for a modern hybrid photodetector: the VSiPMT (Vacuum Silicon PhotoMultiplier Tube). The idea is to replace the classical dynode chain of a PMT with a SiPM, which therefore acts as an electron detector and amplifier. The aim is to match the large sensitive area of a photocathode with the performances of the SiPM technology.

  15. Hybrid Integrated Platforms for Silicon Photonics

    PubMed Central

    Liang, Di; Roelkens, Gunther; Baets, Roel; Bowers, John E.

    2010-01-01

    A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  16. Comparative study of silicon detectors

    SciTech Connect

    Allier, C.P.; Valk, H.; Huizenga, J.; Bom, V.R.; Hollander, R.W.; Eijk, C.W.E. van

    1998-06-01

    The authors studied three different types of silicon sensors: PIN diodes, circular drift detectors, both made at the Delft University of Technology (DUT), and Hamamatsu S5345 avalanche photodiodes. Measurements have been carried out in the same optimized experimental setup, both at room temperature and at low temperatures. Comparison is made for direct X-ray detection and CsI(Tl) scintillation light readout.

  17. Silicon nitride microwave photonic circuits.

    PubMed

    Roeloffzen, Chris G H; Zhuang, Leimeng; Taddei, Caterina; Leinse, Arne; Heideman, René G; van Dijk, Paulus W L; Oldenbeuving, Ruud M; Marpaung, David A I; Burla, Maurizio; Boller, Klaus-J

    2013-09-23

    We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleX™) waveguide technology. All functionalities are built using the same basic building blocks, namely straight waveguides, phase tuning elements and directional couplers. We recall previously shown measurements on high spurious free dynamic range microwave photonic (MWP) link, ultra-wideband pulse generation, instantaneous frequency measurements, Hilbert transformers, microwave polarization networks and demonstrate new measurements and functionalities on a 16 channel optical beamforming network and modulation format transformer as well as an outlook on future microwave photonic platform integration, which will lead to a significantly reduced footprint and thereby enables the path to commercially viable MWP systems.

  18. Cryogenic Silicon Detectors with Implanted Contacts for the Detection of Visible Photons Using the Neganov-Trofimov-Luke Effect

    NASA Astrophysics Data System (ADS)

    Defay, X.; Mondragon, E.; Willers, M.; Langenkämper, A.; Lanfranchi, J.-C.; Münster, A.; Zöller, A.; Wawoczny, S.; Steiger, H.; Hitzler, F.; Bruhn, C.; Schönert, S.; Potzel, W.; Chapellier, M.

    2016-07-01

    There is a common need in astroparticle experiments such as direct dark matter detection, double-beta decay without emission of neutrinos [0 ν β β ] and coherent neutrino nucleus scattering experiments for light detectors with a very low energy threshold. By employing the Neganov-Trofimov-Luke Effect, the thermal signal of particle interactions in a semiconductor absorber operated at cryogenic temperatures can be amplified by drifting the photogenerated electrons and holes in an electric field. This technology is not used in current experiments, in particular because of a reduction of the signal amplitude with time which is due to trapping of the charges within the absorber. We present here the first results of a novel type of Neganov-Trofimov-Luke Effect light detector with an electric field configuration designed to improve the charge collection within the semiconductor.

  19. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  20. Silicon photonics broadband modulation-based isolator.

    PubMed

    Doerr, C R; Chen, L; Vermeulen, D

    2014-02-24

    We discuss an optical isolator design based on tandem phase modulators in a long interferometer. It provides low-loss, broadband isolation in a photonic integrated circuit without requiring special materials or fabrication steps. It was demonstrated in silicon photonics.

  1. Image Science with Photon-Processing Detectors

    PubMed Central

    Caucci, Luca; Jha, Abhinav K.; Furenlid, Lars R.; Clarkson, Eric W.; Kupinski, Matthew A.; Barrett, Harrison H.

    2015-01-01

    We introduce and discuss photon-processing detectors and we compare them with photon-counting detectors. By estimating a relatively small number of attributes for each collected photon, photon-processing detectors may help understand and solve a fundamental theoretical problem of any imaging system based on photon-counting detectors, namely null functions. We argue that photon-processing detectors can improve task performance by estimating position, energy, and time of arrival for each collected photon. We consider a continuous-to-continuous linear operator to relate the object being imaged to the collected data, and discuss how this operator can be analyzed to derive properties of the imaging system. Finally, we derive an expression for the characteristic functional of an imaging system that produces list-mode data. PMID:26347396

  2. A micron resolution optical scanner for characterization of silicon detectors

    NASA Astrophysics Data System (ADS)

    Shukla, R. A.; Dugad, S. R.; Garde, C. S.; Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.

    2014-02-01

    The emergence of high position resolution (˜10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 - σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  3. A micron resolution optical scanner for characterization of silicon detectors

    SciTech Connect

    Shukla, R. A.; Dugad, S. R. Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.; Garde, C. S.

    2014-02-15

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  4. A micron resolution optical scanner for characterization of silicon detectors.

    PubMed

    Shukla, R A; Dugad, S R; Garde, C S; Gopal, A V; Gupta, S K; Prabhu, S S

    2014-02-01

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 - σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  5. Radiation experience with the CDF silicon detectors

    SciTech Connect

    Husemann, Ulrich; /Rochester U.

    2005-11-01

    The silicon detectors of the CDF experiment at the Tevatron collider are operated in a harsh radiation environment. The lifetime of the silicon detectors is limited by radiation damage, and beam-related incidents are an additional risk. This article describes the impact of beam-related incidents on detector operation and the effects of radiation damage on electronics noise and the silicon sensors. From measurements of the depletion voltage as a function of the integrated luminosity, estimates of the silicon detector lifetime are derived.

  6. Portable triple silicon detector telescope spectrometer for skin dosimetry

    NASA Astrophysics Data System (ADS)

    Helt-Hansen, J.; Larsen, H. E.; Christensen, P.

    1999-12-01

    The features of a newly developed portable beta telescope spectrometer are described. The detector probe uses three silicon detectors with the thickness: 50μm/150μm/7000μm covered by a 2μm thick titanium window. Rejection of photon contributions from mixed beta/photon exposures is achieved by coincidence requirements between the detector signals. The silicon detectors, together with cooling aggregate, bias supplies, preamplifiers and charge generation for calibration are contained in a handy detector probe. Through a 3- or 10-m cable the detector unit is connected to a compact, portable processing unit including a laptop computer executing control, monitor, histogram and display tasks. The use of digital signal processing at an early stage of the signal chain has facilitated the achievement of a compact, low-weight device. 256 channels are available for each of the three detectors. The LabVIEWTM software distributed by National Instruments was used for all program developments for the spectrometer, comprising also the capability of evaluating the absorbed dose rates from the measured beta spectra. The report describes the capability of the telescope spectrometer to measure beta and photon spectra as well as beta dose rates in mixed beta/photon radiation fields. It also describes the main features of the digital signal-processing electronics.

  7. The Heavy Photon Search test detector

    DOE PAGES

    Battaglieri, M.; Boyarinov, S.; Bueltmann, S.; ...

    2014-12-17

    The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment's technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in themore » e⁺e⁻invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e⁺e⁻ pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. In addition, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.« less

  8. The Heavy Photon Search test detector

    NASA Astrophysics Data System (ADS)

    Battaglieri, M.; Boyarinov, S.; Bueltmann, S.; Burkert, V.; Celentano, A.; Charles, G.; Cooper, W.; Cuevas, C.; Dashyan, N.; DeVita, R.; Desnault, C.; Deur, A.; Egiyan, H.; Elouadrhiri, L.; Essig, R.; Fadeyev, V.; Field, C.; Freyberger, A.; Gershtein, Y.; Gevorgyan, N.; Girod, F.-X.; Graf, N.; Graham, M.; Griffioen, K.; Grillo, A.; Guidal, M.; Haller, G.; Hansson Adrian, P.; Herbst, R.; Holtrop, M.; Jaros, J.; Kaneta, S.; Khandaker, M.; Kubarovsky, A.; Kubarovsky, V.; Maruyama, T.; McCormick, J.; Moffeit, K.; Moreno, O.; Neal, H.; Nelson, T.; Niccolai, S.; Odian, A.; Oriunno, M.; Paremuzyan, R.; Partridge, R.; Phillips, S. K.; Rauly, E.; Raydo, B.; Reichert, J.; Rindel, E.; Rosier, P.; Salgado, C.; Schuster, P.; Sharabian, Y.; Sokhan, D.; Stepanyan, S.; Toro, N.; Uemura, S.; Ungaro, M.; Voskanyan, H.; Walz, D.; Weinstein, L. B.; Wojtsekhowski, B.

    2015-03-01

    The Heavy Photon Search (HPS), an experiment to search for a hidden sector photon in fixed target electroproduction, is preparing for installation at the Thomas Jefferson National Accelerator Facility (JLab) in the Fall of 2014. As the first stage of this project, the HPS Test Run apparatus was constructed and operated in 2012 to demonstrate the experiment's technical feasibility and to confirm that the trigger rates and occupancies are as expected. This paper describes the HPS Test Run apparatus and readout electronics and its performance. In this setting, a heavy photon can be identified as a narrow peak in the e+e- invariant mass spectrum above the trident background or as a narrow invariant mass peak with a decay vertex displaced from the production target, so charged particle tracking and vertexing are needed for its detection. In the HPS Test Run, charged particles are measured with a compact forward silicon microstrip tracker inside a dipole magnet. Electromagnetic showers are detected in a PbW04 crystal calorimeter situated behind the magnet, and are used to trigger the experiment and identify electrons and positrons. Both detectors are placed close to the beam line and split top-bottom. This arrangement provides sensitivity to low-mass heavy photons, allows clear passage of the unscattered beam, and avoids the spray of degraded electrons coming from the target. The discrimination between prompt and displaced e+e- pairs requires the first layer of silicon sensors be placed only 10 cm downstream of the target. The expected signal is small, and the trident background huge, so the experiment requires very large statistics. Accordingly, the HPS Test Run utilizes high-rate readout and data acquisition electronics and a fast trigger to exploit the essentially 100% duty cycle of the CEBAF accelerator at JLab.

  9. Solid-state single-photon detectors

    NASA Astrophysics Data System (ADS)

    Zappa, Franco; Lacaita, Andrea L.; Cova, Sergio D.; Lovati, Piergiorgio G.

    1996-04-01

    This paper reviews the state of the art of some new photon-counting detectors. We measured the performance of various commercial silicon, germanium, and InGaAs/InP single-photon avalanche diodes (SPADs) in the 0.8- to 1.55-micrometer wavelength range. Optimized silicon devices reach 70% quantum efficiency at 800 nm and can work up to 1.1 micrometer. However, germanium and InGaAs SPADs are sensitive up to 1.4 and 1.6 micrometers, respectively, with a few percent quantum efficiency. In all samples we measured noise equivalent powers less than 10-15 W/Hz1/2. Compared with vacuum tubes, SPADs have different advantages such as reliability, roughness, low voltage and simple electronic requirements. Furthermore, it is easy to arrange them in the form of arrays, which are required in astronomy and luminescence measurements. Moreover we investigated the performance of a SPAD germanium quad sensor. By using proper driving electronics we avoided optical cross-talk between pixels and we present here the preliminary results of our experiments.

  10. Cascaded systems analysis of photon counting detectors

    SciTech Connect

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Lundqvist, M.; Fredenberg, E.; Siewerdsen, J. H.

    2014-10-15

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f{sub 50} (spatial

  11. Cascaded systems analysis of photon counting detectors

    PubMed Central

    Xu, J.; Zbijewski, W.; Gang, G.; Stayman, J. W.; Taguchi, K.; Lundqvist, M.; Fredenberg, E.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Methods: A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1–7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. Results: The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at

  12. Photon Detection Systems for Modern Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Seitz, B.; Britting, A.; Cowie, E.; Eyrich, W.; Hoek, M.; Keri, T.; Lehmann, A.; Montgomery, R.; Uhlig, F.

    Modern experiments in hadronic physics require detector systems capable of identifying and reconstructing all final-state particle and their momentum vectors. The ANDA experiment at FAIR and the CLAS 12 experiment and Jefferson Laboratory both plan to use imaging Cherenkov counters for particle identification. CLAS 12 will feature a Ring Imaging CHerenkov counter (RICH), while ANDA plans to construct Cherenkov counters relying on the Detections of Internally Reflected Cherenkov light (DIRC). These detectors require high-rate, single-photon capable light detection systems with sufficient granularity and position resolution. Several candidate systems are available, ranging from multi-anode photomultiplier tubes to micro-channel plate systems to silicon photomultipliers. Each of these detection solutions has particular advantages and disadvantages. Detailed studies of the rate dependence, cross-talk, time-resolution and position resolution fro a range of commercially available photon detection solutions are presented and evaluated on their applicability to the ANDA and CLAS12 Cherenkov counters.

  13. Silicon photonics and challenges for fabrication

    NASA Astrophysics Data System (ADS)

    Feilchenfeld, N. B.; Nummy, K.; Barwicz, T.; Gill, D.; Kiewra, E.; Leidy, R.; Orcutt, J. S.; Rosenberg, J.; Stricker, A. D.; Whiting, C.; Ayala, J.; Cucci, B.; Dang, D.; Doan, T.; Ghosal, M.; Khater, M.; McLean, K.; Porth, B.; Sowinski, Z.; Willets, C.; Xiong, C.; Yu, C.; Yum, S.; Giewont, K.; Green, W. M. J.

    2017-03-01

    Silicon photonics is rapidly becoming the key enabler for meeting the future data speed and volume required by the Internet of Things. A stable manufacturing process is needed to deliver cost and yield expectations to the technology marketplace. We present the key challenges and technical results from both 200mm and 300mm facilities for a silicon photonics fabrication process which includes monolithic integration with CMOS. This includes waveguide patterning, optical proximity correction for photonic devices, silicon thickness uniformity and thick material patterning for passive fiber to waveguide alignment. The device and process metrics show that the transfer of the silicon photonics process from 200mm to 300mm will provide a stable high volume manufacturing platform for silicon photonics designs.

  14. Electromagnetic Shower Reconstruction for theSilicon Detector

    SciTech Connect

    Meyer, N.

    2005-12-08

    This report presents a two-pass reconstruction algorithm for electromagnetic showers, based on studies with simulated photons in the highly segmented Silicon Tungsten calorimeter of the Silicon Detector concept for the International Linear Collider. It is shown that the initial reconstruction and identification of the dense shower cores allows shower separation down to 3 cm distance between two photons on the calorimeter surface. First results are shown for the subsequent collection of unassociated hits around the shower cores necessary to reconstruct complete energy deposits by individual particles.

  15. Construction of the CDF silicon vertex detector

    SciTech Connect

    Skarha, J.; Barnett, B.; Boswell, C.; Snider, F.; Spies, A.; Tseng, J.; Vejcik, S. ); Carter, H.; Flaugher, B.; Gonzales, B.; Hrycyk, M.; Nelson, C.; Segler, S.; Shaw, T.; Tkaczyk, S.; Turner, K.; Wesson, T. ); Carithers, W.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneider, O.; Wester

    1992-04-01

    Technical details and methods used in constructing the CDF silicon vertex detector are presented. This description includes a discussion of the foam-carbon fiber composite structure used to silicon microstrip detectors and the procedure for achievement of 5 {mu}m detector alignment. The construction of the beryllium barrel structure, which houses the detector assemblies, is also described. In addition, the 10 {mu}m placement accuracy of the detectors in the barrel structure is discussed and the detector cooling and mounting systems are described. 12 refs.

  16. Improved photon counting efficiency calibration using superconducting single photon detectors

    NASA Astrophysics Data System (ADS)

    Gan, Haiyong; Xu, Nan; Li, Jianwei; Sun, Ruoduan; Feng, Guojin; Wang, Yanfei; Ma, Chong; Lin, Yandong; Zhang, Labao; Kang, Lin; Chen, Jian; Wu, Peiheng

    2015-10-01

    The quantum efficiency of photon counters can be measured with standard uncertainty below 1% level using correlated photon pairs generated through spontaneous parametric down-conversion process. Normally a laser in UV, blue or green wavelength range with sufficient photon energy is applied to produce energy and momentum conserved photon pairs in two channels with desired wavelengths for calibration. One channel is used as the heralding trigger, and the other is used for the calibration of the detector under test. A superconducting nanowire single photon detector with advantages such as high photon counting speed (<20 MHz), low dark count rate (<50 counts per second), and wideband responsivity (UV to near infrared) is used as the trigger detector, enabling correlated photons calibration capabilities into shortwave visible range. For a 355nm single longitudinal mode pump laser, when a superconducting nanowire single photon detector is used as the trigger detector at 1064nm and 1560nm in the near infrared range, the photon counting efficiency calibration capabilities can be realized at 532nm and 460nm. The quantum efficiency measurement on photon counters such as photomultiplier tubes and avalanche photodiodes can be then further extended in a wide wavelength range (e.g. 400-1000nm) using a flat spectral photon flux source to meet the calibration demands in cutting edge low light applications such as time resolved fluorescence and nonlinear optical spectroscopy, super resolution microscopy, deep space observation, and so on.

  17. Silicon as an Unconventional Detector in Positron Emission Tomography

    PubMed Central

    Clinthorne, N.H.; Brzezinski, K.; Chesi, E.; Cochran, E.; Grkovski, M.; Grošičar, B.; Honscheid, K.; Huh, S.; Kagan, H.; Lacasta, C.; Linhart, V.; Mikuž, M.; Smith, S.; Stankova, V.; Studen, A.; Weilhammer, P.; žontar, D.

    2012-01-01

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been a successful in achieving ~5mm FWHM spatial resolution in human studies and ~1mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches. Foremost is its high spatial resolution in 3D: our past studies show that there is little diffculty in localizing 511 keV photon interactions to ~0.3mm. Since spatial resolution and reconstructed image noise trade off in a highly non-linear manner that depends on the PET instrument response, if high spatial resolution is the goal, silicon may outperform standard PET detectors even though it has lower sensitivity to 511 keV photons. To evaluate silicon in a variety of PET “magnifying glass” configurations, an instrument has been constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors can be inserted to emulate dual-ring or imaging probe geometries. Recent results have demonstrated 0.7 mm FWHM resolution using pad detectors having 16×32 arrays of 1.4mm square pads and setups have shown promising results in both small animal and PET imaging probe configurations. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration. PMID:23230345

  18. A complete design flow for silicon photonics

    NASA Astrophysics Data System (ADS)

    Pond, James; Cone, Chris; Chrostowski, Lukas; Klein, Jackson; Flueckiger, Jonas; Liu, Amy; McGuire, Dylan; Wang, Xu

    2014-05-01

    Broad adoption of silicon photonics technology for photonic integrated circuits requires standardized design flows that are similar to what is available for analog and mixed signal electrical circuit design. We have developed a design flow that combines mature electronic design automation (EDA) software with optical simulation software. An essential component of any design flow, whether electrical or photonic, is the ability to accurately simulate largescale circuits. This is particularly important when the behavior of the circuit is not trivially related to the individual component performance. While this is clearly the case for electronic circuits consisting of hundreds to billions of transistors, it is already becoming important in photonic circuits such as WDM transmitters, where signal cross talk needs to be considered, as well as optical cross-connect switches. In addition, optical routing to connect different components requires the introduction of additional waveguide sections, waveguide bends, and waveguide crossings, which affect the overall circuit performance. Manufacturing variability can also have dramatic circuit-level consequences that need to be simulated. Circuit simulations must rely on compact models that can accurately represent the behavior of each component, and the compact model parameters must be extracted from physical level simulation and experimental results. We show how large scale circuits can be simulated in both the time and frequency domains, including the effects of bidirectional and, where appropriate, multimode and multichannel photonic waveguides. We also show how active, passive and nonlinear individual components such as grating couplers, waveguides, splitters, filters, electro-optical modulators and detectors can be simulated using a combination of electrical and optical algorithms, and good agreement with experimental results can be obtained. We then show how parameters, with inclusion of fabrication process variations, can

  19. CARS-based silicon photonics

    NASA Astrophysics Data System (ADS)

    Vermeulen, Nathalie; Debaes, Christof; Thienpont, Hugo

    2009-05-01

    In this invited paper, we will first discuss the recent research progress regarding silicon-on-insulator (SOI) Raman wavelength converters, the working principle of which is based on the four-wave mixing process of coherent anti-Stokes Raman scattering (CARS). Next, we will present our research results on other aspects of CARS in SOI waveguides. First, starting from the basic formalism for CARS we will show that, in contrast to what most scientists believe, CARS exchanges energy with the Raman medium in which it takes place and is even able to extract energy (i.e. extract phonons) from it. Furthermore, we will introduce a novel CARS-based approach to reduce the heat dissipation in Raman lasers due to the quantum defect between pump and lasing photons, and we will numerically demonstrate that with this "CARS-based heat mitigation technique" the quantum-defect heating in SOI waveguide Raman lasers could be reduced with as much as 35%.

  20. Gamma radiation effects on silicon photonic waveguides.

    PubMed

    Grillanda, Stefano; Singh, Vivek; Raghunathan, Vivek; Morichetti, Francesco; Melloni, Andrea; Kimerling, Lionel; Agarwal, Anuradha M

    2016-07-01

    To support the use of integrated photonics in harsh environments, such as outer space, the hardness threshold to high-energy radiation must be established. Here, we investigate the effects of gamma (γ) rays, with energy in the MeV-range, on silicon photonic waveguides. By irradiation of high-quality factor amorphous silicon core resonators, we measure the impact of γ rays on the materials incorporated in our waveguide system, namely amorphous silicon, silicon dioxide, and polymer. While we show the robustness of amorphous silicon and silicon dioxide up to an absorbed dose of 15 Mrad, more than 100× higher than previous reports on crystalline silicon, polymer materials exhibit changes with doses as low as 1 Mrad.

  1. Room temperature photon number resolving detector for infared wavelengths.

    PubMed

    Pomarico, Enrico; Sanguinetti, Bruno; Thew, Rob; Zbinden, Hugo

    2010-05-10

    In this paper we present a photon number resolving detector at infrared wavelengths, operating at room temperature and with a large dynamic range. It is based on the up-conversion of a signal at 1559 nm into visible wavelength and on its detection by a thermoelectrically cooled multi-pixel silicon avalanche photodiodode, also known as a Silicon Photon Multiplier. With the appropriate up-conversion this scheme can be implemented for arbitrary wavelengths above the visible spectral window. The preservation of the poissonian statistics when detecting coherent states is studied and the cross-talk effects on the detected signal can be easily estimated in order to calibrate the detector. This system is well suited for measuring very low intensities at infrared wavelengths and for analyzing multiphoton quantum states. (c) 2010 Optical Society of America.

  2. Integrated silicon and silicon nitride photonic circuits on flexible substrates.

    PubMed

    Chen, Yu; Li, Mo

    2014-06-15

    Flexible integrated photonic devices based on crystalline materials on plastic substrates have a promising potential in many unconventional applications. In this Letter, we demonstrate a fully integrated photonic system including ring resonators and grating couplers, based on both crystalline silicon and silicon nitride, on flexible plastic substrate by using the stamping-transfer method. A high yield has been achieved by a simple, yet reliable transfer method without significant performance degradation.

  3. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  4. Interferometric microscopy of silicon photonic devices

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Mahon, Rita; Goetz, Peter G.; Pruessner, Marcel; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.

    2015-02-01

    Silicon photonics provides the ability to construct complex photonic circuits that act on the amplitude and phase of multiple optical channels. Many applications of silicon photonics depend on maintenance of optical coherence among the various waveguides and structures on the chip. Other applications can depend on the modal structures of the waveguides. All these application require the ability to characterize the amplitude and phase of individual optical channels. Fourier imaging with high numerical aperture microscope objectives has been used to image the intensity of individual channels of photonic structures in both real and Fourier space. In other work, holographic imaging of multimode fibers has allowed modal decomposition. In this work we use interferometric microscopy to image the amplitude and phase of a variety of silicon photonic structures. These include a multimode interference splitter and a multimode waveguide under various excitation conditions.

  5. Silicon photonics at the University of Surrey

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Mashanovich, G.; Gardes, F. Y.; Gwilliam, R. M.; Wright, N. M.; Thomson, D. J.; Timotijevic, B. D.; Litvinenko, K. L.; Headley, W. R.; Smith, A. J.; Knights, A. P.; Jessop, P. E.; Tarr, N. G.; Deane, J. H. B.

    2009-05-01

    Silicon Photonics is a field that has seen rapid growth and dramatic changes in the past 5 years. According to the MIT Communications Technology Roadmap [1], which aims to establish a common architecture platform across market sectors with a potential $20B in annual revenue, silicon photonics is among the top ten emerging technologies. This has in part been a consequence of the recent involvement of large semiconductor companies around the world, particularly in the USA. Significant investment in the technology has also followed in Japan, Korea, and in the European Union. Low cost is a key driver, so it is imperative to pursue technologies that are mass-producible. Therefore, Silicon Photonics continues to progress at a rapid rate. This paper will describe some of the work of the Silicon Photonics Group at the University of Surrey in the UK. The work is concerned with the sequential development of a series of components for silicon photonic optical circuits, and some of the components are discussed here. In particular the paper will present work on optical waveguides, optical filters, modulators, and lifetime modification of carriers generated by two photon absorption, to improve the performance of Raman amplifiers in silicon.

  6. Energy dispersive photon counting detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.

    2013-09-01

    We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.

  7. P-type silicon drift detectors

    SciTech Connect

    Walton, J.T.; Krieger, B.; Krofcheck, D.; O`Donnell, R.; Odyniec, G.; Partlan, M.D.; Wang, N.W.

    1995-06-01

    Preliminary results on 16 CM{sup 2}, position-sensitive silicon drift detectors, fabricated for the first time on p-type silicon substrates, are presented. The detectors were designed, fabricated, and tested recently at LBL and show interesting properties which make them attractive for use in future physics experiments. A pulse count rate of approximately 8 {times} l0{sup 6} s{sup {minus}1} is demonstrated by the p-type silicon drift detectors. This count rate estimate is derived by measuring simultaneous tracks produced by a laser and photolithographic mask collimator that generates double tracks separated by 50 {mu}m to 1200 {mu}m. A new method of using ion-implanted polysilicon to produce precise valued bias resistors on the silicon drift detectors is also discussed.

  8. Ultrafast photon drag detector for intersubband spectroscopy

    NASA Astrophysics Data System (ADS)

    Sigg, Hans; Graf, Stephan; Kwakernaak, Martin H.; Margotte, Bernd; Erni, Daniel; Van Son, Peter; Köhler, Klaus

    1996-03-01

    The photon drag effect of a 2D electron gas is measured using the ps infrared pulses of the wavelength-tunable free electron laser source FELIX. The pulsed photon drag response is found to depend critically on the coupling characteristics of the electrical circuit. We therefore developed an impedance and velocity matched photon drag detector. It consists of a GaAs/AlGaAs multi quantum well sample which forms an integral part of a microstrip line. A Ge-prism enables incoupling at the critical total reflection angle. This novel transmission line integrated photon drag detector (TIP-detector) generates signal transients below 10 ps rise and fall times. Its continuous spectral response through the intersubband resonance is investigated at room temperature and at T=100 K. An analysis of the spectral lineshape of the photon drag current response yields information about the momentum relaxation times of the electrons in the ground and excited subbands.

  9. Amorphous Silicon Based Neutron Detector

    SciTech Connect

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield using low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies

  10. Gaseous detectors of ultraviolet and visible photons

    SciTech Connect

    Peskov, V.; Borovik-Romanov, A.; Volynshikova, T.

    1994-06-01

    We describe simple methods of manufacturing in a laboratory gaseous detectors of visible photons with GaAs(Cs) and SbCs photocathodes and Ti getters. Covered by CsI protective layers they are robust enough to be stable under ordinary experimental conditions. First attempts to use these detectors for crystal scintillator and fiber readout are presented.

  11. Novel Photon Detectors for RICH Applications

    SciTech Connect

    Va'vra, Jaroslav

    2003-01-08

    The paper describes recent developments in Photon Detectors useful for the Cherenkov Ring Imaging Applications (RICH). We discuss the Multi-anode PMTs, HPDs with PIN and APD diode readout, APDs working in a Geiger mode, and the gaseous multi-pattern detectors. The paper emphasizes their timing properties. We give equal chance to fragile, not yet entirely proven ideas.

  12. Compton imager using room temperature silicon detectors

    NASA Astrophysics Data System (ADS)

    Kurfess, James D.; Novikova, Elena I.; Phlips, Bernard F.; Wulf, Eric A.

    2007-08-01

    We have been developing a multi-layer Compton Gamma Ray Imager using position-sensitive, intrinsic silicon detectors. Advantages of this approach include room temperature operation, reduced Doppler broadening, and use of conventional silicon fabrication technologies. We have obtained results on the imaging performance of a multi-layer instrument where each layer consists of a 2×2 array of double-sided strip detectors. Each detector is 63 mm×63 mm×2 mm thick and has 64 strips providing a strip pitch of approximately 0.9 mm. The detectors were fabricated by SINTEF ICT (Oslo Norway) from 100 mm diameter wafers. The use of large arrays of silicon detectors appears especially advantageous for applications that require excellent sensitivity, spectral resolution and imaging such as gamma ray astrophysics, detection of special nuclear materials, and medical imaging. The multiple Compton interactions (three or more) in the low-Z silicon enable the energy and direction of the incident gamma ray to be determined without full deposition of the incident gamma-ray energy in the detector. The performance of large volume instruments for various applications are presented, including an instrument under consideration for NASA's Advanced Compton Telescope (ACT) mission and applications to Homeland Security. Technology developments that could further extend the sensitivity and performance of silicon Compton Imagers are presented, including the use of low-energy (few hundred keV) electron tracking within novel silicon detectors and the potential for a wafer-bonding approach to produce thicker, position-sensitive silicon detectors with an associated reduction of required electronics and instrument cost.

  13. Silicon photodiode soft x-ray detectors for pulsed power experiments

    SciTech Connect

    Idzorek, G.C.; Bartlett, R.J.

    1997-10-01

    Silicon photodiodes offer a number of advantages over conventional photocathode type soft x-ray detectors in pulsed power experiments. These include a nominally flat response, insensitivity to surface contamination, low voltage biasing requirements, sensitivity to low energy photons, excellent detector to detector response reproducibility, and ability to operate in poor vacuum or gas backfilled experiments. Silicon photodiodes available from International Radiation Detectors (IRD), Torrance, California have been characterized for absolute photon response from 1 eV to 10 keV photon energy, time response, and signal saturation levels. The authors calibration measurements show factor of ten deviations from the silicon photodiode theoretical flat response due to diode sensitivity outside the center `sensitive area`. Detector response reproducibility between diodes appears to be better than 5%. Time response measurements show a 10-90% rise time of about 0.1 nanoseconds and a fall time of about 0.5 nanoseconds.

  14. Preliminary Results on Compton Electrons in Silicon Drift Detector

    NASA Astrophysics Data System (ADS)

    Conka-Nurdan, T.; Nurdan, K.; Laihem, K.; Walenta, A. H.; Fiorini, C.; Freisleben, B.; Hornel, N.; Pavel, N. A.; Struder, L.

    2004-10-01

    Silicon drift detectors (SDD) with on-chip electronics have found many applications in different fields. A detector system has recently been designed and built to study the electrons from Compton scatter events in such a detector. The reconstruction of the Compton electrons is a crucial issue for Compton imaging. The equipment consists of a monolithic array of 19 channel SDDs and an Anger camera. Photons emitted from a finely collimated source undergo Compton scattering within the SDD where the recoil electron is absorbed. The scattered photon is subsequently observed by photoelectric absorption in the second detector. The coincidence events are used to get the energy, position, and direction of the Compton electrons. Because the on-chip transistors provide the first stage amplification, the SDDs provide outstanding noise performance and fast shaping, so that very good energy resolution can be obtained even at room temperature. The drift detectors require a relatively low number of readout channels for large detector areas. Custom-designed analog and digital electronics provide fast readout of the SDDs. The equipment is designed such that the measurements can be done in all detector orientations and kinematical conditions. The first results obtained with this detector system will be presented in this paper.

  15. p-type silicon detector for brachytherapy dosimetry.

    PubMed

    Piermattei, A; Azario, L; Monaco, G; Soriani, A; Arcovito, G

    1995-06-01

    The sensitivity of a cylindrical p-type silicon detector was studied by means of air and water measurements using different photon beams. A lead filter cap around the diode was used to minimize the dependence of the detector response as a function of the brachytherapy photon energy. The radial dose distribution of a high-activity 192Ir source in a brachytherapy phantom was measured by means of the shielded diode and the agreement of these data with theoretical evaluations confirms the method used to compensate diode response in the intermediate energy range. The diode sensitivity was constant over a wide range of dose rates of clinical interest; this allowed one to have a small detector calibrated in terms of absorbed dose in a medium. Theoretical evaluations showed that a single shielding filter around the p-type diode is sufficient to obtain accurate dosimetry for 192Ir, 137Cs, and 60Co brachytherapy sources.

  16. The Silicon Pixel Detector for ALICE Experiment

    SciTech Connect

    Fabris, D.; Bombonati, C.; Dima, R.; Lunardon, M.; Moretto, S.; Pepato, A.; Bohus, L. Sajo; Scarlassara, F.; Segato, G.; Shen, D.; Turrisi, R.; Viesti, G.; Anelli, G.; Boccardi, A.; Burns, M.; Campbell, M.; Ceresa, S.; Conrad, J.; Kluge, A.; Kral, M.

    2007-10-26

    The Inner Tracking System (ITS) of the ALICE experiment is made of position sensitive detectors which have to operate in a region where the track density may be as high as 50 tracks/cm{sup 2}. To handle such densities detectors with high precision and granularity are mandatory. The Silicon Pixel Detector (SPD), the innermost part of the ITS, has been designed to provide tracking information close to primary interaction point. The assembly of the entire SPD has been completed.

  17. Silicon mirror suspensions for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Cumming, A. V.; Cunningham, L.; Hammond, G. D.; Haughian, K.; Hough, J.; Kroker, S.; Martin, I. W.; Nawrodt, R.; Rowan, S.; Schwarz, C.; van Veggel, A. A.

    2014-01-01

    One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. This paper reports results of analytical and experimental studies of the limits to thermal noise performance of cryogenic silicon test mass suspensions set by two constraints on suspension fibre dimensions: the minimum dimensions required to allow conductive cooling for extracting incident laser beam heat deposited in the mirrors; and the minimum dimensions of fibres (set by their tensile strength) which can support test masses of the size envisaged for use in future detectors. We report experimental studies of breaking strength of silicon ribbons, and resulting design implications for the feasibility of suspension designs for future gravitational wave detectors using silicon suspension fibres. We analyse the implication of this study for thermal noise performance of cryogenically cooled silicon suspensions.

  18. Monolithic pixel detectors in silicon on insulator technology

    SciTech Connect

    Bisello, Dario

    2013-05-06

    Silicon On Insulator (SOI) is becoming an attractive technology to fabricate monolithic pixel detectors. The possibility of using the depleted resistive substrate as a drift collection volume and to connect it by means of vias through the buried oxide to the pixel electronic makes this kind of approach interesting both for particle and photon detection. In this paper I report the results obtained in the development of monolithic pixel detectors in an SOI technology by a collaboration between groups from the University and INFN of Padova (Italy) and the LBNL and the SCIPP at UCSC (USA).

  19. Monolithic pixel detectors in silicon on insulator technology

    NASA Astrophysics Data System (ADS)

    Bisello, Dario

    2013-05-01

    Silicon On Insulator (SOI) is becoming an attractive technology to fabricate monolithic pixel detectors. The possibility of using the depleted resistive substrate as a drift collection volume and to connect it by means of vias through the buried oxide to the pixel electronic makes this kind of approach interesting both for particle and photon detection. In this paper I report the results obtained in the development of monolithic pixel detectors in an SOI technology by a collaboration between groups from the University and INFN of Padova (Italy) and the LBNL and the SCIPP at UCSC (USA).

  20. Silicon radiation detectors: materials and applications

    SciTech Connect

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented.

  1. Large-scale quantum photonic circuits in silicon

    NASA Astrophysics Data System (ADS)

    Harris, Nicholas C.; Bunandar, Darius; Pant, Mihir; Steinbrecher, Greg R.; Mower, Jacob; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Englund, Dirk

    2016-08-01

    Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today's classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards

  2. Photonic Crystal Sensors Based on Porous Silicon

    PubMed Central

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  3. Photonic crystal sensors based on porous silicon.

    PubMed

    Pacholski, Claudia

    2013-04-09

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  4. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  5. Deep UV photon-counting detectors and applications

    NASA Astrophysics Data System (ADS)

    Shaw, Gary A.; Siegel, Andrew M.; Model, Joshua; Geboff, Adam; Soloviev, Stanislav; Vert, Alexey; Sandvik, Peter

    2009-05-01

    Photon counting detectors are used in many diverse applications and are well-suited to situations in which a weak signal is present in a relatively benign background. Examples of successful system applications of photon-counting detectors include ladar, bio-aerosol detection, communication, and low-light imaging. A variety of practical photon-counting detectors have been developed employing materials and technologies that cover the waveband from deep ultraviolet (UV) to the near-infrared. However, until recently, photoemissive detectors (photomultiplier tubes (PMTs) and their variants) were the only viable technology for photon-counting in the deep UV region of the spectrum. While PMTs exhibit extremely low dark count rates and large active area, they have other characteristics which make them unsuitable for certain applications. The characteristics and performance limitations of PMTs that prevent their use in some applications include bandwidth limitations, high bias voltages, sensitivity to magnetic fields, low quantum efficiency, large volume and high cost. Recently, DARPA has initiated a program called Deep UV Avalanche Photodiode (DUVAP) to develop semiconductor alternatives to PMTs for use in the deep UV. The higher quantum efficiency of Geiger-mode avalanche photodiode (GM-APD) detectors and the ability to fabricate arrays of individually-addressable detectors will open up new applications in the deep UV. In this paper, we discuss the system design trades that must be considered in order to successfully replace low-dark count, large-area PMTs with high-dark count, small-area GM-APD detectors. We also discuss applications that will be enabled by the successful development of deep UV GM-APD arrays, and we present preliminary performance data for recently fabricated silicon carbide GM-APD arrays.

  6. Silicon photonic heater-modulator

    DOEpatents

    Zortman, William A.; Trotter, Douglas Chandler; Watts, Michael R.

    2015-07-14

    Photonic modulators, methods of forming photonic modulators and methods of modulating an input optical signal are provided. A photonic modulator includes a disk resonator having a central axis extending along a thickness direction of the disk resonator. The disk resonator includes a modulator portion and a heater portion. The modulator portion extends in an arc around the central axis. A PN junction of the modulator portion is substantially normal to the central axis.

  7. Mid-infrared nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoping; Kuyken, Bart; Green, William M. J.; Osgood, Richard M.; Baets, Roel; Roelkens, Gunther

    2014-03-01

    Recently there has been a growing interest in mid-infrared (mid-IR) photonic technology with a wavelength of operation approximately from 2-14 μm. Among several established mid-IR photonic platforms, silicon nanophotonic platform could potentially offer ultra-compact, and monolithically integrated mid-IR photonic devices and device arrays, which could have board impact in the mid-IR technology, such as molecular spectroscopy, and imaging. At room temperature, silicon has a bandgap ~ 1.12 eV resulting in vanishing two-photon absorption (TPA) for mid-IR wavelengths beyond 2.2 μm, which, coupled with silicon's large nonlinear index of refraction and its strong waveguide optical confinement, enables efficient nonlinear processes in the mid-IR. By taking advantage of these nonlinear processes and judicious dispersion engineering in silicon waveguides, we have recently demonstrated a handful of silicon mid-IR nonlinear components, including optical parametric amplifiers (OPA), broadband sources, and a wavelength translator. Silicon nanophotonic waveguide's anomalous dispersion design, providing four-wave-mixing (FWM) phase-matching, has enabled the first demonstration of silicon mid-IR optical parametric amplifier (OPA) with a net off-chip gain exceeding 13 dB. In addition, reduction of propagation losses and balanced second and fourth order waveguide dispersion design led to an OPA with an extremely broadband gain spectrum from 1.9-2.5 μm and >50 dB parametric gain, upon which several novel silicon mid-IR light sources were built, including a mid-IR optical parametric oscillator, and a supercontinuum source. Finally, a mid-IR wavelength translation device, capable of translating signals near 2.4 μm to the telecom-band near 1.6 μm with simultaneous 19 dB gain, was demonstrated.

  8. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits

    PubMed Central

    Pernice, W.H.P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G.N.; Sergienko, A.V.; Tang, H.X.

    2012-01-01

    Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics. PMID:23271658

  9. Characterization of silicon carbide and diamond detectors for neutron applications

    NASA Astrophysics Data System (ADS)

    Hodgson, M.; Lohstroh, A.; Sellin, P.; Thomas, D.

    2017-10-01

    The presence of carbon atoms in silicon carbide and diamond makes these materials ideal candidates for direct fast neutron detectors. Furthermore the low atomic number, strong covalent bonds, high displacement energies, wide bandgap and low intrinsic carrier concentrations make these semiconductor detectors potentially suitable for applications where rugged, high-temperature, low-gamma-sensitivity detectors are required, such as active interrogation, electronic personal neutron dosimetry and harsh environment detectors. A thorough direct performance comparison of the detection capabilities of semi-insulating silicon carbide (SiC–SI), single crystal diamond (D–SC), polycrystalline diamond (D–PC) and a self-biased epitaxial silicon carbide (SiC–EP) detector has been conducted and benchmarked against a commercial silicon PIN (Si–PIN) diode, in a wide range of alpha (Am-241), beta (Sr/Y-90), ionizing photon (65 keV to 1332 keV) and neutron radiation fields (including 1.2 MeV to 16.5 MeV mono-energetic neutrons, as well as neutrons from AmBe and Cf-252 sources). All detectors were shown to be able to directly detect and distinguish both the different radiation types and energies by using a simple energy threshold discrimination method. The SiC devices demonstrated the best neutron energy discrimination ratio (E\\max (n=5 MeV)/E\\max (n=1 MeV)  ≈5), whereas a superior neutron/photon cross-sensitivity ratio was observed in the D–PC detector (E\\max (AmBe)/E\\max (Co-60)  ≈16). Further work also demonstrated that the cross-sensitivity ratios can be improved through use of a simple proton-recoil conversion layer. Stability issues were also observed in the D–SC, D–PC and SiC–SI detectors while under irradiation, namely a change of energy peak position and/or count rate with time (often referred to as the polarization effect). This phenomenon within the detectors was non-debilitating over the time period tested (> 5 h) and, as such, stable

  10. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  11. Nonclassical light sources for silicon photonics

    NASA Astrophysics Data System (ADS)

    Bajoni, Daniele; Galli, Matteo

    2017-09-01

    Quantum photonics has recently attracted a lot of attention for its disruptive potential in emerging technologies like quantum cryptography, quantum communication and quantum computing. Driven by the impressive development in nanofabrication technologies and nanoscale engineering, silicon photonics has rapidly become the platform of choice for on-chip integration of high performing photonic devices, now extending their functionalities towards quantum-based applications. Focusing on quantum Information Technology (qIT) as a key application area, we review recent progress in integrated silicon-based sources of nonclassical states of light. We assess the state of the art in this growing field and highlight the challenges that need to be overcome to make quantum photonics a reliable and widespread technology.

  12. Modeling silicon diode energy response factors for use in therapeutic photon beams.

    PubMed

    Eklund, Karin; Ahnesjö, Anders

    2009-10-21

    Silicon diodes have good spatial resolution, which makes them advantageous over ionization chambers for dosimetry in fields with high dose gradients. However, silicon diodes overrespond to low-energy photons, that are more abundant in scatter which increase with large fields and larger depths. We present a cavity-theory-based model for a general response function for silicon detectors at arbitrary positions within photon fields. The model uses photon and electron spectra calculated from fluence pencil kernels. The incident photons are treated according to their energy through a bipartition of the primary beam photon spectrum into low- and high-energy components. Primary electrons from the high-energy component are treated according to Spencer-Attix cavity theory. Low-energy primary photons together with all scattered photons are treated according to large cavity theory supplemented with an energy-dependent factor K(E) to compensate for energy variations in the electron equilibrium. The depth variation of the response for an unshielded silicon detector has been calculated for 5 x 5 cm(2), 10 x 10 cm(2) and 20 x 20 cm(2) fields in 6 and 15 MV beams and compared with measurements showing that our model calculates response factors with deviations less than 0.6%. An alternative method is also proposed, where we show that one can use a correlation with the scatter factor to determine the detector response of silicon diodes with an error of less than 3% in 6 MV and 15 MV photon beams.

  13. Intravitreal properties of porous silicon photonic crystals

    PubMed Central

    Cheng, L; Anglin, E; Cunin, F; Kim, D; Sailor, M J; Falkenstein, I; Tammewar, A; Freeman, W R

    2009-01-01

    Aim To determine the suitability of porous silicon photonic crystals for intraocular drug-delivery. Methods A rugate structure was electrochemically etched into a highly doped p-type silicon substrate to create a porous silicon film that was subsequently removed and ultrasonically fractured into particles. To stabilise the particles in aqueous media, the silicon particles were modified by surface alkylation (using thermal hydrosilylation) or by thermal oxidation. Unmodified particles, hydrosilylated particles and oxidised particles were injected into rabbit vitreous. The stability and toxicity of each type of particle were studied by indirect ophthalmoscopy, biomicroscopy, tonometry, electroretinography (ERG) and histology. Results No toxicity was observed with any type of the particles during a period of >4 months. Surface alkylation led to dramatically increased intravitreal stability and slow degradation. The estimated vitreous half-life increased from 1 week (fresh particles) to 5 weeks (oxidised particles) and to 16 weeks (hydrosilylated particles). Conclusion The porous silicon photonic crystals showed good biocompatibility and may be used as an intraocular drug-delivery system. The intravitreal injectable porous silicon photonic crystals may be engineered to host a variety of therapeutics and achieve controlled drug release over long periods of time to treat chronic vitreoretinal diseases. PMID:18441177

  14. EDITORIAL: Special issue on silicon photonics

    NASA Astrophysics Data System (ADS)

    Reed, Graham; Paniccia, Mario; Wada, Kazumi; Mashanovich, Goran

    2008-06-01

    The technology now known as silicon photonics can be traced back to the pioneering work of Soref in the mid-1980s (see, for example, Soref R A and Lorenzo J P 1985 Electron. Lett. 21 953). However, the nature of the research conducted today, whilst it builds upon that early work, is unrecognizable in terms of technology metrics such as device efficiency, device data rate and device dimensions, and even in targeted applications areas. Today silicon photonics is still evolving, and is enjoying a period of unprecedented attention in terms of research focus. This has resulted in orders-of-magnitude improvement in device performance over the last few years to levels many thought were impossible. However, despite the existence of the research field for more than two decades, silicon is still regarded as a 'new' optical material, one that is being manipulated and modified to satisfy the requirements of a range of applications. This is somewhat ironic since silicon is one of the best known and most thoroughly studied materials, thanks to the electronics industry that has made silicon its material of choice. The principal reasons for the lack of study of this 'late developer' are that (i) silicon is an indirect bandgap material and (ii) it does not exhibit a linear electro-optic (Pockels) effect. The former condition means that it is difficult to make a laser in silicon based on the intrinsic performance of the material, and consequently, in recent years, researchers have attempted to modify the material to artificially engineer the conditions for lasing to be viable (see, for example, the review text, Jalali B et al 2008 Silicon Lasers in Silicon Photonics: The State of the Art ed G T Reed (New York: Wiley)). The latter condition means that optical modulators are intrinsically less efficient in silicon than in some other materials, particularly when targeting the popular telecommunications wavelengths around 1.55 μm. Therefore researchers have sought alternative

  15. Gated Silicon Drift Detector Fabricated from a Low-Cost Silicon Wafer

    PubMed Central

    Matsuura, Hideharu; Sakurai, Shungo; Oda, Yuya; Fukushima, Shinya; Ishikawa, Shohei; Takeshita, Akinobu; Hidaka, Atsuki

    2015-01-01

    Inexpensive high-resolution silicon (Si) X-ray detectors are required for on-site surveys of traces of hazardous elements in food and soil by measuring the energies and counts of X-ray fluorescence photons radially emitted from these elements. Gated silicon drift detectors (GSDDs) are much cheaper to fabricate than commercial silicon drift detectors (SDDs). However, previous GSDDs were fabricated from 10-kΩ·cm Si wafers, which are more expensive than 2-kΩ·cm Si wafers used in commercial SDDs. To fabricate cheaper portable X-ray fluorescence instruments, we investigate GSDDs formed from 2-kΩ·cm Si wafers. The thicknesses of commercial SDDs are up to 0.5 mm, which can detect photons with energies up to 27 keV, whereas we describe GSDDs that can detect photons with energies of up to 35 keV. We simulate the electric potential distributions in GSDDs with Si thicknesses of 0.5 and 1 mm at a single high reverse bias. GSDDs with one gate pattern using any resistivity Si wafer can work well for changing the reverse bias that is inversely proportional to the resistivity of the Si wafer. PMID:26007742

  16. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  17. High speed analog-to-digital conversion with silicon photonics

    NASA Astrophysics Data System (ADS)

    Holzwarth, C. W.; Amatya, R.; Araghchini, M.; Birge, J.; Byun, H.; Chen, J.; Dahlem, M.; DiLello, N. A.; Gan, F.; Hoyt, J. L.; Ippen, E. P.; Kärtner, F. X.; Khilo, A.; Kim, J.; Kim, M.; Motamedi, A.; Orcutt, J. S.; Park, M.; Perrott, M.; Popovic, M. A.; Ram, R. J.; Smith, H. I.; Zhou, G. R.; Spector, S. J.; Lyszczarz, T. M.; Geis, M. W.; Lennon, D. M.; Yoon, J. U.; Grein, M. E.; Schulein, R. T.; Frolov, S.; Hanjani, A.; Shmulovich, J.

    2009-02-01

    Sampling rates of high-performance electronic analog-to-digital converters (ADC) are fundamentally limited by the timing jitter of the electronic clock. This limit is overcome in photonic ADC's by taking advantage of the ultra-low timing jitter of femtosecond lasers. We have developed designs and strategies for a photonic ADC that is capable of 40 GSa/s at a resolution of 8 bits. This system requires a femtosecond laser with a repetition rate of 2 GHz and timing jitter less than 20 fs. In addition to a femtosecond laser this system calls for the integration of a number of photonic components including: a broadband modulator, optical filter banks, and photodetectors. Using silicon-on-insulator (SOI) as the platform we have fabricated these individual components. The silicon optical modulator is based on a Mach-Zehnder interferometer architecture and achieves a VπL of 2 Vcm. The filter banks comprise 40 second-order microring-resonator filters with a channel spacing of 80 GHz. For the photodetectors we are exploring ion-bombarded silicon waveguide detectors and germanium films epitaxially grown on silicon utilizing a process that minimizes the defect density.

  18. Proton Straggling in Thick Silicon Detectors

    NASA Technical Reports Server (NTRS)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.

    2017-01-01

    Straggling functions for protons in thick silicon radiation detectors are computed by Monte Carlo simulation. Mean energy loss is constrained by the silicon stopping power, providing higher straggling at low energy and probabilities for stopping within the detector volume. By matching the first four moments of simulated energy-loss distributions, straggling functions are approximated by a log-normal distribution that is accurate for Vavilov k is greater than or equal to 0:3. They are verified by comparison to experimental proton data from a charged particle telescope.

  19. Proton straggling in thick silicon detectors

    NASA Astrophysics Data System (ADS)

    Selesnick, R. S.; Baker, D. N.; Kanekal, S. G.

    2017-03-01

    Straggling functions for protons in thick silicon radiation detectors are computed by Monte Carlo simulation. Mean energy loss is constrained by the silicon stopping power, providing higher straggling at low energy and probabilities for stopping within the detector volume. By matching the first four moments of simulated energy-loss distributions, straggling functions are approximated by a log-normal distribution that is accurate for Vavilov κ ≳ 0.3 . They are verified by comparison to experimental proton data from a charged particle telescope.

  20. Performance Characteristics of Thick Silicon Double-sided Strip Detectors.

    PubMed

    Shokouhi, Sepideh; McDonald, Benjamin S; Durko, Heather L; Fritz, Mark A; Furenlid, Lars R; Peterson, Todd E

    2007-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60 mm × 60 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 µm strip pitch is attainable. Good flood uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD shows high potential for small-animal SPECT imaging.

  1. Performance Characteristics of Thick Silicon Double-sided Strip Detectors

    PubMed Central

    Shokouhi, Sepideh; McDonald, Benjamin S.; Durko, Heather L.; Fritz, Mark A.; Furenlid, Lars R.; Peterson, Todd E.

    2015-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60 mm × 60 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 µm strip pitch is attainable. Good flood uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD shows high potential for small-animal SPECT imaging. PMID:26778911

  2. Dual concentric crystal low energy photon detector

    DOEpatents

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  3. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  4. Status of the CDF silicon detector

    SciTech Connect

    Grinstein, Sebastian; /Harvard U.

    2006-05-01

    The CDF Run II silicon micro-strip detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment. Since the commissioning period ended in 2002, about 85% of the 730 k readout channels have been consistently provided good data. A summary of the recent improvements in the DAQ system as well as experience of maintaining and operating such a large, complex detector are presented.

  5. PHENIX Silicon Stripixel Detector at RHIC

    NASA Astrophysics Data System (ADS)

    Taneja, Swadhin

    2010-11-01

    A novel design for a silicon sensor consisting of ``spirals'' of silicon strip-pixel was developed at the Brookhaven National Laboratory. This strip-pixel silicon sensor is a single-sided, DC-coupled, two-dimensional detector. A silicon vertex tracker (VTX) is now under construction and will be installed at PHENIX in fall 2010. The strip-pixel ladders will form the two outer barrels of the VTX. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometer and will enable precision measurements of heavy-quark production (charm and beauty) in A + A, p(d) + A, and polarized p + p collisions. In this talk I will focus on the silicon modules and the ladder assembly. I will show the performance results of the ladders.

  6. Topological Order in Silicon Photonics

    DTIC Science & Technology

    2017-02-07

    attention in many fields of physics , ranging from condensed matter to ultra cold gases. Recently, photonic systems have been under investigation to...Light & Matter , “Measuring Topological Invariants in Photonic Systems” Mt. Holyoke College (Aug 2015) , Invited [15] Workshop Physics of bulk-edge...Synthetic Topological Quantum Matter , Beijing, “Topological physics in nanophotonics” (Aug 2016), invited [19] META conference, Malaga, Spain, “Topological

  7. Performance of single-photon-counting PILATUS detector modules

    PubMed Central

    Kraft, P.; Bergamaschi, A.; Broennimann, Ch.; Dinapoli, R.; Eikenberry, E. F.; Henrich, B.; Johnson, I.; Mozzanica, A.; Schlepütz, C. M.; Willmott, P. R.; Schmitt, B.

    2009-01-01

    PILATUS is a silicon hybrid pixel detector system, operating in single-photon-counting mode, that has been developed at the Paul Scherrer Institut for the needs of macromolecular crystallography at the Swiss Light Source (SLS). A calibrated PILATUS module has been characterized with monochromatic synchrotron radiation. The influence of charge sharing on the count rate and the overall energy resolution of the detector were investigated. The dead-time of the system was determined using the attenuated direct synchrotron beam. A single module detector was also tested in surface diffraction experiments at the SLS, whereby its performance regarding fluorescence suppression and saturation tolerance were evaluated, and have shown to greatly improve the sensitivity, reliability and speed of surface diffraction data acquisition. PMID:19395800

  8. Performance of single-photon-counting PILATUS detector modules.

    PubMed

    Kraft, P; Bergamaschi, A; Broennimann, Ch; Dinapoli, R; Eikenberry, E F; Henrich, B; Johnson, I; Mozzanica, A; Schlepütz, C M; Willmott, P R; Schmitt, B

    2009-05-01

    PILATUS is a silicon hybrid pixel detector system, operating in single-photon-counting mode, that has been developed at the Paul Scherrer Institut for the needs of macromolecular crystallography at the Swiss Light Source (SLS). A calibrated PILATUS module has been characterized with monochromatic synchrotron radiation. The influence of charge sharing on the count rate and the overall energy resolution of the detector were investigated. The dead-time of the system was determined using the attenuated direct synchrotron beam. A single module detector was also tested in surface diffraction experiments at the SLS, whereby its performance regarding fluorescence suppression and saturation tolerance were evaluated, and have shown to greatly improve the sensitivity, reliability and speed of surface diffraction data acquisition.

  9. Detector materials: germanium and silicon

    SciTech Connect

    Haller, E.E.

    1981-11-01

    This article is a summary of a short course lecture given in conjunction with the 1981 Nuclear Science Symposium. The basic physical properties of elemental semiconductors are reviewed. The interaction of energetic radiation with matter is discussed in order to develop a feeling for the appropriate semiconductor detector dimensions. The extremely low net dopant concentrations which are required are derived directly from the detector dimensions. A survey of the more recent techniques which have been developed for the analysis of detector grade semiconductor single crystals is presented.

  10. Silicon Photonic Wire Waveguides: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Yamada, Koji

    This chapter reviews the fundamental characteristics and basic applications of the silicon photonic wire waveguide. Thanks to its ultra-small geometrical structures and compatibility with the silicon electronics, the silicon photonic wire waveguide provides us with a highly integrated platform for electronic-photonic convergence. For the practical achievement of this platform, however, we must search for ways to reduce the propagation loss and coupling loss to external fibers and overcome the polarization dependence. Progress has been made by applying state-of-the-art technologies specially tuned to the fabrication of nanometer structures, and the fundamental propagation performance has already become a practical standard. Some passive devices, such as branches and wavelength filters, and dynamic devices based on the thermo-optic effect or carrier plasma effect have been developed by using silicon photonic wire waveguides. These waveguides also offer an efficient media for nonlinear optical functions, such as wavelength conversion. Although polarization dependence remains a serious obstacle to the practical applications of these waveguides, waveguide-based polarization manipulation devices provide us with effective solutions, such as a polarization diversity system.

  11. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    SciTech Connect

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  12. Silicon Photonics: Challenges and Future

    DTIC Science & Technology

    2007-01-01

    implement. The basic approach is to provide a bond pad, align it to a waveguide either actively or passively, and attach it with a gold –tin eutectic die...49 8.1 Wafer bonding ...bench ............ 47 Figure 27: Wafer bonded InP silicon hybrid laser structure.......................................................... 50 Figure

  13. Picosecond response of a photon drag detector

    SciTech Connect

    Kimmitt, M.F.

    1995-12-31

    The primary use of photon drag detectors has been with CO{sub 2} lasers at 10{mu}m. Cornmercially-available devices are limited to response times of < 0.5-1ns and voltage responsivities of <0.5{mu}V W{sup -1}. This poster paper will describe the first photon drag detector specifically designed for very fast response. Using the free-election laser FELIX at the FOM Institute in the Netherlands, a rise time of <50ps has been demonstrated, using a 5mm{sup 2} area detector with a responsivity of >1{mu}V W{sup -1} over the wavelength range 10-25{mu}m. The figure shows the clear resolution of the micropulse structure of the laser. The actual width of each pulse is a few picosecoods, with a micropulse spacing of Ins. The advantages or photon drag detectors are room-temperature operation, linear response to intensifies greater than 10{sup 6}MW cm{sup -2} and very high damage threshold. These detectors are cheap to manufacture and, using different semiconductors, can be designed for any wavelength from 1 {mu}m-5mm.

  14. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  15. Silicon Detector Letter of Intent

    SciTech Connect

    Aihara, H.; Burrows, P.; Oreglia, M.

    2010-05-26

    This document presents the current status of SiD's effort to develop an optimized design for an experiment at the International Linear Collider. It presents detailed discussions of each of SiD's various subsystems, an overview of the full GEANT4 description of SiD, the status of newly developed tracking and calorimeter reconstruction algorithms, studies of subsystem performance based on these tools, results of physics benchmarking analyses, an estimate of the cost of the detector, and an assessment of the detector R&D needed to provide the technical basis for an optimised SiD.

  16. Development of Ultra-High Sensivity Silicon Carbide Detectors

    NASA Technical Reports Server (NTRS)

    Yan, Feng; Xin, Xiao-Bin; Alexandrov, Petre; Stahle, Carl M.; Guan, Bing; Zhao, Jian H.

    2005-01-01

    A variety of silicon carbide (SiC) detectors have been developed to study the sensitivity of SiC ultraviolet (UV) detectors, including Schottky photodiodes, p-i-n photodiodes, avalanche photodiodes (APDs), and single photon-counting APDs. Due to the very wide bandgap and thus extremely low leakage current, Sic photo-detectors showed excellent sensitivity. The specific detectivity, D*, of SiC photodiodes are orders of magnitude higher than that of their competitors, such as Si photodiodes, and comparable to the D* of photomultiplier tubes (PMTs). To pursue the ultimate detection sensitivity, SiC APDs and single photon-counting avalanche diodes (SPADs) have also been fabricated. By operating the SiC APDs at a linear mode gain over 10(exp 6), SPADs in UV have been demonstrated. SiC UV detectors have great potential for use in solar blind UV detection and biosensing. Moreover, SiC detectors have excellent radiation hardness and high temperature tolerance which makes them ideal for extreme environment applications such as in space or on the surface of the Moon or Mars.

  17. Silicon buried channels for pixel detector cooling

    NASA Astrophysics Data System (ADS)

    Boscardin, M.; Conci, P.; Crivellari, M.; Ronchin, S.; Bettarini, S.; Bosi, F.

    2013-08-01

    The support and cooling structures add important contributions to the thickness, in radiation length, of vertex detectors. In order to minimize the material budget of pixel sensors, we developed a new approach to integrate the cooling into the silicon devices. The microchannels are formed in silicon using isotropic SF6 plasma etching in a DRIE (deep reactive ion etcher) equipment. Due to their peculiar profiles, the channels can be sealed by a layer of a PECVD silicon oxide. We have realized on a silicon wafer microchannels with different geometries and hydraulic diameters. We describe the main fabrication steps of microchannels with focus on the channel definition. The experimental results are reported on the thermal characterization of several prototypes, using a mixture of glycol and water as a liquid coolant. The prototypes have shown high cooling efficiency and high-pressure breaking strength.

  18. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    PubMed

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  19. Hybrid laser integration for silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Yang, Shuyu

    Silicon photonics has attracted extensive attention in both academia and industry in recent years, as an enabling technology to address the exponentially increasing demands for communication bandwidth. It brings state-of-the-art complementary metal-oxide-semiconductor (CMOS) processing technology to the field of photonic integration. The high yield and uniformity of silicon devices make it possible to build complex photonic systems-on-chip in large production volumes. Cutting-edge device performance has been demonstrated on this platform, including high-speed modulators, photodetectors, and passive devices such as the Y-junction, waveguide crossing, and arrayed waveguide gratings. As the device library quickly matures, an integrated laser source for a transmitter remains missing from the design kit. I demonstrated hybrid external cavity lasers by integrating reflective optical semiconductor amplifiers and silicon photonics chips. The gain chip and silicon chip can be designed and optimized independently, which is a significant advantage compared to bonding an III-V film on top of the silicon chip. Advanced optoelectronics packaging processes can be leveraged for chip alignment. Tunable C-Band (near 1550 nm) lasers with 10 mW on-chip power and less than 220 kHz bandwidth are demonstrated. O-Band lasers (operating near 1310 nm) as well as successful data transmission at 10 Gb/s and 40 Gb/s using the hybrid laser as the light source are also demonstrated. I designed a single cavity, multi wavelength laser by utilizing a quantum dot SOA, Sagnac loop and micro-ring based silicon photonics half cavity. Four lasing peaks with less than 3 dB power non-uniformity were measured, as well as 4 x 10 Gb/s error free data transmission. In addition to my main focus on RSOA/Silicon external cavity lasers, I propose and demonstrate a novel germanium-assisted grating coupler with low loss on-and-off chip fiber coupling. A coupling efficiency of 76% at 1.55 microm and 40 nm 1 d

  20. Advances in solid state photon detectors

    NASA Astrophysics Data System (ADS)

    Renker, D.; Lorenz, E.

    2009-04-01

    Semiconductor photodiodes were developed in the early `Forties approximately at the time when the photomultiplier tube became a commercial product (RCA 1939). Only in recent years, with the invention of the Geiger-mode avalanche photodiodes, have the semiconductor photo detectors reached sensitivity comparable to that of photomultiplier tubes. The evolution started in the `Sixties with the p-i-n (PIN) photodiode, a very successful device, which is still used in many detectors for high energy physics and a large number of other applications like radiation detection and medical imaging. The next step was the development of the avalanche photodiode (APD) leading to a substantial reduction of noise but not yet achieving single photon response. The weakest light flashes that can be detected by the PIN diode need to contain several hundreds of photons. An improvement of the sensitivity by 2 orders of magnitude was achieved by the development of the avalanche photodiode, a device with internal gain. At the end of the millennium, the semiconductor detectors evolved with the Geiger-mode avalanche photodiode into highly sensitive devices, which have an internal gain comparable to the gain of photomultiplier tubes and a response to single photons. A review of the semiconductor photo detector design and development, the properties and problems, some applications and a speculative outlook on the future evolution will be presented.

  1. Silicon photonic devices for optoelectronic integrated circuits

    NASA Astrophysics Data System (ADS)

    Tien, Ming-Chun

    Electronic and photonic integrated circuits use optics to overcome bottlenecks of microelectronics in bandwidth and power consumption. Silicon photonic devices such as optical modulators, filters, switches, and photodetectors have being developed for integration with electronics based on existing complementary metal-oxide-semiconductor (CMOS) circuits. An important building block of photonic devices is the optical microresonator. On-chip whispering-gallery-mode optical resonators such as microdisks, microtoroids, and microrings have very small footprint, and thus are suitable for large scale integration. Micro-electro-mechanical system (MEMS) technology enables dynamic control and tuning of optical functions. In this dissertation, microring resonators with tunable power coupling ratio using MEMS electrostatic actuators are demonstrated. The fabrication is compatible with CMOS. By changing the physical gap spacing between the waveguide coupler and the microring, the quality factor of the microring can be tuned from 16,300 to 88,400. Moreover, we have demonstrated optical switches and tunable optical add-drop filters with an optical bandwidth of 10 GHz and an extinction ratio of 20 dB. Potentially, electronic control circuits can also be integrated. To realize photonic integrated circuits on silicon, electrically-pumped silicon lasers are desirable. However, because of the indirect bandgap, silicon is a poor material for light emission compared with direct-bandgap III-V compound semiconductors. Heterogeneous integration of III-V semiconductor lasers on silicon is an alternative to provide on-chip light sources. Using a room-temperature, post-CMOS optofluidic assembly technique, we have experimentally demonstrated an InGaAsP microdisk laser integrated with silicon waveguides. Pre-fabricated InGaAsP microdisk lasers were fluidically assembled and aligned to the silicon waveguides on silicon-on-insulator (SOI) with lithographic alignment accuracy. The assembled

  2. Silicon Photonic Devices and Their Applications

    NASA Astrophysics Data System (ADS)

    Li, Ying

    Silicon photonics is the study and application of photonic systems, which use silicon as an optical medium. Data is transferred in the systems by optical rays. This technology is seen as the substitutions of electric computer chips in the future and the means to keep tack on the Moore's law. Cavity optomechanics is a rising field of silicon photonics. It focuses on the interaction between light and mechanical objects. Although it is currently at its early stage of growth, this field has attracted rising attention. Here, we present highly sensitive optical detection of acceleration using an optomechanical accelerometer. The core part of this accelerometer is a slot-type photonic crystal cavity with strong optomechanical interactions. We first discuss theoretically the optomechanical coupling in the air-slot mode-gap photonic crystal cavity. The dispersive coupling gom is numerically calculated. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for the various operating parameters. Experimental results also demonstrated that the cavity has a large optomechanical coupling rate. The optically induced spring effect, damping and amplification of the mechanical modes are observed with measurements both in air and in vacuum. Then, we propose and demonstrate our optomechanical accelerometer. It can operate with a resolution of 730 ng/Hz1/2 (or equivalently 40.1 aN/Hz1/2) and with a transduction bandwidth of ≈ 85 kHz. We also demonstrate an integrated photonics device, an on-chip spectroscopy, in the last part of this thesis. This new type of on-chip microspectrometer is based on the Vernier effect of two cascaded micro-ring cavities. It can measure optical spectrum with a bandwidth of 74nm and a resolution of 0.22 nm in a small footprint of 1.5 mm2.

  3. Multifunctional optomechanical dynamics in integrated silicon photonics

    NASA Astrophysics Data System (ADS)

    Li, Huan

    Light can generate forces on matter. The nature of these forces is electromagnetic force, or Lorentz force. The emergence and rapid progress of nanotechnology provided an unprecedented platform where the very feeble optical forces began to play significant roles. The interactions between light and matter in nanoscale has been the focus of almost a decade of active theoretical and experimental investigations, which are still ongoing and constitute a whole new burgeoning branch of nanotechnology, nano-optomechanical systems (NOMS). In such context, the general goal of my research is to generate, enhance and control optical forces on silicon photonics platforms, with a focus on developing new functionalities and demonstrating novel effects, which will potentially lead to a new class of silicon photonic devices for a broad spectrum of applications. In this dissertation, the concept of optical force and the general background of the NOMS research area are first introduced. The general goal of the silicon photonics research area and the research presented in this dissertation is then described. Subsequently, the fundamental theory for optical force is summarized. The different methods to calculate optical forces are enumerated and briefly reviewed. Integrated hybrid plasmonic waveguide (HPWG) devices have been successfully fabricated and the enhanced optical forces experimentally measured for the first time. All-optical amplification of RF signals has been successfully demonstrated. The optical force generated by one laser is used to mechanically change the optical path and hence the output power of another laser. In addition, completely optically tunable mechanical nonlinear behavior has been demonstrated for the first time and systematically studied. Optomechanical photon shuttling between photonic cavities has been demonstrated with a "photon see-saw" device. This photon see-saw is a novel multicavity optomechanical device which consists of two photonic crystal

  4. Amorphous silicon based radiation detectors

    SciTech Connect

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D. ); Fujieda, I.; Street, R.A. )

    1991-07-01

    We describe the characteristics of thin(1 {mu}m) and thick (>30{mu}m) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and {gamma} rays. For x-ray, {gamma} ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs.

  5. Multipurpose silicon photonics signal processor core.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José

    2017-09-21

    Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

  6. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  7. Photonic crystal slab quantum cascade detector

    NASA Astrophysics Data System (ADS)

    Reininger, Peter; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-01

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  8. Characterization of Silicon Photomultiplier Detectors using Cosmic Radiation

    NASA Astrophysics Data System (ADS)

    Zavala, Favian; Castro, Juan; Niduaza, Rexavalmar; Wedel, Zachary; Fan, Sewan; Ritt, Stefan; Fatuzzo, Laura

    2014-03-01

    The silicon photomultiplier light detector has gained a lot of attention lately in fields such as particle physics, astrophysics, and medical physics. Its popularity stems from its lower cost, compact size, insensitivity to magnetic fields, and its excellent ability to distinguish a quantized number of photons. They are normally operated at room temperature and biased above their breakdown voltages. As such, they may also exhibit properties that may hinder their optimal operation which include a thermally induced high dark count rate, after pulse effects, and cross talk from photons in nearby pixels. At this poster session, we describe our data analysis and our endeavor to characterize the multipixel photon counter (MPPC) detectors from Hamamatsu under different bias voltages and temperature conditions. Particularly, we describe our setup which uses cosmic rays to induce scintillation light delivered to the detector by wavelength shifting optical fibers and the use of a fast 1 GHz waveform sampler, the domino ring sampler (DRS4) digitizer board. Department of Education grant number P031S90007.

  9. Dow Corning photonics: the silicon advantage in automotive photonics

    NASA Astrophysics Data System (ADS)

    Clapp, Terry V.; Paquet, Rene; Norris, Ann; Pettersen, Babette

    2005-02-01

    The Automotive Market offers several opportunities for Dow Corning to leverage the power of silicon-based materials. Dow Corning Photonics Solutions has a number of developments that may be attractive for the emergent photonics needs in automobiles, building on 40 years of experience as a leading Automotive supplier with a strong foundation of expertise and an extensive product offering- from encapsulents and highly reliable resins, adhesives, insulating materials and other products, ensuring that the advantage of silicones are already well-embedded in Automotive systems, modules and components. The recent development of LED encapsulants of exceptional clarity and stability has extended the potential for Dow Corning"s strength in Photonics to be deployed "in-car". Demonstration of board-level and back-plane solutions utilising siloxane waveguide technology offers new opportunities for systems designers to integrate optical components at low cost on diverse substrates. Coupled with work on simple waveguide technology for sensors and data communications applications this suite of materials and technology offerings is very potent in this sector. The harsh environment under hood and the very extreme thermal range that materials must sustain in vehicles due to both their engine and the climate is an applications specification that defines the siloxane advantage. For these passive optics applications the siloxanes very high clarity at the data-communications wavelengths coupled with extraordinary stability offers significant design advantage. The future development of Head-Up-Displays for instrumentation and data display will offer yet more opportunities to the siloxanes in Automotive Photonics.

  10. Stresses in Tungsten Thin Films for Single Photon Detectors

    NASA Astrophysics Data System (ADS)

    Kaatz, Laurna; Lita, Adriana; Balzar, Davor

    2004-10-01

    Tungsten thin films are used both as photon absorbers and thermometers and are considered for the fabrication of Single Photon Detectors with possible application in quantum computing. These applications require operation close to the superconducting transition temperature, Tc, which is ˜15 mK for alpha-W and up to 4 K for beta-W. The addition of an antireflective silicon oxide coating over the thin film increases the efficiency of the detectors, but suppresses the thin film's Tc. The objective of this study was to examine whether the difference in stress values may affect the Tc and phase composition in the thin films. Stresses in tungsten thin films originate from growing process, and from the difference in thermal expansion coefficients of the substrate, thin film, and coating. Stresses were studied by x-ray diffraction (XRD) through the changes in interplanar spacings. The measurements were carried out both on a W thin film sputtered onto a Si substrate, and another sample with an additional silicon oxide capping, at both room and low ( ˜8 K) temperatures. Based on these measurements and calculations, a correlation was established between the Tc and stresses in thin films, which can explain the suppression of the Tc in capped thin films.

  11. Single photon counting pixel detectors for synchrotron radiation experiments

    NASA Astrophysics Data System (ADS)

    Toyokawa, H.; Broennimann, Ch.; Eikenberry, E. F.; Henrich, B.; Kawase, M.; Kobas, M.; Kraft, P.; Sato, M.; Schmitt, B.; Suzuki, M.; Tanida, H.; Uruga, T.

    2010-11-01

    At the Paul Scherrer Institute PSI an X-ray single photon counting pixel detector (PILATUS) based on the hybrid-pixel detector technology was developed in collaboration with SPring-8. The detection element is a 320 or 450 μm thick silicon sensor forming pixelated pn-diodes with a pitch of 172 μm×172 μm. An array of 2×8 custom CMOS readout chips are indium bump-bonded to the sensor, which leads to 33.5 mm×83.8 mm detective area. Each pixel contains a charge-sensitive amplifier, a single level discriminator and a 20 bit counter. This design realizes a high dynamic range, short readout time of less than 3 ms, a high framing rate of over 200 images per second and an excellent point-spread function. The maximum counting rate achieves more than 2×106 X-rays/s/pixel.

  12. Investigation of Self Triggered Cosmic Ray Detectors using Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Knox, Adrian; Niduaza, Rommel; Hernandez, Victor; Ruiz, Daniel; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is a highly sensitive light detector capable of measuring single photons. It costs a fraction of the photomultiplier tube and operates slightly above the breakdown voltage. At this conference we describe our investigation of SiPM, the multipixel photon counters (MPPC) from Hamamatsu as readout detectors for plastic scintillators working for detecting cosmic ray particles. Our setup consists of scintillator sheets embedded with blue to green wavelength shifting fibers optically coupled to MPPCs to detect scintillating light. Four detector assemblies would be constructed and arranged to work in self triggered mode. Using custom matching tee boxes, the amplified MPPC signals are fed to discriminators with threshold set to give a reasonable coincidence count rate. Moreover, the detector waveforms are digitized using a 5 Giga Samples per second waveform digitizer, the DRS4, and triggered with the coincidence logic to capture the MPPC waveforms. Offline analysis of the digitized waveforms is accomplished using the CERN package PAW and results of our experiments and the data analysis would also be discussed. US Department of Education Title V Grant Number PO31S090007.

  13. Signal formation in irradiated silicon detectors

    NASA Astrophysics Data System (ADS)

    Baldassarri, B.; Cartiglia, N.; Cenna, F.; Sadrozinski, H.; Seiden, A.

    2017-02-01

    In this paper we present an initial study on the effects induced by radiation on the signal generated by a minimum ionising particle in silicon detector. The results are obtained by implementing in the simulation programme Weightfield2 (WF2) charge carrier trapping and non linear distribution of the electric field. Results of sample simulations are presented, along with a discussion of the limitations of the current approach and ideas for future improvements.

  14. A silicon strip detector dose magnifying glass for IMRT dosimetry

    SciTech Connect

    Wong, J. H. D.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Khanna, S.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.

    2010-02-15

    Purpose: Intensity modulated radiation therapy (IMRT) allows the delivery of escalated radiation dose to tumor while sparing adjacent critical organs. In doing so, IMRT plans tend to incorporate steep dose gradients at interfaces between the target and the organs at risk. Current quality assurance (QA) verification tools such as 2D diode arrays, are limited by their spatial resolution and conventional films are nonreal time. In this article, the authors describe a novel silicon strip detector (CMRP DMG) of high spatial resolution (200 {mu}m) suitable for measuring the high dose gradients in an IMRT delivery. Methods: A full characterization of the detector was performed, including dose per pulse effect, percent depth dose comparison with Farmer ion chamber measurements, stem effect, dose linearity, uniformity, energy response, angular response, and penumbra measurements. They also present the application of the CMRP DMG in the dosimetric verification of a clinical IMRT plan. Results: The detector response changed by 23% for a 390-fold change in the dose per pulse. A correction function is derived to correct for this effect. The strip detector depth dose curve agrees with the Farmer ion chamber within 0.8%. The stem effect was negligible (0.2%). The dose linearity was excellent for the dose range of 3-300 cGy. A uniformity correction method is described to correct for variations in the individual detector pixel responses. The detector showed an over-response relative to tissue dose at lower photon energies with the maximum dose response at 75 kVp nominal photon energy. Penumbra studies using a Varian Clinac 21EX at 1.5 and 10.0 cm depths were measured to be 2.77 and 3.94 mm for the secondary collimators, 3.52 and 5.60 mm for the multileaf collimator rounded leaf ends, respectively. Point doses measured with the strip detector were compared to doses measured with EBT film and doses predicted by the Philips Pinnacle treatment planning system. The differences were 1

  15. Novel photon detectors for focusing DIRC prototype

    NASA Astrophysics Data System (ADS)

    Field, C.; Hadig, T.; Jain, M.; Leith, D. W. G. S.; Mazaheri, G.; Ratcliff, B. N.; Schwiening, J.; Va'vra, J.

    2004-02-01

    For present BaBar DIRC, the Cherenkov angular resolution is dominated by three contributions—the chromatic error, bar thickness and pixel size. We have designed the Focusing DIRC prototype, which potentially can reduce the chromatic error by a precise timing in the range of 50-100 ps per photon, and the bar thickness by a focusing mirror. This paper describes two novel photon detectors, which are candidates for this type of concept: Hamamatsu 64-channel multi-anode Flat Panel H-8500 PMTs and Burle 64-channel micro-channel plate MCP-PMTs. The detectors were tested with a PiLas laser diode light pulse providing 35 ps FWHM timing resolution. A single-photon timing resolution of (1) σ˜120-140 ps was achieved with the Hamamatsu PMTs, and (2) σ˜55 ps with the Burle MCP-PMTs. To achieve the good timing resolution results, we have developed a new fast amplifier and a constant-fraction discriminator. We have also developed a computer-controlled scanning setup, which allows a detailed study of the relative efficiency response to single photons.

  16. The Belle II Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Bergauer, T.; Dolejschi, P.; Frankenberger, A.; Gfall, I.; Irmler, C.; Obermayer, T.; Onuki, Y.; Smiljic, D.; Tsuboyama, T.; Valentan, M.

    The KEKB factory (Tsukuba, Japan) has been shut down in mid-2010 after reaching a total integrated luminosity of 1ab-1. Recently, the work on an upgrade of the collider (SuperKEKB), aiming at an ultimate luminosity of 8×1035 cm-2s-1, has started. This is 40 times the peak value of the previous system and thus also requires a redesign of the Belle detector (leading to Belle II), especially its Silicon Vertex Detector (SVD), which surrounds the beam pipe. Similar to its predecessor, the future Belle II SVD will again consist of four layers of double-sided silicon strip sensors (DSSD), but at higher radii. Moreover, a double-layer PiXel Detector (PXD) will complement the SVD as the innermost sensing device. All DSSDs will be made from 6" silicon wafers and read out by APV25 chips, which were originally developed for the CMS experiment. That system was proven to meet the requirements for Belle II in matters of occupancy and dead time. Since the KEKB factory operates at relatively low energy, material inside the active volume has to be minimized in order to reduce multiple scattering. This can be achieved by the Origami chip-on-sensor concept, including a very light-weight mechanical support structure made from carbon fiber reinforced Airex foam. Moreover, CO2 cooling for the front-end chips will ensure high efficiency at minimum material budget.

  17. Enabling photon counting detectors with dynamic attenuators

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    Photon-counting x-ray detectors (PCXDs) are being investigated as a replacement for conventional x-ray detectors because they promise several advantages, including better dose efficiency, higher resolution and spectral imaging. However, many of these advantages disappear when the x-ray flux incident on the detector is too high. We recently proposed a dynamic, piecewise-linear attenuator (or beam shaping filter) that can control the flux incident on the detector. This can restrict the operating range of the PCXD to keep the incident count rate below a given limit. We simulated a system with the piecewise-linear attenuator and a PCXD using raw data generated from forward projected DICOM files. We investigated the classic paralyzable and nonparalyzable PCXD as well as a weighted average of the two, with the weights chosen to mimic an existing PCXD (Taguchi et al, Med Phys 2011). The dynamic attenuator has small synergistic benefits with the nonparalyzable detector and large synergistic benefits with the paralyzable detector. Real PCXDs operate somewhere between these models, and the weighted average model still shows large benefits from the dynamic attenuator. We conclude that dynamic attenuators can reduce the count rate performance necessary for adopting PCXDs.

  18. The Belle II Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Ackermann, K.; Aihara, H.; Aziz, T.; Bergauer, T.; Bozek, A.; Campbell, A.; Dingfelder, J.; Drasal, Z.; Frankenberger, A.; Gadow, K.; Gfall, I.; Haba, J.; Hara, K.; Hara, T.; Higuchi, T.; Himori, S.; Irmler, C.; Ishikawa, A.; Joo, C.; Kah, D. H.; Kang, K. H.; Kato, E.; Kiesling, C.; Kodys, P.; Kohriki, T.; Koike, S.; Kvasnicka, P.; Marinas, C.; Mayekar, S. N.; Mibe, T.; Mohanty, G. B.; Moll, A.; Negishi, K.; Nakayama, H.; Natkaniec, Z.; Niebuhr, C.; Onuki, Y.; Ostrowicz, W.; Park, H.; Rao, K. K.; Ritter, M.; Rozanska, M.; Saito, T.; Sakai, K.; Sato, N.; Schmid, S.; Schnell, M.; Shimizu, N.; Steininger, H.; Tanaka, S.; Tanida, K.; Taylor, G.; Tsuboyama, T.; Ueno, K.; Uozumi, S.; Ushiroda, Y.; Valentan, M.; Yamamoto, H.

    2013-12-01

    The KEKB machine and the Belle experiment in Tsukuba (Japan) are now undergoing an upgrade, leading to an ultimate luminosity of 8×1035 cm-2 s-1 in order to measure rare decays in the B system with high statistics. The previous vertex detector cannot cope with this 40-fold increase of luminosity and thus needs to be replaced. Belle II will be equipped with a two-layer Pixel Detector surrounding the beam pipe, and four layers of double-sided silicon strip sensors at higher radii than the old detector. The Silicon Vertex Detector (SVD) will have a total sensitive area of 1.13 m2 and 223,744 channels-twice as many as its predecessor. All silicon sensors will be made from 150 mm wafers in order to maximize their size and thus to reduce the relative contribution of the support structure. The forward part has slanted sensors of trapezoidal shape to improve the measurement precision and to minimize the amount of material as seen by particles from the vertex. Fast-shaping front-end amplifiers will be used in conjunction with an online hit time reconstruction algorithm in order to reduce the occupancy to the level of a few percent at most. A novel “Origami” chip-on-sensor scheme is used to minimize both the distance between strips and amplifier (thus reducing the electronic noise) as well as the overall material budget. This report gives an overview on the status of the Belle II SVD and its components, including sensors, front-end detector ladders, mechanics, cooling and the readout electronics.

  19. Silicon technologies for arrays of Single Photon Avalanche Diodes

    PubMed Central

    Ceccarelli, Francesco; Rech, Ivan; Ghioni, Massimo

    2016-01-01

    In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency in the red/near-infrared spectrum (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we discuss the limitations of such Red-Enhanced (RE) technology from the point of view of the fabrication of small arrays of SPAD and we propose modifications to the structure aimed at overcoming these issues. We also report the first preliminary experimental results attained on devices fabricated adopting the improved structure. PMID:27761058

  20. Commissioning and operation of the CDF silicon detector

    SciTech Connect

    S. D'Auria

    2002-01-18

    The CDF-II silicon detector has been partially commissioned and used for taking preliminary physics data. This paper is a report on commissioning and initial operations of the 5.8m{sup 2} silicon detector. This experience can be useful to the large silicon systems that are presently under construction.

  1. Microstructured silicon neutron detectors for security applications

    NASA Astrophysics Data System (ADS)

    Esteban, S.; Fleta, C.; Guardiola, C.; Jumilla, C.; Pellegrini, G.; Quirion, D.; Rodriguez, J.; Lozano, M.

    2014-12-01

    In this paper we present the design and performance of a perforated thermal neutron silicon detector with a 6LiF neutron converter. This device was manufactured within the REWARD project workplace whose aim is to develop and enhance technologies for the detection of nuclear and radiological materials. The sensor perforated structure results in a higher efficiency than that obtained with an equivalent planar sensor. The detectors were tested in a thermal neutron beam at the nuclear reactor at the Instituto Superior Técnico in Lisbon and the intrinsic detection efficiency for thermal neutrons and the gamma sensitivity were obtained. The Geant4 Monte Carlo code was used to simulate the experimental conditions, i.e. thermal neutron beam and the whole detector geometry. An intrinsic thermal neutron detection efficiency of 8.6%±0.4% with a discrimination setting of 450 keV was measured.

  2. Amorphous silicon detectors in positron emission tomography

    SciTech Connect

    Conti, M. Lawrence Berkeley Lab., CA ); Perez-Mendez, V. )

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  3. Laser Integration on Silicon Photonic Circuits Through Transfer Printing

    DTIC Science & Technology

    2017-03-10

    AFRL-AFOSR-UK-TR-2017-0019 Laser integration on silicon photonic circuits through transfer printing Gunther Roelkens UNIVERSITEIT GENT VZW Final...TYPE Final 3. DATES COVERED (From - To) 15 Sep 2015 to 14 Sep 2016 4. TITLE AND SUBTITLE Laser integration on silicon photonic circuits through...parallel integration of III-V lasers on silicon photonic integrated circuits . The report discusses the technological process that has been developed as

  4. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  5. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  6. Silicon photonic devices based on binary blazed gratings

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Yu, Li

    2013-09-01

    Optical technology is poised to revolutionize short-reach communication systems, and the leading technology is silicon photonics. Silicon photonic devices have attracted more and more attention and have been increasingly studied in recent years. Grating, which functions as a building block for many passive and active devices, is widely used in silicon photonics. This review presents some silicon photonic devices based on binary blazed gratings, such as grating couplers, beam splitters, polarization beam splitters, broadband reflectors, and narrow filters, that demonstrate much better performance than those based on uniform gratings, owing to the novel characteristics of binary blazed gratings.

  7. Radiation damage studies for the D0 silicon detector

    SciTech Connect

    Lehner, F.; /Zurich U.

    2004-01-01

    We report on irradiation studies performed on spare production silicon detector modules for the current D0 silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10{sup 14} p/cm{sup 2} at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalization techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling.

  8. Study on photon sensitivity of silicon diodes related to materials used for shielding

    NASA Astrophysics Data System (ADS)

    Moiseev, T.

    1999-08-01

    Large area silicon diodes used in electronic neutron dosemeters have a significant over-response to X- and gamma-rays, highly non-linear at photon energies below 200 keV. This over-response to photons is proportional to the diode's active area and strongly affects the neutron sensitivity of such dosemeters. Since silicon diodes are sensitive to light and electromagnetic fields, most diode detector assemblies are provided with a shielding, sometimes also used as radiation filter. In this paper, the influence of materials covering the diode's active area is investigated using the MCNP-4A code by estimating the photon induced pulses in a typical silicon wafer (300 μm thickness and 1 cm diameter) when provided with a front case cover. There have been simulated small-size diode front covers made of several materials with low neutron interaction cross-sections like aluminium, TEFLON, iron and lead. The estimated number of induced pulses in the silicon wafer is calculated for each type of shielding at normal photon incidence for several photon energies from 9.8 keV up to 1.15 MeV and compared with that in a bare silicon wafer. The simulated pulse height spectra show the origin of the photon-induced pulses in silicon for each material used as protective cover: the photoelectric effect for low Z front case materials at low-energy incident photons (up to about 65 keV) and the Compton and build-up effects for high Z case materials at higher photon energies. A simple means to lower and flatten the photon response of silicon diodes over an extended X- and gamma rays energy range is proposed by designing a composed photon filter.

  9. Optimizing timing performance of silicon photomultiplier-based scintillation detectors

    PubMed Central

    Yeom, Jung Yeol; Vinke, Ruud

    2013-01-01

    Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362–33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm3 and with 3 × 3 × 20 mm3 LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm3 LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15°C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals. PMID:23369872

  10. Ultra-Fast Silicon Detectors for 4D tracking

    NASA Astrophysics Data System (ADS)

    Sola, V.; Arcidiacono, R.; Bellora, A.; Cartiglia, N.; Cenna, F.; Cirio, R.; Durando, S.; Ferrero, M.; Galloway, Z.; Gruey, B.; Freeman, P.; Mashayekhi, M.; Mandurrino, M.; Monaco, V.; Mulargia, R.; Obertino, M. M.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, N.; Staiano, A.; Wilder, M.; Woods, N.; Zatserklyaniy, A.

    2017-02-01

    We review the progress toward the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~ 10 larger than standard silicon detectors.

  11. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  12. The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Qu, Hui-Ming; Zhang, Yi-Fan; Ji, Zhong-Jie; Chen, Qian

    2013-10-01

    In principle, photon counting imaging can detect a photon. With the development of low-level-light image intensifier techniques and low-level-light detection devices, photon counting imaging can now detect photon images under extremely low illumination. Based on a Geiger mode silicon avalanche photodiode single photon counter, an experimental system for photon counting imaging was built through two-dimensional scanning of a SPAD (single photon avalanche diode) detector. The feasibility of the imaging platform was validated experimentally. Two images with different characteristics, namely, the USAF 1951 resolution test panel and the image of Lena, were chosen to evaluate the imaging performance of the experimental system. The results were compared and analysed. The imaging properties under various illumination and scanning steps were studied. The lowest illumination limit of the SPAD photon counting imaging was determined.

  13. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  14. High resolution amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  15. Silicon-based photonic crystal waveguides and couplers

    NASA Astrophysics Data System (ADS)

    Farrell, Stephen G.

    2008-10-01

    Most commercial photonics-related research and development efforts currently fall into one or both of the following technological sectors: silicon photonics and photonic integrated circuits. Silicon photonics [18] is the field concerned with assimilating photonic elements into the well-established CMOS VLSI architecture and IC manufacturing. The convergence of these technologies would be mutually advantageous: photonic devices could increase bus speeds and greatly improve chip-to-chip and board-to-board data rates, whereas photonics, as a field, would benefit from mature silicon manufacturing and economies of scale. On the other hand, those in the photonic integrated circuit sector seek to continue the miniaturization of photonic devices in an effort to obtain an appreciable share of the great windfall of profits that occur when manufacturing, packaging, and testing costs are substantially reduced by shrinking photonic elements to chip-scale dimensions. Integrated photonics companies may [12] or may not [34] incorporate silicon as the platform. In this thesis, we seek to further develop a technology that has the potential to facilitate the forging of silicon photonics and photonic integrated circuits: photonic crystals on silicon-on-insulator substrates. We will first present a brief overview of photonic crystals and their physical properties. We will then detail a finely-tuned procedure for fabricating two-dimensional photonic crystal in the silicon-on-insulator material system. We will then examine transmission properties of our fabricated devices including propagation loss, group index dispersion, and coupling efficiency of directional couplers. Finally, we will present a description of a system for adiabatically tapering optical fibers and the results of using tapered fibers for efficiently coupling light into photonic crystal devices.

  16. Self consistent, absolute calibration technique for photon number resolving detectors.

    PubMed

    Avella, A; Brida, G; Degiovanni, I P; Genovese, M; Gramegna, M; Lolli, L; Monticone, E; Portesi, C; Rajteri, M; Rastello, M L; Taralli, E; Traina, P; White, M

    2011-11-07

    Well characterized photon number resolving detectors are a requirement for many applications ranging from quantum information and quantum metrology to the foundations of quantum mechanics. This prompts the necessity for reliable calibration techniques at the single photon level. In this paper we propose an innovative absolute calibration technique for photon number resolving detectors, using a pulsed heralded photon source based on parametric down conversion. The technique, being absolute, does not require reference standards and is independent upon the performances of the heralding detector. The method provides the results of quantum efficiency for the heralded detector as a function of detected photon numbers. Furthermore, we prove its validity by performing the calibration of a Transition Edge Sensor based detector, a real photon number resolving detector that has recently demonstrated its effectiveness in various quantum information protocols.

  17. Wavelength multicasting in silicon photonic nanowires.

    PubMed

    Biberman, Aleksandr; Lee, Benjamin G; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren

    2010-08-16

    We demonstrate a scalable, energy-efficient, and pragmatic method for high-bandwidth wavelength multicasting using FWM in silicon photonic nanowires. We experimentally validate up to a sixteen-way multicast of 40-Gb/s NRZ data using spectral and temporal responses, and evaluate the resulting data integrity degradation using BER measurements and power penalty performance metrics. We further examine the impact of this wavelength multicasting scalability on conversion efficiency. Finally, we experimentally evaluate up to a three-way multicast of 160-Gb/s pulsed-RZ data using spectral and temporal responses, representing the first on-chip wavelength multicasting of pulsed-RZ data.

  18. The CDF Run IIb Silicon Detector

    SciTech Connect

    M. Aoki; N. Bacchetta; S. Behari et al.

    2004-02-25

    Fermilab plans to deliver 5-15 fb{sup -1} of integrated luminosity to the CDF and D0 experiments. The current inner silicon detectors at CDF (SVXIIa and L00) will not tolerate the radiation dose associated with high luminosity running and will need to be replaced. A new readout chip (SVX4) has been designed in radiation-hard 0.25 {micro}m CMOS technology. Single sided sensors are arranged in a compact structure, called a stave, with integrated readout and cooling systems. This paper describes the general design of the Run IIb system, testing results of prototype electrical components (staves), and prototype silicon sensor performance before and after irradiation.

  19. Controlling photon emission from silicon for photonic applications

    NASA Astrophysics Data System (ADS)

    Kalem, Seref

    2014-03-01

    The importance of a photon source that would be compatible with silicon circuitry is crucial for data communication networks. A photon source with energies ranging from UV to near infrared can be activated in Si as originationg from defects related to dislocations, vacancies, strain induced band edge transitions and quantum confinement effects. Using an etching method developed in this work, one can also enhance selectively the UV-VIS, band edge emission and emissions at telecom wavelengths, which are tunable depending on surface treatment. Deuterium D2O etching favors near infrared emission with a characteristic single peak at 1320 nm at room temperature. The result offers an exciting solution to advanced microelectronics The method involves the treatment of Si surface by deuterium Deuterium containing acid vapor, resulting in a layer that emits at 1320 nm. Etching without deuterium, a strong band edge emission can be induced at 1150 nm or an emission at 1550 nm can be created depending on the engineered surface structure of silicon. Schottky diodes fabricated on treated surfaces exhibit a strong rectifying characteristics in both cases.

  20. Raman cooling in silicon photonic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chung; Bahl, Gaurav

    2016-03-01

    Laser cooling of solids can be achieved through various photon up-conversion processes including anti-Stokes photoluminescence and anti-Stokes light scattering. While it has been shown that cooling using photoluminescence-based methods can achieve efficiency comparable to that of thermoelectric cooling, the reliance on specific transitions of the rare-earth dopants limits material choice. Light scattering, on the other hand, occurs in all materials, and has the potential to enable cooling in most materials. We show that by engineering the photonic density of states of a material, one can suppress the Stokes process, and enhance the anti-Stokes radiation. We employ the well-known diamond-structured photonic crystal patterned in crystalline silicon to demonstrate theoretically that when operating within a high transparency regime, the net energy removal rate from phonon annihilation can overcome the optical absorption. The engineered photonic density of states can thus enable simultaneous cooling of all Raman-active phonon modes and the net cooling of the solid.

  1. Performance of the EIGER single photon counting detector

    NASA Astrophysics Data System (ADS)

    Tinti, G.; Bergamaschi, A.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Jungmann-Smith, J. H.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.

    2015-03-01

    EIGER is a single photon counting hybrid pixel detector being developed at Paul Scherrer Institute (PSI), Switzerland, for applications at synchrotron light sources in an energy range from a few to 25 keV. EIGER is characterized by a small pixel size (75 × 75 μm2), a frame rate up to 22 kHz and a small dead time between frames (4 μs). An EIGER module is a hybrid detector composed of a ≈ 8 × 4 cm2 monolithic silicon sensor bump bonded to 4 × 2 readout chips, for a total of 500 kpixels. Each pixel has a configurable depth (up to 12 bits) counter and records the number of photons impinging. Custom designed module electronics reads out the bits in the pixel counter and processes the data in the module before transferring them to a PC. A large dynamic range (32 bits) for the pixel counter can be obtained through on-board image summation. Rate corrections can be applied on-board to compensate for inefficiencies when the pixel counting rates approach pile-up levels around a million counts per second. The EIGER modules are the building blocks of large area detectors: a 1.5 and a 9 Mpixel systems are under development for the cSAXS beamline at the Swiss Light Source (SLS) at PSI. The very high frame rate capabilities are equally fast for multi-module systems due to the fully parallel data processing.The module calibration will be discussed, with emphasis on the choice of the optimal operation settings as a function of photon energy. The performance regarding threshold dispersion and minimum achievable threshold will be presented. In addition, the progress towards the production of larger multi-module systems will be discussed.

  2. Status and performance of the CDF Run II silicon detector

    SciTech Connect

    Maki, Tuula; /Helsinki Inst. of Phys.

    2006-10-01

    The CDF silicon detector is one of the largest silicon detectors in operation. It has a total of 722,432 electronic channels, and it covers a sensor surface area of 6 m{sup 2}. The detector has been operating reliably for five years, and it has recorded 1.5 fb{sup -1} of data. This article discusses experiences of operating such a large, complex system as well as the longevity of the detector.

  3. Characterization of Silicon Detector Readout Electronics

    SciTech Connect

    Jones, M.

    2015-07-22

    Configuration and calibration of the front-end electronics typical of many silicon detector configurations were investigated in a lab activity based on a pair of strip sensors interfaced with FSSR2 read-out chips and an FPGA. This simple hardware configuration, originally developed for a telescope at the Fermilab Test Beam Facility, was used to measure thresholds and noise on individual readout channels and to study the influence that different configurations of the front-end electronics had on the observed levels of noise in the system. An understanding of the calibration and operation of this small detector system provided an opportunity to explore the architecture of larger systems such as those currently in use at LHC experiments.

  4. Ultra-fast silicon detectors (UFSD)

    NASA Astrophysics Data System (ADS)

    Sadrozinski, H. F.-W.; Anker, A.; Chen, J.; Fadeyev, V.; Freeman, P.; Galloway, Z.; Gruey, B.; Grabas, H.; John, C.; Liang, Z.; Losakul, R.; Mak, S. N.; Ng, C. W.; Seiden, A.; Woods, N.; Zatserklyaniy, A.; Baldassarri, B.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Pellegrini, G.; Hidalgo, S.; Baselga, M.; Carulla, M.; Fernandez-Martinez, P.; Flores, D.; Merlos, A.; Quirion, D.; Mikuž, M.; Kramberger, G.; Cindro, V.; Mandić, I.; Zavrtanik, M.

    2016-09-01

    We report on measurements on Ultra-Fast Silicon Detectors (UFSD) which are based on Low-Gain Avalanche Detectors (LGAD). They are n-on-p sensors with internal charge multiplication due to the presence of a thin, low-resistivity diffusion layer below the junction, obtained with a highly doped implant. We have performed several beam tests with LGAD of different gain and report the measured timing resolution, comparing it with laser injection and simulations. For the 300 μm thick LGAD, the timing resolution measured at test beams is 120 ps while it is 57 ps for IR laser, in agreement with simulations using Weightfield2. For the development of thin sensors and their readout electronics, we focused on the understanding of the pulse shapes and point out the pivotal role the sensor capacitance plays.

  5. Fast neutron damage in silicon detectors

    SciTech Connect

    Kraner, H.W.; Li, Z.; Poesnecker, K.U.

    1988-08-01

    Radiation effects of fast neutrons have been measured in silicon detectors of varying resistivity irradiated to approx. 10/sup 11/ n/cm/sup 2/ over periods of weeks. The principal damage effect is increased leakage current due to generation of carriers from defect levels in the depletion region. Damage and leakage current constants have been established for detector resistivities between 10 and 27,000 ohm-cm and lie in the range of 0.7 /minus/ 2 /times/ 10E7 sec/cm/sup 2/ (K) for PuBe neutrons. A slight increase in K was observed for higher resistivities which translates into somewhat improved radiation hardness. A fit of this data was attempted to a two-level recombination formulation of the damage constant. 13 refs., 6 figs., 1 tab.

  6. Charge collection in silicon strip detectors

    SciTech Connect

    Kraner, H.W.; Beuttenmuller, R.; Ludlam, T.; Hanson, A.L.; Jones, K.W.; Radeka, V.; Heijne, E.H.M.

    1982-11-01

    The use of position sensitive silicon detectors as very high resolution tracking devices in high energy physics experiments has been a subject of intense development over the past few years. Typical applications call for the detection of minimum ionizing particles with position measurement accuracy of 10 ..mu..m in each detector plane. The most straightforward detector geometry is that in which one of the collecting electrodes is subdivided into closely spaced strips, giving a high degree of segmentation in one coordinate. Each strip may be read out as a separate detection element, or, alternatively, resistive and/or capacitive coupling between adjacent strips may be exploited to interpolate the position via charge division measrurements. With readout techniques that couple several strips, the numer of readout channels can, in principle, be reduced by large factors without sacrificing the intrinsic position accuracy. The testing of individual strip properties and charge division between strips has been carried out with minimum ionizing particles or beams for the most part except in one case which used alphs particless scans. This paper describes the use of a highly collimated MeV proton beam for studies of the position sensing properties of representative one dimensional strip detectors.

  7. Memory effect in silicon time-gated single-photon avalanche diodes

    SciTech Connect

    Dalla Mora, A.; Contini, D. Di Sieno, L.; Tosi, A.; Boso, G.; Villa, F.; Pifferi, A.

    2015-03-21

    We present a comprehensive characterization of the memory effect arising in thin-junction silicon Single-Photon Avalanche Diodes (SPADs) when exposed to strong illumination. This partially unknown afterpulsing-like noise represents the main limiting factor when time-gated acquisitions are exploited to increase the measurement dynamic range of very fast (picosecond scale) and faint (single-photon) optical signals following a strong stray one. We report the dependences of this unwelcome signal-related noise on photon wavelength, detector temperature, and biasing conditions. Our results suggest that this so-called “memory effect” is generated in the deep regions of the detector, well below the depleted region, and its contribution on detector response is visible only when time-gated SPADs are exploited to reject a strong burst of photons.

  8. Pockels effect in strained silicon photonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vivien, Laurent; Berciano, Mathias; Damas, Pedro; Marcaud, Guillaume; Le Roux, Xavier; Crozat, Paul; Alonso-Ramos, Carlos A.; Benedikovic, Daniel; Marris-Morini, Delphine; Cassan, Eric

    2017-05-01

    Silicon photonics has generated a strong interest in recent years, mainly for optical communications and optical interconnects in CMOS circuits. The main motivations for silicon photonics are the reduction of photonic system costs and the increase of the number of functionalities on the same integrated chip by combining photonics and electronics, along with a strong reduction of power consumption. However, one of the constraints of silicon as an active photonic material is its vanishing second order optical susceptibility, the so called χ(2) , due to the centrosymmety of the silicon crystal. To overcome this limitation, strain has been used as a way to deform the crystal and destroy the centrosymmetry which inhibits χ(2). The paper presents the recent advances in the development of second-order nonlinearities including discussions from fundamental origin of Pockels effect in silicon until its implementation in a real device. Carrier effects induced by an electric field leading to an electro-optics behavior will also be discussed.

  9. Ultra-low noise single-photon detector based on Si avalanche photodiode.

    PubMed

    Kim, Yong-Su; Jeong, Youn-Chang; Sauge, Sebastien; Makarov, Vadim; Kim, Yoon-Ho

    2011-09-01

    We report operation and characterization of a lab-assembled single-photon detector based on commercial silicon avalanche photodiodes (PerkinElmer C30902SH, C30921SH). Dark count rate as low as 5 Hz was achieved by cooling the photodiodes down to -80 °C. While afterpulsing increased as the photodiode temperature was decreased, total afterpulse probability did not become significant due to detector's relatively long deadtime in a passively-quenched scheme. We measured photon detection efficiency >50% at 806 nm. © 2011 American Institute of Physics

  10. Liquid crystal claddings for passive temperature stabilization of silicon photonics

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna N.; Khoo, Iam-Choon; Fainman, Yeshaiahu

    2014-10-01

    Silicon photonics allows for high density component integration on a single chip and it brings promise for low-loss, high-bandwidth data processing in modern computing systems. Owing to silicon's high positive thermo-optic coefficient, temperature fluctuations tend to degrade the device performance. This work explores passive thermal stabilization of silicon photonic devices using nematic liquid crystal (NLC) claddings, as they possess large negative thermo-optic coefficients in addition to low absorption at the telecommunication wavelengths.

  11. Recent results in silicon photonics at the University of Southampton

    NASA Astrophysics Data System (ADS)

    Reed, G. T.; Mashanovich, G. Z.; Gardes, F. Y.; Thomson, D. J.; Hu, Y.; Soler-Penades, J.; Nedeljkovic, M.; Khokhar, A. Z.; Thomas, P.; Littlejohns, C.; Ahmad, A.; Reynolds, S.; Topley, R.; Mitchell, C.; Stankovic, S.; Owens, N.; Chen, X.; Wilson, P. R.; Ke, L.; Ben Masaud, T. M.; Tarazona, A.; Chong, H.

    2014-03-01

    In this paper we will discuss recent results in our work on Silicon Photonics. This will include active and passive devices for a range of applications. Specifically we will include work on modulators and drivers, deposited waveguides, multiplexers, device integration and Mid IR silicon photonics. These devices and technologies are important both for established applications such as integrated transceivers for short reach interconnect, as well as emerging applications such as disposable sensors and mass market photonics.

  12. Angular independent silicon detector for dosimetry in external beam radiotherapy.

    PubMed

    Petasecca, M; Alhujaili, S; Aldosari, A H; Fuduli, I; Newall, M; Porumb, C S; Carolan, M; Nitschke, K; Lerch, M L F; Kalliopuska, J; Perevertaylo, V; Rosenfeld, A B

    2015-08-01

    In this work, the "edgeless" silicon detector technology is investigated, in combination with an innovative packaging solution, to manufacture silicon detectors with negligible angular response. The new diode is also characterized as a dosimeter for radiotherapy with the aim to verify its suitability as a single detector for in vivo dosimetry as well as large area 2D array that does not require angular correction to their response. For the characterisation of the "edgeless-drop-in" detector technology, a set of samples have been manufactured with different sensitive areas (1 × 1 and 0.5 × 0.5 mm(2)) and different thicknesses (0.1 and 0.5 mm) in four different combinations of top and peripheral p-n junction fabricated on p-type and n-type silicon substrates. The diode probes were tested in terms of percentage depth dose (PDD), dose rate, and linearity and compared to ion chambers. Measurements of the output factor have been compared to film. The angular response of the diodes probes has been tested in a cylindrical PMMA phantom, rotated with bidirectional accuracy of 0.25° under 10 × 10 cm(2) 6 MV Linac photon beam. The radiation hardness has been investigated as well as the effect of radiation damage on the angular and dose rate response of the diode probes when irradiated with photons from a Co-60 gamma source up to dose of 40 kGy. The PDDs measured by the edgeless detectors show an agreement with the data obtained using ion chambers within ±2%. The output factor measured with the smallest area edgeless diodes (0.5 × 0.5 mm(2)-0.1 and 0.5 mm thick) matches EBT3 film to within 2% for square field size from 10 to 0.5 cm side equivalent distance. The dose rate dependence in a dose per pulse range of 0.9 × 10(-5)-2.7 × 10(-4) Gy/pulse was less than -7% and +300% for diodes fabricated on p-type and n-type substrates, respectively. The edgeless diodes fabricated on the p-type substrate demonstrated degradation of the response as a function of the irradiation

  13. Angular independent silicon detector for dosimetry in external beam radiotherapy

    SciTech Connect

    Petasecca, M. Aldosari, A. H.; Newall, M.; Porumb, C. S.; Lerch, M. L. F.; Rosenfeld, A. B.; Alhujaili, S.; Fuduli, I.; Carolan, M.; Nitschke, K.; Kalliopuska, J.; Perevertaylo, V.

    2015-08-15

    Purpose: In this work, the “edgeless” silicon detector technology is investigated, in combination with an innovative packaging solution, to manufacture silicon detectors with negligible angular response. The new diode is also characterized as a dosimeter for radiotherapy with the aim to verify its suitability as a single detector for in vivo dosimetry as well as large area 2D array that does not require angular correction to their response. Methods: For the characterisation of the “edgeless-drop-in” detector technology, a set of samples have been manufactured with different sensitive areas (1 × 1 and 0.5 × 0.5 mm{sup 2}) and different thicknesses (0.1 and 0.5 mm) in four different combinations of top and peripheral p–n junction fabricated on p-type and n-type silicon substrates. The diode probes were tested in terms of percentage depth dose (PDD), dose rate, and linearity and compared to ion chambers. Measurements of the output factor have been compared to film. The angular response of the diodes probes has been tested in a cylindrical PMMA phantom, rotated with bidirectional accuracy of 0.25° under 10 × 10 cm{sup 2} 6 MV Linac photon beam. The radiation hardness has been investigated as well as the effect of radiation damage on the angular and dose rate response of the diode probes when irradiated with photons from a Co-60 gamma source up to dose of 40 kGy. Results: The PDDs measured by the edgeless detectors show an agreement with the data obtained using ion chambers within ±2%. The output factor measured with the smallest area edgeless diodes (0.5 × 0.5 mm{sup 2}—0.1 and 0.5 mm thick) matches EBT3 film to within 2% for square field size from 10 to 0.5 cm side equivalent distance. The dose rate dependence in a dose per pulse range of 0.9 × 10{sup −5}–2.7 × 10{sup −4} Gy/pulse was less than −7% and +300% for diodes fabricated on p-type and n-type substrates, respectively. The edgeless diodes fabricated on the p-type substrate

  14. The PHENIX Forward Silicon Vertex Detector

    NASA Astrophysics Data System (ADS)

    Aidala, C.; Anaya, L.; Anderssen, E.; Bambaugh, A.; Barron, A.; Boissevain, J. G.; Bok, J.; Boose, S.; Brooks, M. L.; Butsyk, S.; Cepeda, M.; Chacon, P.; Chacon, S.; Chavez, L.; Cote, T.; D'Agostino, C.; Datta, A.; DeBlasio, K.; DelMonte, L.; Desmond, E. J.; Durham, J. M.; Fields, D.; Finger, M.; Gingu, C.; Gonzales, B.; Haggerty, J. S.; Hawke, T.; van Hecke, H. W.; Herron, M.; Hoff, J.; Huang, J.; Jiang, X.; Johnson, T.; Jonas, M.; Kapustinsky, J. S.; Key, A.; Kunde, G. J.; Kurtz, J.; LaBounty, J.; Lee, D. M.; Lee, K. B.; Leitch, M. J.; Lenz, M.; Lenz, W.; Liu, M. X.; Lynch, D.; Mannel, E.; McGaughey, P. L.; Meles, A.; Meredith, B.; Nguyen, H.; O'Brien, E.; Pak, R.; Papavassiliou, V.; Pate, S.; Pereira, H.; Perera, G. D. N.; Phillips, M.; Pisani, R.; Polizzo, S.; Poncione, R. J.; Popule, J.; Prokop, M.; Purschke, M. L.; Purwar, A. K.; Ronzhina, N.; Silva, C. L.; Slunečka, M.; Smith, R.; Sondheim, W. E.; Spendier, K.; Stoffer, M.; Tennant, E.; Thomas, D.; Tomášek, M.; Veicht, A.; Vrba, V.; Wang, X. R.; Wei, F.; Winter, D.; Yarema, R.; You, Z.; Younus, I.; Zimmerman, A.; Zimmerman, T.

    2014-08-01

    A new silicon detector has been developed to provide the PHENIX experiment with precise charged particle tracking at forward and backward rapidity. The Forward Silicon Vertex Tracker (FVTX) was installed in PHENIX prior to the 2012 run period of the Relativistic Heavy Ion Collider (RHIC). The FVTX is composed of two annular endcaps, each with four stations of silicon mini-strip sensors, covering a rapidity range of 1.2<|η|<2.2 that closely matches the two existing PHENIX muon arms. Each station consists of 48 individual silicon sensors, each of which contains two columns of mini-strips with 75 μm pitch in the radial direction and lengths in the ϕ direction varying from 3.4 mm at the inner radius to 11.5 mm at the outer radius. The FVTX has approximately 0.54 million strips in each endcap. These are read out with FPHX chips, developed in collaboration with Fermilab, which are wire bonded directly to the mini-strips. The maximum strip occupancy reached in central Au-Au collisions is approximately 2.8%. The precision tracking provided by this device makes the identification of muons from secondary vertices away from the primary event vertex possible. The expected distance of closest approach (DCA) resolution of 200 μm or better for particles with a transverse momentum of 5 GeV/c will allow identification of muons from relatively long-lived particles, such as D and B mesons, through their broader DCA distributions.

  15. Lithium-drifted silicon detector with segmented contacts

    DOEpatents

    Tindall, Craig S.; Luke, Paul N.

    2006-06-13

    A method and apparatus for creating both segmented and unsegmented radiation detectors which can operate at room temperature. The devices include a metal contact layer, and an n-type blocking contact formed from a thin layer of amorphous semiconductor. In one embodiment the material beneath the n-type contact is n-type material, such as lithium compensated silicon that forms the active region of the device. The active layer has been compensated to a degree at which the device may be fully depleted at low bias voltages. A p-type blocking contact layer, or a p-type donor material can be formed beneath a second metal contact layer to complete the device structure. When the contacts to the device are segmented, the device is capable of position sensitive detection and spectroscopy of ionizing radiation, such as photons, electrons, and ions.

  16. Why I am optimistic about the silicon-photonic route to quantum computing

    NASA Astrophysics Data System (ADS)

    Rudolph, Terry

    2017-03-01

    This is a short overview explaining how building a large-scale, silicon-photonic quantum computer has been reduced to the creation of good sources of 3-photon entangled states (and may simplify further). Given such sources, each photon needs to pass through a small, constant, number of components, interfering with at most 2 other spatially nearby photons, and current photonics engineering has already demonstrated the manufacture of thousands of components on two-dimensional semiconductor chips with performance that, once scaled up, allows the creation of tens of thousands of photons entangled in a state universal for quantum computation. At present the fully integrated, silicon-photonic architecture we envisage involves creating the required entangled states by starting with single-photons produced non-deterministically by pumping silicon waveguides (or cavities) combined with on-chip filters and nanowire superconducting detectors to herald that a photon has been produced. These sources are multiplexed into being near-deterministic, and the single photons then passed through an interferometer to non-deterministically produce small entangled states—necessarily multiplexed to near-determinism again. This is followed by a "ballistic" scattering of the small-scale entangled photons through an interferometer such that some photons are detected, leaving the remainder in a large-scale entangled state which is provably universal for quantum computing implemented by single-photon measurements. There are a large number of questions regarding the optimum ways to make and use the final cluster state, dealing with static imperfections, constructing the initial entangled photon sources and so on, that need to be investigated before we can aim for millions of qubits capable of billions of computational time steps. The focus in this article is on the theoretical side of such questions.

  17. Design optimization of ultra-fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Cartiglia, N.; Arcidiacono, R.; Baselga, M.; Bellan, R.; Boscardin, M.; Cenna, F.; Dalla Betta, G. F.; Fernndez-Martnez, P.; Ferrero, M.; Flores, D.; Galloway, Z.; Greco, V.; Hidalgo, S.; Marchetto, F.; Monaco, V.; Obertino, M.; Pancheri, L.; Paternoster, G.; Picerno, A.; Pellegrini, G.; Quirion, D.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F.-W.; Seiden, A.; Solano, A.; Spencer, N.

    2015-10-01

    Low-Gain Avalanche Diodes (LGAD) are silicon detectors with output signals that are about a factor of 10 larger than those of traditional sensors. In this paper we analyze how the design of LGAD can be optimized to exploit their increased output signal to reach optimum timing performances. Our simulations show that these sensors, the so-called Ultra-Fast Silicon Detectors (UFSD), will be able to reach a time resolution factor of 10 better than that of traditional silicon sensors.

  18. The effect of dose rate dependence of p-type silicon detectors on linac relative dosimetry.

    PubMed

    Wilkins, D; Li, X A; Cygler, J; Gerig, L

    1997-06-01

    Cumulative radiation damage to silicon semiconductor diode detectors can induce dose rate dependent sensitivity, a concern in the pulsed beam of a linac. Two p-Si diode photon detectors were used in this study, diodes A and B. Both were preirradiated by the supplier to 5 kGy, with diode A receiving an estimated 8 kGy from measurements, and diode B, 25 kGy. At 6 MV, the PDD measured with diode B was lower (by 4.4% at a depth of 25 cm) than diode A. Using SSD to vary the dose per pulse from 0.02 to 0.64 mGy/pulse, diode A was dose rate independent (within 2%), while the sensitivity of diode B changed by 13%. Silicon diode detectors should be checked regularly against ionization chambers in the pulsed beam of a linac, especially older high-resistivity diodes that have accumulated dose from high-energy photon beams.

  19. Negative avalanche feedback detectors for photon-counting optical communications

    NASA Astrophysics Data System (ADS)

    Farr, William H.

    2009-02-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  20. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  1. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  2. Glucose sensing by means of silicon photonics

    NASA Astrophysics Data System (ADS)

    Bockstaele, Ronny; Ryckeboer, Eva; Hattasan, Nannicha; De Koninck, Yannick; Muneeb, Muhammad; Verstuyft, Steven; Delbeke, Danaë; Bogaerts, Wim; Roelkens, Gunther; Baets, Roel

    2014-03-01

    Diabetes is a fast growing metabolic disease, where the patients suffer from disordered glucose blood levels. Monitoring the blood glucose values in combination with extra insulin injection is currently the only therapy to keep the glucose concentration in diabetic patients under control, minimizing the long-term effects of elevated glucose concentrations and improving quality of life of the diabetic patients. Implantable sensors allow continuous glucose monitoring, offering the most reliable data to control the glucose levels. Infrared absorption spectrometers offer a non-chemical measurement method to determine the small glucose concentrations in blood serum. In this work, a spectrometer platform based on silicon photonics is presented, allowing the realization of very small glucose sensors suitable for building implantable sensors. A proof-of-concept of a spectrometer with integrated evanescent sample interface is presented, and the route towards a fully implantable spectrometer is discussed.

  3. Mechanical design of the CDF SVX II silicon vertex detector

    SciTech Connect

    Skarha, J.E.

    1994-08-01

    A next generation silicon vertex detector is planned at CDF for the 1998 Tevatron collider run with the Main Injector. The SVX II silicon vertex detector will allow high luminosity data-taking, enable online triggering of secondary vertex production, and greatly increase the acceptance for heavy flavor physics at CDF. The design specifications, geometric layout, and early mechanical prototyping work for this detector are discussed.

  4. Radiation-Resistant Photon-Counting Detector Package Providing Sub-ps Stability for Laser Time Transfer in Space

    NASA Technical Reports Server (NTRS)

    Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)

    2015-01-01

    We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.

  5. Direct charge sharing observation in single-photon-counting pixel detector

    NASA Astrophysics Data System (ADS)

    Pellegrini, G.; Maiorino, M.; Blanchot, G.; Chmeissani, M.; Garcia, J.; Lozano, M.; Martinez, R.; Puigdengoles, C.; Ullan, M.

    2007-04-01

    In photon-counting imaging devices, charge sharing can limit the detector spatial resolution and contrast, as multiple counts can be induced in adjacent pixels as a result of the spread of the charge cloud generated from a single X-ray photon of high energy in the detector bulk. Although debated for a long time, the full impact of charge sharing has not been completely assessed. In this work, the importance of charge sharing in pixellated CdTe and silicon detectors is studied by exposing imaging devices to different low activity sources. These devices are made of Si and CdTe pixel detector bump-bonded to Medipix2 single-photon-counting chips with a 55 μm pixel pitch. We will show how charge sharing affects the spatial detector resolution depending on incident particle type (alpha, beta and gamma), detector bias voltage and read-out chip threshold. This study will give an insight on the impact on the design and operation of pixel detectors coupled to photon-counting devices for imaging applications.

  6. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  7. TCPD: A micropattern photon detector hybrid for RICH applications

    NASA Astrophysics Data System (ADS)

    Hamar, G.; Varga, D.

    2017-03-01

    A micropattern and wire chamber hybrid has been constructed for UV photon detection, and its performance evaluated. It is revealed that such combination retains some key advantages of both the Thick-GEM primary and CCC secondary amplification stages, and results in a high gain gaseous photon detector with outstanding stability. Key features such as MIP suppression, detection efficiency and photon cluster size are discussed. The capability of the detector for UV photon detection has been established and proven with Cherenkov photons in particle beam tests.

  8. Spectrometric characterization of amorphous silicon PIN detectors

    NASA Astrophysics Data System (ADS)

    Leyva, A.; Ramírez, F. J.; Ortega, Y.; Estrada, M.; Cabal, A.; Cerdeira, A.; Díaz, A.

    2000-10-01

    During the last years, much interest has been dedicated to the use of amorphous silicon PIN diodes as particle and radiation detectors for medical applications. This work presents the spectrometric characterization of PECVD high deposition rate diodes fabricated at our laboratory, with thickness up to 17.5 μm. Results show that the studied devices detect the Am241 alpha particles and the medical X-rays generated by a mammograph model Senographe 700T from General Electric Possible reasons of the observed energy losses are discussed in the text. Using the SRIM2000 program, the transit of 5.5 MeV alpha particles through a diode was simulated, determining the optimum thickness for these particles to deposit their energy in the intrinsic layer of the diode.

  9. A single-photon counting detector for increased sensitivity in two-photon laser scanning microscopy

    PubMed Central

    Benninger, Richard K.P.; Ashby, William J.; Ring, Elisabeth A.; Piston, David W.

    2009-01-01

    We present the use and characterization of a photon counting detector for increased sensitivity at low signal levels in fluorescence laser scanning microscopy (LSM). Conventional LSM PMT detectors utilize analog current integration and thus suffer from excessive noise at low signal levels, introduced during current measurement. In this letter we describe the implementation of a fast single-photon counting (SPC) detector on a conventional two-photon laser scanning microscope and detail its use in imaging low fluorescence intensities. We show that for a low photon flux, the SPC detector is shot-noise limited and thus provides increased detection sensitivity compared to analog current integration. PMID:19079484

  10. Single Photon Counting Detectors for Low Light Level Imaging Applications

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2015-10-01

    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for

  11. Silicon detector readout system using commercially available items

    SciTech Connect

    Green, D.

    1986-05-01

    The basic properties of silicon detectors are briefly noted, including bulk and electrical properties. Thermal and shot noise in front end amplifiers is discussed. The configuration of detectors and preamps is then briefly described. A detector test is described and results are given. (LEW)

  12. SVX{prime}, the new CDF silicon vertex detector

    SciTech Connect

    Cihangir, S.; Gillespie, G.; Gonzalez, H.

    1994-08-26

    The Collider Detector at Fermilab (CDF) radiation hardened silicon vertex detector (SVX{prime}) is described. The new detector has several improvements over its predecessor such as better signal to noise and higher efficiency. It`s expected to have a radiation tolerance in excess of 1 Mrad. It has been taking data for several months and some preliminary results are shown.

  13. Controlling the spectrum of photons generated on a silicon nanophotonic chip

    NASA Astrophysics Data System (ADS)

    Kumar, Ranjeet; Ong, Jun Rong; Savanier, Marc; Mookherjea, Shayan

    2014-11-01

    Directly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement. Here we design a photon-pair source, consisting of planar lightwave components fabricated using CMOS-compatible lithography in silicon, which has the capability to vary the JSI. By controlling either the optical pump wavelength, or the temperature of the chip, we demonstrate the ability to select different JSIs, with a large variation in the Schmidt number. Such control can benefit high-dimensional communications where detector-timing constraints can be relaxed by realizing a large Schmidt number in a small frequency range.

  14. Controlling the spectrum of photons generated on a silicon nanophotonic chip.

    PubMed

    Kumar, Ranjeet; Ong, Jun Rong; Savanier, Marc; Mookherjea, Shayan

    2014-11-20

    Directly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement. Here we design a photon-pair source, consisting of planar lightwave components fabricated using CMOS-compatible lithography in silicon, which has the capability to vary the JSI. By controlling either the optical pump wavelength, or the temperature of the chip, we demonstrate the ability to select different JSIs, with a large variation in the Schmidt number. Such control can benefit high-dimensional communications where detector-timing constraints can be relaxed by realizing a large Schmidt number in a small frequency range.

  15. Status and performance of the CDF Run II silicon detectors

    SciTech Connect

    Nielsen, Jason; /LBL, Berkeley

    2004-11-01

    In 2001, an upgraded silicon detector system was installed in the CDF II experiment on the Tevatron at Fermilab. The complete system consists of three silicon microstrip detectors: SVX II with five layers for precision tracking, Layer 00 with one beampipe-mounted layer for vertexing, and two Intermediate Silicon Layers located between SVX II and the main CDF II tracking chamber. Currently all detectors in the system are operating at or near design levels. The performance of the combined silicon system is excellent in the context of CDF tracking algorithms, and the first useful physics results from the innermost Layer 00 detector have been recently documented. Operational and monitoring efforts have also been strengthened to maintain silicon efficiency through the end of Run 2 at the Tevatron.

  16. Electrical Control of Silicon Photonic Crystal Cavity by Graphene

    DTIC Science & Technology

    2012-01-01

    Electrical Control of Silicon Photonic Crystal Cavity by Graphene Arka Majumdar,†,‡,∥ Jonghwan Kim,†,∥ Jelena Vuckovic,‡ and Feng Wang...of electronics and photonics . The combination of graphene with photonic crystals is promising for electro-optic modulation. In this paper, we...demonstrate that by electrostatic gating a single layer of graphene on top of a photonic crystal cavity, the cavity resonance can be changed significantly. A

  17. Silicon and germanium mid-infrared photonics

    NASA Astrophysics Data System (ADS)

    Mashanovich, G. Z.; Reed, G. T.; Nedeljkovic, M.; Soler Penades, J.; Mitchell, C. J.; Khokhar, A. Z.; Littlejohns, C. J.; Stankovic, S.; Chen, X.; Shen, L.; Healy, N.; Peacock, A. C.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Ackert, J. J.; Knights, A. P.; Gardes, F. Y.; Thomson, D. J.

    2016-02-01

    We present three main material platforms: SOI, suspended Si and Ge on Si. We report low loss SOI waveguides (rib, strip, slot) with losses of ~1dB/cm. We also show efficient modulators and detectors realized in SOI, as well as filters and multiplexers. To extend transparency of SOI waveguides, bottom oxide cladding can be removed. We have fabricated low loss passive devices in a suspended platform that employ subwavelength gratings. Ge on Si material can have larger transparency range than suspended Si. We have designed passive devices in this platform, demonstrated all optical modulation and carried out two photon absorption measurements. We have also investigated theoretically free carrier optical modulation in Ge.

  18. InP lateral overgrowth technology for silicon photonics

    NASA Astrophysics Data System (ADS)

    Wang, Zhechao; Junesand, Carl; Metaferia, Wondwosen; Hu, Chen; Lourdudoss, Sebastian; Wosinski, Lech

    2010-12-01

    Epitaxial Lateral Overgrowth has been proposed as a key technology of a novel hybrid integration platform for active silicon photonic components. By fabricating silicon oxide mask on top of a thin InP seed layer, we can use the so called defect necking effect to filter out the threading dislocations propagating from the seed layer. By optimizing the process, thin dislocation free InP layers have been successfully obtained on top of silicon wafer. The obtained characterization results show that the grown InP layer has very high quality, which can be used as the base for further process of active photonic components on top of silicon.

  19. THE 15 LAYER SILICON DRIFT DETECTOR TRACKER IN EXPERIMENT 896.

    SciTech Connect

    PANDY,S.U.

    1998-11-08

    Large linear silicon drift detectors have been developed and are in production for use in several experiments. Recently 15 detectors were used as a tracking device in BNL-AGS heavy ion experiment (E896). The detectors were successfully operated in a 6.2 T magnetic field. The behavior of the detectors, such as drift uniformity, resolution, and charge collection efficiency are presented. The effect of the environment on the detector performance is discussed. Some results from the experimental run are presented. The detectors performed well in an experimental environment. This is the first tracking application of these detectors.

  20. Dual exposure, two-photon, conformal phasemask lithography for three dimensional silicon inverse woodpile photonic crystals

    SciTech Connect

    Shir, Daniel J.; Nelson, Erik C.; Chanda, Debashis; Brzezinski, Andrew; Braun, Paul V.; Rogers, John A.; Wiltzius, Pierre

    2010-01-01

    The authors describe the fabrication and characterization of three dimensional silicon inverse woodpile photonic crystals. A dual exposure, two-photon, conformal phasemask technique is used to create high quality polymer woodpile structures over large areas with geometries that quantitatively match expectations based on optical simulations. Depositing silicon into these templates followed by the removal of the polymer results in silicon inverse woodpile photonic crystals for which calculations indicate a wide, complete photonic bandgap over a range of structural fill fractions. Spectroscopic measurements of normal incidence reflection from both the polymer and siliconphotonic crystals reveal good optical properties.

  1. Charge injectors of ALICE Silicon Drift Detector

    NASA Astrophysics Data System (ADS)

    Rashevsky, A.; Batigne, G.; Beole, S.; Coli, S.; Crescio, E.; Deremigis, P.; Giraudo, G.; Mazza, G.; Prino, F.; Riccati, L.; Rivetti, A.; Toscano, L.; Tosello, F.; Vacchi, A.; Wheadon, R.; Zampa, G.

    2007-03-01

    Large area, 7.25×8.76 cm2, Silicon Drift Detector (SDD) has been developed for the ALICE experiment at CERN [A. Vacchi, et al., Nucl. Instr. and Meth. A 306 (1991) 187; A. Rashevsky, et al., Nucl. Instr. and Meth. A 461 (2001) 133-138; A. Rashevsky, et al., Nucl. Instr. and Meth. A 485 (2002) 54; P. Burger, C. Piemonte, A. Rashevsky, A. Roncastri, A. Vacchi, INFN/TC-02/07; C. Piemonte, A. Rashevsky, INFN/TC-02/08; C. Piemonte, A. Rashevsky, D. Nouais, INFN/TC-00/04. C. Piemonte, A. Rashevsky, A. Vacchi, ALICE-INT-2002-15, 2002; Inner Tracking System, CERN/LHCC, June 1999]. SDDs form two out of six cylindrical layers of the ALICE inner tracking system. The 260 high-quality SDDs needed to equip these two layers have been selected. One of the detector design elements devoted to allow controlled operating conditions is the on-board arrays of point-like charge injectors [D. Nouais, et al., CERN-ALICE-PUB-99-31; V. Bonvicini, et al., Il Nuovo Cimento 112AN (1-2) (1999) 137-146]. In the case of an SDD they are essential to trace, with the required frequency and precision, the changes in drift velocity induced by temperature variations. In order to ensure operating stability during the 10 years of the ALICE experiment the bias scheme of the charge injectors exploits the electrical properties not only of a detector itself, but also those of the cables mounted onto it, thus constituting a module. Computer simulations of the equivalent circuit revealed a significant improvement of the injection efficiency. Subsequent experimental tests of the first assembled modules confirmed the predicted performances. We report the layout of the charge injectors integrated in the ALICE SDD, as well as test results.

  2. Optimizing timing performance of silicon photomultiplier-based scintillation detectors.

    PubMed

    Yeom, Jung Yeol; Vinke, Ruud; Levin, Craig S

    2013-02-21

    Precise timing resolution is crucial for applications requiring photon time-of-flight (ToF) information such as ToF positron emission tomography (PET). Silicon photomultipliers (SiPM) for PET, with their high output capacitance, are known to require custom preamplifiers to optimize timing performance. In this paper, we describe simple alternative front-end electronics based on a commercial low-noise RF preamplifier and methods that have been implemented to achieve excellent timing resolution. Two radiation detectors with L(Y)SO scintillators coupled to Hamamatsu SiPMs (MPPC S10362-33-050C) and front-end electronics based on an RF amplifier (MAR-3SM+), typically used for wireless applications that require minimal additional circuitry, have been fabricated. These detectors were used to detect annihilation photons from a Ge-68 source and the output signals were subsequently digitized by a high speed oscilloscope for offline processing. A coincident resolving time (CRT) of 147 ± 3 ps FWHM and 186 ± 3 ps FWHM with 3 × 3 × 5 mm(3) and with 3 × 3 × 20 mm(3) LYSO crystal elements were measured, respectively. With smaller 2 × 2 × 3 mm(3) LSO crystals, a CRT of 125 ± 2 ps FWHM was achieved with slight improvement to 121 ± 3 ps at a lower temperature (15° C). Finally, with the 20 mm length crystals, a degradation of timing resolution was observed for annihilation photon interactions that occur close to the photosensor compared to shallow depth-of-interaction (DOI). We conclude that commercial RF amplifiers optimized for noise, besides their ease of use, can produce excellent timing resolution comparable to best reported values acquired with custom readout electronics. On the other hand, as timing performance degrades with increasing photon DOI, a head-on detector configuration will produce better CRT than a side-irradiated setup for longer crystals.

  3. Status and performance of the CDF Run II silicon detector

    SciTech Connect

    Boveia, A.; /UC, Santa Barbara

    2005-01-01

    The CDF Run II silicon detector with its 8 layers of double- and single-sided silicon microstrip sensors and a total 722,432 readout channels is one of the largest silicon detector devices currently in use by a HEP experiment. We report our experience commissioning and operating this complex device during the first 4 years of Run II. As the luminosity delivered by the Tevatron increases, we have observed measurable effects of radiation damage in studies of charge collection and noise versus applied bias voltage at many different integrated luminosities. We discuss these studies and their impact on the expected lifetime of the detector.

  4. Small area silicon diffused junction x-ray detectors

    SciTech Connect

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm/sup 2/ and a thickness of 100 ..mu..m. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150/sup 0/K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs.

  5. A prototype of radiation imaging detector using silicon strip sensors

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Hyun, H. J.; Kah, D. H.; Kang, H. D.; Kim, H. J.; Kim, Kyeryung; Kim, Y. I.; Park, H.; Son, D. H.

    2008-06-01

    The aim of this work is to evaluate the performance of a strip sensor with a single photon counting data acquisition system based on VA1 readout chips to study the feasibility of a silicon microstrip detector for medical application. The sensor is an AC-coupled single-sided microstrip sensor and the active area of the sensor is 32.0 mm×32.0 mm with a thickness of 380 μm. The sensor has 64 readout strips with a pitch of 500 μm. The sensor was biased at 45 V and the experiment was performed at room temperature. Two silicon strip sensors were mounted perpendicularly one another to get two-dimensional position information with a 5 mm space gap. Two low noise analog ASICs, VA1 chips, were used for signal readout of the strip sensor. The assembly of sensors and readout electronics was housed in an Al light-tight box. A CsI(Tl) scintillation crystal and a 2-in. photomultiplier tube were used to trigger signal events. The data acquisition system was based on a 64 MHz FADC and control softwares for the PC-Linux platform. Imaging tests were performed by using a lead phantom with a 90Sr radioactive source and a 45 MeV proton beam at Korea Institute of Radiological and Medical Science in Seoul, respectively. Results of the S/ N ratio measurement and phantom images are presented.

  6. Scalable Quantum Photonics with Single Color Centers in Silicon Carbide.

    PubMed

    Radulaski, Marina; Widmann, Matthias; Niethammer, Matthias; Zhang, Jingyuan Linda; Lee, Sang-Yun; Rendler, Torsten; Lagoudakis, Konstantinos G; Son, Nguyen Tien; Janzén, Erik; Ohshima, Takeshi; Wrachtrup, Jörg; Vučković, Jelena

    2017-03-08

    Silicon carbide is a promising platform for single photon sources, quantum bits (qubits), and nanoscale sensors based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400-1400 nm diameters. We obtain high collection efficiency of up to 22 kcounts/s optical saturation rates from a single silicon vacancy center while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum photonics architecture relying on single photon sources and qubits.

  7. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia; Van Buuren, Anthony; Terminello, Louis

    2004-08-31

    Disclosed herein is a photonic silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls selectively bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and determine the concentration of bound target.

  8. Spectral response of multi-element silicon detectors

    SciTech Connect

    Ludewigt, B.A.; Rossington, C.S.; Chapman, K.

    1997-04-01

    Multi-element silicon strip detectors, in conjunction with integrated circuit pulse-processing electronics, offer an attractive alternative to conventional lithium-drifted silicon Si(Li) and high purity germanium detectors (HPGe) for high count rate, low noise synchrotron x-ray fluorescence applications. One of the major differences between the segmented Si detectors and the commercially available single-element Si(Li) or HPGe detectors is that hundreds of elements can be fabricated on a single Si substrate using standard silicon processing technologies. The segmentation of the detector substrate into many small elements results in very low noise performance at or near, room temperature, and the count rate of the detector is increased many-fold due to the multiplication in the total number of detectors. Traditionally, a single channel of detector with electronics can handle {approximately}100 kHz count rates while maintaining good energy resolution; the segmented detectors can operate at greater than MHz count rates merely due to the multiplication in the number of channels. One of the most critical aspects in the development of the segmented detectors is characterizing the charge sharing and charge loss that occur between the individual detector strips, and determining how these affect the spectral response of the detectors.

  9. Quantum Key Distribution with High-Speed Superconducting Single-Photon Detectors

    DTIC Science & Technology

    2007-05-01

    based QKD [2,3], with high detection efficiency (~40 % at 850 nm) and low dark counts (~100 Hz). For near - infrared wavelengths such as the standard...to near - infrared ,” Appl. Phys. Lett. 80, 4687 (2002). [7] R. H. Hadfield et al. “Single photon source characterization with a superconducting single...efficiency at the wavelength of interest. At wavelengths below 1000 nm Silicon Avalanche Photodiodes (Si APDs) are the detector of choice for fiber

  10. The SVX II Silicon Vertex Detector at CDF

    NASA Astrophysics Data System (ADS)

    Valls, Juan A.

    1999-08-01

    The Silicon VerteX detector (SVX II) for the CDF experiment at the Tevatron p overlinep collider is a 3-barrel 5-layer device with double-sided, AC-coupled silicon strip detectors. The readout is based on a custom IC, the SVX3 chip, capable of simultaneous acquisition, digitization and readout operation (dead-timeless). In this paper we report on the SVX II design and project status including mechanical design, frontend electronics, and data acquisition.

  11. Miniature optical coherence tomography system based on silicon photonics

    NASA Astrophysics Data System (ADS)

    Margallo-Balbás, Eduardo; Pandraud, Gregory; French, Patrick J.

    2008-02-01

    Optical Coherence Tomography (OCT) is a promising medical imaging technique. It has found applications in many fields of medicine and has a large potential for the optical biopsy of tumours. One of the technological challenges impairing faster adoption of OCT is the relative complexity of the optical instrumentation required, which translates into expensive and bulky setups. In this paper we report an implementation of Time Domain OCT (TD-OCT) based on a silicon photonic platform. The devices are fabricated using Silicon-On-Insulator (SOI) wafers, on which rib waveguides are defined. While most of the components needed are well-known in this technology, a fast delay line with sufficient scanning range is a specific requirement of TD-OCT. In the system reported, this was obtained making use of the thermo-optical effect of silicon. By modulating the thermal resistance of the waveguide to the substrate, it is possible to establish a trade-off between maximum working frequency and power dissipation. Within this trade-off, the systems obtained can be operated in the kHz range, and they achieve temperature shifts corresponding to scanning ranges of over 2mm. Though the current implementation still requires external sources and detectors to be coupled to the Planar Lightwave Circuit (PLC), future work will include three-dimensional integration of these components onto the substrate. With the potential to include the read-out and driving electronics on the same die, the reported approach can yield extremely compact and low-cost TD-OCT systems, enabling a wealth of new applications, including gastrointestinal pills with optical biopsy capabilities.

  12. Photon counting detector array algorithms for deep space optical communications

    NASA Astrophysics Data System (ADS)

    Srinivasan, Meera; Andrews, Kenneth S.; Farr, William H.; Wong, Andre

    2016-03-01

    For deep-space optical communications systems utilizing an uplink optical beacon, a single-photon-counting detector array on the flight terminal can be used to simultaneously perform uplink tracking and communications as well as accurate downlink pointing at photon-starved (pW=m2) power levels. In this paper, we discuss concepts and algorithms for uplink signal acquisition, tracking, and parameter estimation using a photon-counting camera. Statistical models of detector output data and signal processing algorithms are presented, incorporating realistic effects such as Earth background and detector/readout blocking. Analysis and simulation results are validated against measured laboratory data using state-of-the-art commercial photon-counting detector arrays, demonstrating sub-microradian tracking errors under channel conditions representative of deep space optical links.

  13. Investigation of the Effect of Temperature and Light Emission from Silicon Photomultiplier Detectors

    NASA Astrophysics Data System (ADS)

    Ruiz Castruita, Daniel; Ramos, Daniel; Hernandez, Victor; Niduaza, Rommel; Konx, Adrian; Fan, Sewan; Fatuzzo, Laura; Ritt, Stefan

    2015-04-01

    The silicon photomultiplier (SiPM) is an extremely sensitive light detector capable of measuring very dim light and operates as a photon-number resolving detector. Its high gain comes from operating at slightly above the breakdown voltage, which is also accompanied by a high dark count rate. At this conference poster session we describe our investigation of using SiPMs, the multipixel photon counters (MPPC) from Hamamatsu, as readout detectors for development in a cosmic ray scintillating detector array. Our research includes implementation of a novel design that automatically adjusts for the bias voltage to the MPPC detectors to compensate for changes in the ambient temperature. Furthermore, we describe our investigations for the MPPC detector characteristics at different bias voltages, temperatures and light emission properties. To measure the faint light emitted from the MPPC we use a photomultiplier tube capable of detecting single photons. Our data acquisition setup consists of a 5 Giga sample/second waveform digitizer, the DRS4, triggered to capture the MPPC detector waveforms. Analysis of the digitized waveforms, using the CERN package PAW, would be discussed and presented. US Department of Education Title V Grant PO31S090007.

  14. Silicon Detector System and Noise Modeling

    NASA Astrophysics Data System (ADS)

    Park, Chan Ho; Kyung, Richard

    2012-03-01

    We can postulate that dark matter are WIMPS, more specifically, Majorana particles called neutralinos floating through space. Upon neutralino-neutralino annihilation, they create a greater burst of other particles into space: these being all kinds of particles including anti-deuterons which are the indications of the existence of dark matter. For the development of the silicon detector, many factors including noise, shaping times and leakage current are considered. It is also an object of this study to find out factors affected by parallel noise such as leakage current and parallel resistance. High noise is not desirable, so we tried to avoid noise because it blurs the accurate readings that measure the x-ray signatures by adding a passivation material. We searched for the optimal resolution at which the FWHM is at a minimum at a specific shaping time, and for this, we used different shaping times to find the optimal resolution. Results shows where the paint/passivation material affects, and when is the best shaping time for the resolution measurement.

  15. a-Si:H TFT-silicon hybrid low-energy x-ray detector

    DOE PAGES

    Shin, Kyung -Wook; Karim, Karim S.

    2017-03-15

    Direct conversion crystalline silicon X-ray imagers are used for low-energy X-ray photon (4-20 keV) detection in scientific research applications such as protein crystallography. In this paper, we demonstrate a novel pixel architecture that integrates a crystalline silicon X-ray detector with a thin-film transistor amorphous silicon pixel readout circuit. We describe a simplified two-mask process to fabricate a complete imaging array and present preliminary results that show the fabricated pixel to be sensitive to 5.89-keV photons from a low activity Fe-55 gamma source. Furthermore, this paper presented can expedite the development of high spatial resolution, low cost, direct conversion imagers formore » X-ray diffraction and crystallography applications.« less

  16. Single photon avalanche detectors: prospects of new quenching and gain mechanisms

    NASA Astrophysics Data System (ADS)

    Hall, David; Liu, Yu-Hsin; Lo, Yu-Hwa

    2015-11-01

    While silicon single-photon avalanche diodes (SPAD) have reached very high detection efficiency and timing resolution, their use in fibre-optic communications, optical free space communications, and infrared sensing and imaging remains limited. III-V compounds including InGaAs and InP are the prevalent materials for 1550 nm light detection. However, even the most sensitive 1550 nm photoreceivers in optical communication have a sensitivity limit of a few hundred photons. Today, the only viable approach to achieve single-photon sensitivity at 1550 nm wavelength from semiconductor devices is to operate the avalanche detectors in Geiger mode, essentially trading dynamic range and speed for sensitivity. As material properties limit the performance of Ge and III-V detectors, new conceptual insight with regard to novel quenching and gain mechanisms could potentially address the performance limitations of III-V SPADs. Novel designs that utilise internal self-quenching and negative feedback can be used to harness the sensitivity of single-photon detectors,while drastically reducing the device complexity and increasing the level of integration. Incorporation of multiple gain mechanisms, together with self-quenching and built-in negative feedback, into a single device also hold promise for a new type of detector with single-photon sensitivity and large dynamic range.

  17. Afterpulse time spectra of high-speed photon detectors

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1985-01-01

    Recent progress of understanding of the afterpulse time spectra of high-speed photon detectors using photoemission and secondary emission processes is reviewed and summarized. Furthermore, the afterpulse time spectra of high-gain conventionally designed and microchannel plate photon detectors was investigated. Specifically, the devices studied included RCA 8850, RCA 8854 and ITT F 4129g photomultipliers. Descriptions are given of the measuring techniques.

  18. Speckle imaging with the PAPA detector. [Precision Analog Photon Address

    NASA Technical Reports Server (NTRS)

    Papaliolios, C.; Nisenson, P.; Ebstein, S.

    1985-01-01

    A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.

  19. Speckle imaging with the PAPA detector. [Precision Analog Photon Address

    NASA Technical Reports Server (NTRS)

    Papaliolios, C.; Nisenson, P.; Ebstein, S.

    1985-01-01

    A new 2-D photon-counting camera, the PAPA (precision analog photon address) detector has been built, tested, and used successfully for the acquisition of speckle imaging data. The camera has 512 x 512 pixels and operates at count rates of at least 200,000/sec. In this paper, technical details on the camera are presented and some of the laboratory and astronomical results are included which demonstrate the detector's capabilities.

  20. DEPOSITS ON FLAME IONIZATION DETECTORS WITH SILICONE GUM RUBBER COLUMNS,

    DTIC Science & Technology

    During the preparative gas chromatography of some organophosphorus esters using a silicone gum rubber column, a copious white deposit was formed on...detector deposits were mainly silicon phosphate (2SiO2.P2O5), and the injection port samples were alpha cristobalite (SiO2).

  1. Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver.

    PubMed

    Zheng, Xuezhe; Patil, Dinesh; Lexau, Jon; Liu, Frankie; Li, Guoliang; Thacker, Hiren; Luo, Ying; Shubin, Ivan; Li, Jieda; Yao, Jin; Dong, Po; Feng, Dazeng; Asghari, Mehdi; Pinguet, Thierry; Mekis, Attila; Amberg, Philip; Dayringer, Michael; Gainsley, Jon; Moghadam, Hesam Fathi; Alon, Elad; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V

    2011-03-14

    Using low parasitic microsolder bumping, we hybrid integrated efficient photonic devices from different platforms with advanced 40 nm CMOS VLSI circuits to build ultra-low power silicon photonic transmitters and receivers for potential applications in high performance inter/intra-chip interconnects. We used a depletion racetrack ring modulator with improved electro-optic efficiency to allow stepper optical photo lithography for reduced fabrication complexity. Integrated with a low power cascode 2 V CMOS driver, the hybrid silicon photonic transmitter achieved better than 7 dB extinction ratio for 10 Gbps operation with a record low power consumption of 1.35 mW. A received power penalty of about 1 dB was measured for a BER of 10(-12) compared to an off-the-shelf lightwave LiNOb3 transmitter, which comes mostly from the non-perfect extinction ratio. Similarly, a Ge waveguide detector fabricated using 130 nm SOI CMOS process was integrated with low power VLSI circuits using hybrid bonding. The all CMOS hybrid silicon photonic receiver achieved sensitivity of -17 dBm for a BER of 10(-12) at 10 Gbps, consuming an ultra-low power of 3.95 mW (or 395 fJ/bit in energy efficiency). The scalable hybrid integration enables continued photonic device improvements by leveraging advanced CMOS technologies with maximum flexibility, which is critical for developing ultra-low power high performance photonic interconnects for future computing systems.

  2. Development, prototyping and characterization of double sided silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Topkar, Anita; Singh, Arvind; Aggarwal, Bharti; Kumar, Amit; Kumar, Arvind; Murali Krishna, L. V.; Das, D.

    2016-10-01

    Double sided DC-coupled silicon strip detectors with geometry of 65 mm×65 mm have been developed in India for nuclear physics experiments. The detectors have 64 P+ strips on the front side and 64 N+ strips on the backside with a pitch of 0.9 mm. These detectors were fabricated using a twelve mask layer process involving double sided wafer processing technology. Semiconductor process and device simulations were carried out in order to theoretically estimate the impact of important design and process parameters on the breakdown voltage of detectors. The performance of the first lot of prototype detectors has been studied using static characterization tests and using an alpha source. The characterization results demonstrate that the detectors have low leakage currents and good uniformity over the detector area of about 40 cm2. Overview of the detector design, fabrication process, simulation results and initial characterization results of the detectors are presented in this paper.

  3. A photonic platform for donor spin qubits in silicon

    PubMed Central

    Morse, Kevin J.; Abraham, Rohan J. S.; DeAbreu, Adam; Bowness, Camille; Richards, Timothy S.; Riemann, Helge; Abrosimov, Nikolay V.; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Michael L. W.; Simmons, Stephanie

    2017-01-01

    Donor spins in silicon are highly competitive qubits for upcoming quantum technologies, offering complementary metal-oxide semiconductor compatibility, coherence (T2) times of minutes to hours, and simultaneous initialization, manipulation, and readout fidelities near ~99.9%. This allows for many quantum error correction protocols, which will be essential for scale-up. However, a proven method of reliably coupling spatially separated donor qubits has yet to be identified. We present a scalable silicon-based platform using the unique optical properties of “deep” chalcogen donors. For the prototypical 77Se+ donor, we measure lower bounds on the transition dipole moment and excited-state lifetime, enabling access to the strong coupling limit of cavity quantum electrodynamics using known silicon photonic resonator technology and integrated silicon photonics. We also report relatively strong photon emission from this same transition. These results unlock clear pathways for silicon-based quantum computing, spin-to-photon conversion, photonic memories, integrated single-photon sources, and all-optical switches. PMID:28782032

  4. A photonic platform for donor spin qubits in silicon.

    PubMed

    Morse, Kevin J; Abraham, Rohan J S; DeAbreu, Adam; Bowness, Camille; Richards, Timothy S; Riemann, Helge; Abrosimov, Nikolay V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Michael L W; Simmons, Stephanie

    2017-07-01

    Donor spins in silicon are highly competitive qubits for upcoming quantum technologies, offering complementary metal-oxide semiconductor compatibility, coherence (T2) times of minutes to hours, and simultaneous initialization, manipulation, and readout fidelities near ~99.9%. This allows for many quantum error correction protocols, which will be essential for scale-up. However, a proven method of reliably coupling spatially separated donor qubits has yet to be identified. We present a scalable silicon-based platform using the unique optical properties of "deep" chalcogen donors. For the prototypical (77)Se(+) donor, we measure lower bounds on the transition dipole moment and excited-state lifetime, enabling access to the strong coupling limit of cavity quantum electrodynamics using known silicon photonic resonator technology and integrated silicon photonics. We also report relatively strong photon emission from this same transition. These results unlock clear pathways for silicon-based quantum computing, spin-to-photon conversion, photonic memories, integrated single-photon sources, and all-optical switches.

  5. Thick Silicon Double-Sided Strip Detectors for Low-Energy Small-Animal SPECT

    PubMed Central

    Shokouhi, Sepideh; McDonald, Benjamin S.; Durko, Heather L.; Fritz, Mark A.; Furenlid, Lars R.; Peterson, Todd E.

    2010-01-01

    This work presents characterization studies of thick silicon double-sided strip detectors for a high-resolution small-animal SPECT. The dimension of these detectors is 60.4 mm × 60.4 mm × 1 mm. There are 1024 strips on each side that give the coordinates of the photon interaction, with each strip processed by a separate ASIC channel. Our measurement shows that intrinsic spatial resolution equivalent to the 59 μm strip pitch is attainable. Good trigger uniformity can be achieved by proper setting of a 4-bit DAC in each ASIC channel to remove trigger threshold variations. This is particularly important for triggering at low energies. The thick silicon DSSD (Double-sided strip detector) shows high potential for small-animal SPECT. PMID:20686626

  6. Spin-photon entanglement interfaces in silicon carbide defect centers

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.; Dev, Pratibha

    2016-12-01

    Optically active spins in solid-state systems can be engineered to emit photons that are entangled with the spin in the solid. This allows for applications such as quantum communications, quantum key distribution, and distributed quantum computing. Recently, there has been a strong interest in silicon carbide defects, as they emit very close to the telecommunication wavelength, making them excellent candidates for long range quantum communications. In this work we develop explicit schemes for spin-photon entanglement in several SiC defects: the silicon monovacancy, the silicon divacancy, and the NV center in SiC. Distinct approaches are given for (i) single-photon and spin entanglement and (ii) the generation of long strings of entangled photons. The latter are known as cluster states and comprise a resource for measurement-based quantum information processing.

  7. Spin-photon entanglement interfaces in silicon carbide defect centers.

    PubMed

    Economou, Sophia E; Dev, Pratibha

    2016-12-16

    Optically active spins in solid-state systems can be engineered to emit photons that are entangled with the spin in the solid. This allows for applications such as quantum communications, quantum key distribution, and distributed quantum computing. Recently, there has been a strong interest in silicon carbide defects, as they emit very close to the telecommunication wavelength, making them excellent candidates for long range quantum communications. In this work we develop explicit schemes for spin-photon entanglement in several SiC defects: the silicon monovacancy, the silicon divacancy, and the NV center in SiC. Distinct approaches are given for (i) single-photon and spin entanglement and (ii) the generation of long strings of entangled photons. The latter are known as cluster states and comprise a resource for measurement-based quantum information processing.

  8. Cosmic ray positron research and silicon track detector development

    NASA Technical Reports Server (NTRS)

    Jones, W. Vernon; Wefel, John P.

    1991-01-01

    The purpose was to conduct research on: (1) position sensing detector systems, particularly those based upon silicon detectors, for use in future balloon and satellite experiments; and (2) positrons, electrons, proton, anti-protons, and helium particles as measured by the NASA NMSU Balloon Magnet Facility.

  9. Silicon surface barrier detectors used for liquid hydrogen density measurement

    NASA Technical Reports Server (NTRS)

    James, D. T.; Milam, J. K.; Winslett, H. B.

    1968-01-01

    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  10. Status and upgrade plans of the Belle silicon vertex detector

    NASA Astrophysics Data System (ADS)

    Aihara, H.; Arakawa, T.; Asano, Y.; Aso, T.; Bakich, A.; Barbero, M.; Browder, T.; Chang, M. C.; Chao, Y.; Chen, K. F.; Chidzik, S.; Chouvikov, A.; Choi, Y. K.; Das, A.; Dalseno, J.; Fratina, S.; Friedl, M.; Fujiyama, Y.; Haba, J.; Hara, K.; Hara, T.; Harrop, B.; Hayashi, K.; Hazumi, M.; Heffernan, D.; Higuchi, T.; Hirakawa, T.; Irmler, C.; Ishino, H.; Joshi, N. K.; Kajiwara, S.; Kakuno, H.; Kameshima, T.; Kawasaki, T.; Kibayashi, A.; Kim, Y. J.; Koike, S.; Korpar, S.; Križan, P.; Kurashiro, H.; Kusaka, A.; Marlow, D.; Miyake, H.; Moloney, G. R.; Nakahama, Y.; Natkaniec, Z.; Okuno, S.; Ono, S.; Ostrowicz, W.; Ozaki, H.; Peak, L.; Pernicka, M.; Rosen, M.; Rozanska, M.; Sato, N.; Schmid, S.; Schümann, J.; Stanič, S.; Steininger, H.; Sumisawa, K.; Tajima, O.; Takahashi, T.; Tamura, N.; Tanaka, M.; Tani, N.; Taylor, G. N.; Trabelsi, K.; Tsuboyama, T.; Uchida, K.; Ueno, K.; Ushiroda, Y.; Varner, G.; Varvell, K.; Velikzhanin, Y. S.; Wang, C. C.; Wang, M. Z.; Watanabe, M.; Watanabe, Y.; Yamamoto, H.; Yamashita, Y.; Ziegler, T.

    2007-12-01

    The second generation of Belle Silicon Vertex Detector (SVD) has been efficiently operated for more than three years. With increasing beam-induced background, a degradation of the detector performance is expected. To avoid such a difficulty, we are planing a next upgrade, the third generation of the SVD. Currently, its design is almost finalized.

  11. Status of the CDF Run II Silicon Detector

    SciTech Connect

    S. Nahn

    2003-04-10

    A snapshot of the status of the CDF Run II Silicon Detector is presented, with a summary of commissioning issues since the start of Run II, current performance of the detector, and the use of the data in both the trigger and offline reconstruction.

  12. Indium-bump-free antimonide superlattice membrane detectors on silicon substrates

    SciTech Connect

    Zamiri, M. E-mail: skrishna@chtm.unm.edu; Klein, B.; Schuler-Sandy, T.; Dahiya, V.; Cavallo, F.; Myers, S.; Krishna, S. E-mail: skrishna@chtm.unm.edu

    2016-02-29

    We present an approach to realize antimonide superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al{sub 0.6}Ga{sub 0.4}Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxial-lift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy, and photoluminescence. The interface between the transferred pixels and the new substrate was abrupt, and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.

  13. Fabrication of detectors and transistors on high-resistivity silicon

    SciTech Connect

    Holland, S.

    1988-06-01

    A new process for the fabrication of silicon p-i-n diode radiation detectors is described. The utilization of backside gettering in the fabrication process results in the actual physical removal of detrimental impurities from critical device regions. This reduces the sensitivity of detector properties to processing variables while yielding low diode reverse-leakage currents. In addition, gettering permits the use of processing temperatures compatible with integrated-circuit fabrication. P-channel MOSFETs and silicon p-i-n diodes have been fabricated simultaneously on 10 k..cap omega../center dot/cm<100> silicon using conventional integrated-circuit processing techniques. 25 refs., 5 figs.

  14. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    SciTech Connect

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C.

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  15. Noise performance of the D0 layer 0 silicon detector

    SciTech Connect

    Johnson, M.; /Fermilab

    2006-11-01

    A new inner detector called Layer 0 has been added to the existing silicon detector for the DZero colliding beams experiment. This detector has an all carbon fiber support structure that employs thin copper clad Kapton sheets embedded in the surface of the carbon fiber structure to improve the grounding of the structure and a readout system that fully isolates the local detector ground from the rest of the detector. Initial measurements show efficiencies greater than 90% and 0.3 ADC count common mode contribution to the signal noise.

  16. Silicon photonics devices for metro applications

    NASA Astrophysics Data System (ADS)

    Fukuda, H.; Kikuchi, K.; Jizodo, M.; Kawamura, Y.; Takeda, K.; Honda, K.

    2017-01-01

    Digital coherent technology is considered an attractive way of realizing both high-speed metro links and long distance transmissions. In metro areas, there is a strong demand for a smaller, faster transceiver module. This demand is mainly driven by the rapidly increasing data center interconnection traffic, where transmission capacity per faceplane is a key feature. Therefore, optical integration technology is desired. Since compensation in digital coherent technology is performed in the electrical or digital domain, users can deal with those optics performances that are not compensated for digitally. This means using a new material that cannot provide perfect characteristics but that is suitable for miniaturization and integration is possible. Silicon photonics (SiPh) is considered an attractive technology that would enable the significant miniaturization of optical circuits and be capable of optical integration with high manufacturability. While SiPh-based devices have begun to be deployed for very short or short reach links on the basis of direct detection technology, their digital coherent applications have recently been investigated in view of their integration capability. This paper describes recent progress on SiPh-based integrated optical devices for high-speed digital coherent transceivers targeting metro links. An optical modulator and receiver with related circuits have been integrated into a single SiPh chip. TEC-free operation under non-hermetic conditions and the direct attachment of optical fibers have both been realized. Very thin and small packaging with sufficient performance has been demonstrated by using the SiPh chip co-packaged with high-speed ICs.

  17. The vertex detector for the Lepton/Photon collaboration

    SciTech Connect

    Sullivan, J.P.; Boissevain, J.G.; Fox, D.; Hecke, H. van; Jacak, B.V.; Kapustinsky, J.S.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Sondheim, W.E.

    1991-12-31

    The conceptual design of the vertex detector for the Lepton/Photon Collaboration at RHIC is described, including simulations of its expected performance. The design consists of two con- centric layers of single-sided Si strips. The expected performance as a multiplicity detector and in measuring the pseudo-rapidity ({nu}) distribution is discussed as well as the expected vertex finding efficiency and accuracy. Various options which could be used to reduce the cost of the detector are also discussed.

  18. Heterodyne spectroscopy with superconducting single-photon detector

    NASA Astrophysics Data System (ADS)

    Lobanov, Yu. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.

    2016-12-01

    We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.

  19. High quality factor etchless silicon photonic ring resonators.

    PubMed

    Luo, Lian-Wee; Wiederhecker, Gustavo S; Cardenas, Jaime; Poitras, Carl; Lipson, Michal

    2011-03-28

    We demonstrate high quality factor etchless silicon photonic ring resonators fabricated by selective thermal oxidation of silicon without the silicon layer being exposed to any plasma etching throughout the fabrication process. We achieve a high intrinsic quality factor of 510,000 in 50 µm-radius ring resonators, corresponding to a ring loss of 0.8 dB/cm. The device has a total chip insertion loss of 2.5 dB, achieved by designing etchless silicon inverse nanotapers at both the input and output of the chip.

  20. Study of silicon photosensor applicability for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Khilya, V. M.; Voronov, S. A.

    2016-02-01

    The aim of the present work is the creation a prototype of anticoincidence system AC for gamma-telescope GAMMA-400. The detectors of AC are developed on the basis of plastic scintillator and silicon photomultipliers. This work is focuses on research of applicability of silicon photomultipliers SiPM by company SensL, type 60000 with BC-408 plastics for the prototype of anticoincidence system detector ACtop. In frame of project the assembly for measuring of the SiPM characteristics such as the linearity, boundary of saturation, the time resolution was developed. The final stage of work was the integration of the prototype of anticoincidence detector.

  1. Photon Detection System for LBNE Liquid Argon Detector

    NASA Astrophysics Data System (ADS)

    Djurcic, Zelimir

    2014-03-01

    The LBNE (Long-Baseline Neutrino Experiment) is the next generation accelerator-based neutrino oscillation experiment planned in US. The experiment will use a new muon-neutrino beam sent from Fermi National Accelerator Laboratory and will detect electron-neutrino appearance and muon-neutrino disappearance using a Liquid Argon TPC located at a distance of 1300 km at Sanford Underground Research Facility in South Dakota. The primary physics goal of the LBNE is a definitive determination the neutrino mass hierarchy, determination the octant of the neutrino mixing angle theta-23, and precise measurement of CP violation in neutrino oscillation. Neutrino interaction in LAr result in charged particles producing ionization and scintillation light signals. Dedicated photon detection system is under design for use in the LBNE LArTPC far detectors. The baseline design couples wavelength-shifter coated ultraviolet transmitting acrylic to 3 mm2 silicon photomultipliers. By detecting scintillation light we aim to improve event reconstruction capabilities and efficiently separate neutrino events from background. Current status of the system will be described.

  2. Flexible and tunable silicon photonic circuits on plastic substrates

    PubMed Central

    Chen, Yu; Li, Huan; Li, Mo

    2012-01-01

    Flexible microelectronics has shown tremendous promise in a broad spectrum of applications, especially those that cannot be addressed by conventional microelectronics in rigid materials and constructions. These unconventional yet important applications range from flexible consumer electronics to conformal sensor arrays and biomedical devices. A recent paradigm shift in implementing flexible electronics is to physically transfer highly integrated devices made in high-quality, crystalline semiconductors on to plastic substrates. Here we demonstrate a flexible form of silicon photonics using the transfer-and-bond fabrication method. Photonic circuits including interferometers and resonators have been transferred onto flexible plastic substrates with preserved functionalities and performance. By mechanically deforming, the optical characteristics of the devices can be tuned reversibly over a remarkably large range. The demonstration of the new flexible photonic systems based on the silicon-on-plastic (SOP) platform could open the door to many future applications, including tunable photonics, optomechanical sensors and biomechanical and bio-photonic probes. PMID:22953043

  3. Flexible and tunable silicon photonic circuits on plastic substrates

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Li, Huan; Li, Mo

    2012-09-01

    Flexible microelectronics has shown tremendous promise in a broad spectrum of applications, especially those that cannot be addressed by conventional microelectronics in rigid materials and constructions. These unconventional yet important applications range from flexible consumer electronics to conformal sensor arrays and biomedical devices. A recent paradigm shift in implementing flexible electronics is to physically transfer highly integrated devices made in high-quality, crystalline semiconductors on to plastic substrates. Here we demonstrate a flexible form of silicon photonics using the transfer-and-bond fabrication method. Photonic circuits including interferometers and resonators have been transferred onto flexible plastic substrates with preserved functionalities and performance. By mechanically deforming, the optical characteristics of the devices can be tuned reversibly over a remarkably large range. The demonstration of the new flexible photonic systems based on the silicon-on-plastic (SOP) platform could open the door to many future applications, including tunable photonics, optomechanical sensors and biomechanical and bio-photonic probes.

  4. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    PubMed Central

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-01-01

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the

  5. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT.

    PubMed

    Kalluri, Kesava S; Mahd, Mufeed; Glick, Stephen J

    2013-08-01

    Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%-63% and 4%-34%, for HA and IDC lesions and 12%-30% (with Al filtration) and 32%-38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver operating characteristic curve

  6. Investigation of energy weighting using an energy discriminating photon counting detector for breast CT

    SciTech Connect

    Kalluri, Kesava S.; Mahd, Mufeed; Glick, Stephen J.

    2013-08-15

    Purpose: Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector.Methods: Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom.Results: In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%–63% and 4%–34%, for HA and IDC lesions and 12%–30% (with Al filtration) and 32%–38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver

  7. SENTIRAD—An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Osovizky, A.; Ginzburg, D.; Manor, A.; Seif, R.; Ghelman, M.; Cohen-Zada, I.; Ellenbogen, M.; Bronfenmakher, V.; Pushkarsky, V.; Gonen, E.; Mazor, T.; Cohen, Y.

    2011-10-01

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  8. Silicon and polymer nanophotonic devices based on photonic crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Jiang, Yongqiang; Gu, Lanlan; Wang, Li; Chen, Xiaonan; Chen, Ray T.

    2006-02-01

    Photonic crystals (PhCs) provide a promising nanophotonic platform for developing novel optoelectronic devices with significantly reduced device size and power consumption. Silicon nanophotonics is anticipated to play a pivotal role in the future nano-system integration owing to the maturity of sub-micron silicon complementary metal oxide semiconductor (CMOS) technology. An ultra-compact silicon modulator was experimentally demonstrated based on silicon photonic crystal waveguides. Modulation operation was achieved by carrier injection into an 80-micron-long silicon PhC waveguide of a Mach-Zehnder interferometer (MZI) structure. The driving current to obtain a phase shift of pi across the active region was as low as 0.15 mA, owing to slow light group velocity in PhC waveguides. The modulation depth was 92%. The electrode between the two waveguide arms of the MZI structure was routed to the space outside the MZI. In real devices, this planarized routing design would be essential to integrating the silicon modulator with electrical driving circuitry on a single silicon chip. For laboratory test, this routing scheme also eliminated the need of placing a bulky pad between the two arms and gave our modulator a distinctive slim profile and a much smaller footprint. Polymeric photonic crystals were designed for superprism based laser beam steering applications, and were fabricated by nano-imprint and other techniques.

  9. Interferometric Quantum-Nondemolition Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Kok, Peter; Lee, Hwang; Dowling, Jonathan

    2007-01-01

    Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.

  10. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  11. Photon counting modules using RCA silicon avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Lightstone, Alexander W.; Macgregor, Andrew D.; Macsween, Darlene E.; Mcintyre, Robert J.; Trottier, Claude; Webb, Paul P.

    1989-01-01

    Avalanche photodiodes (APD) are excellent small area, solid state detectors for photon counting. Performance possibilities include: photon detection efficiency in excess of 50 percent; wavelength response from 400 to 1000 nm; count rate to 10 (exp 7) counts per sec; afterpulsing at negligible levels; timing resolution better than 1 ns. Unfortunately, these performance levels are not simultaneously available in a single detector amplifier configuration. By considering theoretical performance predictions and previous and new measurements of APD performance, the anticipated performance of a range of proposed APD-based photon counting modules is derived.

  12. Strain induced by functional oxides for silicon photonics applications

    NASA Astrophysics Data System (ADS)

    Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Damas, Pedro; Maroutian, Thomas; Agnus, Guillaume; Largeau, Ludovic; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent

    2017-05-01

    The purpose of this work is to explore an alternative approach for high speed and low power consumption optical modulation based on the use of the Pockels effect in silicon. Unfortunately, silicon is a centro-symmetric crystal leading to a vanishing of the second order nonlinear coefficient, i.e. no Pockels effect. To overcome this limitation, on possibility would be to break the crystal symmetry by straining the silicon lattice with the epitaxial growth of crystalline functional oxides. Indeed, the induced strain due to lattice parameter mismatch and the difference in the thermal expansion coefficients between oxides and silicon are strong and may induce strong strain into silicon. Furthermore, functional oxides can exhibit very interesting multiferroicity and piezoelectricity properties that pave the way to a new route to implement silicon photonic circuits with unprecedented functionalities.

  13. MPGD-based photon detector upgrade for COMPASS RICH

    NASA Astrophysics Data System (ADS)

    Hamar, G.; Dalla Torre, S.; Tessarotto, F.; Levorato, S.; Dasgupta, S. S.; Azevedo, C. D. R.

    2017-07-01

    The RICH detector of the COMPASS Experiment at CERN SPS is undergoing an important upgrade: the central MWPC-based photon detectors have been replaced with novel Micropattern detectors, to cope with the challenging efficiency and stability requirements of the new COMPASS measurements. The new hybrid MPGD detector consists of two layers of ThickGEMs and a capacitive bulk Micromegas. Photoconversion takes place on the CsI layer deposited onto the first ThickGEM, while position information and signals are read out from the pad-segmented anode via capacitive coupling by analog front-end electronics based on APV25 chips. The paper focuses on the main issues of production, detailed quality assessment technique, and the commissioning status of the first in-experiment MPGD-based photon detectors for RICH application.

  14. HgCdTe and silicon detectors and FPAs for remote sensing applications

    NASA Astrophysics Data System (ADS)

    D'Souza, Arvind I.; Stapelbroek, Maryn G.; Robinson, James E.

    2004-02-01

    Photon detectors and focal plane arrays (FPAs) are fabricated from HgCdTe and silicon in many varieties. With appropriate choices for bandgap in HgCdTe, detector architecture, dopants, and operating temperature, HgCdTe and silicon can cover the spectral range from ultraviolet to the very-long-wavelength infrared (VLWIR), exhibit high internal gain to allow photon counting over this broad spectral range, and can be made in large array formats for imaging. DRS makes HgCdTe and silicon detectors and FPAs with unique architectures for a variety of applications. Detector characteristics of High Density Vertically Integrated Photodiode (HDVIP) HdCdTe detectors as well as Focal Plane Arrays (FPAs) are presented in this paper. MWIR[λc(78 K) = 5 μm] HDVIP detectors RoA performance was measured to within a factor or two or three of theoretical. In addition, 256 x 256 detector arrays were fabricated. Initial measurements had seven out of ten FPAs having operabilities greater than 99.45% with the best 256 x 256 array having only two inoperable pixels. LWIR [λc(78K)~10 μm] 640 X 480 arrays and a variety of single color linear arrays have also been fabricated. In addition, two-color arrays have been fabricated. DRS has explored HgCdTe avalanche photo diodes (APDs) in the λc = 2.2 μm to 5 μm range. The λc = 5 μm APDs have greater than 200 DC gain values at 8 Volts bias. Large-format to 10242 Arsenic-doped (Si:As, λc ~ 28 μm), Blocked-Impurity-Band (BIB) detectors have been developed for a variety of pixel formats and have been optimized for low, moderate, and high infrared backgrounds. Antimony-doped silicon (Si:Sb) BIB arrays having response to wavelengths > 40 μm have also been demonstrated. Avalanche processes in Si:As at low temperatures (~ 8 K) have led to two unique solid-state photon-counting detectors adapted to infrared and visible wavelengths. The infrared device is the solid-state photomultiplier (SSPM). A related device optimized for the visible spectral

  15. Silicon position sensitive detectors for the HELIOS (NA34) experiment

    SciTech Connect

    Beuttenmuller, R.; Bisi, V.; Chesi, E.; Di Nardo, R.P.; Esten, M.J.; Giubellino, P.; Kraner, H.W.; Ludlam, T.W.; Meddi, F.; Piuz, F.

    1986-03-01

    Silicon detectors having both ''pad'' and strip position sensitive configurations have been fabricated for the HELIOS experiment which requires an elaborate pulse height-dependent trigger as well as one dimensional silicon strip position sensing. The trigger detector is a 400 element, 30 mm diameter detector with readout connections from a ceramic overlay board. Tests with full prototype detectors have shown essentially 100% detection efficiency and excellent pulse height resolution well capable of delineating 0, 1 or 2 hits per pad. Strip detectors with 25 ..mu..m pitch and a varying readout pitch have been tested, which utilize both capacitive and resistive charge division. Techniques for realization of required interstrip resistors will be discussed and results which may compare these readout methods will be reported. 11 refs., 13 figs.

  16. Infrared transparent graphene heater for silicon photonic integrated circuits.

    PubMed

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

  17. Flexible single-crystal silicon nanomembrane photonic crystal cavity.

    PubMed

    Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Hosseini, Amir; Covey, John; Yu, Yalin; Kwong, David; Zhang, Yang; Lai, Wei-Cheng; Zou, Yi; Lu, Nanshu; Chen, Ray T

    2014-12-23

    Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible single-crystal silicon nanomembrane photonic crystal microcavity through a bonding and substrate removal approach. The transferred cavity shows a quality factor of 2.2×10(4) and could be bent to a curvature of 5 mm radius without deteriorating the performance compared to its counterparts on rigid substrates. A thorough characterization of the device reveals that the resonant wavelength is a linear function of the bending-induced strain. The device also shows a curvature-independent sensitivity to the ambient index variation.

  18. Communication Limits Due to Photon-Detector Jitter

    NASA Technical Reports Server (NTRS)

    Moision, Bruce E.; Farr, William H.

    2008-01-01

    A theoretical and experimental study was conducted of the limit imposed by photon-detector jitter on the capacity of a pulse-position-modulated optical communication system in which the receiver operates in a photon-counting (weak-signal) regime. Photon-detector jitter is a random delay between impingement of a photon and generation of an electrical pulse by the detector. In the study, jitter statistics were computed from jitter measurements made on several photon detectors. The probability density of jitter was mathematically modeled by use of a weighted sum of Gaussian functions. Parameters of the model were adjusted to fit histograms representing the measured-jitter statistics. Likelihoods of assigning detector-output pulses to correct pulse time slots in the presence of jitter were derived and used to compute channel capacities and corresponding losses due to jitter. It was found that the loss, expressed as the ratio between the signal power needed to achieve a specified capacity in the presence of jitter and that needed to obtain the same capacity in the absence of jitter, is well approximated as a quadratic function of the standard deviation of the jitter in units of pulse-time-slot duration.

  19. Degenerate photon-pair generation in an ultracompact silicon photonic crystal waveguide.

    PubMed

    He, Jiakun; Clark, Alex S; Collins, Matthew J; Li, Juntao; Krauss, Thomas F; Eggleton, Benjamin J; Xiong, Chunle

    2014-06-15

    We demonstrate degenerate, correlated photon-pair generation via slow-light-enhanced spontaneous four-wave mixing in a 96 μm long silicon photonic crystal waveguide. Our device represents a more than 50 times smaller footprint than silicon nanowires. We have achieved a coincidence-to-accidental ratio as high as 47 at a photon generation rate of 0.001 pairs per pulse and 14 at a photon generation rate of 0.023 pairs per pulse, which are both higher than the useful level of 10. This demonstration provides a path to generate indistinguishable photons in an ultracompact platform for future quantum photonic technologies.

  20. Calibration of single-photon detectors using quantum statistics

    SciTech Connect

    Mogilevtsev, D.

    2010-08-15

    I show that calibration of the single-photon detector can be performed without knowledge of the signal parameters. Only partial information about the state statistics is sufficient for that. If one knows that the state is the squeezed one or the squeezed one mixed with the incoherent radiation, one can infer both the parameters of the state and the efficiency of the detector. For that one needs only to measure on/off statistics of detector clicks for the number of known absorbers placed before the detector. Thus, I suggest a scheme that performs a tomography of the signal and the measuring apparatus simultaneously.

  1. Optimization of the hybrid silicon photonic integrated circuit platform

    NASA Astrophysics Data System (ADS)

    Heck, Martijn J. R.; Davenport, Michael L.; Srinivasan, Sudharsanan; Hulme, Jared; Bowers, John E.

    2013-03-01

    In the hybrid silicon platform, active III/V based components are integrated on a silicon-on-insulator photonic integrated circuit by means of wafer bonding. This is done in a self-aligned back-end process at low temperatures, making it compatible with CMOS-based silicon processing. This approach allows for low cost, high volume, high quality and reproducible chip fabrication. Such features make the hybrid silicon platform an attractive technology for applications like optical interconnects, microwave photonics and sensors operating at wavelengths around 1.3 μm and 1.55 μm. For these applications energy efficient operation is a key parameter. In this paper we present our efforts to bring the III/V components in the hybrid silicon platform, such as lasers and optical amplifiers, on par with the far more mature monolithic InP-based integration technology. We present our development work to increase hybrid silicon laser and amplifier wall-plug efficiency. This is done by careful optimization of III/V mesa geometry and guiding silicon waveguide width. We also discuss current injection efficiency and thermal performance. Furthermore we show the characterization of the low-loss and low-reflection mode converters that couple the hybrid III/V components to silicon waveguides. Reflections below -41 dB and passive loss of 0.3 dB per converter were obtained.

  2. The silicon photomultipliers in the detector subsystems of the GlueX experiment

    NASA Astrophysics Data System (ADS)

    Somov, A.; Barbosa, F.; Tolstukhin, I.; Somov, S. V.; Berdnikov, V. V.

    2017-01-01

    The subsystem detectors of GlueX experiment use silicon photomultiplier (SiPM). Around five thousand SiPM’s in total uses in the detectors of experiment. The detectors operate in condition of load level 2MHz and up to 104 pixels «fired» with ∼0.3ns time resolution. The list of such detectors: the tagger microscope, the pair spectrometer, the start counter which surrounded the liquid hydrogen target; the electromagnetic barrel calorimeter to measure energy and direction of secondary photons comes from the target. We present the results of the time resolution measurements and the relaxation time measurements for two SiPM types in experimental conditions.

  3. A large area, silicon photomultiplier-based PET detector module

    PubMed Central

    Raylman, RR; Stolin, A; Majewski, S; Proffitt, J

    2013-01-01

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm2 LYSO elements (spanning 41 × 91mm2) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner. PMID:24319305

  4. A large area, silicon photomultiplier-based PET detector module.

    PubMed

    Raylman, Rr; Stolin, A; Majewski, S; Proffitt, J

    2014-01-21

    The introduction of silicon photomultipliers (SiPM) has facilitated construction of compact, efficient and magnetic field-hardened positron emission tomography (PET) scanners. To take full advantage of these devices, methods for using them to produce large field-of-view PET scanners are needed. In this investigation, we explored techniques to combine two SiPM arrays to form the building block for a small animal PET scanner. The module consists of a 26 × 58 array of 1.5 × 1.5mm(2) LYSO elements (spanning 41 × 91mm(2)) coupled to two SensL SiPM arrays. The SiPMs were read out with new multiplexing electronics developed for this project. To facilitate calculation of event position with multiple SiPM arrays it was necessary to spread scintillation light amongst a number of elements with a small light guide. This method was successful in permitting identification of all detector elements, even at the seam between two SiPM arrays. Since the performance of SiPMs is enhanced by cooling, the detector module was fitted with a cooling jacket, which allowed the temperature of the device and electronics to be controlled. Testing demonstrated that the peak-to-valley contrast ratio of the light detected from the scintillation array was increased by ∼45% when the temperature was reduced from 28 °C to 16 °C. Energy resolution for 511 keV photons improved slightly from 18.8% at 28 °C to 17.8% at 16 °C. Finally, the coincidence timing resolution of the module was found to be insufficient for time-of-flight applications (∼2100 ps at 14 °C). The first use of these new modules will be in the construction of a small animal PET scanner to be integrated with a 3T clinical magnetic resonance imaging scanner.

  5. Development of a New Silicon Drift Detector Module

    NASA Astrophysics Data System (ADS)

    Welter, Edmund; Hansen, Karsten

    2007-02-01

    A novel 7 cell Silicon Drift Detector (SDD) module for X-Ray Absorption Fine Structure Spectroscopy (XAFS) and similar methods is developed at the Hamburger Synchrotron Strahlungslabor at Deutsches Elektronen Synchrotron. The monolithic 7 cell SDD detector chips were delivered by PN Sensors (Munich, Germany). Each cell has an active area of 7 mm2. In this paper we report results from the spatially resolved spectroscopic characterization of the SDD and their consequences for the final design of the complete detector modules. A specialized read out chip is currently developed at DESY and will make it possible to achieve a maximum count rate of 600 Kcps/detector cell.

  6. Antihydrogen annihilation reconstruction with the ALPHA silicon detector

    NASA Astrophysics Data System (ADS)

    Andresen, G. B.; Ashkezari, M. D.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Hayano, R. S.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Jørgensen, L. V.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Yamazaki, Y.; Alpha Collaboration

    2012-08-01

    The ALPHA experiment has succeeded in trapping antihydrogen, a major milestone on the road to spectroscopic comparisons of antihydrogen with hydrogen. An annihilation vertex detector, which determines the time and position of antiproton annihilations, has been central to this achievement. This detector, an array of double-sided silicon microstrip detector modules arranged in three concentric cylindrical tiers, is sensitive to the passage of charged particles resulting from antiproton annihilation. This article describes the method used to reconstruct the annihilation location and to distinguish the annihilation signal from the cosmic ray background. Recent experimental results using this detector are outlined.

  7. High-extinction ratio integrated photonic filters for silicon quantum photonics.

    PubMed

    Piekarek, Mateusz; Bonneau, Damien; Miki, Shigehito; Yamashita, Taro; Fujiwara, Mikio; Sasaki, Masahide; Terai, Hirotaka; Tanner, Michael G; Natarajan, Chandra M; Hadfield, Robert H; O'Brien, Jeremy L; Thompson, Mark G

    2017-02-15

    We present the generation of quantum-correlated photon pairs and subsequent pump rejection across two silicon-on-insulator photonic integrated circuits. Incoherently cascaded lattice filters are used to provide over 100 dB pass-band to stop-band contrast with no additional external filtering. Photon pairs generated in a microring resonator are successfully separated from the input pump, confirmed by temporal correlations measurements.

  8. Target molecules detection by waveguiding in a photonic silicon membrane

    DOEpatents

    Letant, Sonia E.; Van Buuren, Anthony; Terminello, Louis; Hart, Bradley R.

    2006-12-26

    Disclosed herein is a porous silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and calculate the concentration of bound target.

  9. Silicon Photonics with Applications to Data Center Networks

    NASA Astrophysics Data System (ADS)

    Aguinaldo, Ryan Francis

    In data center applications, fiber-based optical interconnects can be used to provide point-to-point links enabling high-bandwidth, inter-rack, data communications. In order to provide for future network scalability, which must be able to handle ultra-large data flows and bandwidth-intensive requests, optical technologies are increasingly introduced to different levels of the data center architecture to enable a variety of transparent network or all-optical networking schemes. However, the use of bulk optical components, which take up valuable rack-space real estate, can be extremely energy and cost prohibitive, especially when scaled up to the size of industrial warehouse-scale computing and considering that predictions of future data center networks are expected to contain millions of nodes. As such, we study chip-scale, silicon photonic, integrated circuits and their use as the optical hardware in future data center implementations. This work describes aspects of the design and integration of silicon photonic devices, which can be used for high-bandwidth, multi-channel, wavelength division multiplexed, optical communications. Examples of silicon photonic subsystems are discussed, including the realization of an on-chip channelized spectrum monitor and a network-node-on-a-chip. These optical integrated circuits are meant to replace bulk optical components with their functional equivalents on monolithic silicon. This work demonstrates that silicon photonics may be advantageous in meeting the urgent hardware-scaling demands of high-bandwidth, multi-user, communication networks.

  10. High-Q silicon carbide photonic-crystal cavities

    SciTech Connect

    Lee, Jonathan Y.; Lu, Xiyuan; Lin, Qiang

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  11. Ion implantation in silicon to facilitate testing of photonic circuits

    NASA Astrophysics Data System (ADS)

    Reed, Graham T.; Milosevic, Milan M.; Chen, Xia; Cao, Wei; Littlejohns, Callum G.; Wang, Hong; Khokhar, Ali Z.; Thomson, David J.

    2017-02-01

    In recent years, we have presented results on the development of erasable gratings in silicon to facilitate wafer scale testing of photonics circuits via ion implantation of germanium. Similar technology can be employed to develop a range of optical devices that are reported in this paper. Ion implantation into silicon causes radiation damage resulting in a refractive index increase, and can therefore form the basis of multiple optical devices. We demonstrate the principle of a series of devices for wafers scale testing and have also implemented the ion implantation based refractive index change in integrated photonics devices for device trimming.

  12. Silicon photonic integrated devices for datacenter optical networks

    NASA Astrophysics Data System (ADS)

    Fiorentino, Marco; Chen, Chin-Hui; Kurczveil, Géza; Liang, Di; Peng, Zhen; Beausoleil, Raymond

    2014-03-01

    The evolution of computing infrastructure and workloads has put an enormous pressure on datacenter networks. It is expected that bandwidth will scale without increases in the network power envelope and total cost of ownership. Networks based on silicon photonic devices promise to help alleviate these problems, but a viable development path for these technologies is not yet fully outlined. In this paper, we report our progress on developing components and strategies for datacenter silicon photonics networks. We will focus on recent progress on compact, low-threshold hybrid Si lasers and the CWDM transceivers based on these lasers as well as DWDM microring resonator-based transceivers.

  13. Generation of correlated photons in nanoscale silicon waveguides

    NASA Astrophysics Data System (ADS)

    Sharping, Jay E.; Lee, Kim F.; Foster, Mark A.; Turner, Amy C.; Schmidt, Bradley S.; Lipson, Michal; Gaeta, Alexander L.; Kumar, Prem

    2006-12-01

    .We experimentally study the generation of correlated pairs of photons through four-wave mixing (FWM) in embedded silicon waveguides. The waveguides, which are designed to exhibit anomalous group-velocity dispersion at wavelengths near 1555 nm, allow phase matched FWM and thus efficient pair-wise generation of non-degenerate signal and idler photons. Photon counting measurements yield a coincidence-to-accidental ratio (CAR) of around 25 for a signal (idler) photon production rate of about 0.05 per pulse. We characterize the variation in CAR as a function of pump power and pump-to-sideband wavelength detuning. These measurements represent a first step towards the development of tools for quantum information processing which are based on CMOS-compatible, silicon-on-insulator technology.

  14. A Photon Interference Detector with Continuous Display.

    ERIC Educational Resources Information Center

    Gilmore, R. S.

    1978-01-01

    Describes an apparatus which attempts to give a direct visual impression of the random detection of individual photons coupled with the recognition of the classical intensity distribution as a result of fairly high proton statistics. (Author/GA)

  15. A Photon Interference Detector with Continuous Display.

    ERIC Educational Resources Information Center

    Gilmore, R. S.

    1978-01-01

    Describes an apparatus which attempts to give a direct visual impression of the random detection of individual photons coupled with the recognition of the classical intensity distribution as a result of fairly high proton statistics. (Author/GA)

  16. Phase-sensitive amplification in silicon photonic crystal waveguides.

    PubMed

    Zhang, Yanbing; Husko, Chad; Schröder, Jochen; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Eggleton, Benjamin J

    2014-01-15

    We experimentally demonstrate phase-sensitive amplification in a silicon photonic crystal waveguide based on pump-degenerate four-wave mixing. An 11 dB phase-extinction ratio is obtained in a record compact 196 μm nanophotonic device due to broadband slow light, in spite of the presence of two-photon absorption and free carriers. Numerical calculations show good agreement with the experimental results.

  17. Hybrid Silicon Photonic Integration using Quantum Well Intermixing

    NASA Astrophysics Data System (ADS)

    Jain, Siddharth R.

    With the push for faster data transfer across all domains of telecommunication, optical interconnects are transitioning into shorter range applications such as in data centers and personal computing. Silicon photonics, with its economic advantages of leveraging well-established silicon manufacturing facilities, is considered the most promising approach to further scale down the cost and size of optical interconnects for chip-to-chip communication. Intrinsic properties of silicon however limit its ability to generate and modulate light, both of which are key to realizing on-chip optical data transfer. The hybrid silicon approach directly addresses this problem by using molecularly bonded III-V epitaxial layers on silicon for optical gain and absorption. This technology includes direct transfer of III-V wafer to a pre-patterned silicon-on-insulator wafer. Several discrete devices for light generation, modulation, amplification and detection have already been demonstrated on this platform. As in the case of electronics, multiple photonic elements can be integrated on a single chip to improve performance and functionality. However, scalable photonic integration requires the ability to control the bandgap for individual devices along with design changes to simplify fabrication. In the research presented here, quantum well intermixing is used as a technique to define multiple bandgaps for integration on the hybrid silicon platform. Implantation enhanced disordering is used to generate four bandgaps spread over 120+ nm. By combining these selectively intermixed III-V layers with pre-defined gratings and waveguides on silicon, we fabricate distributed feedback, distributed Bragg reflector, Fabry-Perot and mode-locked lasers along with photodetectors, electro-absorption modulators and other test structures, all on a single chip. We demonstrate a broadband laser source with continuous-wave operational lasers over a 200 nm bandwidth. Some of these lasers are integrated with

  18. Counting near infrared photons with microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Guo, W.; Liu, X.; Wang, Y.; Wei, Q.; Wei, L. F.; Hubmayr, J.; Fowler, J.; Ullom, J.; Vale, L.; Vissers, M. R.; Gao, J.

    2017-05-01

    We demonstrate photon counting at 1550 nm wavelength using microwave kinetic inductance detectors (MKIDs) made from TiN/Ti/TiN trilayer films with superconducting transition temperature T c ≈ 1.4 K. The detectors have a lumped-element design with a large interdigitated capacitor covered by aluminum and inductive photon absorbers whose volume ranges from 0.4 μm3 to 20 μm3. The energy resolution improves as the absorber volume is reduced. We achieved an energy resolution of 0.22 eV and resolved up to 7 photons per optical pulse, both greatly improved from previously reported results at 1550 nm wavelength using MKIDs. Further improvements are possible by optimizing the optical coupling to maximize photon absorption into the inductive absorber.

  19. A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.

    PubMed

    Chuah, Joon Huang; Holburn, David

    2013-06-01

    This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope.

  20. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths.

    PubMed

    Natarajan, Chandra M; Zhang, Lijian; Coldenstrodt-Ronge, Hendrik; Donati, Gaia; Dorenbos, Sander N; Zwiller, Val; Walmsley, Ian A; Hadfield, Robert H

    2013-01-14

    Superconducting nanowire single-photon detectors (SNSPDs) are widely used in telecom wavelength optical quantum information science applications. Quantum detector tomography allows the positive-operator-valued measure (POVM) of a single-photon detector to be determined. We use an all-fiber telecom wavelength detector tomography test bed to measure detector characteristics with respect to photon flux and polarization, and hence determine the POVM. We study the SNSPD both as a binary detector and in an 8-bin, fiber based, Time-Multiplexed (TM) configuration at repetition rates up to 4 MHz. The corresponding POVMs provide an accurate picture of the photon number resolving capability of the TM-SNSPD.

  1. Influence of detector motion in entanglement measurements with photons

    SciTech Connect

    Landulfo, Andre G. S.; Matsas, George E. A.; Torres, Adriano C.

    2010-04-15

    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step toward the implementation of quantum information protocols in a global scale.

  2. Photon-number-resolving detector with 10 bits of resolution

    SciTech Connect

    Jiang, Leaf A.; Dauler, Eric A.; Chang, Joshua T

    2007-06-15

    A photon-number-resolving detector with single-photon resolution is described and demonstrated. It has 10 bits of resolution, does not require cryogenic cooling, and is sensitive to near ir wavelengths. This performance is achieved by flood illuminating a 32x32 element In{sub x}Ga{sub 1-x}AsP Geiger-mode avalanche photodiode array that has an integrated counter and digital readout circuit behind each pixel.

  3. Nanoantenna Enhancement for Telecom-Wavelength Superconducting Single Photon Detectors

    NASA Astrophysics Data System (ADS)

    Heath, Robert M.; Tanner, Michael G.; Drysdale, Timothy D.; Miki, Shigehito; Giannini, Vincenzo; Maier, Stefan A.; Hadfield, Robert H.

    2015-02-01

    Superconducting nanowire single photon detectors are rapidly emerging as a key infrared photon-counting technology. Two front-side-coupled silver dipole nanoantennas, simulated to have resonances at 1480 nm and 1525 nm, were fabricated in a two-step process. An enhancement of 50% to 130% in the system detection efficiency was observed when illuminating the antennas. This offers a pathway to increasing absorption into superconducting nanowires, creating larger active areas, and achieving more efficient detection at longer wavelengths.

  4. Nanoantenna enhancement for telecom-wavelength superconducting single photon detectors.

    PubMed

    Heath, Robert M; Tanner, Michael G; Drysdale, Timothy D; Miki, Shigehito; Giannini, Vincenzo; Maier, Stefan A; Hadfield, Robert H

    2015-02-11

    Superconducting nanowire single photon detectors are rapidly emerging as a key infrared photon-counting technology. Two front-side-coupled silver dipole nanoantennas, simulated to have resonances at 1480 and 1525 nm, were fabricated in a two-step process. An enhancement of 50 to 130% in the system detection efficiency was observed when illuminating the antennas. This offers a pathway to increasing absorption into superconducting nanowires, creating larger active areas, and achieving more efficient detection at longer wavelengths.

  5. Recent advances in high-speed photon detectors

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1982-12-01

    Recent progress of some fast high-gain photon detectors using photoemission and secondary emission processes is reviewed and summarized. Specifically, performance characteristics are presented, of the new Amperex XP 2020, RCA 8854, and Hamamatsu R 647-01 conventionally design photomultipliers. Also, characteristics are presented of the ITT F 4129 and Hamamatsu R 1564U extended lifetime microchannel plate photomultipliers as well as certain special made photomultipliers intended for application in positron emission tomography, high energy physics and plasma diagnostic experimental systems. Finally, microchannel plates as photon detectors for ultraviolet and X-ray wavelengths are discussed.

  6. Photon Detector For Inverse Photoemission Spectroscopy With Improved Energy Resolution

    SciTech Connect

    Maniraj, M.; D'Souza, S. W.; Barman, S. R.

    2011-07-15

    We present the results from newly designed and fabricated double window photon detector to improve the overall energy resolution for inverse photoemission spectroscopy (IPES). This simple design allows us to introduce an absorption gas (Krypton) to decrease the band-width of the energy selective photon detector and thus improve the resolution. Resonance absorption line of Kr of wavelength of 123.6 nm was used. By fitting the Fermi edge of the IPES spectrum of silver, we find an overall energy resolution improved by 73 meV. The design is modular and ensures ease and safety of handling.

  7. High-energy neutron spectroscopy with thick silicon detectors

    NASA Technical Reports Server (NTRS)

    Kinnison, James D.; Maurer, Richard H.; Roth, David R.; Haight, Robert C.

    2003-01-01

    The high-energy neutron component of the space radiation environment in thick structures such as the International Space Station contributes to the total radiation dose received by an astronaut. Detector design constraints such as size and mass have limited the energy range of neutron spectrum measurements in orbit to about 12 MeV in Space Shuttle studies. We present a new method for high-energy neutron spectroscopy using small silicon detectors that can extend these measurements to more than 500 MeV. The methodology is based on measurement of the detector response function for high-energy neutrons and inversion of this response function with measured deposition data to deduce neutron energy spectra. We also present the results of an initial shielding study performed with the thick silicon detector system for high-energy neutrons incident on polyethylene.

  8. Musculoskeletal imaging with a prototype photon-counting detector.

    PubMed

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  9. On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform.

    PubMed

    Matsuda, Nobuyuki; Karkus, Peter; Nishi, Hidetaka; Tsuchizawa, Tai; Munro, William J; Takesue, Hiroki; Yamada, Koji

    2014-09-22

    We demonstrate the generation and demultiplexing of quantum correlated photons on a monolithic photonic chip composed of silicon and silica-based waveguides. Photon pairs generated in a nonlinear silicon waveguide are successfully separated into two optical channels of an arrayed-waveguide grating fabricated on a silica-based waveguide platform.

  10. A Photon Counting Imaging Detector for NASA Exoplanet Mission

    NASA Astrophysics Data System (ADS)

    Figer, Donald

    The key objective of the proposed project is to advance the maturity of a 256x256 pixel single-photon optical imaging detector. The detector has zero read noise and is resilient against the harsh effects of radiation in space. We expect that the device will have state-of-the-art performance in other parameters, e.g., high quantum efficiency from UV to 1 #m, low dark current, etc.

  11. Photon counting detectors for Fabry-Perot interferometers

    NASA Technical Reports Server (NTRS)

    Darlington, E. H.; Haviland, J. R.

    1989-01-01

    Sealed channel plate photomultipliers with multiple discrete anodes for use as photon counting detectors in the image plane of Fabry-Perot interferometers are described. The influence of design and construction on performance of completed devices is discussed. Effects on spatial resolution, lifetime, and counting efficiency are described. It is shown that devices can be optimized for particular applications. The results should be generally applicable to resistive anode and wedge and strip anode types of sealed detectors.

  12. Noise performance of the D0 layer 0 silicon detector

    NASA Astrophysics Data System (ADS)

    Johnson, M.; D0 Collaboration

    2007-09-01

    A new inner detector called Layer 0 has been added to the existing silicon detector for the DZero colliding beams experiment [V.M. Abazoz et al., Nucl. Instr. and Meth. A 565 (2006) 463]. This detector has an all carbon fiber support structure that employs thin copper clad Kapton sheets embedded in the surface of the carbon fiber structure to improve the grounding of the structure and a readout system that fully isolates the local detector ground from the rest of the detector. Initial measurements show efficiencies greater than 90% and 0.3 ADC count (240 e) common mode contribution to the signal noise. The total detector capacitance is 24 pF so this corresponds to 2 μV of common mode voltage.

  13. Performance of silicon microdosimetry detectors in boron neutron capture therapy.

    PubMed

    Bradley, P D; Rosenfeld, A B; Allen, B; Coderre, J; Capala, J

    1999-03-01

    Reverse-biased silicon p-n junction arrays using Silicon-On-Insulator technology have been proposed as microdosimeters. The performance of such detectors in boron neutron capture therapy (BNCT) is discussed. This work provides the first reported measurements using boron-coated silicon diode arrays as microdosimeters in BNCT. Results are in good agreement with measurements with gas proportional counters. Various boron-coating options are investigated along with device orientation effects. Finally, a 235U coating is tested to simulate the behavior of the device in a heavy-ion therapy beam.

  14. Design of an advanced readout chip for silicon strip detectors

    SciTech Connect

    Zimmerman, T.; Sarraj, M.; Yarema, R.

    1992-11-01

    Work was begun in 1990 on the development of an advanced readout chip (ARC) for silicon strip detectors. Features of the proposed device include compatibility with close bunch spacing and double sided detectors, and on chip analog storage, digitization, and data sparsification. Chip have been designed to check all of these concepts, fabricated in the VTI 2 micron process, and tested. The circuit configurations and test results are presented in this paper.

  15. A prototype of very high resolution small animal PET scanner using silicon pad detectors

    PubMed Central

    Park, Sang-June; Leslie Rogers, W.; Huh, Sam; Kagan, Harris; Honscheid, Klaus; Burdette, Don; Chesi, Enrico; Lacasta, Carlos; Llosa, Gabriela; Mikuz, Marko; Studen, Andrej; Weilhammer, Peter; Clinthorne, Neal H.

    2007-01-01

    A very high resolution small animal positron emission tomograph (PET) which can achieve sub-millimeter spatial resolution is being developed using silicon pad detectors. The prototype PET for a single slice instrument consists of two 1 mm thick silicon pad detectors, each containing a 32 × 16 array of 1.4 mm × 1.4 mm pads read out with four VATAGP3 chips which have 128 channels low-noise self triggering ASIC in each chip, coincidence units, a source turntable and tungsten slice collimator. The silicon detectors were located edgewise on opposite sides of a 4 cm field-of-view to maximize efficiency. Energy resolution is dominated by electronic noise, which is 0.98% (1.38 keV) FWHM at 140.5 keV. Coincidence timing resolution is 82.1 ns FWHM and coincidence efficiency was measured to be 1.04 × 10-3 % from two silicon detectors with annihilation photons of 18F source Image data were acquired and reconstructed using conventional 2-D filtered-back projection (FBP) and a maximum likelihood expectation maximization (ML-EM) method. Image resolution of approximately 1.45 mm FWHM is obtained from 1-D profile of 1.1 mm diameter 18F line source image. Even better resolution can be obtained with smaller detector element sizes. While many challenges remain in scaling up the instrument to useful efficiency including densely packed detectors and significantly improved timing resolution, performance of the test setup in terms of easily achieving submillimeter resolution is compelling. PMID:18084629

  16. Performance evaluation of a very high resolution small animal PET imager using silicon scatter detectors

    NASA Astrophysics Data System (ADS)

    Park, Sang-June; Rogers, W. Leslie; Huh, Sam; Kagan, Harris; Honscheid, Klaus; Burdette, Don; Chesi, Enrico; Lacasta, Carlos; Llosa, Gabriela; Mikuz, Marko; Studen, Andrej; Weilhammer, Peter; Clinthorne, Neal H.

    2007-05-01

    A very high resolution positron emission tomography (PET) scanner for small animal imaging based on the idea of inserting a ring of high-granularity solid-state detectors into a conventional PET scanner is under investigation. A particularly interesting configuration of this concept, which takes the form of a degenerate Compton camera, is shown capable of providing sub-millimeter resolution with good sensitivity. We present a Compton PET system and estimate its performance using a proof-of-concept prototype. A prototype single-slice imaging instrument was constructed with two silicon detectors 1 mm thick, each having 512 1.4 mm × 1.4 mm pads arranged in a 32 × 16 array. The silicon detectors were located edgewise on opposite sides and flanked by two non-position sensitive BGO detectors. The scanner performance was measured for its sensitivity, energy, timing, spatial resolution and resolution uniformity. Using the experimental scanner, energy resolution for the silicon detectors is 1%. However, system energy resolution is dominated by the 23% FWHM BGO resolution. Timing resolution for silicon is 82.1 ns FWHM due to time-walk in trigger devices. Using the scattered photons, time resolution between the BGO detectors is 19.4 ns FWHM. Image resolution of 980 µm FWHM at the center of the field-of-view (FOV) is obtained from a 1D profile of a 0.254 mm diameter 18F line source image reconstructed using the conventional 2D filtered back-projection (FBP). The 0.4 mm gap between two line sources is resolved in the image reconstructed with both FBP and the maximum likelihood expectation maximization (ML-EM) algorithm. The experimental instrument demonstrates sub-millimeter resolution. A prototype having sensitivity high enough for initial small animal images can be used for in vivo studies of small animal models of metabolism, molecular mechanism and the development of new radiotracers.

  17. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    SciTech Connect

    Arteche, F.; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  18. Low dose radiation damage effects in silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Wiącek, P.; Dąbrowski, W.

    2016-11-01

    The radiation damage effects in silicon segmented detectors caused by X-rays have become recently an important research topic driven mainly by development of new detectors for applications at the European X-ray Free Electron Laser (E-XFEL). However, radiation damage in silicon strip is observed not only after extreme doses up to 1 GGy expected at E-XFEL, but also at doses in the range of tens of Gy, to which the detectors in laboratory instruments like X-ray diffractometers or X-ray spectrometers can be exposed. In this paper we report on investigation of radiation damage effects in a custom developed silicon strip detector used in laboratory diffractometers equipped with X-ray tubes. Our results show that significant degradation of detector performance occurs at low doses, well below 200 Gy, which can be reached during normal operation of laboratory instruments. Degradation of the detector energy resolution can be explained by increasing leakage current and increasing interstrip capacitance of the sensor. Another observed effect caused by accumulation of charge trapped in the surface oxide layer is change of charge division between adjacent strips. In addition, we have observed unexpected anomalies in the annealing process.

  19. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform.

    PubMed

    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi

    2015-06-18

    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 10(5) with a mode-volume of ~ 1.7(λ/n)(3). This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices.

  20. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform

    PubMed Central

    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi

    2015-01-01

    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 105 with a mode-volume of ~1.7(λ/n)3. This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices. PMID:26086849

  1. Graphene-Based Josephson-Junction Single-Photon Detector

    NASA Astrophysics Data System (ADS)

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  2. Scaling silicon photonic switch fabrics for data center interconnection networks.

    PubMed

    Nikolova, Dessislava; Rumley, Sébastien; Calhoun, David; Li, Qi; Hendry, Robert; Samadi, Payman; Bergman, Keren

    2015-01-26

    With the rapidly increasing aggregate bandwidth requirements of data centers there is a growing interest in the insertion of optically interconnected networks with high-radix transparent optical switch fabrics. Silicon photonics is a particularly promising and applicable technology due to its small footprint, CMOS compatibility, high bandwidth density, and the potential for nanosecond scale dynamic connectivity. In this paper we analyze the feasibility of building silicon photonic microring based switch fabrics for data center scale optical interconnection networks. We evaluate the scalability of a microring based switch fabric for WDM signals. Critical parameters including crosstalk, insertion loss and switching speed are analyzed, and their sensitivity with respect to device parameters is examined. We show that optimization of physical layer parameters can reduce crosstalk and increase switch fabric scalability. Our analysis indicates that with current state-of-the-art devices, a high radix 128 × 128 silicon photonic single chip switch fabric with tolerable power penalty is feasible. The applicability of silicon photonic microrings for data center switching is further supported via review of microring operations and control demonstrations. The challenges and opportunities for this technology platform are discussed.

  3. Thin epitaxial silicon PIN detectors for thermal neutron detection with improved gamma (γ) discrimination

    SciTech Connect

    Singh, Arvind Topkar, Anita

    2016-05-23

    In order to improve the gamma discrimination capability for thermal neutron measurements using silicon PIN detectors, a novel approach of use of thin epitaxial silicon PIN detectors was investigated. Thin epitaxial silicon detectors with thickness of 15 µm were developed and their performance was tested with thermal neutrons using {sup 10}B converter. The performance of this detector was compared with the performance of a 300 µm silicon detector. The results of experiments presented in this paper indicate that thin epitaxial silicon detectors can significantly improve γ discrimination for thermal neutron measurements.

  4. Detective quantum efficiency model of single-X-ray-photon counting hybrid pixel detectors

    NASA Astrophysics Data System (ADS)

    Marchal, Julien; Medjoubi, Kadda

    2012-11-01

    A Detective Quantum Efficiency (DQE) model of single-X-ray-Photon Counting Hybrid Pixel Detectors (PC-HPDs) is presented. It applies to PC-HPDs based on semiconductor sensors such as silicon and CdTe pixel sensors. Charge-sharing effects are introduced in the expressions of imaging performance parameters such as large-area gain factor, presampling modulation transfer function and digital noise power spectrum, using the concept of threshold-dependent effective fill-factor. A simple X-ray induced charge distribution approximation is used to derive a practical formula for the threshold-dependent large-area gain factor, i.e. the integral X-ray spectrum which can be indirectly measured with a PC-HPD. This detector model was applied to standard synchrotron X-ray PC-HPDs: MEDIPIX3, PILATUS and XPAD detectors.

  5. Twin photon pairs in a high-Q silicon microresonator

    NASA Astrophysics Data System (ADS)

    Rogers, Steven; Lu, Xiyuan; Jiang, Wei C.; Lin, Qiang

    2015-07-01

    We report the generation of high-purity twin photon pairs through cavity-enhanced non-degenerate four-wave mixing (FWM) in a high-Q silicon microdisk resonator. Twin photon pairs are created within the same cavity mode and are consequently expected to be identical in all degrees of freedom. The device is able to produce twin photons at telecommunication wavelengths with a pair generation rate as large as (3.96 ± 0.03) × 105 pairs/s, within a narrow bandwidth of 0.72 GHz. A coincidence-to-accidental ratio of 660 ± 62 was measured, the highest value reported to date for twin photon pairs, at a pair generation rate of (2.47 ± 0.04) × 104 pairs/s. Through careful engineering of the dispersion matching window, we have reduced the ratio of photons resulting from degenerate FWM to non-degenerate FWM to less than 0.15.

  6. Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide.

    PubMed

    Xiong, C; Monat, Christelle; Clark, Alex S; Grillet, Christian; Marshall, Graham D; Steel, M J; Li, Juntao; O'Faolain, Liam; Krauss, Thomas F; Rarity, John G; Eggleton, Benjamin J

    2011-09-01

    We report the generation of correlated photon pairs in the telecom C-band at room temperature from a dispersion-engineered silicon photonic crystal waveguide. The spontaneous four-wave mixing process producing the photon pairs is enhanced by slow-light propagation enabling an active device length of less than 100 μm. With a coincidence to accidental ratio of 12.8 at a pair generation rate of 0.006 per pulse, this ultracompact photon pair source paves the way toward scalable quantum information processing realized on-chip.

  7. Silicon technologies for the CLIC vertex detector

    NASA Astrophysics Data System (ADS)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  8. Aging and rejuvenation of a TMAE + methane multiwire photon detector

    SciTech Connect

    Korpar, S. |; Krizan, P.; Stanovnik, A. |; Staric, M.; Skrk, D.

    1999-06-01

    A UV sensitive multiwire photon detector has been tested as a possible candidate for the HERA-B RICH detector. The main obstacle to using such a TMAE+Methane filled gas detector in a high rate experiment appears to be rapid aging in the form of prohibitive loss of chamber gas gain. A special circuit has been designed for heating the anode wires in-situ with elevated currents, thus evaporating the polymer deposits. Heating almost completely recovers the initial gain, but this rejuvenation is unfortunately of short duration. Nevertheless, the cells exposed to periodic heat treatments have an average gain considerably higher than the non-heated cells.

  9. The Silicon Detector (SiD) And Linear Collider Detector R&D in Asia And North America

    SciTech Connect

    Brau, J.E.; Breidenbach, M.; Fujii, Y.; /KEK, Tsukuba

    2005-08-11

    In Asia and North America research and development on a linear collider detector has followed complementary paths to that in Europe. Among the developments in the US has been the conception of a detector built around silicon tracking, which relies heavily on a pixel (CCD) vertex detector, and employs a silicon tungsten calorimeter. Since this detector is quite different from the TESLA detector, we describe it here, along with some of the sub-system specific R&D in these regions.

  10. Silicon-photonics-based wideband radar beamforming: basic design

    NASA Astrophysics Data System (ADS)

    Fathpour, Sasan

    2010-01-01

    Proposed is silicon-photonics-based phased array antenna beamforming for high-resolution long-range radars with wide instantaneous radio frequency (rf) bandwidth. Specifically, the proposed silicon-photonics beamformer platform offers the potential for cost-effective monolithic chip-scale integration of photonic delay lines, 2×2 optical switches, variable optical attenuators, and optical amplifiers that form the base unit of a rf transmit/receive array signal processor. In effect, the proposed silicon-photonics devices empower the design of a powerful proposed photonic beamformer with one time-delay unit per antenna element. Device-level designs studies are shown that promise meeting the high-resolution radar mission-critical requirements via time delays of up to 2.5 ns, switching times of less than 100 ns, optical isolations as good as 50 dB, and optical gains of up to 6 dB. Longer delays are achieved off chip using optical fibers.

  11. Hybrid integration of carbon nanotubes into silicon slot photonic structures

    NASA Astrophysics Data System (ADS)

    Durán Valdeiglesias, E.; Zhang, W.; Hoang, H. C.; Alonso-Ramos, C.; Noury, A.; Serna, S.; Le Roux, X.; Cassan, E.; Izard, N.; Sarti, F.; Torrini, U.; Balestrieri, M.; Keita, A.-S.; Yang, H.; Bezugly, V.; Vinattieri, A.; Cuniberti, G.; Filoramo, A.; Gurioli, M.; Vivien, L.

    2016-03-01

    Silicon photonics, due to its compatibility with the CMOS platform and unprecedented integration capability, has become the preferred solution for the implementation of next generation optical interconnects. However, current Si photonics require on-chip integration of several materials, including III-V for lasing, doped silicon for modulation and Ge for detection. The very different requirements of these materials result in complex fabrication processes that offset the cost-effectiveness of the Si photonics approach. We are developing an alternative route towards the integration of optoelectronic devices in Si photonic, relying on the use of single wall carbon nanotubes (SWNTs). SWNTs can be considered as a Si compatible material able to emit, modulate and detect near-infrared light. Hence, they hold a unique potential to implement all active devices in the Si photonics platform. In addition, solution processed SWNTs can be integrated on Si using spin-coating techniques, obviating the need of complex epitaxial growth or chip bonding approaches. Here, we report on our recent progress in the coupling of SWNTs light emission into optical resonators implemented on the silicon-on-insulator (SOI) platform.

  12. Means and method for calibrating a photon detector utilizing electron-photon coincidence

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K. (Inventor)

    1984-01-01

    An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons.

  13. Multi-channel picosecond photon timing with microchannel plate detectors

    NASA Astrophysics Data System (ADS)

    Lapington, J. S.; Conneely, T.

    2011-08-01

    Microchannel plate-based detectors have the capability to photon-count at time resolutions which outperform solid-state devices such as the APD or SiPM, and have a geometry that lends itself to pixelated readouts. We describe a multi-channel, photon-counting microchannel plate detector optimised for photon timing in the picosecond regime. The detector was originally developed for application to time-resolved spectroscopy in the life sciences, however its performance characteristics make it suitable for applications where high time resolution and multi-channel photon-counting are required including Cherenkov light detection in nuclear physics, particle physics, and astroparticle astronomy.We describe the prototype detector, a sealed tube device comprising an optical photocathode proximity focussed to a small pore microchannel plate stack. Event charge is collected on a multi-channel readout comprising an 8×8 pixel array, manufactured on a multilayer ceramic, which provides vacuum integrity for the detector enclosure and a multi-way electrical feedthrough for the readout array. Each pixel addresses one channel of a NINO ASIC, a multi-channel preamplifier-discriminator device. The discriminator outputs are timed to 25 ps by the HPTDC time-to-digital converter ASIC, which uses a time-over-threshold technique for amplitude walk correction. We present performance measurements using a pulsed laser of the 64 channel prototype system comprising a 25 mm detector, NINO front-end, and a CAEN V1290A VME module utilising HPTDC. We discuss the next phase in the project—design and manufacture of a 40 mm detector with a 16×16 pixel2 readout coupled to custom NINO/HPTDC electronics constructed as a series of 64 channel modules, expandable to even larger channel densities.

  14. New silicon technologies enable high-performance arrays of Single Photon Avalanche Diodes

    PubMed Central

    Gulinatti, Angelo; Rech, Ivan; Maccagnani, Piera; Cova, Sergio; Ghioni, Massimo

    2013-01-01

    In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency at the longer wavelengths (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we will analyze the factors the currently prevent the fabrication of arrays of SPADs by adopting such a Red-Enhanced (RE) technology and we will propose further modifications to the device structure that will enable the fabrication of high performance RE-SPAD arrays for photon timing applications. PMID:24353395

  15. The development of a silicon multiplicity detector system

    SciTech Connect

    Beuttenmuller, R.H.; Kraner, H.W.; Lissauer, D.; Makowiecki, D.; Polychronakos, V.; Radeka, V.; Sondericker, J.; Stephani, D.; Barrette, J.; Hall, J.; Mark, S.K.; Pruneau, C.A.; Wolfe, D.; Borenstein, S.R.

    1991-12-31

    The physics program and the design criteria for a Silicon Pad Detector at RHIC are reviewed. An end cap double sided readout detector configuration for RHIC is presented. Its performance as an on-line and off-line centrality tagging device is studied by means of simulations with Fritiof as the event generator. The results of an in-beam test of a prototype double-sided Si-detector are presented. Good signal-to-noise ratio are obtained with front junction and the resistive back side readout. Good separation between one and two minimum-ionizing particle signals is achieved.

  16. Eiger: a single-photon counting x-ray detector

    NASA Astrophysics Data System (ADS)

    Johnson, I.; Bergamaschi, A.; Billich, H.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Guizar-Sicairos, M.; Henrich, B.; Jungmann, J.; Mezza, D.; Mozzanica, A.; Schmitt, B.; Shi, X.; Tinti, G.

    2014-05-01

    Eiger is a single-photon counting x-ray pixel detector being developed at the Paul Scherrer Institut (PSI) for applications at synchrotron light sources. It follows the widely utilized and successful Pilatus detector. The main features of Eiger are a pixel size of 75 × 75 μm2, high frame rate capability of 22 kHz and negligible dead time between frames of 4 μs. This article contains a detailed description of Eiger detector systems, from the 500 kpixel single-module detector to large-area multi-modules systems. The calibration and performance of the first 500 kpixel system that is in routine user operation are also presented. Furthermore, a method of calibrating the energy of single-photon counting detectors along the detector gain axis is introduced. This approach has the advantage that the detector settings can be optimized at all energies for count rate capabilities. Rate capabilities of the system are reported for energies between 6 and 16 keV.

  17. Digital Images of Breast Biopsies using a Silicon Strip Detector

    SciTech Connect

    Montano, Luis M.; Diaz, Claudia C.; Leyva, Antonio; Cabal, Fatima

    2006-09-08

    In our study we have used a silicon strip detector to obtain digital images of some breast tissues with micro calcifications. Some of those images will be shown and we will discuss the perspectives of using this technique as an improvement of breast cancer diagnostics.

  18. Advanced Silicon Detectors for High Energy Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Ricker, George

    2005-01-01

    A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.

  19. A 16 x 16 element extrinsic silicon detector array

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Two bismuth-doped silicon accumulation-mode charge-injection device (AMCID) infrared detector arrays are studied. The geometry and composition of the arrays, and a description of the cold and warm electronics components of the system are described. Instructions for setting up and operating the array system, plus results of a functional test, are included.

  20. Silicon Detector Studies with an Interferometric Thickness Mapper

    NASA Technical Reports Server (NTRS)

    Milliken, B.; Leske, R. A.; Wiedenbeck, M. E.

    1995-01-01

    Cosmic ray isotopic composition studies aboard satellites are normally based on energy detection measurements which require a precise knowledge of matter thickness particle penetration. A laser- interferometer system has been developed to precisely map the thick- ness variations of large-area silicon detectors. Design, operation, and the data processing to derive thickness maps is described.

  1. Advanced Silicon Detectors for High Energy Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Ricker, George

    2005-01-01

    A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.

  2. Application of photon detectors in the VIP2 experiment to test the Pauli Exclusion Principle

    NASA Astrophysics Data System (ADS)

    Pichler, A.; Bartalucci, S.; Bazzi, M.; Bertolucci, S.; Berucci, C.; Bragadireanu, M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; De Paolis, L.; Di Matteo, S.; D'Ufflzi, A.; Egger, J.-P.; Guaraldo, C.; Iliescu, M.; Ishiwatari, T.; Laubenstein, M.; Marton, J.; Milotti, E.; Pietreanu, D.; Piscicchia, K.; Ponta, T.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.; Sirghi, F.; Sperandio, L.; Vazquez-Doce, O.; Widmann, E.; Zmeskal, J.

    2016-05-01

    The Pauli Exclusion Principle (PEP) was introduced by the austrian physicist Wolfgang Pauli in 1925. Since then, several experiments have checked its validity. From 2006 until 2010, the VIP (Violation of the Pauli Principle) experiment took data at the LNGS underground laboratory to test the PEP. This experiment looked for electronic 2p to Is transitions in copper, where 2 electrons are in the Is state before the transition happens. These transitions violate the PEP. The lack of detection of X-ray photons coming from these transitions resulted in a preliminary upper limit for the violation of the PEP of 4.7 × 10-29. Currently, the successor experiment VIP2 is under preparation. The main improvements are, on one side, the use of Silicon Drift Detectors (SDDs) as X-ray photon detectors. On the other side an active shielding is implemented, which consists of plastic scintillator bars read by Silicon Photomultipliers (SiPMs). The employment of these detectors will improve the upper limit for the violation of the PEP by around 2 orders of magnitude.

  3. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    SciTech Connect

    Contalbrigo, Marco

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to –25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  4. Photon counting techniques with silicon avalanche photodiodes.

    PubMed

    Dautet, H; Deschamps, P; Dion, B; Macgregor, A D; Macsween, D; McIntyre, R J; Trottier, C; Webb, P P

    1993-07-20

    The properties of avalanche photodiodes and associated electronics required for photon counting in the Geiger and the sub-Geiger modes are reviewed. When the Geiger mode is used, there are significant improvements reported in overall photon detection efficiencies (approaching 70% at 633 nm), and a timing jitter (under 200 ps) is achieved with passive quenching at high overvoltages (20-30 V). The results obtained by using an active-mode fast quench circuit capable of switching overvoltages as high as 15 V (giving photon detection efficiencies in the 50% range) with a dead time of less than 50 ns are reported. Larger diodes (up to 1 mm in diameter) that are usable in the Geiger mode and that have quantum efficiencies over 80% in the 500-800-nm range are also reported.

  5. Heavy flavour physics at colliders with silicon strip vertex detectors

    NASA Astrophysics Data System (ADS)

    Schwarz, Andreas S.

    1994-03-01

    The physics of heavy flavours has played a dominant role in high energy physics research ever since the discovery of charm in 1974, followed by the τ lepton in 1975 and bottom in 1977. With the startup of the large experiments at the e+e- colliders LEP and the SLC a new type of detector system has now come into operation which has a major impact on the studies of heavy flavours: the silicon strip vertex detector. The basic design priciples of these novel detector systems are outlined and three representative experimental realizations are discussed. The impact of these detectors on the studies of the properties of heavy flavours is just emerging and focuses on the measurement of lifetimes and the tagging of the presence of heavy flavour hadrons in hadronic events. The tools that are being developed for these studies are described as well as details of representative analyses. The potential of these devices and the associated technological developments that were necessary for their application in the colding beam environment is reflected in a plethora of new proposals to build sophisticated silicon detector systems for a large variety of future high energy physics applications. Two examples will be briefly sketched, a vertex detector for an asymmetric e+e- bottom factory and a large scale tracking system for a multipurpose detector at one of the new large hadron colliders.

  6. Ground Calibration of the Silicon Drift Detectors for NICER

    NASA Technical Reports Server (NTRS)

    Lamarr, Beverly; Prigozhin, Gregory; Remillard, Ronald; Malonis, Andrew; Gendreau, Keith C.; Arzoumanian, Zaven; Markwardt, Craig B.; Baumgartner, Wayne H.

    2016-01-01

    The Neutron star Interior Composition ExploreR (NICER) is set to be deployed on the International Space Station (ISS) in early 2017. It will use an array of 56 Silicon Drift Detectors (SDDs) to detect soft X-rays (0.2 - 12 keV) with 100 nanosecond timing resolution. Here we describe the e ort to calibrate the detectors in the lab primarily using a Modulated X-ray Source (MXS). The MXS that was customized for NICER provides more than a dozen emission lines spread over the instrument bandwidth, providing calibration measurements for detector gain and spectral resolution. In addition, the fluorescence source in the MXS was pulsed at high frequency to enable measurement of the delay due to charge collection in the silicon and signal processing in the detector electronics. A second chamber, designed to illuminate detectors with either 55Fe, an optical LED, or neither, provided additional calibration of detector response, optical blocking, and effectiveness of background rejection techniques. The overall ground calibration achieved total operating time that was generally in the range of 500-1500 hours for each of the 56 detectors.

  7. Ground calibration of the Silicon Drift Detectors for NICER

    NASA Astrophysics Data System (ADS)

    LaMarr, Beverly; Prigozhin, Gregory; Remillard, Ronald; Malonis, Andrew; Gendreau, Keith C.; Arzoumanian, Zaven; Markwardt, Craig B.; Baumgartner, Wayne H.

    2016-07-01

    The Neutron star Interior Composition ExploreR (NICER) is set to be deployed on the International Space Station (ISS) in early 2017. It will use an array of 56 Silicon Drift Detectors (SDDs) to detect soft X-rays (0.2 - 12 keV) with 100 nanosecond timing resolution. Here we describe the effort to calibrate the detectors in the lab primarily using a Modulated X-ray Source (MXS). The MXS that was customized for NICER provides more than a dozen emission lines spread over the instrument bandwidth, providing calibration measurements for detector gain and spectral resolution. In addition, the fluorescence source in the MXS was pulsed at high frequency to enable measurement of the delay due to charge collection in the silicon and signal processing in the detector electronics. A second chamber, designed to illuminate detectors with either 55Fe, an optical LED, or neither, provided additional calibration of detector response, optical blocking, and effectiveness of background rejection techniques. The overall ground calibration achieved total operating time that was generally in the range of 500-1500 hours for each of the 56 detectors.

  8. Research on high-speed single photon detector

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yang, Hao; Wang, Di; Ma, Haiqiang; Luo, Kaihong; Sun, Zhibin; Zhai, Guangjie

    2010-10-01

    Single-photon detector based on an InGaAs avalanche photodiode is one of hot research on the quantum photon, and is one of the key technologies on quantum communication and quantum image. It is widely used in applications as high sensitive photon spectrum, high speed optic measurement and so on. A suitable delay and comparator with latch function circuit are used to prevent positive and negative transient pulses from influencing the detection of true photon induced avalanches. A dead time modulation feedback control circuit decreases the after-pulse. Especially, ECL difference circuit is the key of high speed single photon detector. In addition, the detector uses the hot tube fan-cooling method. From the performance test, the lowest temperature reaches -62°C, the minimum gate pulse width is 2ns (Full-Width-Half-Max, FWHM) and the dark counter rate is 2.5×10-6 ns-1 with a detection rate of 10MHz when the quantum efficiency is more than 10%.

  9. Porous Silicon-Based Quantum Dot Broad Spectrum Radiation Detector

    PubMed Central

    Urdaneta, M.; Stepanov, P.; Weinberg, I. N.; Pala, I. R.; Brock, S.

    2013-01-01

    Silicon is a convenient and inexpensive platform for radiation detection, but has low stopping power for x-rays and gamma-rays with high energy (e.g., 100 keV, as used in computed tomography and digital radiography, or 1 MeV, as desired for detection of nuclear materials). We have effectively increased the stopping power of silicon detectors by producing a layer of porous or micro-machined silicon, and infusing this layer with semiconductor quantum dots made of electron-dense materials. Results of prototype detectors show sensitivity to infrared, visible light, and x-rays, with dark current of less than 1 nA/mm2. PMID:24432047

  10. High-performance silicon photonics technology for telecommunications applications.

    PubMed

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi

    2014-04-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.

  11. Silicon carbide detector for laser-generated plasma radiation

    NASA Astrophysics Data System (ADS)

    Bertuccio, Giuseppe; Puglisi, Donatella; Torrisi, Lorenzo; Lanzieri, Claudio

    2013-05-01

    We present the performance of a Silicon Carbide (SiC) detector in the acquisition of the radiation emitted by laser generated plasmas. The detector has been employed in time of flight (TOF) configuration within an experiment performed at the Prague Asterix Laser System (PALS). The detector is a 5 mm2 area 100 nm thick circular Nisbnd SiC Schottky junction on a high purity 4Hsbnd SiC epitaxial layer 115 μm thick. Current signals from the detector with amplitudes up to 1.6 A have been measured, achieving voltage signals over 80 V on a 50 Ω load resistance with excellent signal to noise ratios. Resolution of few nanoseconds has been experimentally demonstrated in TOF measurements. The detector has operated at 250 V DC bias under extreme operating conditions with no observable performance degradation.

  12. Silicon detectors for combined MR-PET and MR-SPECT imaging

    NASA Astrophysics Data System (ADS)

    Studen, A.; Brzezinski, K.; Chesi, E.; Cindro, V.; Clinthorne, N. H.; Cochran, E.; Grošičar, B.; Grkovski, M.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuž, M.; Stankova, V.; Weilhammer, P.; Žontar, D.

    2013-02-01

    Silicon based devices can extend PET-MR and SPECT-MR imaging to applications, where their advantages in performance outweigh benefits of high statistical counts. Silicon is in many ways an excellent detector material with numerous advantages, among others: excellent energy and spatial resolution, mature processing technology, large signal to noise ratio, relatively low price, availability, versatility and malleability. The signal in silicon is also immune to effects of magnetic field at the level normally used in MR devices. Tests in fields up to 7 T were performed in a study to determine effects of magnetic field on positron range in a silicon PET device. The curvature of positron tracks in direction perpendicular to the field's orientation shortens the distance between emission and annihilation point of the positron. The effect can be fully appreciated for a rotation of the sample for a fixed field direction, compressing range in all dimensions. A popular Ga-68 source was used showing a factor of 2 improvement in image noise compared to zero field operation. There was also a little increase in noise as the reconstructed resolution varied between 2.5 and 1.5 mm. A speculative applications can be recognized in both emission modalities, SPECT and PET. Compton camera is a subspecies of SPECT, where a silicon based scatter as a MR compatible part could inserted into the MR bore and the secondary detector could operate in less constrained environment away from the magnet. Introducing a Compton camera also relaxes requirements of the radiotracers used, extending the range of conceivable photon energies beyond 140.5 keV of the Tc-99m. In PET, one could exploit the compressed sub-millimeter range of positrons in the magnetic field. To exploit the advantage, detectors with spatial resolution commensurate to the effect must be used with silicon being an excellent candidate. Measurements performed outside of the MR achieving spatial resolution below 1 mm are reported.

  13. PAM4 silicon photonic microring resonator-based transceiver circuits

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Yu, Kunzhi; Roshan-Zamir, Ashkan; Wang, Binhao; Li, Cheng; Seyedi, M. Ashkan; Fiorentino, Marco; Beausoleil, Raymond

    2017-02-01

    Increased data rates have motivated the investigation of advanced modulation schemes, such as four-level pulseamplitude modulation (PAM4), in optical interconnect systems in order to enable longer transmission distances and operation with reduced circuit bandwidth relative to non-return-to-zero (NRZ) modulation. Employing this modulation scheme in interconnect architectures based on high-Q silicon photonic microring resonator devices, which occupy small area and allow for inherent wavelength-division multiplexing (WDM), offers a promising solution to address the dramatic increase in datacenter and high-performance computing system I/O bandwidth demands. Two ring modulator device structures are proposed for PAM4 modulation, including a single phase shifter segment device driven with a multi-level PAM4 transmitter and a two-segment device driven by two simple NRZ (MSB/LSB) transmitters. Transmitter circuits which utilize segmented pulsed-cascode high swing output stages are presented for both device structures. Output stage segmentation is utilized in the single-segment device design for PAM4 voltage level control, while in the two-segment design it is used for both independent MSB/LSB voltage levels and impedance control for output eye skew compensation. The 65nm CMOS transmitters supply a 4.4Vppd output swing for 40Gb/s operation when driving depletion-mode microring modulators implemented in a 130nm SOI process, with the single- and two-segment designs achieving 3.04 and 4.38mW/Gb/s, respectively. A PAM4 optical receiver front-end is also described which employs a large input-stage feedback resistor transimpedance amplifier (TIA) cascaded with an adaptively-tuned continuous-time linear equalizer (CTLE) for improved sensitivity. Receiver linearity, critical in PAM4 systems, is achieved with a peak-detector-based automatic gain control (AGC) loop.

  14. Multiple photon excited SF6 interaction with silicon surfaces

    NASA Astrophysics Data System (ADS)

    Chuang, T. J.

    1981-01-01

    Infrared laser induced SF6-silicon interactions have been studied and the surface reaction yields have been determined as a function of the laser frequency, the laser intensity, and the gas pressure in both perpendicular and parallel beam incidences on the solid surfaces. The results clearly show that vibrationally excited SF6 molecules promoted by CO2 laser pulses are very reactive to silicon, particularly when the solid is simultaneously exposed to the intense ir radiation. The laser excitation of the Si substrate alone cannot cause the heterogeneous reaction to occur. The present gas-solid system thus provides an example which clearly establishes the direct correlation between surface reactivity and vibrational activation. Additional experimental measurements also demonstrate that the thermal fluorine atoms generated by SF6 multiple photon dissociation at high laser intensities can react with silicon to form volatile product. The study thus provides further insight into the silicon-fluorine reaction dynamics.

  15. A CMOS visible silicon imager hybridized to a Rockwell 2RG multiplexer as a new detector for ground based astronomy

    NASA Astrophysics Data System (ADS)

    Dorn, Reinhold J.; Eschbaumer, Siegfried; Finger, Gert; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Joerg

    2006-06-01

    For the past 25 years Charge Coupled Devices (CCDs) have been used as the preferred detector for ground based astronomy to detect visible photons. As an alternative to CCDs, silicon-based hybrid CMOS focal plane array technology is evolving rapidly. Visible hybrid detectors have a close synergy with IR detectors and are operated in a similar way. This paper presents recent test results for a Rockwell 2K x 2K silicon PIN diode array hybridized to a Hawaii-2RG multiplexer, the Hybrid Visible Silicon Imager (HyViSI). Since the capacitance of the integrating node of Si-PIN diodes is at least a factor of two smaller than the capacitance of the Hawaii-2RG IR detector pixel, lower noise was expected. However, those detectors suffer from interpixel capacitance which introduces an error to the value of the conversion factor measured with the photon transfer method. Therefore QE values have been overestimated by almost a factor of two in the past. Detailed test results on QE, noise, dark current, and other basic performance values as well as a discussion how to interpret the measured values will be presented. Two alternative methods, direct measurement of the nodal capacity and the use of Iron-55 X-rays to determine the actual nodal capacitance and hence the conversion factor will be briefly presented. PSF performance of this detector was analyzed in detail with an optical spot and single pixel reset measurement.

  16. Silicon pixel detector prototyping in SOI CMOS technology

    NASA Astrophysics Data System (ADS)

    Dasgupta, Roma; Bugiel, Szymon; Idzik, Marek; Kapusta, Piotr; Kucewicz, Wojciech; Turala, Michal

    2016-12-01

    The Silicon-On-Insulator (SOI) CMOS is one of the most advanced and promising technology for monolithic pixel detectors design. The insulator layer that is implemented inside the silicon crystal allows to integrate sensors matrix and readout electronic on a single wafer. Moreover, the separation of electronic and substrate increases also the SOI circuits performance. The parasitic capacitances to substrate are significantly reduced, so the electronic systems are faster and consume much less power. The authors of this presentation are the members of international SOIPIX collaboration, that is developing SOI pixel detectors in 200 nm Lapis Fully-Depleted, Low-Leakage SOI CMOS. This work shows a set of advantages of SOI technology and presents possibilities for pixel detector design SOI CMOS. In particular, the preliminary results of a Cracow chip are presented.

  17. Broadband terahertz imaging with highly sensitive silicon CMOS detectors.

    PubMed

    Schuster, Franz; Coquillat, Dominique; Videlier, Hadley; Sakowicz, Maciej; Teppe, Frédéric; Dussopt, Laurent; Giffard, Benoît; Skotnicki, Thomas; Knap, Wojciech

    2011-04-11

    This paper investigates terahertz detectors fabricated in a low-cost 130 nm silicon CMOS technology. We show that the detectors consisting of a nMOS field effect transistor as rectifying element and an integrated bow-tie coupling antenna achieve a record responsivity above 5 kV/W and a noise equivalent power below 10 pW/Hz(0.5) in the important atmospheric window around 300 GHz and at room temperature. We demonstrate furthermore that the same detectors are efficient for imaging in a very wide frequency range from ~0.27 THz up to 1.05 THz. These results pave the way towards high sensitivity focal plane arrays in silicon for terahertz imaging.

  18. A photon counting detector model based on increment matrices to simulate statistically correct detector signals

    NASA Astrophysics Data System (ADS)

    Faby, Sebastian; Maier, Joscha; Simons, David; Schlemmer, Heinz-Peter; Lell, Michael; Kachelrieß, Marc

    2015-03-01

    We present a novel increment matrix concept to simulate the correlations in an energy-selective photon counting detector. Correlations between the energy bins of neighboring detector pixels are introduced by scattered and fluorescence photons, together with the broadening of the induced charge clouds as they travel towards the electrodes, leading to charge sharing. It is important to generate statistically correct detector signals for the different energy bins to be able to realistically assess the detector's performance in various tasks, e.g. material decomposition. Our increment matrix concept describes the counter increases in neighboring pixels on a single event level. Advantages of our model are the fact that much less random numbers are required than simulating single photons and that the increment matrices together with their probabilities have to be generated only once and can be stored for later use. The different occurring increment matrix sets and the corresponding probabilities are simulated using an analytic model of the photon-matter-interactions based on the photoelectric effect and Compton scattering, and the charge cloud drift, featuring thermal diffusion and Coulomb expansion of the charge cloud. The results obtained with this model are evaluated in terms of the spectral response for different detector geometries and the resulting energy bin sensitivity. Comparisons to published measured data and a parameterized detector model show both a good qualitative and quantitative agreement. We also studied the resulting covariance of reconstructed energy bin images.

  19. An all-silicon single-photon source by unconventional photon blockade

    PubMed Central

    Flayac, Hugo; Gerace, Dario; Savona, Vincenzo

    2015-01-01

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We finally propose a state-of-art implementation in a standard silicon-based photonic crystal integrated circuit that outperforms existing parametric devices either in input power or footprint area. PMID:26061665

  20. An all-silicon single-photon source by unconventional photon blockade

    NASA Astrophysics Data System (ADS)

    Flayac, Hugo; Gerace, Dario; Savona, Vincenzo

    2015-06-01

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We finally propose a state-of-art implementation in a standard silicon-based photonic crystal integrated circuit that outperforms existing parametric devices either in input power or footprint area.

  1. An all-silicon single-photon source by unconventional photon blockade.

    PubMed

    Flayac, Hugo; Gerace, Dario; Savona, Vincenzo

    2015-06-10

    The lack of suitable quantum emitters in silicon and silicon-based materials has prevented the realization of room temperature, compact, stable, and integrated sources of single photons in a scalable on-chip architecture, so far. Current approaches rely on exploiting the enhanced optical nonlinearity of silicon through light confinement or slow-light propagation, and are based on parametric processes that typically require substantial input energy and spatial footprint to reach a reasonable output yield. Here we propose an alternative all-silicon device that employs a different paradigm, namely the interplay between quantum interference and the third-order intrinsic nonlinearity in a system of two coupled optical cavities. This unconventional photon blockade allows to produce antibunched radiation at extremely low input powers. We demonstrate a reliable protocol to operate this mechanism under pulsed optical excitation, as required for device applications, thus implementing a true single-photon source. We finally propose a state-of-art implementation in a standard silicon-based photonic crystal integrated circuit that outperforms existing parametric devices either in input power or footprint area.

  2. Photoconductivity in inverse silicon opals enhanced by slow photon effect: Yet another step towards optically amplified silicon photonic crystal solar cells

    NASA Astrophysics Data System (ADS)

    Suezaki, Takashi; Yano, Hiroshi; Hatayama, Tomoaki; Ozin, Geoffrey A.; Fuyuki, Takashi

    2011-02-01

    While silicon photonic crystals have promised revolutionary advances in the field of optical telecommunications and optical computing, it has only recently been realized that their prowess to trap and slow photons could potentially improve the efficiency of silicon solar cells. In this work, spectral responses for the electrical properties of inverse silicon opals are evaluated and show a correlation with photonic bandgaps. In particular, a sign of the enhanced photoelectric generation by the slow photon effect is observed at the edges of photonic bandgaps.

  3. Infrared single-photon detection by two-photon absorption in silicon

    SciTech Connect

    Hayat, Alex; Ginzburg, Pavel; Orenstein, Meir

    2008-03-15

    We propose a scheme for infrared single-photon detection based on two-photon absorption at room temperature in Si avalanche photodiodes, where the detected photon's energy is lower than the band gap and the energy difference is complemented by a pump field. A quantum nonperturbative model is developed for nondegenerate two-photon absorption in direct and indirect semiconductors yielding proper nondivergent rates allowing device efficiency optimization. The proposed monolithic detector is simple, miniature, and integrable and does not require phase matching, while not compromising the performance and exhibiting even better efficiency than the competing up-conversion schemes ({approx}1 order of magnitude) for similar optical pump levels.

  4. A new detector concept for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Sadigov, A.; Ahmadov, F.; Ahmadov, G.; Ariffin, A.; Khorev, S.; Sadygov, Z.; Suleymanov, S.; Zerrouk, F.; Madatov, R.

    2016-07-01

    A new design and principle of operation of silicon photomultipliers are presented. The new design comprises a semiconductor substrate and an array of independent micro-phototransistors formed on the substrate. Each micro-phototransistor comprises a photosensitive base operating in Geiger mode and an individual micro-emitter covering a small part of the base layer, thereby creating, together with this latter, a micro-transistor. Both micro-emitters and photosensitive base layers are connected with two respective independent metal grids via their individual micro-resistors. The total value of signal gain in the proposed silicon photomultiplier is a result of both the avalanche gain in the base layer and the corresponding gain in the micro-transistor. The main goals of the new design are: significantly lower both optical crosstalk and after-pulse effects at high signal amplification, improve speed of single photoelectron pulse formation, and significantly reduce the device capacitance.

  5. High-Q microresonators as lasing elements for silicon photonics

    NASA Astrophysics Data System (ADS)

    Borselli, Matthew

    Although the concept of constructing active optical waveguides in crystalline silicon has existed for over twenty years, it is only in the past few years that silicon photonics has been given serious attention as a, displacing technology. Fueled by the predicted saturation of "Moore's Law" within the next decade, universities and industries from all over the world are exploring the possibilities of creating truly integrated silicon opto-electronic devices in a cost effective manner. Some of the most promising silicon photonics technologies are chip-to-chip and intra-chip optical interconnects. Now that compact high-speed modulators in silicon have been achieved, the limiting factor in the widespread adoption of optical interconnects is the lack of practical on-chip optical sources. These sources are critical for the generation of the many wavelengths of light necessary for high-speed communication between the logical elements between and within microprocessors. Unfortunately, crystalline silicon is widely known as a poor emitter because of its indirect bandgap. This thesis focuses on the many challenges in generating silicon-based laser sources. As most CMOS compatible gain materials possess at most 1 dB/cm of gain, much of our work has been devoted to minimizing the optical losses in silicon optical microresonators. Silicon microdisk resonators fabricated from silicon-on-insulator wafers were employed to study and minimize the different sources of scattering and absorption present in high-index contrast Si microcavities. These microdisks supported whispering-gallery modes with quality factors as high as 5 x 106, close to the bulk limit of lightly doped silicon wafers. An external silica fiber taper probe was developed to test the microcavities in a rapid wafer-scale manner. Analytic theory and numerical simulation aided in the optimization of the cavity design and interpretation of experimental results. After successfully developing surface chemistry treatments

  6. Detector motion method to increase spatial resolution in photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-03-01

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  7. Nonlinear Silicon Photonics: Extending Platforms, Control, and Applications

    NASA Astrophysics Data System (ADS)

    Miller, Steven Andrew

    Silicon photonics is a revolutionary technology that enables the control of light inside a silicon chip and holds promise to impact many applications from data center optical interconnects to optical sensing and even quantum optics. The tight confinement of light inside these chips greatly enhances light-matter interactions, making this an ideal platform for nonlinear photonics. Recently, microresonator-based Kerr frequency comb generation has become a prevalent emerging field, enabling the generation of a broadband optical pulse train by inputting a low-power continuous-wave laser into a low-loss chip-scale micro-cavity. These chip-scale combs have a wide variety of applications, including optical clocks, optical spectroscopy, and data communications. Several important applications in biological, chemical and atmospheric areas require combs generated in the visible and mid-infrared wavelength ranges, where there has been far less research and development compared with the near-infrared. Additionally, most platforms widely for combs are passive, limiting the ability to control and optimize the frequency combs. In this dissertation, we set out to address these shortcomings and introduce new tunability as well as wavelength flexibility in order to enable new applications for microresonator frequency combs. The silicon nitride platform for near-infrared combs is generally a passive platform with limited tuning capabilities. We overcome dispersion limitations in the visible range by leveraging the second-order nonlinearity of silicon nitride and demonstrate visible comb lines. We then further investigate the second-order nonlinearity of silicon nitride by measuring the linear electro-optic effect, a potential tuning mechanism. Finally, we introduce thermal tuning onto the silicon nitride platform and demonstrate tuning of the resonance extinction and dispersion of a micro-cavity using a coupled cavity design. We also address the silicon mid-infrared frequency comb

  8. Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator.

    PubMed

    Yebo, Nebiyu A; Sree, Sreeprasanth Pulinthanathu; Levrau, Elisabeth; Detavernier, Christophe; Hens, Zeger; Martens, Johan A; Baets, Roel

    2012-05-21

    Portable, low cost and real-time gas sensors have a considerable potential in various biomedical and industrial applications. For such applications, nano-photonic gas sensors based on standard silicon fabrication technology offer attractive opportunities. Deposition of high surface area nano-porous coatings on silicon photonic sensors is a means to achieve selective, highly sensitive and multiplexed gas detection on an optical chip. Here we demonstrate selective and reversible ammonia gas detection with functionalized silicon-on-insulator optical micro-ring resonators. The micro-ring resonators are coated with acidic nano-porous aluminosilicate films for specific ammonia sensing, which results in a reversible response to NH(3)with selectivity relative to CO(2). The ammonia detection limit is estimated at about 5 ppm. The detectors reach a steady response to NH(3) within 30 and return to their base level within 60 to 90 seconds. The work opens perspectives on development of nano-photonic sensors for real-time, non-invasive, low cost and light weight biomedical and industrial sensing applications.

  9. 14C autoradiography with an energy-sensitive silicon pixel detector.

    PubMed

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  10. Microwave Photon Detector in Circuit QED

    NASA Astrophysics Data System (ADS)

    Garcia-Ripoll, Juan Jose; Romero, Guillermo; Solano, Enrique

    2009-03-01

    In this work we propose a design for a microwave photodetector based on elements from circuit QED such as the ones used in qubit designs. Our proposal consists on a microwave guide in which we embed circuital elements that can absorb photons and irreversibly change state. These incoherent absorption processes constitute the measurement itself. We first model this design using a general master equation for the propagating photons and the absorbing elements. We find that the detection efficiency for a single absorber is limited to 50%, and that this efficiency can be quickly increased by adding more elements with a moderate separation, obtaining 80% and 90% for two and three absorbers. Our abstract design has at least one possible implementation in which the absorbers are current biased Josephson junction. We demonstrate that the coupling between the guide and the junctions is strong enough, irrespectively of the microwave guide size, and derivate realistic parameters for high fidelity operation with current experiments. Patent pending No. 200802933, Oficina Espanola de Patentes y Marcas, 17/10/2008.

  11. System-level integration of active silicon photonic biosensors

    NASA Astrophysics Data System (ADS)

    Laplatine, L.; Al'Mrayat, O.; Luan, E.; Fang, C.; Rezaiezadeh, S.; Ratner, D. M.; Cheung, K.; Dattner, Y.; Chrostowski, L.

    2017-02-01

    Biosensors based on silicon photonic integrated circuits have attracted a growing interest in recent years. The use of sub-micron silicon waveguides to propagate near-infrared light allows for the drastic reduction of the optical system size, while increasing its complexity and sensitivity. Using silicon as the propagating medium also leverages the fabrication capabilities of CMOS foundries, which offer low-cost mass production. Researchers have deeply investigated photonic sensor devices, such as ring resonators, interferometers and photonic crystals, but the practical integration of silicon photonic biochips as part of a complete system has received less attention. Herein, we present a practical system-level architecture which can be employed to integrate the aforementioned photonic biosensors. We describe a system based on 1 mm2 dies that integrate germanium photodetectors and a single light coupling device. The die are embedded into a 16x16 mm2 epoxy package to enable microfluidic and electrical integration. First, we demonstrate a simple process to mimic Fan-Out Wafer-level-Packaging, which enables low-cost mass production. We then characterize the photodetectors in the photovoltaic mode, which exhibit high sensitivity at low optical power. Finally, we present a new grating coupler concept to relax the lateral alignment tolerance down to +/- 50 μm at 1-dB (80%) power penalty, which should permit non-experts to use the biochips in a"plug-and-play" style. The system-level integration demonstrated in this study paves the way towards the mass production of low-cost and highly sensitive biosensors, and can facilitate their wide adoption for biomedical and agro-environmental applications.

  12. Photon-counting techniques with silicon avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Dautet, Henri; Deschamps, P.; Dion, Bruno; MacGregor, Andrew D.; MacSween, D.; McIntyre, Robert J.; Trottier, C.; Webb, Paul P.

    1993-05-01

    Silicon avalanche photodiodes (APD) have been used for photon counting for a number of years. This paper reviews their properties and the associated electronics required for photon counting in the Geiger mode. Significant improvements are reported in overall photon detection efficiencies (approaching 75% at 633 nm), and timing jitter (under 200 ps) achieved at high over-voltages (20 - 30 V). Results obtained using an active-mode fast quench circuit capable of switching over-voltages as high as 20 V (giving photon detection efficiencies in the 50% range), are reported with a dead-time of less than 50 ns. Larger diodes (up to 1 mm diameter), usable in the Geiger mode, which have quantum efficiencies over 80% in the 500 - 800 nm range also are reported.

  13. Hydrogenated amorphous silicon photonic device trimming by UV-irradiation.

    PubMed

    Lipka, Timo; Kiepsch, Melanie; Trieu, Hoc Khiem; Müller, Jörg

    2014-05-19

    A method to compensate for fabrication tolerances and to fine-tune individual photonic circuit components is inevitable for wafer-scale photonic systems even with most-advanced CMOS-fabrication tools. We report a cost-effective and highly accurate method for the permanent trimming of hydrogenated amorphous silicon photonic devices by UV-irradiation. Microring resonators and Mach-Zehnder-interferometers were utilized as photonic test devices. The MZIs were tuned forth and back over their complete free spectral range of 5.5 nm by locally trimming the two MZI-arms. The trimming range exceeds 8 nm for compact ring resonators with trimming accuracies of 20 pm. Trimming speeds of ≥ 10 GHz/s were achieved. The components did not show any substantial device degradation.

  14. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    SciTech Connect

    Shcheslavskiy, V. Becker, W.; Morozov, P.; Divochiy, A.

    2016-05-15

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.

  15. Photon BLOCH oscillations in porous silicon optical superlattices.

    PubMed

    Agarwal, V; del Río, J A; Malpuech, G; Zamfirescu, M; Kavokin, A; Coquillat, D; Scalbert, D; Vladimirova, M; Gil, B

    2004-03-05

    We report the first observation of oscillations of the electromagnetic field in an optical superlattice based on porous silicon. These oscillations are an optical equivalent of well-known electronic Bloch oscillations in crystals. Elementary cells of our structure are composed by microcavities whose coupling gives rise to the extended collective modes forming optical minigaps and minibands. By varying thicknesses of the cavities along the structure axis, we have created an effective electric field for photons. A very high quality factor of the confined optical state of the Wannier-Stark ladder may allow lasing in porous silicon-based superlattices.

  16. Test of an amorphous silicon detector in medical proton beams

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Hesse, B. M.; Nairz, O.; Jäkel, O.

    2011-05-01

    Ion beam radiation therapy for cancer treatment allows for improved dose confinement to the target in comparison with the standard radiation therapy using high energy photons. Dose delivery to the patient using focused ion beam scanning over the target volume is going to be increasingly used in the upcoming years. The high precision of the dose delivery achieved in this way has to be met by practical methods for beam monitoring with sufficient spatial resolution in two dimensions. Flat panel detectors, used for photon portal imaging at the newest medical linear accelerators, are an interesting candidate for this purpose. Initial detector tests presented here were performed using proton beams with the highest available energy. The investigations include measurements of beam profiles at different beam intensities and for different beam width, as well as the signal linearity. Radiation damage was also investigated. The obtained results show that the detector is a promising candidate to be used in the therapeutic proton beams.

  17. The response of a 300 micron silicon detector to monoenergetic neutrons determined by the use of the Monte Carlo technique

    NASA Technical Reports Server (NTRS)

    Tahezadeh, M.; Anno, G.

    1972-01-01

    The response of a 300 micron thick silicon detector to an incident monoenergetic neutron beam is evaluated by the Monte Carlo method for the cases of both a shielded and a bare detector. The result of Monte Carlo calculation, using elastic, inelastic, and absorption reactions indicates that the response of the silicon detector to neutrons is basically due to the elastic scattering. In addition, the gamma rays generated in the shield of the detector will result in a response which is 3 or 4 orders of magnitude smaller than response to incident photons. The response of a bare silicon detector is calculated for neutron energies up to 6 MeV and bias energies from 50 to 250 KeV. It is found that the maximum response for a 300 micron thick silicon detector is less than .004 c/n within this selected neutron and bias energy range. When the pulse height defect is introduced in the calculation the results at low energy neutrons were reduced.

  18. Silicon-Germanium Alloys for Infrared Detectors.

    DTIC Science & Technology

    1980-04-01

    crystals, aiming at improved crystallinity and higher resistivity and to extend the Czochralski growth method to indium-doped Si-Ge alloys. Our intention...of the disappointingly high boron concentrations achieved in Czochralski growth, we decided to explore a crucible-free method for preparing Si-Ge...material was not high enough to allow an adequately long depletion region in a p-i-n detector. It does not appear that any Czochralski -type growth method

  19. Simulation of Thick Gated Silicon Drift X-ray Detector Operated by a Single High-Voltage Source

    NASA Astrophysics Data System (ADS)

    Matsuura, Hideharu

    2013-02-01

    High-resolution X-ray detectors can be used to detect traces of hazardous or radioactive elements in food, soil, and the human body by measuring the energies and counts of emitted X-ray fluorescence photons. We have simulated the electric potential distributions in gated silicon drift detectors (GSDDs) with an active area of 18 mm2 and a Si thickness between 0.625 and 1.5 mm. A GSDD gate pattern was designed for each Si thickness and for various oxide charge densities in the SiO2 passivating layer near the SiO2/Si interface. The simulated GSDDs required approximately half the reverse bias voltage required by Si pin detectors. Our detector design could improve the absorption of Cd or Cs X-ray fluorescence photons and would reduce the cost of X-ray detection systems.

  20. Silicon-based silicon-germanium-tin heterostructure photonics.

    PubMed

    Soref, Richard

    2014-03-28

    The wavelength range that extends from 1550 to 5000 nm is a new regime of operation for Si-based photonic and opto-electronic integrated circuits. To actualize the new chips, heterostructure active devices employing the ternary SiGeSn alloy are proposed in this paper. Foundry-based monolithic integration is described. Opportunities and challenges abound in creating laser diodes, optical amplifiers, light-emitting diodes, photodetectors, modulators, switches and a host of high-performance passive infrared waveguided components.

  1. The Hybrid Pixel Single Photon Counting Detector XPAD

    SciTech Connect

    Hustache-Ottini, S.; Bordessoule, M.; Medjoubi, K.; Berar, J.-F.; Boudet, N.; Caillot, B.

    2007-01-19

    The XPAD detector is a 2D X-ray imager based on hybrid pixel technology, gathering 38400 pixels on a surface of 68*68 mm2. It is a photon counting detector, with low noise, wide dynamic range and high speed read out, which make it particularly suitable for third generation synchrotron applications, such as diffraction, small angle X-ray scattering or macro-molecular crystallography, but also for small animal imaging. High resolution powder diffraction data and in situ scattering data of crystallization of liquid oxides are presented to illustrate the properties of this detector, resulting in a significant gain in data acquisition time and a capability to follow fast kinetics in real time experiments. The characteristics of the future generation of XPAD detector, which will be available in 2007, are also presented.

  2. Silicon photonic crystal thermal emitter at near-infrared wavelengths.

    PubMed

    O'Regan, Bryan J; Wang, Yue; Krauss, Thomas F

    2015-08-21

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission.

  3. Thermal detectors as single photon X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Kelley, R. L.; Mather, J. C.; Mushotzky, R. F.; Szymkowiak, A. E.; Mccammon, D.

    1985-01-01

    In a thermal detector employed for X-ray spectroscopy applications, the energy of an X-ray is converted to heat in a small mass, and the energy of that X-ray inferred from the size of the temperature rise. The present investigation is concerned with the possibility to make an extremely low heat capacity calorimeter which can be employed as a thermal detector. Several types of calorimeters were fabricated and tested at temperatures as low as approximately 0.05 K. The obtained devices make use of thermistors constructed of melt-doped silicon, nuclear transmutation doped (NTD) germanium, and ion-implanted silicon with a variety of materials for the support and electrical leads. The utility of these microcalorimeters as X-ray spectrometers could be verified.

  4. Controlling the spectrum of photons generated on a silicon nanophotonic chip

    PubMed Central

    Kumar, Ranjeet; Ong, Jun Rong; Savanier, Marc; Mookherjea, Shayan

    2014-01-01

    Directly modulated semiconductor lasers are widely used, compact light sources in optical communications. Semiconductors can also be used to generate nonclassical light; in fact, CMOS-compatible silicon chips can be used to generate pairs of single photons at room temperature. Unlike the classical laser, the photon-pair source requires control over a two-dimensional joint spectral intensity (JSI) and it is not possible to process the photons separately, as this could destroy the entanglement. Here we design a photon-pair source, consisting of planar lightwave components fabricated using CMOS-compatible lithography in silicon, which has the capability to vary the JSI. By controlling either the optical pump wavelength, or the temperature of the chip, we demonstrate the ability to select different JSIs, with a large variation in the Schmidt number. Such control can benefit high-dimensional communications where detector-timing constraints can be relaxed by realizing a large Schmidt number in a small frequency range. PMID:25410792

  5. Detector response function of an energy-resolved CdTe single photon counting detector.

    PubMed

    Liu, Xin; Lee, Hyoung Koo

    2014-01-01

    While spectral CT using single photon counting detector has shown a number of advantages in diagnostic imaging, knowledge of the detector response function of an energy-resolved detector is needed to correct the signal bias and reconstruct the image more accurately. The objective of this paper is to study the photo counting detector response function using laboratory sources, and investigate the signal bias correction method. Our approach is to model the detector response function over the entire diagnostic energy range (20 keV detector response function at six photon energies. The 12 parameters are obtained by non-linear least-square fitting with the measured detector response functions at the six energies. The correlations of the 12 parameters with energy are also investigated with the measured data. The analytical model generally describes the detector response function and is in good agreement with the measured data. The trend lines of the 12 parameters indicate higher energies tend to cause grater spectrum distortion. The spectrum distortion caused by the detector response function on spectral CT reconstruction is analyzed theoretically, and a solution to correct this spectrum distortion is also proposed. In spectral and fluorescence CT, the spectrum distortion caused by detector response function poses a problem and cannot be ignored in any quantitative analysis. The detector response function of a CdTe detector can be obtained by a semi-analytical method.

  6. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    PubMed Central

    Ptasinski, Joanna; Khoo, Iam-Choon; Fainman, Yeshaiahu

    2014-01-01

    In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths. PMID:28788565

  7. Fast photon detection for the COMPASS RICH detector

    NASA Astrophysics Data System (ADS)

    Abbon, P.; Alekseev, M.; Angerer, H.; Apollonio, M.; Birsa, R.; Bordalo, P.; Bradainante, F.; Bressan, A.; Busso, L.; Chiosso, M.; Ciliberti, P.; Colantoni, M. L.; Costa, S.; Dalla Torre, S.; Dafni, T.; Delagnes, E.; Deschamps, H.; Diaz, V.; Dibiase, N.; Duic, V.; Eyrich, W.; Faso, D.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Gerassimov, S.; Giorgi, M.; Gobbo, B.; Hagemann, R.; von Harrach, D.; Heinsius, F. H.; Joosten, R.; Ketzer, B.; Königsmann, K.; Kolosov, V. N.; Konorov, I.; Kramer, D.; Kunne, F.; Lehmann, A.; Levorato, S.; Maggiora, A.; Magnon, A.; Mann, A.; Martin, A.; Menon, G.; Mutter, A.; Nähle, O.; Nerling, F.; Neyret, D.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pesaro, G.; Polak, J.; Rebourgeard, P.; Robinet, F.; Rocco, E.; Schiavon, P.; Schill, C.; Schröder, W.; Silva, L.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Svec, M.; Tessarotto, F.; Teufel, A.; Wollny, H.

    2007-10-01

    Particle identification at high rates is a central aspect of many present and future experiments in high-energy particle physics. The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a wide momentum range. For the data taking in 2006, the COMPASS RICH has been upgraded in the central photon detection area (25% of the surface) with a new technology to detect Cherenkov photons at very high count rates of several 10s per channel and a new dead-time free read-out system, which allows trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of 576 visible and ultra-violet sensitive multi-anode photomultipliers with 16 channels each. Lens telescopes of fused silica lenses have been designed and built to focus the Cherenkov photons onto the individual photomultipliers. The read-out electronics of the PMTs is based on the MAD4 amplifier-discriminator chip and the dead-time free high resolution F1-TDC. The 120 ps time resolution of the digital card guarantees negligible background from uncorrelated physical events. In the outer part of the detector, where the particle rates are lower, the present multi-wire proportional chambers (MWPC) with Cesium Iodide photo-cathodes have been upgraded with a new read-out electronic system based on the APV preamplifier and shaper ASIC with analog pipeline and sampling ADCs. The project was fully designed and implemented in the period November 2004 until May 2006. The upgraded detector showed an excellent performance during the 2006 data taking: the number of detected Cherenkov photons per ring was increased from 14 to above 60 at saturation. The time resolution was improved from about 3 microseconds to about one nanosecond which allows an excellent suppression of the background photons from uncorrelated events.

  8. Beam test of CSES silicon strip detector module

    NASA Astrophysics Data System (ADS)

    Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2017-05-01

    The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme

  9. Measuring fluence of fast neutrons with planar silicon detectors

    NASA Astrophysics Data System (ADS)

    Zamyatin, N. I.; Cheremukhin, A. E.; Shafronovskaya, A. I.

    2017-09-01

    The results of measurements of 1-MeV (Si) equivalent fast neutron fluence with silicon planar detectors are reported. The measurement method is based on the linear dependence of the reverse detector current increment on the neutron fluence: ΔI = α I × Φ × V. This technique provides an opportunity to measure the equivalent fluence in a wide dynamic range from 108 to 1016 cm-2 with an unknown neutron energy spectrum and without detector calibration. The proposed method was used for monitoring in radiation resistance tests of different detector types at channel no. 3 of IBR-2 and for determining the fluence of fission and leakage neutrons at the KVINTA setup.

  10. Investigation of Hamamatsu H8500 phototubes as single photon detectors

    NASA Astrophysics Data System (ADS)

    Montgomery, R. A.; Hoek, M.; Lucherini, V.; Mirazita, M.; Orlandi, A.; Anefalos Pereira, S.; Pisano, S.; Rossi, P.; Viticchiè, A.; Witchger, A.

    2015-08-01

    We have investigated the response of a significant sample of Hamamatsu H8500 MultiAnode PhotoMultiplier Tubes (MAPMTs) as single photon detectors, in view of their use in a ring imaging Cherenkov counter for the CLAS12 spectrometer at the Thomas Jefferson National Accelerator Facility. For this, a laser working at 407.2 nm wavelength was employed. The sample is divided equally into standard window type, with a spectral response in the visible light region, and UV-enhanced window type MAPMTs. The studies confirm the suitability of these MAPMTs for single photon detection in such a Cherenkov imaging application.

  11. Detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A

    2015-01-01

    Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20-45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  12. Detective quantum efficiency of photon-counting x-ray detectors

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2015-01-15

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  13. Dry-film polymer waveguide for silicon photonics chip packaging.

    PubMed

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  14. Feedback tolerance of DFB laser for silicon photonics packaging.

    PubMed

    Takeda, Seiji; Nakagawa, Shigeru

    2014-04-07

    Silicon photonics packaging without optical isolator is of significant importance to realize low fabrication cost and small device size. In this report, impact of external feedback on DFB laser performance is investigated both theoretically and experimentally. Dynamic transfer matrix method and rate equation model are coupled to describe the dynamic interaction between optical field and carriers in a DFB structure under the feedback by external reflection. The calculation model exhibits laser spectrum splits and output intensity fluctuates with increase of the degree of external feedback, in good agreement with experimental results. The theoretical analysis is performed under various feedback parameters, and the optimum packaging condition for DFB laser chip in silicon photonics is guided.

  15. A detector head design for small-animal PET with silicon photomultipliers (SiPM).

    PubMed

    Moehrs, Sascha; Del Guerra, Alberto; Herbert, Deborah J; Mandelkern, Mark A

    2006-03-07

    Small-animal PET systems are now striving for sub-millimetre resolution. Current systems based upon PSPMTs and finely pixellated scintillators can be pushed to higher resolution, but at the expense of other performance parameters and a rapidly escalating cost. Moreover, depth of interaction (DOI) information is usually difficult to assess in such systems, even though this information is highly desirable to reduce the parallax error, which is often the dominant error for such high-resolution systems. In this study we propose a high-resolution detector head for a small-animal PET imaging system with intrinsic DOI information. Instead of a pixellated scintillator, our design is based upon the classic Anger camera principle, i.e. the head is constructed of modular layers each consisting of a continuous slab of scintillator, viewed by a new type of compact silicon photodetector. The photodetector is the recently developed silicon photomultiplier (SiPM) that as well as being very compact has many other attractive properties: high gain at low bias voltage, excellent single-photoelectron resolution and fast timing. A detector head of about 4 x 4 cm2 in area is proposed, constructed from three modular layers of the type described above. We perform a simulation study, using the Monte Carlo simulation package Geant4. The simulation results are used to optimize the geometry of the detector head and characterize its performance. Additionally, hit estimation algorithms are studied to determine the interaction position of annihilation photons correctly over the whole detector surface. The resulting detector has a nearly uniform efficiency for 511 keV photons of approximately 70% and an intrinsic spatial resolution of less than approximately 0.4 mm full width at half maximum (fwhm).

  16. Output factor determination for dose measurements in axial and perpendicular planes using a silicon strip detector

    NASA Astrophysics Data System (ADS)

    Abou-Haïdar, Z.; Bocci, A.; Alvarez, M. A. G.; Espino, J. M.; Gallardo, M. I.; Cortés-Giraldo, M. A.; Ovejero, M. C.; Quesada, J. M.; Arráns, R.; Prieto, M. Ruiz; Vega-Leal, A. Pérez; Nieto, F. J. Pérez

    2012-04-01

    In this work we present the output factor measurements of a clinical linear accelerator using a silicon strip detector coupled to a new system for complex radiation therapy treatment verification. The objective of these measurements is to validate the system we built for treatment verification. The measurements were performed at the Virgin Macarena University Hospital in Seville. Irradiations were carried out with a Siemens ONCOR™ linac used to deliver radiotherapy treatment for cancer patients. The linac was operating in 6 MV photon mode; the different sizes of the fields were defined with the collimation system provided within the accelerator head. The output factor was measured with the silicon strip detector in two different layouts using two phantoms. In the first, the active area of the detector was placed perpendicular to the beam axis. In the second, the innovation consisted of a cylindrical phantom where the detector was placed in an axial plane with respect to the beam. The measured data were compared with data given by a commercial treatment planning system. Results were shown to be in a very good agreement between the compared set of data.

  17. Novel detectors for silicon based microdosimetry, their concepts and applications

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Anatoly B.

    2016-02-01

    This paper presents an overview of the development of semiconductor microdosimetry and the most current (state-of-the-art) Silicon on Insulator (SOI) detectors for microdosimetry based mainly on research and development carried out at the Centre for Medical Radiation Physics (CMRP) at the University of Wollongong with collaborators over the last 18 years. In this paper every generation of CMRP SOI microdosimeters, including their fabrication, design, and electrical and charge collection characterisation are presented. A study of SOI microdosimeters in various radiation fields has demonstrated that under appropriate geometrical scaling, the response of SOI detectors with the well-known geometry of microscopically sensitive volumes will record the energy deposition spectra representative of tissue cells of an equivalent shape. This development of SOI detectors for microdosimetry with increased complexity has improved the definition of microscopic sensitive volume (SV), which is modelling the deposition of ionising energy in a biological cell, that are led from planar to 3D SOI detectors with an array of segmented microscopic 3D SVs. The monolithic ΔE-E silicon telescope, which is an alternative to the SOI silicon microdosimeter, is presented, and as an example, applications of SOI detectors and ΔE-E monolithic telescope for microdosimetery in proton therapy field and equivalent neutron dose measurements out of field are also presented. An SOI microdosimeter "bridge" with 3D SVs can derive the relative biological effectiveness (RBE) in 12C ion radiation therapy that matches the tissue equivalent proportional counter (TEPC) quite well, but with outstanding spatial resolution. The use of SOI technology in experimental microdosimetry offers simplicity (no gas system or HV supply), high spatial resolution, low cost, high count rates, and the possibility of integrating the system onto a single device with other types of detectors.

  18. Dark matter detectors as dark photon helioscopes.

    PubMed

    An, Haipeng; Pospelov, Maxim; Pradler, Josef

    2013-07-26

    Light new particles with masses below 10 keV, often considered as a plausible extension of the standard model, will be emitted from the solar interior and can be detected on Earth with a variety of experimental tools. Here, we analyze the new "dark" vector state V, a massive vector boson mixed with the photon via an angle κ, that in the limit of the small mass mV has its emission spectrum strongly peaked at low energies. Thus, we utilize the constraints on the atomic ionization rate imposed by the results of the XENON10 experiment to set the limit on the parameters of this model: κ×mV<3×10(-12)  eV. This makes low-threshold dark matter experiments the most sensitive dark vector helioscopes, as our result not only improves current experimental bounds from other searches by several orders of magnitude but also surpasses even the most stringent astrophysical and cosmological limits in a seven-decade-wide interval of mV. We generalize this approach to other light exotic particles and set the most stringent direct constraints on "minicharged" particles.

  19. SU-E-T-432: Field Size Influence On the Electron and Photon Spectra Within Small MV Field Detectors

    SciTech Connect

    Benmakhlouf, H; Andreo, P

    2015-06-15

    Purpose: To investigate the influence of photon field size on the electron and photon fluence spectra in the active volume of small field detectors. Methods: The PENELOPE MC system based usercode PenEasy was used to calculate the material influence on the spectra by scoring the differential fluence in inserts of silicon, carbon, phosphorus and aluminium having 3 mm diameter and height. The spectra were then calculated inside the active volume of eleven detectors (ion chambers and solid-state detectors) whose geometry was simulated with great detail. The inserts/detectors were placed at 10 cm depth in a 30 cm x 30 cm x 30 cm water phantom and irradiated with 2.5 MeV photons and Varian Clinac 6 MV beams of small, medium and large size. Results: For all configurations, photon spectra in the scoring volume were similar to that in a small water volume except for additional characteristic x-ray peaks resulting from the material itself and from the materials surrounding the detectors (i.e. high-Z shielding the silicon). Electron fluence calculated in the inserts were up to 60% larger than in water; the difference increased with material density and decreasing field size. MC-calculated doses were compared to analytically determined collision kerma and restricted cema (cut-off=15keV). For the inserts, with large and medium fields K-col agreed with MC-dose, but K-col overestimated the dose for small fields due to lack of lateral CPE. For the detectors, up to 15% differences between K-col and the MC-dose were found. For all configurations the C-delta and MC-dose agreed within ±2%. Conclusion: The most relevant findings were that shielding affects substantially the photon spectra and material conditions the electron spectra, their field size dependence varying with the geometry configuration. These affect the values of factors entering into relative dosimetry.

  20. Performance of Thin-Window Silicon Drift Detectors

    SciTech Connect

    Carini, , G.A.; Chen, W.; De Geronimo, G.; Fried, J.; Gaskin, J.A.; Keister; J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2008-10-20

    Several sets of hexagonal Silicon Drift Detector (SDD) arrays were produced at BNL and by a commercial vendor, KETEK. Each array consists of 14 independent detectors (pixels) and two additional test pixels at two of the corners. The side of the detector upon which the X-ray radiation is incident (window side) has a thin junction covering the entire active area. The opposite side (device side) contains a drift-field electrode structure in the form of a hexagonal spiral and an electron collecting anode. There are 4 guard rings surrounding the 14-pixel array area on both sides of the detector. Within each array, 7 of the pixels have an aluminum field plate - interrupted spirals that stabilize the electric potential under the Si-SiO2 interface, while the other 7 do not. The drift field in the silicon volume is controlled by three biases: one is applied to a rectifying contact, one to the detector entrance window, and the third to a contact on the outer portion of the spiral common to all pixels in the array. Some arrays have been newly measured in NSLS beam line U3C at BNL. The complete assemblies were installed in the vacuum and cooled to ?27 C. During this run, spectra for energies ranging between 400 and 900 eV were collected in several pixels, some with field plates and others without. The detailed testing results of several arrays are reported here.

  1. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    NASA Astrophysics Data System (ADS)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  2. Silicon photomultiplier detector for atmospheric lidar applications.

    PubMed

    Riu, Jordi; Sicard, Michaël; Royo, Santiago; Comerón, Adolfo

    2012-04-01

    The viability and performance of using a silicon photomultiplier (SiPM) in atmospheric lidar applications is experimentally compared against the well-established use of photomultiplier tubes. By using a modified lidar setup for simultaneous data acquisition of both types of sensors, we demonstrate that a SiPM can offer appropriate qualities for this specific application where the detection of fast, extremely low light pulses and large dynamic range signals are essential capabilities. The experimental results show that the SiPM has an appropriate behaviour offering suitable capabilities for elastic, backscatter aerosol lidars. To the best of our knowledge, this is the first study showing SiPM for atmospheric lidar applications.

  3. Initial experience with the CDF layer 00 silicon detector

    SciTech Connect

    C. Hill

    2003-03-17

    We report on initial experience with the CDF Layer 00 Detector. Layer 00 is an innovative, low-mass, silicon detector installed in CDF during the upgrade for Run 2A of the Tevatron. Noise pickup present during operation at CDF is discussed. An event-by-event pedestal correction implemented by CDF is presented. This off-line solution prevents L00 from being used in the current incarnation of the on-line displaced track trigger. Preliminary performance of Layer 00 is described.

  4. Picosecond dynamics of a silicon donor based terahertz detector device

    SciTech Connect

    Bowyer, Ellis T.; Li, Juerong; Litvinenko, K. L.; Murdin, B. N. E-mail: yuxm@pku.edu.cn; Villis, B. J.; Erfani, Morteza; Matmon, Guy; Aeppli, Gabriel; Ortega, Jean-Michel; Prazeres, Rui; Dong, Li; Yu, Xiaomei E-mail: yuxm@pku.edu.cn

    2014-07-14

    We report the characteristics of a simple complementary metal-oxide-semiconductor compatible terahertz detector device with low response time (nanoseconds) determined using a short-pulse, high intensity free-electron laser. The noise equivalent power was 1 × 10{sup −11} W Hz{sup −1/2}. The detector has an enhanced response over narrow bands, most notably at 9.5 THz, with a continuum response at higher frequencies. Using such a device, the dynamics of donors in silicon can be explored, a system which has great potential for quantum information processing.

  5. Proton Source for Characterizing and Testing Charged Particle Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Bass, Kevin

    2016-09-01

    Improvements in experimental design and equipment have increased our capability for future neutron beta decay measurements. The upcoming experiments have the potential to test the Standard Model at the same level as the superallowed nuclear beta decay measurements but without the need for nuclear corrections. Part of the improvement comes from new large-area pixelated silicon detector technology. The precision and accuracy that is demanded by the neutron beta decay experiments require detailed characterization of the detectors. Such characterization can be achieved using a low current, variable energy proton beam. The design and simulation of a proton beam from source through accelerator will be presented. University of Tennessee Physics Summer Fellowship.

  6. Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors

    SciTech Connect

    Hubmayr, J. Beall, J.; Becker, D.; Cho, H.-M.; Hilton, G. C.; Li, D.; Pappas, D. P.; Van Lanen, J.; Vissers, M. R.; Gao, J.; Devlin, M.; Dober, B.; Groppi, C.; Mauskopf, P.; Irwin, K. D.; Wang, Y.; Wei, L. F.

    2015-02-16

    We demonstrate photon-noise limited performance at sub-millimeter wavelengths in feedhorn-coupled, microwave kinetic inductance detectors made of a TiN/Ti/TiN trilayer superconducting film, tuned to have a transition temperature of 1.4 K. Micro-machining of the silicon-on-insulator wafer backside creates a quarter-wavelength backshort optimized for efficient coupling at 250 μm. Using frequency read out and when viewing a variable temperature blackbody source, we measure device noise consistent with photon noise when the incident optical power is >0.5 pW, corresponding to noise equivalent powers >3×10{sup −17} W/√(Hz). This sensitivity makes these devices suitable for broadband photometric applications at these wavelengths.

  7. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    NASA Technical Reports Server (NTRS)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  8. Characterization of Photon-Counting Detector Responsivity for Non-Linear Two-Photon Absorption Process

    NASA Technical Reports Server (NTRS)

    Sburlan, S. E.; Farr, W. H.

    2011-01-01

    Sub-band absorption at 1550 nm has been demonstrated and characterized on silicon Geiger mode detectors which normally would be expected to have no response at this wavelength. We compare responsivity measurements to singlephoton absorption for wavelengths slightly above the bandgap wavelength of silicon (approx. 1100 microns). One application for this low efficiency sub-band absorption is in deep space optical communication systems where it is desirable to track a 1030 nm uplink beacon on the same flight terminal detector array that monitors a 1550 nm downlink signal for pointingcontrol. The currently observed absorption at 1550 nm provides 60-70 dB of isolation compared to the response at 1064 nm, which is desirable to avoid saturation of the detector by scattered light from the downlink laser.

  9. Observation of soliton compression in silicon photonic crystals

    PubMed Central

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with <10 pJ energy. We demonstrate a ~1-ps free-carrier-induced pulse acceleration and show that picosecond input pulses are critical to these observations. These experiments are enabled by a dispersion-engineered slow-light photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  10. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  11. Temperature dependence of the response of ultra fast silicon detectors

    NASA Astrophysics Data System (ADS)

    Mulargia, R.; Arcidiacono, R.; Bellora, A.; Boscardin, M.; Cartiglia, N.; Cenna, F.; Cirio, R.; Dalla Betta, G. F.; Durando, S.; Fadavi, A.; Ferrero, M.; Galloway, Z.; Gruey, B.; Freeman, P.; Kramberger, G.; Mandic, I.; Monaco, V.; Obertino, M.; Pancheri, L.; Paternoster, G.; Ravera, F.; Sacchi, R.; Sadrozinski, H. F. W.; Seiden, A.; Sola, V.; Spencer, N.; Staiano, A.; Wilder, M.; Woods, N.; Zatserklyaniy, A.

    2016-12-01

    The Ultra Fast Silicon Detectors (UFSD) are a novel concept of silicon detectors based on the Low Gain Avalanche Diode (LGAD) technology, which are able to obtain time resolution of the order of few tens of picoseconds. First prototypes with different geometries (pads/pixels/strips), thickness (300 and 50 μm) and gain (between 5 and 20) have been recently designed and manufactured by CNM (Centro Nacional de Microelectrónica, Barcelona) and FBK (Fondazione Bruno Kessler, Trento). Several measurements on these devices have been performed in laboratory and in beam test and a dependence of the gain on the temperature has been observed. Some of the first measurements will be shown (leakage current, breakdown voltage, gain and time resolution on the 300 μm from FBK and gain on the 50 μm-thick sensor from CNM) and a comparison with the theoretically predicted trend will be discussed.

  12. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit.

    PubMed

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-21

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10(-9) is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  13. Germanium on silicon to enable integrated photonic circuits

    NASA Astrophysics Data System (ADS)

    Hopkins, F. Kenneth; Walsh, Kevin M.; Benken, Alexander; Jones, John; Averett, Kent; Diggs, Darnell E.; Tan, Loon-Seng; Mou, Shin; Grote, James G.

    2013-09-01

    Electronic circuits alone cannot fully meet future requirements for speed, size, and weight of many sensor systems, such as digital radar technology and as a result, interest in integrated photonic circuits (IPCs) and the hybridization of electronics with photonics is growing. However, many IPC components such as photodetectors are not presently ideal, but germanium has many advantages to enable higher performance designs that can be better incorporated into an IPC. For example, Ge photodetectors offer an enormous responsivity to laser wavelengths near 1.55μm at high frequencies to 40GHz, and they can be easily fabricated as part of a planar silicon processing schedule. At the same time, germanium has enormous potential for enabling 1.55 micron lasers on silicon and for enhancing the performance of silicon modulators. Our new effort has begun by studying the deposition of germanium on silicon and beginning to develop methods for processing these films. In initial experiments comparing several common chemical solutions for selective etching under patterned positive photoresist, it was found that hydrogen peroxide (H2O2) at or below room temperature (20 C) produced the sharpest patterns in the Ge films; H2O2 at a higher temperature (50 C) resulted in the greatest lateral etching.

  14. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    PubMed Central

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-01-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than −30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10−9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers. PMID:28000735

  15. Reconfigurable SDM Switching Using Novel Silicon Photonic Integrated Circuit

    NASA Astrophysics Data System (ADS)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld; Ye, Feihong; Asif, Rameez; Gross, Simon; Withford, Michael J.; Galili, Michael; Morioka, Toshio; Oxenløwe, Leif Katsuo

    2016-12-01

    Space division multiplexing using multicore fibers is becoming a more and more promising technology. In space-division multiplexing fiber network, the reconfigurable switch is one of the most critical components in network nodes. In this paper we for the first time demonstrate reconfigurable space-division multiplexing switching using silicon photonic integrated circuit, which is fabricated on a novel silicon-on-insulator platform with buried Al mirror. The silicon photonic integrated circuit is composed of a 7 × 7 switch and low loss grating coupler array based multicore fiber couplers. Thanks to the Al mirror, grating couplers with ultra-low coupling loss with optical multicore fibers is achieved. The lowest total insertion loss of the silicon integrated circuit is as low as 4.5 dB, with low crosstalk lower than -30 dB. Excellent performances in terms of low insertion loss and low crosstalk are obtained for the whole C-band. 1 Tb/s/core transmission over a 2-km 7-core fiber and space-division multiplexing switching is demonstrated successfully. Bit error rate performance below 10-9 is obtained for all spatial channels with low power penalty. The proposed design can be easily upgraded to reconfigurable optical add/drop multiplexer capable of switching several multicore fibers.

  16. Silicon-photonics-based optical transceivers for high-speed interconnect applications

    NASA Astrophysics Data System (ADS)

    De Dobbelaere, P.; Armijo, G.; Balardeta, J.; Chase, B.; Chi, Y.; Dahl, A.; De Koninck, Y.; Denton, S.; Eker, M.; Fathpour, S.; Foltz, D.; Gholami, F.; Gloeckner, S.; Hon, K. Y.; Hovey, S.; Jackson, S.; Li, W.; Liang, Y.; Mack, M.; Masini, G.; McGee, G.; Mekis, A.; Pang, S.; Peterson, M.; Pinguet, T.; Planchon, L.; Roberson, K.; Sahni, S.; Schramm, J.; Sharp, M.; Sohn, C.; Stechschulte, K.; Sun, P.; Vastola, G.; Wang, S.; Weber, B.; Wong, G.; Yokoyama, K.; Yu, S.; Zhou, R.

    2016-03-01

    In this paper we discuss design and characterization of silicon-photonics-based 100 Gbps (4×26 Gbps) transceivers for parallel single mode fiber communication. We also address some key underlying technologies including silicon photonics wafer processing, photonic device libraries, light source integration and packaging technologies.

  17. Comparison of TPB and bis-MSB as VUV waveshifters in prototype LBNE photon detector paddles

    NASA Astrophysics Data System (ADS)

    Baptista, B.; Mufson, S.

    2013-12-01

    The Long-Baseline Neutrino Experiment (LBNE) Project is expected to provide facilities that will enable a program in neutrino physics that can measure fundamental physical parameters, explore physics beyond the Standard Model and better elucidate the nature of matter and anti-matter. The LBNE Photon Detection subsystem is primarily designed to detect the scintillation photons produced at 128 nm as ionizing particles traverse the liquid argon. The LBNE reference design for the photon detector subsystem uses adiabatic light guides consisting of cast acrylic bars whose surface is embedded with waveshifter to convert the Vacuum Ultraviolet (VUV) 128 nm photons into the optical bandpass of silicon photomultipliers (SiPMs). In this investigation, we describe comparative studies of two VUV waveshifters — TPB and bis-MSB. We find that bis-MSB is more efficient than TPB at 128 nm. We also find that the efficiency of converting VUV photons into the optical for both waveshifters rises from 170-200 nm. Studies of the long wavelength behavior of the waveshifters supports the result that the efficiency is rising.

  18. Synchrotron applications of an amorphous silicon flat-panel detector.

    PubMed

    Lee, John H; Aydiner, C Can; Almer, Jonathan; Bernier, Joel; Chapman, Karena W; Chupas, Peter J; Haeffner, Dean; Kump, Ken; Lee, Peter L; Lienert, Ulrich; Miceli, Antonino; Vera, German

    2008-09-01

    A GE Revolution 41RT flat-panel detector (GE 41RT) from GE Healthcare (GE) has been in operation at the Advanced Photon Source for over two years. The detector has an active area of 41 cm x 41 cm with 200 microm x 200 microm pixel size. The nominal working photon energy is around 80 keV. The physical set-up and utility software of the detector system are discussed in this article. The linearity of the detector response was measured at 80.7 keV. The memory effect of the detector element, called lag, was also measured at different exposure times and gain settings. The modulation transfer function was measured in terms of the line-spread function using a 25 microm x 1 cm tungsten slit. The background (dark) signal, the signal that the detector will carry without exposure to X-rays, was measured at three different gain settings and with exposure times of 1 ms to 15 s. The radial geometric flatness of the sensor panel was measured using the diffraction pattern from a CeO(2) powder standard. The large active area and fast data-capturing rate, i.e. 8 frames s(-1) in radiography mode, 30 frames s(-1) in fluoroscopy mode, make the GE 41RT one of a kind and very versatile in synchrotron diffraction. The loading behavior of a Cu/Nb multilayer material is used to demonstrate the use of the detector in a strain-stress experiment. Data from the measurement of various samples, amorphous SiO(2) in particular, are presented to show the detector effectiveness in pair distribution function measurements.

  19. Thin-film scintillators for extended ultraviolet /UV/ response silicon detectors

    NASA Technical Reports Server (NTRS)

    Viehmann, W.

    1979-01-01

    The preparation and radiometric properties of silicon detectors coated with fluorescent thin films are described. The films are deposited from solutions of clear plastics, such as acrylic resins, polyvinyl toluene or polystyrene, and of organic laser dyes in a common solvent. They are optically clear, mechanically and chemically stable, yet easily applied and removed. Multiple doped films of a few microns thickness exhibit broad-band absorption from less than 250 nm to about 450 nm and narrow band emissions with peaks ranging from 380 nm to 600 nm. Internal quantum efficiencies are close to 100 percent and fluorescence decay times are in the nanosecond range. When deposited on optically denser media, a large fraction of the fluorescent emission is trapped in the substrate. Silicon photodiodes coated with multiple doped films exhibit high external quantum efficiencies and virtually flat photon response in the near UV.

  20. Thin-film scintillators for extended ultraviolet /UV/ response silicon detectors

    NASA Technical Reports Server (NTRS)

    Viehmann, W.

    1979-01-01

    The preparation and radiometric properties of silicon detectors coated with fluorescent thin films are described. The films are deposited from solutions of clear plastics, such as acrylic resins, polyvinyl toluene or polystyrene, and of organic laser dyes in a common solvent. They are optically clear, mechanically and chemically stable, yet easily applied and removed. Multiple doped films of a few microns thickness exhibit broad-band absorption from less than 250 nm to about 450 nm and narrow band emissions with peaks ranging from 380 nm to 600 nm. Internal quantum efficiencies are close to 100 percent and fluorescence decay times are in the nanosecond range. When deposited on optically denser media, a large fraction of the fluorescent emission is trapped in the substrate. Silicon photodiodes coated with multiple doped films exhibit high external quantum efficiencies and virtually flat photon response in the near UV.

  1. Silicon vertex detector upgrade in the ALPHA experiment

    NASA Astrophysics Data System (ADS)

    Amole, C.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Burrows, C.; Butler, E.; Capra, A.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Stracka, S.; Sampson, J. A.; Sarid, E.; Seddon, D.; Silveira, D. M.; So, C.; Thompson, R. I.; Tharp, T.; Thornhill, J.; Tooley, M. P.; van der Werf, D. P.; Wells, D.

    2013-12-01

    The Silicon Vertex Detector (SVD) is the main diagnostic tool in the ALPHA-experiment. It provides precise spatial and timing information of antiproton (antihydrogen) annihilation events (vertices), and most importantly, the SVD is capable of directly identifying and analysing single annihilation events, thereby forming the basis of ALPHA's analysis. This paper describes the ALPHA SVD and its upgrade, installed in the ALPHA's new neutral atom trap.

  2. Flexible amorphous silicon PIN diode x-ray detectors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael; Bawolek, Edward; Smith, Joseph T.; Raupp, Gregory B.; Morton, David

    2013-05-01

    A low temperature amorphous silicon (a-Si) thin film transistor (TFT) and amorphous silicon PIN photodiode technology for flexible passive pixel detector arrays has been developed using active matrix display technology. The flexible detector arrays can be conformed to non-planar surfaces with the potential to detect x-rays or other radiation with an appropriate conversion layer. The thin, lightweight, and robust backplanes may enable the use of highly portable x-ray detectors for use in the battlefield or in remote locations. We have fabricated detector arrays up to 200 millimeters along the diagonal on a Gen II (370 mm x 470 mm rectangular substrate) using plasma enhanced chemical vapor deposition (PECVD) a-Si as the active layer and PECVD silicon nitride (SiN) as the gate dielectric and passivation. The a-Si based TFTs exhibited an effective saturation mobility of 0.7 cm2/V-s, which is adequate for most sensing applications. The PIN diode material was fabricated using a low stress amorphous silicon (a-Si) PECVD process. The PIN diode dark current was 1.7 pA/mm2, the diode ideality factor was 1.36, and the diode fill factor was 0.73. We report on the critical steps in the evolution of the backplane process from qualification of the low temperature (180°C) TFT and PIN diode process on the 150 mm pilot line, the transfer of the process to flexible plastic substrates, and finally a discussion and demonstration of the scale-up to the Gen II (370 x 470 mm) panel scale pilot line.

  3. Experience with parallel optical link for the CDF silicon detector

    SciTech Connect

    S. Hou

    2003-04-11

    The Dense Optical Interface Module (DOIM) is a byte-wide optical link developed for the Run II upgrade of the CDF silicon tracking system [1]. The module consists of a transmitter with a laser-diode array for conversion of digitized detector signals to light outputs, a 22 m optical fiber ribbon cable for light transmission, and a receiver converting the light pulses back to electrical signals. We report on the design feature, characteristics, and radiation tolerance.

  4. Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fortuño, Francisco J.; Espinosa-Soria, Alba; Martínez, Alejandro

    2016-12-01

    The interaction of light with subwavelength metallic nano-structures is at the heart of different current scientific hot topics, namely plasmonics, metamaterials and nanoantennas. Research in these disciplines during the last decade has given rise to new, powerful concepts providing an unprecedented degree of control over light manipulation at the nanoscale. However, only recently have these concepts been used to increase the capabilities of light processing in current photonic integrated circuits (PICs), which traditionally rely only on dielectric materials with element sizes larger than the light wavelength. Amongst the different PIC platforms, silicon photonics is expected to become mainstream, since manufacturing using well-established CMOS processes enables the mass production of low-cost PICs. In this review we discuss the benefits of introducing recent concepts arisen from the fields of metamaterials, plasmonics and nanoantennas into a silicon photonics integrated platform. We review existing works in this direction and discuss how this hybrid approach can lead to the improvement of current PICs enabling novel and disruptive applications in photonics.

  5. Laser ranging and mapping with a photon-counting detector.

    PubMed

    Priedhorsky, W C; Smith, R C; Ho, C

    1996-01-20

    We propose a new technique for remote sensing: photon-counting laser mapping. MicroChannel plate detectors with a crossed delay-line (MCP/CDL) readout combine high position accuracy and subnanosecond photon timing, at event rates of 10(6) detected photons per second and more. A mapping system would combine an MCP/CDL detector with a fast-pulse, high-repetition-rate laser illuminator. The system would map solid targets with exceptional in-range and cross-range resolution. The resulting images would be intrinsically three dimensional, without resorting to multiple viewing angles, so that objects of identical albedo could be discriminated. For a detector time resolution and pulse width of the order of 10(-10) s, the in-range resolution would be a few centimeters, permitting the discrimination of surfaces by their textures. Images could be taken at night, at illumination levels up to full moonlight, from ground, airborne, or space platforms. We discuss signal to noise as a function of laser flux and background level and present simulated images.

  6. (Test, calibrate, and prepare a BGO photon detector system)

    SciTech Connect

    Awes, T.C.

    1990-10-19

    The traveler spent the year at CERN primarily to test, calibrate, and prepare a BGO photon detector system for use in the August 1990 run of WA80 with sulfur beams and for use in future planned runs with an expanded BGO detector. The BGO was used in test-beam runs in December 1989 and April--May 1990 and in the August data-taking run. The Midrapidity Calorimeters (MIRAC) were also prepared in a new geometry for the August run with a new transverse energy trigger. The traveler also continued to refine and carry out simulations of photon detector systems in present and future planned photon detection experiments. The traveler participated in several WA80 collaboration meetings, which were held at CERN throughout the period of stay. Invited talks were presented at the Workshop on High Resolution Electromagnetic Calorimetry in Stockholm, Sweden, November 9--11, 1989, and at the International Workshop on Software Engineering, Artificial Intelligence, and Expert Systems for High-Energy and Nuclear Physics at Lyon, France, March 19--24, 1990. The traveler participated in an experiment to measure particle--particle correlations at 30-MeV/nucleon incident energies at the SARA facility in Grenoble from November 11--24, 1989.

  7. A silicon carbide room-temperature single-photon source

    NASA Astrophysics Data System (ADS)

    Castelletto, S.; Johnson, B. C.; Ivády, V.; Stavrias, N.; Umeda, T.; Gali, A.; Ohshima, T.

    2014-02-01

    Over the past few years, single-photon generation has been realized in numerous systems: single molecules, quantum dots, diamond colour centres and others. The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics and measurement theory. An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing. Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite-vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (2×106 counts s-1) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices.

  8. Two-photon-excited photoluminescence from porous silicon

    SciTech Connect

    Diener, J.; Shen, Y.R. |; Kovalev, D.I.; Polisski, G.; Koch, F.

    1998-11-01

    Two-photon-excited photoluminescence can be readily observed from porous silicon (PSi) with pulsed lasers. While its spectrum and lifetime are identical to those under one-photon excitation, it has a degree of polarization significantly higher than the latter and depending on the orientation of the input polarization with respect to the crystalline axes of the sample. The degree of polarization is a maximum when the input polarization is along [110] in the surface plane of PSi prepared from a Si (100) wafer and a minimum along [010]. The results can be understood from selective excitation of ellipsoidal nanoparticles by linearly polarized light and intrinsic anisotropy in two-photon excitation of crystalline Si. {copyright} {ital 1998} {ital The American Physical Society}

  9. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    SciTech Connect

    S. Behari et al.

    2003-12-18

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  10. On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing

    SciTech Connect

    Gerrits, Thomas; Lita, Adriana E.; Calkins, Brice; Tomlin, Nathan A.; Fox, Anna E.; Linares, Antia Lamas; Mirin, Richard P.; Nam, Sae Woo; Thomas-Peter, Nicholas; Metcalf, Benjamin J.; Spring, Justin B.; Langford, Nathan K.; Walmsley, Ian A.; Gates, James C.; Smith, Peter G. R.

    2011-12-15

    Integration is currently the only feasible route toward scalable photonic quantum processing devices that are sufficiently complex to be genuinely useful in computing, metrology, and simulation. Embedded on-chip detection will be critical to such devices. We demonstrate an integrated photon-number-resolving detector, operating in the telecom band at 1550 nm, employing an evanescently coupled design that allows it to be placed at arbitrary locations within a planar circuit. Up to five photons are resolved in the guided optical mode via absorption from the evanescent field into a tungsten transition-edge sensor. The detection efficiency is 7.2{+-}0.5 %. The polarization sensitivity of the detector is also demonstrated. Detailed modeling of device designs shows a clear and feasible route to reaching high detection efficiencies.

  11. High energy resolution bandpass photon detector for inverse photoemission spectroscopy.

    PubMed

    Maniraj, M; D'Souza, S W; Nayak, J; Rai, Abhishek; Singh, Sanjay; Sekhar, B N Raja; Barman, S R

    2011-09-01

    We report a bandpass ultraviolet photon detector for inverse photoemission spectroscopy with energy resolution of 82 ± 2 meV. The detector (Sr(0.7)Ca(0.3)F(2)/acetone) consists of Sr(0.7)Ca(0.3)F(2) entrance window with energy transmission cutoff of 9.85 eV and acetone as detection gas with 9.7 eV photoionization threshold. The response function of the detector, measured using synchrotron radiation, has a nearly Gaussian shape. The n = 1 image potential state of Cu(100) and the Fermi edge of silver have been measured to demonstrate the improvement in resolution compared to the CaF(2)/acetone detector. To show the advantage of improved resolution of the Sr(0.7)Ca(0.3)F(2)/acetone detector, the metal to semiconductor transition in Sn has been studied. The pseudogap in the semiconducting phase of Sn could be identified, which is not possible with the CaF(2)/acetone detector because of its worse resolution. © 2011 American Institute of Physics

  12. Electron Transport in Silicon Nanocrystal Devices: From Memory Applications to Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Miller, Gerald M.

    The push to integrate the realms of microelectronics and photonics on the silicon platform is currently lacking an efficient, electrically pumped silicon light source. One promising material system for photonics on the silicon platform is erbium-doped silicon nanoclusters (Er:Si-nc), which uses silicon nanoclusters to sensitize erbium ions in a SiO2 matrix. This medium can be pumped electrically, and this thesis focuses primarily on the electrical properties of Er:Si-nc films and their possible development as a silicon light source in the erbium emission band around 1.5 micrometers. Silicon nanocrystals can also be used as the floating gate in a flash memory device, and work is also presented examining charge transport in novel systems for flash memory applications. To explore silicon nanocrystals as a potential replacement for metallic floating gates in flash memory, the charging dynamics in silicon nanocrystal films are first studied using UHV-AFM. This approach uses a non-contact AFM tip to locally charge a layer of nanocrystals. Subsequent imaging allows the injected charge to be observed in real time as it moves through the layer. Simulation of this interaction allows the quantication of the charge in the layer, where we find that each nanocrystal is only singly charged after injection, while holes are retained in the film for hours. Work towards developing a dielectric stack with a voltage-tunable barrier is presented, with applications for flash memory and hyperspectral imaging. For hyperspectral imaging applications, film stacks containing various dielectrics are studied using I-V, TEM, and internal photoemission, with barrier tunability demonstrated in the Sc2O3/SiO2 system. To study Er:Si-nc as a potential lasing medium for silicon photonics, a theoretical approach is presented where Er:Si-nc is the gain medium in a silicon slot waveguide. By accounting for the local density of optical states effect on the emitters, and carrier absorption due to

  13. Phasor imaging with a widefield photon-counting detector

    NASA Astrophysics Data System (ADS)

    Colyer, Ryan A.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon; Michalet, Xavier

    2012-01-01

    Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector's performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods.

  14. Integration of silicon photonics into electronic processes

    NASA Astrophysics Data System (ADS)

    Orcutt, Jason S.; Ram, Rajeev J.; Stojanović, Vladimir

    2013-02-01

    Two layer vertical coupling photonic structures can be directly fabricated on a standard SOI wafer using a combination of reactive ion etching (RIE) and proton beam irradiation followed by electrochemical etching. The top layer structures are defined by RIE on the device layer, while the bottom layer structures are defined by proton beam irradiation on the substrate. Light coupling between the structures in the two layers has been demonstrated via vertical coupling waveguides. According to simulations, the coupling efficiency mainly depends on the thickness of the two layer structure and the gap between them. In this process, the thickness of the top layer structures is fixed by the device layer thickness of the SOI wafer, which is typically 200-300 nm. The gap depends on the thickness of the oxide layer of the SOI wafer, and it can be shifted due to the natural bending of the top layer structures. The bottom layer structure thickness can vary due to different energies of proton beam. Furthermore we show the fabrication of tapered bottom waveguides, which are thin at the coupling region for higher coupling efficiency, and thick at the end for easily coupling light from an optical fiber or a focused lens.

  15. Ge/SiGe for silicon photonics

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yasuhiko

    2017-01-01

    Near-infrared Ge photonic devices on a Si platform are presented toward low-cost, low-energy and high-capacity optical communications. Using Ge epitaxial layers selectively grown by chemical vapor deposition on Si-on-insulator layers, Ge photodiodes (PDs) of vertical pin structures are integrated with Si optical waveguides. The integrated Ge PDs show high responsivities as large as 0.8 A/W at 1.55 μm with the 3-dB cutoff frequency more than 10 GHz. SiGe/Ge heterostructures have potential applications to higher-performance devices. One application is to low-noise and low-voltage avalanche photodiodes (APDs), where a SiGe layer is inserted at the interface between the optical absorption layer of Ge and the carrier-multiplication layer of Si or Ge. The band discontinuity at the interface enhances the impact ionization for photo-generated carriers injected via SiGe. Fabricated APDs show an enhanced multiplication gain. The other application of SiGe is to a stressor to control the direct bandgap of Ge. As a proof of concept, a tensile-strained Si0.2Ge0.8 overlayer is shown to induce a compressive stress in the underlying Ge mesa stripe, leading to a blue shift in the absorption edge of Ge.

  16. Nonlinear optics in silicon photonic wires: Theory and applications

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang

    Silicon photonic wires (SPW) are deeply scaled silicon waveguides with transverse dimensions much less than 1 mum. Integrated silicon photonic devices based on SPW generally have very small footprint and very strong light confinement, which lead to many advantageous physical properties: capability for dispersion engineering, high optical-field density, enhanced effective nonlinearity, and intrinsically short carrier lifetime. Third-order nonlinearities, dispersion effects up to the third-order and carrier effects are the three major contributors to the rich pulse dynamics in SPW. In this thesis, various nonlinear optical processes in SPW such as stimulated Raman Scattering (SRS), self-phase modulation (SPM), cross-phase modulation (XPM), modulation instability (MI), and third-order dispersion (TOD) induced soliton-radiation effect are studied theoretically and experimentally. After a brief introduction of silicon photonics, I first present a comprehensive theoretical model developed from Maxwell's equations and the Lorentz reciprocity theorem for describing pulse dynamics in high-index-contrast and anisotropic waveguides. Chapter 3 focuses on exploring the capability of "engineering" the optical dispersion, which enables the control of phase matching of nonlinear pulse dynamics and is important to the development of nonlinear optical functionalities of SPW. In linear regime, SPW is shown to support wavelength-division multiplexing (WDM) transmission at an ultra-high-data-rate of 300 Gb/s for intra-chip optical network. SPM is the result of optical Kerr effect, which manifests as an intensity-dependent refractive index change. In Chapter 4, SPM of optical pulses with temporal widths in both picosecond and femtosecond regimes is studied experimentally and theoretically. In the femtosecond regime, the interplay of nonlinear effects, group-velocity-dispersion (GVD) and TOD results in soliton-like pulse propagation in SPW. TOD-induced soliton radiation was demonstrated

  17. Development of Pixelated Linear Avalanche Integration Detector Using Silicon on Insulator Technology

    NASA Astrophysics Data System (ADS)

    Koyama, Akihiro; Shimazoe, Kenji; Takahashi, Hiroyuki; Hamasaki, Ryutaro; Orita, Tadashi; Onuki, Yoshiyuki; Otani, Wataru; Takeshita, Tohru; Kurachi, Ikuo; Miyoshi, Toshinobu; Nakamura, Isamu; Arai, Yasuo

    In various X-ray imaging applications such as single photon counting X-ray CT, micrometer scale spatial resolution and high detection efficiency possibility using structured porous scintillator took great interests. In order to achieve precise energy- and timing information measurements, high sensitive separately readable photo detector needs to be coupled to porous crystal. Therefore, we fabricated test element group (TEG) of micro sized linear avalanche integration detector (Plaid) on a silicon on insulator (SOI) wafer and inspected performance of each device. Measurements results showed guard ring structure achieved avalanche gain of magnitude from 10 to 1000 with lower gain saturation effect than non-guard ring structure. We concluded guard ring structure is desirable to achieve stable gain performance toward various optical powers and efficient to use for scintillation light read out.

  18. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  19. Efficiently heralded silicon ring resonator photon-pair source

    NASA Astrophysics Data System (ADS)

    Steidle, Jeffrey A.; Fanto, Michael L.; Tison, Christopher C.; Wang, Zihao; Alsing, Paul M.; Preble, Stefan F.

    2016-05-01

    Presented here are results on a silicon ring resonator photon pair source with a high heralding efficiency. Previous ring resonator sources suffered from an effective 50% loss because, in order to generate the photons, the pump must be able to couple into the resonator which is an effective loss channel. However, in practice the optical loss of the pump can be traded off for a dramatic increase in heralding efficiency. This research found theoretically that the heralding efficiency should increase by a factor of ~ 3:75 with a factor of 10 increase in the required pump power. This was demonstrated experimentally by varying the separation (gap) between the input waveguide and the ring while maintaining a constant drop port gap. The ring (R = 18:5μm, W = 500nm, and H = 220nm) was pumped by a tunable laser (λ ≍ 1550nm). The non-degenerate photons, produced via spontaneous four wave mixing, exited the ring and were coupled to fiber upon which they were filtered symmetrically about the pump. Coincidence counts were collected for all possible photon path combinations (through and drop port) and the ratio of the drop port coincidences to the sum of the drop port and cross term coincidences (one photon from the drop port and one from the through port) was calculated. With a 350nm pump waveguide gap (2:33 times larger than the drop port gap) we confirmed our theoretical predictions, with an observed improvement in heralding efficiency by a factor of ~ 2:61 (96:7% of correlated photons coupled out of the drop port). These results will enable increased photon flux integrated photon sources which can be utilized for high performance quantum computing and communication systems.

  20. Silicon drift detector with reduced lateral diffusion:. experimental results

    NASA Astrophysics Data System (ADS)

    Šonský, J.; Valk, H.; Huizenga, J.; Hollander, R. W.; van Eijk, C. W. E.; Sarro, P. M.

    2000-01-01

    In a standard multi-anode silicon drift detector electron cloud broadening during the drifting towards the anode pixels deteriorates the energy and position resolution. This makes the detector less applicable for detection of low-energy X-rays. The signal charge sharing between several anodes can be eliminated by introducing sawtooth-shaped p + field strips. The sawtooth structure results in small electric fields directed parallel to the sensor surface and perpendicular to the drift direction which produce gutters. The drifting electrons are confined in these gutters of one saw tooth period wide. For a detector with a sawtooth period of 500 μm, we have measured the maximum number of fully confined electrons as a function of the potential gutter depth induced by different sawtooth angles.

  1. FIB-SEM as a tool for characterizing single-photon detectors

    NASA Astrophysics Data System (ADS)

    Vilà, Anna; Trenado, Juan; Comerma, Albert; Gascon, David; Arbat, Anna; Garrido, Lluis; Dieguez, Angel

    2010-08-01

    Single-photon avalanche diodes (SPADs) are nowadays the most consolidate solid-state alternative to photomultiplier tubes and time-correlated single-photon counting. Optical benches are used for the characterization of the noise figures of these detectors, including dark count, afterpulsing effects and cross-talk. With accurate optical setups it is possible to obtain resolutions down to 5 microns, but with today's technologies, this spot size can cover more than one single pixel. Moreover, on other common and envisaged applications like particle detection in Nuclear and High Energy Physics or as silicon photomultipliers for Cerenkov telescopes, this does not allow to observe what happens when a charge is generated between consecutive pixels. This work presents the innovative characterization of single-photon detectors with the aid of the electron beam generated in a dual beam FIB/SEM apparatus. A simple setup allows a very good control of the dose and the spot down to 5 nm at 30 keV, The characterization has been proven in photodetectors fabricated in a standard CMOS technology. The results have been validated by comparison with those obtained by optical setups, with simulation with PENELOPE (Penetration and Energy Loss of Positrons and Electrons) and by technology simulations with ISE-tCAD.

  2. A Proposal to Upgrade the Silicon Strip Detector

    SciTech Connect

    Matis, Howard; Michael, LeVine; Jonathan, Bouchet; Stephane, Bouvier; Artemios, Geromitsos; Gerard, Guilloux; Sonia, Kabana; Christophe, Renard; Howard, Matis; Jim, Thomas; Vi Nham, Tram

    2007-11-05

    The STAR Silicon Strip Detector (SSD) was built by a collaboration of Nantes, Strasbourg and Warsaw collaborators. It is a beautiful detector; it can provide 500 mu m scale pointing resolution at the vertex when working in combination with the TPC. It was first used in Run 4, when half the SSD was installed in an engineering run. The full detector was installed for Run 5 (the Cu-Cu run) and the operation and performance of the detector was very successful. However, in preparation for Run 6, two noisy ladders (out of 20) were replaced and this required that the SSD be removed from the STAR detector. The re-installation of the SSD was not fully successful and so for the next two Runs, 6 and 7, the SSD suffered a cooling system failure that allowed a large fraction of the ladders to overheat and become noisy, or fail. (The cause of the SSD cooling failure was rather trivial but the SSD could not be removed betweens Runs 6 and 7 due to the inability of the STAR detector to roll along its tracks at that time.)

  3. Estimation of mammary gland composition using CdTe series detector developed for photon-counting mammography

    NASA Astrophysics Data System (ADS)

    Ihori, Akiko; Okamoto, Chizuru; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Nakajima, Ai; Kato, Misa; Kodera, Yoshie

    2016-03-01

    Energy resolved photon-counting mammography is a new technology, which counts the number of photons that passes through an object, and presents it as a pixel value in an image of the object. Silicon semiconductor detectors are currently used in commercial mammography. However, the disadvantage of silicon is the low absorption efficiency for high X-ray energies. A cadmium telluride (CdTe) series detector has a high absorption efficiency over a wide energy range. In this study, we proposed a method to estimate the composition of the mammary gland using a CdTe series detector as a photon-counting detector. The fact that the detection rate of breast cancer in mammography is affected by mammary gland composition is now widely accepted. Assessment of composition of the mammary gland has important implications. An important advantage of our proposed technique is its ability to discriminate photons using three energy bins. We designed the CdTe series detector system using the MATLAB simulation software. The phantom contains nine regions with the ratio of glandular tissue and adipose varying in increments of 10%. The attenuation coefficient for each bin's energy was calculated from the number of input and output photons possessed by each. The evaluation results obtained by plotting the attenuation coefficient μ in a three-dimensional (3D) scatter plot show that the plots had a regular composition order congruent with that of the mammary gland. Consequently, we believe that our proposed method can be used to estimate the composition of the mammary gland.

  4. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    SciTech Connect

    Moses, W.W.; Derenzo, S.E. ); Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M. )

    1992-11-01

    We present initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for the all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25[degree]C is excited with 511 key photons, we measure a photodiode signal centered at 700 electrons (e[sup [minus

  5. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    SciTech Connect

    Sarkissian, Raymond O'Brien, John

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  6. Design of NbN Superconducting Nanowire Single-Photon Detectors with Enhanced Infrared Detection Efficiency

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Renema, J. J.; Engel, A.; de Dood, M. J. A.

    2017-09-01

    We optimize the design of NbN nanowire superconducting single-photon detectors using the recently discovered position-dependent detection efficiency in these devices. This optimized design of meandering wire NbN detectors maximizes absorption at positions where photon detection is most efficient by altering the field distribution across the wire. In order to calculate the response of the detectors with different geometries, we use a monotonic local detection efficiency from a nanowire and optical absorption distribution via finite-difference-time-domain simulations. The calculations predict a trade-off between average absorption and absorption at the edge, leading to a predicted optimal wire width close to 100 nm for a 1550-nm wavelength, which drops to a 50-nm wire width for a 600-nm wavelength. The absorption at the edges can be enhanced by depositing a silicon nanowire on top of the superconducting nanowire, which improves both the total absorption efficiency and the internal detection efficiency of meandering wire structures. The proposed structure can be integrated in a relatively simple cavity structure to reach absorption efficiencies of 97% for perpendicular and 85% for parallel polarization.

  7. Theoretical and experimental investigation on superconducting nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Dai, Yue

    2017-02-01

    Single-photon detectors have been widely used in many vital fields, such as quantum teleportation and quantum computation. Compared with other single-photon detectors, superconducting nanowire single-photon detector exhibits relatively wide response spectrum, low dark count rate and high detection efficiency. The principle of superconducting nanowire single-photon detector is demonstrated, especially on the process of the generation and the diffusion of the hotspot, and the simulation is done to illustrate this process. Many important parameters of superconducting nanowire single-photon detector are measured, such as R-T curve and photon response. Through the analysis of experimental data, the approach to improve the performance of superconducting nanowire single-photon detector is proposed.

  8. Optical response of laser-doped silicon carbide for an uncooled midwave infrared detector.

    PubMed

    Lim, Geunsik; Manzur, Tariq; Kar, Aravinda

    2011-06-10

    An uncooled mid-wave infrared (MWIR) detector is developed by doping an n-type 4H-SiC with Ga using a laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide and a wide bandgap semiconductor. The dopant creates an energy level of 0.30  eV, which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21  μm. The detection mechanism is based on the photoexcitation of electrons by the photons of this wavelength absorbed in the semiconductor. This process modifies the electron density, which changes the refractive index, and, therefore, the reflectance of the semiconductor is also changed. The change in the reflectance, which is the optical response of the detector, can be measured remotely with a laser beam, such as a He-Ne laser. This capability of measuring the detector response remotely makes it a wireless detector. The variation of refractive index was calculated as a function of absorbed irradiance based on the reflectance data for the as-received and doped samples. A distinct change was observed for the refractive index of the doped sample, indicating that the detector is suitable for applications at the 4.21  μm wavelength.

  9. Twin photon pairs in a high-Q silicon microresonator

    SciTech Connect

    Rogers, Steven; Lu, Xiyuan; Jiang, Wei C.; Lin, Qiang

    2015-07-27

    We report the generation of high-purity twin photon pairs through cavity-enhanced non-degenerate four-wave mixing (FWM) in a high-Q silicon microdisk resonator. Twin photon pairs are created within the same cavity mode and are consequently expected to be identical in all degrees of freedom. The device is able to produce twin photons at telecommunication wavelengths with a pair generation rate as large as (3.96 ± 0.03) × 10{sup 5} pairs/s, within a narrow bandwidth of 0.72 GHz. A coincidence-to-accidental ratio of 660 ± 62 was measured, the highest value reported to date for twin photon pairs, at a pair generation rate of (2.47 ± 0.04) × 10{sup 4} pairs/s. Through careful engineering of the dispersion matching window, we have reduced the ratio of photons resulting from degenerate FWM to non-degenerate FWM to less than 0.15.

  10. OPC for curved designs in application to photonics on silicon

    NASA Astrophysics Data System (ADS)

    Orlando, Bastien; Farys, Vincent; Schneider, Loïc.; Cremer, Sébastien; Postnikov, Sergei V.; Millequant, Matthieu; Dirrenberger, Mathieu; Tiphine, Charles; Bayle, Sébastian; Tranquillin, Céline; Schiavone, Patrick

    2016-03-01

    Today's design for photonics devices on silicon relies on non-Manhattan features such as curves and a wide variety of angles with minimum feature size below 100nm. Industrial manufacturing of such devices requires optimized process window with 193nm lithography. Therefore, Resolution Enhancement Techniques (RET) that are commonly used for CMOS manufacturing are required. However, most RET algorithms are based on Manhattan fragmentation (0°, 45° and 90°) which can generate large CD dispersion on masks for photonic designs. Industrial implementation of RET solutions to photonic designs is challenging as most currently available OPC tools are CMOS-oriented. Discrepancy from design to final results induced by RET techniques can lead to lower photonic device performance. We propose a novel sizing algorithm allowing adjustment of design edge fragments while preserving the topology of the original structures. The results of the algorithm implementation in the rule based sizing, SRAF placement and model based correction will be discussed in this paper. Corrections based on this novel algorithm were applied and characterized on real photonics devices. The obtained results demonstrate the validity of the proposed correction method integrated in Inscale software of Aselta Nanographics.

  11. Possibility of gated silicon drift detector detecting hard x-ray

    NASA Astrophysics Data System (ADS)

    Matsuura, Hideharu; Fukushima, Shinya; Sakurai, Shungo; Ishikawa, Shohei; Takeshita, Akinobu; Hidaka, Atsuki

    2015-08-01

    One of the authors has proposed a simple-structure silicon X-ray detector (gated silicon drift detector: GSDD), whose structure is much simpler than commercial silicon drift detectors (SDDs). SDDs contain multiple built-in metal-oxide-semiconductor field-effect transistors (MOSFETs) or implanted resistors, whose fabrication processes lower the yield rate of detectors, and also require at least two high-voltage sources. On the other hand, GSDDs do not contain built-in MOSFETs or implanted resistors. Moreover, GSDDs require only one high-voltage source. Therefore, GSDDs greatly reduce the cost of the X-ray detection system. We fabricated prototype GSDDs that contained 0.625-mm-thick Si substrates with an active area of 18 mm2, operated by Peltier cooling and a single voltage source. Its energy resolution at 5.9 keV from an 55Fe source was 145 eV at -38°C and -90°V. Thicker Si substrates are required to enhance its absorption of X-rays. To detect X-ray photons with energies up to 77 keV for X-ray absorbance higher than 15%, we simulate the electric potential distribution in GSDDs with Si thicknesses from 0.625 to 3.0 mm. We obtain an adequate electric potential distribution in the thicknesses of up to 3.0 mm, and the capacitance of the GSDD remains small and its X-ray count rate remain high. The high reverse bias required in the 3-mm-thick GSDD was a third of that in a 3-mm-thick pin diode.

  12. Design, fabrication, and characterization of high density silicon photonic components

    NASA Astrophysics Data System (ADS)

    Jones, Adam Michael

    Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve eciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satised by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which ecient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling on a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modied racetrack resonator is then presented enabling extraction of insertion loss data for highly ecient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.

  13. Design Fabrication and Characterization of High Density Silicon Photonic Components

    SciTech Connect

    Jones, Adam

    2015-02-01

    Our burgeoning appetite for data relentlessly demands exponential scaling of computing and communications resources leading to an overbearing and ever-present drive to improve e ciency while reducing on-chip area even as photonic components expand to ll application spaces no longer satis ed by their electronic counterparts. With a high index contrast, low optical loss, and compatibility with the CMOS fabrication infrastructure, silicon-on-insulator technology delivers a mechanism by which e cient, sub-micron waveguides can be fabricated while enabling monolithic integration of photonic components and their associated electronic infrastructure. The result is a solution leveraging the superior bandwidth of optical signaling on a platform capable of delivering the optical analogue to Moore's Law scaling of transistor density. Device size is expected to end Moore's Law scaling in photonics as Maxwell's equations limit the extent to which this parameter may be reduced. The focus of the work presented here surrounds photonic device miniaturization and the development of 3D optical interconnects as approaches to optimize performance in densely integrated optical interconnects. In this dissertation, several technological barriers inhibiting widespread adoption of photonics in data communications and telecommunications are explored. First, examination of loss and crosstalk performance in silicon nitride over SOI waveguide crossings yields insight into the feasibility of 3D optical interconnects with the rst experimental analysis of such a structure presented herein. A novel measurement platform utilizing a modi ed racetrack resonator is then presented enabling extraction of insertion loss data for highly e cient structures while requiring minimal on-chip area. Finally, pioneering work in understanding the statistical nature of doublet formation in microphotonic resonators is delivered with the resulting impact on resonant device design detailed.

  14. High-power thulium lasers on a silicon photonics platform.

    PubMed

    Li, Nanxi; Purnawirman, P; Su, Zhan; Salih Magden, E; Callahan, Patrick T; Shtyrkova, Katia; Xin, Ming; Ruocco, Alfonso; Baiocco, Christopher; Ippen, Erich P; Kärtner, Franz X; Bradley, Jonathan D B; Vermeulen, Diedrik; Watts, Michael R

    2017-03-15

    Mid-infrared laser sources are of great interest for various applications, including light detection and ranging, spectroscopy, communication, trace-gas detection, and medical sensing. Silicon photonics is a promising platform that enables these applications to be integrated on a single chip with low cost and compact size. Silicon-based high-power lasers have been demonstrated at 1.55 μm wavelength, while in the 2 μm region, to the best of our knowledge, high-power, high-efficiency, and monolithic light sources have been minimally investigated. In this Letter, we report on high-power CMOS-compatible thulium-doped distributed feedback and distributed Bragg reflector lasers with single-mode output powers up to 267 and 387 mW, and slope efficiencies of 14% and 23%, respectively. More than 70 dB side-mode suppression ratio is achieved for both lasers. This work extends the applicability of silicon photonic microsystems in the 2 μm region.

  15. Improvement in the energy resolving capabilities of photon counting detectors

    NASA Astrophysics Data System (ADS)

    Kang, D.; Lim, K. T.; Park, K.; Cho, G.

    2016-12-01

    Patterned pixel array was proposed to increase the number of energy bins in a single pixel of photon counting detectors without adding more comparators and counters. The pixels were grouped into four different types and each pixel has a common threshold and a specific threshold assigned to each pixel type. The common threshold in every pixel records the total number of incident photons regardless of its pixel type and the specific thresholds classify incident photon energies. The patterned pixel array was evaluated with the pinhole gamma camera system based on the XRI-UNO detector flip-chip bonded with a 1mm thick CdTe sensor. The experimental data was acquired with time-over-threshold mode to avoid the charge sharing problem. The shared total charges created by one photon can be found by summing all pixels within the cluster. To correct the different response to the same energy of photon, the energy calibration of the time-over-threshold value was perfomed independently depending on the cluster size. The time-over-threshold values were separated into two energy bins since we assumed that each pixel has two thresholds. Although each pixel has only two thresholds, five images from different energy windows were obtained by sharing the spectal information from four adjacent pixels. Thus, degradation of the spatial resolution in the image occured in each energy window. The image of the entire energy, however, was not degraded since all four different types of pixels have a common threshold just above the noise level. In addition, the number of steps for the threshold scan method can be drastically reduced with the increased number of effective thresholds in a single pixel.

  16. Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching.

    PubMed

    Brown, R G; Jones, R; Rarity, J G; Ridley, K D

    1987-06-15

    We continue examination of the photon correlation properties of silicon avalanche photodiodes operated in photon-counting mode by extending their operation from that of passive quenching(1) to active quenching, yielding shorter dead time and higher frequency operation.

  17. Stress induced long wavelength photoconductivity in doped silicon infrared detectors

    NASA Technical Reports Server (NTRS)

    Houck, J. R.

    1982-01-01

    The long wavelength cutoff of a Si:P detector was extended to 34 microns by the application of a uniaxial stress. An unstressed Si:P photoconductive detector responds to photons of up to 28 microns wavelength. By applying a uniaxial stress to a detector along the /100/ crystal axis, the response was extended to approximately 34 microns. The /100/ axis was chosen as the stress direction because theoretical calculations predicted that such a stress extends the wavelength response more than one along the /110/ axis. These theoretical calculations were based upon fits to experimental data obtained at stresses of up to approximately kbar, and indicated that the extension in wavelength response continues to increase at much larger stresses.

  18. Terahertz single-photon detectors based on quantum wells

    NASA Astrophysics Data System (ADS)

    Kajihara, Yusuke; Nakajima, Takashi; Wang, Zhihai; Komiyama, Susumu

    2013-04-01

    Semiconductor charge-sensitive infrared phototransistors (CSIPs) based on quantum wells are described. They are the only detectors that are able to count single photons in the terahertz region at present. In terms of the noise equivalent power (NEP), the detectors show experimental values of 7 × 10-20 W/Hz1/2, while theoretically expected values are even much lower. These NEP values are by several orders of magnitude lower than any other state-of-the-art highly sensitive detectors. In addition to the outstanding sensitivity, the detectors are featured by strong advantage of huge current responsivity (>1 × 105 A/W) and low output impedance (<10 kΩ). This excellent performance in the above has been obtained for λ = 12-28 μm. By introducing a modified scheme of detection (called "lateral-escape") along with an improved coupler structure (bowtie antenna), we have achieved similar excellent performance for 45 μm. The CSIP provides extremely promising detectors for a variety of applications covering a wide spectral range of 12-100 μm.

  19. Design and simulation of silicon photonic schematics and layouts

    NASA Astrophysics Data System (ADS)

    Chrostowski, Lukas; Lu, Zeqin; Flueckiger, Jonas; Wang, Xu; Klein, Jackson; Liu, Amy; Jhoja, Jaspreet; Pond, James

    2016-05-01

    Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is common for the design to begin at the physical component level, and create a layout by connecting components with interconnects. In this paper, we discuss how to create a schematic from the physical layout via netlist extraction, which enables circuit simulations. Post-layout extraction can also be used to predict how fabrication variability and non-uniformity will impact circuit performance. This is based on the component position information, compact models that are parameterized for dimensional variations, and manufacturing variability models such as a simulated wafer thickness map. This final step is critical in understanding how real-world silicon photonic circuits will behave. We present an example based on treating the ring resonator as a circuit. A silicon photonics design kit, as described here, is available for download at http://github.com/lukasc-ubc/SiEPIC_EBeam_PDK.

  20. Silicon photonics for compact, energy-efficient interconnects [Invited

    NASA Astrophysics Data System (ADS)

    Barwicz, T.; Byun, H.; Gan, F.; Holzwarth, C. W.; Popovic, M. A.; Rakich, P. T.; Watts, M. R.; Ippen, E. P.; Kã¤Rtner, F. X.; Smith, H. I.; Orcutt, J. S.; Ram, R. J.; Stojanovic, V.; Olubuyide, O. O.; Hoyt, J. L.; Spector, S.; Geis, M.; Grein, M.; Lyszczarz, T.; Yoon, J. U.

    2007-01-01

    The goal of the research program that we describe is to break the emerging performance wall in microprocessor development arising from limited bandwidth and density of on-chip interconnects and chip-to-chip (processor-to-memory) electrical interfaces. Complementary metal-oxide semiconductor compatible photonic devices provide an infrastructure for deployment of a range of integrated photonic networks, which will replace state-of-the-art electrical interconnects, providing significant gains at the system level. Scaling of wavelength-division-multiplexing (WDM) architectures using high-index-contrast (HIC) waveguides offers one path to realizing the energy efficiency and density requirements of high data rate links. HIC microring-resonator filters are well suited to support add-drop nodes in dense WDM photonic networks with high aggregate data rates because they support high Q's and, due to their traveling-wave character, naturally support physically separated input and drop ports. A novel reconfigurable, 'hitless' switch is presented that does not perturb the express channels either before, during, or after reconfiguration. In addition, multigigahertz operation of low-power, Mach-Zehnder silicon modulators as well as germanium-on-silicon photodiodes are presented.

  1. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    PubMed Central

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  2. The CDF Run IIa Silicon Detector and Its Upgrade RunIIb

    SciTech Connect

    Cigdem Issever

    2003-12-19

    The CDF RunIIa silicon detector made the transition from commissioning to data taking. CDF's online and offline tracking algorithms, the performance of Layer 00 and the RunIIb silicon upgrade project are covered in this article.

  3. Laminated Amorphous Silicon Neutron Detector (pre-print)

    SciTech Connect

    Harry McHugh, Howard Branz, Paul Stradins, and Yueqin Xu

    2009-01-29

    An internal R&D project was conducted at the Special Technologies Laboratory (STL) of National Security Technologies, LLC (NSTec), to determine the feasibility of developing a multi-layer boron-10 based thermal neutron detector using the amorphous silicon (AS) technology currently employed in the manufacture of liquid crystal displays. The boron-10 neutron reaction produces an alpha that can be readily detected. A single layer detector, limited to an approximately 2-micron-thick layer of boron, has a theoretical sensitivity of about 3%; hence a thin multi-layer device with high sensitivity can theoretically be manufactured from single layer detectors. Working with National Renewable Energy Laboratory (NREL), an AS PiN diode alpha detector was developed and tested. The PiN diode was deposited on a boron-10 coated substrate. Testing confirmed that the neutron sensitivity was nearly equal to the theoretical value of 3%. However, adhesion problems with the boron-10 coating prevented successful development of a prototype detector. Future efforts will include boron deposition work and development of integrated AS signal processing circuitry.

  4. DLTS measurement of energetic levels, generated in silicon detectors

    NASA Astrophysics Data System (ADS)

    Bosetti, M.; Croitoru, N.; Furetta, C.; Leroy, C.; Pensotti, S.; Rancoita, P. G.; Rattaggi, M.; Redaelli, M.; Rizzatti, M.; Seidman, A.

    1995-02-01

    DLTS (deep level transient spectroscopy) measurements were performed on irradiated Si detectors to record data on the energetic levels traps generated by neutrons. For moderate fluences (φ) of neutrons ( φ < 10 12 n cm -2) electron and hole trap levels have been detected. Four electron trap levels were found for both FZ (float zone) and MCZ (magnetic Czochralsky) types of Si detectors but only two hole trap levels in FZ and one in MCZ detectors. This indicates that the type of silicon has an influence on the traps generated by irradiation. From the values obtained for the relative concentration of E1 centers in MCZ and FZ detectors, it results that the E1 centers are oxygen and not vacancy limited. Since the concentration of the E2, E3, and E4 levels are larger in FZ than in MCZ detectors, it may be assumed that the "gettering effect" can control the formation of deeper traps. Filling pulses were applied for various voltages and at the flat band filling voltage, maximum ratio of {N t}/{N} of the E1 center was achieved. This may indicate that the concentration of E1 centers, near the p +-n interface, can be larger than in the rest of the junction.

  5. Use of silicon pixel detectors in double electron capture experiments

    NASA Astrophysics Data System (ADS)

    Cermak, P.; Stekl, I.; Shitov, Yu A.; Mamedov, F.; Rukhadze, E. N.; Jose, J. M.; Cermak, J.; Rukhadze, N. I.; Brudanin, V. B.; Loaiza, P.

    2011-01-01

    A novel experimental approach to search for double electron capture (EC/EC) is discussed in this article. R&D for a new generation EC/EC spectrometer based on silicon pixel detectors (SPDs) has been conducted since 2009 for an upgrade of the TGV experiment. SPDs built on Timepix technology with a spectroscopic readout from each individual pixel are an effective tool to detect the 2νEC/EC signature of the two low energy X-rays hitting two separate pixels. The ability of SPDs to indentify α/β/γ particles and localize them precisely leads to effective background discrimination and thus considerable improvement of the signal-to-background ratio (S/B). A multi-SPD system, called a Silicon Pixel Telescope (SPT), is planned based on the experimental approach of the TGV calorimeter which measures thin foils of enriched EC/EC-isotope sandwiched between HPGe detectors working in coincidence mode. The sources of SPD internal background have been identified by measuring SPD radiopurity with a low-background HPGe detector as well as by long-term SPD background runs in the Modane underground laboratory (LSM, France), and results of these studies are presented.

  6. The Belle II silicon vertex detector assembly and mechanics

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Bulla, L.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Lueck, T.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2017-02-01

    The Belle II experiment at the asymmetric SuperKEKB collider in Japan will operate at an instantaneous luminosity approximately 50 times greater than its predecessor (Belle). The central feature of the experiment is a vertex detector comprising two layers of pixelated silicon detectors (PXD) and four layers of double-sided silicon microstrip detectors (SVD). One of the key measurements for Belle II is CP violation asymmetry in the decays of beauty and charm hadrons, which hinges on a precise charged-track vertex determination and low-momentum track measurement. Towards this goal, a proper assembly of the SVD components with precise alignment ought to be performed and the geometrical tolerances should be checked to fall within the design limits. We present an overview of the assembly procedure that is being followed, which includes the precision gluing of the SVD module components, wire-bonding of the various electrical components, and precision 3D coordinate measurements of the final SVD modules. Finally, some results from the latest test-beam are reported.

  7. Hybrid III-V/silicon SOA for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Kaspar, P.; Brenot, R.; Le Liepvre, A.; Accard, A.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Duan, G.-H.; Olivier, S.; Jany, Christophe; Kopp, C.; Menezo, S.

    2014-11-01

    Silicon photonics has reached a considerable level of maturity, and the complexity of photonic integrated circuits (PIC) is steadily increasing. As the number of components in a PIC grows, loss management becomes more and more important. Integrated semiconductor optical amplifiers (SOA) will be crucial components in future photonic systems for loss compensation. In addition, there are specific applications, where SOAs can play a key role beyond mere loss compensation, such as modulated reflective SOAs in carrier distributed passive optical networks or optical gates in packet switching. It is, therefore, highly desirable to find a generic integration platform that includes the possibility of integrating SOAs on silicon. Various methods are currently being developed to integrate light emitters on silicon-on-insulator (SOI) waveguide circuits. Many of them use III-V materials for the hybrid integration on SOI. Various types of lasers have been demonstrated by several groups around the globe. In some of the integration approaches, SOAs can be implemented using essentially the same technology as for lasers. In this paper we will focus on SOA devices based on a hybrid integration approach where III-V material is bonded on SOI and a vertical optical mode transfer is used to couple light between SOI waveguides and guides formed in bonded III-V semiconductor layers. In contrast to evanescent coupling schemes, this mode transfer allows for a higher confinement factor in the gain material and thus for efficient light amplification over short propagation distances. We will outline the fabrication process of our hybrid components and present some of the most interesting results from a fabricated and packaged hybrid SOA.

  8. Compact silicon photonic resonance-assisted variable optical attenuator

    SciTech Connect

    Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L.; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-11-17

    Here, a two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. Finally, we derive and discuss a simple thermal-resistance model in explanation of these effects.

  9. Compact silicon photonic resonance-assisted variable optical attenuator

    DOE PAGES

    Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; ...

    2016-11-17

    Here, a two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. Finally, we derive and discuss a simple thermal-resistance model in explanation of these effects.

  10. Compact silicon photonic resonance-sssisted variable optical attenuator.

    PubMed

    Wang, Xiaoxi; Aguinaldo, Ryan; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-11-28

    A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction-ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects.

  11. Photonic porous silicon as a pH sensor

    NASA Astrophysics Data System (ADS)

    Pace, Stephanie; Vasani, Roshan B.; Zhao, Wei; Perrier, Sébastien; Voelcker, Nicolas H.

    2014-08-01

    Chronic wounds do not heal within 3 months, and during the lengthy healing process, the wound is invariably exposed to bacteria, which can colonize the wound bed and form biofilms. This alters the wound metabolism and brings about a change of pH. In this work, porous silicon photonic films were coated with the pH-responsive polymer poly(2-diethylaminoethyl acrylate). We demonstrated that the pH-responsive polymer deposited on the surface of the photonic film acts as a barrier to prevent water from penetrating inside the porous matrix at neutral pH. Moreover, the device demonstrated optical pH sensing capability visible by the unaided eye.

  12. Photonic crystal waveguides on silicon rich nitride platform.

    PubMed

    Debnath, Kapil; Bucio, Thalia Dominguez; Al-Attili, Abdelrahman; Khokhar, Ali Z; Saito, Shinichi; Gardes, Frederic Y

    2017-02-20

    We demonstrate design, fabrication, and characterization of two-dimensional photonic crystal (PhC) waveguides on a suspended silicon rich nitride (SRN) platform for applications at telecom wavelengths. Simulation results suggest that a 210 nm photonic band gap can be achieved in such PhC structures. We also developed a fabrication process to realize suspended PhC waveguides with a transmission bandwidth of 20 nm for a W1 PhC waveguide and over 70 nm for a W0.7 PhC waveguide. Using the Fabry-Pérot oscillations of the transmission spectrum we estimated a group index of over 110 for W1 PhC waveguides. For a W1 waveguide we estimated a propagation loss of 53 dB/cm for a group index of 37 and for a W0.7 waveguide the lowest propagation was 4.6 dB/cm.

  13. Two-Photon In Vivo Imaging with Porous Silicon Nanoparticles.

    PubMed

    Kim, Dokyoung; Kang, Jinyoung; Wang, Taejun; Ryu, Hye Gun; Zuidema, Jonathan M; Joo, Jinmyoung; Kim, Muwoong; Huh, Youngbuhm; Jung, Junyang; Ahn, Kyo Han; Kim, Ki Hean; Sailor, Michael J

    2017-08-21

    A major obstacle in luminescence imaging is the limited penetration of visible light into tissues and interference associated with light scattering and autofluorescence. Near-infrared (NIR) emitters that can also be excited with NIR radiation via two-photon processes can mitigate these factors somewhat because they operate at wavelengths of 650-1000 nm where tissues are more transparent, light scattering is less efficient, and endogenous fluorophores are less likely to absorb. This study presents photolytically stable, NIR photoluminescent, porous silicon nanoparticles with a relatively high two-photon-absorption cross-section and a large emission quantum yield. Their ability to be targeted to tumor tissues in vivo using the iRGD targeting peptide is demonstrated, and the distribution of the nanoparticles with high spatial resolution is visualized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photonic porous silicon as a pH sensor.

    PubMed

    Pace, Stephanie; Vasani, Roshan B; Zhao, Wei; Perrier, Sébastien; Voelcker, Nicolas H

    2014-01-01

    Chronic wounds do not heal within 3 months, and during the lengthy healing process, the wound is invariably exposed to bacteria, which can colonize the wound bed and form biofilms. This alters the wound metabolism and brings about a change of pH. In this work, porous silicon photonic films were coated with the pH-responsive polymer poly(2-diethylaminoethyl acrylate). We demonstrated that the pH-responsive polymer deposited on the surface of the photonic film acts as a barrier to prevent water from penetrating inside the porous matrix at neutral pH. Moreover, the device demonstrated optical pH sensing capability visible by the unaided eye.

  15. Tolerance analysis for efficient MMI devices in silicon photonics

    NASA Astrophysics Data System (ADS)

    Vázquez, Carmen; Tapetado, Alberto; Orcutt, Jason; Meng, Huaiyu Charles; Ram, Rajeev

    2014-03-01

    Silicon is considered a promising platform for photonic integrated circuits as they can be fabricated in state-of-the-art electronics foundaries with integrated CMOS electronics. While much of the existing work on CMOS photonics has used directional couplers for power splitting, multimode interference (MMI) devices may have relaxed fabrication requirements and smaller footprints, potentially energy efficient designs. They have already been used as 1x2 splitters, 2x1 combiners in Quadrature Phase Shift Keying modulators, and 3-dB couplers among others. In this work, 3-dB, butterfly and cross MMI couplers are realized on bulk CMOS technology. Footprints from around 40um2 to 200 um2 are obtained. MMI tolerances to manufacturing process and bandwidth are analyzed and tested showing the robustness of the MMI devices.

  16. A review on single photon sources in silicon carbide.

    PubMed

    Lohrmann, A; Johnson, B C; McCallum, J C; Castelletto, S

    2017-03-01

    This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.

  17. A review on single photon sources in silicon carbide

    NASA Astrophysics Data System (ADS)

    Lohrmann, A.; Johnson, B. C.; McCallum, J. C.; Castelletto, S.

    2017-03-01

    This paper summarizes key findings in single-photon generation from deep level defects in silicon carbide (SiC) and highlights the significance of these individually addressable centers for emerging quantum applications. Single photon emission from various defect centers in both bulk and nanostructured SiC are discussed as well as their formation and possible integration into optical and electrical devices. The related measurement protocols, the building blocks of quantum communication and computation network architectures in solid state systems, are also summarized. This includes experimental methodologies developed for spin control of different paramagnetic defects, including the measurement of spin coherence times. Well established doping, and micro- and nanofabrication procedures for SiC may allow the quantum properties of paramagnetic defects to be electrically and mechanically controlled efficiently. The integration of single defects into SiC devices is crucial for applications in quantum technologies and we will review progress in this direction.

  18. Spectral correction of silicon photodiode solar radiation detectors

    SciTech Connect

    Zhou, C.; Michalsky, J.

    1994-12-31

    The multi-filter rotating shadowband radiometer (MFRSR) is a ground- based instrument that uses a silicon photodiode sensor to measure shortwave global and diffuse horizontal irradiance from which direct normal irradiance is calculated. Besides this multiplexing advantage, silicon sensors are rugged, stable and have a fast time response. On the other hand, silicon sensors are both thermally and spectrally sensitive. They, as do all pyranometric sensors, have an imperfect cosine response, especially at high solar-zenith angles. In the MFRSR two of these problems are solved. The MFRSR`s cosine response is measured and corrected. An automatic heater maintains the MFRSR detector at a constant temperature near 40 {degree}C. This paper describes a correction scheme, based on sky conditions, to account for the remaining spectral bias. The data base for these corrections was collected in Albany, New York, during 1993. The MFRSR and WMO firstclass thermopile instruments were sampled every 15 seconds and 5- minute averages were compared. The differences in time response between silicon and thermopile instruments contributes substantially to the remaining root-mean-square error reported.

  19. Fano fluctuations in superconducting-nanowire single-photon detectors

    NASA Astrophysics Data System (ADS)

    Kozorezov, A. G.; Lambert, C.; Marsili, F.; Stevens, M. J.; Verma, V. B.; Allmaras, J. P.; Shaw, M. D.; Mirin, R. P.; Nam, Sae Woo

    2017-08-01

    Because of their universal nature, Fano fluctuations are expected to influence the response of superconducting-nanowire single-photon detectors (SNSPDs). We predict that photon counting rate (P C R ) as a function of bias current (IB) in SNSPDs is described by an integral over a transverse coordinate-dependent complementary error function. Fano fluctuations in the amount of energy deposited into the electronic system contribute to the finite width of this error function Δ IB . The local response of an SNSPD can also affect this width: the location of the initial photon absorption site across the width of the wire can impact the probability of vortex-antivortex unbinding and vortex entry from the edges. In narrow-nanowire SNSPDs, the local responses are uniform, and Fano fluctuations dominate Δ IB . We demonstrate good agreement between theory and experiments for a series of bath temperatures and photon energies in narrow-wire WSi SNSPDs. In a wide-nanowire device, the strong local dependence will introduce a finite width to the P C R curve, but with sharp cusps. We show how Fano fluctuations can smooth these features to produce theoretical curves that better match experimental data. We also show that the time-resolved hotspot relaxation curves predicted by Fano fluctuations match the previously measured Lorentzian shapes (except for their tails) over the entire range of bias currents investigated experimentally.

  20. Silicon photodiode as the two-color detector

    NASA Astrophysics Data System (ADS)

    Ponomarev, D. B.; Zakharenko, V. A.

    2015-11-01

    This paper describes a silicon photodiode as the two-color photodetector. The work of one photodiode in two spectral ranges is achieved due to the changes of the spectral sensitivity of the photodiodes in the transition from photodiode mode for photovoltaic in the short circuit mode. On the basis of silicon photodiode FD-256 the layout of the spectral ratio pyrometer was assembled and the results of theoretical calculations was confirmed experimentally. The calculated dependences of the coefficient of error of the spectral ratio pyrometer from temperature reverse voltage 10 and 100 V was presented. The calculated dependence of the instrumental error and the assessment of methodological errors of the proposed photodetector spectral ratio was done. According to the results of the presented research was set the task of development photodiode detectors which change the spectral sensitivity depending on the applied voltage.