Solar cell with silicon oxynitride dielectric layer
Shepherd, Michael; Smith, David D
2015-04-28
Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0
Epitaxial growth of silicon for layer transfer
Teplin, Charles; Branz, Howard M
2015-03-24
Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.
NASA Astrophysics Data System (ADS)
Dridi, H.; Haji, L.; Moadhen, A.
2017-04-01
We report in this paper a novel method to elaborate rough Surface Enhanced Raman Scattering (SERS) substrate. A single layer of porous silicon was formed on the silicon backside surface. Morphological characteristics of the porous silicon layer before and after gold deposition were influenced by the rough character (gold size). The reflectance measurements showed a dependence of the gold nano-grains size on the surface nature, through the Localized Surface Plasmon (LSP) band properties. SERS signal of Rhodamine 6G used as a model analyte, adsorbed on the rough porous silicon layer revealed a marked enhancement of its vibrational modes intensities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipkin, Don Mark; Johnson, Curtis Alan; Meschter, Peter Joel
An article includes a silicon-containing region; at least one outer layer overlying a surface of the silicon-containing region; and a constituent layer on the surface of the silicon-containing region and between and contacting the silicon-containing region and the at least one outer layer, the constituent layer being formed by constituents of the silicon-containing region and being susceptible to creep within an operating environment of the article, wherein the silicon-containing region defines a plurality of channels and a plurality of ridges that interlock within the plurality of channels are formed in the silicon-containing region to physically interlock the at least onemore » outer layer with the silicon-containing region through the constituent layer.« less
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)
2014-01-01
A back-illuminated silicon photodetector has a layer of Al2O3 deposited on a silicon oxide surface that receives electromagnetic radiation to be detected. The Al2O3 layer has an antireflection coating deposited thereon. The Al2O3 layer provides a chemically resistant separation layer between the silicon oxide surface and the antireflection coating. The Al2O3 layer is thin enough that it is optically innocuous. Under deep ultraviolet radiation, the silicon oxide layer and the antireflection coating do not interact chemically. In one embodiment, the silicon photodetector has a delta-doped layer near (within a few nanometers of) the silicon oxide surface. The Al2O3 layer is expected to provide similar protection for doped layers fabricated using other methods, such as MBE, ion implantation and CVD deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.
2016-03-15
The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materialsmore » on the basis of porous silicon and nanostructures with a high aspect ratio.« less
Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.
The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A modelmore » of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, E. V., E-mail: Ivanova@mail.ioffe.ru; Sitnikova, A. A.; Aleksandrov, O. V.
2016-06-15
It is found for the first time that silicon nanoclusters are formed in the surface layer of thermal silicon dioxide under high-temperature annealing (T = 1150°C) in dried nitrogen. Analysis of the cathodoluminescence spectra shows that an imperfect surface layer appears upon such annealing of silicon dioxide, with silicon nanoclusters formed in this layer upon prolonged annealing. Transmission electron microscopy demonstrated that the silicon clusters are 3–5.5 nm in size and lie at a depth of about 10 nm from the surface. Silicon from the thermal film of silicon dioxide serves as the material from which the silicon nanoclusters aremore » formed. This method of silicon-nanocluster formation is suggested for the first time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Höger, Ingmar, E-mail: ingmar.hoeger@ipht-jena.de; Gawlik, Annett; Brückner, Uwe
The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiO{sub x}N{sub y}) ormore » silicon oxide (SiO{sub 2}) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiO{sub x}N{sub y} formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiO{sub x}N{sub y} top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.« less
Improved toughness of silicon carbide
NASA Technical Reports Server (NTRS)
Palm, J. A.
1975-01-01
Several techniques were employed to apply or otherwise form porous layers of various materials on the surface of hot-pressed silicon carbide ceramic. From mechanical properties measurements and studies, it was concluded that although porous layers could be applied to the silicon carbide ceramic, sufficient damage was done to the silicon carbide surface by the processing required so as to drastically reduce its mechanical strength. It was further concluded that there was little promise of success in forming an effective energy absorbing layer on the surface of already densified silicon carbide ceramic that would have the mechanical strength of the untreated or unsurfaced material. Using a process for the pressureless sintering of silicon carbide powders it was discovered that porous layers of silicon carbide could be formed on a dense, strong silicon carbide substrate in a single consolidation process.
Sadana, Devendra Kumar; Holland, Orin Wayne
2001-01-01
A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.
Method of bonding silver to glass and mirrors produced according to this method
Pitts, J.R.; Thomas, T.M.; Czanderna, A.W.
1984-07-31
A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.
Method of bonding silver to glass and mirrors produced according to this method
Pitts, John R.; Thomas, Terence M.; Czanderna, Alvin W.
1985-01-01
A method for adhering silver to a glass substrate for producing mirrors includes attaining a silicon enriched substrate surface by reducing the oxygen therein in a vacuum and then vacuum depositing a silver layer onto the silicon enriched surface. The silicon enrichment can be attained by electron beam bombardment, ion beam bombardment, or neutral beam bombardment. It can also be attained by depositing a metal, such as aluminum, on the substrate surface, allowing the metal to oxidize by pulling oxygen from the substrate surface, thereby leaving a silicon enriched surface, and then etching or eroding the metal oxide layer away to expose the silicon enriched surface. Ultraviolet rays can be used to maintain dangling silicon bonds on the enriched surface until covalent bonding with the silver can occur. This disclosure also includes encapsulated mirrors with diffusion layers built therein. One of these mirrors is assembled on a polymer substrate.
Method of forming buried oxide layers in silicon
Sadana, Devendra Kumar; Holland, Orin Wayne
2000-01-01
A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.
Oriented conductive oxide electrodes on SiO2/Si and glass
Jia, Quanxi; Arendt, Paul N.
2001-01-01
A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.
Compensated amorphous silicon solar cell
Devaud, Genevieve
1983-01-01
An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.
Anti-reflective device having an anti-reflective surface formed of silicon spikes with nano-tips
NASA Technical Reports Server (NTRS)
Bae, Youngsam (Inventor); Manohara, Harish (Inventor); Mobasser, Sohrab (Inventor); Lee, Choonsup (Inventor)
2011-01-01
Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.
Anti- reflective device having an anti-reflection surface formed of silicon spikes with nano-tips
NASA Technical Reports Server (NTRS)
Bae, Youngsman (Inventor); Mooasser, Sohrab (Inventor); Manohara, Harish (Inventor); Lee, Choonsup (Inventor); Bae, Kungsam (Inventor)
2009-01-01
Described is a device having an anti-reflection surface. The device comprises a silicon substrate with a plurality of silicon spikes formed on the substrate. A first metallic layer is formed on the silicon spikes to form the anti-reflection surface. The device further includes an aperture that extends through the substrate. A second metallic layer is formed on the substrate. The second metallic layer includes a hole that is aligned with the aperture. A spacer is attached with the silicon substrate to provide a gap between an attached sensor apparatus. Therefore, operating as a Micro-sun sensor, light entering the hole passes through the aperture to be sensed by the sensor apparatus. Additionally, light reflected by the sensor apparatus toward the first side of the silicon substrate is absorbed by the first metallic layer and silicon spikes and is thereby prevented from being reflected back toward the sensor apparatus.
Method for cleaning a solar cell surface opening made with a solar etch paste
Rohatgi, Ajeet; Meemongkolkiat, Vichai
2010-06-22
A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.
Method for formation of high quality back contact with screen-printed local back surface field
Rohatgi, Ajeet; Meemongkolkiat, Vichai
2010-11-30
A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.
Improved passivation effect in multicrystalline black silicon by chemical solution pre-treatment
NASA Astrophysics Data System (ADS)
Jiang, Ye; Shen, Honglie; Pu, Tian; Zheng, Chaofan
2018-04-01
Though black silicon has excellent anti-reflectance property, its passivation is one of the main technical bottlenecks due to its large specific surface area. In this paper, multicrystalline black silicon is fabricated by metal assisted chemical etching, and is rebuilt in low concentration alkali solution. Different solution pre-treatment is followed to make surface modification on black silicon before Al2O3 passivation by atomic layer deposition. HNO3 and H2SO4 + H2O2 solution pre-treatment makes the silicon surface become hydrophilic, with contact angle decrease from 117.28° to about 30°. It is demonstrated that when the pre-treatment solution is nitric acid, formed ultrathin SiO x layer between Al2O3 layer and black silicon is found to increase effective carrier lifetime to 72.64 µs, which is obviously higher than that of the unpassivated black silicon. The passivation stacks of SiO x /Al2O3 are proved to be effective double layers for nanoscaled multicrystalline silicon surface.
NASA Astrophysics Data System (ADS)
Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós
2017-11-01
Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.
NASA Technical Reports Server (NTRS)
Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, R. W.; Fattahi, Masoud; Tseng, Hsin-Fu
1992-01-01
Low-temperature silicon molecular beam epitaxy is used to grow a delta-doped silicon layer on a fully processed charge-coupled device (CCD). The measured quantum efficiency of the delta-doped backside-thinned CCD is in agreement with the reflection limit for light incident on the back surface in the spectral range of 260-600 nm. The 2.5 nm silicon layer, grown at 450 C, contained a boron delta-layer with surface density of about 2 x 10 exp 14/sq cm. Passivation of the surface was done by steam oxidation of a nominally undoped 1.5 nm Si cap layer. The UV quantum efficiency was found to be uniform and stable with respect to thermal cycling and illumination conditions.
Inversion layer solar cell fabrication and evaluation
NASA Technical Reports Server (NTRS)
Call, R. L.
1972-01-01
Silicon solar cells with induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) supplying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the inversion layer cell response to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. Theory of the conductance of the inversion layer vs. strength of the inversion layer was compared with experiment and found to match. Theoretical determinations of junction depth and inversion layer strength were made as a function of the surface potential for the transparent electrode cell.
NASA Astrophysics Data System (ADS)
Zhang, X.; Comins, J. D.; Every, A. G.; Stoddart, P. R.; Pang, W.; Derry, T. E.
1998-11-01
Thin amorphous silicon layers on crystalline silicon substrates have been produced by argon-ion bombardment of (001) silicon surfaces. Thermally induced surface excitations characteristic of this example of a soft-on-hard system have been investigated by surface Brillouin scattering (SBS) as a function of scattering-angle and amorphous-layer thickness. At large scattering angles or for sufficiently large layer thickness, a second peak is present in the SBS spectrum near the low-energy threshold for the continuum of bulk excitations of the system. The measured spectra are analyzed on the basis of surface elastodynamic Green's functions, which successfully simulate their detailed appearance and identify the second peak as either a Sezawa wave (true surface wave) or a pseudo-Sezawa wave (attenuated surface wave) depending on the scattering parameters. The attributes of the pseudo-Sezawa wave are described; these include its asymmetrical line shape and variation in intensity with k∥d (the product of the surface excitation wave vector and the layer thickness), and its emergence as the Sezawa wave from the low-energy side of the Lamb shoulder at a critical value of k∥d. Furthermore, the behavior of a pronounced minimum in the Lamb shoulder near the longitudinal wave threshold observed in the experiments is reported and is found to be in good agreement with the calculated spectra. The elastic constants of the amorphous silicon layer are determined from the velocity dispersion of the Rayleigh surface acoustic wave and the minimum in the Lamb shoulder.
Edmonds, Mary; Kent, Tyler; Chagarov, Evgueni; Sardashti, Kasra; Droopad, Ravi; Chang, Mei; Kachian, Jessica; Park, Jun Hong; Kummel, Andrew
2015-07-08
A saturated Si-Hx seed layer for gate oxide or contact conductor ALD has been deposited via two separate self-limiting and saturating CVD processes on InGaAs(001)-(2 × 4) at substrate temperatures of 250 and 350 °C. For the first self-limiting process, a single silicon precursor, Si3H8, was dosed at a substrate temperature of 250 °C, and XPS results show the deposited silicon hydride layer saturated at about 4 monolayers of silicon coverage with hydrogen termination. STS results show the surface Fermi level remains unpinned following the deposition of the saturated silicon hydride layer, indicating the InGaAs surface dangling bonds are electrically passivated by Si-Hx. For the second self-limiting process, Si2Cl6 was dosed at a substrate temperature of 350 °C, and XPS results show the deposited silicon chloride layer saturated at about 2.5 monolayers of silicon coverage with chlorine termination. Atomic hydrogen produced by a thermal gas cracker was subsequently dosed at 350 °C to remove the Si-Cl termination by replacing with Si-H termination as confirmed by XPS, and STS results confirm the saturated Si-Hx bilayer leaves the InGaAs(001)-(2 × 4) surface Fermi level unpinned. Density function theory modeling of silicon hydride surface passivation shows an Si-Hx monolayer can remove all the dangling bonds and leave a charge balanced surface on InGaAs.
Surface modification of high temperature iron alloys
Park, Jong-Hee
1995-01-01
A method and article of manufacture of a coated iron based alloy. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700.degree. C.-1200.degree. C. to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy.
Surface modification of high temperature iron alloys
Park, J.H.
1995-06-06
A method and article of manufacture of a coated iron based alloy are disclosed. The method includes providing an iron based alloy substrate, depositing a silicon containing layer on the alloy surface while maintaining the alloy at a temperature of about 700--1200 C to diffuse silicon into the alloy surface and exposing the alloy surface to an ammonia atmosphere to form a silicon/oxygen/nitrogen containing protective layer on the iron based alloy. 13 figs.
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor)
2012-01-01
An apparatus and associated method are provided. A first silicon layer having at least one of an associated passivation layer and barrier is included. Also included is a composite anti-reflection layer including a stack of layers each with a different thickness and refractive index. Such composite anti-reflection layer is disposed adjacent to the first silicon layer.
Self assembly of magnetic nanoparticles at silicon surfaces.
Theis-Bröhl, Katharina; Gutfreund, Philipp; Vorobiev, Alexei; Wolff, Max; Toperverg, Boris P; Dura, Joseph A; Borchers, Julie A
2015-06-21
Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density.
Graphene Quantum Dot Layers with Energy-Down-Shift Effect on Crystalline-Silicon Solar Cells.
Lee, Kyung D; Park, Myung J; Kim, Do-Yeon; Kim, Soo M; Kang, Byungjun; Kim, Seongtak; Kim, Hyunho; Lee, Hae-Seok; Kang, Yoonmook; Yoon, Sam S; Hong, Byung H; Kim, Donghwan
2015-09-02
Graphene quantum dot (GQD) layers were deposited as an energy-down-shift layer on crystalline-silicon solar cell surfaces by kinetic spraying of GQD suspensions. A supersonic air jet was used to accelerate the GQDs onto the surfaces. Here, we report the coating results on a silicon substrate and the GQDs' application as an energy-down-shift layer in crystalline-silicon solar cells, which enhanced the power conversion efficiency (PCE). GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density was enhanced by about 2.94% (0.9 mA/cm(2)) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).
Method and apparatus for stable silicon dioxide layers on silicon grown in silicon nitride ambient
NASA Technical Reports Server (NTRS)
Cohen, R. A.; Wheeler, R. K. (Inventor)
1974-01-01
A method and apparatus for thermally growing stable silicon dioxide layers on silicon is disclosed. A previously etched and baked silicon nitride tube placed in a furnace is used to grow the silicon dioxide. First, pure oxygen is allowed to flow through the tube to initially coat the inside surface of the tube with a thin layer of silicon dioxide. After the tube is coated with the thin layer of silicon dioxide, the silicon is oxidized thermally in a normal fashion. If the tube becomes contaminated, the silicon dioxide is etched off thereby exposing clean silicon nitride and then the inside of the tube is recoated with silicon dioxide. As is disclosed, the silicon nitride tube can also be used as the ambient for the pyrolytic decomposition of silane and ammonia to form thin layers of clean silicon nitride.
N-Type delta Doping of High-Purity Silicon Imaging Arrays
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh
2005-01-01
A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including metallization. The success of the process depends on accurate temperature control, surface treatment, growth of high-quality crystalline silicon, and precise control of thicknesses of layers. MBE affords the necessary nanometer- scale control of the placement of atoms for delta doping. More specifically, the process consists of MBE deposition of a thin silicon buffer layer, the n-type delta doping layer, and a thin silicon cap layer. The n dopant selected for initial experiments was antimony, but other n dopants as (phosphorus or arsenic) could be used. All n-type dopants in silicon tend to surface-segregate during growth, leading to a broadened dopant-concentration- versus-depth profile. In order to keep the profile as narrow as possible, the substrate temperature is held below 300 C during deposition of the silicon cap layer onto the antimony delta layer. The deposition of silicon includes a silicon- surface-preparation step, involving H-termination, that enables the growth of high-quality crystalline silicon at the relatively low temperature with close to full electrical activation of donors in the surface layer.
Surface and Interface Chemistry for Gate Stacks on Silicon
NASA Astrophysics Data System (ADS)
Frank, M. M.; Chabal, Y. J.
This chapter addresses the fundamental silicon surface science associated with the continued progress of nanoelectronics along the path prescribed by Moore's law. Focus is on hydrogen passivation layers and on ultrathin oxide films encountered during silicon cleaning and gate stack formation in the fabrication of metal-oxide-semiconductor field-effect transistors (MOSFETs). Three main topics are addressed. (i) First, the current practices and understanding of silicon cleaning in aqueous solutions are reviewed, including oxidizing chemistries and cleans leading to a hydrogen passivation layer. The dependence of the final surface termination and morphology/roughness on reactant choice and pH and the influence of impurities such as dissolved oxygen or metal ions are discussed. (ii) Next, the stability of hydrogen-terminated silicon in oxidizing liquid and gas phase environments is considered. In particular, the remarkable stability of hydrogen-terminated silicon surface in pure water vapor is discussed in the context of atomic layer deposition (ALD) of high-permittivity (high-k) gate dielectrics where water is often used as an oxygen precursor. Evidence is also provided for co-operative action between oxygen and water vapor that accelerates surface oxidation in humid air. (iii) Finally, the fabrication of hafnium-, zirconium- and aluminum-based high-k gate stacks is described, focusing on the continued importance of the silicon/silicon oxide interface. This includes a review of silicon surface preparation by wet or gas phase processing and its impact on high-k nucleation during ALD growth, and the consideration of gate stack capacitance and carrier mobility. In conclusion, two issues are highlighted: the impact of oxygen vacancies on the electrical characteristics of high-k MOS devices, and the way alloyed metal ions (such as Al in Hf-based gate stacks) in contact with the interfacial silicon oxide layer can be used to control flatband and threshold voltages.
NASA Technical Reports Server (NTRS)
Call, R. L.
1973-01-01
Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) applying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.
Magnetomechanical effect in silicon (Cz-Si) surface layers
NASA Astrophysics Data System (ADS)
Koplak, O. V.; Dmitriev, A. I.; Morgunov, R. B.
2012-07-01
The mechanical properties of near-surface layers of Czochralski-grown silicon crystals Cz- n-Si(111) have been found to undergo changes in response to an external constant magnetic field ( B ˜ 0.1 T). A magnetically induced variation in the microhardness, Young's modulus, and coefficient of plasticity of silicon crystals correlates with the change in the lattice parameter and internal stresses of the sample. The growth of an oxide film under exposure to a magnetic field plays the principal role in the magnetomechanical effect due to a decrease in the concentration of oxygen complexes in the near-surface layers of the sample. In microstructured silicon, where the surface is considerably more developed, the magnetic field induces more profound changes in the internal stresses as compared to single crystals.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, K.H.
1998-06-30
A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.
Method for producing silicon thin-film transistors with enhanced forward current drive
Weiner, Kurt H.
1998-01-01
A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.
Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside
NASA Astrophysics Data System (ADS)
Dridi, H.; Haji, L.; Moadhen, A.
2017-12-01
Starting from a rough backside of silicon wafer, we have formed a porous layer by electrochemical anodization and then coated by a thin film of gold. The morphological characteristics of the porous silicon and in turn the metal film are governed by the anodization process and also by the starting surface. So, in order to investigate the Plasmonic aspect of such rough surface which combines roughness inherent to the porous nature and that due to rough starting surface, we have used a dye target molecule to study its SERS signal using a porous silicon layer obtained on the rough backside surface. The use of unusual backside of silicon wafer could be, beside the others, an interesting way to made SERS effective substrate thanks to reproducible rough porous gold on porous layer from this starting face. The morphological results correspond to the silicon rough surface as a function of the crystallographic orientation showed the presence of two different substrate structure. The optical reflectivity results obtained of gold deposited on oxidized porous silicon showed a dependence of its Localized Surface Plasmon band frequency of the deposit time. SERS results, obtained for a dye target molecule (Rhodamine 6G), show a higher intensities in the case of the 〈110〉 orientation, which characterized by the higher roughness surface. Voici "the most relevant and important aspects of our work".
NASA Astrophysics Data System (ADS)
Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari
2018-06-01
We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.
Effect of oxygen plasma on nanomechanical silicon nitride resonators
NASA Astrophysics Data System (ADS)
Luhmann, Niklas; Jachimowicz, Artur; Schalko, Johannes; Sadeghi, Pedram; Sauer, Markus; Foelske-Schmitz, Annette; Schmid, Silvan
2017-08-01
Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.
NASA Astrophysics Data System (ADS)
Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar
2018-05-01
Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.
NASA Astrophysics Data System (ADS)
Gunda, Naga Siva Kumar; Singh, Minashree; Norman, Lana; Kaur, Kamaljit; Mitra, Sushanta K.
2014-06-01
In the present work, we developed and optimized a technique to produce a thin, stable silane layer on silicon substrate in a controlled environment using (3-aminopropyl)triethoxysilane (APTES). The effect of APTES concentration and silanization time on the formation of silane layer is studied using spectroscopic ellipsometry and Fourier transform infrared spectroscopy (FTIR). Biomolecules of interest are immobilized on optimized silane layer formed silicon substrates using glutaraldehyde linker. Surface analytical techniques such as ellipsometry, FTIR, contact angle measurement system, and atomic force microscopy are employed to characterize the bio-chemically modified silicon surfaces at each step of the biomolecule immobilization process. It is observed that a uniform, homogenous and highly dense layer of biomolecules are immobilized with optimized silane layer on the silicon substrate. The developed immobilization method is successfully implemented on different silicon substrates (flat and pillar). Also, different types of biomolecules such as anti-human IgG (rabbit monoclonal to human IgG), Listeria monocytogenes, myoglobin and dengue capture antibodies were successfully immobilized. Further, standard sandwich immunoassay (antibody-antigen-antibody) is employed on respective capture antibody coated silicon substrates. Fluorescence microscopy is used to detect the respective FITC tagged detection antibodies bound to the surface after immunoassay.
Thin-film limit formalism applied to surface defect absorption.
Holovský, Jakub; Ballif, Christophe
2014-12-15
The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.
Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro
2017-12-01
Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4 cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.
Method for forming a glove attachment
NASA Technical Reports Server (NTRS)
Dawn, Frederic S. (Inventor); Guy, Walter W. (Inventor); Kosmo, Joseph (Inventor); Drennan, Arthur P. (Inventor); Tschirch, Richard P. (Inventor)
1995-01-01
An attachment principally for the palm of an astronaut glove to enhance the gripping area of the palm without detracting from the flexibility and utility of the glove is presented. The attachment is a composite construction formed from a layer of silicone rubber having an outer surface with a friction configuration and another layer of silicone rubber in which a Nomex Aramid mesh fabric is embedded prior to curing. The method of construction involves the use of a mold with a friction configuration surface. A first layer of silicone rubber or sealant is disposed in the mold and allowed to set for an hour. A second layer of silicone rubber or sealant is layered over the first layer and leveled. A Nomex Aramid mesh fabric is embedded into the second layer and the composite is permitted to cure. When cured, a configured area of the composite construction is glued or stitched to the palm area of the glove.
Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Dongxiao; Qian, Zhenhai
2018-05-01
An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.
Manufacture of silicon-based devices having disordered sulfur-doped surface layers
Carey, III; Edward, James [Newton, MA; Mazur, Eric [Concord, MA
2008-04-08
The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge
NASA Astrophysics Data System (ADS)
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-01
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.
Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng
2018-04-19
Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.
The behavior of silicon and boron in the surface of corroded nuclear waste glasses : an EFTEM study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, E. C.; Smith, K. L.; Blackford, M. G.
1999-11-23
Using electron energy-loss filtered transmission electron microscopy (EFTEM), we have observed the formation of silicon-rich zones on the corroded surface of a West Valley (WV6) glass. This layer is approximately 100-200 nm thick and is directly underneath a precipitated smectite clay layer. Under conventional (C)TEM illumination, this layer is invisible; indeed, more commonly used analytical techniques, such as x-ray energy dispersive spectroscopy (EDS), have failed to describe fully the localized changes in the boron and silicon contents across this region. Similar silicon-rich and boron-depleted zones were not found on corroded Savannah River Laboratory (SRL) borosilicate glasses, including SRL-EA and SRL-51,more » although they possessed similar-looking clay layers. This study demonstrates a new tool for examining the corroded surfaces of materials.« less
Method for forming silicon on a glass substrate
McCarthy, Anthony M.
1995-01-01
A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.
Method for forming silicon on a glass substrate
McCarthy, A.M.
1995-03-07
A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.
Monolithically interconnected silicon-film™ module technology
NASA Astrophysics Data System (ADS)
DelleDonne, E. J.; Ford, D. H.; Hall, R. B.; Ingram, A. E.; Rand, J. A.; Barnett, A. M.
1999-03-01
AstroPower is developing an advanced thin-silicon-based, photovoltaic module product. A low-cost monolithic interconnected device is being integrated into a module that combines the design and process features of advanced light trapped, thin-silicon solar cells. This advanced product incorporates a low-cost substrate, a nominally 50-μm thick grown silicon layer with minority carrier diffusion lengths exceeding the active layer thickness, light trapping due to back-surface reflection, and back-surface passivation. The thin silicon layer enables high solar cell performance and can lead to a module conversion efficiency as high as 19%. These performance design features, combined with low-cost manufacturing using relatively low-cost capital equipment, continuous processing and a low-cost substrate, will lead to high-performance, low-cost photovoltaic panels.
Selective formation of porous silicon
NASA Technical Reports Server (NTRS)
Fathauer, Jones (Inventor)
1993-01-01
A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.
Thin Carbon Layers on Nanostructured Silicon-Properties and Applications
NASA Astrophysics Data System (ADS)
Angelescu, Anca; Kleps, Irina; Miu, Mihaela; Simion, Monica; Bragaru, Adina; Petrescu, Stefana; Paduraru, Crina; Raducanu, Aurelia
Thin carbon layers such as silicon carbide (SiC) and diamond like carbon (DLC) layers on silicon, or on nanostructured silicon substrats were obtained by different methods. This paper is a review of our results in the areas of carbon layer microfabrication technologies and their properties related to different microsystem apllications. So, silicon membranes using a-SiC or DLC layers as etching mask, as well as silicon carbide membranes using a combined porous silicon — DLC structure were fabricated for sensor applications. A detailed evaluation of the field emission (FE) properties of these films was done to demonstrate their capability to be used in field emission devices. Carbon thin layers on nanostructured silicon samples were also investigated with respect to the living cell adhesion on these structures. The experiments indicate that the cell attachment on the surface of carbon coatings can be controlled by deposition parameters during the technological process.
Hafnium nitride buffer layers for growth of GaN on silicon
Armitage, Robert D.; Weber, Eicke R.
2005-08-16
Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.
Effect of interfacial oxide layers on the current-voltage characteristics of Al-Si contacts
NASA Technical Reports Server (NTRS)
Porter, W. A.; Parker, D. L.
1976-01-01
Aluminum-silicon contacts with very thin interfacial oxide layers and various surface impurity concentrations are studied for both n and p-type silicon. To determine the surface impurity concentrations on p(+)-p and n(+)-n structures, a modified C-V technique was utilized. Effects of interfacial oxide layers and surface impurity concentrations on current-voltage characteristics are discussed based on the energy band diagrams from the conductance-voltage plots. The interfacial oxide and aluminum layer causes image contrasts on X-ray topographs.
Influence of silicon doping of titanium nickelide near-surface layers on alloy cytocompatibility
NASA Astrophysics Data System (ADS)
Lotkov, A. I.; Matveev, A. L.; Artemyeva, L. V.; Meysner, S. N.; Matveeva, V. A.; Kudryashov, A. N.
2017-12-01
The cytocompatibility of titanium nickelide (TiNi) with near-surface layers doped with silicon ions was studied on mesenchymal stem cells of rat bone marrow cultivated in vitro. The cytotoxic effect of eluted components of material on the mesenchymal stem cells was determined using a RTCA iCELLigence cellular analyzer. The proliferative activity of mesenchymal stem cells cultivated in the presence or on the surfaces of titanium nickelide samples was estimated from the cell mitochondrial respiration rate in MTT tests using [2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium] tetrazolium salt. It is shown that ion plasma modification of near-surface layers of titanium nickelide with silicon improves the cytocompatibility of the alloy.
NASA Astrophysics Data System (ADS)
Naddaf, M.; Al-Mariri, A.; Haj-Mhmoud, N.
2017-06-01
Nanostructured layers composed of silver-porous silicon (Ag-PS) have been formed by an electrochemical etching of p-type (1 1 1) silicon substrate in a AgNO3:HF:C2H5OH solution at different etching times (10 min-30 min). Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) results reveal that the produced layers consist of Ag dendrites and a silicon-rich porous structure. The nanostructuring nature of the layer has been confirmed by spatial micro-Raman scattering and x-ray diffraction techniques. The Ag dendrites exhibit a surface-enhanced Raman scattering (SERS) spectrum, while the porous structure shows a typical PS Raman spectrum. Upon increasing the etching time, the average size of silicon nanocrystallite in the PS network decreases, while the average size of Ag nanocrystals is slightly affected. In addition, the immobilization of prokaryote Salmonella typhimurium DNA via physical adsorption onto the Ag-PS layer has been performed to demonstrate its efficiency as a platform for detection of biological molecules using SERS.
Silicon-nitride and metal composite
Landingham, R.L.; Huffsmith, S.A.
A composite and a method for bonding the composite are described. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi/sub 2/ indirectly bonding the composite together. The method includes contacting the layer of MoSi/sub 2/ with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400/sup 0/C; and, simultaneously, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.
Silicon-nitride and metal composite
Landingham, Richard L.; Huffsmith, Sarah A.
1981-01-01
A composite and a method for bonding the composite. The composite includes a ceramic portion of silicon nitride, a refractory metal portion and a layer of MoSi.sub.2 indirectly bonding the composite together. The method includes contacting the layer of MoSi.sub.2 with a surface of the silicon nitride and with a surface of the metal; heating the layer to a temperature below 1400.degree. C.; and, simultaneously with the heating, compressing the layer such that the contacting is with a pressure of at least 30 MPa. This composite overcomes useful life problems in the fabrication of parts for a helical expander for use in power generation.
Fabrication and Modification of Nanoporous Silicon Particles
NASA Technical Reports Server (NTRS)
Ferrari, Mauro; Liu, Xuewu
2010-01-01
Silicon-based nanoporous particles as biodegradable drug carriers are advantageous in permeation, controlled release, and targeting. The use of biodegradable nanoporous silicon and silicon dioxide, with proper surface treatments, allows sustained drug release within the target site over a period of days, or even weeks, due to selective surface coating. A variety of surface treatment protocols are available for silicon-based particles to be stabilized, functionalized, or modified as required. Coated polyethylene glycol (PEG) chains showed the effective depression of both plasma protein adsorption and cell attachment to the modified surfaces, as well as the advantage of long circulating. Porous silicon particles are micromachined by lithography. Compared to the synthesis route of the nanomaterials, the advantages include: (1) the capability to make different shapes, not only spherical particles but also square, rectangular, or ellipse cross sections, etc.; (2) the capability for very precise dimension control; (3) the capacity for porosity and pore profile control; and (4) allowance of complex surface modification. The particle patterns as small as 60 nm can be fabricated using the state-of-the-art photolithography. The pores in silicon can be fabricated by exposing the silicon in an HF/ethanol solution and then subjecting the pores to an electrical current. The size and shape of the pores inside silicon can be adjusted by the doping of the silicon, electrical current application, the composition of the electrolyte solution, and etching time. The surface of the silicon particles can be modified by many means to provide targeted delivery and on-site permanence for extended release. Multiple active agents can be co-loaded into the particles. Because the surface modification of particles can be done on wafers before the mechanical release, asymmetrical surface modification is feasible. Starting from silicon wafers, a treatment, such as KOH dipping or reactive ion etching (RIE), may be applied to make the surface rough. This helps remove the nucleation layer. A protective layer is then deposited on the wafer. The protective layer, such as silicon nitride film or photoresist film, protects the wafer from electrochemical etching in an HF-based solution. A lithography technique is applied to pattern the particles onto the protective film. The undesired area of the protective film is removed, and the protective film on the back side of the wafer is also removed. Then the pattern is exposed to HF/surfactant solution, and a larger DC electrical current is applied to the wafers for a selected time. This step removes the nucleation layer. Then a DC current is applied to generate the nanopores. Next, a large electrical current is applied to generate a release layer. The particles are mechanically suspended in the solvent and collected by filtration or centrifuge.
Tsuo, Y. Simon; Deb, Satyen K.
1990-01-01
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.
Selective formation of porous silicon
NASA Technical Reports Server (NTRS)
Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)
1993-01-01
A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.
Towards 1D nanolines on a monolayered supramolecular network adsorbed on a silicon surface.
Makoudi, Younes; Beyer, Matthieu; Lamare, Simon; Jeannoutot, Judicael; Palmino, Frank; Chérioux, Frédéric
2016-06-16
The growth of 3D extended periodic networks made up of π-conjugated molecules on semi-conductor surfaces is of interest for the integration of nano-components in the future generations of smart devices. In the work presented in this article, we successfully achieved the formation of bilayered networks on a silicon surface including 1D-isolated nanolines in the second layer. Firstly, we observed the formation of a 2D large-scale supramolecular network in the plane of a silicon surface through the deposition of tailored molecules. Then using the same molecules, a second-layer, based on 1D nanolines, grew above the first layer, thanks to a template effect. Mono- or bi-layered networks were found to be stable from 100 K up to room temperature. These networks were investigated by scanning tunnel microscopy imaging under an ultra-high vacuum (UHV-STM).
Method utilizing laser-processing for the growth of epitaxial p-n junctions
Young, R.T.; Narayan, J.; Wood, R.F.
1979-11-23
This invention is a new method for the formation of epitaxial p-n junctions in silicon. The method is relatively simple, rapid, and reliable. It produces doped epitaxial layers which are of well-controlled thickness and whose electrical properties are satisfactory. An illustrative form of the method comprises co-depositing a selected dopant and amorphous silicon on a crystalline silicon substrate to form a doped layer of amorphous silicon thereon. This layer then is irradiated with at least one laser pulse to generate a melt front which moves through the layer, into the silicon body to a depth effecting melting of virginal silicon, and back to the surface of the layer. The method may be conducted with dopants (e.g., boron and phosphorus) whose distribution coefficients approximate unity.
Study of the amorphization of surface silicon layers implanted by low-energy helium ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V.; Oreshko, A. P.
2016-03-15
The structural changes in surface layers of Si(001) substrates subjected to plasma-immersion implantation by (2–5)-keV helium ions to a dose of D = 6 × 10{sup 15}–5 × 10{sup 17} cm{sup –2} have been studied by highresolution X-ray diffraction, Rutherford backscattering, and spectral ellipsometry. It is found that the joint application of these methods makes it possible to determine the density depth distribution ρ(z) in an implanted layer, its phase state, and elemental composition. Treatment of silicon substrates in helium plasma to doses of 6 × 10{sup 16} cm{sup –2} leads to the formation of a 20- to 30-nm-thick amorphizedmore » surface layer with a density close to the silicon density. An increase in the helium dose causes the formation of an internal porous layer.« less
Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Palczer, A. R.
1998-01-01
Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.
Metallization of Large Silicon Wafers
NASA Technical Reports Server (NTRS)
Pryor, R. A.
1978-01-01
A metallization scheme was developed which allows selective plating of silicon solar cell surfaces. The system is comprised of three layers. Palladium, through the formation of palladium silicide at 300 C in nitrogen, makes ohmic contact to the silicon surface. Nickel, plated on top of the palladium silicide layer, forms a solderable interface. Lead-tin solder on the nickel provides conductivity and allows a convenient means for interconnection of cells. To apply this metallization, three chemical plating baths are employed.
Application of porous silicon in solar cell
NASA Astrophysics Data System (ADS)
Maniya, Nalin H.; Ashokan, Jibinlal; Srivastava, Divesh N.
2018-05-01
Silicon is widely used in solar cell applications with over 95% of all solar cells produced worldwide composed of silicon. Nanostructured thin porous silicon (PSi) layer acting as anti-reflecting coating is used in photovoltaic solar cells due to its advantages including simple and low cost fabrication, highly textured surfaces enabling lowering of reflectance, controllability of thickness and porosity of layer, and high surface area. PSi layers have previously been reported to reduce the reflection of light and replaced the conventional anti-reflective coating layers on solar cells. This can essentially improve the efficiency and decrease the cost of silicon solar cells. Here, we investigate the reflectance of different PSi layers formed by varying current density and etching time. PSi layers were formed by a combination of current density including 60 and 80 mA/cm2 and time for fabrication as 2, 4, 6, and 8 seconds. The fabricated PSi layers were characterized using reflectance spectroscopy and field emission scanning electron microscopy. Thickness and pore size of PSi layer were increased with increase in etching time and current density, respectively. The reflectance of PSi layers was decreased with increase in etching time until 6 seconds and increased again after 6 seconds, which was observed across both the current density. Reduction in reflectance indicates the increase of absorption of light by silicon due to the thin PSi layer. In comparison with the reflectance of silicon wafer, PSi layer fabricated at 80 mA/cm2 for 6 seconds gave the best result with reduction in reflectance up to 57%. Thus, the application of PSi layer as an effective anti-reflecting coating for the fabrication of solar cell has been demonstrated.
Liquid-phase-deposited siloxane-based capping layers for silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veith-Wolf, Boris; Wang, Jianhui; Hannu-Kuure, Milja
2015-02-02
We apply non-vacuum processing to deposit dielectric capping layers on top of ultrathin atomic-layer-deposited aluminum oxide (AlO{sub x}) films, used for the rear surface passivation of high-efficiency crystalline silicon solar cells. We examine various siloxane-based liquid-phase-deposited (LPD) materials. Our optimized AlO{sub x}/LPD stacks show an excellent thermal and chemical stability against aluminum metal paste, as demonstrated by measured surface recombination velocities below 10 cm/s on 1.3 Ωcm p-type silicon wafers after firing in a belt-line furnace with screen-printed aluminum paste on top. Implementation of the optimized LPD layers into an industrial-type screen-printing solar cell process results in energy conversion efficiencies ofmore » up to 19.8% on p-type Czochralski silicon.« less
Ouyang, Qingling; Zeng, Shuwen; Jiang, Li; Hong, Liying; Xu, Gaixia; Dinh, Xuan-Quyen; Qian, Jun; He, Sailing; Qu, Junle; Coquet, Philippe; Yong, Ken-Tye
2016-01-01
In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2. PMID:27305974
On the photon annealing of silicon-implanted gallium-nitride layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seleznev, B. I., E-mail: Boris.Seleznev@novsu.ru; Moskalev, G. Ya.; Fedorov, D. G.
2016-06-15
The conditions for the formation of ion-doped layers in gallium nitride upon the incorporation of silicon ions followed by photon annealing in the presence of silicon dioxide and nitride coatings are analyzed. The conditions of the formation of ion-doped layers with a high degree of impurity activation are established. The temperature dependences of the surface concentration and mobility of charge carriers in ion-doped GaN layers annealed at different temperatures are studied.
An Investigation of the Wear on Silicon Surface at High Humidity.
Wang, Xiaodong; Guo, Jian; Xu, Lin; Cheng, Guanggui; Qian, Linmao
2018-06-16
Using an atomic force microscope (AFM), the wear of monocrystalline silicon (covered by a native oxide layer) at high humidity was investigated. The experimental results indicated that tribochemistry played an important role in the wear of the silicon at different relative humidity levels (RH = 60%, 90%). Since the tribochemical reactions were facilitated at 60% RH, the wear of silicon was serious and the friction force was around 1.58 μN under the given conditions. However, the tribochemical reactions were restrained when the wear pair was conducted at high humidity. As a result, the wear of silicon was very slight and the friction force decreased to 0.85 μN at 90% RH. The slight wear of silicon at high humidity was characterized by etching tests. It was demonstrated that the silicon sample surface was partly damaged and the native oxide layer on silicon sample surface had not been totally removed during the wear process. These results may help us optimize the tribological design of dynamic microelectromechanical systems working in humid conditions.
Branagan, Daniel J [Idaho Falls, ID; Hyde, Timothy A [Idaho Falls, ID; Fincke, James R [Los Alamos, NM
2008-03-11
The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.
NASA Technical Reports Server (NTRS)
Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Grung, B. L.; Koepke, B.; Schuldt, S. B.
1979-01-01
The technical and economic feasibility of producing solar cell-quality silicon was investigated. This was done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress in the following areas was demonstrated: (1) fabricating a 10 sq cm cell having 9.9 percent conversion efficiency; (2) producing a 225 sq cm layer of sheet silicon; and (3) obtaining 100 microns thick coatings at pull speed of 0.15 cm/sec, although approximately 50 percent of the layer exhibited dendritic growth.
Tsuo, Y.S.; Deb, S.K.
1990-10-02
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.
Strengthening of oxidation resistant materials for gas turbine applications
NASA Technical Reports Server (NTRS)
Platts, D. R.; Kirchner, H. P.; Gruver, R. M.
1972-01-01
Compressive surface layers were formed on hot-pressed silicon carbide and nitride. The objective of these treatments was to improve the impact resistance of these materials at 1590 K (2400 F). Quenching was used to form compressive surface layers on silicon carbide. The presence of the compressive stresses was demonstrated by slotted rod tests. Compressive stresses were retained at elevated temperatures. Improvements in impact resistance at 1590 K (2400 F) and flexural strength at room temperature were achieved using cylindrical rods 3.3 mm (0.13 in.) in diameter. Carburizing treatments were used to form the surface layers on silicon nitride. In a few cases using rectangular bars improvements in impact resistance at 1590 K (2400 F) were observed.
NASA Technical Reports Server (NTRS)
Fripp, A. L.; Robertson, J. B.; Breckenridge, R. A. (Inventor)
1982-01-01
A pryoelectric detector array and the method for making it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strip. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of the layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.
NASA Technical Reports Server (NTRS)
Fripp, A. L.; Robertson, J. B.; Breckenridge, R. (Inventor)
1982-01-01
A pyroelectric detector array and the method for using it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strips. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.
Method for processing silicon solar cells
Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.
1997-05-06
The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.
Method for processing silicon solar cells
Tsuo, Y. Simon; Landry, Marc D.; Pitts, John R.
1997-01-01
The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.
Electrolytic etch for preventing electrical shorts in solar cells on polymer surfaces
Weber, Michael F.
1991-10-08
A method for preventing shorts and shunts in solar cells having in order, an insulating substrate, a conductive metal layer on the substrate, an amorphous silicon layer and a transparent conductive layer. The method includes anodic etching of exposed portions of the metal layer after deposition of the amorphous silicon and prior to depositing the transparent conductive layer.
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Chen, Pei; Qin, Fei; An, Tong; Yu, Huiping
2018-05-01
Ultra-thin silicon wafer is highly demanded by semi-conductor industry. During wafer thinning process, the grinding technology will inevitably induce damage to the surface and subsurface of silicon wafer. To understand the mechanism of subsurface damage (SSD) layer formation and mechanical properties of SSD layer, atomistic simulation is the effective tool to perform the study, since the SSD layer is in the scale of nanometer and hardly to be separated from underneath undamaged silicon. This paper is devoted to understand the formation of SSD layer, and the difference between mechanical properties of damaged silicon in SSD layer and ideal silicon. With the atomistic model, the nano-grinding process could be performed between a silicon workpiece and diamond tool under different grinding speed. To reach a thinnest SSD layer, nano-grinding speed will be optimized in the range of 50-400 m/s. Mechanical properties of six damaged silicon workpieces with different depths of cut will be studied. The SSD layer from each workpiece will be isolated, and a quasi-static tensile test is simulated to perform on the isolated SSD layer. The obtained stress-strain curve is an illustration of overall mechanical properties of SSD layer. By comparing the stress-strain curves of damaged silicon and ideal silicon, a degradation of Young's modulus, ultimate tensile strength (UTS), and strain at fracture is observed.
Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2014-09-09
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2015-07-07
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks
NASA Astrophysics Data System (ADS)
van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.
2017-06-01
Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.
Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)
1994-01-01
The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.
Spectroscopic ellipsometric characterization of Si/Si(1-x)Ge(x) strained-layer superlattices
NASA Technical Reports Server (NTRS)
Yao, H.; Woollam, J. A.; Wang, P. J.; Tejwani, M. J.; Alterovitz, S. A.
1993-01-01
Spectroscopic ellipsometry (SE) was employed to characterize Si/Si(1-x)Ge(x) strained-layer superlattices. An algorithm was developed, using the available optical constants measured at a number of fixed x values of Ge composition, to compute the dielectric function spectrum of Si(1-x)Ge(x) at an arbitrary x value in the spectral range 17 to 5.6 eV. The ellipsometrically determined superlattice thicknesses and alloy compositional fractions were in excellent agreement with results from high-resolution x ray diffraction studies. The silicon surfaces of the superlattices were subjected to a 9:1 HF cleaning prior to the SE measurements. The HF solution removed silicon oxides on the semiconductor surface, and terminated the Si surface with hydrogen-silicon bonds, which were monitored over a period of several weeks, after the HF cleaning, by SE measurements. An equivalent dielectric layer model was established to describe the hydrogen-terminated Si surface layer. The passivated Si surface remained unchanged for greater than 2 h, and very little surface oxidation took place even over 3 to 4 days.
Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.; ...
2017-08-21
The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1982-01-01
X-ray photoelectron and Auger electron spectroscopy analyses and morphological studies of wear and metal transfer were conducted with a single-crystal silicon carbide 0001 surface in contact with iron at various temperatures to 1500 C in a vacuum of 10 to the minus 8th power pascal. The results indicate that below 800 C, carbide-carbon and silicon are primarily seen on the silicon carbide surface. Above 800 C the graphite increases rapidly with increase in temperature. The outermost surficial layer, which consists mostly of graphite and little silicon at temperatures above 1200 C is about 2 nm thick. A thicker layer, which consists of a mixture of graphite, carbide, and silicon is approximately 100 nm thick. The closer the surface sliding temperature is to 800 C, the more the metal transfer produced. Above 800 C, there was a transfer of rough, discontinuous, and thin iron debris instead of smooth, continuous and thin iron film which was observed to transfer below 800 C. Two kinds of fracture pits were observed on the silicon carbide surface: (1) a pit with a spherical asperity; and (2) multiangular shaped pits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jaemin; Lee, Junmyung; Lee, Hyun Woo
The anti-adhesive characteristics of a plasma-modified silicon mold surface for nanoimprint lithography are presented. Both CHF{sub 3}/O{sub 2} and C{sub 4}F{sub 8}/O{sub 2} plasma were used to form an anti-adhesive layer on silicon mold surfaces. The gas mixing ratios of CHF{sub 3}/O{sub 2} and C{sub 4}F{sub 8}/O{sub 2} were experimentally changed between 0% and 80% to optimize the plasma conditions to obtain a low surface energy of the silicon mold. The plasma characteristics were examined by optical emission spectroscopy (OES). In order to investigate the changes in surface energy and surface chemistry of the anti-adhesive layer during repeated demolding cycles,more » contact angle measurements and X-ray photoelectron spectroscopy (XPS) were performed on the plasma-modified silicon mold surface. Simultaneously, the surface morphology of the demolded resists was evaluated by field-emission scanning electron microscope (FE-SEM) in order to examine the effect of the anti-adhesive layers on the duplicated patterns of the resists. It was observed that the anti-adhesive layer formed by CHF{sub 3}/O{sub 2} plasma treatment was worn out more easily during repeated demolding cycles than the film formed by C{sub 4}F{sub 8}/O{sub 2} plasma treatment, because CHF{sub 3}/O{sub 2} gas plasma formed a thinner plasma-polymerized film over the same plasma treatment time.« less
Silicon micro-mold and method for fabrication
Morales, Alfredo M.
2005-01-11
The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.
Morales, Alfredo M [Livermore, CA
2006-10-24
The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.
NASA Astrophysics Data System (ADS)
Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz
2018-01-01
Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.
NASA Astrophysics Data System (ADS)
Van Luong, Nguyen; Danilov, P. A.; Ionin, A. A.; Khmel'nitskii, P. A.; Kudryashov, S. I.; Mel'nik, N. N.; Saraeva, I. N.; Смirnov, H. A.; Rudenko, A. A.; Zayarny, D. A.
2017-09-01
We perform a single-shot IR nanosecond laser processing of commercial silicon wafers in ambient air and under a 2 mm thick carbon disulfide liquid layer. We characterize the surface spots modified in the liquid ambient and the spots ablated under the same conditions in air in terms of its surface topography, chemical composition, band-structure modification, and crystalline structure by means of SEM and EDX microscopy, as well as of FT-IR and Raman spectroscopy. These studies indicate that single-step microstructuring and deep (up to 2-3% on the surface) hyperdoping of the crystalline silicon in its submicron surface layer, preserving via pulsed laser annealing its crystallinity and providing high (103 - 104 cm-1) spectrally at near- and mid-IR absorption coefficients, can be obtained in this novel approach, which is very promising for thin - film silicon photovoltaic devices
NASA Technical Reports Server (NTRS)
Denis, Kevin L. (Inventor)
2018-01-01
Disclosed are systems, methods, and non-transitory computer-readable storage media for fabrication of silicon on insulator (SOI) wafers with a superconductive via for electrical connection to a groundplane. Fabrication of the SOI wafer with a superconductive via can involve depositing a superconducting groundplane onto a substrate with the superconducting groundplane having an oxidizing layer and a non-oxidizing layer. A layer of monocrystalline silicon can be bonded to the superconducting groundplane and a photoresist layer can be applied to the layer of monocrystalline silicon and the SOI wafer can be etched with the oxygen rich etching plasma, resulting in a monocrystalline silicon top layer with a via that exposes the superconducting groundplane. Then, the fabrication can involve depositing a superconducting surface layer to cover the via.
Yu, Conrad M.
2003-12-30
A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.
Reflectance modeling of electrochemically P-type porosified silicon by Drude-Lorentz model
NASA Astrophysics Data System (ADS)
Kadi, M.; Media, E. M.; Gueddaoui, H.; Outemzabet, R.
2014-09-01
Porous silicon remains a promising material for optoelectronic application; in this field monitoring of the refractive index profile of the porous layer is required. We present in this work a procedure based on Drude-Lorentz model for calculating the optical parameters such as the high- and low-frequency dielectric constants, the plasma frequency by fitting the reflectance spectra. The experimental data of different porous silicon layer created above the bulk silicon material by electrochemical etching are extracted from reflectance measurements. The reflectance spectra are recorded in the spectral range 350-2500 nm. First, our computational procedure has been validated by its application on mono-crystalline silicon for the determination of its optical parameters. A good agreement between our results and those found in other works has been achieved in the visible-NIR range. In the second step, the model was applied to porous silicon (PS) layers. Useful optical parameters like the refractive index and the extinction coefficient, respectively, n (λ) and κ(λ), the band gap Eg, of different fabricated porous silicon layer are determined from simulated reflectance spectra. The correlation between the optical properties and the conditions of the electrochemical treatment was observed and analyzed. The main conclusion is that the reflected light from the porous silicon surface, although non-homogeneous and thus possessing the light scattering, is essentially smaller than the reflected light from the bulk crystalline silicon. These results show that the porous surface layer can act as an antireflection coating for silicon and could be used, in particular, in solar cells.
Khalifa, Marouan; Hajji, Messaoud; Ezzaouia, Hatem
2012-08-08
Porous silicon has been prepared using a vapor-etching based technique on a commercial silicon powder. Strong visible emission was observed in all samples. Obtained silicon powder with a thin porous layer at the surface was subjected to a photo-thermal annealing at different temperatures under oxygen atmosphere followed by a chemical treatment. Inductively coupled plasma atomic emission spectrometry results indicate that silicon purity is improved from 99.1% to 99.994% after annealing at 900°C.
2012-01-01
Porous silicon has been prepared using a vapor-etching based technique on a commercial silicon powder. Strong visible emission was observed in all samples. Obtained silicon powder with a thin porous layer at the surface was subjected to a photo-thermal annealing at different temperatures under oxygen atmosphere followed by a chemical treatment. Inductively coupled plasma atomic emission spectrometry results indicate that silicon purity is improved from 99.1% to 99.994% after annealing at 900°C. PMID:22873706
In-depth porosity control of mesoporous silicon layers by an anodization current adjustment
NASA Astrophysics Data System (ADS)
Lascaud, J.; Defforge, T.; Certon, D.; Valente, D.; Gautier, G.
2017-12-01
The formation of thick mesoporous silicon layers in P+-type substrates leads to an increase in the porosity from the surface to the interface with silicon. The adjustment of the current density during the electrochemical etching of porous silicon is an intuitive way to control the layer in-depth porosity. The duration and the current density during the anodization were varied to empirically model porosity variations with layer thickness and build a database. Current density profiles were extracted from the model in order to etch layer with in-depth control porosity. As a proof of principle, an 80 μm-thick porous silicon multilayer was synthetized with decreasing porosities from 55% to 35%. The results show that the assessment of the in-depth porosity could be significantly enhanced by taking into account the pure chemical etching of the layer in the hydrofluoric acid-based electrolyte.
Low cost silicon-on-ceramic photovoltaic solar cells
NASA Technical Reports Server (NTRS)
Koepke, B. G.; Heaps, J. D.; Grung, B. L.; Zook, J. D.; Sibold, J. D.; Leipold, M. H.
1980-01-01
A technique has been developed for coating low-cost mullite-based refractory substrates with thin layers of solar cell quality silicon. The technique involves first carbonizing one surface of the ceramic and then contacting it with molten silicon. The silicon wets the carbonized surface and, under the proper thermal conditions, solidifies as a large-grained sheet. Solar cells produced from this composite silicon-on-ceramic material have exhibited total area conversion efficiencies of ten percent.
Photoluminescent silicon nanocrystals with chlorosilane surfaces - synthesis and reactivity
NASA Astrophysics Data System (ADS)
Höhlein, Ignaz M. D.; Kehrle, Julian; Purkait, Tapas K.; Veinot, Jonathan G. C.; Rieger, Bernhard
2014-12-01
We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place.We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place. Electronic supplementary information (ESI) available: Detailed experimental procedures and additional NMR, PL, EDX, DLS and TEM data. See DOI: 10.1039/C4NR05888G
Organic light emitting diode with light extracting layer
Lu, Songwei
2016-06-14
A light extraction substrate includes a glass substrate having a first surface and a second surface. A light extraction layer is formed on at least one of the surfaces. The light extraction layer is a coating, such as a silicon-containing coating, incorporating nanoparticles.
Analysis of thin baked-on silicone layers by FTIR and 3D-Laser Scanning Microscopy.
Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang
2015-10-01
Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325μg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality. Copyright © 2015 Elsevier B.V. All rights reserved.
Optimization of the Surface Structure on Black Silicon for Surface Passivation
NASA Astrophysics Data System (ADS)
Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing
2017-03-01
Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al2O3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH4OH/H2O2/H2O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.
Optimization of the Surface Structure on Black Silicon for Surface Passivation.
Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing
2017-12-01
Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al 2 O 3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH 4 OH/H 2 O 2 /H 2 O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.
Inverted amorphous silicon solar cell utilizing cermet layers
Hanak, Joseph J.
1979-01-01
An amorphous silicon solar cell incorporating a transparent high work function metal cermet incident to solar radiation and a thick film cermet contacting the amorphous silicon opposite to said incident surface.
NASA Astrophysics Data System (ADS)
Psakhie, S. G.; Meisner, S. N.; Lotkov, A. I.; Meisner, L. L.; Tverdokhlebova, A. V.
2014-07-01
This paper presents the study on changes in element and phase compositions in the near-surface layer and on surface topography of the NiTi specimens after the silicon ion-beam treatment. The effect of these parameters of the near-surface layer on corrosion properties in biochemical solutions and biocompatibility with mesenchymal stem cells of rat marrow is studied. Ion-beam surface modification of the specimens was performed by a DIANA-3 implanter (Tomsk, Russia), using single-ion-beam pulses under oil-free pumping and high vacuum (10-4 Pa) conditions in a high-dose ion implantation regime. The fluence made 2 × 1017 cm-2, at an average accelerating voltage of 60 kV, and pulse repetition frequency of 50 Hz. The silicon ion-beam treatment of specimen surfaces is shown to bring about a nearly twofold improvement in the corrosion resistance of the material to attack by aqueous solutions of NaCl (artificial body fluid) and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ~3400 and ~6000 h, respectively (for the artificial plasma solution, a nearly 20-fold decrease in the Ni concentration is observed). It is shown that improvement of NiTi corrosion resistance after treatment by Si ions occurs mainly due to the formation of two-layer composite coating based on Ti oxides (outer layer) on the NiTi surface and adjacent inner layer of oxides, carbides, and silicides of the NiTi alloy components. Inner layer with high silicon concentration serves as a barrier layer preventing nickel penetration into biomedium. This, in our opinion, is the main reason why the NiTi alloy exhibits no cytotoxic properties after ion modification of its surface and leads to the biocompatibility improvement at the cellular level, respectively.
Inversion layer solar cell fabrication and evaluation. [etching on silicon films
NASA Technical Reports Server (NTRS)
Call, R. L.
1974-01-01
Inversion layer solar cells were fabricated by etching through the diffused layer on p-type silicon wafers in a comb-like contact pattern. The charge separation comes from an induced p-n junction at the surface. The inverted surface is caused by a layer of transparent material applied to the surface that either contains free positive ions or that creates donor states at the interface. Cells are increased from 3 ma I sub sc to 100 ma by application of sodium silicate. The action is unstable, however, and decays. Non-mesa contaminated oxide cells were fabricated with short circuit currents of over 100 ma measured in the sun. Cells of this type have demonstrated stability.
NASA Astrophysics Data System (ADS)
Descoeudres, A.; Barraud, L.; Bartlome, R.; Choong, G.; De Wolf, Stefaan; Zicarelli, F.; Ballif, C.
2010-11-01
In silicon heterojunction solar cells, thin amorphous silicon layers passivate the crystalline silicon wafer surfaces. By using in situ diagnostics during plasma-enhanced chemical vapor deposition (PECVD), the authors report how the passivation quality of such layers directly relate to the plasma conditions. Good interface passivation is obtained from highly depleted silane plasmas. Based upon this finding, layers deposited in a large-area very high frequency (40.68 MHz) PECVD reactor were optimized for heterojunction solar cells, yielding aperture efficiencies up to 20.3% on 4 cm2 cells.
NASA Astrophysics Data System (ADS)
Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop
2018-01-01
The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.
Gao, Fei; Teplyakov, Andrew V
2017-09-05
The development of oxygen-free organic-inorganic interfaces has led to new schemes for the functionalization of silicon surfaces with nitrogen-based chemical groups. However, building layers of large structures directly on this functionalized surface has remained elusive. This work confirms the path to form a stable interface between silicon and buckminsterfullerene C 60 based on covalent chemical bonds. The starting point for this modification is the hydrazine-reacted Si(111) surface with the diamine functionality, which is further reacted directly with the C 60 molecules. The chemistry of this process is confirmed spectroscopically and microscopically and can be used to form organic-inorganic interfaces separated by a single layer of nitrogen.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki
1999-02-01
In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.
NASA Technical Reports Server (NTRS)
Kirchner, H. P.
1974-01-01
Silicon nitride and silicon carbide ceramics were treated to form compressive surface layers. On the silicon carbide, quenching and thermal exposure treatments were used, and on the silicon nitride, quenching, carburizing, and a combination of quenching and carburizing were used. In some cases substantial improvements in impact resistance and/or flexural strength were observed. The presence of compressive surface stresses was demonstrated by slotted rod tests.
Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H.; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-man; Doo, Seok-Gwang; Chang, Hyuk
2015-01-01
Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge–discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l−1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology. PMID:26109057
An induced junction photovoltaic cell
NASA Technical Reports Server (NTRS)
Call, R. L.
1974-01-01
Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.
McKee, Rodney A.; Walker, Frederick J.
1993-01-01
A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.
Covalently Bound Monomolecular Layers on Si Single Crystals
NASA Astrophysics Data System (ADS)
Chidsey, Christopher E. D.
1996-03-01
Methods and reagents borrowed from the molecular synthetic chemistry of silicon compounds have been used to form covalently bound monomolecular layers on silicon single crystals. Organic monolayers bound covalently to silicon could form the basis for silicon/organic interfaces useful in sensor structures. In a representative reaction, alkyl monolayers with densities approaching that of crystalline polyethylene have been prepared by the radical-initiated insertion of 1-alkenes into the Si-H bonds of hydrogen-terminated Si(111) surfaces footnote M. R. Linford, P. Fenter, P. M. Eisenberger and C. E. D Chidsey, J. Am. Chem. Soc. 117, 3145-3155 (1995). It has recently been found that this insertion reaction can also be initiated by illumination with UV light having sufficient energy to break the Si-H bond. Synchrotron-based high-resolution photoelectron spectroscopy and diffraction have demonstrated the expected Si-C bond in such monolayers footnote J. H. Terry, R. Cao, P. A. Pianetta, M. R. Linford and C. E. D. Chidsey, unpublished results. An alternate approach to similar monolayers has been found to be the chlorination of hydrogen-terminated Si(111) with Cl_2, followed by the nucleophilic displacement of chlorine with alkyl lithium reagents. The well-behaved chemical transformations of the hydrogen-terminated silicon surfaces appear to result from the essentially bulk termination of the silicon lattice with closed-shell silicon hydride "functional groups" on the surface. In addition to the formation of novel organic layers, a full understanding of the reactivity of the hydrogen-terminated silicon surfaces should lead to better control of key technological silicon interfaces such as Si/SiO_2, Si/epi-Si, and Si/metal.
Surface reaction of silicon chlorides during atomic layer deposition of silicon nitride
NASA Astrophysics Data System (ADS)
Yusup, Luchana L.; Park, Jae-Min; Mayangsari, Tirta R.; Kwon, Young-Kyun; Lee, Won-Jun
2018-02-01
The reaction of precursor with surface active site is the critical step in atomic layer deposition (ALD) process. We performed the density functional theory calculation with DFT-D correction to study the surface reaction of different silicon chloride precursors during the first half cycle of ALD process. SiCl4, SiH2Cl2, Si2Cl6 and Si3Cl8 were considered as the silicon precursors, and an NH/SiNH2*-terminated silicon nitride surface was constructed to model the thermal ALD processes using NH3 as well as the PEALD processes using NH3 plasma. The total energies of the system were calculated for the geometry-optimized structures of physisorption, chemisorption, and transition state. The order of silicon precursors in energy barrier, from lowest to highest, is Si3Cl8 (0.92 eV), Si2Cl6 (3.22 eV), SiH2Cl2 (3.93 eV) and SiCl4 (4.49 eV). Silicon precursor with lower energy barrier in DFT calculation showed lower saturation dose in literature for both thermal and plasma-enhanced ALD of silicon nitride. Therefore, DFT calculation is a promising tool in predicting the reactivity of precursor during ALD process.
Share, Keith; Carter, Rachel E.; Nikolaev, Pavel; ...
2016-06-08
Nanoscale carbons are typically synthesized by thermal decomposition of a hydrocarbon at the surface of a metal catalyst. Whereas the use of silicon as an alternative to metal catalysts could unlock new techniques to seamlessly couple carbon nanostructures and semiconductor materials, stable carbide formation renders bulk silicon incapable of the precipitation and growth of graphitic structures. In this article, we provide evidence supported by comprehensive in situ Raman experiments that indicates nanoscale grains of silicon in porous silicon (PSi) scaffolds act as catalysts for hydrocarbon decomposition and growth of few-layered graphene at temperatures as low as 700 K. Self-limiting growthmore » kinetics of graphene with activation energies measured between 0.32–0.37 eV elucidates the formation of highly reactive surface-bound Si radicals that aid in the decomposition of hydrocarbons. Nucleation and growth of graphitic layers on PSi exhibits striking similarity to catalytic growth on nickel surfaces, involving temperature dependent surface and subsurface diffusion of carbon. Lastly, this work elucidates how the nanoscale properties of silicon can be exploited to yield catalytic properties distinguished from bulk silicon, opening an important avenue to engineer catalytic interfaces combining the two most technologically important materials for modern applications—silicon and nanoscale carbons.« less
NASA Technical Reports Server (NTRS)
Dunbar, P. M.; Hauser, J. R.
1976-01-01
Various mechanisms which limit the conversion efficiency of silicon solar cells were studied. The effects of changes in solar cell geometry such as layer thickness on performance were examined. The effects of various antireflecting layers were also examined. It was found that any single film antireflecting layer results in a significant surface loss of photons. The use of surface texturing techniques or low loss antireflecting layers can enhance by several percentage points the conversion efficiency of silicon cells. The basic differences between n(+)-p-p(+) and p(+)-n-n(+) cells are treated. A significant part of the study was devoted to the importance of surface region lifetime and heavy doping effects on efficiency. Heavy doping bandgap reduction effects are enhanced by low surface layer lifetimes, and conversely, the reduction in solar cell efficiency due to low surface layer lifetime is further enhanced by heavy doping effects. A series of computer studies is reported which seeks to determine the best cell structure and doping levels for maximum efficiency.
Zirconium oxide surface passivation of crystalline silicon
NASA Astrophysics Data System (ADS)
Wan, Yimao; Bullock, James; Hettick, Mark; Xu, Zhaoran; Yan, Di; Peng, Jun; Javey, Ali; Cuevas, Andres
2018-05-01
This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited zirconium oxide (ZrOx). The optimum layer thickness and activation annealing conditions are determined to be 20 nm and 300 °C for 20 min. Cross-sectional transmission electron microscopy imaging shows an approximately 1.6 nm thick SiOx interfacial layer underneath an 18 nm ZrOx layer, consistent with ellipsometry measurements (˜20 nm). Capacitance-voltage measurements show that the annealed ZrOx film features a low interface defect density of 1.0 × 1011 cm-2 eV-1 and a low negative film charge density of -6 × 1010 cm-2. Effective lifetimes of 673 μs and 1.1 ms are achieved on p-type and n-type 1 Ω cm undiffused c-Si wafers, respectively, corresponding to an implied open circuit voltage above 720 mV in both cases. The results demonstrate that surface passivation quality provided by ALD ZrOx is consistent with the requirements of high efficiency silicon solar cells.
Hybrid emitter all back contact solar cell
Loscutoff, Paul; Rim, Seung
2016-04-12
An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.
Fabrication Methods for Adaptive Deformable Mirrors
NASA Technical Reports Server (NTRS)
Toda, Risaku; White, Victor E.; Manohara, Harish; Patterson, Keith D.; Yamamoto, Namiko; Gdoutos, Eleftherios; Steeves, John B.; Daraio, Chiara; Pellegrino, Sergio
2013-01-01
Previously, it was difficult to fabricate deformable mirrors made by piezoelectric actuators. This is because numerous actuators need to be precisely assembled to control the surface shape of the mirror. Two approaches have been developed. Both approaches begin by depositing a stack of piezoelectric films and electrodes over a silicon wafer substrate. In the first approach, the silicon wafer is removed initially by plasmabased reactive ion etching (RIE), and non-plasma dry etching with xenon difluoride (XeF2). In the second approach, the actuator film stack is immersed in a liquid such as deionized water. The adhesion between the actuator film stack and the substrate is relatively weak. Simply by seeping liquid between the film and the substrate, the actuator film stack is gently released from the substrate. The deformable mirror contains multiple piezoelectric membrane layers as well as multiple electrode layers (some are patterned and some are unpatterned). At the piezolectric layer, polyvinylidene fluoride (PVDF), or its co-polymer, poly(vinylidene fluoride trifluoroethylene P(VDF-TrFE) is used. The surface of the mirror is coated with a reflective coating. The actuator film stack is fabricated on silicon, or silicon on insulator (SOI) substrate, by repeatedly spin-coating the PVDF or P(VDFTrFE) solution and patterned metal (electrode) deposition. In the first approach, the actuator film stack is prepared on SOI substrate. Then, the thick silicon (typically 500-micron thick and called handle silicon) of the SOI wafer is etched by a deep reactive ion etching process tool (SF6-based plasma etching). This deep RIE stops at the middle SiO2 layer. The middle SiO2 layer is etched by either HF-based wet etching or dry plasma etch. The thin silicon layer (generally called a device layer) of SOI is removed by XeF2 dry etch. This XeF2 etch is very gentle and extremely selective, so the released mirror membrane is not damaged. It is possible to replace SOI with silicon substrate, but this will require tighter DRIE process control as well as generally longer and less efficient XeF2 etch. In the second approach, the actuator film stack is first constructed on a silicon wafer. It helps to use a polyimide intermediate layer such as Kapton because the adhesion between the polyimide and silicon is generally weak. A mirror mount ring is attached by using adhesive. Then, the assembly is partially submerged in liquid water. The water tends to seep between the actuator film stack and silicon substrate. As a result, the actuator membrane can be gently released from the silicon substrate. The actuator membrane is very flat because it is fixed to the mirror mount prior to the release. Deformable mirrors require extremely good surface optical quality. In the technology described here, the deformable mirror is fabricated on pristine substrates such as prime-grade silicon wafers. The deformable mirror is released by selectively removing the substrate. Therefore, the released deformable mirror surface replicates the optical quality of the underlying pristine substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Piper, Daniela M.; Gu, Meng
Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, whichmore » essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.« less
Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating
NASA Technical Reports Server (NTRS)
Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)
2014-01-01
A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.
Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A
2015-11-01
In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.
Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.
2015-01-01
In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442
Silicon nitride protective coatings for silvered glass mirrors
Tracy, C. Edwin; Benson, David K.
1988-01-01
A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.
Silicon nitride protective coatings for silvered glass mirrors
Tracy, C.E.; Benson, D.K.
1984-07-20
A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.
Method of fabricating germanium and gallium arsenide devices
NASA Technical Reports Server (NTRS)
Jhabvala, Murzban (Inventor)
1990-01-01
A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Michihiro; Uematsu, Masashi; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp
2015-09-28
We demonstrate the formation of abrupt phosphorus (P) δ-doping profiles in germanium (Ge) by the insertion of ultra-thin silicon (Si) layers. The Si layers at the δ-doping region significantly suppress the surface segregation of P during the molecular beam epitaxial growth of Ge and high-concentration active P donors are confined within a few nm of the initial doping position. The current-voltage characteristics of the P δ-doped layers with Si insertion show excellent Ohmic behaviors with low enough resistivity for ultra-shallow Ohmic contacts on n-type Ge.
Rapid fabrication of a silicon modification layer on silicon carbide substrate.
Bai, Yang; Li, Longxiang; Xue, Donglin; Zhang, Xuejun
2016-08-01
We develop a kind of magnetorheological (MR) polishing fluid for the fabrication of a silicon modification layer on a silicon carbide substrate based on chemical theory and actual polishing requirements. The effect of abrasive concentration in MR polishing fluid on material removal rate and removal function shape is investigated. We conclude that material removal rate will increase and tends to peak value as the abrasive concentration increases to 0.3 vol. %, and the removal function profile will become steep, which is a disadvantage to surface frequency error removal at the same time. The removal function stability is also studied and the results show that the prepared MR polishing fluid can satisfy actual fabrication requirements. An aspheric reflective mirror of silicon carbide modified by silicon is well polished by combining magnetorheological finishing (MRF) using two types of MR polishing fluid and computer controlled optical surfacing (CCOS) processes. The surface accuracy root mean square (RMS) is improved from 0.087λ(λ=632.8 nm) initially to 0.020λ(λ=632.8 nm) in 5.5 h total and the tool marks resulting from MRF are negligible. The PSD analysis results also shows that the final surface is uniformly polished.
NASA Astrophysics Data System (ADS)
Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun
2010-03-01
Molecular dynamics simulations of nanoscratching processes were used to study the atomic-scale removal mechanism of single crystalline silicon in chemical mechanical polishing (CMP) process and particular attention was paid to the effect of scratching depth. The simulation results under a scratching depth of 1 nm showed that a thick layer of silicon material was removed by chip formation and an amorphous layer was formed on the silicon surface after nanoscratching. By contrast, the simulation results with a depth of 0.1 nm indicated that just one monoatomic layer of workpiece was removed and a well ordered crystalline surface was obtained, which is quite consistent with previous CMP experimental results. Therefore, monoatomic layer removal mechanism was presented, by which it is considered that during CMP process the material was removed by one monoatomic layer after another, and the mechanism could provide a reasonable understanding on how the high precision surface was obtained. Also, the effects of the silica particle size and scratching velocity on the removal mechanism were investigated; the wear regimes and interatomic forces between silica particle and workpiece were studied to account for the different removal mechanisms with indentation depths of 0.1 and 1 nm.
NASA Technical Reports Server (NTRS)
Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.
1977-01-01
The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.
Characterization of zinc oxide thin film for pH detector
NASA Astrophysics Data System (ADS)
Hashim, Uda; Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Uda, M. N. A.
2017-03-01
This paper presents the fabrication process of the zinc oxide thin films for using to act as pH detection by using different PH solution. Sol-gel solution technique is used for preparing zinc oxide seed solution, followed by metal oxide deposition process by using spin coater on the silicon dioxide. Silicon dioxide layer is grown on the silicon wafer, then, ZnO seed solution is deposited on the silicon layer, baked, and annealing process carried on to undergo the characterization of its surface morphology, structural and crystalline phase. Electrical characterization is showed by using PH 4, 7, and 10 is dropped on the surface of the die, in addition, APTES solution is used as linker and also as a references of the electrical characterization.
Laser-induced phase separation of silicon carbide
Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae
2016-01-01
Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji, A. S., E-mail: aji.ravazes70@gmail.com; Sahdan, M. F.; Hendra, I. B.
In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate withoutmore » treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.« less
Bian, Jian-Tao; Yu, Jian; Duan, Wei-Yuan; Qiu, Yu
2015-04-01
Single side heterojunction silicon solar cells were designed and fabricated using Silicon-On-Insulator (SOI) substrate. The TCAD software was used to simulate the effect of silicon layer thickness, doping concentration and the series resistance. A 10.5 µm thick monocrystalline silicon layer was epitaxially grown on the SOI with boron doping concentration of 2 x 10(16) cm(-3) by thermal CVD. Very high Voc of 678 mV was achieved by applying amorphous silicon heterojunction emitter on the front surface. The single cell efficiency of 12.2% was achieved without any light trapping structures. The rear surface recombination and the series resistance are the main limiting factors for the cell efficiency in addition to the c-Si thickness. By integrating an efficient light trapping scheme and further optimizing fabrication process, higher efficiency of 14.0% is expected for this type of cells. It can be applied to integrated circuits on a monolithic chip to meet the requirements of energy autonomous systems.
NASA Astrophysics Data System (ADS)
Weiying, Ou; Lei, Zhao; Hongwei, Diao; Jun, Zhang; Wenjing, Wang
2011-05-01
Porous silicon (PS) layers were formed on textured crystalline silicon by electrochemical etching in HF-based electrolyte. Optical and electrical properties of the TMAH textured surfaces with PS formation are studied. Moreover, the influences of the initial structures and the anodizing time on the optical and electrical properties of the surfaces after PS formation are investigated. The results show that the TMAH textured surfaces with PS formation present a dramatic decrease in reflectance. The longer the anodizing time is, the lower the reflectance. Moreover, an initial surface with bigger pyramids achieved lower reflectance in a short wavelength range. A minimum reflectance of 3.86% at 460 nm is achieved for a short anodizing time of 2 min. Furthermore, the reflectance spectrum of the sample, which was etched in 3 vol.% TMAH for 25 min and then anodized for 20 min, is extremely flat and lies between 3.67% and 6.15% in the wavelength range from 400 to 1040 nm. In addition, for a short anodizing time, a slight increase in the effective carrier lifetime is observed. Our results indicate that PS layers formed on a TMAH textured surface for a short anodization treatment can be used as both broadband antireflection coatings and passivation layers for the application in solar cells.
Passivation coating for flexible substrate mirrors
Tracy, C. Edwin; Benson, David K.
1990-01-01
A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.
Improving impact resistance of ceramic materials by energy absorbing surface layers
NASA Technical Reports Server (NTRS)
Kirchner, H. P.; Seretsky, J.
1974-01-01
Energy absorbing surface layers were used to improve the impact resistance of silicon nitride and silicon carbide ceramics. Low elastic modulus materials were used. In some cases, the low elastic modulus was achieved using materials that form localized microcracks as a result of thermal expansion anisotropy, thermal expansion differences between phases, or phase transformations. In other cases, semi-vitreous or vitreous materials were used. Substantial improvements in impact resistance were observed at room and elevated temperatures.
Fabrication of frequency selective surface for band stop IR-filter
NASA Astrophysics Data System (ADS)
Mishra, Akshita; Sudheer, Tiwari, P.; Mondal, P.; Bhatt, H.; Rai, V. N.; Srivastava, A. K.
2016-05-01
Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO2 on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infrared region.
NASA Astrophysics Data System (ADS)
Faruque, Faisal
The main objective of this work is to study different materials for the direct photosynthesis of hydrogen from water. A variety of photocatalysts such as titanium dioxide, titanium oxy-nitride, silicon carbide, and gallium nitride are being investigated by others for the clean production of hydrogen for fuel cells and hydrogen economy. Our approach was to deposit suitable metallic regions on photocatalyst nanoparticles to direct the efficient synthesis of hydrogen to a particular site for convenient collection. We studied different electrode metals such as gold, platinum, titanium, palladium, and tungsten. We also studied different solar cell materials such as silicon (p- and n-types), silicon carbide and titanium dioxide semiconductors in order to efficiently generate electrons under illumination. We introduced a novel silicon-based multilayer photosynthesis device to take advantage of suitable properties of silicon and tungsten to efficiently produce hydrogen. The device consisted of a silicon (0.5mm) substrate, a deposited atomic layer of Al2O 3 (1nm), a doped polysilicon (0.1microm), and finally a tungsten nanoporous (5-10nm) layer acting as an interface electrode with water. The Al2O 3 layer was introduced to reduce leakage current and to prevent the spreading of the diffused p-n junction layer between the silicon and doped polysilicon layers. The surface of the photoelectrode was coated with nanotextured tungsten nanopores (TNP), which increased the surface area of the electrodes to the electrolyte, assisting in electron-hole mobility, and acting as a photocatalyst. The reported device exhibited a fill factor (%FF) of 27.22% and solar-to-hydrogen conversion efficiency of 0.03174%. This thesis describes the structures of the device, and offers a characterization and comparison between different photoelectrodes.
NASA Astrophysics Data System (ADS)
Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander
2018-02-01
In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.
Lozovoy, Kirill; Kokhanenko, Andrey; Voitsekhovskii, Alexander
2018-02-02
In this paper theoretical modeling of formation and growth of germanium-silicon quantum dots in the method of molecular beam epitaxy (MBE) on different surfaces is carried out. Silicon substrates with crystallographic orientations (100) and (111) are considered. Special attention is paid to the question of growth of quantum dots on the silicon surface covered by tin, since germanium-silicon-tin system is extremely important for contemporary nano- and optoelectronics: for creation of photodetectors, solar cells, light-emitting diodes, and fast-speed transistors. A theoretical approach for modeling growth processes of such semiconductor compounds during the MBE is presented. Both layer-by-layer and island nucleation stages in the Stranski-Krastanow growth mode are described. A change in free energy during transition of atoms from the wetting layer to an island, activation barrier of the nucleation, critical thickness of 2D to 3D transition, as well as surface density and size distribution function of quantum dots in these systems are calculated with the help of the established model. All the theoretical speculations are carried out keeping in mind possible device applications of these materials. In particular, it is theoretically shown that using of the Si(100) surface covered by tin as a substrate for Ge deposition may be very promising for increasing size homogeneity of quantum dot array for possible applications in low-noise selective quantum dot infrared photodetectors.
NASA Astrophysics Data System (ADS)
Wasisto, Hutomo Suryo; Yu, Feng; Doering, Lutz; Völlmeke, Stefan; Brand, Uwe; Bakin, Andrey; Waag, Andreas; Peiner, Erwin
2015-05-01
Silicon microprobe tips are fabricated and integrated with piezoresistive cantilever sensors for high-speed surface roughness scanning systems. The fabrication steps of the high-aspect-ratio silicon microprobe tips were started with photolithography and wet etching of potassium hydroxide (KOH) resulting in crystal-dependent micropyramids. Subsequently, thin conformal wear-resistant layer coating of aluminum oxide (Al2O3) was demonstrated on the backside of the piezoresistive cantilever free end using atomic layer deposition (ALD) method in a binary reaction sequence with a low thermal process and precursors of trimethyl aluminum and water. The deposited Al2O3 layer had a thickness of 14 nm. The captured atomic force microscopy (AFM) image exhibits a root mean square deviation of 0.65 nm confirming the deposited Al2O3 surface quality. Furthermore, vacuum-evaporated 30-nm/200-nm-thick Au/Cr layers were patterned by lift-off and served as an etch mask for Al2O3 wet etching and in ICP cryogenic dry etching. By using SF6/O2 plasma during inductively coupled plasma (ICP) cryogenic dry etching, micropillar tips were obtained. From the preliminary friction and wear data, the developed silicon cantilever sensor has been successfully used in 100 fast measurements of 5- mm-long standard artifact surface with a speed of 15 mm/s and forces of 60-100 μN. Moreover, the results yielded by the fabricated silicon cantilever sensor are in very good agreement with those of calibrated profilometer. These tactile sensors are targeted for use in high-aspect-ratio microform metrology.
The development of self-expanding peripheral stent with ion-modified surface layer
NASA Astrophysics Data System (ADS)
Lotkov, Alexander I.; Kashin, Oleg A.; Kudryashov, Andrey N.; Krukovskii, Konstantin V.; Kuznetsov, Vladimir M.; Borisov, Dmitry P.; Kretov, Evgenii I.
2016-11-01
In work researches of chemical composition of surface layers of self-expanding stents of nickel-titanium (NiTi) and their functional and mechanical properties after plasma immersion processing by ions of silicon (Si). It is established that in the treatment in the inner and outer surfaces of stents formed doped silicon layer with a thickness of 80 nm. The formation of the doped layer does not impair the functional properties of the stent. At human body temperature, the stent is fully restore its shape after removing the deforming load. The resulting graph of loading of stents during their compression between parallel plates. The research results allow the conclusion that Si-doped stents are promising for treatment of peripheral vascular disease. However, related studies on laboratory animals are required.
NASA Astrophysics Data System (ADS)
Bazilchuk, Molly; Haug, Halvard; Marstein, Erik Stensrud
2015-04-01
Several important semiconductor devices such as solar cells and photodetectors may be fabricated based on surface inversion layer junctions induced by fixed charge in a dielectric layer. Inversion layer junctions can easily be fabricated by depositing layers with a high density of fixed charge on a semiconducting substrate. Increasing the fixed charge improves such devices; for instance, the efficiency of a solar cell can be substantially increased by reducing the surface recombination velocity, which is a function of the fixed charge density. Methods for increasing the charge density are therefore of interest. In this work, the fixed charge density in silicon nitride layers deposited by plasma enhanced chemical vapor deposition is increased to very high values above 1 × 1013 cm-2 after the application of an external voltage to a gate electrode. The effect of the fixed charge density on the surface recombination velocity was experimentally observed using the combination of capacitance-voltage characterization and photoluminescence imaging, showing a significant reduction in the surface recombination velocity for increasing charge density. The surface recombination velocity vs. charge density data was analyzed using a numerical device model, which indicated the presence of a sub-surface damage region formed during deposition of the layers. Finally, we have demonstrated that the aluminum electrodes used for charge injection may be chemically removed in phosphoric acid without loss of the underlying charge. The injected charge was shown to be stable for a prolonged time period, leading us to propose charge injection in silicon nitride films by application of soaking voltage as a viable method for fabricating inversion layer devices.
NASA Astrophysics Data System (ADS)
Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro
2015-06-01
Topographic structures such as Fin FETs and silicon nanowires for advanced gate fabrication require ultra-shallow high dose infusion of dopants into the silicon subsurface. Plasma doping meets this requirement by supplying a flux of inert ions and dopant radicals to the surface. However, the helium ion bombardment needed to infuse dopants into the fin surface can cause poor dose retention. This is due to the interaction between substrate damage and post doping process wet cleaning solutions required in the front end of line large-scale integration fabrication. We present findings from surface microscopy experiments that reveal the mechanism for dose retention in arsenic doped silicon fin samples using a microwave RLSA™ plasma source. Dilute aqueous hydrofluoric acid (DHF) cleans by themselves are incompatible with plasma doping processes because the films deposited over the dosed silicon and ion bombardment damaged silicon are readily removed. Oxidizing wet cleaning chemistries help retain the dose as silica rich over-layers are not significantly degraded. Furthermore, the dosed retention after a DHF clean following an oxidizing wet clean is unchanged. Still, the initial ion bombardment energy and flux are important. Large ion fluxes at energies below the sputter threshold and above the silicon damage threshold, before the silicon surface is covered by an amorphous mixed phase layer, allow for enhanced uptake of dopant into the silicon. The resulting dopant concentration is beyond the saturation limit of crystalline silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadomsky, O. N., E-mail: gadomsky@mail.ru; Gadomskaya, I. V.
2015-02-15
We have derived formulas for the amplitudes of light reflection and refraction at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index. These formulas are applied to explain the experimental spectra of nonspecular light reflection using a nanostructured (PMMA + Ag) layer with silver nanoparticles on a silicon surface as an example. We show that a surface wave is formed in the nanostructured layer at various angles of light incidence and the layer with a quasi-zero refractive index is an antireflection coating that provides uniform 5% silicon antireflection in the wavelength range frommore » 450 to 1000 nm.« less
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Watanabe, M.; Actor, G.
1977-01-01
Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.
NASA Technical Reports Server (NTRS)
Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.
1992-01-01
The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A total of 35 impacts on leading edge sensors and 22 impacts on trailing edge sensors were analyzed.
Formation of thin-film resistors on silicon substrates
Schnable, George L.; Wu, Chung P.
1988-11-01
The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.
Wu, Kuen-Hsien; Li, Chong-Wei
2015-01-01
Porous-silicon (PS) multi-layered structures with three stacked PS layers of different porosity were prepared on silicon (Si) substrates by successively tuning the electrochemical-etching parameters in an anodization process. The three PS layers have different optical bandgap energy and construct a triple-layered PS (TLPS) structure with multiple bandgap energy. Photovoltaic devices were fabricated by depositing aluminum electrodes of Schottky contacts on the surfaces of the developed TLPS structures. The TLPS-based devices exhibit broadband photoresponses within the spectrum of the solar irradiation and get high photocurrent for the incident light of a tungsten lamp. The improved spectral responses of devices are owing to the multi-bandgap structures of TLPS, which are designed with a layered configuration analog to a tandem cell for absorbing a wider energy range of the incidental sun light. The large photocurrent is mainly ascribed to an enhanced light-absorption ability as a result of applying nanoporous-Si thin films as the surface layers to absorb the short-wavelength light and to improve the Schottky contacts of devices. Experimental results reveal that the multi-bandgap PS structures produced from electrochemical-etching of Si wafers are potentially promising for development of highly efficient Si-based solar cells. PMID:28793542
Method of forming crystalline silicon devices on glass
McCarthy, Anthony M.
1995-01-01
A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.
Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine
Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less
Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance
Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine; ...
2016-08-01
Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less
Morphology and FT IR spectra of porous silicon
NASA Astrophysics Data System (ADS)
Kopani, Martin; Mikula, Milan; Kosnac, Daniel; Gregus, Jan; Pincik, Emil
2017-12-01
The morphology and chemical bods of p-type and n-type porous Si was compared. The surface of n-type sample is smooth, homogenous without any features. The surface of p-type sample reveals micrometer-sized islands. FTIR investigation reveals various distribution of SiOxHy complexes in both p-and n-type samples. From the conditions leading to porous silicon layer formation (the presence of holes) we suggest both SiOxHy and SiFxHy complexes in the layer.
NASA Astrophysics Data System (ADS)
Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf
2017-08-01
The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide beingmore » shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
Boccard, Mathieu; Holman, Zachary C.
2015-08-14
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
pH-sensitive ion-selective field-effect transistor with zirconium dioxide film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasov, Yu.G.; Bratov, A.V.; Tarantov, Yu.A.
1988-09-20
Miniature semiconductor pH sensors for liquid media, i.e., ion-selective field-effect transistors (ISFETs), are silicon field-effect transistors with a two-layer dielectric consisting of a passivating SiO/sub 2/ layer adjoining the silicon and a layer of pH-sensitive material in contact with the electrolyte solution to be tested. This study was devoted to the characteristics of pH-sensitive ISFETs with ZrO/sub 2/ films. The base was p-type silicon (KDB-10) with a (100) surface orientation. A ZrO/sub 2/ layer 10-50 nm thick was applied over the SiO/sub 2/ layer by electron-beam deposition. The measurements were made in aqueous KNO/sub 3/ or KCl solutions.
Reproduction of mouse-pup ultrasonic vocalizations by nanocrystalline silicon thermoacoustic emitter
NASA Astrophysics Data System (ADS)
Kihara, Takashi; Harada, Toshihiro; Kato, Masahiro; Nakano, Kiyoshi; Murakami, Osamu; Kikusui, Takefumi; Koshida, Nobuyoshi
2006-01-01
As one of the functional properties of ultrasound generator based on efficient thermal transfer at the nanocrystalline silicon (nc-Si) layer surface, its potential as an ultrasonic simulator of vocalization signals is demonstrated by using the acoustic data of mouse-pup calls. The device composed of a surface-heating thin-film electrode, an nc-Si layer, and a single-crystalline silicon (c-Si) wafer, exhibits an almost completely flat frequency response over a wide range without any mechanical surface vibration systems. It is shown that the fabricated emitter can reproduce digitally recorded ultrasonic mouse-pups vocalizations very accurately in terms of the call duration, frequency dispersion, and sound pressure level. The thermoacoustic nc-Si device provides a powerful physical means for the understanding of ultrasonic communication mechanisms in various living animals.
Soft chemical synthesis of silicon nanosheets and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Hideyuki; Ikuno, Takashi
2016-12-15
Two-dimensional silicon nanomaterials are expected to show different properties from those of bulk silicon materials by virtue of surface functionalization and quantum size effects. Since facile fabrication processes of large area silicon nanosheets (SiNSs) are required for practical applications, a development of soft chemical synthesis route without using conventional vacuum processes is a challenging issue. We have recently succeeded to prepare SiNSs with sub-nanometer thicknesses by exfoliating layered silicon compounds, and they are found to be composed of crystalline single-atom-thick silicon layers. In this review, we present the synthesis and modification methods of SiNSs. These SiNSs have atomically flat andmore » smooth surfaces due to dense coverage of organic moieties, and they are easily self-assembled in a concentrated state to form a regularly stacked structure. We have also characterized the electron transport properties and the electronic structures of SiNSs. Finally, the potential applications of these SiNSs and organic modified SiNSs are also reviewed.« less
Study of silicon doped with zinc ions and annealed in oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Privezentsev, V. V., E-mail: v.privezentsev@mail.ru; Kirilenko, E. P.; Goryachev, A. N.
2017-02-15
The results of studies of the surface layer of silicon and the formation of precipitates in Czochralski n-Si (100) samples implanted with {sup 64}Zn{sup +} ions with an energy of 50 keV and a dose of 5 × 10{sup 16} cm{sup –2} at room temperature and then oxidized at temperatures from 400 to 900°C are reported. The surface is visualized using an electron microscope, while visualization of the surface layer is conducted via profiling in depth by elemental mapping using Auger electron spectroscopy. The distribution of impurity ions in silicon is analyzed using a time-of-flight secondary-ion mass spectrometer. Using X-raymore » photoelectron spectroscopy, the chemical state of atoms of the silicon matrix and zinc and oxygen impurity atoms is studied, and the phase composition of the implanted and annealed samples is refined. After the implantation of zinc, two maxima of the zinc concentration, one at the wafer surface and the other at a depth of 70 nm, are observed. In this case, nanoparticles of the Zn metal phase and ZnO phase, about 10 nm in dimensions, are formed at the surface and in the surface layer. After annealing in oxygen, the ZnO · Zn{sub 2}SiO{sub 4} and Zn · ZnO phases are detected near the surface and at a depth of 50 nm, respectively.« less
Cho, Heesook; Yoo, Hana; Park, Soojin
2010-05-18
Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.
Porosity and thickness effect of porous silicon layer on photoluminescence spectra
NASA Astrophysics Data System (ADS)
Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.
2018-05-01
The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.
Liu, Wenzhu; Meng, Fanying; Zhang, Xiaoyu; Liu, Zhengxin
2015-12-09
The interface microstructure of a silicon heterojunction (SHJ) solar cell was investigated. We found an ultrathin native oxide layer (NOL) with a thickness of several angstroms was formed on the crystalline silicon (c-Si) surface in a very short time (∼30 s) after being etched by HF solution. Although the NOL had a loose structure with defects that are detrimental for surface passivation, it acted as a barrier to restrain the epitaxial growth of hydrogenated amorphous silicon (a-Si:H) during the plasma-enhanced chemical vapor deposition (PECVD). The microstructure change of the NOL during the PECVD deposition of a-Si:H layers with different conditions and under different H2 plasma treatments were systemically investigated in detail. When a brief H2 plasma was applied to treat the a-Si:H layer after the PECVD deposition, interstitial oxygen and small-size SiO2 precipitates were transformed to hydrogenated amorphous silicon suboxide alloy (a-SiO(x):H, x ∼ 1.5). In the meantime, the interface defect density was reduced by about 50%, and the parameters of the SHJ solar cell were improved due to the post H2 plasma treatment.
Fabrication of frequency selective surface for band stop IR-filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Akshita, E-mail: akshitamishra27@gmail.com; Sudheer,; Tiwari, P.
2016-05-23
Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO{sub 2} on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infraredmore » region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unuigbe, David M.; Harting, Margit; Jonah, Emmanuel O.
The presence of native oxide on the surface of silicon nanoparticles is known to inhibit charge transport on the surfaces. Scanning electron microscopy (SEM) studies reveal that the particles in the printed silicon network have a wide range of sizes and shapes. High-resolution transmission electron microscopy reveals that the particle surfaces have mainly the (111)- and (100)-oriented planes which stabilizes against further oxidation of the particles. X-ray absorption spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) measurements at the O 1s-edge have been utilized to study the oxidation and local atomic structure of printed layers of silicon nanoparticles which were milledmore » for different times. XANES results reveal the presence of the +4 (SiO 2) oxidation state which tends towards the +2 (SiO) state for higher milling times. Si 2pXPS results indicate that the surfaces of the silicon nanoparticles in the printed layers are only partially oxidized and that all three sub-oxide, +1 (Si 2O), +2 (SiO) and +3 (Si 2O 3), states are present. The analysis of the change in the sub-oxide peaks of the silicon nanoparticles shows the dominance of the +4 state only for lower milling times.« less
NASA Astrophysics Data System (ADS)
Wan, Yimao; Bullock, James; Cuevas, Andres
2015-05-01
This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta2O5) underneath plasma enhanced chemical vapour deposited silicon nitride (SiNx). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta2O5 and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω.cm and n-type 1.0 Ω.cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm2 and 68 fA/cm2 are measured on 150 Ω/sq boron-diffused p+ and 120 Ω/sq phosphorus-diffused n+ c-Si, respectively. Capacitance-voltage measurements reveal a negative fixed insulator charge density of -1.8 × 1012 cm-2 for the Ta2O5 film and -1.0 × 1012 cm-2 for the Ta2O5/SiNx stack. The Ta2O5/SiNx stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.
Self-Assembled Layering of Magnetic Nanoparticles in a Ferrofluid on Silicon Surfaces.
Theis-Bröhl, Katharina; Vreeland, Erika C; Gomez, Andrew; Huber, Dale L; Saini, Apurve; Wolff, Max; Maranville, Brian B; Brok, Erik; Krycka, Kathryn L; Dura, Joseph A; Borchers, Julie A
2018-02-07
This article describes the three-dimensional self-assembly of monodisperse colloidal magnetite nanoparticles (NPs) from a dilute water-based ferrofluid onto a silicon surface and the dependence of the resultant magnetic structure on the applied field. The NPs assemble into close-packed layers on the surface followed by more loosely packed ones. The magnetic field-dependent magnetization of the individual NP layers depends on both the rotational freedom of the layer and the magnetization of the adjacent layers. For layers in which the NPs are more free to rotate, the easy axis of the NP can readily orient along the field direction. In more dense packing, free rotation of the NPs is hampered, and the NP ensembles likely build up quasi-domain states to minimize energy, which leads to lower magnetization in those layers. Detailed analysis of polarized neutron reflectometry data together with model calculations of the arrangement of the NPs within the layers and input from small-angle scattering measurements provide full characterization of the core/shell NP dimensions, degree of chaining, arrangement of the NPs within the different layers, and magnetization depth profile.
Stability and rheology of dispersions of silicon nitride and silicon carbide
NASA Technical Reports Server (NTRS)
Feke, Donald L.
1987-01-01
The relationship between the surface and colloid chemistry of commercial ultra-fine silicon carbide and silicon nitride powders was examined by a variety of standard characterization techniques and by methodologies especially developed for ceramic dispersions. These include electrokinetic measurement, surface titration, and surface spectroscopies. The effects of powder pretreatment and modification strategies, which can be utilized to augment control of processing characteristics, were monitored with these technologies. Both silicon carbide and nitride were found to exhibit silica-like surface chemistries, but silicon nitride powders possess an additional amine surface functionality. Colloidal characteristics of the various nitride powders in aqueous suspension is believed to be highly dependent on the relative amounts of the two types of surface groups, which in turn is determined by the powder synthesis route. The differences in the apparent colloidal characteristics for silicon nitride powders cannot be attributed to the specific absorption of ammonium ions. Development of a model for the prediction of double-layer characteristics of materials with a hybrid site interface facilitated understanding and prediction of the behavior of both surface charge and surface potential for these materials. The utility of the model in application to silicon nitride powders was demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhter, Perveen; Huang, Mengbing, E-mail: mhuang@albany.edu; Spratt, William
Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm,more » and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.« less
Oxide driven strength evolution of silicon surfaces
Grutzik, Scott J.; Milosevic, Erik; Boyce, Brad L.; ...
2015-11-19
Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations showmore » that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Lastly, combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.« less
Highly effective electronic passivation of silicon surfaces by atomic layer deposited hafnium oxide
NASA Astrophysics Data System (ADS)
Cui, Jie; Wan, Yimao; Cui, Yanfeng; Chen, Yifeng; Verlinden, Pierre; Cuevas, Andres
2017-01-01
This paper investigates the application of hafnium oxide (HfO2) thin films to crystalline silicon (c-Si) solar cells. Excellent passivation of both n- and p-type crystalline silicon surfaces has been achieved by the application of thin HfO2 films prepared by atomic layer deposition. Effective surface recombination velocities as low as 3.3 and 9.9 cm s-1 have been recorded with 15 nm thick films on n- and p-type 1 Ω cm c-Si, respectively. The surface passivation by HfO2 is activated at 350 °C by a forming gas anneal. Capacitance voltage measurement shows an interface state density of 3.6 × 1010 cm-2 eV-1 and a positive charge density of 5 × 1011 cm-2 on annealed p-type 1 Ω cm c-Si. X-ray diffraction unveils a positive correlation between surface recombination and crystallinity of the HfO2 and a dependence of the crystallinity on both annealing temperature and film thickness. In summary, HfO2 is demonstrated to be an excellent candidate for surface passivation of crystalline silicon solar cells.
Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer
Cardinale, Gregory F.
2002-01-01
A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.
Surface pre-treatment for barrier coatings on polyethylene terephthalate
NASA Astrophysics Data System (ADS)
Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.
2013-02-01
Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.
Method of manufacturing a hybrid emitter all back contact solar cell
Loscutoff, Paul; Rim, Seung
2017-02-07
A method of manufacturing an all back contact solar cell which has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. A second emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The method further includes forming contact holes that allow metal contacts to connect to corresponding emitters.
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Zhang, Weiyuan; Su, Ranran; Tu, Hanjun; Shi, Liqun; Hu, Jiansheng
2018-04-01
Deuterated carbon-silicon layers co-deposited on graphite and silicon substrates by radio frequency magnetron sputtering in pure D2 plasma were produced to study deuterium trapping and characteristics of the C-Si layers. The C-Si co-deposited layers were examined by ion beam analysis (IBA), Raman spectroscopy (RS), infrared absorption (IR) spectroscopy, thermal desorption spectroscopy (TDS) and scanning electron microscopy (SEM). It was found that the growth rate of the C-Si co-deposition layer decreased with increasing temperature from 350 K to 800 K, the D concentration and C/Si ratios increased differently on graphite and silicon substrates. TDS shows that D desorption is mainly as D2, HD, HDO, CD4, and C2D4 and release peaks occurred at temperatures of less than 900 K. RS and IR analysis reveal that the structure of the C-Si layers became more disordered with increasing temperatures. Rounded areas of peeling with 1-2 μm diameters were observed on the surface.
Growth and characterization of molecular beam epitaxial GaAs layers on porous silicon
NASA Technical Reports Server (NTRS)
Lin, T. L.; Liu, J. K.; Sadwick, L.; Wang, K. L.; Kao, Y. C.
1987-01-01
GaAs layers have been grown on porous silicon (PS) substrates with good crystallinity by molecular beam epitaxy. In spite of the surface irregularity of PS substrates, no surface morphology deterioration was observed on epitaxial GaAs overlayers. A 10-percent Rutherford backscattering spectroscopy minimum channeling yield for GaAs-on-PS layers as compared to 16 percent for GaAs-on-Si layers grown under the same condition indicates a possible improvement of crystallinity when GaAs is grown on PS. Transmission electron microscopy reveals that the dominant defects in the GaAs-on-PS layers are microtwins and stacking faults, which originate from the GaAs/PS interface. GaAs is found to penetrate into the PS layers. n-type GaAs/p-type PS heterojunction diodes were fabricated with good rectifying characteristics.
NASA Technical Reports Server (NTRS)
Spiers, G. D.
1981-01-01
Plated silicon wafers with surface roughness ranging from 0.4 to 130 microinches were subjected to tensile pull strength tests. Electroless Ni/electroless Cu/electroplated Cu and electroless Ni/electroplated Cu were the two types of plate contacts tested. It was found that smoother surfaces had higher pull strength than rougher, chemically etched surfaces. The presence of the electroless Cu layer was found to be important to adhesion. The mode of fracture of the contact as it left the silicon was studied, and it was found that in almost all cases separation was due to fracture of the bulk silicon phase. The correlation between surface roughness and mode of contact failure is presented and interpreted.
Fabrication mechanism of friction-induced selective etching on Si(100) surface
2012-01-01
As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems. PMID:22356699
Fabrication mechanism of friction-induced selective etching on Si(100) surface.
Guo, Jian; Song, Chenfei; Li, Xiaoying; Yu, Bingjun; Dong, Hanshan; Qian, Linmao; Zhou, Zhongrong
2012-02-23
As a maskless nanofabrication technique, friction-induced selective etching can easily produce nanopatterns on a Si(100) surface. Experimental results indicated that the height of the nanopatterns increased with the KOH etching time, while their width increased with the scratching load. It has also found that a contact pressure of 6.3 GPa is enough to fabricate a mask layer on the Si(100) surface. To understand the mechanism involved, the cross-sectional microstructure of a scratched area was examined, and the mask ability of the tip-disturbed silicon layer was studied. Transmission electron microscope observation and scanning Auger nanoprobe analysis suggested that the scratched area was covered by a thin superficial oxidation layer followed by a thick distorted (amorphous and deformed) layer in the subsurface. After the surface oxidation layer was removed by HF etching, the residual amorphous and deformed silicon layer on the scratched area can still serve as an etching mask in KOH solution. The results may help to develop a low-destructive, low-cost, and flexible nanofabrication technique suitable for machining of micro-mold and prototype fabrication in micro-systems.
Thermal coatings for titanium-aluminum alloys
NASA Technical Reports Server (NTRS)
Cunnington, George R.; Clark, Ronald K.; Robinson, John C.
1993-01-01
Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.
Method of forming crystalline silicon devices on glass
McCarthy, A.M.
1995-03-21
A method is disclosed for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics. 7 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmani, N.; Dariani, R. S., E-mail: dariani@alzahra.ac.ir
Porous silicon films with porosity ranging from 42% to 77% were fabricated by electrochemical anodization under different current density. We used atomic force microscopy and dynamic scaling theory for deriving the surface roughness profile and processing the topography of the porous silicon layers, respectively. We first compared the topography of bare silicon surface with porous silicon and then studied the effect of the porosity of porous silicon films on their scaling behavior by using their self-affinity nature. Our work demonstrated that silicon compared to the porous silicon films has the highest Hurst parameter, indicating that the formation of porous layermore » due to the anodization etching of silicon surface leads to an increase of its roughness. Fractal analysis revealed that the evolution of the nanocrystallites’ fractal dimension along with porosity. Also, we found that both interface width and Hurst parameter are affected by the increase of porosity.« less
Record high efficiency of screen-printed silicon aluminum back surface field solar cell: 20.29%
NASA Astrophysics Data System (ADS)
Kim, Ki Hyung; Park, Chang Sub; Doo Lee, Jae; Youb Lim, Jong; Yeon, Je Min; Kim, Il Hwan; Lee, Eun Joo; Cho, Young Hyun
2017-08-01
We have achieved a record high cell efficiency of 20.29% for an industrial 6-in. p-type monocrystalline silicon solar cell with a full-area aluminum back surface field (Al-BSF) by simply modifying the cell structure and optimizing the process with the existing cell production line. The cell efficiency was independently confirmed by the Solar Energy Research Institute of Singapore (SERIS). To increase the cell efficiency, for example, in four busbars, double printing, a lightly doped emitter with a sheet resistance of 90 to 100 Ω/□, and front surface passivation by using silicon oxynitride (SiON) on top of a silicon nitride (SiN x ) antireflection layer were adopted. To optimize front side processing, PC1D simulation was carried out prior to cell fabrication. The resulting efficiency gain is 0.64% compared with that in the reference cells with three busbars, a single antireflection coating layer, and a low-sheet-resistance emitter.
1983-03-01
network dissolution, electron beam simulated desorption, electron signal decay, oxidation, oxide layer , growth kinetics, silicon carbide, assivation...surface layers on silicate glasses are reviewed. A type IIIB glass surface is proposed. The mechanisms of hydrothermal attack of two phase lithia...method to make reliable lifetime predictions. Use of electron beam techniques is essential for understanding surface layers formed on glasses (Section III
Tunable Patch Antennas Using Microelectromechanical Systems
2011-05-11
Figure 28, was selected as most suitable to this application. MetalMUMPs is a surface micromachining process with polysilicon , silicon nitride, nickel...yields. MEMS Variable Capacitor Design The MEMS capacitors reported here were an original design that features nickel and polysilicon layers as...the movable plates of a variable parallel plate capacitor. The polysilicon layer was embedded in silicon nitride for electrical isolation and suspended
Engineered porous silicon counter electrodes for high efficiency dye-sensitized solar cells.
Erwin, William R; Oakes, Landon; Chatterjee, Shahana; Zarick, Holly F; Pint, Cary L; Bardhan, Rizia
2014-06-25
In this work, we demonstrate for the first time, the use of porous silicon (P-Si) as counter electrodes in dye-sensitized solar cells (DSSCs) with efficiencies (5.38%) comparable to that achieved with platinum counter electrodes (5.80%). To activate the P-Si for triiodide reduction, few layer carbon passivation is utilized to enable electrochemical stability of the silicon surface. Our results suggest porous silicon as a promising sustainable and manufacturable alternative to rare metals for electrochemical solar cells, following appropriate surface modification.
NASA Astrophysics Data System (ADS)
Choo, Sung Joong; Lee, Byung-Chul; Lee, Sang-Myung; Park, Jung Ho; Shin, Hyun-Joon
2009-09-01
In this paper, silicon oxynitride layers deposited with different plasma-enhanced chemical vapor deposition (PECVD) conditions were fabricated and optimized, in order to make an interferometric sensor for detecting biochemical reactions. For the optimization of PECVD silicon oxynitride layers, the influence of the N2O/SiH4 gas flow ratio was investigated. RF power in the PEVCD process was also adjusted under the optimized N2O/SiH4 gas flow ratio. The optimized silicon oxynitride layer was deposited with 15 W in chamber under 25/150 sccm of N2O/SiH4 gas flow rates. The clad layer was deposited with 20 W in chamber under 400/150 sccm of N2O/SiH4 gas flow condition. An integrated Mach-Zehnder interferometric biosensor based on optical waveguide technology was fabricated under the optimized PECVD conditions. The adsorption reaction between bovine serum albumin (BSA) and the silicon oxynitride surface was performed and verified with this device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazlov, N., E-mail: n.bazlov@spbu.ru; Pilipenko, N., E-mail: nelly.pilipenko@gmail.com; Vyvenko, O.
2016-06-17
AlN films of different thicknesses were deposited on n-Si (100) substrates by reactive radio frequency (rf) magnetron sputtering. Dependences of structure and electrical properties on thickness of deposited films were researched. The structures of the films were analyzed with scanning electron microscopy (SEM) and with transmitting electron microscopy (TEM). Electrical properties of the films were investigated on Au-AlN-(n-Si) structures by means of current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) techniques. Electron microscopy investigations had shown that structure and chemical composition of the films were thickness stratified. Near silicon surface layer was amorphous aluminum oxide one contained trapsmore » of positive charges with concentration of about 4 × 10{sup 18} cm{sup −3}. Upper layers were nanocrystalline ones consisted of both wurzite AlN and cubic AlON nanocrystals. They contained traps both positive and negative charges which were situated within 30 nm distance from silicon surface. Surface densities of these traps were about 10{sup 12} cm{sup −2}. Electron traps with activation energies of (0.2 ÷ 0.4) eV and densities of about 10{sup 10} cm{sup −2} were revealed on interface between aluminum oxide layer and silicon substrate. Their densities varied weakly with the film thickness.« less
Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei
2015-10-07
Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation.
Effective passivation of silicon surfaces by ultrathin atomic-layer deposited niobium oxide
NASA Astrophysics Data System (ADS)
Macco, B.; Bivour, M.; Deijkers, J. H.; Basuvalingam, S. B.; Black, L. E.; Melskens, J.; van de Loo, B. W. H.; Berghuis, W. J. H.; Hermle, M.; Kessels, W. M. M. Erwin
2018-06-01
This letter reports on effective surface passivation of n-type crystalline silicon by ultrathin niobium oxide (Nb2O5) films prepared by atomic layer deposition (ALD) and subjected to a forming gas anneal at 300 °C. A champion recombination parameter J0 of 20 fA/cm2 and a surface recombination velocity Seff of 4.8 cm/s have been achieved for ultrathin films of 1 nm. The surface pretreatment was found to have a strong impact on the passivation. Good passivation can be achieved on both HF-treated c-Si surfaces and c-Si surfaces with a wet-chemically grown interfacial silicon oxide layer. On HF-treated surfaces, a minimum film thickness of 3 nm is required to achieve a high level of surface passivation, whereas the use of a wet chemically-grown interfacial oxide enables excellent passivation even for Nb2O5 films of only 1 nm. This discrepancy in passivation between both surface types is attributed to differences in the formation and stoichiometry of interfacial silicon oxide, resulting in different levels of chemical passivation. On both surface types, the high level of passivation of ALD Nb2O5 is aided by field-effect passivation originating from a high fixed negative charge density of 1-2 × 1012 cm-3. Furthermore, it is demonstrated that the passivation level provided by 1 nm of Nb2O5 can be further enhanced through light-soaking. Finally, initial explorations show that a low contact resistivity can be obtained using Nb2O5-based contacts. Together, these properties make ALD Nb2O5 a highly interesting building block for high-efficiency c-Si solar cells.
Low-damage direct patterning of silicon oxide mask by mechanical processing
2014-01-01
To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891
Modeling of thin, back-wall silicon solar cells
NASA Technical Reports Server (NTRS)
Baraona, C. R.
1979-01-01
The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.
NASA Technical Reports Server (NTRS)
Dharmadhikari, V. S.; Grannemann, W. W.
1983-01-01
AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric; Carey, James Edward
2017-10-17
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric [Concord, MA; Carey, III, James E.
2011-02-08
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric; Carey, III, James E.
2010-08-24
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric [Concord, MA; Carey, III, James Edward
2009-03-17
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Carey, III, James Edward; Mazur, Eric [Concord, MA
2011-12-20
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Carey, III, James Edward; Mazur, Eric
2006-06-06
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric; Carey, James Edward
2016-03-01
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns.
Silicon-based visible and near-infrared optoelectric devices
Mazur, Eric; Carey, James Edward
2013-12-10
In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity great than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelenths, e.g., up to about 3.5 microns.
NASA Astrophysics Data System (ADS)
Chow, Philippe K.; Yang, Wenjie; Hudspeth, Quentin; Lim, Shao Qi; Williams, Jim S.; Warrender, Jeffrey M.
2018-04-01
We demonstrate that pulsed laser melting (PLM) of thin 1, 5, and 10 nm-thick vapor-deposited gold layers on silicon enhances its room-temperature sub-band gap infrared absorption, as in the case of ion-implanted and PLM-treated silicon. The former approach offers reduced fabrication complexity and avoids implantation-induced lattice damage compared to ion implantation and pulsed laser melting, while exhibiting comparable optical absorptance. We additionally observed strong broadband absorptance enhancement in PLM samples made using 5- and 10-nm-thick gold layers. Raman spectroscopy and Rutherford backscattering analysis indicate that such an enhancement could be explained by absorption by a metastable, disordered and gold-rich surface layer. The sheet resistance and the diode electrical characteristics further elucidate the role of gold-supersaturation in silicon, revealing the promise for future silicon-based infrared device applications.
Effect of PECVD SiNx/SiOyNx-Si interface property on surface passivation of silicon wafer
NASA Astrophysics Data System (ADS)
Jia, Xiao-Jie; Zhou, Chun-Lan; Zhu, Jun-Jie; Zhou, Su; Wang, Wen-Jing
2016-12-01
It is studied in this paper that the electrical characteristics of the interface between SiOyNx/SiNx stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiOyNx layer on interface parameters, such as interface state density Dit and fixed charge Qf, and the surface passivation quality of silicon are observed. Capacitance-voltage measurements reveal that inserting a thin SiOyNx layer between the SiNx and the silicon wafer can suppress Qf in the film and Dit at the interface. The positive Qf and Dit and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiOyNx film increasing. Prepared by deposition at a low temperature and a low ratio of N2O/SiH4 flow rate, the SiOyNx/SiNx stacks result in a low effective surface recombination velocity (Seff) of 6 cm/s on a p-type 1 Ω·cm-5 Ω·cm FZ silicon wafer. The positive relationship between Seff and Dit suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA050302) and the National Natural Science Foundation of China (Grant No. 61306076).
Chen, Lei; Wen, Jialin; Zhang, Peng; Yu, Bingjun; Chen, Cheng; Ma, Tianbao; Lu, Xinchun; Kim, Seong H; Qian, Linmao
2018-04-18
Topographic nanomanufacturing with a depth precision down to atomic dimension is of importance for advancement of nanoelectronics with new functionalities. Here we demonstrate a mask-less and chemical-free nanolithography process for regio-specific removal of atomic layers on a single crystalline silicon surface via shear-induced mechanochemical reactions. Since chemical reactions involve only the topmost atomic layer exposed at the interface, the removal of a single atomic layer is possible and the crystalline lattice beneath the processed area remains intact without subsurface structural damages. Molecular dynamics simulations depict the atom-by-atom removal process, where the first atomic layer is removed preferentially through the formation and dissociation of interfacial bridge bonds. Based on the parametric thresholds needed for single atomic layer removal, the critical energy barrier for water-assisted mechanochemical dissociation of Si-Si bonds was determined. The mechanochemical nanolithography method demonstrated here could be extended to nanofabrication of other crystalline materials.
Weber, Theresa; Bechthold, Maren; Winkler, Tobias; Dauselt, John; Terfort, Andreas
2013-11-01
Direct grafting of hyperbranched polyglycerol (PG) layers onto the oxide surfaces of steel, aluminum, and silicon has been achieved through surface-initiated polymerization of 2-hydroxymethyloxirane (glycidol). Optimization of the deposition conditions led to a protocol that employed N-methyl-2-pyrrolidone (NMP) as the solvent and temperatures of 100 and 140 °C, depending on the substrate material. In all cases, a linear growth of the PG layers could be attained, which allows for control of film thickness by altering the reaction time. At layer thicknesses >5 nm, the PG layers completely suppressed the adhesion of albumin, fibrinogen, and globulin. These layers were also at least 90% bio-repulsive for two bacteria strains, E. coli and Acinetobacter baylyi, with further improvement being observed when the PG film thickness was increased to 17 nm (up to 99.9% bio-repulsivity on silicon). Copyright © 2013 Elsevier B.V. All rights reserved.
Medicine Delivery Device with Integrated Sterilization and Detection
NASA Technical Reports Server (NTRS)
Sheam, Michael J.; Greer, Harold F.; Manohara, Harish
2013-01-01
Sterile delivery devices can be created by integrating a medicine delivery instrument with surfaces that are coated with germicidal and anti-fouling material. This requires that a large-surface-area template be developed within a constrained volume to ensure good contact between the delivered medicine and the germicidal material. Both of these can be integrated using JPL-developed silicon nanotip or cryo-etch black silicon technologies with atomic layer deposition (ALD) coating of specific germicidal layers. Nanofabrication techniques that are used to produce a microfluidics device are also capable of synthesizing extremely hig-hsurface-area templates in precise locations, and coating those surfaces with conformal films to manipulate their surface properties. This methodology has been successfully applied at JPL to produce patterned and coated silicon nanotips (also known as black silicon) to manipulate the hydrophilicity of surfaces to direct the spreading of fluids in microdevices. JPL s ALD technique is an ideal method to produce the highly conformal coatings required for this type of application. Certain materials, such as TiO2, have germicidal and anti-fouling properties when they are illuminated with UV light. The proposed delivery device contacts medicine with this high-surface-area black silicon surface coated with a thin-film germicidal deposited conformally with ALD. The coating can also be illuminated with ultraviolet light for the purpose of sterilization or identification of the medicine itself. This constrained volume that is located immediately prior to delivery into a patient, ensures that the medicine delivery device is inherently sterile.
XPS, AES and friction studies of single-crystal silicon carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1982-01-01
The surface chemistry and friction behavior of a single crystal silicon carbide surface parallel to the 0001 plane in sliding contact with iron at various temperatures to 1500 C in a vacuum of 3 x 10 nPa are investigated using X-ray photoelectron and Auger electron spectroscopy. Results show that graphite and carbide-type carbon are seen primarily on the silicon carbide surface in addition to silicon at temperatures to 800 C by both types of spectroscopy. The coefficients of friction for iron sliding against a silicon carbide surface parallel to the 0001 plane surface are found to be high at temperatures up to 800 C, with the silicon and carbide-type carbon at maximum intensity in the X-ray photoelectron spectroscopy at 800 C. The concentration of the graphite increases rapidly on the surface as the temperature is increased above 800 C, while the concentrations of the carbide-type carbon and silicon decrease rapidly and this presence of graphite is accompanied by a significant decrease in friction. Preheating the surfaces to 1500 C also gives dramatically lower coefficients of friction when reheating in the sliding temperature range of from room temperature to 1200 C, with this reduction in friction due to the graphite layer on the silicon carbide surface.
Solar cells with gallium phosphide/silicon heterojunction
NASA Astrophysics Data System (ADS)
Darnon, Maxime; Varache, Renaud; Descazeaux, Médéric; Quinci, Thomas; Martin, Mickaël; Baron, Thierry; Muñoz, Delfina
2015-09-01
One of the limitations of current amorphous silicon/crystalline silicon heterojunction solar cells is electrical and optical losses in the front transparent conductive oxide and amorphous silicon layers that limit the short circuit current. We propose to grow a thin (5 to 20 nm) crystalline Gallium Phosphide (GaP) by epitaxy on silicon to form a more transparent and more conducting emitter in place of the front amorphous silicon layers. We show that a transparent conducting oxide (TCO) is still necessary to laterally collect the current with thin GaP emitter. Larger contact resistance of GaP/TCO increases the series resistance compared to amorphous silicon. With the current process, losses in the IR region associated with silicon degradation during the surface preparation preceding GaP deposition counterbalance the gain from the UV region. A first cell efficiency of 9% has been obtained on ˜5×5 cm2 polished samples.
NASA Astrophysics Data System (ADS)
Litvinenko, S. V.; Bielobrov, D. O.; Lysenko, V.; Skryshevsky, V. A.
2016-08-01
The electronic tongue based on the array of low selective photovoltaic (PV) sensors and principal component analysis is proposed for detection of various alcohol solutions. A sensor array is created at the forming of p-n junction on silicon wafer with porous silicon layer on the opposite side. A dynamical set of sensors is formed due to the inhomogeneous distribution of the surface recombination rate at this porous silicon side. The sensitive to molecular adsorption photocurrent is induced at the scanning of this side by laser beam. Water, ethanol, iso-propanol, and their mixtures were selected for testing. It is shown that the use of the random dispersion of surface recombination rates on different spots of the rear side of p-n junction and principal component analysis of PV signals allows identifying mentioned liquid substances and their mixtures.
Tcholakian, Robert K.; Raad, Issam I.
2001-01-01
This study was performed to test the long-term antimicrobial efficacy of impregnated silicone catheters comprising an antimicrobial layer sandwiched between an external surface sheath and a luminal surface silicone sheath. The design of the catheter permits the introduction of various antimicrobials in addition to anticoagulants or antifibrins in the antimicrobial layer and allows their gradual release over a period of months after insertion. The in vitro data presented show that the catheter can provide antimicrobial activity for 90 days, after being replated for 15 7-day cycles of replating. When the catheters were immersed in human serum and incubated at 37°C, they demonstrated significant antimicrobial activity after more than 325 days of incubation. The significant long-term in vitro antimicrobial activity observed may imply effective in vivo activity for almost 1 year after insertion and could serve as a cost-effective alternative to surgically implantable silicone catheters. PMID:11408213
Molecular dynamics study of ionic liquid confined in silicon nanopore
NASA Astrophysics Data System (ADS)
Liu, Y. S.; Sha, M. L.; Cai, K. Y.
2017-05-01
Molecular dynamics simulations was carried to investigate the structure and dynamics of [BMIM][PF6] ionic liquid (IL) confined inside a slit-like silicon nanopore with pore size of 5.5 nm. It is clearly shown that the mass and number densities of the confined ILs are oscillatory, high density layers are also formed in the vicinity of the silicon surface, which indicates the existence of solid-like high density IL layers. The orientational investigation shows that the imidazolium ring of [BMIM] cation lies preferentially flat on the surface of the silicon pore walls. Furthermore, the mean squared displacement (MSD) calculation indicates that the dynamics of confined ILs are significantly slower than those observed in bulk systems. Our results suggest that the interactions between the pore walls and the ILs can strongly affect the structural and dynamical properties of the confined ILs.
NASA Astrophysics Data System (ADS)
Voronin, S. V.; Gureev, D. M.; Zolotarevskiĭ, A. V.
1990-06-01
An investigation was made of some characteristics of the formation of the structure of Al-Si alloys containing 10%, 12% and 20 % Si, and also of the commercial alloy V124 under conditions of surface fusion by laser-arc and laser sources. It was established that as a result of local fusion there was a change in the silicon deposition morphology, the α solid solution became oversaturated, and the eutectic point was shifted toward high silicon concentrations. It was found that the hardened layer retained its high hardness when treated at temperatures up to 250 °C. The commercial alloy V124 was used as an example to show that an alloyed layer with a controlled silicon concentration can be obtained on the surface by using a laser-arc or laser source.
Formation of porous surface layers in reaction bonded silicon nitride during processing
NASA Technical Reports Server (NTRS)
Shaw, N. J.; Glasgow, T. K.
1979-01-01
An effort was undertaken to determine if the formation of the generally observed layer of large porosity adjacent to the as-nitride surfaces of reaction bonded silicon nitrides could be prevented during processing. Isostatically pressed test bars were prepared from wet vibratory milled Si powder. Sintering and nitriding were each done under three different conditions:(1) bars directly exposed to the furnance atmosphere; (2) bars packed in Si powder; (3) bars packed in Si3N4 powder. Packing the bars in either Si of Si3N4 powder during sintering retarded formation of the layer of large porosity. Only packing the bars in Si prevented formation of the layer during nitridation. The strongest bars (316 MPa) were those sintered in Si and nitrided in Si3N4 despite their having a layer of large surface porosity; failure initiated at very large pores and inclusions. The alpha/beta ratio was found to be directly proportional to the oxygen content; a possible explanation for this relationship is discussed.
Method of controllong the deposition of hydrogenated amorphous silicon and apparatus therefor
Hanak, Joseph J.
1985-06-25
An improved method and apparatus for the controlled deposition of a layer of hydrogenated amorphous silicon on a substrate. Means is provided for the illumination of the coated surface of the substrate and measurement of the resulting photovoltage at the outermost layer of the coating. Means is further provided for admixing amounts of p type and n type dopants to the reactant gas in response to the measured photovoltage to achieve a desired level and type of doping of the deposited layer.
Lee, Jonghwan; Park, Cheolmin; Dao, Vinh Ai; Lee, Youn-Jung; Ryu, Kyungyul; Choi, Gyuho; Kim, Bonggi; Ju, Minkyu; Jeong, Chaehwan; Yi, Junsin
2013-11-01
In this paper, we present a detailed study on the local back contact (LBC) formation of rear-surface-passivated silicon solar cells, where both the LBC opening and metallization are realized by one-step alloying of a dot of fine pattern screen-printed aluminum paste with the silicon substrate. Based on energy dispersive spectrometer (EDS) and scanning electron microscopy (SEM) characterizations, we suggest that the aluminum distribution and the silicon concentration determine the local-back-surface-field (Al-p+) layer thickness, resistivity of the Al-p+ and hence the quality of the Al-p+ formation. The highest penetration of silicon concentration of 78.17% in aluminum resulted in the formation of a 5 microm-deep Al-p+ layer, and the minimum LBC resistivity of 0.92 x 10-6 omega cm2. The degradation of the rear-surface passivation due to high temperature of the LBC formation process can be fully recovered by forming gas annealing (FGA) at temperature and hydrogen content of 450 degrees C and 15%, respectively. The application of the optimized LBC of rear-surface-passivated by a dot of fine pattern screen(-) printed aluminum paste resulted in efficiency of up to 19.98% for the p-type czochralski (CZ) silicon wafers with 10.24 cm2 cell size at 649 mV open circuit voltage. By FGA for rear-surface passivation recovery, efficiencies up to 20.35% with a V(OC) of 662 mV, FF of 82%, and J(SC) of 37.5 mA/cm2 were demonstrated.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-01-01
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-04-06
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Silicon metal-semiconductor-metal photodetector
Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.
1997-01-01
Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.
Silicon metal-semiconductor-metal photodetector
Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.
1995-01-01
Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.
Fabrication of silicon-on-diamond substrate with an ultrathin SiO2 bonding layer
NASA Astrophysics Data System (ADS)
Nagata, Masahiro; Shirahama, Ryouya; Duangchan, Sethavut; Baba, Akiyoshi
2018-06-01
We proposed and demonstrated a sputter etching method to prepare both a flat surface (root-mean-square surface roughness of approximately 0.2–0.3 nm) and an ultrathin SiO2 bonding layer at an accuracy of approximately 5 nm in thickness to fabricate a silicon-on-diamond substrate (SOD). We also investigated a plasma activation method on a SiO2 surface using various gases. We found that O2 plasma activation is more suitable for the bonding between SiO2 and Si than N2 or Ar plasma activation. We speculate that the concentration of hydroxyl groups on the SiO2 surface was increased by O2 plasma activation. We fabricated the SOD substrate with an ultrathin (15 nm in thickness) SiO2 bonding layer using the sputter etching and O2 plasma activation methods.
NASA Astrophysics Data System (ADS)
Zare, Maryam; Shokrollahi, Abbas; Seraji, Faramarz E.
2011-09-01
Porous silicon (PS) layers were fabricated by anodization of low resistive (highly doped) p-type silicon in HF/ethanol solution, by varying current density, etching time and HF concentration. Atomic force microscopy (AFM) and field emission scanning electron microscope (FESEM) analyses were used to investigate the physical properties and reflection spectrum was used to investigate the optical behavior of PS layers in different fabrication conditions. Vertically aligned mesoporous morphology is observed in fabricated films and with HF concentration higher than 20%. The dependence of porosity, layer thickness and rms roughness of the PS layer on current density, etching time and composition of electrolyte is also observed in obtained results. Correlation between reflectivity and fabrication parameters was also explored. Thermal oxidation was performed on some mesoporous layers that resulted in changes of surface roughness, mean height and reflectivity of the layers.
Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said
2017-04-19
Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.
Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal
2015-07-01
This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.
Laser ablation of single-crystalline silicon by radiation of pulsed frequency-selective fiber laser
NASA Astrophysics Data System (ADS)
Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.
2015-07-01
We have studied the process of destruction of the surface of a single-crystalline silicon wafer scanned by the beam of a pulsed ytterbium-doped fiber laser radiation with a wavelength of λ = 1062 nm. It is established that the laser ablation can proceed without melting of silicon and the formation of a plasma plume. Under certain parameters of the process (radiation power, beam scan velocity, and beam overlap density), pronounced oxidation of silicon microparticles with the formation of a characteristic loose layer of fine powdered silicon dioxide has been observed for the first time. The range of lasing and beam scanning regimes in which the growth of SiO2 layer takes place is determined.
Review Application of Nanostructured Black Silicon
NASA Astrophysics Data System (ADS)
Lv, Jian; Zhang, Ting; Zhang, Peng; Zhao, Yingchun; Li, Shibin
2018-04-01
As a widely used semiconductor material, silicon has been extensively used in many areas, such as photodiode, photodetector, and photovoltaic devices. However, the high surface reflectance and large bandgap of traditional bulk silicon restrict the full use of the spectrum. To solve this problem, many methods have been developed. Among them, the surface nanostructured silicon, namely black silicon, is the most efficient and widely used. Due to its high absorption in the wide range from UV-visible to infrared, black silicon is very attractive for using as sensitive layer of photodiodes, photodetector, solar cells, field emission, luminescence, and other photoelectric devices. Intensive study has been performed to understand the enhanced absorption of black silicon as well as the response extended to infrared spectrum range. In this paper, the application of black silicon is systematically reviewed. The limitations and challenges of black silicon material are also discussed. This article will provide a meaningful introduction to black silicon and its unique properties.
Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang
2015-05-20
In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.
Nested potassium hydroxide etching and protective coatings for silicon-based microreactors
NASA Astrophysics Data System (ADS)
de Mas, Nuria; Schmidt, Martin A.; Jensen, Klavs F.
2014-03-01
We have developed a multilayer, multichannel silicon-based microreactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride and silicon oxide as masking materials) was developed to create a large number of channels (60 reaction channels connected to individual gas and liquid distributors) of significantly different depths (50-650 µm) with sloped walls (54.7° with respect to the (1 0 0) wafer surface) and precise control over their geometry. The wetted areas were coated with thermally grown silicon oxide and electron-beam evaporated nickel films to protect them from the corrosive fluorination environment. Up to four Pyrex layers were anodically bonded to three silicon layers in a total of six bonding steps to cap the microchannels and stack the reaction layers. The average pinhole density in as-evaporated films was 3 holes cm-2. Heating during anodic bonding (up to 350 °C for 4 min) did not significantly alter the film composition. Upon fluorine exposure, nickel films (160 nm thick) deposited on an adhesion layer of Cr (10 nm) over an oxidized silicon substrate (up to 500 nm thick SiO2) led to the formation of a nickel fluoride passivation layer. This microreactor was used to investigate direct fluorinations at room temperature over several hours without visible signs of film erosion.
NASA Astrophysics Data System (ADS)
Yafarov, R. K.
2017-12-01
Correlation dependences between variations of the structural-phase composition, morphology characteristics, and field-electron-emission (FEE) properties of surface-structured p-type silicon singlecrystalline (100)-oriented wafers have been studied during their stepwise high-dose carbon-ion-beam irradiation. It is established that the stepwise implantation of carbon decreases the FEE threshold and favors an increase in the maximum FEE-current density by more than two orders of magnitude. Physicochemical mechanisms involved in this modification of the properties of near-surface layers of silicon under carbon-ion implantation are considered.
NASA Astrophysics Data System (ADS)
Dahanayaka, Daminda; Wong, Andrew; Kaszuba, Philip; Moszkowicz, Leon; Slinkman, James; IBM SPV Lab Team
2014-03-01
Silicon-On-Insulator (SOI) technology has proved beneficial for RF cell phone technologies, which have equivalent performance to GaAs technologies. However, there is evident parasitic inversion layer under the Buried Oxide (BOX) at the interface with the high resistivity Si substrate. The latter is inferred from capacitance-voltage measurements on MOSCAPs. The inversion layer has adverse effects on RF device performance. We present data which, for the first time, show the extent of the inversion layer in the underlying substrate. This knowledge has driven processing techniques to suppress the inversion.
Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan
Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation ofmore » such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less
Polycrystalline Silicon: a Biocompatibility Assay
NASA Astrophysics Data System (ADS)
Pecheva, E.; Laquerriere, P.; Bouthors, Sylvie; Fingarova, D.; Pramatarova, L.; Hikov, T.; Dimova-Malinovska, D.; Montgomery, P.
2010-01-01
Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.
NASA Astrophysics Data System (ADS)
Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji
2017-02-01
Flexible hollow fibers with 530-μm-bore size were developed for infrared laser delivery. Sturdy hollow fibers were fabricated by liquid-phase coating techniques. A silica glass capillary is used as the substrate. Acrylic silicone resin is used as a buffer layer and the buffer layer is firstly coated on the inner surface of the capillary to protect the glass tube from chemical damages due to the following silver plating process. A silver layer was inner-plated by using the conventional silver mirror-plating technique. To improve adhesion of catalyst to the buffer layer, a surface conditioner has been introduced in the method of silver mirror-plating technique. We discuss improvement of transmission properties of sturdy polymer-coated silver hollow fibers for the Er:YAG laser and red pilot beam delivery.
NASA Technical Reports Server (NTRS)
Fossum, J. G.; Lindholm, F. A.; Shibib, M. A.
1979-01-01
Experimental data demonstrating the sensitivity of open-circuit voltage to front-surface conditions are presented for a variety of p-n-junction silicon solar cells. Analytical models accounting for the data are defined and supported by additional experiments. The models and the data imply that a) surface recombination significantly limits the open-circuit voltage (and the short-circuit current) of typical silicon cells, and b) energy-bandgap narrowing is important in the manifestation of these limitations. The models suggest modifications in both the structural design and the fabrication processing of the cells that would result in substantial improvements in cell performance. The benefits of one such modification - the addition of a thin thermal silicon-dioxide layer on the front surface - are indicated experimentally.
Synchrotron studies of top-down grown silicon nanowires
NASA Astrophysics Data System (ADS)
Turishchev, S. Yu.; Parinova, E. V.; Nesterov, D. N.; Koyuda, D. A.; Sivakov, V.; Schleusener, A.; Terekhov, V. A.
2018-06-01
Morphology of the top-down grown silicon nanowires obtained by metal-assisted wet-chemical approach on silicon substrates with different resistance were studied by scanning electron microscopy. Obtained arrays of compact grown Si nanowires were a subject for the high resolution electronic structures studies by X-ray absorption near edge structure technique performed with the usage of high intensity synchrotron radiation of the SRC storage ring of the University of Wisconsin-Madison. The different oxidation rates were found by investigation of silicon atoms local surrounding specificity of the highly developed surface and near surface layer that is not exceeded 70 nm. Flexibility of the wires arrays surface morphology and its composition is demonstrated allowing smoothly form necessary surface oxidation rate and using Si nanowires as a useful matrixes for a wide range of further functionalization.
A method for determining average damage depth of sawn crystalline silicon wafers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopori, B.; Devayajanam, S.; Basnyat, P.
2016-04-01
The depth of surface damage (or simply, damage) in crystalline silicon wafers, caused by wire sawing of ingots, is determined by performing a series of minority carrier lifetime (MCLT) measurements. Samples are sequentially etched to remove thin layers from each surface and MCLT is measured after each etch step. The thickness-removed (..delta..t) at which the lifetime reaches a peak value corresponds to the damage depth. This technique also allows the damage to be quantified in terms of effective surface recombination velocity (Seff). To accomplish this, the MCLT data are converted into an Seff vs ..delta..t plot, which represents a quantitativemore » distribution of the degree of damage within the surface layer. We describe a wafer preparation procedure to attain reproducible etching and MCLT measurement results. We also describe important characteristics of an etchant used for controllably removing thin layers from the wafer surfaces. Some typical results showing changes in the MCLT vs ..delta..t plots for different cutting parameters are given.« less
NASA Astrophysics Data System (ADS)
Shoemaker, James Richard
Fabrication of silicon carbide (SiC) semiconductor devices are of interest for aerospace applications because of their high-temperature tolerance. Growth of an insulating SiO2 layer on SiC by oxidation is a poorly understood process, and sometimes produces interface defects that degrade device performance. Accurate theoretical models of surface chemistry, using quantum mechanics (QM), do not exist because of the huge computational cost of solving Schrodinger's equation for a molecular cluster large enough to represent a surface. Molecular mechanics (MM), which describes a molecule as a collection of atoms interacting through classical potentials, is a fast computational method, good at predicting molecular structure, but cannot accurately model chemical reactions. A new hybrid QM/MM computational method for surface chemistry was developed and applied to silicon and SiC surfaces. The addition of MM steric constraints was shown to have a large effect on the energetics of O atom adsorption on SiC. Adsorption of O atoms on Si-terminated SiC(111) favors above surface sites, in contrast to Si(111), but favors subsurface adsorption sites on C- terminated SiC(111). This difference, and the energetics of C atom etching via CO2 desorption, can explain the observed poor performance of SiC devices in which insulating layers were grown on C-terminated surfaces.
Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan
2017-01-11
Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.
Wierer, Jonathan J.; Allerman, Andrew A.; Skogen, Erik J.; ...
2015-06-01
We demonstrate the selective layer disordering in intersubband Al 0.028Ga 0.972 N/AlN superlattices using a silicon nitride (SiN x) capping layer. The (SiN x) capped superlattice exhibits suppressed layer disordering under high-temperature annealing. In addition, the rate of layer disordering is reduced with increased SiN x thickness. The layer disordering is caused by Si diffusion, and the SiN x layer inhibits vacancy formation at the crystal surface and ultimately, the movement of Al and Ga atoms across the heterointerfaces. In conclusion, patterning of the SiN x layer results in selective layer disordering, an attractive method to integrate active and passivemore » III–nitride-based intersubband devices.« less
Field effect sensors for PCR applications
NASA Astrophysics Data System (ADS)
Taing, Meng-Houit; Sweatman, Denis R.
2004-03-01
The use of field effect sensors for biological and chemical sensing is widely employed due to its ability to make detections based on charge and surface potential. Because proteins and DNA almost always carry a charge [1], silicon can be used to micro fabricate such a sensor. The EIS structure (Electrolyte on Insulator on Silicon) provides a novel, label-free and simple to fabricate way to make a field effect DNA detection sensor. The sensor responds to fluctuating capacitance caused by a depletion layer thickness change at the surface of the silicon substrate through DNA adsorption onto the dielectric oxide/PLL (Poly-L-Lysine) surface. As DNA molecules diffuse to the sensor surface, they are bound to their complimentary capture probes deposited on the surface. The negative charge exhibited by the DNA forces negative charge carriers in the substrate to move away from the surface. This causes an n-type depletion layer substrate to thicken and a p-type to thin. The depletion layer thickness can be measured by its capacitance using an LCR meter. This experiment is conducted using the ConVolt (constant voltage) approach. Nucleic acids are amplified by an on chip PCR (Polymerase Chain Reaction) system and then fed into the sensor. The low ionic solution strength will ensure that counter-ions do not affect the sensor measurements. The sensor surface contains capture probes that bind to the pathogen. The types of pathogens we"ll be detecting include salmonella, campylobacter and E.Coli DNA. They are held onto the sensor surface by the positively charged Poly-L-Lysine layer. The electrolyte is biased through a pseudo-reference electrode. Pseudo reference electrodes are usually made from metals such as Platinum or Silver. The problem associated with "floating" biasing electrodes is they cannot provide stable biasing potentials [2]. They drift due to surface charging effects and trapped charges on the surface. To eliminate this, a differential system consisting of 2 sensors that share a common pseudo-reference electrode is used to cancel out this effect. This paper will look at a differential system for multi-arrayed biosensors fabricated on silicon.
Surface modification of paper on a continuous atmospheric-pressure-plasma system
NASA Astrophysics Data System (ADS)
Cruz-Barba, Luis Emilio
Plasma technologies for the continuous modification of materials in atmospheric-pressure-plasma conditions were used to evaluate the surface modification of paper under different plasma conditions. The generation of hydrophobic layers was used to characterize the efficiency of the originally designed system for future application in the paper industry. Generation of hydrophobic layers was carried out by deposition of thin layers from fluorine containing gases, as well as cross-linking of pre-deposited thin layers of hydrophobic materials, such as fluoropolymers and silicones, in a continuous system plasma reactor (CSPR). Physical and chemical characterization of these layers was carried out by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), contact angle goniometry, and water absorption evaluations. Pure gaseous CF4 and a CF4/CH4 mixture were used to deposit fluorinated layers, rendering paper surfaces with low to moderate relative surface atomic contents of fluorine (2.5 to 16.3%). Morphological characterization revealed that the deposition consists of small clusters of fluorinated species scattered on the surface. Contact angle evaluations (50°--70°) indicated a reduction in the water affinity of the paper. Thin layers of fluoropolymer pre-deposited on paper surfaces were cross-linked in the presence of CF4, CF4/CH4, and NH 3 plasmas. All of the gases proved to be effective for the cross-linking under different conditions. These cross-linked layers were determined to maintain the original polymer structure, consisting mainly of CF2-CF 2 and small quantities of CFx. Surface characterization by AFM indicated lower roughness values compared to the untreated additive-free paper (45.1 vs 67.1 nm). Paper samples treated by this approach showed a highly hydrophobic character with up to 160° contact angles, and water absorption was reduced by as much as 61.6%. Silicone layers were cross-linked in the presence of argon and oxygen plasmas. Characterization of the silicone-coated paper indicated, as in the case of fluoropolymers, the retention of the original chemical structure. Surface roughness values (AFM) were in the range of 11.8 to 18.2 nm, evidence of a very smooth surface. High hydrophobicity levels were reached, as shown by contact angles of up to 126°, and water absorption showed a maximum reduction of 76.8%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng
Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less
Method for making defect-free zone by laser-annealing of doped silicon
Narayan, Jagdish; White, Clark W.; Young, Rosa T.
1980-01-01
This invention is a method for improving the electrical properties of silicon semiconductor material. The method comprises irradiating a selected surface layer of the semiconductor material with high-power laser pulses characterized by a special combination of wavelength, energy level, and duration. The combination effects melting of the layer without degrading electrical properties, such as minority-carrier diffusion length. The method is applicable to improving the electrical properties of n- and p-type silicon which is to be doped to form an electrical junction therein. Another important application of the method is the virtually complete removal of doping-induced defects from ion-implanted or diffusion-doped silicon substrates.
NASA Astrophysics Data System (ADS)
Bishop, S. M.; Reynolds, C. L.; Liliental-Weber, Z.; Uprety, Y.; Zhu, J.; Wang, D.; Park, M.; Molstad, J. C.; Barnhardt, D. E.; Shrivastava, A.; Sudarshan, T. S.; Davis, R. F.
2007-04-01
The polytype and surface and defect microstructure of epitaxial layers grown on 4H( {11}overline{{2}} {0} ), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H( {11}overline{{2}} {0} ) and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H( {11}overline{{2}} {0} ) films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (˜3 × 104 cm-2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H( {11}overline{{2}} {0} ) films that decreased with film thickness to ˜106 cm-2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H( {11}overline{{2}} {0} ) epitaxial layers.
Sniegowski, Jeffrey J.; Rodgers, Murray S.; McWhorter, Paul J.; Aeschliman, Daniel P.; Miller, William M.
2002-01-01
A microturbine fabricated by a three-level semiconductor batch-fabrication process based on polysilicon surface-micromachining. The microturbine comprises microelectromechanical elements formed from three polysilicon multi-layer surfaces applied to a silicon substrate. Interleaving sacrificial oxide layers provides electrical and physical isolation, and selective etching of both the sacrificial layers and the polysilicon layers allows formation of individual mechanical and electrical elements as well as the required space for necessary movement of rotating turbine parts and linear elements.
Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface.
Nishio, Kengo; Yayama, Tomoe; Miyazaki, Takehide; Taoka, Noriyuki; Shimizu, Mitsuaki
2018-01-23
Despite the scientific and technological importance of removing interface dangling bonds, even an ideal model of a dangling-bond-free interface between GaN and an insulator has not been known. The formation of an atomically thin ordered buffer layer between crystalline GaN and amorphous SiO 2 would be a key to synthesize a dangling-bond-free GaN/SiO 2 interface. Here, we predict that a silicon oxynitride (Si 4 O 5 N 3 ) layer can epitaxially grow on a GaN(0001) surface without creating dangling bonds at the interface. Our ab initio calculations show that the GaN/Si 4 O 5 N 3 structure is more stable than silicon-oxide-terminated GaN(0001) surfaces. The electronic properties of the GaN/Si 4 O 5 N 3 structure can be tuned by modifying the chemical components near the interface. We also propose a possible approach to experimentally synthesize the GaN/Si 4 O 5 N 3 structure.
Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng
2016-03-04
Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less
Process development for waveguide chemical sensors with integrated polymeric sensitive layers
NASA Astrophysics Data System (ADS)
Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo
2008-02-01
Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.
Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR.
Shoffner, M A; Cheng, J; Hvichia, G E; Kricka, L J; Wilding, P
1996-01-01
The microreaction volumes of PCR chips (a microfabricated silicon chip bonded to a piece of flat glass to form a PCR reaction chamber) create a relatively high surface to volume ratio that increases the significance of the surface chemistry in the polymerase chain reaction (PCR). We investigated several surface passivations in an attempt to identify 'PCR friendly' surfaces and used those surfaces to obtain amplifications comparable with those obtained in conventional PCR amplification systems using polyethylene tubes. Surface passivations by a silanization procedure followed by a coating of a selected protein or polynucleotide and the deposition of a nitride or oxide layer onto the silicon surface were investigated. Native silicon was found to be an inhibitor of PCR and amplification in an untreated PCR chip (i.e. native slicon) had a high failure rate. A silicon nitride (Si(3)N(4) reaction surface also resulted in consistent inhibition of PCR. Passivating the PCR chip using a silanizing agent followed by a polymer treatment resulted in good amplification. However, amplification yields were inconsistent and were not always comparable with PCR in a conventional tube. An oxidized silicon (SiO(2) surface gave consistent amplifications comparable with reactions performed in a conventional PCR tube. PMID:8628665
NASA Technical Reports Server (NTRS)
Tran, Huy Kim; Sawko, Paul M.
1992-01-01
Silicon carbide (SiC) fiber is a material that may be used in advanced thermal protection systems (TPS) for future aerospace vehicles. SiC fiber's mechanical properties depend greatly on the presence or absence of sizing and its microstructure. In this research, silicon dioxide is found to be present on the surface of the fiber. Electron Spectroscopy for Chemical Analysis (ESCA) and Scanning Electron Microscopy (SEM) show that a thin oxide layer (SiO2) exists on the as-received fibers, and the oxide thickness increases when the fibers are exposed to high temperature. ESCA also reveals no evidence of Si-C bonding on the fiber surface on both as-received and heat treated fibers. The silicon oxide layer is thought to signal the decomposition of SiC bonds and may be partially responsible for the degradation in the breaking strength observed at temperatures above 400 C. The variation in electrical resistivity of the fibers with increasing temperature indicates a transition to a higher band gap material at 350 to 600 C. This is consistent with a decomposition of SiC involving silicon oxide formation.
Towards substrate engineering of graphene-silicon Schottky diode photodetectors.
Selvi, Hakan; Unsuree, Nawapong; Whittaker, Eric; Halsall, Matthew P; Hill, Ernie W; Thomas, Andrew; Parkinson, Patrick; Echtermeyer, Tim J
2018-02-15
Graphene-silicon Schottky diode photodetectors possess beneficial properties such as high responsivities and detectivities, broad spectral wavelength operation and high operating speeds. Various routes and architectures have been employed in the past to fabricate devices. Devices are commonly based on the removal of the silicon-oxide layer on the surface of silicon by wet-etching before deposition of graphene on top of silicon to form the graphene-silicon Schottky junction. In this work, we systematically investigate the influence of the interfacial oxide layer, the fabrication technique employed and the silicon substrate on the light detection capabilities of graphene-silicon Schottky diode photodetectors. The properties of devices are investigated over a broad wavelength range from near-UV to short-/mid-infrared radiation, radiation intensities covering over five orders of magnitude as well as the suitability of devices for high speed operation. Results show that the interfacial layer, depending on the required application, is in fact beneficial to enhance the photodetection properties of such devices. Further, we demonstrate the influence of the silicon substrate on the spectral response and operating speed. Fabricated devices operate over a broad spectral wavelength range from the near-UV to the short-/mid-infrared (thermal) wavelength regime, exhibit high photovoltage responses approaching 10 6 V W -1 and short rise- and fall-times of tens of nanoseconds.
METHOD OF FORMING TANTALUM SILICIDE ON TANTALUM SURFACES
Bowman, M.G.; Krikorian, N.H.
1961-10-01
A method is described for forming a non-corrosive silicide coating on tantalum. The coating is made through the heating of trirhenium silicides in contact with the tantalum object to approximately 1400 deg C at which temperature trirhenium silicide decomposes into rhenium and gaseous silicons. The silicon vapor reacts with the tantalum surface to form a tantalum silicide layer approximately 10 microns thick. (AEC)
Metal-assisted chemical etch porous silicon formation method
Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.
2004-09-14
A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.
Reflectance analysis of porosity gradient in nanostructured silicon layers
NASA Astrophysics Data System (ADS)
Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru
2017-12-01
In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.
NASA Astrophysics Data System (ADS)
Tong, Jingnan; To, Alexander; Lennon, Alison; Hoex, Bram
2017-08-01
Silicon nitride (SiN x ) synthesised by low-temperature plasma enhanced chemical vapour deposition (PECVD) is the most extensively used antireflection coating for crystalline silicon solar cells because of its tunable refractive index in combination with excellent levels of surface and bulk passivation. This has attracted a significant amount of research on developing SiN x films towards an optimal electrical and optical performance. Typically, recipes are first optimised in lab-scale reactors and subsequently, the best settings are transferred to high-throughput reactors. In this paper, we show that for one particular, but widely used, PECVD reactor configuration this upscaling is severely hampered by an important experimental artefact. Specifically, we report on the unintentional deposition of a dual layer structure in a dual mode AK 400 plasma reactor from Roth & Rau which has a significant impact on its surface passivation performance. It is found that the radio frequency (RF) substrate bias ignites an unintentional depositing plasma before the ignition of the main microwave (MW) plasma. This RF plasma deposits a Si-rich intervening SiN x layer (refractive index = 2.4) while using a recipe for stoichiometric SiN x . This layer was found to be 18 nm thick in our case and had an extraordinary impact on the Si surface passivation, witnessed by a reduction in effective surface recombination velocity from 22.5 to 6.2 cm/s. This experimental result may explain some “out of the ordinary” excellent surface passivation results reported recently for nearly stoichiometric SiN x films and has significant consequences when transferring these results to high-throughput deposition systems.
Microwave Induced Direct Bonding of Single Crystal Silicon Wafers
NASA Technical Reports Server (NTRS)
Budraa, N. K.; Jackson, H. W.; Barmatz, M.
1999-01-01
We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.
Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB 2
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; ...
2017-02-17
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
NASA Astrophysics Data System (ADS)
Nürnberger, Philipp; Reinhardt, Hendrik M.; Kim, Hee-Cheol; Pfeifer, Erik; Kroll, Moritz; Müller, Sandra; Yang, Fang; Hampp, Norbert A.
2017-12-01
In this study we examined the formation of laser-induced periodic surface structures (LIPSS) on silicon (Si) in dependence on the thickness of silicon-dioxide (SiO2) on top. LIPSS were generated in air by linearly polarized ≈8 nanosecond laser pulses with a fluence per pulse of 2.41 J cm-2 at a repetition rate of 100 kHz. For SiO2 layers <80 nm, LIPSS oriented perpendicular to the laser polarization were obtained, but for SiO2 layers >120 nm parallel oriented LIPSS were observed. In both cases the periodicity was about 80-90% of the applied laser wavelength (λ0 = 532 nm). By variation of the SiO2 layer thickness in the range between 80 nm-120 nm, the dominating orientation changes. Even orthogonally superimposed LIPSS with a periodicity of only 60% of the laser wavelength were found. We show that the transition of the orientation direction of LIPSS is related to the penetration depth of surface plasmon polariton (SPP) fields into the oxide layer.
The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions
NASA Astrophysics Data System (ADS)
Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.
2018-04-01
The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.
Schneider, Ling; Feidenhans’l, Nikolaj A.; Telecka, Agnieszka; Taboryski, Rafael J.
2016-01-01
We report a simple one-step maskless fabrication of inverted pyramids on silicon wafers by reactive ion etching. The fabricated surface structures exhibit excellent anti-reflective properties: The total reflectance of the nano inverted pyramids fabricated by our method can be as low as 12% without any anti-reflective layers, and down to only 0.33% with a silicon nitride coating. The results from angle resolved scattering measurements indicate that the existence of triple reflections is responsible for the reduced reflectance. The surfaces with the nano inverted pyramids also exhibit a distinct milky white color. PMID:27725703
The automated array assembly task of the low-cost silicon solar array project, phase 2
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.
1980-01-01
Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.
NASA Technical Reports Server (NTRS)
Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Pickering, C.; Grung, B. L.; Koepke, B.; Schuldt, S. B.
1979-01-01
The technical and economic feasibility of producing solar cell quality sheet silicon was investigated. It was hoped this could be done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Work was directed towards the solution of unique cell processing/design problems encountered with the silicon-ceramic (SOC) material due to its intimate contact with the ceramic substrate. Significant progress was demonstrated in the following areas; (1) the continuous coater succeeded in producing small-area coatings exhibiting unidirectional solidification and substatial grain size; (2) dip coater succeeded in producing thick (more than 500 micron) dendritic layers at coating speeds of 0.2-0.3 cm/sec; and (3) a standard for producing total area SOC solar cells using slotted ceramic substrates was developed.
Model Implementation of Boron Removal Using CaCl2-CaO-SiO2 Slag System for Solar-Grade Silicon
NASA Astrophysics Data System (ADS)
Chen, Hui; Wang, Ye; Zheng, Wenjia; Li, Qincan; Yuan, Xizhi; Morita, Kazuki
2017-12-01
A new CaCl2-CaO-SiO2 slag system was recently proposed to remove boron from metallurgy-grade silicon by oxidized chlorination and evaporation. To further investigate the boron transformation process at a high temperature, a model implementation to present the transfer of boron from molten silicon to the gas phase via slag is introduced. Heat transfer, fluid flow, the chemical reactions at the interface and surface, the mass transfer and diffusion of boron in the molten silicon and slag, and the evaporation of BOCl and CaCl2 were coupled in this model. After the confirmation of the thermal field, other critical parameters, including the boron partition ratios ( L B) for this slag from 1723 K to 1823 K (1450 °C to 1550 °C), the thicknesses of the velocity boundary layer at the surface and interface, the mass transfer coefficients of the boundary layer at the surface and interface, and partial pressure of BOCl in the gas phase were analyzed to determine the rate-limiting step. To verify this model implementation, boron removal experiments were carried out at various temperatures and with various initial mass ratios of slag to silicon ( μ). The evaporation rate of CaCl2 was also measured by thermogravimetry analysis (TGA).
Characterization of silicon heterojunctions for solar cells
2011-01-01
Conductive-probe atomic force microscopy (CP-AFM) measurements reveal the existence of a conductive channel at the interface between p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) as well as at the interface between n-type a-Si:H and p-type c-Si. This is in good agreement with planar conductance measurements that show a large interface conductance. It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions. These are intimately related to the band offsets, which allows us to determine these parameters with good precision. PMID:21711658
Surface roughness in XeF{sub 2} etching of a-Si/c-Si(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, A.A.E.; Beijerinck, H.C.W.
2005-01-01
Single wavelength ellipsometry and atomic force microscopy (AFM) have been applied in a well-calibrated beam-etching experiment to characterize the dynamics of surface roughening induced by chemical etching of a {approx}12 nm amorphous silicon (a-Si) top layer and the underlying crystalline silicon (c-Si) bulk. In both the initial and final phase of etching, where either only a-Si or only c-Si is exposed to the XeF{sub 2} flux, we observe a similar evolution of the surface roughness as a function of the XeF{sub 2} dose proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}0.2. In the transition region from the pure amorphous to themore » pure crystalline silicon layer, we observe a strong anomalous increase of the surface roughness proportional to D(XeF{sub 2}){sup {beta}} with {beta}{approx_equal}1.5. Not only the growth rate of the roughness increases sharply in this phase, also the surface morphology temporarily changes to a structure that suggests a cusplike shape. Both features suggest that the remaining a-Si patches on the surface act effectively as a capping layer which causes the growth of deep trenches in the c-Si. The ellipsometry data on the roughness are corroborated by the AFM results, by equating the thickness of the rough layer to 6 {sigma}, with {sigma} the root-mean-square variation of the AFM's distribution function of height differences. In the AFM data, the anomalous behavior is reflected in a too small value of {sigma} which again suggests narrow and deep surface features that cannot be tracked by the AFM tip. The final phase morphology is characterized by an effective increase in surface area by a factor of two, as derived from a simple bilayer model of the reaction layer, using the experimental etch rate as input. We obtain a local reaction layer thickness of 1.5 monolayer consistent with the 1.7 ML value of Lo et al. [Lo et al., Phys. Rev. B 47, 648 (1993)] that is also independent of surface roughness.« less
Fabrication Characterization of Solar-Cell Silicon Wafers Using a Circular-Rhombus Tool
NASA Astrophysics Data System (ADS)
Pa, Pai-Shan
2010-01-01
A new recycling fabrication method using a custom-built designed circular-rhombus tool for a process combining of micro-electroetching and electrochemical machining for removal of the surface layers from silicon wafers of solar cells is demonstrated. The low yields of epoxy film and Si3N4 thin-film depositions are important factors in semiconductor production. The aim of the proposed recycling fabrication method is to replace the current approach, which uses strong acid and grinding and may damage the physical structure of silicon wafers and pollute to the environment. A precisely engineered clean production approach for removal of surface microstructure layers from silicon wafers is to develop a mass production system for recycling defective or discarded silicon wafers of solar cells that can reduce pollution and cost. A large diameter cathode of the circular-rhombus tool (with a small gap between the anode and the cathode) corresponds to a high rate of epoxy film removal. A high feed rate of the silicon wafers combined with a high continuous DC electric voltage results in a high removal rate. The high rotational speed of the circular-rhombus tool increases the discharge mobility and improves the removal effect associated with the high feed rate of the workpiece. A small port radius or large end angle of the rhombus anode provides a large discharge space and good removal effect only a short period of time is required to remove the Si3N4 layer and epoxy film easily and cleanly.
Thin film GaP for solar cell application
NASA Astrophysics Data System (ADS)
Morozov, I. A.; Gudovskikh, A. S.; Kudryashov, D. A.; Nikitina, E. V.; Kleider, J.-P.; Myasoedov, A. V.; Levitskiy, V.
2016-08-01
A new approach to the silicon based heterostructures technology consisting of the growth of III-V compounds (GaP) on a silicon substrate by low-temperature plasma enhanced atomic layer deposition (PE-ALD) is proposed. The basic idea of the method is to use a time modulation of the growth process, i.e. time separated stages of atoms or precursors transport to the growing surface, migration over the surface, and crystal lattice relaxation for each monolayer. The GaP layers were grown on Si substrates by PE-ALD at 350°C with phosphine (PH3) and trimethylgallium (TMG) as sources of III and V atoms. Scanning and transmission electron microscopy demonstrate that the grown GaP films have homogeneous amorphous structure, smooth surface and a sharp GaP/Si interface. The GaP/Si heterostructures obtained by PE-ALD compare favourably to that conventionally grown by molecular beam epitaxy (MBE). Indeed, spectroscopic ellipsometry measurements indicate similar interband optical absorption while photoluminescence measurements indicate higher charge carrier effective lifetime. The better passivation properties of GaP layers grown by PE-ALD demonstrate a potential of this technology for new silicon based photovoltaic heterostructure
Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.
Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G
2012-07-15
The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Martin, M.; Massif, L.; Estephan, E.; Saab, M.-b.; Cloitre, T.; Larroque, C.; Agarwal, V.; Cuisinier, F. J. G.; Le Lay, G.; Gergely, C.
2011-10-01
We study the effect of different surface functionalization methods on the sensing performances of porous silicon (PSi) microcavities when used for detection of biomolecules. Previous research on porous silicon demonstrated versatility of these devices for sensor applications based on their photonic responses. The interface between biological molecules and the Si semiconductor surface is a key issue for improving biomolecular recognition in these devices. PSi microcavities were fabricated to reveal reflectivity pass-band spectra in the visible and near-infrared domain. To assure uniform infiltration of proteins the number of layers of Bragg mirrors was limited to five, the first layer being of high porosity. In one approach the devices were thermally oxidized and functionalized to assure covalent binding of molecules. Secondly, the as etched PSi surface was modified with adhesion peptides isolated via phage display technology and presenting high binding capacity for Si. Functionalization and molecular binding events were monitored via reflectometric interference spectra as shifts in the resonance peaks of the cavity structure due to changes in the refractive index when a biomolecule is attached to the large internal surface of PSi. Improved sensitivity is obtained due to the peptide interface linkers between the PSi and biological molecules compared to the silanized devices. We investigate the formation of peptide-Si interface layer via X-ray photoelectron spectroscopy, scanning tunneling microscopy and scanning electron microscopy.
Grafting of functionalized polymer on porous silicon surface using Grignard reagent
NASA Astrophysics Data System (ADS)
Tighilt, F.-Z.; Belhousse, S.; Sam, S.; Hamdani, K.; Lasmi, K.; Chazalviel, J. N.; Gabouze, N.
2017-11-01
Recently, considerable attention has been paid to the manipulation and the control of the physicochemical properties of porous silicon surfaces because of their crucial importance to the modern microelectronics industry. Hybrid structures consisting of deposited polymer on porous silicon surfaces are important to applications in microelectronics, photovoltaics and sensors (Ensafi et al., 2016; Kashyout et al., 2015; Osorio et al.; 2015; Hejjo et al., 2002) [1-4]. In many cases, the polymer can provide excellent mechanical and chemical protection of the substrate, changes the electrochemical interface characteristics of the substrate, and provides new ways to the functionalization of porous silicon surfaces for molecular recognition and sensing. In this work, porous silicon surface was modified by anodic treatment in ethynylmagnesium bromide electrolyte leading to the formation of a polymeric layer bearing some bromine substituents. Subsequently, the formed polymer is functionalized with amine molecules containing functional groups (carboxylic acid or pyridine) by a substitution reaction between bromine sites and amine groups (Hofmann reaction). The chemical composition of the modified porous silicon surfaces was investigated and the grafting of polymeric chains and functional groups on the porous silicon surface was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) which displayed the principal characteristic peaks attributed to the different functional groups. Furthermore, the surface of the material was examined by scanning electron microscopy (SEM).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, S., E-mail: rapp@hm.edu; Erlangen Graduate School in Advanced Optical Technologies; Heinrich, G.
2015-03-14
In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deepermore » understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.« less
Structured Antireflective Coating for Silicon at Submillimeter Frequencies
NASA Astrophysics Data System (ADS)
Padilla, Estefania
2018-01-01
Observations at millimeter and submillimeter wavelengths are useful for many astronomical studies, such as the polarization of the cosmic microwave background or the formation and evolution of galaxy clusters. In order to allow observations over a broad spectral bandwidth (approximatively from 70 to 420 GHz), innovative broadband anti-reflective (AR) optics must be utilized in submillimeter telescopes. Due to its low loss and high refractive index, silicon is a fine optical material at these frequencies, but an AR coating with multiple layers is required to maximize its transmission over a wide bandwidth. Structured multilayer AR coatings for silicon are currently being developed at Caltech and JPL. The development process includes the design of the structured layers with commercial electromagnetic simulation software, the fabrication by using deep reactive ion etching, and the test of the transmission and reflection of the patterned wafers. Geometrical 3D patterns have successfully been etched at the surface of the silicon wafers creating up to 2 layers with different effective refractive indices. The transmission and reflection of single AR layer wafers, measured between 75 and 330 GHz, are close to the simulation predictions. These results allow the development of new designs with 5 or 6 AR layers in order to improve the bandwidth and transmission of the silicon AR coatings.
Pedrueza, E; Sancho-Parramon, J; Bosch, S; Valdés, J L; Martinez-Pastor, J P
2013-02-15
The anti-reflective effect of dielectric coatings used in silicon solar cells has traditionally been the subject of intensive studies and practical applications. In recent years the interest has permanently grown in plasmonic layers based on metal nanoparticles, which are shown to increase light trapping in the underlying silicon. In the present work we have combined these two concepts by means of in situ synthesis of Au nanoparticles in a dielectric matrix (TiO2), which is commonly used as an anti-reflective coating in silicon solar cells, and added the third element: a 10-20% porosity in the matrix. The porosity is formed by means of a controllable wet etching by low concentration HF. As a consequence, the experimentally measured reflectance of silicon coated by such a plasmonic layer decreases to practically zero in a broad wavelength region around the localized surface plasmon resonance. Furthermore, we demonstrate that extinction and reflectance spectra of silicon coated by the plasmonic films can be successfully accounted for by means of Fresnel formulae, in which a double refractive index of the metal-dielectric material is used. This double refractive index cannot be explained by effective medium theory (Maxwell-Garnett, for example) and appears when the contribution of Au nanoparticles located at the TiO2/Si interface is high enough to result in formation of interface surface plasmon modes.
Light-induced V{sub oc} increase and decrease in high-efficiency amorphous silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuckelberger, M., E-mail: michael.stuckelberger@epfl.ch; Riesen, Y.; Despeisse, M.
High-efficiency amorphous silicon (a-Si:H) solar cells were deposited with different thicknesses of the p-type amorphous silicon carbide layer on substrates of varying roughness. We observed a light-induced open-circuit voltage (V{sub oc}) increase upon light soaking for thin p-layers, but a decrease for thick p-layers. Further, the V{sub oc} increase is enhanced with increasing substrate roughness. After correction of the p-layer thickness for the increased surface area of rough substrates, we can exclude varying the effective p-layer thickness as the cause of the substrate roughness dependence. Instead, we explain the observations by an increase of the dangling-bond density in both themore » p-layer—causing a V{sub oc} increase—and in the intrinsic absorber layer, causing a V{sub oc} decrease. We present a mechanism for the light-induced increase and decrease, justified by the investigation of light-induced changes of the p-layer and supported by Advanced Semiconductor Analysis simulation. We conclude that a shift of the electron quasi-Fermi level towards the conduction band is the reason for the observed V{sub oc} enhancements, and poor amorphous silicon quality on rough substrates enhances this effect.« less
He, Jian; Gao, Pingqi; Ling, Zhaoheng; Ding, Li; Yang, Zhenhai; Ye, Jichun; Cui, Yi
2016-12-27
Silicon/organic heterojunction solar cells (HSCs) based on conjugated polymers, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and n-type silicon (n-Si) have attracted wide attention due to their potential advantages of high efficiency and low cost. However, the state-of-the-art efficiencies are still far from satisfactory due to the inferior junction quality. Here, facile treatments were applied by pretreating the n-Si wafer in tetramethylammonium hydroxide (TMAH) solution and using a capping copper iodide (CuI) layer on the PEDOT:PSS layer to achieve a high-quality Schottky junction. Detailed photoelectric characteristics indicated that the surface recombination was greatly suppressed after TMAH pretreatment, which increased the thickness of the interfacial oxide layer. Furthermore, the CuI capping layer induced a strong inversion layer near the n-Si surface, resulting in an excellent field effect passivation. With the collaborative improvements in the interface chemical and electrical passivation, a competitive open-circuit voltage of 0.656 V and a high fill factor of 78.1% were achieved, leading to a stable efficiency of over 14.3% for the planar n-Si/PEDOT:PSS HSCs. Our findings suggest promising strategies to further exploit the full voltage as well as efficiency potentials for Si/organic solar cells.
A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure
Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming
2007-01-01
This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in a small variation in the resistance of the piezoelectric layer. The air flow velocity is determined by measuring the change in resistance using an external LCR meter. The experimental results indicate that the flow sensor has a high sensitivity (0.0284 Ω/ms-1), a high velocity measurement limit (45 ms-1) and a rapid response time (0.53 s). PMID:28903233
Sun, Yiling; Gao, Pingqi; He, Jian; Zhou, Suqiong; Ying, Zhiqin; Yang, Xi; Xiang, Yong; Ye, Jichun
2016-12-01
Silicon/organic hybrid solar cells have recently attracted great attention because they combine the advantages of silicon (Si) and the organic cells. In this study, we added a patterned passivation layer of silicon nitride (SiNx:H) onto the rear surface of the Si substrate in a Si/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) hybrid solar cell, enabling an improvement of 0.6 % in the power conversion efficiency (PCE). The addition of the SiNx:H layer boosted the open circuit voltage (V oc) from 0.523 to 0.557 V, suggesting the well-passivation property of the patterned SiNx:H thin layer that was created by plasma-enhanced chemical vapor deposition and lithography processes. The passivation properties that stemmed from front PSS, rear-SiNx:H, front PSS/rear-SiNx:H, etc. are thoroughly investigated, in consideration of the process-related variations.
Analysis of the silicone polymer surface aging profile with laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Wang, Xilin; Hong, Xiao; Wang, Han; Chen, Can; Zhao, Chenlong; Jia, Zhidong; Wang, Liming; Zou, Lin
2017-10-01
Silicone rubber composite materials have been widely used in high voltage transmission lines for anti-pollution flashover. The aging surface of silicone rubber materials decreases service properties, causing loss of the anti-pollution ability. In this paper, as an analysis method requiring no sample preparation that is able to be conducted on site and suitable for nearly all types of materials, laser-induced breakdown spectroscopy (LIBS) was used for the analysis of newly prepared and aging (out of service) silicone rubber composites. With scanning electron microscopy (SEM) and hydrophobicity test, LIBS was proven to be nearly non-destructive for silicone rubber. Under the same LIBS testing parameters, a linear relationship was observed between ablation depth and laser pulses number. With the emission spectra, all types of elements and their distribution in samples along the depth direction from the surface to the inner part were acquired and verified with EDS results. This research showed that LIBS was suitable to detect the aging layer depth and element distribution of the silicone rubber surface.
Structure analysis of aqueous ferrofluids at interface with silicon: neutron reflectometry data
NASA Astrophysics Data System (ADS)
Gapon, I. V.; Petrenko, V. I.; Bulavin, L. A.; Balasoiu, M.; Kubovcikova, M.; Zavisova, V.; Koneracka, M.; Kopcansky, P.; Chiriac, H.; Avdeev, M. V.
2017-05-01
Adsorption of nanoparticles from aqueous ferrofluids (FFs) on solid surface (crystalline silicon) was studied by neutron reflectometry (NR). Two kinds of FFs were considered. First kind was heavy water-based ferrofluids with magnetite nanoparticles coated by double layer of sodium oleate. Second one FF was cobalt ferrite nanoparticles stabilized by lauric acid/sodium n-dodecylsulphate layer and dispersed in water. It was obtained only a single adsorption layer for two types of ferrofluids. The impact of the magnetic nanoparticles concentration and geometry was considered in frame of the adsorption characteristic of FFs.
Surface-micromachined chain for use in microelectromechanical structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, Sr., George E.
2001-01-01
A surface-micromachined chain and a microelectromechanical (MEM) structure incorporating such a chain are disclosed. The surface-micromachined chain can be fabricated in place on a substrate (e.g. a silicon substrate) by depositing and patterning a plurality of alternating layers of a chain-forming material (e.g. polycrystalline silicon) and a sacrificial material (e.g. silicon dioxide or a silicate glass). The sacrificial material is then removed by etching to release the chain for movement. The chain has applications for forming various types of MEM devices which include a microengine (e.g. an electrostatic motor) connected to rotate a drive sprocket, with the surface-micromachined chain beingmore » connected between the drive sprocket and one or more driven sprockets.« less
Method for reducing formation of electrically resistive layer on ferritic stainless steels
Rakowski, James M.
2013-09-10
A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surface region that has been depleted of silicon relative to a remainder of the steel.
Almadori, Y; Borowik, Ł; Chevalier, N; Barbé, J-C
2017-01-27
Thermally induced solid-state dewetting of ultra-thin films on insulators is a process of prime interest, since it is capable of easily forming nanocrystals. If no particular treatment is performed to the film prior to the solid-state dewetting, it is already known that the size, the shape and the density of nanocrystals is governed by the initial film thickness. In this paper, we report a novel approach to control the size and the surface density of silicon nanocrystals based on an argon-implantation preliminary surface treatment. Using 7.5 nm thin layers of silicon, we show that increasing the implantation dose tends to form smaller silicon nanocrystals with diameter and height lower than 50 nm and 30 nm, respectively. Concomitantly, the surface density is increased by a factor greater than 20, going from 5 μm -2 to values over 100 μm -2 .
Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments
NASA Astrophysics Data System (ADS)
Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.
2015-10-01
Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.
Characterizing the surface charge of synthetic nanomembranes by the streaming potential method
Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo
2010-01-01
The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Yimao, E-mail: yimao.wan@anu.edu.au; Bullock, James; Cuevas, Andres
2015-05-18
This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta{sub 2}O{sub 5}) underneath plasma enhanced chemical vapour deposited silicon nitride (SiN{sub x}). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta{sub 2}O{sub 5} and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω·cm and n-type 1.0 Ω·cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm{sup 2} and 68 fA/cm{sup 2} are measured on 150 Ω/sq boron-diffused p{sup +} and 120 Ω/sq phosphorus-diffused n{sup +} c-Si, respectively. Capacitance–voltage measurements reveal a negativemore » fixed insulator charge density of −1.8 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5} film and −1.0 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5}/SiN{sub x} stack. The Ta{sub 2}O{sub 5}/SiN{sub x} stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.« less
NASA Astrophysics Data System (ADS)
Withanage, Wenura K.; Penmatsa, Sashank V.; Acharya, Narendra; Melbourne, Thomas; Cunnane, D.; Karasik, B. S.; Xi, X. X.
2018-07-01
We report on the growth of high quality MgB2 thin films on silicon and silicon-on-insulator substrates by hybrid physical chemical vapor deposition. A boron buffer layer was deposited on all sides of the Si substrate to prevent the reaction of Mg vapor and Si. Ar ion milling at a low angle of 1° was used to reduce the roughness of the boron buffer layer before the MgB2 growth. An Ar ion milling at low angle of 1° was also applied to the MgB2 surface to reduce its roughness. The resultant MgB2 films showed excellent superconducting properties and a smooth surface. The process produces thin MgB2 films suitable for waveguide-based superconducting hot electron bolometers and other MgB2-based electronic devices.
NASA Astrophysics Data System (ADS)
Bezdomnikov, A. A.; Emel'yanenko, A. M.; Emel'yanenko, K. A.; Boinovich, L. B.
2018-01-01
A method is proposed for fabricating textured superhydrophobic surfaces of silicone rubber with mechanical resistance toward liquid or freezing aqueous solutions. The anti-icing characteristics of silicone rubber samples that differ in the wetting characteristics and mechanical stability of their micro- and nanotextures are derived by analyzing the delays in the freezing of supercooled sessile water drops deposited on the sample surface. The longest delay in freezings are observed for sessile water drops on superhydrophobic surfaces prepared by laser texturing with subsequent application of a layer of a hydrophobic agent to consolidate the textural elements. Delay in freezings can be as long as tens of hours on such surfaces at T = -18°C. The prepared superhydrophobic surfaces exhibit greater anti-icing ability with respect to aqueous salt solutions than to deionized water.
Surface plasmons in new waveguide structures containing ultra-thin metal and silicon layers
NASA Astrophysics Data System (ADS)
Shabat, M. M.; Ubeid, M. F.; Abu Rahma, M. A.
2018-05-01
Reflected and transmitted powers due to the interaction of electromagnetic waves with a structure containing thin metal and silicon layer are investigated in more detail. The formulations for the transverse electric wave case are provided. Transfer matrix method is used to find the reflection and the transmission coefficients at each interface. Numerical results are presented to show the effect of the structure parameters, the incidence angle and the wavelength on the reflected, transmitted and loss powers.
Steady-state solution growth of microcrystalline silicon on nanocrystalline seed layers on glass
NASA Astrophysics Data System (ADS)
Bansen, R.; Ehlers, C.; Teubner, Th.; Boeck, T.
2016-09-01
The growth of polycrystalline silicon layers on glass from tin solutions at low temperatures is presented. This approach is based on the steady-state solution growth of Si crystallites on nanocrystalline seed layers, which are prepared in a preceding process step. Scanning electron microscopy and atomic force microscopy investigations reveal details about the seed layer surfaces, which consist of small hillocks, as well as about Sn inclusions and gaps along the glass substrate after solution growth. The successful growth of continuous microcrystalline Si layers with grain sizes up to several ten micrometers shows the feasibility of the process and makes it interesting for photovoltaics. Project supported by the German Research Foundation (DFG) (No. BO 1129/5-1).
The study of surface acoustic wave charge transfer device
NASA Technical Reports Server (NTRS)
Papanicolaou, N.; Lin, H. C.
1978-01-01
A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.
Ultra-large nonlinear parameter in graphene-silicon waveguide structures.
Donnelly, Christine; Tan, Dawn T H
2014-09-22
Mono-layer graphene integrated with optical waveguides is studied for the purpose of maximizing E-field interaction with the graphene layer, for the generation of ultra-large nonlinear parameters. It is shown that the common approach used to minimize the waveguide effective modal area does not accurately predict the configuration with the maximum nonlinear parameter. Both photonic and plasmonic waveguide configurations and graphene integration techniques realizable with today's fabrication tools are studied. Importantly, nonlinear parameters exceeding 10(4) W(-1)/m, two orders of magnitude larger than that in silicon on insulator waveguides without graphene, are obtained for the quasi-TE mode in silicon waveguides incorporating mono-layer graphene in the evanescent part of the optical field. Dielectric loaded surface plasmon polariton waveguides incorporating mono-layer graphene are observed to generate nonlinear parameters as large as 10(5) W(-1)/m, three orders of magnitude larger than that in silicon on insulator waveguides without graphene. The ultra-large nonlinear parameters make such waveguides promising platforms for nonlinear integrated optics at ultra-low powers, and for previously unobserved nonlinear optical effects to be studied in a waveguide platform.
Laser ablation mechanism of transparent layers on semiconductors with ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Rublack, Tino; Hartnauer, Stefan; Mergner, Michael; Muchow, Markus; Seifert, Gerhard
2011-12-01
Transparent dielectric layers on semiconductors are used as anti-reflection coatings both for photovoltaic applications and for mid-infrared optical elements. We have shown recently that selective ablation of such layers is possible using ultrashort laser pulses at wavelengths being absorbed by the semiconductor. To get a deeper understanding of the ablation mechanism, we have done ablation experiments for different transparent materials, in particular SiO2 and SixNy on silicon, using a broad range of wavelengths ranging from UV to IR, and pulse durations between 50 and 2000 fs. The characterization of the ablated regions was done by light microscopy and atomic force microscopy (AFM). Utilizing laser wavelengths above the silicon band gap, selective ablation of the dielectric layer without noticeable damage of the opened silicon surface is possible. In contrast, ultrashort pulses (1-2 ps) at mid-infrared wavelengths already cause damage in the silicon at lower intensities than in the dielectric layer, even when a vibrational resonance (e.g. at λ = 9.26 μm for SiO2) is addressed. The physical processes behind this, on the first glance counterintuitive, observation will be discussed.
Surface Modification of Silicon Nanoparticles by an "Ink" Layer for Advanced Lithium Ion Batteries.
Wu, Fang; Wang, Hao; Shi, Jiayuan; Yan, Zongkai; Song, Shipai; Peng, Bangheng; Zhang, Xiaokun; Xiang, Yong
2018-06-13
Owing to its high specific capacity, silicon is considered as a promising anode material for lithium ion batteries (LIBs). However, the synthesis strategies for previous silicon-based anode materials with a delicate hierarchical structure are complicated or hazardous. Here, Prussian blue analogues (PBAs), widely used in ink, are deposited on the silicon nanoparticle surface (PBAs@Si-450) to modify silicon nanoparticles with transition metal atoms and a N-doped carbon layer. A facile and green synthesis procedure of PBAs@Si-450 nanocomposites was carried out in a coprecipitation process, combined with a thermal treatment process at 450 °C. As-prepared PBAs@Si-450 delivers a reversible charge capacity of 725.02 mAh g -1 at 0.42 A g -1 after 200 cycles. Moreover, this PBAs@Si-450 composite exhibits an exceptional rate performance of ∼1203 and 263 mAh g -1 at current densities of 0.42 and 14 A g -1 , respectively, and fully recovered to 1136 mAh g -1 with the current density returning to 0.42 A g -1 . Such a novel architecture of PBAs@Si-450 via a facile fabrication process represents a promising candidate with a high-performance silicon-based anode for LIBs.
Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrhardt, Fabien; Muller, Dominique; Slaoui, Abdelilah, E-mail: abdelilah.slaoui@unistra.fr
2016-05-07
Dopant impurities, such as gallium (Ga), indium (In), and phosphorus (P), were incorporated into silicon-rich silicon oxynitride (SRSON) thin films by the ion implantation technique. To form silicon nanoparticles, the implanted layers were thermally annealed at temperatures up to 1100 °C for 60 min. This thermal treatment generates a phase separation of the silicon nanoparticles from the SRSON matrix in the presence of the dopant atoms. We report on the position of the dopant species within the host matrix and relative to the silicon nanoparticles, as well as on the effect of the dopants on the crystalline structure and the size ofmore » the Si nanoparticles. The energy-filtered transmission electron microscopy technique is thoroughly used to identify the chemical species. The distribution of the dopant elements within the SRSON compound is determined using Rutherford backscattering spectroscopy. Energy dispersive X-ray mapping coupled with spectral imaging of silicon plasmons was performed to spatially localize at the nanoscale the dopant impurities and the silicon nanoparticles in the SRSON films. Three different behaviors were observed according to the implanted dopant type (Ga, In, or P). The In-doped SRSON layers clearly showed separated nanoparticles based on indium, InOx, or silicon. In contrast, in the P-doped SRSON layers, Si and P are completely miscible. A high concentration of P atoms was found within the Si nanoparticles. Lastly, in Ga-doped SRSON the Ga atoms formed large nanoparticles close to the SRSON surface, while the Si nanoparticles were localized in the bulk of the SRSON layer. In this work, we shed light on the mechanisms responsible for these three different behaviors.« less
Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Zahidur R., E-mail: zr.chowdhury@utoronto.ca; Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca
2014-12-29
This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxide–plasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparentmore » passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666 mV, J{sub SC} of 29.5 mA-cm{sup −2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.« less
Method for rapid, controllable growth and thickness, of epitaxial silicon films
Wang, Qi [Littleton, CO; Stradins, Paul [Golden, CO; Teplin, Charles [Boulder, CO; Branz, Howard M [Boulder, CO
2009-10-13
A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.
Polycrystalline Silicon Thin-film Solar cells with Plasmonic-enhanced Light-trapping
Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas
2012-01-01
One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm2, which can be increased up to 17-18 mA/cm2 (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing conditions. An optimised nanoparticle array alone results in cell Jsc enhancement of about 28%, similar to the effect of the diffuse reflector. The photocurrent can be further increased by coating the nanoparticles by a low refractive index dielectric, like MgF2, and applying the diffused reflector. The complete plasmonic cell structure comprises the polycrystalline silicon film, a silver nanoparticle array, a layer of MgF2, and a diffuse reflector. The Jsc for such cell is 21-23 mA/cm2, up to 45% higher than Jsc of the original cell without light-trapping or ~25% higher than Jsc for the cell with the diffuse reflector only. Introduction Light-trapping in silicon solar cells is commonly achieved via light scattering at textured interfaces. Scattered light travels through a cell at oblique angles for a longer distance and when such angles exceed the critical angle at the cell interfaces the light is permanently trapped in the cell by total internal reflection (Animation 1: Light-trapping). Although this scheme works well for most solar cells, there are developing technologies where ultra-thin Si layers are produced planar (e.g. layer-transfer technologies and epitaxial c-Si layers) 1 and or when such layers are not compatible with textures substrates (e.g. evaporated silicon) 2. For such originally planar Si layer alternative light trapping approaches, such as diffuse white paint reflector 3, silicon plasma texturing 4 or high refractive index nanoparticle reflector 5 have been suggested. Metal nanoparticles can effectively scatter incident light into a higher refractive index material, like silicon, due to the surface plasmon resonance effect 6. They also can be easily formed on the planar silicon cell surface thus offering a light-trapping approach alternative to texturing. For a nanoparticle located at the air-silicon interface the scattered light fraction coupled into silicon exceeds 95% and a large faction of that light is scattered at angles above critical providing nearly ideal light-trapping condition (Animation 2: Plasmons on NP). The resonance can be tuned to the wavelength region, which is most important for a particular cell material and design, by varying the nanoparticle average size, surface coverage and local dielectric environment 6,7. Theoretical design principles of plasmonic nanoparticle solar cells have been suggested 8. In practice, Ag nanoparticle array is an ideal light-trapping partner for poly-Si thin-film solar cells because most of these design principle are naturally met. The simplest way of forming nanoparticles by thermal annealing of a thin precursor Ag film results in a random array with a relatively wide size and shape distribution, which is particularly suitable for light-trapping because such an array has a wide resonance peak, covering the wavelength range of 700-900 nm, important for poly-Si solar cell performance. The nanoparticle array can only be located on the rear poly-Si cell surface thus avoiding destructive interference between incident and scattered light which occurs for front-located nanoparticles 9. Moreover, poly-Si thin-film cells do not requires a passivating layer and the flat base-shaped nanoparticles (that naturally result from thermal annealing of a metal film) can be directly placed on silicon further increases plasmonic scattering efficiency due to surface plasmon-polariton resonance 10. The cell with the plasmonic nanoparticle array as described above can have a photocurrent about 28% higher than the original cell. However, the array still transmits a significant amount of light which escapes through the rear of the cell and does not contribute into the current. This loss can be mitigated by adding a rear reflector to allow catching transmitted light and re-directing it back to the cell. Providing sufficient distance between the reflector and the nanoparticles (a few hundred nanometers) the reflected light will then experience one more plasmonic scattering event while passing through the nanoparticle array on re-entering the cell and the reflector itself can be made diffuse - both effects further facilitating light scattering and hence light-trapping. Importantly, the Ag nanoparticles have to be encapsulated with an inert and low refractive index dielectric, like MgF2 or SiO2, from the rear reflector to avoid mechanical and chemical damage 7. Low refractive index for this cladding layer is required to maintain a high coupling fraction into silicon and larger scattering angles, which are ensured by the high optical contrast between the media on both sides of the nanoparticle, silicon and dielectric 6. The photocurrent of the plasmonic cell with the diffuse rear reflector can be up to 45% higher than the current of the original cell or up to 25% higher than the current of an equivalent cell with the diffuse reflector only. PMID:22805108
Ogawa, Tomohiro; Ezoe, Yuichiro; Moriyama, Teppei; Mitsuishi, Ikuyuki; Kakiuchi, Takuya; Ohashi, Takaya; Mitsuda, Kazuhisa; Putkonen, Matti
2013-08-20
To enhance x-ray reflectivity of silicon micropore optics using dry etching of silicon (111) wafers, iridium coating is tested by use of atomic layer deposition. An iridium layer is successfully formed on sidewalls of tiny micropores with a pore width of 20 μm and depth of 300 μm. The film thickness is ∼20 nm. An enhanced x-ray reflectivity compared to that of silicon is confirmed at Ti Kα 4.51 keV, for what we believe to be the first time, with this type of optics. Some discrepancies from a theoretical reflectivity curve of iridium-coated silicon are noticed at small incident angles <1.3°. When a geometrical shadowing effect due to occultation by a ridge existing on the sidewalls is taken into account, the observed reflectivity becomes well represented by the modified theoretical curve. An estimated surface micro roughness of ∼1 nm rms is consistent with atomic force microscope measurements of the sidewalls.
Integrated TiN coated porous silicon supercapacitor with large capacitance per foot print
NASA Astrophysics Data System (ADS)
Grigoras, Kestutis; Grönberg, Leif; Ahopelto, Jouni; Prunnila, Mika
2017-05-01
We have fabricated a micro-supercapacitor with porous silicon electrodes coated with TiN by atomic layer deposition technique. The coating provides an efficient surface passivation and high electrical conductivity of the electrodes, resulting in stable and almost ideal electrochemical double layer capacitor behavior with characteristics comparable to the best carbon based micro-supercapacitors. Stability of the supercapacitor is verified by performing 50 000 voltammetry cycles with high capacitance retention obtained. Silicon microfabrication techniques facilitate integration of both supercapacitor electrodes inside the silicon substrate and, in this work, such in-chip supercapacitor is demonstrated. This approach allows realization of very high capacitance per foot print area. The in-chip micro-supercapacitor can be integrated with energy harvesting elements and can be used in wearable and implantable microdevices.
Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.
1991-01-01
A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.
Baek, Seung-Wook; Shim, Jae-Hyoung; Seung, Hyun-Min; Lee, Gon-Sub; Hong, Jin-Pyo; Lee, Kwang-Sup; Park, Jea-Gun
2014-11-07
Silicon solar cells mainly absorb visible light, although the sun emits ultraviolet (UV), visible, and infrared light. Because the surface reflectance of a textured surface with SiNX film on a silicon solar cell in the UV wavelength region (250-450 nm) is higher than ∼27%, silicon solar-cells cannot effectively convert UV light into photo-voltaic power. We implemented the concept of energy-down-shift using CdSe/ZnS core/shell quantum-dots (QDs) on p-type silicon solar-cells to absorb more UV light. CdSe/ZnS core/shell QDs demonstrated clear evidence of energy-down-shift, which absorbed UV light and emitted green-light photoluminescence signals at a wavelength of 542 nm. The implementation of 0.2 wt% (8.8 nm QDs layer) green-light emitting CdSe/ZnS core/shell QDs reduced the surface reflectance of the textured surface with SiNX film on a silicon solar-cell from 27% to 15% and enhanced the external quantum efficiency (EQE) of silicon solar-cells to around 30% in the UV wavelength region, thereby enhancing the power conversion efficiency (PCE) for p-type silicon solar-cells by 5.5%.
NASA Astrophysics Data System (ADS)
Kim, U. S.
1990-01-01
To date, chlorine has been used as useful additives in silicon oxidation. However, rapid scaling of device dimensions motivates the development of a new dielectric layer or modification of the silicon dioxide itself. More recently, chemically enhanced thermal oxidation by the use of fluorine containing species has been introduced to verify the potential of fluorine in the silicon oxidation process. In this study, gaseous nitrogen trifluoride (NF _3) was selected as the fluorine oxidizing source based on ease of use and was compared with the dichlorofluoroethane (C_2H _3Cl_2F) source. Two different kinds of boron marker samples were prepared and oxidized in O_2/NF_3 ambient for the comparison of surface vs bulk oxidation enhanced/retarded diffusion (OED/ORD). The phosphorus, arsenic and antimony diffusion in silicon during fluorine oxidation has been studied using the various covering layers such as SiO_2, Si_3 N_4, and SiO_2 + Si_3N_4 layers. The oxidation related phenomena, i.e. enhanced silicon and silicon nitride oxidation in fluorine ambient were studied and correlated with the point defect balance at the oxidizing interface. The results of this investigation were discussed with special emphasis on the effect of fluorine on enhanced oxidation and dopant diffusion.
NASA Technical Reports Server (NTRS)
Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.; Tanner, M.; Wang, K. L.; Mena, R. A.; Young, P. G.
1993-01-01
Spectroscopic ellipsometry (SE) characterization of several complex Si (sub X)Ge (sub 1-x)/Si heterostructures prepared for device fabrication, including structures for heterojunction bipolar transistors (HBT), p-type and n-type heterostructure modulation doped field effect transistors, has been performed. We have shown that SE can simultaneously determine all active layer thicknesses, Si (sub X)Ge (sub 1-x) compositions, and the oxide overlayer thickness, with only a general knowledge of the structure topology needed a priori. The characterization of HBT material included the SE analysis of a Si (sub X)Ge (sub 1-x) layer deeply buried (600 nanometers) under the silicon emitter and cap layers. In the SE analysis of n-type heterostructures, we examined for the first time a silicon layer under tensile strain. We found that an excellent fit can be obtained using optical constants of unstrained silicon to represent the strained silicon conduction layer. We also used SE to measure lateral sample homogeneity, providing quantitative identification of the inhomogeneous layer. Surface overlayers resulting from prior sample processing were also detected and measured quantitatively. These results should allow SE to be used extensively as a non-destructive means of characterizing Si (sub X)Ge (sub 1-x)/Si heterostructures prior to device fabrication and testing.
Compatibility of phospholipid liposomal spray with silicone hydrogel contact lens wear.
Wang, Michael T M; Ganesalingam, Kalaivarny; Loh, Chee Seang; Alberquerque, Trisha; Al-Kanani, Suhaila; Misra, Stuti L; Craig, Jennifer P
2017-02-01
To assess the effects of two weeks of regular phospholipid liposomal spray application on lipid layer grade, tear film stability, subjective comfort, visual acuity, and lipid deposition in silicone hydrogel contact lens wearers. Thirty-one existing contact lens wearers were enrolled and fitted with two week planned replacement silicone hydrogel contact lenses (Acuvue ® Oasys ® ) in a prospective, randomized, paired-eye, investigator-masked trial. A phospholipid liposomal spray (Tears Again ® ) was applied to one eye (randomized) four times daily for two weeks. LogMAR high contrast visual acuity (VA), low contrast glare acuity (LCGA), non-invasive tear film break-up time (NIBUT), and lipid layer grade (LLG) were measured at baseline and day 14, in both treated and control eyes. Subjective comfort relative to baseline, and spectrofluorophotometric assessment of contact lens surface lipid deposition were also assessed on day 14. All measurements did not differ at baseline between treated and control eyes. Lipid layer thickness and tear film stability were increased on day 14 in treated eyes (all p<0.05), but not in control eyes (all p>0.05). A greater proportion of participants reported improved comfort in the treated eye relative to the control eye (p=0.002). There were no significant differences in visual acuity or in contact lens surface lipid deposition, between treated and control eyes, on day 14 (all p>0.05). The phospholipid liposomal spray increased tear film stability, lipid layer thickness and subjective comfort in silicone hydrogel contact lens wearers, without adversely affecting visual acuity or contact lens surface lipid deposition. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.
2015-09-01
In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The properties of the solar cells on anodized aluminum substrates were analyzed by using a solar simulator.
Wang, Si-qian; Zhang, Da-feng; Zhen, Tie-li; Yang, Jing-yuan; Lin, Ting-ting; Ma, Jian-feng
2016-04-01
To investigate the feasibility of using sol gel technique to produce thin layer nano silicon dioxide on zirconia ceramic surface and the effect of improving shear bond strength between zirconia and veneer porcelain. The presintered zirconia specimen was cut into a rectangle block piece (15 mm×10 mm×2.5 mm), a total of 40 pieces were obtained and divided into 4 groups, each group had 10 pieces. Four different treatments were used in each group respectively. Pieces in group A (control group) were only sintered at 1450°C to crystallization; pieces in group B underwent 30% nano silica sol infiltration first and then were sintered at 1450°C to crystallization; piece in group C underwent crystallization first at 1450°C, then 30% nano silica sol infiltration and were sintered at 1450°C again; pieces in group D was coated by nano silica sol and then sintered at 1450°C to crystallization; ten rectangle block pieces (12 mm×8 mm×2 mm) in group E were made. Cylinder veneers 5 mm in diameter and 4 mm in height were produced in each group and the shear bond strength was tested. Data were statistically analyzed by SPSS 19.0 software package. The shear bond strength of the 5 group specimens were: (28.12±2.95) MPa in group A, (31.09±3.94) MPa in group B, (25.60±2.45) MPa in group C, (31.75±4.90) MPa in group D, (28.67±3.95) MPa in group E, respectively. Significant differences existed between the 5 groups, and group C had significant difference compared with group B and D. CONCLUSIONS:① Use of nano silicon sol gel on presintered zirconia surface to make thin layer of nano silicon dioxide can improve the shear bond strength between zirconia and veneer; ②Using nano silicon sol gel on crystallization zirconia surface to make thin layer of nano silicon dioxide will decrease the shear bond strength between zirconia and veneer; ③ Zirconia veneer bilayer ceramic has the same shear bond strength with porcelain fused to Ni Cr alloy; ④Use of sol gel technique to produce thin layer nano silicon dioxide on zirconia ceramic surface is feasible and can improve shear bond strength between zirconia and veneer porcelain.
All-solid-state supercapacitors on silicon using graphene from silicon carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bei; Ahmed, Mohsin; Iacopi, Francesca, E-mail: f.iacopi@griffith.edu.au
2016-05-02
Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitancemore » behavior with a specific area capacitance of up to 174 μF cm{sup −2} with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.« less
NASA Astrophysics Data System (ADS)
Nath, Madhumita; Chatterjee, P.; Damon-Lacoste, J.; Roca i Cabarrocas, P.
2008-02-01
Hydrog enated amorphous/crystalline silicon "heterojunction with intrinsic thin layer (HIT)" solar cells have gained popularity after it was demonstrated by Sanyo that they can achieve stable conversion efficiencies, as high as crystalline silicon (c-Si) cells, but where the cost may be reduced with the help of amorphous silicon (a-Si:H) low temperature deposition technology. In this article, we study N-a-Si :H/P-c-Si front HIT structures, where light enters through the N-a-Si :H layer. The aim is to examine ways of improving the open-circuit voltage, using computer modeling in conjunction with experiments. We also assess under which conditions such improvements in Voc actually occur. Modeling indicates that for a density of states Nss⩾1013cm-2 on the surface of the P-c-Si wafer facing the emitter layer, Voc is entirely limited by this parameter and is lower than 0.5V. We also learn that it is possible to increase the Voc to ˜0.73V by reducing this defect density to ˜1010cm-2, by reducing the surface recombination speed of the electrons at the back P-c-Si/aluminum contact (SnL), and by improving the lifetime of the carriers (τ ) in the P-c-Si wafer to ˜5ms. Modeling further indicates that when τ ⩽0.1ms, the sensitivity of Voc to SnL vanishes, as very few back-diffusing electrons can reach the back contact. Improvements in Voc by decreasing both the defect density on the surface of the P-c-Si wafer facing the emitter layer and SnL have been achieved in practice by (a) improved passivation thanks to a thin intrinsic polymorphous silicon layer deposited on the c-Si wafer (instead of a-Si :H) and (b) using localized aluminum and back surface field layers to attain a lower SnL. Experimentally, a Voc of 0.675V has already been attained. Simulations indicate that the lifetime of carriers inside the P-c-Si wafer of these cells is ˜366μs and needs to be improved to achieve a higher Voc.
Silicon Alignment Pins: An Easy Way to Realize a Wafer-To-Wafer Alignment
NASA Technical Reports Server (NTRS)
Peralta, Alejandro (Inventor); Gill, John J. (Inventor); Toda, Risaku (Inventor); Lin, Robert H. (Inventor); Jung-Kubiak, Cecile (Inventor); Reck, Theodore (Inventor); Thomas, Bertrand (Inventor); Siles, Jose V. (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor)
2016-01-01
A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
External self-gettering of nickel in float zone silicon wafers
NASA Astrophysics Data System (ADS)
Gay, N.; Martinuzzi, S.
1997-05-01
During indiffusion of Ni atoms in silicon crystals at 950 °C from a nickel layer source, Ni-Si alloys can be formed close to the surface. Metal solubility in these alloys is higher than in silicon, which induces a marked segregation gettering of the Ni atoms which have diffused in the bulk of the wafers. Consequently, the regions of the wafers covered with the Ni layer are less contaminated than adjacent regions in which Ni atoms have also penetrated, as shown by the absence of precipitates and the higher diffusion length of minority carriers. The results suggest the existence of external self-gettering of Ni atoms by the nickel source.
Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers
NASA Astrophysics Data System (ADS)
Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.
2014-09-01
The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.
Yadav, Amrita R.; Sriram, Rashmi; Carter, Jared A.; Miller, Benjamin L.
2014-01-01
The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. PMID:24411379
Gold-based electrical interconnections for microelectronic devices
Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.; Watson, Robert D.
2002-01-01
A method of making an electrical interconnection from a microelectronic device to a package, comprising ball or wedge compression bonding a gold-based conductor directly to a silicon surface, such as a polysilicon bonding pad in a MEMS or IMEMS device, without using layers of aluminum or titanium disposed in-between the conductor and the silicon surface. After compression bonding, optional heating of the bond above 363 C. allows formation of a liquid gold-silicon eutectic phase containing approximately 3% (by weight) silicon, which significantly improves the bond strength by reforming and enhancing the initial compression bond. The same process can be used for improving the bond strength of Au--Ge bonds by forming a liquid Au-12Ge eutectic phase.
Chen, Lei; Xiao, Chen; Yu, Bingjun; Kim, Seong H; Qian, Linmao
2017-09-26
In order to understand the interfacial parameters governing the friction force (F t ) between silicon oxide surfaces in humid environment, the sliding speed (v) and relative humidity (RH) dependences of F t were measured for a silica sphere (1 μm radius) sliding on a silicon oxide (SiO x ) surface, using atomic force microscopy (AFM), and analyzed with a mathematical model describing interfacial contacts under a dynamic condition. Generally, F t decreases logarithmically with increasing v to a cutoff value below which its dependence on interfacial chemistry and sliding condition is relatively weak. Above the cutoff value, the logarithmic v dependence could be divided into two regimes: (i) when RH is lower than 50%, F t is a function of both v and RH; (ii) in contrast, at RH ≥ 50%, F t is a function of v only, but not RH. These complicated v and RH dependences were hypothesized to originate from the structure of the water layer adsorbed on the surface and the water meniscus around the annulus of the contact area. This hypothesis was tested by analyzing F t as a function of the water meniscus area (A m ) and volume (V m ) estimated from a thermally activated water-bridge formation model. Surprisingly, it was found that F t varies linearly with V m and correlates poorly with A m at RH < 50%; and then its V m dependence becomes weaker as RH increases above 50%. Comparing the friction data with the attenuated total reflection infrared (ATR-IR) spectroscopy analysis result of the adsorbed water layer, it appeared that the solidlike water layer structure formed on the silica surface plays a critical role in friction at RH < 50% and its contribution diminishes at RH ≥ 50%. These findings give a deeper insight into the role of water condensation in friction of the silicon oxide single asperity contact under ambient conditions.
What's on the Surface? Physics and Chemistry of Delta-Doped Surfaces
NASA Technical Reports Server (NTRS)
Hoenk, Michael
2011-01-01
Outline of presentation: 1. Detector surfaces and the problem of stability 2. Delta-doped detectors 3. Physics of Delta-doped Silicon 4. Chemistry of the Si-SiO2 Interface 5. Physics and Chemistry of Delta-doped Surfaces a. Compensation b. Inversion c. Quantum exclusion. Conclusions: 1. Quantum confinement of electrons and holes dominates the behavior of delta-doped surfaces. 2. Stability of delta-doped detectors: Delta-layer creates an approx 1 eV tunnel barrier between bulk and surface. 3. At high surface charge densities, Tamm-Shockley states form at the surface. 4. Surface passivation by quantum exclusion: Near-surface delta-layer suppresses T-S trapping of minority carriers. 5. The Si-SiO2 interface compensates the surface 6. For delta-layers at intermediate depth, surface inversion layer forms 7. Density of Si-SiO2 interface charge can be extremely high (>10(exp 14)/sq cm)
NASA Astrophysics Data System (ADS)
Schurink, B.; Tiggelaar, R. M.; Gardeniers, J. G. E.; Luttge, R.
2017-01-01
Here the fabrication and characterization of a novel microelectrode array for electrophysiology applications is described, termed a micro sieve electrode array (µSEA). This silicon based µSEA device allows for hydrodynamic parallel positioning of single cells on 3D electrodes realized on the walls of inverted pyramidal shaped pores. To realize the µSEA, a previously realized silicon sieving structure is provided with a patterned boron doped poly-silicon, connecting the contact electrodes with the 3D sensing electrodes in the pores. A LPCVD silicon-rich silicon nitride layer was used as insulation. The selective opening of this insulation layer at the ends of the wiring lines allows to generate well-defined contact and sensing electrodes according to the layout used in commercial microelectrode array readers. The main challenge lays in the simultaneously selective etching of material at both the planar surface (contact electrode) as well as in the sieving structure containing the (3D) pores (sensing electrodes). For the generation of 3D electrodes in the pores a self-aligning technique was developed using the pore geometry to our advantage. This technique, based on sacrificial layer etching, allows for the fine tuning of the sensing electrode surface area and thus supports the positioning and coupling of single cells on the electrode surface in relation to the cell size. Furthermore, a self-aligning silicide is formed on the sensing electrodes to favour the electrical properties. Experiments were performed to demonstrate the working principle of the µSEA using different types of neuronal cells. Capture efficiency in the pores was >70% with a 70% survival rate of the cell maintained for up to 14 DIV. The TiSi2-boron-doped-poly-silicon sensing electrodes of the µSEA were characterized, which indicated noise levels of <15 µV and impedance values of 360 kΩ. These findings potentially allow for future electrophysiological measurements using the µSEA.
Triplex molecular layers with nonlinear nanomechanical response
NASA Astrophysics Data System (ADS)
Tsukruk, V. V.; Ahn, H.-S.; Kim, D.; Sidorenko, A.
2002-06-01
The molecular design of surface structures with built-in mechanisms for mechanical energy dissipation under nanomechanical deformation and compression resistance provided superior nanoscale wear stability. We designed robust, well-defined trilayer surface nanostructures chemically grafted to a silicon oxide surface with an effective composite modulus of about 1 GPa. The total thickness was within 20-30 nm and included an 8 nm rubber layer sandwiched between two hard layers. The rubber layer provides an effective mechanism for energy dissipation, facilitated by nonlinear, giant, reversible elastic deformations of the rubber matrix, restoring the initial status due to the presence of an effective nanodomain network and chemical grafting within the rubber matrix.
Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco
2012-10-01
We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.
NASA Technical Reports Server (NTRS)
Weinberg, I.; Hsu, L. C.
1977-01-01
Increased solar cell efficiencies are attained by reduction of surface recombination and variation of impurity concentration profiles at the n(+) surface of silicon solar cells. Diagnostic techniques are employed to evaluate the effects of specific materials preparation methodologies on surface and near surface concentrations. It is demonstrated that the MOS C-V method, when combined with a bulk measurement technique, yields more complete concentration data than are obtainable by either method alone. Specifically, new solar cell MOS C-V measurements are combined with bulk concentrations obtained by a successive layer removal technique utilizing measurements of sheet resistivity and Hall coefficient.
Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Baochen, E-mail: liaobaochen@nus.edu.sg; Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576; A*STAR Institute of Materials Research and Engineering
2014-06-23
In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiO{sub x}) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiO{sub x} films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiO{sub x} films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is foundmore » to be stable after storage in the dark for eight months. These results demonstrate that TiO{sub x} films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiO{sub x} has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiO{sub x} in the field of high-efficiency silicon wafer solar cells.« less
Luo, Fei; Chu, Geng; Xia, Xiaoxiang; Liu, Bonan; Zheng, Jieyun; Li, Junjie; Li, Hong; Gu, Changzhi; Chen, Liquan
2015-05-07
Thickness, homogeneity and coverage of the surface passivation layer on Si anodes for Li-ion batteries have decisive influences on their cyclic performance and coulombic efficiency, but related information is difficult to obtain, especially during cycling. In this work, a well-defined silicon nanocone (SNC) on silicon wafer sample has been fabricated as a model electrode in lithium ion batteries to investigate the growth of surface species on the SNC electrode during cycling using ex situ scanning electronic microscopy. It is observed that an extra 5 μm thick layer covers the top of the SNCs after 25 cycles at 0.1 C. This top layer has been proven to be a solid electrolyte interphase (SEI) layer by designing a solid lithium battery. It is noticed that the SEI layer is much thinner at a high rate of 1 C. The cyclic performance of the SNCs at 1 C looks much better than that of the same electrode at 0.1 C in the half cell. Our findings clearly demonstrate that the formation of the thick SEI on the naked nanostructured Si anode during low rate cycling is a serious problem for practical applications. An in depth understanding of this problem may provide valuable guidance in designing Si-based anode materials.
Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel
Zhang, Zhenyu; Guo, Liangchao; Cui, Junfeng; Wang, Bo; Kang, Renke; Guo, Dongming
2016-01-01
Nanoscale solely amorphous layer is achieved in silicon (Si) wafers, using a developed diamond wheel with ceria, which is confirmed by high resolution transmission electron microscopy (HRTEM). This is different from previous reports of ultraprecision grinding, nanoindentation and nanoscratch, in which an amorphous layer at the top, followed by a crystalline damaged layer beneath. The thicknesses of amorphous layer are 43 and 48 nm at infeed rates of 8 and 15 μm/min, respectively, which is verified using HRTEM. Diamond-cubic Si-I phase is verified in Si wafers using selected area electron diffraction patterns, indicating the absence of high pressure phases. Ceria plays an important role in the diamond wheel for achieving ultrasmooth and bright surfaces using ultraprecision grinding. PMID:27734934
Modulation of porphyrin photoluminescence by nanoscale spacers on silicon substrates
NASA Astrophysics Data System (ADS)
Fang, Y. C.; Zhang, Y.; Gao, H. Y.; Chen, L. G.; Gao, B.; He, W. Z.; Meng, Q. S.; Zhang, C.; Dong, Z. C.
2013-11-01
We investigate photoluminescence (PL) properties of quasi-monolayered tetraphenyl porphyrin (TPP) molecules on silicon substrates modulated by three different nanoscale spacers: native oxide layer (NOL), hydrogen (H)-passivated layer, and Ag nanoparticle (AgNP) thin film, respectively. In comparison with the PL intensity from the TPP molecules on the NOL-covered silicon, the fluorescence intensity from the molecules on the AgNP-covered surface was greatly enhanced while that for the H-passivated surface was found dramatically suppressed. Time-resolved fluorescence spectra indicated shortened lifetimes for TPP molecules in both cases, but the decay kinetics is believed to be different. The suppressed emission for the H-passivated sample was attributed to the weaker decoupling effect of the monolayer of hydrogen atoms as compared to the NOL, leading to increased nonradiative decay rate; whereas the enhanced fluorescence with shortened lifetime for the AgNP-covered sample is attributed not only to the resonant excitation by local surface plasmons, but also to the increased radiative decay rate originating from the emission enhancement in plasmonic "hot-spots".
Investigation of nucleation and growth processes of diamond films by atomic force microscopy
NASA Technical Reports Server (NTRS)
George, M. A.; Burger, A.; Collins, W. E.; Davidson, J. L.; Barnes, A. V.; Tolk, N. H.
1994-01-01
The nucleation and growth of plasma-enhanced chemical-vapor deposited polycrystalline diamond films were studied using atomic force microscopy (AFM). AFM images were obtained for (1) nucleated diamond films produced from depositions that were terminated during the initial stages of growth, (2) the silicon substrate-diamond film interface side of diamond films (1-4 micrometers thick) removed from the original surface of the substrate, and (3) the cross-sectional fracture surface of the film, including the Si/diamond interface. Pronounced tip effects were observed for early-stage diamond nucleation attributed to tip convolution in the AFM images. AFM images of the film's cross section and interface, however, were not highly affected by tip convolution, and the images indicate that the surface of the silicon substrate is initially covered by a small grained polycrystalline-like film and the formation of this precursor film is followed by nucleation of the diamond film on top of this layer. X-ray photoelectron spectroscopy spectra indicate that some silicon carbide is present in the precursor layer.
Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore 560013
High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN filmmore » grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Satish; Shivaprasad, S. M., E-mail: smsprasad@jncasr.ac.in
2016-02-07
We report here a systematic study of the nitridation of the Si (111) surface by nitrogen plasma exposure. The surface and interface chemical composition and surface morphology are investigated by using RHEED, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). At the initial stage of nitridation two superstructures—“8 × 8” and “8/3 × 8/3”—form, and further nitridation leads to 1 × 1 stoichiometric silicon nitride. The interface is seen to have the Si{sup 1+} and Si{sup 3+} states of silicon bonding with nitrogen, which suggests an atomically abrupt and defect-free interface. The initial single crystalline silicon nitride layers are seen to become amorphous at higher thicknesses.more » The AFM image shows that the nitride nucleates at interfacial dislocations that are connected by sub-stoichiometric 2D-nitride layers, which agglomerate to form thick overlayers. The electrical properties of the interface yield a valence band offset that saturates at 1.9 eV and conduction band offset at 2.3 eV due to the evolution of the sub-stoichiometric interface and band bending.« less
Double layer adhesive silicone dressing as a potential dermal drug delivery film in scar treatment.
Mojsiewicz-Pieńkowska, Krystyna; Jamrógiewicz, Marzena; Żebrowska, Maria; Mikolaszek, Barbara; Sznitowska, Małgorzata
2015-03-15
The present studies focused on the evaluation of design of an adhesive silicone film intended for scar treatment. Developed silicone double layer film was examined in terms of its future relevance to therapy and applicability on the human skin considering properties which included in vitro permeability of water vapor and oxygen. In order to adapt the patches for medical use in the future there were tested such properties as in vitro adhesion and occlusion related to in vivo hydration. From the silicone rubbers double layer silicone film was prepared: a non-adhesive elastomer as a drug carrier (the matrix for active substances - enoxaparin sodium - low molecular weight heparin) and an adhesive elastomer, applied on the surface of the matrix. The novel adhesive silicone film was found to possess optimal properties in comparison to commercially available silicone dressing: adhesion in vivo, adhesion in vitro - 11.79N, occlusion F=85% and water vapor permeability in vitro - WVP=105g/m(2)/24h, hydration of stratum corneum in vivoH=61-89 (RSD=1.6-0.9%), oxygen permeation in vitro - 119-391 cm(3)/m(2)/24 (RSD=0.17%). In vitro release studies indicated sufficient LMWH release rate from silicone matrix. Developed novel adhesive silicone films were considered an effective treatment of scars and keloids and a potential drug carrier able to improve the effectiveness of therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Background-reducing X-ray multilayer mirror
Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.
1992-01-01
Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."
Thin Film Transistors On Plastic Substrates
Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.
2004-01-20
A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.
Boudot, Cécile; Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen
2017-05-01
Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO 2 ) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO 2 layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO 2 -coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68days and the coating's resistance to several sterilization methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Method for reducing formation of electrically resistive layer on ferritic stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakowski, James M.
A method of reducing the formation of electrically resistive scale on a an article comprising a silicon-containing ferritic stainless subjected to oxidizing conditions in service includes, prior to placing the article in service, subjecting the article to conditions under which silica, which includes silicon derived from the steel, forms on a surface of the steel. Optionally, at least a portion of the silica is removed from the surface to placing the article in service. A ferritic stainless steel alloy having a reduced tendency to form silica on at least a surface thereof also is provided. The steel includes a near-surfacemore » region that has been depleted of silicon relative to a remainder of the steel.« less
NASA Astrophysics Data System (ADS)
Shu, Zhan
With the absence of shading loss together with improved quality of surface passivation introduced by low temperature processed amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction, the interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell exhibits a potential for higher conversion efficiency and lower cost than a traditional front contact diffused junction solar cell. In such solar cells, the front surface passivation is of great importance to achieve both high open-circuit voltage (Voc) and short-circuit current (Jsc). Therefore, the motivation of this work is to develop a low temperature processed structure for the front surface passivation of IBC-SHJ solar cells, which must have an excellent and stable passivation quality as well as a good anti-reflection property. Four different thin film materials/structures were studied and evaluated for this purpose, namely: amorphous silicon nitride (a-SiNx:H), thick amorphous silicon film (a-Si:H), amorphous silicon/silicon nitride/silicon carbide (a-Si:H/a-SiN x:H/a-SiC:H) stack structure with an ultra-thin a-Si:H layer, and zinc sulfide (ZnS). It was demonstrated that the a-Si:H/a-SiNx:H/a-SiC:H stack surpasses other candidates due to both of its excellent surface passivation quality (SRV<5 cm/s) and lower absorption losses. The low recombination rate at the stack structure passivated c-Si surface is found to be resulted from (i) field effect passivation due to the positive fixed charge (Q fix~1x1011 cm-2 with 5 nm a-Si:H layer) in a-SiNx:H as measured from capacitance-voltage technique, and (ii) reduced defect state density (mid-gap Dit~4x1010 cm-2eV-1) at a-Si:H/c-Si interface provided by a 5 nm thick a-Si:H layer, as characterized by conductance-frequency measurements. Paralleled with the experimental studies, a computer program was developed in this work based on the extended Shockley-Read-Hall (SRH) model of surface recombination. With the help of this program, the experimental injection level dependent SRV curves of the stack passivated c-Si samples were successfully reproduced and the carrier capture cross sections of interface defect states were extracted. Additionally, anti-reflection properties of the stack structure were optimized and optical losses were analyzed. The Voc over 700 mV and Jsc over 38 mA/cm2 were achieved in IBC-SHJ solar cells using the stack structure for front surface passivation. Direct comparison shows that such low temperature deposited stack structure developed in this work achieves comparable device performance to the high temperature processed front surface passivation structure used in other high efficiency IBC solar cells. However, the lower fill factor (FF) of IBC-SHJ solar cell as compared with traditional front a-Si:H/c-Si heterojunction cell (HIT cell) greatly limits the overall performance of these devices. Two-dimensional (2D) simulations were used to comparatively model the HIT and IBC-SHJ solar cells to understand the underlying device physics which controls cell performance. The effects of a wide range of device parameters were investigated in the simulation, and pathways to improve the FF of IBC-SHJ solar cell were suggested.
Effect of gamma irradiation on the photoluminescence of porous silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elistratova, M. A., E-mail: Marina.Elistratova@mail.ioffe.ru; Romanov, N. M.; Goryachev, D. N.
The effect of gamma irradiation on the luminescence properties of porous silicon produced by the electrochemical technique is studied. Changes in the photoluminescence intensity between irradiation doses and over a period of several days after the last irradiation are recorded. The quenching of photoluminescence at low irradiation doses and recovery after further irradiation are registered. It is found that porous silicon is strongly oxidized after gamma irradiation and the oxidation process continues for several days after irradiation. It is conceived that the change in the photoluminescence spectra and intensity of porous silicon after gamma irradiation is caused by a changemore » in the passivation type of the porous surface: instead of hydrogen passivation, more stable oxygen passivation is observed. To stabilize the photoluminescence spectra of porous silicon, the use of fullerenes is proposed. No considerable changes in the photoluminescence spectra during irradiation and up to 18 days after irradiation are detected in a porous silicon sample with a thermally deposited fullerene layer. It is shown that porous silicon samples with a deposited C{sub 60} layer are stable to gamma irradiation and oxidation.« less
Locally oxidized silicon surface-plasmon Schottky detector for telecom regime.
Goykhman, Ilya; Desiatov, Boris; Khurgin, Jacob; Shappir, Joseph; Levy, Uriel
2011-06-08
We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip.
Yusoh, Siti Noorhaniah
2016-01-01
Summary The optimization of etchant parameters in wet etching plays an important role in the fabrication of semiconductor devices. Wet etching of tetramethylammonium hydroxide (TMAH)/isopropyl alcohol (IPA) on silicon nanowires fabricated by AFM lithography is studied herein. TMAH (25 wt %) with different IPA concentrations (0, 10, 20, and 30 vol %) and etching time durations (30, 40, and 50 s) were investigated. The relationships between etching depth and width, and etching rate and surface roughness of silicon nanowires were characterized in detail using atomic force microscopy (AFM). The obtained results indicate that increased IPA concentration in TMAH produced greater width of the silicon nanowires with a smooth surface. It was also observed that the use of a longer etching time causes more unmasked silicon layers to be removed. Importantly, throughout this study, wet etching with optimized parameters can be applied in the design of the devices with excellent performance for many applications. PMID:27826521
Direct current microhollow cathode discharges on silicon devices operating in argon and helium
NASA Astrophysics Data System (ADS)
Michaud, R.; Felix, V.; Stolz, A.; Aubry, O.; Lefaucheux, P.; Dzikowski, S.; Schulz-von der Gathen, V.; Overzet, L. J.; Dussart, R.
2018-02-01
Microhollow cathode discharges have been produced on silicon platforms using processes usually used for MEMS fabrication. Microreactors consist of 100 or 150 μm-diameter cavities made from Ni and SiO2 film layers deposited on a silicon substrate. They were studied in the direct current operating mode in two different geometries: planar and cavity configuration. Currents in the order of 1 mA could be injected in microdischarges operating in different gases such as argon and helium at a working pressure between 130 and 1000 mbar. When silicon was used as a cathode, the microdischarge operation was very unstable in both geometry configurations. Strong current spikes were produced and the microreactor lifetime was quite short. We evidenced the fast formation of blisters at the silicon surface which are responsible for the production of these high current pulses. EDX analysis showed that these blisters are filled with argon and indicate that an implantation mechanism is at the origin of this surface modification. Reversing the polarity of the microdischarge makes the discharge operate stably without current spikes, but the discharge appearance is quite different from the one obtained in direct polarity with the silicon cathode. By coating the silicon cathode with a 500 nm-thick nickel layer, the microdischarge becomes very stable with a much longer lifetime. No current spikes are observed and the cathode surface remains quite smooth compared to the one obtained without coating. Finally, arrays of 76 and 576 microdischarges were successfully ignited and studied in argon. At a working pressure of 130 mbar, all microdischarges are simultaneously ignited whereas they ignite one by one at higher pressure.
O electrolyte for bio-application
NASA Astrophysics Data System (ADS)
Naddaf, M.; Almariri, A.
2014-09-01
Porous silicon (PS) has been prepared in the dark by anodic etching of n+-type (111) silicon substrate in a HF:HCl:C2H5OH:H2O2:H2O electrolyte. The processed PS layer is characterized by means of photoluminescence (PL) spectroscopy, scanning electron microscope (SEM), water contact angle (CA) measurements, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and micro-Raman scattering. The CA of fresh PS layer is found to be ~142°. On aging at ambient conditions, the CA decreases gently to reach ~133° after 3 month, and then it is stabilized for a prolonged time of aging. The visible PL emission from the PS layer also exhibits a good stability against aging time. The FTIR and XPS measurements and analysis show that the stable aged PS layer has rather SiO2-rich surface. The micro/nanostructure nature of the PS layer is revealed from SEM and micro-Raman results and correlated to CA results. Stable hydrophobic surface of oxidized PS layer is attractive for bio-applications. The efficiency of the produced PS layers as an entrapping template for specific immobilization of IgG2a antibody via physical absorption process is demonstrated.
NASA Astrophysics Data System (ADS)
Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael
This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.
In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity
Cao, Chuntian; Steinrück, Hans-Georg; Shyam, Badri; ...
2016-10-26
Surface sensitive X-ray reflectivity (XRR) measurements were performed to investigate the electrochemical lithiation of a native oxide terminated single crystalline silicon (100) electrode in real time during the first galvanostatic discharge cycle. This allows us to gain nanoscale, mechanistic insight into the lithiation of Si and the formation of the solid electrolyte interphase (SEI). We describe an electrochemistry cell specifically designed for in situ XRR studies and have determined the evolution of the electron density profile of the lithiated Si layer (Li xSi) and the SEI layer with subnanometer resolution. We propose a three-stage lithiation mechanism with a reaction limited,more » layer-by-layer lithiation of the Si at the Li xSi/Si interface.« less
Surface Passivation by Quantum Exclusion Using Multiple Layers
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor)
2015-01-01
A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes at least two doped layers fabricated using MBE methods. The dopant sheet densities in the doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. The electrically active dopant sheet densities are quite high, reaching more than 1.times.10.sup.14 cm.sup.-2, and locally exceeding 10.sup.22 per cubic centimeter. It has been found that silicon detector devices that have two or more such dopant layers exhibit improved resistance to degradation by UV radiation, at least at wavelengths of 193 nm, as compared to conventional silicon p-on-n devices.
Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds
Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie
2013-01-01
Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774
Integrated optical silicon IC compatible nanodevices for biosensing applications
NASA Astrophysics Data System (ADS)
Lechuga, Laura M.; Sepulveda, Borja; Llobera, Andreu; Calle, Ana; Dominguez, Carlos M.
2003-04-01
Biological and chemical sensing is one of the application fields where integrated optical nanodevices can play an important role [1]. We present a Silicon Integrated Mach-Zehnder Interferometer Nanodevice using a Total Internal Refraction waveguide configuration. The induced changes due to a biomolecular interactions in the effective refractive index of the waveguide,is monitored by the measurement of the change in the properties of the propagating light. For using this device as a biosensor, the waveguides of the structure must verify two conditions: work in the monomode regime and to have a Surface Sensivity as high as possible in the sensing arm. The MZI device structure is: (i) a Si wafer with a 500 mm thickness (ii) a 2 mm thick thermal Silicon-Oxide layer with a refractive index of 1.46 (iii) a LPCVD Silicon Nitride layer of 100 nm thickness and a refractive index of 2.00, which is used as the guiding layer. To achieve monomode behavior is needed to define a rib structure, with a depth of only 3 nm, on the Silicon Nitride layer by a lithographic step. This rib structure is performed by RIE and is the most critical step in the microfabrication of the device. Over the structure a protective layer of LPCVD SiO2 is deposited, with a 2 mm thickness and a refractive index of 1.46, which is patterned (photolithography) and etched (RIE) to define the sensing arm. The high sensivity of these devices makes them quite suitable for biosensing applications. For that, without loosing their activity the receptors biomolecules are covanlently immobilized, at nanometer scale , on the sensor area surface. Biospecific molecular recognition takes places when the complementary analyte to the receptor is flowed over the receptor using a flow system. Several biosensing applications have been performed with this device as enviromental pollutant control, immunosensing or genetic detection.
Feasibility of SiC composite structures for 1644 deg gas turbine seal applications
NASA Technical Reports Server (NTRS)
Darolia, R.
1979-01-01
The feasibility of silicon carbide composite structures was evaluated for 1644 K gas turbine seal applications. The silicon carbide composites evaluated consisted of Si/SiC Silcomp (Trademark) - and sintered silicon carbide as substrates, both with attached surface layers containing BN as an additive. A total of twenty-eight candidates with variations in substrate type and density, and layer chemistry, density, microstructure, and thickness were evaluated for abradability, cold particle erosion resistance, static oxidation resistance, ballistic impact resistance, and fabricability. The BN-free layers with variations in density and pore size were later added for evaluation. The most promising candidates were evaluated for Mach 1.0 gas oxidation/erosion resistance from 1477 K to 1644 K. The as-fabricated rub layers did not perform satisfactorily in the gas oxidation/erosion tests. However, preoxidation was found to be beneficial in improving the hot gas erosion resistance. Overall, the laboratory and rig test evaluations show that material properties are suitable for 1477 K gas turbine seal applications.
Formation of porous surface layers in reaction bonded silicon nitride during processing
NASA Technical Reports Server (NTRS)
Shaw, N. J.; Glasgow, T. K.
1979-01-01
Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.
NASA Technical Reports Server (NTRS)
Brock, T. W.; Field, M. B.
1979-01-01
Low-melting phosphate and borate glasses were screen printed on silicon wafers and heated to form n and p junctions. Data on surface appearance, sheet resistance and junction depth are presented. Similar data are reported for vapor phase transport from sintered aluminum metaphosphate and boron-containing glass-ceramic solid sources. Simultaneous diffusion of an N(+) layer with screen-printed glass and a p(+) layer with screen-printed Al alloy paste was attempted. No p(+) back surface field formation was achieved. Some good cells were produced but the heating in an endless-belt furnace caused a large scatter in sheet resistance and junction depth for three separate lots of wafers.
Surface and Interface Study of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak
1998-01-01
The surface and interface properties of Pd(sub 0.9)Cr(sub 0.1/SiC Schottky diode gas sensor both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(sub x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 deg. C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Pd(sub x)Si formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(sub 0.9)Cr(sub 0.1) film are likely responsible for significantly improved device sensitivity.
Surface and Interface Properties of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak
1998-01-01
The surface and interface properties of Pd(0.9,)Cr(0.1)/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd,Si only in a very narrow interfacial region. After annealing for 250 h ,It 425 C, the surface of the Schottky contact area his much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (Pd(x)Si) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(0.9)Cr(0.1) film are likely responsible for significantly improved device sensitivity.
Surface and Interface Properties of PdCr/SiC Schottky Diode Gas Sensor Annealed at 425 C
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Knight, Dak
1998-01-01
The surface and interface properties of Pd(0.9)Cr(0.1)/SiC Schottky diode gas sensors both before and after annealing are investigated using Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS). At room temperature the alloy reacted with SiC and formed Pd(x)Si only in a very narrow interfacial region. After annealing for 250 hours at 425 C, the surface of the Schottky contact area has much less silicon and carbon contamination than that found on the surface of an annealed Pd/SiC structure. Palladium silicides (Pd(x)Si) formed at a broadened interface after annealing, but a significant layer of alloy film is still free of silicon and carbon. The chromium concentration with respect to palladium is quite uniform down to the deep interface region. A stable catalytic surface and a clean layer of Pd(0.9)Cr(0.1) film are likely responsible for significantly improved device sensitivity.
Nanoscale Etching and Indentation of Silicon Surfaces with Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Dzegilenko, Fedor N.; Srivastava, Deepak; Saini, Subhash
1998-01-01
The possibility of nanolithography of silicon and germanium surfaces with bare carbon nanotube tips of scanning probe microscopy devices is considered with large scale classical molecular dynamics (MD) simulations employing Tersoff's reactive many-body potential for heteroatomic C/Si/Ge system. Lithography plays a key role in semiconductor manufacturing, and it is expected that future molecular and quantum electronic devices will be fabricated with nanolithographic and nanodeposition techniques. Carbon nanotubes, rolled up sheets of graphene made of carbon, are excellent candidates for use in nanolithography because they are extremely strong along axial direction and yet extremely elastic along radial direction. In the simulations, the interaction of a carbon nanotube tip with silicon surfaces is explored in two regimes. In the first scenario, the nanotubes barely touch the surface, while in the second they are pushed into the surface to make "nano holes". The first - gentle scenario mimics the nanotube-surface chemical reaction induced by the vertical mechanical manipulation of the nanotube. The second -digging - scenario intends to study the indentation profiles. The following results are reported in the two cases. In the first regime, depending on the surface impact site, two major outcomes outcomes are the selective removal of either a single surface atom or a surface dimer off the silicon surface. In the second regime, the indentation of a silicon substrate by the nanotube is observed. Upon the nanotube withdrawal, several surface silicon atoms are adsorbed at the tip of the nanotube causing significant rearrangements of atoms comprising the surface layer of the silicon substrate. The results are explained in terms of relative strength of C-C, C-Si, and Si-Si bonds. The proposed method is very robust and does not require applied voltage between the nanotube tips and the surface. The implications of the reported controllable etching and hole-creating for nanolithography on silicon are discussed in detail.
Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yang; He, Qiming; Zhang, Fan
Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less
Modifying Surface Fluctuations of Polymer Melt Films with Substrate Modification
Zhou, Yang; He, Qiming; Zhang, Fan; ...
2017-08-14
Deposition of a plasma polymerized film on a silicon substrate substantially changes the fluctuations on the surface of a sufficiently thin, melt polystyrene (PS) film atop the substrate. Surface fluctuation relaxation times measured with X-ray photon correlation spectroscopy (XPCS) for ca. 4R g thick melt films of 131 kg/mol linear PS on silicon and on a plasma polymer modified silicon wafer can both be described using a hydrodynamic continuum theory (HCT) that assumes the film is characterized throughout its depth by the bulk viscosity. However, when the film thickness is reduced to ~3R g, confinement effects are evident. The surfacemore » fluctuations are slower than predicted using the HCT, and the confinement effect for the PS on silicon is larger than that for the PS on the plasma polymerized film. This deviation is thus due to a difference in the thicknesses of the strongly adsorbed layers at the substrate which are impacted by the substrate surface energy.« less
Mundry, T; Surmann, P; Schurreit, T
2000-12-01
The siliconization of pharmaceutical glass containers is an industrially frequently applied procedure. It is done by spreading an aqueous silicone oil emulsion film on the inner surface and successive heat curing treatment at temperatures above 300 degrees C for 10-30 min. It was often proposed that a covalent bonding of PDMS to the glass or branching of the linear PDMS occurs during heat treatment. The present study was performed for a detailed investigation of the glass and silicone (polydimethylsiloxane = PDMS) chemical state before and after heat-curing treatment and analysis of the bond nature. Combined X-ray excited photoelectron (XPS) and Auger electron spectroscopy as well as angle resolved XPS-measurements were used for analysis of the glass samples. The silicon surface atoms of the borosilicate container glass were transformed to a quartz-like compound whereas the former linear PDMS had a branched, two-dimensional structure after the heat curing treatment. It was concluded that the branching indicates the formation of new siloxane bonds to the glass surface via hydroxyl groups. Further evidence for the presence of bonded PDMS at the glass surface can be found in the valence band spectra of the siliconized and untreated samples. However, this bond could not be detected directly due to its very similar nature to the siloxane bonds of the glass matrix and the organosilicon backbone of PDMS. Due to the high variation of data from the siliconized samples it was concluded, that the silicone film is not homogeneous. Previously raised theories of reactions during heat-curing glass siliconization are supported by the XPS data of this investigation. Yet, the postulation of fixing or baking the silicone on the glass surface is only partially true since the bonded layer is very thin and most of the silicone originally on the surface after heat curing can be removed by suitable solvents. This fraction can therefore still interact with drug products being in contact to the siliconized container wall.
Improved high-temperature silicide coatings
NASA Technical Reports Server (NTRS)
Klopp, W. D.; Stephens, J. R.; Stetson, A. R.; Wimber, R. T.
1969-01-01
Special technique for applying silicide coatings to refractory metal alloys improves their high-temperature protective capability. Refractory metal powders mixed with a baked-out organic binder and sintered in a vacuum produces a porous alloy layer on the surface. Exposing the layer to hot silicon converts it to a silicide.
Excimer laser annealing: A gold process for CZ silicon junction formation
NASA Technical Reports Server (NTRS)
Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul
1987-01-01
A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.
Dead layer on silicon p-i-n diode charged-particle detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, B. L.; Amsbaugh, John F.; Beglarian, A.
Abstract Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon p-i-n diode used in the KATRIN neutrinomass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra tomore » the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by discussion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.« less
Low-temperature plasma-deposited silicon epitaxial films: Growth and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demaurex, Bénédicte, E-mail: benedicte.demaurex@epfl.ch; Bartlome, Richard; Seif, Johannes P.
2014-08-07
Low-temperature (≤200 °C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-enhanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems not only frommore » the growth conditions but also from unintentional contamination of the reactor. Based on our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.« less
NASA Astrophysics Data System (ADS)
Stegemann, Bert; Gad, Karim M.; Balamou, Patrice; Sixtensson, Daniel; Vössing, Daniel; Kasemann, Martin; Angermann, Heike
2017-02-01
Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO2/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO2/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO2/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO2/Si interfaces have been shown to generate less interface defect states.
Low-temperature plasma-deposited silicon epitaxial films: Growth and properties
Demaurex, Bénédicte; Bartlome, Richard; Seif, Johannes P.; ...
2014-08-05
Low-temperature (≤ 180 °C) epitaxial growth yields precise thickness, doping, and thermal-budget control, which enables advanced-design semiconductor devices. In this paper, we use plasma-ehanced chemical vapor deposition to grow homo-epitaxial layers and study the different growth modes on crystalline silicon substrates. In particular, we determine the conditions leading to epitaxial growth in light of a model that depends only on the silane concentration in the plasma and the mean free path length of surface adatoms. For such growth, we show that the presence of a persistent defective interface layer between the crystalline silicon substrate and the epitaxial layer stems notmore » only from the growth conditions but also from unintentional contamination of the reactor. As a result of our findings, we determine the plasma conditions to grow high-quality bulk epitaxial films and propose a two-step growth process to obtain device-grade material.« less
Apparatus and method of manufacture for an imager equipped with a cross-talk barrier
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor)
2012-01-01
An imager apparatus and associated starting material are provided. In one embodiment, an imager is provided including a silicon layer of a first conductivity type acting as a junction anode. Such silicon layer is adapted to convert light to photoelectrons. Also included is a semiconductor well of a second conductivity type formed in the silicon layer for acting as a junction cathode. Still yet, a barrier is formed adjacent to the semiconductor well. In another embodiment, a starting material is provided including a first silicon layer and an oxide layer disposed adjacent to the first silicon layer. Also included is a second silicon layer disposed adjacent to the oxide layer opposite the first silicon layer. Such second silicon layer is further equipped with an associated passivation layer and/or barrier.
Elibol, Oguz H; Reddy, Bobby; Nair, Pradeep R; Dorvel, Brian; Butler, Felice; Ahsan, Zahab S; Bergstrom, Donald E; Alam, Muhammad A; Bashir, Rashid
2009-10-07
We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications.
High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment.
Wang, Jianxiong; Wang, Hao; Prakoso, Ari Bimo; Togonal, Alienor Svietlana; Hong, Lei; Jiang, Changyun; Rusli
2015-03-14
A simple two-step surface treatment process is proposed to boost the efficiency of silicon nanowire/PEDOT:PSS hybrid solar cells. The Si nanowires (SiNWs) are first subjected to a low temperature ozone treatment to form a surface sacrificial oxide, followed by a HF etching process to partially remove the oxide. TEM investigation demonstrates that a clean SiNW surface is achieved after the treatment, in contrast to untreated SiNWs that have Ag nanoparticles left on the surface from the metal-catalyzed etching process that is used to form the SiNWs. The cleaner SiNW surface achieved and the thin layer of residual SiO2 on the SiNWs have been found to improve the performance of the hybrid solar cells. Overall, the surface recombination of the hybrid SiNW solar cells is greatly suppressed, resulting in a remarkably improved open circuit voltage of 0.58 V. The power conversion efficiency has also increased from about 10% to 12.4%. The two-step surface treatment method is promising in enhancing the photovoltaic performance of the hybrid silicon solar cells, and can also be applied to other silicon nanostructure based solar cells.
Lee, Yoon Kyeung; Yu, Ki Jun; Song, Enming; Barati Farimani, Amir; Vitale, Flavia; Xie, Zhaoqian; Yoon, Younghee; Kim, Yerim; Richardson, Andrew; Luan, Haiwen; Wu, Yixin; Xie, Xu; Lucas, Timothy H; Crawford, Kaitlyn; Mei, Yongfeng; Feng, Xue; Huang, Yonggang; Litt, Brian; Aluru, Narayana R; Yin, Lan; Rogers, John A
2017-12-26
The chemistry that governs the dissolution of device-grade, monocrystalline silicon nanomembranes into benign end products by hydrolysis serves as the foundation for fully eco/biodegradable classes of high-performance electronics. This paper examines these processes in aqueous solutions with chemical compositions relevant to groundwater and biofluids. The results show that the presence of Si(OH) 4 and proteins in these solutions can slow the rates of dissolution and that ion-specific effects associated with Ca 2+ can significantly increase these rates. This information allows for effective use of silicon nanomembranes not only as active layers in eco/biodegradable electronics but also as water barriers capable of providing perfect encapsulation until their disappearance by dissolution. The time scales for this encapsulation can be controlled by introduction of dopants into the Si and by addition of oxide layers on the exposed surfaces.The former possibility also allows the doped silicon to serve as an electrical interface for measuring biopotentials, as demonstrated in fully bioresorbable platforms for in vivo neural recordings. This collection of findings is important for further engineering development of water-soluble classes of silicon electronics.
Design and Fabrication of High-Efficiency CMOS/CCD Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata
2007-01-01
An architecture for back-illuminated complementary metal oxide/semiconductor (CMOS) and charge-coupled-device (CCD) ultraviolet/visible/near infrared- light image sensors, and a method of fabrication to implement the architecture, are undergoing development. The architecture and method are expected to enable realization of the full potential of back-illuminated CMOS/CCD imagers to perform with high efficiency, high sensitivity, excellent angular response, and in-pixel signal processing. The architecture and method are compatible with next-generation CMOS dielectric-forming and metallization techniques, and the process flow of the method is compatible with process flows typical of the manufacture of very-large-scale integrated (VLSI) circuits. The architecture and method overcome all obstacles that have hitherto prevented high-yield, low-cost fabrication of back-illuminated CMOS/CCD imagers by use of standard VLSI fabrication tools and techniques. It is not possible to discuss the obstacles in detail within the space available for this article. Briefly, the obstacles are posed by the problems of generating light-absorbing layers having desired uniform and accurate thicknesses, passivation of surfaces, forming structures for efficient collection of charge carriers, and wafer-scale thinning (in contradistinction to diescale thinning). A basic element of the present architecture and method - the element that, more than any other, makes it possible to overcome the obstacles - is the use of an alternative starting material: Instead of starting with a conventional bulk-CMOS wafer that consists of a p-doped epitaxial silicon layer grown on a heavily-p-doped silicon substrate, one starts with a special silicon-on-insulator (SOI) wafer that consists of a thermal oxide buried between a lightly p- or n-doped, thick silicon layer and a device silicon layer of appropriate thickness and doping. The thick silicon layer is used as a handle: that is, as a mechanical support for the device silicon layer during micro-fabrication.
Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation.
Grieb, Tim; Tewes, Moritz; Schowalter, Marco; Müller-Caspary, Knut; Krause, Florian F; Mehrtens, Thorsten; Hartmann, Jean-Michel; Rosenauer, Andreas
2018-01-01
The chemical composition of four Si 1-x Ge x layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si 1-x Ge x in STEM. Copyright © 2017 Elsevier B.V. All rights reserved.
Detector Development for the abBA Experiment.
Seo, P-N; Bowman, J D; Mitchell, G S; Penttila, S I; Wilburn, W S
2005-01-01
We have developed a new type of field-expansion spectrometer to measure the neutron beta decay correlations (a, b, B, and A). A precision measurement of these correlations places stringent requirements on charged particle detectors. The design employs large area segmented silicon detectors to detect both protons and electrons in coincidence. Other requirements include good energy resolution (< 5 keV), a thin dead layer to allow observation of 30-keV protons, fast timing resolution (~1 ns) to reconstruct electron-backscattering events, and nearly unity efficiency. We report results of testing commercially available surface-barrier silicon detectors for energy resolution and timing performance, and measurement of the dead-layer thickness of ion-implanted silicon detectors with a 3.2 MeV alpha source.
Continuous planar phospholipid bilayer supported on porous silicon thin film reflector.
Cunin, Frédérique; Milhiet, Pierre-Emmanuel; Anglin, Emily; Sailor, Michael J; Espenel, Cédric; Le Grimellec, Christian; Brunel, Daniel; Devoisselle, Jean-Marie
2007-10-01
Reconstituting artificial membranes for in vitro studies of cell barrier mechanisms and properties is of major interest in biology. Here, artificial membranes supported on porous silicon photonic crystal reflectors are prepared and investigated. The materials are of interest for label-free probing of supported membrane events such as protein binding, molecular recognition, and transport. The porous silicon substrates are prepared as multilayered films consisting of a periodically varying porosity, with pore dimensions of a few nanometers in size. Planar phospholipid bilayers are deposited on the topmost surface of the oxidized hydrophilic mesoporous silicon films. Atomic force microscopy provides evidence of continuous bilayer deposition at the surface, and optical measurements indicate that the lipids do not significantly infiltrate the porous region. The presence of the supported bilayer does not obstruct the optical spectrum from the porous silicon layer, suggesting that the composite structures can act as effective optical biosensors.
Nanotube Surface Arrays: Weaving, Bending, and Assembling on Patterned Silicon
NASA Astrophysics Data System (ADS)
Tsukruk, Vladimir V.; Ko, Hyunhyub; Peleshanko, Sergiy
2004-02-01
We report the fabrication of ordered arrays of oriented and bent carbon nanotube on a patterned silicon surface with a micron scale spacing extending over millimeter size surface areas. We suggest that the patterning is controlled by the hydrodynamic behavior of a fluid front and orientation and bending mechanisms are facilitated by the pinned carbon nanotubes trapped by the liquid-solid-vapor contact line. The bending of the pinned nanotubes occurs along the shrinking receding front of the drying microdroplets. The formation of stratified microfluidic layers is vital for stimulating periodic instabilities of the contact line.
Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing
2015-01-01
In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.
NASA Astrophysics Data System (ADS)
Hsieh, Yu-Lin; Lee, Chien-Chieh; Lu, Chia-Cheng; Fuh, Yiin-Kuen; Chang, Jenq-Yang; Lee, Ju-Yi; Li, Tomi T.
2017-07-01
A symmetrically stacked structure [(a-Si:H(n+)/a-Si:H(i)/CZ wafer (n)/a-Si:H(i)/a-Si:H(n+)] was used to optimize the growth process conditions of the n-type hydrogenated amorphous silicon [a-Si:H(n+)] thin films. Here a-Si:H(n+) film was used as back surface field (BSF) layer for the silicon heterojunction solar cell and all stacked films were prepared by conventional radio-frequency plasma-enhanced chemical vapor deposition. The characterizations of the effective carrier lifetime (τeff), electrical and structural properties, as well as correlation with the hydrogen dilution ratio (R=H2/SiH4) were systematically discussed with the emphasis on the effectiveness of the passivation layer using the lifetime tester, spectroscopic ellipsometry, and hall measurement. High quality of a stacked BSF layer (intrinsic/n-type a-Si:H layer) with effective carrier lifetime of 1.8 ms can be consistently obtained. This improved passivation layer can be primarily attributed to the synergy of chemical and field effect to significantly reduce the surface recombination.
A simultaneous deep micromachining and surface passivation method suitable for silicon-based devices
NASA Astrophysics Data System (ADS)
Babaei, E.; Gharooni, M.; Mohajerzadeh, S.; Soleimani, E. A.
2018-07-01
Three novel methods for simultaneous micromachining and surface passivation of silicon are reported. A thin passivation layer is achieved using continuous and sequential plasma processes based on SF6, H2 and O2 gases. Reducing the recombination by surface passivation is crucial for the realization of high-performance nanosized optoelectronic devices. The passivation of the surface as an important step, is feasible by plasma processing based on hydrogen pulses in proper time-slots or using a mixture of H2 and O2, and SF6 gases. The passivation layer which is formed in situ during the micromachining process obviates a separate passivation step needed in conventional methods. By adjusting the plasma parameters such as power, duration, and flows of gases, the process can be controlled for the best results and acceptable under-etching at the same time. Moreover, the pseudo-oxide layer which is formed during the micromachining processes will also improve the electrical characteristics of the surface, which can be used as an add-on for micro and nanowire applications. To quantify the effect of surface passivation in our method, ellipsometry, lifetime measurements, x-ray photoelectron spectroscopy, current–voltage and capacitance–voltage measurements and solar cell testing have been employed.
Fabrication of lightweight ceramic mirrors by means of a chemical vapor deposition process
NASA Technical Reports Server (NTRS)
Goela, Jitendra S. (Inventor); Taylor, Raymond L. (Inventor)
1991-01-01
A process to fabricate lightweigth ceramic mirrors, and in particular, silicon/silicon carbide mirrors, involves three chemical vapor deposition steps: one to produce the mirror faceplate, the second to form the lightweight backstructure which is deposited integral to the faceplate, and the third and final step which results in the deposition of a layer of optical grade material, for example, silicon, onto the front surface of the faceplate. The mirror figure and finish are fabricated into this latter material.
Development of silicon nitride of improved toughness
NASA Technical Reports Server (NTRS)
Brennan, J. J.
1979-01-01
The application of reaction sintered Si2N4 energy absorbing surface layers to hot-pressed Si3N4 was investigated. The surface layer was formed by in-place nitridation of silicon powder. It was found that reaction sintered Si3N4 layers of 1 mm thickness, fabricated from either -100, +200, -200, or -325 mesh Si powder and nitrided in 96% N2/4% H2 so that approximately 20-25 vol % unnitrided Si remained in the layer, resulted in a sevenfold increase in ballistic impact resistance of a 0.64 cm thick hot-pressed SI3N4 substrate from RT 1370 C. Both NC-132 SI3N4, with MgO additive, and NCX-34 Si3N4, with Y2O3 additive, were evaluated as substrate material. The finer grain size -200 and -325 mesh nitrided Si layers were for their smoothness and relatively high density. It was found that nitriding in N2/H2 mixtures, rather than pure N2, resulted in a microstructure that did not substantially degrade the strength of the hot-pressed Si3N4 substrate. Thermal cycling tests on the RSSN/HPSN combinations from 200 C to 1370 C for 75 cycles in air did not degrade the impact resistance nor the interfacial bonding, although a large amount of internal silica formation occurred within the RSSN layer. Mach 0.8, 5 hr, hot gas erosion tests showed no surface recession of RSSN layers at 1200 C and slight surface recession at 1370 C.
NASA Astrophysics Data System (ADS)
Konishi, Satoshi; Nakagami, Chise; Kobayashi, Taizo; Tonomura, Wataru; Kaizuma, Yoshihiro
2015-04-01
In this work, a lift-off process with bi-layer photoresist patterns was applied to the formation of hydrophobic/hydrophilic micropatterns on practical polymer substrates used in healthcare diagnostic commercial products. The bi-layer photoresist patterns with undercut structures made it possible to peel the conformal-coated silicon oxide (SiOx) films from substrates. SiOx and silicon carbide (SiCx) layers were deposited by pulsed plasma chemical vapor deposition (PPCVD) method which can form roughened surfaces to enhance hydrophilicity of SiOx and hydrophobicity of SiCx. Microfluidic applications using hydrophobic/hydrophilic patterns were also demonstrated on low-cost substrates such as poly(ethylene terephthalate) (PET) and paper films.
Bhamla, M Saad; Balemans, Caroline; Fuller, Gerald G
2015-07-01
We investigate the stabilizing effect of insoluble surfactant monolayers on thin aqueous films. We first describe an experimental platform that enables the formation of aqueous films laden with dipalmitoylphosphatidylcholine (DPPC) monolayers on curved silicone hydrogel (SiHy) substrates. We show that these surfactant layers extend the lifetime of the aqueous films. The films eventually "dewet" by the nucleation and growth of dry areas and the onset of this dewetting can be controlled by the surface rheology of the DPPC layer. We thus demonstrate that increasing the interfacial rheology of the DPPC layer leads to stable films that delay dewetting. We also show that dewetting can be exploited to controllably pattern the underlying curved SiHy substrates with DPPC layers. Copyright © 2015 Elsevier Inc. All rights reserved.
Filatova, Ekaterina A; Hausmann, Dennis; Elliott, Simon D
2018-05-02
Understanding the mechanism of SiC chemical vapor deposition (CVD) is an important step in investigating the routes toward future atomic layer deposition (ALD) of SiC. The energetics of various silicon and carbon precursors reacting with bare and H-terminated 3C-SiC (011) are analyzed using ab initio density functional theory (DFT). Bare SiC is found to be reactive to silicon and carbon precursors, while H-terminated SiC is found to be not reactive with these precursors at 0 K. Furthermore, the reaction pathways of silane plasma fragments SiH 3 and SiH 2 are calculated along with the energetics for the methane plasma fragments CH 3 and CH 2 . SiH 3 and SiH 2 fragments follow different mechanisms toward Si growth, of which the SiH 3 mechanism is found to be more thermodynamically favorable. Moreover, both of the fragments were found to show selectivity toward the Si-H bond and not C-H bond of the surface. On the basis of this, a selective Si deposition process is suggested for silicon versus carbon-doped silicon oxide surfaces.
Solder for oxide layer-building metals and alloys
Kronberg, James W.
1992-01-01
A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.
Solder for oxide layer-building metals and alloys
Kronberg, J.W.
1992-09-15
A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.
Smectic order induced at homeotropically aligned nematic surfaces: A neutron reflection study
NASA Astrophysics Data System (ADS)
Lau, Y. G. J.; Richardson, Robert M.; Cubitt, R.
2006-06-01
Neutron reflection was used to measure the buildup of layers at a solid surface as the smectic phase is approached from higher temperatures in a nematic liquid crystal. The liquid crystal was 4-octyl-4'-cyanobiphenyl (8CB), and the solid was silicon with one of five different surface treatments that induce homeotropic alignment: (i) silicon oxide; (ii) a cetyltrimethylammonium bromide coating; (iii) an octadecyltrichlorosilane monolayer; (iv) an n-n-dimethyl-n-octadecyl-3- aminopropyltrimethyloxysilyl chloride monolayer; and (v) a lecithin coating. The development of surface smectic layers in the nematic phase of 8CB was followed by measuring specular reflectivity and monitoring the pseudo-Bragg peak from the layers. The scattering data were processed to remove the scattering from short-ranged smecticlike fluctuations in the bulk nematic phase from the specular reflection. The pseudo-Bragg peak at scattering vector Q ˜0.2Å-1 therefore corresponded to the formation of long-range smectic layers at the surface. The amplitude of the smectic density wave decayed with increasing distance from the surface, and the characteristic thickness of this smectic region diverged as the transition temperature was approached. It was found that the characteristic thickness for some of the surface treatments was greater than the correlation length in the bulk nematic. The different surfaces gave different values of the smectic order parameter at the surface. This suggests that the interaction with the surface is significantly different from a "hard wall" which would give the same values of the smectic order parameter and penetration depths similar to the bulk correlation length. Comparison of the different surfaces also suggested that the strength and range of the surface smectic ordering may be varied independently.
Innovation Meets Performance Demands of Advanced Lithium-ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodatesmore » volumetric expansion of silicon electrodes.« less
Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool
NASA Astrophysics Data System (ADS)
Duan, Li; Kang, Qi; Zhang, Di
2016-07-01
Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.
Effect of substrates on the molecular orientation of silicon phthalocyanine dichloride thin films
NASA Astrophysics Data System (ADS)
Deng, Juzhi; Baba, Yuji; Sekiguchi, Tetsuhiro; Hirao, Norie; Honda, Mitsunori
2007-05-01
Molecular orientations of silicon phthalocyanine dichloride (SiPcCl2) thin films deposited on three different substrates have been measured by near-edge x-ray absorption fine structure (NEXAFS) spectroscopy using linearly polarized synchrotron radiation. The substrates investigated were highly oriented pyrolitic graphite (HOPG), polycrystalline gold and indium tin oxide (ITO). For thin films of about five monolayers, the polarization dependences of the Si K-edge NEXAFS spectra showed that the molecular planes of SiPcCl2 on three substrates were nearly parallel to the surface. Quantitative analyses of the polarization dependences revealed that the tilted angle on HOPG was only 2°, which is interpreted by the perfect flatness of the HOPG surface. On the other hand, the tilted angle on ITO was 26°. Atomic force microscopy (AFM) observation of the ITO surface showed that the periodicity of the horizontal roughness is of the order of a few nanometres, which is larger than the molecular size of SiPcCl2. It is concluded that the morphology of the top surface layer of the substrate affects the molecular orientation of SiPcCl2 molecules not only for mono-layered adsorbates but also for multi-layered thin films.
Yadav, Amrita R; Sriram, Rashmi; Carter, Jared A; Miller, Benjamin L
2014-02-01
The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. Copyright © 2013 Elsevier B.V. All rights reserved.
RF-plasma vapor deposition of siloxane on paper. Part 1: Physical evolution of paper surface
NASA Astrophysics Data System (ADS)
Sahin, Halil Turgut
2013-01-01
An alternative, new approach to improve the hydrophobicity and barrier properties of paper was evaluated by radio-frequency (RF) plasma octamethylcyclotetrasiloxane (OMCTSO) vapor treatment. The interaction between OMCTSO and paper, causing the increased hydophobicity, is likely through covalent bonding. The deposited thin silicone-like polymeric layer from OMCTSO plasma treatment possessed desirable hydrophobic properties. The SEM micrographs showed uniformly distributed grainy particles with various shapes on the paper surface. Deposition of the silicone polymer-like layer with the plasma treatment affects the distribution of voids in the network structure and increases the barrier against water intake and air. The water absorptivity was reduced by 44% for the OMCTSO plasma treated sheet. The highest resistance to air flow was an approximately 41% lower air permeability than virgin paper.
Study of porous silicon optical waveguides impregnated with organic dyes
NASA Astrophysics Data System (ADS)
Pirasteh, P.; Charrier, J.; Dumeige, Y.; Chaillou, A.; Guendouz, M.; Haji, L.
2007-01-01
Planar waveguides were made using oxidised porous silicon layers. Then, they were impregnated with Congo Red or Disperse Red 1 dyes. Optical losses were investigated before and after impregnation. In our case, the losses of impregnated waveguides were always higher than those of non-impregnated ones. In order to achieve a better understanding of the origin of these losses, we not only studied the absorbance of solutions which would impregnate the porous layers but also the reflectance spectra of the obtained composite materials. According to the measurements, the increase in losses in the visible spectrum depends on the intrinsic absorption of the dye while in NIR, the increase would be due to an accumulation of dried dye on the surface of the waveguide which would give rise to the surface scattering losses.
Schroder, Kjell; Li, Juchuan; Dudney, Nancy J.; ...
2015-08-03
Fluoroethylene carbonate (FEC) has become a standard electrolyte additive for use with silicon negative electrodes, but how FEC affects solid electrolyte interphase (SEI) formation on the silicon anode’s surface is still not well understood. Herein, SEI formed from LiPF6-based carbonate electrolytes, with and without FEC, were investigated on 50 nm thick amorphous silicon thin film electrodes to understand the role of FEC on silicon electrode surface reactions. In contrast to previous work, anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films. This allowed for accurate characterization of the SEI structure and composition bymore » X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry depth profiling. These results show that FEC reduction leads to fluoride ion and LiF formation, consistent with previous computational and experimental results. Surprisingly, we also find that these species decrease lithium-ion solubility and increase the reactivity of the silicon surface. We conclude that the effectiveness of FEC at improving the Coulombic efficiency and capacity retention is due to fluoride ion formation from reduction of the electrolyte, which leads to the chemical attack of any silicon-oxide surface passivation layers and the formation of a kinetically stable SEI comprising predominately lithium fluoride and lithium oxide.« less
PCT MAO’s Enhanced Performance by Specially Designed Sealers for Superior Service & Environments
2014-11-01
PCT’s Process is with low silicon content. • Aluminized Steel + PCT MAO can be a cost effective alternative to Stainless Steel, Super Duplex...is applied PCT – P seal • Typical Layer thickness: 40-80 micron* • Organic sealer • Hydrophobic surface, reduces sedimentation...PCT - S seal • Typical Layer thickness: 10-40 micron* • Organo-ceramic sealer • Hydrophobic surface, reduces sedimentation. PCT Classic 1000
Enhanced adhesion by high energy bombardment
NASA Technical Reports Server (NTRS)
Griffith, Joseph E. (Inventor); Qiu, Yuanxun (Inventor); Tombrello, Thomas A. (Inventor)
1984-01-01
Films (12) of gold, copper, silicon nitride, or other materials are firmly bonded to insulator substrates (12) such as silica, a ferrite, or Teflon (polytetrafluorethylene) by irradiating the interface with high energy ions. Apparently, track forming processes in the electronic stopping region cause intermixing in a thin surface layer resulting in improved adhesion without excessive doping. Thick layers can be bonded by depositing or doping the interfacial surfaces with fissionable elements or alpha emitters.
NASA Astrophysics Data System (ADS)
Bonno, Olivier; Barraud, Sylvain; Mariolle, Denis; Andrieu, François
2008-03-01
Recently, in order to explain the long-channel electron effective mobility at a high sheet carrier density in strained silicon channel transistors, it has been suggested by [M. V. Fischetti, F. Gamiz, and W. Hansch, J. Appl. Phys. 92, 7230 (2002)] that biaxial tensile strain should smooth the Si/SiO2 interface. To address this topic, the roughness properties of biaxial strained silicon-on-insulator (s-SOI) films are investigated by means of atomic force microscopy. Through in-depth statistical analysis of the digitalized surface profiles, the roughness parameters are extracted for unstrained and strained SOI films, with 0.8% biaxial tensile strain. Especially, it is found that strain significantly reduces the roughness amplitude. Then, mobility calculations in SOI and s-SOI inversion layers are performed in the framework of the Kubo-Greenwood formalism. The model accounts for the main scattering mechanisms that are dominant in the high electron density range, namely phonon and surface roughness. Special attention has been paid to the modeling of the latter by accounting for all the contributions of the potential which arise from the deformed rough interface, and by using a multisubband wavelength-dependent screening model. This model is then applied to study the influence of the surface morphology on the mobility in s-SOI inversion layers. In this context, the mobility gain between s-SOI and unstrained SOI layers is found to agree significantly better with experimental data if the strain-induced decrease of the roughness amplitude is taken into account.
Elibol, Oguz H.; Reddy, Bobby; Nair, Pradeep R.; Dorvel, Brian; Butler, Felice; Ahsan, Zahab; Bergstrom, Donald E.; Alam, Muhammad A.; Bashir, Rashid
2010-01-01
We demonstrate electrically addressable localized heating in fluid at the dielectric surface of silicon-on-insulator field-effect transistors via radio-frequency Joule heating of mobile ions in the Debye layer. Measurement of fluid temperatures in close vicinity to surfaces poses a challenge due to the localized nature of the temperature profile. To address this, we developed a localized thermometry technique based on the fluorescence decay rate of covalently attached fluorophores to extract the temperature within 2 nm of any oxide surface. We demonstrate precise spatial control of voltage dependent temperature profiles on the transistor surfaces. Our results introduce a new dimension to present sensing systems by enabling dual purpose silicon transistor-heaters that serve both as field effect sensors as well as temperature controllers that could perform localized bio-chemical reactions in Lab on Chip applications. PMID:19967115
Direct evidence of the recombination of silicon interstitial atoms at the silicon surface
NASA Astrophysics Data System (ADS)
Lamrani, Y.; Cristiano, F.; Colombeau, B.; Scheid, E.; Calvo, P.; Schäfer, H.; Claverie, Alain
2004-02-01
In this experiment, a Si wafer containing four lightly doped B marker layers epitaxially grown by CVD has been implanted with 100 keV Si + ions to a dose of 2 × 10 14 ions/cm 2 and annealed at 850 °C for several times in an RTA system in flowing N 2. TEM and SIMS analysis, in conjunction with a transient enhanced diffusion (TED) evaluation method based on the kick-out diffusion mechanism, have allowed us to accurately study the boron TED evolution in presence of extended defects. We show that the silicon surface plays a key role in the recombination of Si interstitial atoms by providing the first experimental evidence of the resulting Si ints supersaturation gradient between the defect region and the surface. Our results indicate an upper limit of about 200 nm for the surface recombination length of Si interstitials at 850 °C in a N 2 ambient.
NASA Technical Reports Server (NTRS)
Snyder, Aaron; Banks, Bruce; Miller, Sharon; Stueber, Thomas; Sechkar, Edward
2001-01-01
A numerical procedure is presented to calculate transmittance degradation caused by contaminant films on spacecraft surfaces produced through the interaction of orbital atomic oxygen (AO) with volatile silicones and hydrocarbons from spacecraft components. In the model, contaminant accretion is dependent on the adsorption of species, depletion reactions due to gas-surface collisions, desorption, and surface reactions between AO and silicone producing SiO(x), (where x is near 2). A detailed description of the procedure used to calculate the constituents of the contaminant layer is presented, including the equations that govern the evolution of fractional coverage by specie type. As an illustrative example of film growth, calculation results using a prototype code that calculates the evolution of surface coverage by specie type is presented and discussed. An example of the transmittance degradation caused by surface interaction of AO with deposited contaminant is presented for the case of exponentially decaying contaminant flux. These examples are performed using hypothetical values for the process parameters.
Stock, H J; Hamelmann, F; Kleineberg, U; Menke, D; Schmiedeskamp, B; Osterried, K; Heidemann, K F; Heinzmann, U
1997-03-01
Zerodur and BK7 glass substrates (developed by Fa. Glaswerke Schott, D-55014 Mainz, Germany) from Carl Zeiss Oberkochen polished to a standard surface roughness of varsigma = 0.8 nm rms were coated with a C layer by electron-beam evaporation in the UHV. The roughness of the C-layer surfaces is reduced to 0.6 nm rms. A normal-incidence reflectance of 50% at a wavelength of 13 nm was measured for a Mo/Si multilayer soft-x-ray mirror with 30 double layers (N = 30) deposited onto the BK7/C substrate, whereas a similar Mo/Si multilayer (N = 30) evaporated directly onto the bare BK7 surface turned out to show a reflectance of only 42%.
Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells
Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; ...
2014-11-01
We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less
Quasi-2D silicon structures based on ultrathin Me2Si (Me = Mg, Ca, Sr, Ba) films
NASA Astrophysics Data System (ADS)
Migas, D. B.; Bogorodz, V. O.; Filonov, A. B.; Borisenko, V. E.; Skorodumova, N. V.
2018-04-01
By means of ab initio calculations with hybrid functionals we show a possibility for quasi-2D silicon structures originated from semiconducting Mg2Si, Ca2Si, Sr2Si and Ba2Si silicides to exist. Such a 2D structure is similar to the one of transition metal chalcogenides where silicon atoms form a layer in between of metal atoms aligned in surface layers. These metal surface atoms act as pseudo passivation species stabilizing crystal structure and providing semiconducting properties. Considered 2D Mg2Si, Ca2Si, Sr2Si and Ba2Si have band gaps of 1.14 eV, 0.69 eV, 0.33 eV and 0.19 eV, respectively, while the former one is also characterized by a direct transition with appreciable oscillator strength. Electronic states of the surface atoms are found to suppress an influence of the quantum confinement on the band gaps. Additionally, we report Sr2Si bulk in the cubic structure to have a direct band gap of 0.85 eV as well as sizable oscillator strength of the first direct transition.
NASA Astrophysics Data System (ADS)
Abdullah, Abdul Manaf; Din, Tengku Noor Daimah Tengku; Mohamad, Dasmawati; Rahim, Tuan Noraihan Azila Tuan; Akil, Hazizan Md; Rajion, Zainul Ahmad
2016-12-01
Conventional prosthesis fabrication is highly depends on the hand creativity of laboratory technologist. The development in 3D printing technology offers a great help in fabricating affordable and fast yet esthetically acceptable prostheses. This study was conducted to discover the potential of 3D printed moulds for indirect silicone elastomer based nasal prosthesis fabrication. Moulds were designed using computer aided design (CAD) software (Solidworks, USA) and converted into the standard tessellation language (STL) file. Three moulds with layer thickness of 0.1, 0.2 and 0.3mm were printed utilizing polymer filament based 3D printer (Makerbot Replicator 2X, Makerbot, USA). Another one mould was printed utilizing liquid resin based 3D printer (Objet 30 Scholar, Stratasys, USA) as control. The printed moulds were then used to fabricate maxillofacial silicone specimens (n=10)/mould. Surface profilometer (Surfcom Flex, Accretech, Japan), digital microscope (KH77000, Hirox, USA) and scanning electron microscope (Quanta FEG 450, Fei, USA) were used to measure the surface roughness as well as the topological properties of fabricated silicone. Statistical analysis of One-Way ANOVA was employed to compare the surface roughness of the fabricated silicone elastomer. Result obtained demonstrated significant differences in surface roughness of the fabricated silicone (p<0.01). Further post hoc analysis also revealed significant differences in silicone fabricated using different 3D printed moulds (p<0.01). A 3D printed mould was successfully prepared and characterized. With surface topography that could be enhanced, inexpensive and rapid mould fabrication techniques, polymer filament based 3D printer is potential for indirect silicone elastomer based nasal prosthesis fabrication.
Transparent electrodes in silicon heterojunction solar cells: Influence on contact passivation
Tomasi, Andrea; Sahli, Florent; Seif, Johannes Peter; ...
2015-10-26
Charge carrier collection in silicon heterojunction solar cells occurs via intrinsic/doped hydrogenated amorphous silicon layer stacks deposited on the crystalline silicon wafer surfaces. Usually, both the electron and hole collecting stacks are externally capped by an n-type transparent conductive oxide, which is primarily needed for carrier extraction. Earlier, it has been demonstrated that the mere presence of such oxides can affect the carrier recombination in the crystalline silicon absorber. Here, we present a detailed investigation of the impact of this phenomenon on both the electron and hole collecting sides, including its consequences for the operating voltages of silicon heterojunction solarmore » cells. As a result, we define guiding principles for improved passivating contact design for high-efficiency silicon solar cells.« less
Transparent electrodes in silicon heterojunction solar cells: Influence on contact passivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomasi, Andrea; Sahli, Florent; Seif, Johannes Peter
Charge carrier collection in silicon heterojunction solar cells occurs via intrinsic/doped hydrogenated amorphous silicon layer stacks deposited on the crystalline silicon wafer surfaces. Usually, both the electron and hole collecting stacks are externally capped by an n-type transparent conductive oxide, which is primarily needed for carrier extraction. Earlier, it has been demonstrated that the mere presence of such oxides can affect the carrier recombination in the crystalline silicon absorber. Here, we present a detailed investigation of the impact of this phenomenon on both the electron and hole collecting sides, including its consequences for the operating voltages of silicon heterojunction solarmore » cells. As a result, we define guiding principles for improved passivating contact design for high-efficiency silicon solar cells.« less
Article having an improved platinum-aluminum-hafnium protective coating
NASA Technical Reports Server (NTRS)
Nagaraj, Bangalore Aswatha (Inventor); Williams, Jeffrey Lawrence (Inventor)
2005-01-01
An article protected by a protective coating has a substrate and a protective coating having an outer layer deposited upon the substrate surface and a diffusion zone formed by interdiffusion of the outer layer and the substrate. The protective coating includes platinum, aluminum, no more than about 2 weight percent hafnium, and substantially no silicon. The outer layer is substantially a single phase.
NASA Astrophysics Data System (ADS)
Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.
2014-07-01
The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.
NASA Astrophysics Data System (ADS)
Alsem, D. H.; Timmerman, R.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.
2007-01-01
Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up to 1012cycles), there is still an on-going debate on the precise mechanisms involved. We show here that for devices fabricated in the multiuser microelectromechanical system process (MUMPs) foundry and Sandia Ultra-planar, Multi-level MEMS Technology (SUMMiT V™) process and tested under equi-tension/compression loading at ˜40kHz in different environments, stress-lifetime data exhibit similar trends in fatigue behavior in ambient room air, shorter lifetimes in higher relative humidity environments, and no fatigue failure at all in high vacuum. The transmission electron microscopy of the surface oxides in the test samples shows a four- to sixfold thickening of the surface oxide at stress concentrations after fatigue failure, but no thickening after overload fracture in air or after fatigue cycling in vacuo. We find that such oxide thickening and premature fatigue failure (in air) occur in devices with initial oxide thicknesses of ˜4nm (SUMMiT V™) as well as in devices with much thicker initial oxides ˜20nm (MUMPs). Such results are interpreted and explained by a reaction-layer fatigue mechanism. Specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure of the entire device. The entirety of the evidence presented here strongly indicates that the reaction-layer fatigue mechanism is the governing mechanism for fatigue failure in micron-scale polycrystalline silicon thin films.
Front surface passivation of silicon solar cells with antireflection coating
NASA Technical Reports Server (NTRS)
Crotty, G.; Daud, T.; Kachare, R.
1987-01-01
It is demonstrated that the deposition and postdeposition sintering of an antireflection (AR) coating in hydrogen acts to passivate silicon solar cells. Cells with and without an SiO2 passivating layer, coated with a TiO(x)/Al2O3 AR coating, showed comparable enhancements in short-wavelength spectral response and in open-circuit voltage Voc after sintering at 400 C for 5 min in a hydrogen ambient. The improvement in Voc of cells without SiO2 is attributed to front-surface passivation by the AR coating during processing.
Emmerich, F; Thielemann, C
2016-05-20
Multilayers of silicon oxide/silicon nitride/silicon oxide (ONO) are known for their good electret properties due to deep energy traps near the material interfaces, facilitating charge storage. However, measurement of the space charge distribution in such multilayers is a challenge for conventional methods if layer thickness dimensions shrink below 1 μm. In this paper, we propose an atomic force microscope based method to determine charge distributions in ONO layers with spatial resolution below 100 nm. By applying Kelvin probe force microscopy (KPFM) on freshly cleaved, corona-charged multilayers, the surface potential is measured directly along the z-axis and across the interfaces. This new method gives insights into charge distribution and charge movement in inorganic electrets with a high spatial resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Tobias G.; Fleurence, Antoine; Warner, Ben
We observe a new two-dimensional (2D) silicon crystal, using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) and it's formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB 2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. Furthermore, the 2D growth of this material could allow for direct contacting tomore » the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.« less
Investigation of electric erosion of silicon electrodes in aerosol nanoparticles synthesis
NASA Astrophysics Data System (ADS)
Mylnikov, D. A.; Urazov, M. N.; Efimov, A. A.; Lizunova, A. A.; Ivanov, V. V.
2017-07-01
The electric erosion of silicon electrodes in the production of aerosol nanoparticles in a spark discharge generator was studied. A microscopic investigation of electrodes subjected to a different number of pulses, from 103 to 107, showed that a layer of silicon oxide nanoparticles settled back onto the electrode is formed on the surface of the end of the electrodes. This layer reduces the conductivity of the electrode and the productivity of nanoparticle synthesis. An estimation of the mass of the settled particles shows that up to half of the synthesized particles are returned to the electrode as a result of recycling. In the process of this work, we used quasi-unipolar pulses, which allowed us to determine the greater electroerosion wear of the cathodes compared to the anodes.
McKee, Rodney A.; Walker, Frederick J.
2003-11-25
A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.
Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency
NASA Astrophysics Data System (ADS)
Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.
2017-10-01
An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.
Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Vetter, Florian; Müller, Christoph; Bracher, Franz; Friess, Wolfgang
2016-08-01
Combination products have become popular formats for the delivery of parenteral medications. Bake-on siliconization of glass syringes or cartridges allows good piston break-loose and gliding during injection at low silicone levels. Although widely implemented in industry, still little is known and published on the effect of the bake-on process on the silicone level, layer thickness and chemical composition. In this study, cartridges were bake-on siliconized in a heat-tunnel by varying both temperature from 200 to 350°C for 12min and time from 5min to 3h at 316°C. Furthermore, a heat-oven with air-exchange was established as an experimental model. Heat treatment led to a time- and temperature-dependent decrease in the silicone level and layer thickness. After 1h at 316°C lubrication was insufficient. The silicone levels substantially decreased between 250 and 316°C after 12min. After bake-on, the peak molecular weight of the silicone remained unchanged while fractions below 5000g/mol were removed at 316 and 350°C. Cyclic low molecular weight siloxanes below 500g/mol were volatilized under all conditions. Despite most of the baked-on silicone was solvent-extractable, contact angle analysis indicated a strong binding of a remaining, thin silicone film to the glass surface. Copyright © 2016 Elsevier B.V. All rights reserved.
Method for synthesis of high quality graphene
Lanzara, Alessandra [Piedmont, CA; Schmid, Andreas K [Berkeley, CA; Yu, Xiaozhu [Berkeley, CA; Hwang, Choonkyu [Albany, CA; Kohl, Annemarie [Beneditkbeuern, DE; Jozwiak, Chris M [Oakland, CA
2012-03-27
A method is described herein for the providing of high quality graphene layers on silicon carbide wafers in a thermal process. With two wafers facing each other in close proximity, in a first vacuum heating stage, while maintained at a vacuum of around 10.sup.-6 Torr, the wafer temperature is raised to about 1500.degree. C., whereby silicon evaporates from the wafer leaving a carbon rich surface, the evaporated silicon trapped in the gap between the wafers, such that the higher vapor pressure of silicon above each of the wafers suppresses further silicon evaporation. As the temperature of the wafers is raised to about 1530.degree. C. or more, the carbon atoms self assemble themselves into graphene.
NASA Astrophysics Data System (ADS)
Oliullah, Md.; Liu, J. Y.; Song, P.; Wang, Y.
2018-06-01
A three-layer theoretical model is developed for the characterization of the electronic transport properties (lifetime τ, diffusion coefficient D, and surface recombination velocity s) with energetic particle irradiation on solar cells using non-contact photocarrier radiometry. Monte Carlo (MC) simulation is carried out to obtain the depth profiles of the proton irradiation layer at different low energies (< 200 keV). The monocrystalline silicon (c-Si) solar cells are investigated under different low-energy proton irradiation, and the carrier transport parameters of the three layers are obtained by best-fitting of the experimental results. The results show that the low-energy protons have little influence on the transport parameters of the non-irradiated layer, but high influences on both of the p and n-region irradiation layers which are consisted of MC simulation.
de Heer, Walt A.; Berger, Claire; Ruan, Ming; Sprinkle, Mike; Li, Xuebin; Hu, Yike; Zhang, Baiqian; Hankinson, John; Conrad, Edward
2011-01-01
After the pioneering investigations into graphene-based electronics at Georgia Tech, great strides have been made developing epitaxial graphene on silicon carbide (EG) as a new electronic material. EG has not only demonstrated its potential for large scale applications, it also has become an important material for fundamental two-dimensional electron gas physics. It was long known that graphene mono and multilayers grow on SiC crystals at high temperatures in ultrahigh vacuum. At these temperatures, silicon sublimes from the surface and the carbon rich surface layer transforms to graphene. However the quality of the graphene produced in ultrahigh vacuum is poor due to the high sublimation rates at relatively low temperatures. The Georgia Tech team developed growth methods involving encapsulating the SiC crystals in graphite enclosures, thereby sequestering the evaporated silicon and bringing growth process closer to equilibrium. In this confinement controlled sublimation (CCS) process, very high-quality graphene is grown on both polar faces of the SiC crystals. Since 2003, over 50 publications used CCS grown graphene, where it is known as the “furnace grown” graphene. Graphene multilayers grown on the carbon-terminated face of SiC, using the CCS method, were shown to consist of decoupled high mobility graphene layers. The CCS method is now applied on structured silicon carbide surfaces to produce high mobility nano-patterned graphene structures thereby demonstrating that EG is a viable contender for next-generation electronics. Here we present for the first time the CCS method that outperforms other epitaxial graphene production methods. PMID:21960446
Surface segregation on Fe3%Si0.04%VC(100) single crystal surfaces
NASA Astrophysics Data System (ADS)
Uebing, C.; Viefhaus, H.
1990-10-01
Surface segregation phenomena on (100) oriented single crystal surfaces of the ferritic Fe-3%Si-0.04%V-C alloy were investigated by AES and LEED. At temperatures below 635 °C vanadium and carbon cosegregation is observed after prolonged heating. At thermodynamic equilibrium the substrate surface is saturated with the binary surface compound VC. The two-dimensional VC is epitaxially arranged on the substrate surface as indicated by LEED investigations. Its structure corresponds to the (100) plane of the three-dimensional VC with rocksalt structure. Sharp above 635 °C the surface compound VC is dissolved into the bulk. At higher temperatures the substrate surface is covered with segregated silicon forming a c(2 × 2) structure. This surface phase transition is reversible. Because of the low concentration and slow diffusion of vanadium, non-equilibrium surface states are formed as intermediates upon segregation of silicon and carbon. Below 500 °C a disordered graphite layer with a characteristical asymmetrical C Auger peak is observed on the substrate surface. Above 500 °C carbon segregation leads to the formation of an ordered c(2 × 2) structure with a symmetrical C Auger peak being characteristic for carbidic or atomically adsorbed species. At increasing temperatures silicon segregation takes place leading to a c(2 × 2) structure. Between silicon and carbon site competition is effective.
Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization
NASA Astrophysics Data System (ADS)
Hong, Won-Eui; Ro, Jae-Sang
2015-01-01
Joule-heating-induced crystallization (JIC) of amorphous silicon (a-Si) films is carried out by applying an electric pulse to a conductive layer located beneath or above the films. Crystallization occurs across the whole substrate surface within few tens of microseconds. Arc instability, however, is observed during crystallization, and is attributed to dielectric breakdown in the conductor/insulator/transformed polycrystalline silicon (poly-Si) sandwich structures at high temperatures during electrical pulsing for crystallization. In this study, we devised a method for the crystallization of a-Si films while preventing arc generation; this method consisted of pre-patterning an a-Si active layer into islands and then depositing a gate oxide and gate electrode. Electric pulsing was then applied to the gate electrode formed using a Mo layer. The Mo layer was used as a Joule-heat source for the crystallization of pre-patterned active islands of a-Si films. JIC-processed poly-Si thin-film transistors (TFTs) were fabricated successfully, and the proposed method was found to be compatible with the standard processing of coplanar top-gate poly-Si TFTs.
Growth and properties of silicon heterostructures with buried nanosize Mg2Si clusters
NASA Astrophysics Data System (ADS)
Galkin, N. G.; Galkin, K. N.
2005-06-01
The technology of solid-phase growth of nanosize islands of magnesium suicide on Si (111) 7x7 with narrow distributions of lateral size and height (60 - 80 and 5 - 7 nanometers, respectively) and density of up to 2x 109 sm-2 is proposed. A 20-50 nm thick Si layer has been grown upon these islands. Basing on the data of AES, EELS, AFM and JR spectroscopy, a conclusion is made that the Mg2Si islands remain in depth of the Si layer. The suggestion is made that sizes, density and crystal structure of the buried magnesium suicide clusters preserves. It is shown, that the system of three as-grown layers of buried clusters has smoother surface than the one layer system. The contribution of the Mg2Si clusters into the dielectric function is observed at the energy 0.8-1.2 eV, it is maximal if the clusters are localized on the silicon surface. It is shown, that with increase of the number of Mg2Si cluster layers their contribution increases into the effective number of electrons per a unit cell and effective dielectric function of the sample.
Front contact solar cell with formed emitter
Cousins, Peter John
2014-11-04
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
Front contact solar cell with formed emitter
Cousins, Peter John [Menlo Park, CA
2012-07-17
A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.
A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors
NASA Astrophysics Data System (ADS)
Ahmed, Mohsin; Khawaja, Mohamad; Notarianni, Marco; Wang, Bei; Goding, Dayle; Gupta, Bharati; Boeckl, John J.; Takshi, Arash; Motta, Nunzio; Saddow, Stephen E.; Iacopi, Francesca
2015-10-01
We designed a nickel-assisted process to obtain graphene with sheet resistance as low as 80 Ω square-1 from silicon carbide films on Si wafers with highly enhanced surface area. The silicon carbide film acts as both a template and source of graphitic carbon, while, simultaneously, the nickel induces porosity on the surface of the film by forming silicides during the annealing process which are subsequently removed. As stand-alone electrodes in supercapacitors, these transfer-free graphene-on-chip samples show a typical double-layer supercapacitive behaviour with gravimetric capacitance of up to 65 F g-1. This work is the first attempt to produce graphene with high surface area from silicon carbide thin films for energy storage at the wafer-level and may open numerous opportunities for on-chip integrated energy storage applications.
A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors.
Ahmed, Mohsin; Khawaja, Mohamad; Notarianni, Marco; Wang, Bei; Goding, Dayle; Gupta, Bharati; Boeckl, John J; Takshi, Arash; Motta, Nunzio; Saddow, Stephen E; Iacopi, Francesca
2015-10-30
We designed a nickel-assisted process to obtain graphene with sheet resistance as low as 80 Ω square(-1) from silicon carbide films on Si wafers with highly enhanced surface area. The silicon carbide film acts as both a template and source of graphitic carbon, while, simultaneously, the nickel induces porosity on the surface of the film by forming silicides during the annealing process which are subsequently removed. As stand-alone electrodes in supercapacitors, these transfer-free graphene-on-chip samples show a typical double-layer supercapacitive behaviour with gravimetric capacitance of up to 65 F g(-1). This work is the first attempt to produce graphene with high surface area from silicon carbide thin films for energy storage at the wafer-level and may open numerous opportunities for on-chip integrated energy storage applications.
Structural, Optical and Electrical Properties of ZnS/Porous Silicon Heterostructures
NASA Astrophysics Data System (ADS)
Wang, Cai-Feng; Li, Qing-Shan; Lv, Lei; Zhang, Li-Chun; Qi, Hong-Xia; Chen, Hou
2007-03-01
ZnS films are deposited by pulsed laser deposition on porous silicon (PS) substrates formed by electrochemical anodization of p-type (100) silicon wafer. Scanning electron microscope images reveal that the surface of ZnS films is unsmoothed, and there are some cracks in the ZnS films due to the roughness of the PS surface. The x-ray diffraction patterns show that the ZnS films on PS surface are grown in preferring orientation along cubic phase β-ZnS (111) direction. White light emission is obtained by combining the blue-green emission from ZnS films with the orange-red emission from PS layers. Based on the I-V characteristic, the ZnS/PS heterojunction exhibits the rectifying junction behaviour, and an ideality factor n is calculated to be 77 from the I-V plot.
3D-FBK Pixel Sensors: Recent Beam Tests Results with Irradiated Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micelli, A.; /INFN, Trieste /Udine U.; Helle, K.
2012-04-30
The Pixel Detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider, and plays a key role in the reconstruction of the primary vertices from the collisions and secondary vertices produced by short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology ismore » an innovative combination of very-large-scale integration and Micro-Electro-Mechanical-Systems where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradiated 3D devices produced at FBK (Trento, Italy). The performance of these devices, all bump-bonded with the ATLAS pixel FE-I3 read-out chip, is compared to that observed before irradiation in a previous beam test.« less
NASA Astrophysics Data System (ADS)
Chang, C. H.; Hsu, M. H.; Chang, W. L.; Sun, W. C.; Yu, Peichen
2011-02-01
In this work, we present a solution that employs combined micro- and nano-scale surface textures to increase light harvesting in the near infrared for crystalline silicon photovoltaics, and discuss the associated antireflection and scattering mechanisms. The combined surface textures are achieved by uniformly depositing a layer of indium-tin-oxide nanowhiskers on passivated, micro-grooved silicon solar cells using electron-beam evaporation. The nanowhiskers facilitate optical transmission in the near-infrared, which is optically equivalent to a stack of two dielectric thin-films with step- and graded- refractive index profiles. The ITO nanowhiskers provide broadband anti-reflective properties (R<5%) in the wavelength range of 350-1100nm. In comparison with conventional Si solar cell, the combined surface texture solar cell shows higher external quantum efficiency (EQE) in the range of 700-1100nm. Moreover, the ITO nano-whisker coating Si solar cell shows a high total efficiency increase of 1.1% (from 16.08% to17.18%). Furthermore, the nano-whiskers also provide strong forward scattering for ultraviolet and visible light, favorable in thin-wafer silicon photovoltaics to increase the optical absorption path.
Properties of nanocrystalline Si layers embedded in structure of solar cell
NASA Astrophysics Data System (ADS)
Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru
2017-12-01
Suppression of spectral reflectance from the surface of solar cell is necessary for achieving a high energy conversion efficiency. We developed a simple method for forming nanocrystalline layers with ultralow reflectance in a broad range of wavelengths. The method is based on metal assisted etching of the silicon surface. In this work, we prepared Si solar cell structures with embedded nanocrystalline layers. The microstructure of embedded layer depends on the etching conditions. We examined the microstructure of the etched layers by a transmission electron microscope and analysed the experimental images by statistical and Fourier methods. The obtained results provide information on the applied treatment operations and can be used to optimize the solar cell forming procedure.
Mariani, Stefano; Strambini, Lucanos Marsilio; Barillaro, Giuseppe
2018-03-23
Herein, we provide the first experimental evidence on the use of electrical double layer (EDL)-induced accumulation of charged ions (using both Na + and K + ions in water as the model) onto a negatively charged nanostructured surface (e.g., thermally growth SiO 2 )-Ion Surface Accumulation, ISA-as a means of improving performance of nanostructured porous silicon (PSi) interferometers for optical refractometric applications. Nanostructured PSi interferometers are very promising optical platforms for refractive index sensing due to PSi huge specific surface (hundreds of m 2 per gram) and low preparation cost (less than $0.01 per 8 in. silicon wafer), though they have shown poor resolution ( R) and detection limit (DL) (on the order of 10 -4 -10 -5 RIU) compared to other plasmonic and photonic platforms ( R and DL on the order of 10 -7 -10 -8 RIU). This can be ascribed to both low sensitivity and high noise floor of PSi interferometers when bulk refractive index variation of the solution infiltrating the nanopores either approaches or is below 10 -4 RIU. Electrical double layer-induced ion surface accumulation (EDL-ISA) on oxidized PSi interferometers allows the interferometer output signal (spectral interferogram) to be impressively amplified at bulk refractive index variation below 10 -4 RIU, increasing, in turn, sensitivity up to 2 orders of magnitude and allowing reliable measurement of refractive index variations to be carried out with both DL and R of 10 -7 RIU. This represents a 250-fold-improvement (at least) with respect to the state-of-the-art literature on PSi refractometers and pushes PSi interferometer performance to that of state-of-the-art ultrasensitive photonics/plasmonics refractive index platforms.
Yang, Wei; Lei, Xiangyang; Hui, Haohao; Zhang, Qinghua; Deng, Xueran
2018-05-07
Moisture-resistant silicone coatings were prepared on the surface of potassium dihydrogen phosphate (KDP) crystal by means of spin-coating, in which hydrophobic-modified SiO₂ nanoparticles were embedded in a certain proportion. The refractive index of such coating can be tuned arbitrarily in the range of 1.21⁻1.44, which endows the KDP optical component with excellent transmission capability as well as the moisture proof effect. A dual-layer anti-reflective coating system was obtained by covering this silicone coating with a porous SiO₂ coating which is specially treated to enhance the moisture resistance. Transmittance of such a dual-layer coating system could reach 99.60% and 99.62% at 1064 nm and 532 nm, respectively, by precisely matching the refractive index of both layers. Furthermore, the long-term stability of this coating system has been verified at high humidity ambient of 80% RH for 27 weeks.
An Investigation on a Crystalline-Silicon Solar Cell with Black Silicon Layer at the Rear.
Zhou, Zhi-Quan; Hu, Fei; Zhou, Wen-Jie; Chen, Hong-Yan; Ma, Lei; Zhang, Chi; Lu, Ming
2017-12-15
Crystalline-Si (c-Si) solar cell with black Si (b-Si) layer at the rear was studied in order to develop c-Si solar cell with sub-band gap photovoltaic response. The b-Si was made by chemical etching. The c-Si solar cell with b-Si at the rear was found to perform far better than that of similar structure but with no b-Si at the rear, with the efficiency being increased relatively by 27.7%. This finding was interesting as b-Si had a large specific surface area, which could cause high surface recombination and degradation of solar cell performance. A graded band gap was found to form at the rear of the c-Si solar cell with b-Si layer at the rear. This graded band gap tended to expel free electrons away from the rear, thus reducing the probability of electron-hole recombination at b-Si and improving the performance of c-Si solar cell.
NASA Astrophysics Data System (ADS)
Bi, Melody; Ruiz, Antonio M.; Gornushkin, Igor; Smith, Ben W.; Winefordner, James D.
2000-02-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for profiling patterned thin metal layers on a polymer/silicon substrate. The parameters of the laser and ICP-MS operating conditions have been studied and optimized for this purpose. A new laser ablation chamber was designed and built to achieve the best spatial resolution. The results of the profiling by LA-ICP-MS were compared to those obtained from a laser ablation optical emission spectrometry (LA-OES) instrument, which measured the emission of the plasma at the sample surface, and thus, eliminated the time delay caused by the sample transport into the ICP-MS system. Emission spectra gave better spatial resolution than mass spectra. However, LA-ICP-MS provided much better sensitivity and was able to profile thin metal layers (on the order of a few nanometers) on the silicon surface. A lateral spatial resolution of 45 μm was achieved.
NASA Astrophysics Data System (ADS)
Hiratani, T.; Zaizen, Y.; Oda, Y.; Yoshizaki, S.; Senda, K.
2018-05-01
In this study, we investigated the magnetic properties of Si-gradient steel sheet produced by CVD (chemical vapor deposition) siliconizing process, comparing with 6.5% Si steel sheet. The Si-gradient steel sheet having silicon concentration gradient in the thickness direction, has larger hysteresis loss and smaller eddy current loss than the 6.5% Si steel sheet. In such a loss configuration, the iron loss of the Si-gradient steel sheet becomes lower than that of the 6.5% Si steel sheet at high frequencies. The experiment suggests that tensile stress is formed at the surface layer and compressive stress is formed at the inner layer in the Si gradient steel sheet. The magnetic anisotropy is induced by the internal stress and it is considered to affect the magnetization behavior of the Si-gradient steel sheet. The small eddy current loss of Si-gradient steel sheet can be explained as an effect of magnetic flux concentration on the surface layer.
Maghribi, Mariam N [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Hamilton, Julie [Tracy, CA
2006-12-05
A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.
Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie
2008-12-09
A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.
Novel materials to enhance corneal epithelial cell migration on keratoprosthesis.
Karkhaneh, Akbar; Mirzadeh, Hamid; Ghaffariyeh, Alireza; Ebrahimi, Abdolali; Honarpisheh, Nazafarin; Hosseinzadeh, Masud; Heidari, Mohammad Hossein
2011-03-01
To introduce a new modification for silicone optical core Keratoprosthesis. Using mixtures of 2-hydroxyethyl methacrylate and acrylic acid polydimethylsiloxane (PDMS) films were modified with two-step oxygen plasma treatment, and then type I collagen was immobilised onto this modified surfaces. Both the biocompatibility of the modified films and cell behaviour on the surface of these films were investigated by in vitro tests, and formation of epithelial cell layer was evaluated by implantation of the modified films in the corneas of 10 rabbits. In vitro studies indicated that the number of attached and proliferated cells onto modified PDMS in comparison with the unmodified PDMS significantly increased. Histological studies showed that corneal epithelial cells migrated on the anterior surface of the modified films after 1week. The corneal epithelial cell formed an incomplete monolayer cellular sheet after 10days. A complete epithelialisation on the modified surface was formed after 21days. The epithelial layer persisted on the anterior surface of implant after 1-month and 3-month follow-up. This method may have potential use in silicone optical core Keratoprosthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Rohit; Srivastava, Ashutosh; Donnelly, Vincent M.
2012-09-15
Chlorine atom recombination coefficients were measured on silicon oxy-chloride surfaces deposited in a chlorine inductively coupled plasma (ICP) with varying oxygen concentrations, using the spinning wall technique. A small cylinder embedded in the walls of the plasma reactor chamber was rapidly rotated, repetitively exposing its surface to the plasma chamber and a differentially pumped analysis chamber housing a quadruple mass spectrometer for line-of-sight desorbing species detection, or an Auger electron spectrometer for in situ surface analysis. The spinning wall frequency was varied from 800 to 30 000 rpm resulting in a detection time, t (the time a point on themore » surface takes to rotate from plasma chamber to the position facing the mass or Auger spectrometer), of {approx}1-40 ms. Desorbing Cl{sub 2}, due to Langmuir-Hinshelwood (LH) Cl atom recombination on the reactor wall surfaces, was detected by the mass spectrometer and also by a pressure rise in one of the differentially pumped chambers. LH Cl recombination coefficients were calculated by extrapolating time-resolved desorption decay curves to t = 0. A silicon-covered electrode immersed in the plasma was either powered at 13 MHz, creating a dc bias of -119 V, or allowed to electrically float with no bias power. After long exposure to a Cl{sub 2} ICP without substrate bias, slow etching of the Si wafer coats the chamber and spinning wall surfaces with an Si-chloride layer with a relatively small amount of oxygen (due to a slow erosion of the quartz discharge tube) with a stoichiometry of Si:O:Cl = 1:0.38:0.38. On this low-oxygen-coverage surface, any Cl{sub 2} desorption after LH recombination of Cl was below the detection limit. Adding 5% O{sub 2} to the Cl{sub 2} feed gas stopped etching of the Si wafer (with no rf bias) and increased the oxygen content of the wall deposits, while decreasing the Cl content (Si:O:Cl = 1:1.09:0.08). Cl{sub 2} desorption was detectable for Cl recombination on the spinning wall surface coated with this layer, and a recombination probability of {gamma}{sub Cl} = 0.03 was obtained. After this surface was conditioned with a pure oxygen plasma for {approx}60 min, {gamma}{sub Cl} increased to 0.044 and the surface layer was slightly enriched in oxygen fraction (Si:O:Cl = 1:1.09:0.04). This behavior is attributed to a mechanism whereby Cl LH recombination occurs mainly on chlorinated oxygen sites on the silicon oxy-chloride surface, because of the weak Cl-O bond compared to the Cl-Si bond.« less
Silicon nanopillars for field enhanced surface spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Sabrina M; Merkulov, Igor A; Kravchenko, Ivan I
Silicon nanowire and nanopillar structures have continued to draw increased attention in recent years due in part to their unique optical properties. Herein, electron beam lithography combined with reactive-ion etching is used to reproducibly create individual silicon nanopillars of various sizes, shapes, and heights. Finite difference time domain numerical analysis predicts enhancements in localized fields in the vicinity of appropriately-sized and coaxially-illuminated silicon nanopillars of approximately two orders of magnitude. By analyzing experimentally measured strength of the silicon Raman phonon line (500 cm-1), it was determined that nanopillars produced field enhancement that are consistent with these predictions. Additionally, we demonstratemore » that a thin layer of Zn phthalocyanine deposited on the nanopillar surface produced prominent Raman spectra yielding enhancement factors (EFs) better than 300. Finally, silicon nanopillars of cylindrical and elliptical shapes were labeled with different fluorophors and evaluated for their surface enhanced fluorescence (SEF) capability. The EF derived from analysis of the acquired fluorescence microscopy images indicate that silicon nanopillar structures can provide enhancement comparable or even stronger than those typically achieved using plasmonic SEF structures without the drawbacks of the metal-based substrates. It is anticipated that scaled up arrays of silicon nanopillars will enable SEF assays with extremely high sensitivity, while a broader impact of the reported phenomena are anticipated in photovoltaics, subwavelength light focusing, and fundamental nanophotonics.« less
Process for Smoothing an Si Substrate after Etching of SiO2
NASA Technical Reports Server (NTRS)
Turner, Tasha; Wu, Chi
2003-01-01
A reactive-ion etching (RIE) process for smoothing a silicon substrate has been devised. The process is especially useful for smoothing those silicon areas that have been exposed by etching a pattern of holes in a layer of silicon dioxide that covers the substrate. Applications in which one could utilize smooth silicon surfaces like those produced by this process include fabrication of optical waveguides, epitaxial deposition of silicon on selected areas of silicon substrates, and preparation of silicon substrates for deposition of adherent metal layers. During etching away of a layer of SiO2 that covers an Si substrate, a polymer becomes deposited on the substrate, and the substrate surface becomes rough (roughness height approximately equal to 50 nm) as a result of over-etching or of deposition of the polymer. While it is possible to smooth a silicon substrate by wet chemical etching, the undesired consequences of wet chemical etching can include compromising the integrity of the SiO2 sidewalls and undercutting of the adjacent areas of the silicon dioxide that are meant to be left intact. The present RIE process results in anisotropic etching that removes the polymer and reduces height of roughness of the silicon substrate to less than 10 nm while leaving the SiO2 sidewalls intact and vertical. Control over substrate versus sidewall etching (in particular, preferential etching of the substrate) is achieved through selection of process parameters, including gas flow, power, and pressure. Such control is not uniformly and repeatably achievable in wet chemical etching. The recipe for the present RIE process is the following: Etch 1 - A mixture of CF4 and O2 gases flowing at rates of 25 to 75 and 75 to 125 standard cubic centimeters per minute (stdcm3/min), respectively; power between 44 and 55 W; and pressure between 45 and 55 mtorr (between 6.0 and 7.3 Pa). The etch rate lies between approximately equal to 3 and approximately equal to 6 nm/minute. Etch 2 - O2 gas flowing at 75 to 125 stdcm3/min, power between 44 and 55 W, and pressure between 50 and 100 mtorr (between 6.7 and 13.3 Pa).
NASA Astrophysics Data System (ADS)
Kukushkin, S. A.; Nussupov, K. Kh.; Osipov, A. V.; Beisenkhanov, N. B.; Bakranova, D. I.
2017-05-01
The structure and composition of SiC nanolayers are comprehensively studied by X-ray reflectometry, IR-spectroscopy, and atomic-force microscopy (AFM) methods for the first time. SiC films were synthesized by the new method of topochemical substitution of substrate atoms at various temperatures and pressure of CO active gas on the surface of high-resistivity low-dislocation single-crystal n-type silicon (111). Based on an analysis and generalization of experimental data obtained using X-ray reflectometry, IR spectroscopy, and AFM methods, a structural model of SiC films on Si was proposed. According to this model, silicon carbide film consists of a number of layers parallel to the substrate, reminiscent of a layer cake. The composition and thickness of each layer entering the film structure is experimentally determined. It was found that all samples contain superstoichiometric carbon; however, its structure is significantly different for the samples synthesized at temperatures of 1250 and 1330°C, respectively. In the former case, the film surface is saturated with silicon vacancies and carbon in the structurally loose form reminiscent of HOPG carbon. In the films grown at 1330°C, carbon is in a dense structure with a close-to-diamond density.
Polarization of gold in nanopores leads to ion current rectification
Yang, Crystal; Hinkle, Preston; Menestrina, Justin; ...
2016-10-03
Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups or in multielectrode systems by applying voltage to integrated gate electrodes. Here we present a simpler concept for introducing surface charges via polarization of a thin layer of Au present at one entrance of a silicon nitride nanopore. In an electric field applied bymore » two electrodes placed in bulk solution on both sides of the membrane, the Au layer polarizes such that excess positive charge locally concentrates at one end and negative charge concentrates at the other end. Consequently, a junction is formed between zones with enhanced anion and cation concentrations in the solution adjacent to the Au layer. This bipolar double layer together with enhanced cation concentration in a negatively charged silicon nitride nanopore leads to voltage-controlled surface-charge patterns and ion current rectification. The experimental findings are supported by numerical modeling that confirm modulation of ionic concentrations by the Au layer and ion current rectification even in low-aspect ratio nanopores. Lastly, our findings enable a new strategy for creating ionic circuits with diodes and transistors.« less
Kurylo, Ievgen; Hamdi, Abderrahmane; Addad, Ahmed; Coffinier, Yannick
2017-01-01
We created different TiO2-based coatings on silicon nanowires (SiNWs) by using either thermal metallization or atomic layer deposition (ALD). The fabricated surfaces were characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and reflectivity measurements. Surfaces with different TiO2 based coating thicknesses were then used for phosphopeptide enrichment and subsequent detection by laser desorption/ionization mass spectrometry (LDI-MS). Results showed that the best enrichment and LDI-MS detection were obtained using the silicon nanowires covered with 10 nm of oxidized Ti deposited by means of thermal evaporation. This sample was also able to perform phosphopeptide enrichment and MS detection from serum. PMID:28914806
Tan, Xin; Chai, Jiajue; Zhang, Xiaogang; Chen, Jiawei
2011-12-01
This study focuses on the description of the static forces in CO2-H2O and CO2-H2O-IPA cleaning solutions with a separate fluid phase entrapped between nano-scale copper particles and a silicon surface. Calculations demonstrate that increasing the pressure of the cleaning system decreases net adhesion force (NAF) between the particle and silicon. The NAF of a particle for in CO2-H2O-IPA system is less than that in CO2-H2O system, suggesting that the particles enter into bulk layer more easily as the CO2-H2O cleaning system is added IPA.
Application research on the sensitivity of porous silicon
NASA Astrophysics Data System (ADS)
Xu, Gaobin; Xi, Ye; Chen, Xing; Ma, Yuanming
2017-09-01
Applications based on sensitive property of porous silicon (PSi) were researched. As a kind of porous material, the feasibility of PSi as a getter material was studied. Five groups of samples with different parameters were prepared. The gas-sensing property of PSi was studied by the test system and suitable parameters of PSi were also discussed. Meanwhile a novel structure of humidity sensor, using porous silicon as humidity-sensitive material, based on MEMS process has been successfully designed. The humidity-sensing properties were studied by a test system. Because of the polysilicon layer deposited upon the PSi layer, the humidity sensor can realize a quick dehumidification by itself. To extend service life and reduce the effect of the environment, a passivation layer (Si3N4) was also deposited on the surface of electrodes. The result indicated the novel humidity sensor presented high sensitivity (1.1 pF/RH%), low hysteresis, low temperature coefficient (0.5%RH/°C) and high stability.
NASA Astrophysics Data System (ADS)
Miyata, Hiroki; Tsuda, Hirotaka; Fukushima, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi
2011-10-01
A better understanding of plasma-surface interactions is indispensable during etching, including the behavior of reaction or etch products, because the products on surfaces and in the plasma are important in passivation layer formation through their redeposition on surfaces. In practice, the nanometer-scale control of plasma etching would still rely largely on such passivation layer formation as well as ion-enhanced etching on feature surfaces. This paper presents in situ Fourier transform infrared (FTIR) absorption spectroscopy of gas-phase and surface reaction products during inductively coupled plasma (ICP) etching of Si in Cl2. The observation was made in the gas phase by transmission absorption spectroscopy (TAS), and also on the substrate surface by reflection absorption spectroscopy (RAS). The quantum chemical calculation was also made of the vibrational frequency of silicon chloride molecules. The deconvolution of the TAS spectrum revealed absorption features of Si2Cl6 and SiClx (x = 1-3) as well as SiCl4, while that of the RAS spectrum revealed relatively increased absorption features of unsaturated silicon chlorides. A different behavior was also observed in bias power dependence between the TAS and RAS spectra.
High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer
Yu, Xuegong; Shen, Xinlei; Mu, Xinhui; Zhang, Jie; Sun, Baoquan; Zeng, Lingsheng; Yang, Lifei; Wu, Yichao; He, Hang; Yang, Deren
2015-01-01
Organic/silicon nanowires (SiNWs) hybrid solar cells have recently been recognized as one of potentially low-cost candidates for photovoltaic application. Here, we have controllably prepared a series of uniform silicon nanowires (SiNWs) with various diameters on silicon substrate by metal-assisted chemical etching followed by thermal oxidization, and then fabricated the organic/SiNWs hybrid solar cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). It is found that the reflective index of SiNWs layer for sunlight depends on the filling ratio of SiNWs. Compared to the SiNWs with the lowest reflectivity (LR-SiNWs), the solar cell based on the SiNWs with low filling ratio (LF-SiNWs) has a higher open-circuit voltage and fill factor. The capacitance-voltage measurements have clarified that the built-in potential barrier at the LF-SiNWs/PEDOT:PSS interface is much larger than that at the LR-SiNWs/PEDOT one, which yields a strong inversion layer generating near the silicon surface. The formation of inversion layer can effectively suppress the carrier recombination, reducing the leakage current of solar cell, and meanwhile transfer the LF-SiNWs/PEDOT:PSS device into a p-n junction. As a result, a highest efficiency of 13.11% is achieved for the LF-SiNWs/PEDOT:PSS solar cell. These results pave a way to the fabrication of high efficiency organic/SiNWs hybrid solar cells. PMID:26610848
High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer.
Yu, Xuegong; Shen, Xinlei; Mu, Xinhui; Zhang, Jie; Sun, Baoquan; Zeng, Lingsheng; Yang, Lifei; Wu, Yichao; He, Hang; Yang, Deren
2015-11-27
Organic/silicon nanowires (SiNWs) hybrid solar cells have recently been recognized as one of potentially low-cost candidates for photovoltaic application. Here, we have controllably prepared a series of uniform silicon nanowires (SiNWs) with various diameters on silicon substrate by metal-assisted chemical etching followed by thermal oxidization, and then fabricated the organic/SiNWs hybrid solar cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) ( PSS). It is found that the reflective index of SiNWs layer for sunlight depends on the filling ratio of SiNWs. Compared to the SiNWs with the lowest reflectivity (LR-SiNWs), the solar cell based on the SiNWs with low filling ratio (LF-SiNWs) has a higher open-circuit voltage and fill factor. The capacitance-voltage measurements have clarified that the built-in potential barrier at the LF-SiNWs/ PSS interface is much larger than that at the LR-SiNWs/PEDOT one, which yields a strong inversion layer generating near the silicon surface. The formation of inversion layer can effectively suppress the carrier recombination, reducing the leakage current of solar cell, and meanwhile transfer the LF-SiNWs/ PSS device into a p-n junction. As a result, a highest efficiency of 13.11% is achieved for the LF-SiNWs/ PSS solar cell. These results pave a way to the fabrication of high efficiency organic/SiNWs hybrid solar cells.
Formation of aggregated nanoparticle spheres through femtosecond laser surface processing
NASA Astrophysics Data System (ADS)
Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.
2017-10-01
A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.
NASA Astrophysics Data System (ADS)
Rahmouni, M.; Datta, A.; Chatterjee, P.; Damon-Lacoste, J.; Ballif, C.; Roca i Cabarrocas, P.
2010-03-01
Heterojunction with intrinsic thin layer or "HIT" solar cells are considered favorable for large-scale manufacturing of solar modules, as they combine the high efficiency of crystalline silicon (c-Si) solar cells, with the low cost of amorphous silicon technology. In this article, based on experimental data published by Sanyo, we simulate the performance of a series of HIT cells on N-type crystalline silicon substrates with hydrogenated amorphous silicon (a-Si:H) emitter layers, to gain insight into carrier transport and the general functioning of these devices. Both single and double HIT structures are modeled, beginning with the initial Sanyo cells having low open circuit voltages but high fill factors, right up to double HIT cells exhibiting record values for both parameters. The one-dimensional numerical modeling program "Amorphous Semiconductor Device Modeling Program" has been used for this purpose. We show that the simulations can correctly reproduce the electrical characteristics and temperature dependence for a set of devices with varying I-layer thickness. Under standard AM1.5 illumination, we show that the transport is dominated by the diffusion mechanism, similar to conventional P/N homojunction solar cells, and tunneling is not required to describe the performance of state-of-the art devices. Also modeling has been used to study the sensitivity of N-c-Si HIT solar cell performance to various parameters. We find that the solar cell output is particularly sensitive to the defect states on the surface of the c-Si wafer facing the emitter, to the indium tin oxide/P-a-Si:H front contact barrier height and to the band gap and activation energy of the P-a-Si:H emitter, while the I-a-Si:H layer is necessary to achieve both high Voc and fill factor, as it passivates the defects on the surface of the c-Si wafer. Finally, we describe in detail for most parameters how they affect current transport and cell properties.
Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres
Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.
2001-01-01
The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.
NASA Astrophysics Data System (ADS)
Choudhury, Faraz Anwar
A high concentration of free radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Measuring the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups and often modifications to the plasma reactor. In this work, we present a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and non-immobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. Using radical-sensitive dyes and free-standing films, the transmission of oxygen radicals through silicon nitride and silicon dioxide dielectric films is measured and their absorption lengths are determined. The absorption lengths were found to be 33, 37 and 40 nm for 15, 30 and 45-minute oxygen plasma exposures respectively. FTIR and XRR measurements show that a silicon oxynitride-like layer forms on the surface of the film which has a lower density than silicon nitride. The increase in absorption length with plasma-exposure time is attributed to the formation of the surface layer. In silicon dioxide films, the absorption length of oxygen radicals was found to be 70 nm after 20 minutes of plasma exposure. After 30 minutes of plasma exposure under the same conditions, the absorption length was reduced to 66 nm. XRR and FTIR measurements both reveal that the oxygen plasma exposure leads to surface oxidation of the silicon dioxide film and the formation of a denser surface layer which restricts the transmission of the radicals through the film. It was found that the extent of modification of the film partially depends on the radical dose. The calculated enthalpies of the reactions show that they are all exothermic reactions, however, the radicals need enough energy to overcome the activation energy for the reaction to take place.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaowei; Zheng, Yanjun, E-mail: zhengyj@cup.edu.cn; Chen, Changfeng
2016-06-28
The growth mechanism of an octadecyltrichlorosilane (OTS) self-assembled monolayer on a silicon oxide surface at various relative humidities has been investigated. Atomic force microscopy images show that excess water may actually hinder the nucleation and growth of OTS islands. A moderate amount of water is favorable for the nucleation and growth of OTS islands in the initial stage; however, the completion of the monolayer is very slow in the final stage. The growth of OTS islands on a low-water-content surface maintains a relatively constant speed and requires the least amount of time. The mobility of water molecules is thought tomore » play an important role in the OTS monolayers, and a low-mobility water layer provides a steady condition for OTS monolayer growth.« less
NASA Astrophysics Data System (ADS)
Li, Shaowei; Zheng, Yanjun; Chen, Changfeng
2016-06-01
The growth mechanism of an octadecyltrichlorosilane (OTS) self-assembled monolayer on a silicon oxide surface at various relative humidities has been investigated. Atomic force microscopy images show that excess water may actually hinder the nucleation and growth of OTS islands. A moderate amount of water is favorable for the nucleation and growth of OTS islands in the initial stage; however, the completion of the monolayer is very slow in the final stage. The growth of OTS islands on a low-water-content surface maintains a relatively constant speed and requires the least amount of time. The mobility of water molecules is thought to play an important role in the OTS monolayers, and a low-mobility water layer provides a steady condition for OTS monolayer growth.
Modified silicon carbide whiskers
Tiegs, Terry N.; Lindemer, Terrence B.
1991-01-01
Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.
Modified silicon carbide whiskers
Tiegs, T.N.; Lindemer, T.B.
1991-05-21
Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.
Tiegs, Terry N.; Lindemer, Terrence B.
1991-01-01
Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.
Tiegs, T.N.; Lindemer, T.B.
1991-02-19
Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.
Ceramic composites reinforced with modified silicon carbide whiskers
Tiegs, Terry N.; Lindemer, Terrence B.
1990-01-01
Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.
Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei
2016-01-01
Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400–900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells. PMID:27924911
NASA Astrophysics Data System (ADS)
Chen, Hong-Yan; Lu, Hong-Liang; Sun, Long; Ren, Qing-Hua; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Yang, Xiao-Feng; Zhang, David Wei
2016-12-01
Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n+ -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400-900 nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells.
Biofunctionalization on alkylated silicon substrate surfaces via "click" chemistry.
Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi
2010-11-24
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag
1996-01-01
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.
Wei, Mingjie; Wang, Yong
2015-01-01
Patterning metallic nanoparticles on substrate surfaces is important in a number of applications. However, it remains challenging to fabricate such patterned nanoparticles with easily controlled structural parameters, including particle sizes and densities, from simple methods. We report on a new route to directly pattern pre-formed gold nanoparticles with different diameters on block copolymer micellar monolayers coated on silicon substrates. Due to the synergetic effect of complexation and electrostatic interactions between the micellar cores and the gold particles, incubating the copolymer-coated silicon in a gold nanoparticles suspension leads to a monolayer of gold particles attached on the coated silicon. The intermediate micellar film was then removed using oxygen plasma treatment, allowing the direct contact of the gold particles with the Si substrate. We further demonstrate that the gold nanoparticles can serve as catalysts for the localized etching of the silicon substrate, resulting in nanoporous Si with a top layer of straight pores. PMID:28793407
NASA Astrophysics Data System (ADS)
Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik
2016-06-01
The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.
NASA Astrophysics Data System (ADS)
Liang, Guoying; Shen, Jie; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Yan, Sha; Zhang, Xiaofu; Yu, Xiao; Le, Xiaoyun
2017-10-01
Improving antifatigue performance of silicon substrate is very important for the development of semiconductor industry. The cracking behavior of silicon under intense pulsed ion beam irradiation was studied by numerical simulation in order to understand the mechanism of induced surface peeling observed by experimental means. Using molecular dynamics simulation based on Stillinger Weber potential, tensile effect on crack growth and propagation in single crystal silicon was investigated. Simulation results reveal that stress-strain curves of single crystal silicon at a constant strain rate can be divided into three stages, which are not similar to metal stress-strain curves; different tensile load velocities induce difference of single silicon crack formation speed; the layered stress results in crack formation in single crystal silicon. It is concluded that the crack growth and propagation is more sensitive to strain rate, tensile load velocity, stress distribution in single crystal silicon.
On-chip remote charger model using plasmonic island circuit
NASA Astrophysics Data System (ADS)
Ali, J.; Youplao, P.; Pornsuwancharoen, N.; Aziz, M. S.; Chiangga, S.; Amiri, I. S.; Punthawanunt, S.; Singh, G.; Yupapin, P.
2018-06-01
We propose the remote charger model using the light fidelity (LiFi) transmission and integrate microring resonator circuit. It consists of the stacked layers of silicon-graphene-gold materials known as a plasmonic island placed at the center of the modified add-drop filter. The input light power from the remote LiFi can enter into the island via a silicon waveguide. The optimized input power is obtained by the coupled micro-lens on the silicon surface. The induced electron mobility generated in the gold layer by the interfacing layer between silicon-graphene. This is the reversed interaction of the whispering gallery mode light power of the microring system, in which the generated power is fed back into the microring circuit. The electron mobility is the required output and obtained at the device ports and characterized for the remote current source applications. The obtained calculation results have shown that the output current of ∼2.5 × 10-11 AW-1, with the gold height of 1.0 μm and the input power of 5.0 W is obtained at the output port, which is shown the potential application for a short range free pace remote charger.
Dussan, A; Bertel, S D; Melo, S F; Mesa, F
2017-01-01
In this work, porous-silicon samples were prepared by electrochemical etching on p-type (B-doped) Silicon (Si) wafers. Hydrofluoric acid (HF)-ethanol (C2H5OH) [HF:Et] and Hydrofluoric acid (HF)-dimethylformamide (DMF-C3H7NO) [HF:DMF] solution concentrations were varied between [1:2]-[1:3] and [1:7]-[1:9], respectively. Effects of synthesis parameters, like current density, solution concentrations, reaction time, on morphological properties were studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements. Pore sizes varying from 20 nm to micrometers were obtained for long reaction times and [HF:Et] [1:2] concentrations; while pore sizes in the same order were observed for [HF:DMF] [1:7], but for shorter reaction time. Greater surface uniformity and pore distribution was obtained for a current density of around 8 mA/cm2 using solutions with DMF. A correlation between reflectance measurements and pore size is presented. The porous-silicon samples were used as substrate for hydroxyapatite growth by sol-gel method. X-ray diffraction (XRD) and SEM were used to characterize the layers grown. It was found that the layer topography obtained on PS samples was characterized by the evidence of Hydroxyapatite in the inter-pore regions and over the surface.
Dussan, A.; Bertel, S. D.; Melo, S. F.
2017-01-01
In this work, porous-silicon samples were prepared by electrochemical etching on p-type (B-doped) Silicon (Si) wafers. Hydrofluoric acid (HF)-ethanol (C2H5OH) [HF:Et] and Hydrofluoric acid (HF)-dimethylformamide (DMF-C3H7NO) [HF:DMF] solution concentrations were varied between [1:2]—[1:3] and [1:7]—[1:9], respectively. Effects of synthesis parameters, like current density, solution concentrations, reaction time, on morphological properties were studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements. Pore sizes varying from 20 nm to micrometers were obtained for long reaction times and [HF:Et] [1:2] concentrations; while pore sizes in the same order were observed for [HF:DMF] [1:7], but for shorter reaction time. Greater surface uniformity and pore distribution was obtained for a current density of around 8 mA/cm2 using solutions with DMF. A correlation between reflectance measurements and pore size is presented. The porous-silicon samples were used as substrate for hydroxyapatite growth by sol-gel method. X-ray diffraction (XRD) and SEM were used to characterize the layers grown. It was found that the layer topography obtained on PS samples was characterized by the evidence of Hydroxyapatite in the inter-pore regions and over the surface. PMID:28291792
Development of plasma chemical vaporization machining
NASA Astrophysics Data System (ADS)
Mori, Yuzo; Yamauchi, Kazuto; Yamamura, Kazuya; Sano, Yasuhisa
2000-12-01
Conventional machining processes, such as turning, grinding, or lapping are still applied for many materials including functional ones. But those processes are accompanied with the formation of a deformed layer, so that machined surfaces cannot perform their original functions. In order to avoid such points, plasma chemical vaporization machining (CVM) has been developed. Plasma CVM is a chemical machining method using neutral radicals, which are generated by the atmospheric pressure plasma. By using a rotary electrode for generation of plasma, a high density of neutral radicals was formed, and we succeeded in obtaining high removal rate of several microns to several hundred microns per minute for various functional materials such as fused silica, single crystal silicon, molybdenum, tungsten, silicon carbide, and diamond. Especially, a high removal rate equal to lapping in the mechanical machining of fused silica and silicon was realized. 1.4 nm (p-v) was obtained as a surface roughness in the case of machining a silicon wafer. The defect density of a silicon wafer surface polished by various machining method was evaluated by the surface photo voltage spectroscopy. As a result, the defect density of the surface machined by plasma CVM was under 1/100 in comparison with the surface machined by mechanical polishing and argon ion sputtering, and very low defect density which was equivalent to the chemical etched surface was realized. A numerically controlled CVM machine for x-ray mirror fabrication is detailed in the accompanying article in this issue.
NASA Astrophysics Data System (ADS)
Kearney, Patrick A.; Slaughter, J. M.; Powers, K. D.; Falco, Charles M.
1988-01-01
Roughness measurements were made on uncoated silicon wafers and float glass using a WYKO TOPO-3D phase shifting interferometry, and the results are reported. The wafers are found to be slightly smoother than the flat glass. The effects of different cleaning methods and of the deposition of silicon 'buffer layers' on substrate roughness are examined. An acid cleaning method is described which gives more consistent results than detergent cleaning. Healing of the roughness due to sputtered silicon buffer layers was not observed on the length scale probed by the WYKO. Sputtered multilayers are characterized using both the WYKO interferometer and low-angle X-ray diffraction in order to yield information about the roughness of the top surface and of the multilayer interfaces. Preliminary results on film growth using molecular beam epitaxy are also presented.
Profilometry of thin films on rough substrates by Raman spectroscopy
Ledinský, Martin; Paviet-Salomon, Bertrand; Vetushka, Aliaksei; Geissbühler, Jonas; Tomasi, Andrea; Despeisse, Matthieu; De Wolf , Stefaan; Ballif , Christophe; Fejfar, Antonín
2016-01-01
Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2. PMID:27922033
Prediction of another semimetallic silicene allotrope with Dirac fermions
NASA Astrophysics Data System (ADS)
Wu, Haiping; Qian, Yan; Du, Zhengwei; Zhu, Renzhu; Kan, Erjun; Deng, Kaiming
2017-11-01
Materials with Dirac point are so amazing since the charge carriers are massless and have an effective speed of light. However, among the predicted two-dimensional silicon allotropes with Dirac point, no one has been directly proved by experiment. This fact motivates us to search for other two-dimensional silicon allotropes. As a result, another stable single atomic layer thin silicon allotrope is found with the help of CALYPSO code in this work. This silicene allotrope is composed of eight-membered rings linked by Si-Si bonds with buckling formation. The electronic calculation reveals that it behaves as a nodal line semimetal with the linear energy dispersion relation near the Fermi surface. Notably, the ab initio molecular dynamics simulations display that the original atomic configuration can be remained even at an extremely high temperature of 1000 K. Additionally, hydrogenation could induce a semimetal-semiconductor transition in this silicene allotrope. We hope this work can expand the family of single atomic layer thin silicon allotropes with special applications.
Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
Carlson, David E.; Wronski, Christopher R.
1979-01-01
A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.
Water-assisted pulsed Er:YAG laser interaction with silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jaehun; Ki, Hyungson, E-mail: hski@unist.ac.kr
2015-07-07
Silicon is virtually transparent to the Er:YAG laser with a wavelength of 2.94 μm. In this study, we report that moderately doped silicon (1–10 Ω cm) can be processed by a pulsed Er:YAG laser with a pulse duration of 350 μs and a peak laser intensity of 1.7 × 10{sup 5} W/cm{sup 2} by applying a thin water layer on top of silicon as a light absorbing medium. In this way, water is heated first by strongly absorbing the laser energy and then heats up the silicon wafer indirectly. As the silicon temperature rises, the free carrier concentration and therefore the absorption coefficient of silicon willmore » increase significantly, which may enable the silicon to get directly processed by the Er:YAG laser when the water is vaporized completely. We also believe that the change in surface morphology after melting could contribute to the increase in the laser beam absorptance. It was observed that 525 nm-thick p-type wafer specimens were fully penetrated after 15 laser pulses were irradiated. Bright yellow flames were observed during the process, which indicates that the silicon surface reached the melting point.« less
Shi, Jianwei; Boccard, Mathieu; Holman, Zachary
2016-07-19
The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300°C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline siliconwafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450°C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450°C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltagemore » of over 710 mV and an efficiency of over 19%.« less
NASA Astrophysics Data System (ADS)
Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca I Cabarrocas, Pere
2016-05-01
The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Jianwei; Boccard, Mathieu; Holman, Zachary
The dehydrogenation of intrinsic hydrogenated amorphous silicon (a-Si:H) at temperatures above approximately 300°C degrades its ability to passivate silicon wafer surfaces. This limits the temperature of post-passivation processing steps during the fabrication of advanced silicon heterojunction or silicon-based tandem solar cells. We demonstrate that a hydrogen plasma can rehydrogenate intrinsic a-Si:H passivation layers that have been dehydrogenated by annealing. The hydrogen plasma treatment fully restores the effective carrier lifetime to several milliseconds in textured crystalline siliconwafers coated with 8-nm-thick intrinsic a-Si:H layers after annealing at temperatures of up to 450°C. Plasma-initiated rehydrogenation also translates to complete solar cells: A silicon heterojunction solar cell subjected to annealing at 450°C (following intrinsic a-Si:H deposition) had an open-circuit voltage of less than 600 mV, but an identical cell that received hydrogen plasma treatment reached a voltagemore » of over 710 mV and an efficiency of over 19%.« less
Cline, James P; Von Dreele, Robert B; Winburn, Ryan; Stephens, Peter W; Filliben, James J
2011-07-01
A non-diffracting surface layer exists at any boundary of a crystal and can comprise a mass fraction of several percent in a finely divided solid. This has led to the long-standing issue of amorphous content in standards for quantitative phase analysis (QPA). NIST standard reference material (SRM) 676a is a corundum (α-Al(2)O(3)) powder, certified with respect to phase purity for use as an internal standard in powder diffraction QPA. The amorphous content of SRM 676a is determined by comparing diffraction data from mixtures with samples of silicon powders that were engineered to vary their specific surface area. Under the (supported) assumption that the thickness of an amorphous surface layer on Si was invariant, this provided a method to control the crystalline/amorphous ratio of the silicon components of 50/50 weight mixtures of SRM 676a with silicon. Powder diffraction experiments utilizing neutron time-of-flight and 25 keV and 67 keV X-ray energies quantified the crystalline phase fractions from a series of specimens. Results from Rietveld analyses, which included a model for extinction effects in the silicon, of these data were extrapolated to the limit of zero amorphous content of the Si powder. The certified phase purity of SRM 676a is 99.02% ± 1.11% (95% confidence interval). This novel certification method permits quantification of amorphous content for any sample of interest, by spiking with SRM 676a.
A nanometric cushion for enhancing scratch and wear resistance of hard films
Gotlib-Vainshtein, Katya; Girshevitz, Olga; Barlam, David
2014-01-01
Summary Scratch resistance and friction are core properties which define the tribological characteristics of materials. Attempts to optimize these quantities at solid surfaces are the subject of intense technological interest. The capability to modulate these surface properties while preserving both the bulk properties of the materials and a well-defined, constant chemical composition of the surface is particularly attractive. We report herein the use of a soft, flexible underlayer to control the scratch resistance of oxide surfaces. Titania films of several nm thickness are coated onto substrates of silicon, kapton, polycarbonate, and polydimethylsiloxane (PDMS). The scratch resistance measured by scanning force microscopy is found to be substrate dependent, diminishing in the order PDMS, kapton/polycarbonate, Si/SiO2. Furthermore, when PDMS is applied as an intermediate layer between a harder substrate and titania, marked improvement in the scratch resistance is achieved. This is shown by quantitative wear tests for silicon or kapton, by coating these substrates with PDMS which is subsequently capped by a titania layer, resulting in enhanced scratch/wear resistance. The physical basis of this effect is explored by means of Finite Element Analysis, and we suggest a model for friction reduction based on the "cushioning effect” of a soft intermediate layer. PMID:25161836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidel, Thomas E., E-mail: zoomtotom@gmail.com; Goldberg, Alexander; Halls, Mat D.
2016-01-15
Simulations for the nucleation and growth of phosphorus films were carried out using density functional theory. The surface was represented by a Si{sub 9}H{sub 12} truncated cluster surface model with 2 × 1-reconstructured (100) Si-OH terminations for the initial reaction sites. Chemistries included phosphorous halides (PF{sub 3}, PCl{sub 3}, and PBr{sub 3}) and disilane (Si{sub 2}H{sub 6}). Atomic layer deposition (ALD) reaction sequences were illustrated with three-dimensional molecular models using sequential PF{sub 3} and Si{sub 2}H{sub 6} reactions and featuring SiFH{sub 3} as a byproduct. Exothermic reaction pathways were developed for both nucleation and growth for a Si-OH surface. Energetically favorable reactionsmore » for the deposition of four phosphorus atoms including lateral P–P bonding were simulated. This paper suggests energetically favorable thermodynamic reactions for the growth of elemental phosphorus on (100) silicon. Phosphorus layers made by ALD are an option for doping advanced fin field-effect transistors (FinFETs). Phosphorus may be thermally diffused into the silicon or recoil knocked in; simulations of the recoil profile of phosphorus into a FinFET surface are illustrated.« less
Photoluminescence of etched SiC nanowires
NASA Astrophysics Data System (ADS)
Stewart, Polite D., Jr.; Rich, Ryan; Zerda, T. W.
2010-10-01
SiC nanowires were produced from carbon nanotubes and nanosize silicon powder in a tube furnace at temperatures between 1100^oC and 1350^oC. SiC nanowires had average diameter of 30 nm and very narrow size distribution. The compound possesses a high melting point, high thermal conductivity, and excellent wear resistance. The surface of the SiC nanowires after formation is covered by an amorphous layer. The composition of that layer is not fully understood, but it is believed that in addition to amorphous SiC it contains various carbon and silicon compounds, and SiO2. The objective of the research was to modify the surface structure of these SiC nanowires. Modification of the surface was done using the wet etching method. The etched nanowires were then analyzed using Fourier Transform Infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and photoluminescence (PL). FTIR and TEM analysis provided valid proof that the SiC nanowires were successfully etched. Also, the PL results showed that the SiC nanowire core did possess a fluorescent signal.
Pressure cell for investigations of solid-liquid interfaces by neutron reflectivity.
Kreuzer, Martin; Kaltofen, Thomas; Steitz, Roland; Zehnder, Beat H; Dahint, Reiner
2011-02-01
We describe an apparatus for measuring scattering length density and structure of molecular layers at planar solid-liquid interfaces under high hydrostatic pressure conditions. The device is designed for in situ characterizations utilizing neutron reflectometry in the pressure range 0.1-100 MPa at temperatures between 5 and 60 °C. The pressure cell is constructed such that stratified molecular layers on crystalline substrates of silicon, quartz, or sapphire with a surface area of 28 cm(2) can be investigated against noncorrosive liquid phases. The large substrate surface area enables reflectivity to be measured down to 10(-5) (without background correction) and thus facilitates determination of the scattering length density profile across the interface as a function of applied load. Our current interest is on the stability of oligolamellar lipid coatings on silicon surfaces against aqueous phases as a function of applied hydrostatic pressure and temperature but the device can also be employed to probe the structure of any other solid-liquid interface.
CMOS Imager Has Better Cross-Talk and Full-Well Performance
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Cunningham, Thomas J.
2011-01-01
A complementary metal oxide/semiconductor (CMOS) image detector now undergoing development is designed to exhibit less cross-talk and greater full-well capacity than do prior CMOS image detectors of the same type. Imagers of the type in question are designed to operate from low-voltage power supplies and are fabricated by processes that yield device features having dimensions in the deep submicron range. Because of the use of low supply potentials, maximum internal electric fields and depletion widths are correspondingly limited. In turn, these limitations are responsible for increases in cross-talk and decreases in charge-handling capacities. Moreover, for small pixels, lateral depletion cannot be extended. These adverse effects are even more accentuated in a back-illuminated CMOS imager, in which photogenerated charge carriers must travel across the entire thickness of the device. The figure shows a partial cross section of the structure in the device layer of the present developmental CMOS imager. (In a practical imager, the device layer would sit atop either a heavily doped silicon substrate or a thin silicon oxide layer on a silicon substrate, not shown here.) The imager chip is divided into two areas: area C, which contains readout circuits and other electronic circuits; and area I, which contains the imaging (photodetector and photogenerated-charge-collecting) pixel structures. Areas C and I are electrically isolated from each other by means of a trench filled with silicon oxide. The electrical isolation between areas C and I makes it possible to apply different supply potentials to these areas, thereby enabling optimization of the supply potential and associated design features for each area. More specifically, metal oxide semiconductor field-effect transistors (MOSFETs) that are typically included in CMOS imagers now reside in area C and can remain unchanged from established designs and operated at supply potentials prescribed for those designs, while the dopings and the lower supply potentials in area I can be tailored to optimize imager performance. In area I, the device layer includes an n+ -doped silicon layer on which is grown an n-doped silicon layer. A p-doped silicon layer is grown on top of the n -doped layer. The total imaging device thickness is the sum of the thickness of the n+, n, and p layers. A pixel photodiode is formed between a surface n+ implant, a p implant underneath it, the aforementioned p layer, and the n and n+ layers. Adjacent to the diode is a gate for transferring photogenerated charges out of the photodiode and into a floating diffusion formed by an implanted p+ layer on an implanted n-doped region. Metal contact pads are added to the back-side for providing back-side bias.
Durable thin film coatings for reflectors used in low earth orbit
NASA Technical Reports Server (NTRS)
Mcclure, Donald J.
1989-01-01
This paper discusses the properties of thin film coatings used to provide a durable reflective surface for solar concentrators used in the solar dynamic system designed for the Space Station. The material system to be used consists of an adhesion promotion layer, a silver reflective layer, and a protective layer of aluminum oxide and silicon dioxide. The performance characteristics of this system are described and compared to those of several alternative systems which use aluminum as the reflective layer.
Back contact to film silicon on metal for photovoltaic cells
Branz, Howard M.; Teplin, Charles; Stradins, Pauls
2013-06-18
A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.
PV cells electrical parameters measurement
NASA Astrophysics Data System (ADS)
Cibira, Gabriel
2017-12-01
When measuring optical parameters of a photovoltaic silicon cell, precise results bring good electrical parameters estimation, applying well-known physical-mathematical models. Nevertheless, considerable re-combination phenomena might occur in both surface and intrinsic thin layers within novel materials. Moreover, rear contact surface parameters may influence close-area re-combination phenomena, too. Therefore, the only precise electrical measurement approach is to prove assumed cell electrical parameters. Based on theoretical approach with respect to experiments, this paper analyses problems within measurement procedures and equipment used for electrical parameters acquisition within a photovoltaic silicon cell, as a case study. Statistical appraisal quality is contributed.
Cryo-Etched Black Silicon for Use as Optical Black
NASA Technical Reports Server (NTRS)
Yee, Karl Y.; White, Victor E.; Mouroulis, Pantazis; Eastwood, Michael L.
2011-01-01
Stray light reflected from the surface of imaging spectrometer components in particular, the spectrometer slit degrade the image quality. A technique has been developed for rapid, uniform, and cost-effective black silicon formation based on inductively coupled plasma (ICP) etching at cryogenic temperatures. Recent measurements show less than 1-percent total reflectance from 350 2,500 nm of doped black silicon formed in this way, making it an excellent option for texturing of component surfaces for reduction of stray light. Oxygen combines with SF6 + Si etch byproducts to form a passivation layer atop the Si when the etch is performed at cryogenic temperatures. Excess flow of oxygen results in micromasking and the formation of black silicon. The process is repeatable and reliable, and provides control over etch depth and sidewall profile. Density of the needles can be controlled to some extent. Regions to be textured can be patterned lithographically. Adhesion is not an issue as the nanotips are part of the underlying substrate. This is in contrast to surface growth/deposition techniques such as carbon nanotubes (CNTs). The black Si surface is compatible with wet processing, including processing with solvents, the textured surface is completely inorganic, and it does not outgas. In radiometry applications, optical absorbers are often constructed using gold black or CNTs. This black silicon technology is an improvement for these types of applications.
Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation.
Yuan, Yanping; Chen, Jimin
2016-02-24
In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm²) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C-C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si-N and Si-C achieve the welding between the MWCNTs and silicon. Vibration modes of Si₃N₄ appear at peaks of 363 cm -1 and 663 cm -1 . There are vibration modes of SiC at peaks of 618 cm -1 , 779 cm -1 and 973 cm -1 . The experimental observation proves chemical reactions and the formation of Si₃N₄ and SiC by laser irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, V. P., E-mail: popov@isp.nsc.ru; Ilnitskii, M. A.; Zhanaev, E. D.
2016-05-15
The properties of protective dielectric layers of aluminum oxide Al{sub 2}O{sub 3} applied to prefabricated silicon-nanowire transistor biochips by the plasma enhanced atomic layer deposition (PEALD) method before being housed are studied depending on the deposition and annealing modes. Coating the natural silicon oxide with a nanometer Al{sub 2}O{sub 3} layer insignificantly decreases the femtomole sensitivity of biosensors, but provides their stability in bioliquids. In deionized water, transistors with annealed aluminum oxide are closed due to the trapping of negative charges of <(1–10) × 10{sup 11} cm{sup −2} at surface states. The application of a positive potential to the substratemore » (V{sub sub} > 25 V) makes it possible to eliminate the negative charge and to perform multiple measurements in liquid at least for half a year.« less
Growing Gallium Arsenide On Silicon
NASA Technical Reports Server (NTRS)
Radhakrishnan, Gouri
1989-01-01
Epitaxial layers of high quality formed on <111> crystal plane. Present work reports successful growth of 1- and 2-micrometer thick layers of n-type, 7-ohms per cm, 2-inch diameter, Si<111> substrate. Growth conducted in Riber-2300(R) MBE system. Both doped and undoped layers of GaAs grown. Chamber equipped with electron gun and camera for in-situ reflection high-energy-electron diffraction measurements. RHEED patterns of surface monitored continuously during slow growth stage.
NASA Astrophysics Data System (ADS)
Mabrouk, Asma; Lorrain, N.; Haji, M. L.; Oueslati, Meherzi
2015-01-01
In this paper, we analyze the photoluminescence spectra (PL) of porous silicon (PS) layer which is elaborated by electrochemical etching and passivated by Fe3+ ions (PSF) via current density, electro-deposition and temperature measurements. We observe unusual surface morphology of PSF surface and anomalous emission behavior. The PSF surface shows regular distribution of cracks, leaving isolated regions or ;platelets; of nearly uniform thickness. These cracks become more pronounced for high current densities. The temperature dependence of the PL peak energy (EPL) presents anomalous behaviors, i.e., the PL peak energy shows a successive red/blue/redshift (S-shaped behavior) with increasing temperature that we attribute to the existence of strong potential fluctuations induced by the electrochemical etching of PS layers. A competition process between localized and delocalized excitons is used to discuss these PL properties. In this case, the potential confinement plays a key role on the enhancement of PL intensity in PSF. To explain the temperature dependence of the PL intensity, we have proposed a recombination model based on the tunneling and dissociation of excitons.
NASA Astrophysics Data System (ADS)
Thi Thanh Nguyen, Huong; Balaji, Nagarajan; Park, Cheolmin; Triet, Nguyen Minh; Le, Anh Huy Tuan; Lee, Seunghwan; Jeon, Minhan; Oh, Donhyun; Dao, Vinh Ai; Yi, Junsin
2017-02-01
Excellent surface passivation and anti-reflection properties of double-stack layers is a prerequisite for high efficiency of n-type c-Si solar cells. The high positive fixed charge (Q f) density of N-rich hydrogenated amorphous silicon nitride (a-SiNx:H) films plays a poor role in boron emitter passivation. The more the refractive index ( n ) of a-SiNx:H is decreased, the more the positive Q f of a-SiNx:H is increased. Hydrogenated amorphous silicon oxynitride (SiON) films possess the properties of amorphous silicon oxide (a-SiOx) and a-SiNx:H with variable n and less positive Q f compared with a-SiNx:H. In this study, we investigated the passivation and anti-reflection properties of Al2O3/SiON stacks. Initially, a SiON layer was deposited by plasma enhanced chemical vapor deposition with variable n and its chemical composition was analyzed by Fourier transform infrared spectroscopy. Then, the SiON layer was deposited as a capping layer on a 10 nm thick Al2O3 layer, and the electrical and optical properties were analyzed. The SiON capping layer with n = 1.47 and a thickness of 70 nm resulted in an interface trap density of 4.74 = 1010 cm-2 eV-1 and Q f of -2.59 = 1012 cm-2 with a substantial improvement in lifetime of 1.52 ms after industrial firing. The incorporation of an Al2O3/SiON stack on the front side of the n-type solar cells results in an energy conversion efficiency of 18.34% compared to the one with Al2O3/a-SiNx:H showing 17.55% efficiency. The short circuit current density and open circuit voltage increase by up to 0.83 mA cm-2 and 12 mV, respectively, compared to the Al2O3/a-SiNx:H stack on the front side of the n-type solar cells due to the good anti-reflection and front side surface passivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V.; Chesnokov, Yu. M.
The surface layers of Si(001) substrates subjected to plasma-immersion implantation of helium ions with an energy of 2–5 keV and a dose of 5 × 10{sup 17} cm{sup –2} have been investigated using high-resolution X-ray reflectivity, Rutherford backscattering, and transmission electron microscopy. The electron density depth profile in the surface layer formed by helium ions is obtained, and its elemental and phase compositions are determined. This layer is found to have a complex structure and consist of an upper amorphous sublayer and a layer with a porosity of 30–35% beneath. It is shown that the porous layer has the sharpestmore » boundaries at a lower energy of implantable ions.« less
A Highly Stretchable and Robust Non-fluorinated Superhydrophobic Surface.
Ju, Jie; Yao, Xi; Hou, Xu; Liu, Qihan; Zhang, Yu Shrike; Khademhosseini, Ali
2017-08-21
Superhydrophobic surface simultaneously possessing exceptional stretchability, robustness, and non-fluorination is highly desirable in applications ranging from wearable devices to artificial skins. While conventional superhydrophobic surfaces typically feature stretchability, robustness, or non-fluorination individually, co-existence of all these features still remains a great challenge. Here we report a multi-performance superhydrophobic surface achieved through incorporating hydrophilic micro-sized particles with pre-stretched silicone elastomer. The commercial silicone elastomer (Ecoflex) endowed the resulting surface with high stretchability; the densely packed micro-sized particles in multi-layers contributed to the preservation of the large surface roughness even under large strains; and the physical encapsulation of the microparticles by silicone elastomer due to the capillary dragging effect and the chemical interaction between the hydrophilic silica and the elastomer gave rise to the robust and non-fluorinated superhydrophobicity. It was demonstrated that the as-prepared fluorine-free surface could preserve the superhydrophobicity under repeated stretching-relaxing cycles. Most importantly, the surface's superhydrophobicity can be well maintained after severe rubbing process, indicating wear-resistance. Our novel superhydrophobic surface integrating multiple key properties, i.e. stretchability, robustness, and non-fluorination, is expected to provide unique advantages for a wide range of applications in biomedicine, energy, and electronics.
Constraints on Mercury's Core-Mantle Boundary Region
NASA Astrophysics Data System (ADS)
Hauck, S. A., II; Chabot, N. L.; Sun, P.; Jing, Z.; Johnson, C. L.; Margot, J. L.; Padovan, S.; Peale, S. J.; Phillips, R. J.; Solomon, S. C.
2014-12-01
Understanding the boundary between a planet's metallic core and silicate mantle is important for constraining processes that dominate on either side of this boundary. Geophysical measurements of the planet Mercury by the MESSENGER spacecraft have provided evidence of a core larger than earlier, less-constrained estimates. Further, these results, taken in concert with measurements of the elemental composition of the surface by MESSENGER, have led to the suggestion that the uppermost layer of the outer core may be highly enriched in sulfur, and the top of the core may consist of a solid sulfide layer. The low iron and relatively large sulfur contents of the surface indicate highly reducing conditions during planet formation, placing constraints on the potential composition of Mercury's core. Recent metal-silicate partitioning experiments have developed new limits on the amount of sulfur and silicon that may partition into the core as a function of sulfur abundance at the surface. Models for the planet's internal structure constrained by the current best estimates of the bulk density, normalized polar moment of inertia, and fraction of the polar moment of inertia of the solid layer that extends from the surface to the top of the liquid outer core provide an important view of the layering and bulk composition of Mercury. By combining the results of these internal structure models with the experimental relationship between core and mantle composition we place new limits on core composition and structure. Further, imposing measured compositional constraints on the miscibility of iron-sulfur-silicon alloys yields important limits on the presence or absence of an immiscible sulfur-rich liquid layer or a solid sulfide layer at the top of the core.
NASA Astrophysics Data System (ADS)
Ermes, Markus; Lehnen, Stephan; Cao, Zhao; Bittkau, Karsten; Carius, Reinhard
2015-06-01
In thin optoelectronic devices, like organic light emitting diodes (OLED) or thin-film solar cells (TFSC), light propagation, which is initiated by a local point source, is of particular importance. In OLEDs, light is generated in the layer by the luminescence of single molecules, whereas in TFSCs, light is coupled into the devices by scattering at small surface features. In both applications, light propagation within the active layers has a significant impact on the optical device performance. Scanning near-field optical microscopy (SNOM) using aperture probes is a powerful tool to investigate this propagation with a high spatial resolution. Dual-probe SNOM allows simulating the local light generation by an illumination probe as well as the detection of the light propagated through the layer. In our work, we focus on the light propagation in thin silicon films as used in thin-film silicon solar cells. We investigate the light-in-coupling from an illuminating probe via rigorous solution of Maxwell's equations using a Finite-Difference Time-Domain approach, especially to gain insight into the light distribution inside a thin layer, which is not accessible in the experiment. The structures investigated include at and structured surfaces with varying illumination positions and wavelengths. From the performed simulations, we define a "spatial sensitivity" which is characteristic for the local structure and illumination position. This quantity can help to identify structures which are beneficial as well as detrimental to absorption inside the investigated layer. We find a strong dependence of the spatial sensitivity on the surface structure as well as both the absorption coefficient and the probe position. Furthermore, we investigate inhomogeneity in local light propagation resulting from different surface structures and illumination positions.
Memory device using movement of protons
Warren, W.L.; Vanheusden, K.J.R.; Fleetwood, D.M.; Devine, R.A.B.
1998-11-03
An electrically written memory element is disclosed utilizing the motion of protons within a dielectric layer surrounded by layers on either side to confine the protons within the dielectric layer with electrode means attached to the surrounding layers to change the spatial position of the protons within the dielectric layer. The device is preferably constructed as a silicon-silicon dioxide-silicon layered structure with the protons being introduced to the structure laterally through the exposed edges of the silicon dioxide layer during a high temperature anneal in an atmosphere containing hydrogen gas. The device operates at low power, is preferably nonvolatile, is radiation tolerant, and is compatible with convention silicon MOS processing for integration with other microelectronic elements on the same silicon substrate. With the addition of an optically active layer, the memory element becomes an electrically written, optically read optical memory element. 19 figs.