Silicon web process development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.
1981-01-01
The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.
Low cost silicon solar array project large area silicon sheet task: Silicon web process development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.
1977-01-01
Growth configurations were developed which produced crystals having low residual stress levels. The properties of a 106 mm diameter round crucible were evaluated and it was found that this design had greatly enhanced temperature fluctuations arising from convection in the melt. Thermal modeling efforts were directed to developing finite element models of the 106 mm round crucible and an elongated susceptor/crucible configuration. Also, the thermal model for the heat loss modes from the dendritic web was examined for guidance in reducing the thermal stress in the web. An economic analysis was prepared to evaluate the silicon web process in relation to price goals.
Development of processes for the production of low cost silicon dendritic web for solar cells
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Skutch, M. E.; Driggers, J. M.; Hill, F. E.
1980-01-01
High area output rates and continuous, automated growth are two key technical requirements for the growth of low-cost silicon ribbons for solar cells. By means of computer-aided furnace design, silicon dendritic web output rates as high as 27 sq cm/min have been achieved, a value in excess of that projected to meet a $0.50 per peak watt solar array manufacturing cost. The feasibility of simultaneous web growth while the melt is replenished with pelletized silicon has also been demonstrated. This step is an important precursor to the development of an automated growth system. Solar cells made on the replenished material were just as efficient as devices fabricated on typical webs grown without replenishment. Moreover, web cells made on a less-refined, pelletized polycrystalline silicon synthesized by the Battelle process yielded efficiencies up to 13% (AM1).
Silicon Web Process Development. [for solar cell fabrication
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.
1979-01-01
Silicon dendritic web, ribbon form of silicon and capable of fabrication into solar cells with greater than 15% AMl conversion efficiency, was produced from the melt without die shaping. Improvements were made both in the width of the web ribbons grown and in the techniques to replenish the liquid silicon as it is transformed to web. Through means of improved thermal shielding stress was reduced sufficiently so that web crystals nearly 4.5 cm wide were grown. The development of two subsystems, a silicon feeder and a melt level sensor, necessary to achieve an operational melt replenishment system, is described. A gas flow management technique is discussed and a laser reflection method to sense and control the melt level as silicon is replenished is examined.
NASA Technical Reports Server (NTRS)
1981-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated. The baseline diffusion masking and drive processes were compared with those involving direct liquid applications to the dendritic web silicon strips. Attempts were made to control the number of variables by subjecting dendritic web strips cut from a single web crystal to both types of operations. Data generated reinforced earlier conclusions that efficiency levels at least as high as those achieved with the baseline back junction formation process can be achieved using liquid diffusion masks and liquid dopants. The deliveries of dendritic web sheet material and solar cells specified by the current contract were made as scheduled.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Meier, D. L.; Greggi, J.; Rai-Choudhury, P.
1986-01-01
Work is reported aimed at identifying and reducing sources of carrier recombination both in the starting web silicon material and in the processed cells. Cross-sectional transmission electron microscopy measurements of several web cells were made and analyzed. The effect of the heavily twinned region on cell efficiency was modeled, and the modeling results compared to measured values for processed cells. The effects of low energy, high dose hydrogen ion implantation on cell efficiency and diffusion length were examined. Cells were fabricated from web silicon known to have a high diffusion length, with a new double layer antireflection coating being applied to these cells. A new contact system, to be used with oxide passivated cells and which greatly reduces the area of contact between metal and silicon, was designed. The application of DLTS measurements to beveled samples was further investigated.
Advancements in silicon web technology
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Easoz, J.; Mchugh, J. P.; Piotrowski, P.; Hundal, R.
1987-01-01
Low defect density silicon web crystals up to 7 cm wide are produced from systems whose thermal environments are designed for low stress conditions using computer techniques. During growth, the average silicon melt temperature, the lateral melt temperature distribution, and the melt level are each controlled by digital closed loop systems to maintain thermal steady state and to minimize the labor content of the process. Web solar cell efficiencies of 17.2 pct AM1 have been obtained in the laboratory while 15 pct efficiencies are common in pilot production.
NASA Technical Reports Server (NTRS)
Fieldler, F. S.; Ast, D.
1982-01-01
Experimental techniques for the preparation of electron beam induced current samples of Web-dentritic silicon are described. Both as grown and processed material were investigated. High density dislocation networks were found close to twin planes in the bulk of the material. The electrical activity of these networks is reduced in processed material.
Silicon Web Process Development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.
1978-01-01
Progress in the development of techniques to grow silicon web at 25 wq cm/min output rate is reported. Feasibility of web growth with simultaneous melt replenishment is discussed. Other factors covered include: (1) tests of aftertrimmers to improve web width; (2) evaluation of growth lid designs to raise speed and output rate; (3) tests of melt replenishment hardware; and (4) investigation of directed gas flow systems to control unwanted oxide deposition in the system and to improve convective cooling of the web. Compatibility with sufficient solar cell performance is emphasized.
Silicon web process development. [for low cost solar cells
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Hopkins, R. H.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.
1979-01-01
Silicon dendritic web, a single crystal ribbon shaped during growth by crystallographic forces and surface tension (rather than dies), is a highly promising base material for efficient low cost solar cells. The form of the product smooth, flexible strips 100 to 200 microns thick, conserves expensive silicon and facilitates automation of crystal growth and the subsequent manufacturing of solar cells. These characteristics, coupled with the highest demonstrated ribbon solar cell efficiency-15.5%-make silicon web a leading candidate to achieve, or better, the 1986 Low Cost Solar Array (LSA) Project cost objective of 50 cents per peak watt of photovoltaic output power. The main objective of the Web Program, technology development to significantly increase web output rate, and to show the feasibility for simultaneous melt replenishment and growth, have largely been accomplished. Recently, web output rates of 23.6 sq cm/min, nearly three times the 8 sq cm/min maximum rate of a year ago, were achieved. Webs 4 cm wide or greater were grown on a number of occassions.
NASA Technical Reports Server (NTRS)
1983-01-01
Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.
Sensitivity analysis of the add-on price estimate for the silicon web growth process
NASA Technical Reports Server (NTRS)
Mokashi, A. R.
1981-01-01
The web growth process, a silicon-sheet technology option, developed for the flat plate solar array (FSA) project, was examined. Base case data for the technical and cost parameters for the technical and commercial readiness phase of the FSA project are projected. The process add on price, using the base case data for cost parameters such as equipment, space, direct labor, materials and utilities, and the production parameters such as growth rate and run length, using a computer program developed specifically to do the sensitivity analysis with improved price estimation are analyzed. Silicon price, sheet thickness and cell efficiency are also discussed.
Electrical and Structural Characterization of Web Dendrite Crystals
NASA Technical Reports Server (NTRS)
Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.
1985-01-01
Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.
Solar cells and modules from dentritic web silicon
NASA Technical Reports Server (NTRS)
Campbell, R. B.; Rohatgi, A.; Seman, E. J.; Davis, J. R.; Rai-Choudhury, P.; Gallagher, B. D.
1980-01-01
Some of the noteworthy features of the processes developed in the fabrication of solar cell modules are the handling of long lengths of web, the use of cost effective dip coating of photoresist and antireflection coatings, selective electroplating of the grid pattern and ultrasonic bonding of the cell interconnect. Data on the cells is obtained by means of dark I-V analysis and deep level transient spectroscopy. A histogram of over 100 dentritic web solar cells fabricated in a number of runs using different web crystals shows an average efficiency of over 13%, with some efficiencies running above 15%. Lower cell efficiency is generally associated with low minority carrier time due to recombination centers sometimes present in the bulk silicon. A cost analysis of the process sequence using a 25 MW production line indicates a selling price of $0.75/peak watt in 1986. It is concluded that the efficiency of dentritic web cells approaches that of float zone silicon cells, reduced somewhat by the lower bulk lifetime of the former.
Silicon solar cell process development, fabrication and analysis
NASA Technical Reports Server (NTRS)
Yoo, H. I.; Iles, P. A.; Leung, D. C.
1981-01-01
Solar cells were fabricated from EFG ribbons dendritic webs, cast ingots by heat exchanger method, and cast ingots by ubiquitous crystallization process. Baseline and other process variations were applied to fabricate solar cells. EFG ribbons grown in a carbon-containing gas atmosphere showed significant improvement in silicon quality. Baseline solar cells from dendritic webs of various runs indicated that the quality of the webs under investigation was not as good as the conventional CZ silicon, showing an average minority carrier diffusion length of about 60 um versus 120 um of CZ wafers. Detail evaluation of large cast ingots by HEM showed ingot reproducibility problems from run to run and uniformity problems of sheet quality within an ingot. Initial evaluation of the wafers prepared from the cast polycrystalline ingots by UCP suggested that the quality of the wafers from this process is considerably lower than the conventional CZ wafers. Overall performance was relatively uniform, except for a few cells which showed shunting problems caused by inclusions.
Ultrasonic Measurement Of Silicon-Growth Interface
NASA Technical Reports Server (NTRS)
Heyser, Richard C.
1988-01-01
Position of interface between silicon melt and growing ribbon of silicon measured with aid of reflected ultrasound, according to proposal. Reflections reveal characteristics of ribbon and melt. Ultrasound pulses travel through rods to silicon ribbon growing by dendritic-web process. Rods return reflections of pulses to sonic transducers. Isolate transducers thermally, but not acoustically, from hot silicon melt.
NASA Technical Reports Server (NTRS)
Spitzer, M. B.
1983-01-01
The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.
Solar technology assessment project. Volume 6: Photovoltaic technology assessment
NASA Astrophysics Data System (ADS)
Backus, C. E.
1981-04-01
Industrial production of photovoltaic systems and volume of sales are reviewed. Low cost silicon production techniques are reviewed, including the Czochralski process, heat exchange method, edge defined film fed growth, dentritic web growth, and silicon on ceramic process. Semicrystalline silicon, amorphous silicon, and low cost poly-silicon are discussed as well as advanced materials and concentrator systems. Balance of system components beyond those needed to manufacture the solar panels are included. Nontechnical factors are assessed. The 1986 system cost goals are briefly reviewed.
NASA Technical Reports Server (NTRS)
1982-01-01
Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated.
Simultaneous junction formation
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1984-01-01
High-risk, high-payoff improvements to a baseline process sequence of simultaneous junction formation of silicon solar cells are discussed. The feasibility of simultaneously forming front and back junctions of solar cells using liquid dopants on dendritic web silicon was studied. Simultaneous diffusion was compared to sequential diffusion. A belt furnace for the diffusion process was tested.
Silicon ribbon study program. [dendritic crystals for use in solar cells
NASA Technical Reports Server (NTRS)
Seidensticker, R. G.; Duncan, C. S.
1975-01-01
The feasibility is studied of growing wide, thin silicon dendritic web for solar cell fabrication and conceptual designs are developed for the apparatus required. An analysis of the mechanisms of dendritic web growth indicated that there were no apparent fundamental limitations to the process. The analysis yielded quantitative guidelines for the thermal conditions required for this mode of crystal growth. Crucible designs were then investigated: the usual quartz crucible configurations and configurations in which silicon itself is used for the crucible. The quartz crucible design is feasible and is incorporated into a conceptual design for a laboratory scale crystal growth facility capable of semi-automated quasi-continuous operation.
Advanced dendritic web growth development
NASA Technical Reports Server (NTRS)
Hopkins, R. H.
1985-01-01
A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.
Silicon solar cell process development, fabrication and analysis
NASA Technical Reports Server (NTRS)
Minahan, J. A.
1981-01-01
The fabrication of solar cells from several unconventional silicon materials is described, and cell performance measured and analyzed. Unconventional materials evaluated are edge defined film fed grown (EFG), heat exchanger method (HEM), dendritic web grown, and continuous CZ silicons. Resistivity, current voltage, and spectral sensitivity of the cells were measured. Current voltage was measured under AM0 and AM1 conditions. Maximum conversion efficiencies of cells fabricated from these and other unconventional silicons were compared and test results analyzed. The HEM and continuous CZ silicon were found to be superior to silicon materials considered previously.
Process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1984-01-01
Advanced processing techniques for non-CZ silicon sheet material that might improve the cost effectiveness of photovoltaic module production were investigated. Specifically, the simultaneous diffusion of liquid boron and liquid phosphorus organometallic precursors into n-type dendritic silicon web was examined. The simultaneous junction formation method for solar cells was compared with the sequential junction formation method. The electrical resistivity of the n-n and p-n junctions was discussed. Further research activities for this program along with a program documentation schedule are given.
NASA Technical Reports Server (NTRS)
1983-01-01
Meniscus coates tests, back junction formation using a new boron containing liquid, tests of various SiO2 and boron containing liquids, pelletized silicon for replenishment during web growth, and ion implantation compatibility/feasibility study are discussed.
Progress research of non-Cz silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1983-01-01
The simultaneous diffusion of liquid boron and liquid phosphorus dopants into N-type dendritic silicon web for solar cells was investigated. It is planned that the diffusion parameters required to achieve the desired P(+)NN(+) cell structure be determined and the resultant cell properties be compared to cells produced in a sequential differential process. A cost analysis of the simultaneous junction formation process is proposed.
NASA Technical Reports Server (NTRS)
Spitzer, M. B.
1983-01-01
For the ion implantation tooling was fabricated with which to hold dendritic web samples. This tooling permits the expeditious boron implantation of the back to form the back surface field (BSF). Baseline BSF web cells were fabricated.
Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1
NASA Technical Reports Server (NTRS)
Yoo, H. I.; Iles, P. A.; Tanner, D. P.
1979-01-01
Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance.
Semiconductor junction formation by directed heat
Campbell, Robert B.
1988-03-24
The process of the invention includes applying precursors 6 with N- and P-type dopants therein to a silicon web 2, with the web 2 then being baked in an oven 10 to drive off excessive solvents, and the web 2 is then heated using a pulsed high intensity light in a mechanism 12 at 1100.degree.-1150.degree. C. for about 10 seconds to simultaneously form semiconductor junctions in both faces of the web.
Large area sheet task. Advanced dendritic web growth development. [silicon films
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Frantti, E.; Schruben, J.
1981-01-01
The development of a silicon dendritic web growth machine is discussed. Several refinements to the sensing and control equipment for melt replenishment during web growth are described and several areas for cost reduction in the components of the prototype automated web growth furnace are identified. A circuit designed to eliminate the sensitivity of the detector signal to the intensity of the reflected laser beam used to measure melt level is also described. A variable speed motor for the silicon feeder is discussed which allows pellet feeding to be accomplished at a rate programmed to match exactly the silicon removed by web growth.
Development of high efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.
1984-01-01
Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.
Process research of non-Czochralski silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1986-01-01
Simultaneous diffusion of liquid precursors containing phosphorus and boron into dendritic web silicon to form solar cell structures was investigated. A simultaneous junction formation techniques was developed. It was determined that to produce high quality cells, an annealing cycle (nominal 800 C for 30 min) should follow the diffusion process to anneal quenched-in defects. Two ohm-cm n-base cells were fabricated with efficiencies greater than 15%. A cost analysis indicated that the simultansous diffusion process costs can be as low as 65% of the costs of the sequential diffusion process.
Emitter formation in dendritic web silicon solar cells
NASA Technical Reports Server (NTRS)
Meier, D. L.; Rohatgi, A.; Campbell, R. B.; Alexander, P.; Fonash, S. J.; Singh, R.
1984-01-01
The use of liquid dopants and liquid masks for p-n junction formation in dendritic web solar cells was investigated and found to be equivalent to the use of gaseous dopants and CVD SiO2 masks previously used. This results in a projected cost reduction of 0.02 1980$/Watt for a 25 MW/year production line, and makes possible junction formation processes having a higher throughput than more conventional processes. The effect of a low-energy (0.4 keV) hydrogen ion implant on dendritic web solar cells was also investigated. Such an implant was observed to improve Voc and Jsc substantially. Measurements of internal quantum efficiency suggest that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. The diffusion length for electrons in the p-type base increased from 53 microns to 150 microns in one case, with dendritic web cell efficiency being boosted to 15.2 percent. The mechanism by which low-energy hydrogen ions can penetrate deeply into the silicon to effect the observed improvement is not known at this time.
Silicon web process development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.
1977-01-01
Thirty-five (35) furnace runs were carried out during this quarter, of which 25 produced a total of 120 web crystals. The two main thermal models for the dendritic growth process were completed and are being used to assist the design of the thermal geometry of the web growth apparatus. The first model, a finite element representation of the susceptor and crucible, was refined to give greater precision and resolution in the critical central region of the melt. The second thermal model, which describes the dissipation of the latent heat to generate thickness-velocity data, was completed. Dendritic web samples were fabricated into solar cells using a standard configuration and a standard process for a N(+) -P-P(+) configuration. The detailed engineering design was completed for a new dendritic web growth facility of greater width capability than previous facilities.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.
1984-01-01
The development of high efficiency solar cells on a silicon web is discussed. Heat treatment effects on web quality; the influence of twin plane lamellae, trace impurities and stress on minority carrier lifetime; and the fabrication of cells are discussed.
Forming n/p Junctions With An Excimer Laser
NASA Technical Reports Server (NTRS)
Alexander, Paul, Jr.; Campbell, Robert B.; Wong, David C.; Bottenberg, William L.; Byron, Stanley
1988-01-01
Compact equipment yields high-quality solar cells. Computer controls pulses of excimer laser and movement of silcon wafer. Mirrors direct laser beam to wafer. Lenses focus beam to small spot on surface. Process suitable for silicon made by dendritic-web-growth process.
Process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
1983-01-01
High risk, high payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non- CZ sheet material were investigated. All work was performed using dendritic web silicon. The following tasks are discussed and associated technical results are given: (1) determining the technical feasibility of forming front and back junctions in non-CT silicon using dopant techniques; (2) determining the feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask; (3) determining the feasibility of applying liquid anti-reflective solutions using meniscus coating equipment; (4) studying the production of uniform, high efficiency solar cells using ion implanation junction formation techniques; and (5) quantifying cost improvements associated with process improvements.
NASA Technical Reports Server (NTRS)
Duncan, S.
1984-01-01
Technological goals for a silicon dendritic web growth program effort are presented. Principle objectives for this program include: (1) grow long web crystals front continuously replenished melt; (2) develop temperature distribution in web and melt; (3) improve reproductibility of growth; (4) develop configurations for increased growth rates (width and speed); (5) develop new growth system components as required for improved growth; and (6) evaluate quality of web growth.
Analysis of plastic deformation in silicon web crystals
NASA Technical Reports Server (NTRS)
Spitznagel, J. A.; Seidensticker, R. G.; Lien, S. Y.; Mchugh, J. P.; Hopkins, R. H.
1987-01-01
Numerical calculation of 111-plane 110-line slip activity in silicon web crystals generated by thermal stresses is in good agreement with etch pit patterns and X-ray topographic data. The data suggest that stress redistribution effects are small and that a model, similar to that proposed by Penning (1958) and Jordan (1981) but modified to account for dislocation annihilation and egress, can be used to describe plastic flow effects during silicon web growth.
NASA Technical Reports Server (NTRS)
Natesh, R.; Mena, M.; Plichta, M.; Smith, J. M.; Sellani, M. A.
1982-01-01
One hundred ninety-three silicon sheet samples, approximately 880 square centimeters, were analyzed for twin boundary density, dislocation pit density, and grain boundary length. One hundred fifteen of these samples were manufactured by a heat exchanger method, thirty-eight by edge defined film fed growth, twenty-three by the silicon on ceramics process, and ten by the dendritic web process. Seven solar cells were also step-etched to determine the internal defect distribution on these samples. Procedures were developed or the quantitative characterization of structural defects such as dislocation pits, precipitates, twin & grain boundaries using a QTM 720 quantitative image analyzing system interfaced with a PDP 11/03 mini computer. Characterization of the grain boundary length per unit area for polycrystalline samples was done by using the intercept method on an Olympus HBM Microscope.
Automatic Control of Silicon Melt Level
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Stickel, W. B.
1982-01-01
A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.
Radiation tolerance of boron doped dendritic web silicon solar cells
NASA Technical Reports Server (NTRS)
Rohatgi, A.
1980-01-01
The potential of dendritic web silicon for giving radiation hard solar cells is compared with the float zone silicon material. Solar cells with n(+)-p-P(+) structure and approximately 15% (AMl) efficiency were subjected to 1 MeV electron irradiation. Radiation tolerance of web cell efficiency was found to be at least as good as that of the float zone silicon cell. A study of the annealing behavior of radiation-induced defects via deep level transient spectroscopy revealed that E sub v + 0.31 eV defect, attributed to boron-oxygen-vacancy complex, is responsible for the reverse annealing of the irradiated cells in the temperature range of 150 to 350 C.
Silicon materials task of the low cost solar array project, phase 2
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R., Jr.; Blais, P. D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M. H.; Mccormick, J. R.
1977-01-01
The object of phase 2 of this program is to investigate and define the effects of various processes, contaminants and process-contaminant interactions in the performance of terrestrial solar cells. The major effort this quarter was in the areas of crystal growth and thermal processing, comparison of impurity effects in low and high resistivity silicon, modeling the behavior of p-type ingots containing Mo, and C and, quantitative analysis of bulk lifetime and junction degradation effects in contaminated solar cells. The performance of solar cells fabricated on silicon web crystals grown from melts containing about 10 to the 18th power/cu cm of Cr, Mn, Fe, Ni, Ti, and V, respectively were measured. Deep level spectroscopy of metal-contaminated ingots was employed to determine the level and density of recombination centers due to Ti, V, Ni, and Cr.
Process research on non-CZ silicon material
NASA Technical Reports Server (NTRS)
1982-01-01
High risk, high payoff research areas associated with he process for producing photovoltaic modules using non-CZ sheet material are investigated. All investigations are being performed using dendritic web silicon, but all processes are directly applicable to other ribbon forms of sheet material. The technical feasibility of forming front and back junctions in non-CZ silicon using liquid dopant techniques was determined. Numerous commercially available liquid phosphorus and boron dopant solutions are investigated. Temperature-time profiles to achieve N(+) and P(+) sheet resistivities of 60 + or - 10 and 40 + or - s10 ohms per square centimeter respectively are established. A study of the optimal method of liquid dopant application is performed. The technical feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask was also determined.
Pellet Feed for Dendritic-Web Growth
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Skutch, M. E.; Mchugh, J. P.
1983-01-01
Melt replenishment system sustains continuous growth of silicon dentritic web for several days. Substantially increases size of batch, limited mainly by level of impurities and life of crucible. Silicon pellets automatically added to crucible sustain crystal growth for days.
Defect structure of web silicon ribbon
NASA Technical Reports Server (NTRS)
Cunningham, B.; Strunk, H.; Ast, D.
1980-01-01
The results of a preliminary study of two dendritic web samples are presented. The structure and electrical activity of the defects in the silicon webs were studied. Optical microscopy of chemically etched specimens was used to determine dislocation densities. Samples were mechanically polished, then Secco etched for approximately 5 minutes. High voltage transmission electron microscopy was used to characterize the crystallographic nature of the defects.
Large area sheet task: Advanced Dendritic Web Growth Development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.
1981-01-01
A melt level control system was implemented to provide stepless silicon feed rates from zero to rates exactly matching the silicon consumed during web growth. Bench tests of the unit were successfully completed and the system mounted in a web furnace for operational verification. Tests of long term temperature drift correction techniques were made; web width monitoring seems most appropriate for feedback purposes. A system to program the initiation of the web growth cycle was successfully tested. A low cost temperature controller was tested which functions as well as units four times as expensive.
Defect characterization of silicon dendritic web ribbons
NASA Technical Reports Server (NTRS)
Cheng, L. J.
1985-01-01
Progress made in the study of defect characterization of silicon dendritic web ribbon is presented. Chemical etching is used combined with optical microscopy, as well as the electron beam induced current (EBIC) technique. Thermal annealing effect on carrier lifetime is examined.
Controlling Thermal Gradients During Silicon Web Growth
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Mchugh, J. P.; Skutch, M. E.; Piotrowski, P. A.
1983-01-01
Strategically placed slot helps to control critical thermal gradients in crucible for silicon web growth. Slot thermally isolates feed region of crucible from growth region; region where pellets are added stays hot. Heat absorbed by pellets during melting causes thermal unbalance than upsets growth conditions.
NASA Technical Reports Server (NTRS)
1981-01-01
Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.
The status of silicon ribbon growth technology for high-efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Ciszek, T. F.
1985-01-01
More than a dozen methods have been applied to the growth of silicon ribbons, beginning as early as 1963. The ribbon geometry has been particularly intriguing for photovoltaic applications, because it might provide large area, damage free, nearly continuous substrates without the material loss or cost of ingot wafering. In general, the efficiency of silicon ribbon solar cells has been lower than that of ingot cells. The status of some ribbon growth techniques that have achieved laboratory efficiencies greater than 13.5% are reviewed, i.e., edge-defined, film-fed growth (EFG), edge-supported pulling (ESP), ribbon against a drop (RAD), and dendritic web growth (web).
A Module Experimental Process System Development Unit (MEPSDU)
NASA Technical Reports Server (NTRS)
1981-01-01
Design work for a photovoltaic module, fabricated using single crystal silicon dendritic web sheet material, resulted in the identification of surface treatment to the module glass superstrate which improved module efficiencies. A final solar module environmental test, a simulated hailstone impact test, was conducted on full size module superstrates to verify that the module's tempered glass superstrate can withstand specified hailstone impacts near the corners and edges of the module. Process sequence design work on the metallization process selective, liquid dopant investigation, dry processing, and antireflective/photoresist application technique tasks, and optimum thickness for Ti/Pd are discussed. A noncontact cleaning method for raw web cleaning was identified and antireflective and photoresist coatings for the dendritic webs were selected. The design of a cell string conveyor, an interconnect feed system, rolling ultrasonic spot bonding heat, and the identification of the optimal commercially available programmable control system are also discussed. An economic analysis to assess cost goals of the process sequence is also given.
Adjustable Lid Aids Silicon-Ribbon Growth
NASA Technical Reports Server (NTRS)
Mchugh, J. P.; Steidensticker, R. G.; Duncan, C. S.
1985-01-01
Closely-spaced crucible cover speeds up solidification. Growth rate of dendritic-web silicon ribbon from molten silicon increased by controlling distance between crucible susceptor lid and liquid/solid interface. Lid held in relatively high position when crucible newly filled with chunks of polycrystalline silicon. As silicon melts and forms pool of liquid at lower level, lid gradually lowered.
Flat-plate solar array project process development area process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
1985-01-01
Three sets of samples were laser processed and then cell processed. The laser processing was carried out on P-type and N-type web at laser power levels from 0.5 joule/sq cm to 2.5 joule/sq cm. Six different liquid dopants were tested (3 phosphorus dopants, 2 boron dopants, 1 aluminum dopant). The laser processed web strips were fabricated into solar cells immediately after laser processing and after various annealing cycles. Spreading resistance measurements made on a number of these samples indicate that the N(+)P (phosphorus doped) junction is approx. 0.2 micrometers deep and suitable for solar cells. However, the P(+)N (or P(+)P) junction is very shallow ( 0.1 micrometers) with a low surface concentration and resulting high resistance. Due to this effect, the fabricated cells are of low efficiency. The maximum efficiency attained was 9.6% on P-type web after a 700 C anneal. The main reason for the low efficiency was a high series resistance in the cell due to a high resistance back contact.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Meier, D. L.
1986-01-01
Achievement of higher efficiency cells by directing efforts toward identifying carrier loss mechanisms; design of cell structures; and development of processing techniques are described. Use of techniques such as deep-level transient spectroscopy (DLTS), laser-beam-induced current (LBIC), and transmission electron microscopy (TEM) indicated that dislocations in web material rather than twin planes were primarily responsible for limiting diffusion lengths in the web. Lifetimes and cell efficiencies can be improved from 19 to 120 microns, and 8 to 10.3% (no AR), respectively, by implanting hydrogen at 1500 eV and a beam current density of 2.0 mA/sq cm. Some of the processing improvements included use of a double-layer AR coating (ZnS and MgF2) and an addition of an aluminum back surface reflectors. Cells of more than 16% efficiency were achieved.
Silicon photonics cloud (SiCloud)
NASA Astrophysics Data System (ADS)
DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram
2015-02-01
We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.
Silicon web process development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.
1980-01-01
A barrier crucible design which consistently maintains melt stability over long periods of time was successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours. The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and operated successfully for 3.5 hours demonstrating the feasibility of semi-automated dendritic web growth. The sensitivity of the cost of sheet, to variations in capital equipment cost and recycling dendrites was calculated and it was shown that these factors have relatively little impact on sheet cost. Dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.
1986-01-01
Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.
1986-01-01
Efforts to demonstrate that the dendritic web technology is ready for commercial use by the end of 1986 continues. A commercial readiness goal involves improvements to crystal growth furnace throughput to demonstrate an area growth rate of greater than 15 sq cm/min while simultaneously growing 10 meters or more of ribbon under conditions of continuous melt replenishment. Continuous means that the silicon melt is being replenished at the same rate that it is being consumed by ribbon growth so that the melt level remains constant. Efforts continue on computer thermal modeling required to define high speed, low stress, continuous growth configurations; the study of convective effects in the molten silicon and growth furnace cover gas; on furnace component modifications; on web quality assessments; and on experimental growth activities.
Computer modeling of dendritic web growth processes and characterization of the material
NASA Technical Reports Server (NTRS)
Seidensticker, R. G.; Kothmann, R. E.; Mchugh, J. P.; Duncan, C. S.; Hopkins, R. H.; Blais, P. D.; Davis, J. R.; Rohatgi, A.
1978-01-01
High area throughput rate will be required for the economical production of silicon dendritic web for solar cells. Web width depends largely on the temperature distribution on the melt surface while growth speed is controlled by the dissipation of the latent heat of fusion. Thermal models were developed to investigate each of these aspects, and were used to engineer the design of laboratory equipment capable of producing crystals over 4 cm wide; growth speeds up to 10 cm/min were achieved. The web crystals were characterized by resistivity, lifetime and etch pit density data as well as by detailed solar cell I-V data. Solar cells ranged in efficiency from about 10 to 14.5% (AM-1) depending on growth conditions. Cells with lower efficiency displayed lowered bulk lifetime believed to be due to surface contamination.
Phase 2 of the array automated assembly task for the low cost solar array project
NASA Technical Reports Server (NTRS)
Campbell, R. B.; Davis, J. R.; Ostroski, J. W.; Rai-Choudhury, P.; Rohatgi, A.; Seman, E. J.; Stapleton, R. E.
1979-01-01
The process sequence for the fabrication of dendritic web silicon into solar panels was modified to include aluminum back surface field formation. Plasma etching was found to be a feasible technique for pre-diffusion cleaning of the web. Several contacting systems were studied. The total plated Pd-Ni system was not compatible with the process sequence; however, the evaporated TiPd-electroplated Cu system was shown stable under life testing. Ultrasonic bonding parameters were determined for various interconnect and contact metals but the yield of the process was not sufficiently high to use for module fabrication at this time. Over 400 solar cells were fabricated according to the modified sequence. No sub-process incompatibility was seen. These cells were used to fabricate four demonstration modules. A cost analysis of the modified process sequence resulted in a selling price of $0.75/peak watt.
Plastic deformation of silicon dendritic web ribbons during the growth
NASA Technical Reports Server (NTRS)
Cheng, L. J.; Dumas, K. A.; Su, B. M.; Leipold, M. H.
1984-01-01
The distribution of slip dislocations in silicon dendritic web ribbons due to plastic deformation during the cooling phase of the growth was studied. The results show the existence of two distinguishable stress regions across the ribbon formed during the plastic deformation stage, namely, shear stress at the ribbon edges and tensile stress at the middle. In addition, slip dislocations caused by shear stress near the edges appear to originate at the twin plane.
Silicon dendritic web material
NASA Technical Reports Server (NTRS)
Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.
1982-01-01
The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.
Silicon dendritic web material
NASA Astrophysics Data System (ADS)
Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.
1982-03-01
The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.
Flat-plate solar array project process development area: Process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1986-01-01
Several different techniques to simultaneously diffuse the front and back junctions in dendritic web silicon were investigated. A successful simultaneous diffusion reduces the cost of the solar cell by reducing the number of processing steps, the amount of capital equipment, and the labor cost. The three techniques studied were: (1) simultaneous diffusion at standard temperatures and times using a tube type diffusion furnace or a belt furnace; (2) diffusion using excimer laser drive-in; and (3) simultaneous diffusion at high temperature and short times using a pulse of high intensity light as the heat source. The use of an excimer laser and high temperature short time diffusion experiment were both more successful than the diffusion at standard temperature and times. The three techniques are described in detail and a cost analysis of the more successful techniques is provided.
Technical progress in silicon sheet growth under DOE/JPL FSA program, 1975-1986
NASA Technical Reports Server (NTRS)
Kalejs, J. P.
1986-01-01
The technical progress made in the Silicon Sheet Growth Program during its 11 years was reviewed. At present, in 1986, only two of the original 9 techniques have survived to the start-up, pilot-plant stage in industry. These two techniques are the edge-defined, film-fed growth (EFG) technique that produces closed shape polygons, and the WEB dendritic technique that produces single ribbons. Both the status and future concerns of the EFG and WEB techniques were discussed.
Floating substrate process: Large-area silicon sheet task low-cost solar array project
NASA Technical Reports Server (NTRS)
Garfinkel, M.; Hall, R. N.
1978-01-01
Supercooling of silicon-tin alloy melts was studied. Values as high as 78 C at 1100 C and 39 C at 1200 C were observed, corresponding to supersaturation parameter values 0.025 and 0.053 at 1050 C and 1150 C, respectively. The interaction of tin with silane gas streams was investigated over the temperature range 1000 to 1200 C. Single-pass conversion efficiencies exceeding 30% were obtained. The growth habit of spontaneously-nucleated surface growth was determined to be consistent with dendritic and web growth from singly-twinned triangular nucleii. Surface growth of interlocking silicon crystals, thin enough to follow the surface of the liquid and with growth velocity as high as 5 mm/min, was obtained. Large area single-crystal growth along the melt surface was not achieved. Small single-crystal surface growth was obtained which did not propagate beyond a few millimeters.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... Silicon to realize logistical benefits through the use of weekly customs entry procedures. Customs duties... Avenue, NW., Washington, DC 20230-0002, and in the ``Reading Room'' section of the Board's Web site...
NASA Technical Reports Server (NTRS)
Kachare, A. H.; Hyland, S. L.; Garlick, G. F. J.
1981-01-01
The use of high energy electron irradiation is investigated as a controlled means to study in more detail the junction depletion layer processes of solar cells made on various low-cost silicon sheet materials. Results show that solar cells made on Czochralski grown silicon exhibit enhancement of spectral response in the shorter wavelength region when irradiated with high energy electrons. The base region damage can be reduced by subsequent annealing at 450 C which restores the degraded longer wavelength response, although the shorter wavelength enhancement persists. The second diode component of the cell dark forward bias current is also reduced by electron irradiation, while thermal annealing at 450 C without electron irradiation can also produce these same effects. Electron irradiation produces small changes in the shorter wavelength spectral responses and junction improvements in solar cells made on WEB, EFG, and HEM silicon. It is concluded that these beneficial effects on cell characteristics are due to the reduction of oxygen associated deep level recombination centers in the N(+) diffused layer and in the junction.
NASA Astrophysics Data System (ADS)
Tåg, C.-M.; Toiviainen, M.; Juuti, M.; Gane, P. A. C.
2010-10-01
Dynamic analysis of the water transfer onto coated paper, and its permeation and absorption into the porous structure were studied online in a full-scale heatset web offset printing environment. The moisture content of the paper was investigated at five different positions during the printing process. Changes in the moisture content of the paper were studied as a function of the web temperature, printing speed and silicone application in the folding unit positioned after the hot air drying oven. Additionally, the influence of fountain solution composition on the pick-up by the paper was investigated. The water content of the fountain solution transferred to the paper from the printing units was observed as changes in near-infrared absorbance. A calibration data set enabled the subsequent quantification of the dynamic moisture content of the paper at the studied locations. An increase in the printing speed reduced the water transfer to the paper and an increase in web temperature resulted in a reduction in the moisture content. An increase in the dosage level of the water-silicone mixture was observed as a re-moistening effect of the paper. Differences in the drying strategy resulted in different moisture profiles depending on the type of fountain solution used. As a conclusion, the near-infrared signal provides an effective way to characterize the moisture dynamics online at different press units.
NASA Technical Reports Server (NTRS)
Mathews, V. K.; Gross, T. S.
1987-01-01
The mechanical behavior of dendritic web Si ribbons close the melting point was studied experimentally. The goal of the study was to generate data for modeling the generation of stresses and dislocation structures during growth of dendritic web Si ribbons, thereby permitting modifications to the production process, i.e., the temperature profile, to lower production costs for the photovoltaic ribbons. A laser was used to cut specimens in the direction of growth of sample ribbons, which were then subjected to tensile tests at temperatures up to 1300 C in an Ar atmosphere. The tensile strengths of the samples increased when the temperature rose above 1200 C, a phenomena which was attributed to the diffusion of oxygen atoms to the quasi-dislocation sites. The migration to the potential dislocations sites effectively locked the dislocations.
Apparatus for silicon web growth of higher output and improved growth stability
Duncan, Charles S.; Piotrowski, Paul A.
1989-01-01
This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced.
Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.
1975-01-01
Progress is reported during the apparatus design, fabrication, and assembly phases of a program to grow wide, thin silicon dendritic web. The growth facility was essentially completed with any significant problems arising. A complete set of detailed fabrication drawings is included as an appendix.
Crystallization of Silicon Ribbons
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1984-01-01
Purity constraints for reasonable solar-cell efficiency require that silicon-ribbon growth for photovoltaics occur in a regime in which constitutional supercooling or other compositional effects on the crystallization front are not important. A major consideration in the fundamentals of crystallization is the removal of the latent heat of fusion. The direction of removal, compared with the growth direction, has a major influence on the crystallization rate and the development of localized stresses. The detailed shape of the crystallization front appears to have two forms: that required for dendritic-web growth, and that occurring in all others. After the removal of the latent heat of fusion, the thermal-mechanical behavior of all ribbons appears similar within the constraints of the exothermal gradient. The technological constraints in achieving the required thermal and mechanical conditions vary widely among the growth processes.
Improved Radiative Control of Ribbon Growth
NASA Technical Reports Server (NTRS)
Mchugh, J. P.; Seidensticker, R. G.; Skutch, M. E.
1984-01-01
Shield modifications enhance growth rate while reducing silicon oxide formation. Control of dendritic-web crystal growth requires precise control of web temperature profile. Achieved by using series of thermal radiation shields to control thermal-radiation field in region where melt solidifying onto crystal ribbon being pulled from melt.
The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD
NASA Astrophysics Data System (ADS)
Yin, Lianhua; Chen, Qiang
2017-12-01
In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.
NASA Technical Reports Server (NTRS)
Morrison, A. D.
1982-01-01
A set of computer models was used to define a growth system configuration that was then built and used to grow web with lower thermally generated stress. Aspects of research in the edge-defined film-fed growth (EFG) method of making Si ribbon are reported. A technique was developed to determine base resistivity and carrier lifetime in semicrystalline wafers. Automated growth of 150 kg of 15 cm-dia ingot material per crucible is reviewed. Scanning transmisson electron microscopy (STEM) and microprobe investigations of processed EFG ribbon are reported. The chemical composition of the large precipitates was studied. The structural arrangement and the electrical activity of distentions or close to the central twin plane in processed material were studied. The electrical and structural properties of grain boundaries in silicon are discussed. Temperature-dependence measurements of zero-bias conductance, a photoconductivity technique, and deep-level transient spectroscopy (DLTS) were developed. A grooving and staining technique, secondary ion mass spectroscopy, and EBIC measurements in scanning electron microscopy were used to study enhanced diffusion of phosphorus at grain boundaries in polycrystaline silicon. The fundamental mechanisms of abrasion and wear and the deformation of Si by a diamond in various fluid environments are described. The efficiency of solar cells made from EFG ribbon and Semix Inc. material is reported.
Fabrication and Test of Large Area Spider-Web Bolometers for CMB Measurements
NASA Astrophysics Data System (ADS)
Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Gatti, F.; Orlando, A.; Pizzigoni, G.
2016-08-01
Detecting the primordial 'B-mode' polarization of the cosmic microwave background is one of the major challenges of modern observational cosmology. Microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. In this paper, we present the development status of large area (about 1 cm2) spider-web bolometer, which imply additional fabrication challenges. The spider-web is a suspended Si3N4 1 \\upmu m-thick and 8-mm diameter with mesh size of 250 \\upmu m. The thermal sensitive element is a superconducting transition edge sensor (TES) at the center of the bolometer. The first prototype is a Ti-Au TES with transition temperature tuned around 350 mK, new devices will be a Mo-Au bilayer tuned to have a transition temperature of 500 mK. We present the fabrication process with micro-machining techniques from silicon wafer covered with SiO2 - Si3N4 CVD films, 0.3 and 1 \\upmu m- thick, respectively, and preliminary tests.
2007-03-28
Photos for Web Feature by Victoria (Tori) Woods; Micro-Electro Mechanical Systems (MEMS) using vacuum technology; fabricating High Temperature Electronics for Harsh Environments using silicon carbide substrates
Ultrafast web inspection with hybrid dispersion laser scanner.
Chen, Hongwei; Wang, Chao; Yazaki, Akio; Kim, Chanju; Goda, Keisuke; Jalali, Bahram
2013-06-10
We report an ultrafast web inspector that operates at a 1000 times higher scan rate than conventional methods. This system is based on a hybrid dispersion laser scanner that performs line scans at nearly 100 MHz. Specifically, we demonstrate web inspection with detectable resolution of 48.6 μm/pixel (scan direction) × 23 μm (web flow direction) within a width of view of 6 mm at a record high scan rate of 90.9 MHz. We demonstrate the identification and evaluation of particles on silicon wafers. This method holds great promise for speeding up quality control and hence reducing manufacturing costs.
Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells
NASA Technical Reports Server (NTRS)
Fonash, S. J.; Sigh, R.; Mu, H. C.
1986-01-01
The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.
Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.
1976-01-01
A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material.
NASA Technical Reports Server (NTRS)
Stella, P. M.; Anspaugh, B. E.
1985-01-01
Electrical characteristics of thin (100- and 140-micron) Westinghouse dendritic-web N/P silicon solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. Performance is also shown as a function of solar illlumination angle of incidence for AMO.
Effect of low-energy hydrogen ion implantation on dendritic web silicon solar cells
NASA Technical Reports Server (NTRS)
Rohatgi, A.; Meier, D. L.; Rai-Choudhury, P.; Fonash, S. J.; Singh, R.
1986-01-01
The effect of a low-energy (0.4 keV), short-time (2-min), heavy-dose (10 to the 18th/sq cm) hydrogen ion implant on dendritic web silicon solar cells and material was investigated. Such an implant was observed to improve the cell open-circuit voltage and short-circuit current appreciably for a number of cells. In spite of the low implant energy, measurements of internal quantum efficiency indicate that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. This is supported by the observation that the measured minority-carrier diffusion length in the base did not change when the emitter was removed. In some cases, a threefold increase of the base diffusion length was observed after implantation. The effects of the hydrogen implantation were not changed by a thermal stress test at 250 C for 111 h in nitrogen. It is speculated that hydrogen enters the bulk by traveling along dislocations, as proposed recently for edge-defined film-fed growth silicon ribbon.
Web-dendritic growth. [single crystal silicon ribbons for solar cells
NASA Technical Reports Server (NTRS)
Hilborn, R. B.; Faust, J. W., Jr.; Rhodes, C.
1977-01-01
The effects of various machine design parameters on the growth of web dendritic silicon ribbon were investigated. Ribbons were grown up to lengths of one meter, with widths increasing linearly up to one cm at the point of termination of growth. Thermal data were collected and evaluated for actual seeding and growth with variations in parameters affecting heat loss. It was found that for suitable growth, the mechanical system should be very rigid and stable, and the tolerances and specifications of the quartz crucibles must be far tighter than normal quartz tolerances. The widening rates of the ribbons were found to be a function of the temperature gradient rather than the temperature differences alone. A twin spacing in the seed of 3 microns to 2 microns was found to be unfavorable for growth; whereas spacing of 0.9 microns to 2 microns and 8 microns to 2 microns were favorable. Thermal modeling studies of the effects of furnace design parameters on the temperature distributions in melt and the growth of the dendritic web ribbon showed that the pull rate of the ribbon is strongly dependent on the temperature of the top thermal shield, the spacing between this shield and the melt, and the thickness of the growing web.
NASA Astrophysics Data System (ADS)
Schwirtlich, I. A.
Since the beginning of solar cell development based on crystalline silicon, there have been efforts to produce wafers directly from the melt instead of through crystallization of ingots. Ingots require slicing into the blocs and wafers which form the basis of solar cells. In the last 30 years, several dozen processes have been published that describe a variety of concepts. Only few of these processes could be developed to an acceptable degree of technical maturity. Among those successful technologies are the Dendritic Web process, the Edge Supported Pulling (ESP) process and the Edge-Defined-Film-Fed-Growth (EFG) process. The EFG Process was originally developed by Mobil Solar and, since the mid-1990s, belongs to SCHOTT Solar GmbH and its predecessors, respectively. The Ribbon Growth on Substrate (RGS) process was originally developed by Bayer AG and is now in a pilot project at the ECN, Petten. Considering the past 20 to 30 years, the EFG process has reached the most advanced state in terms of industrialization.
Extracting Silicon From Sodium-Process Products
NASA Technical Reports Server (NTRS)
Kapur, V.; Sanjurjo, A.; Sancier, K. M.; Nanis, L.
1982-01-01
New acid leaching process purifies silicon produced in reaction between silicon fluoride and sodium. Concentration of sodium fluoride and other impurities and byproducts remaining in silicon are within acceptable ranges for semi-conductor devices. Leaching process makes sodium reduction process more attractive for making large quantities of silicon for solar cells.
Impurities in silicon solar cells
NASA Technical Reports Server (NTRS)
Hopkins, R. H.
1985-01-01
Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.
Effects of Impurities and Processing on Silicon Solar Cells, Phase 3
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
Results of the 14th quarterly report are presented for a program designed to assess the effects of impurities, thermochemical processes and any impurity process interactions on the performance of terrestrial silicon solar cells. The Phase 3 effort encompasses: (1) potential interactions between impurities and thermochemical processing of silicon; (2) impurity-cell performance relationships in n-base silicon; (3) effect of contaminants introduced during silicon production, refining or crystal growth on cell performance; (4) effects of nonuniform impurity distributions in large area silicon wafers; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells.
NASA Technical Reports Server (NTRS)
1980-01-01
Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.
Study on Silicon Microstructure Processing Technology Based on Porous Silicon
NASA Astrophysics Data System (ADS)
Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing
2018-03-01
Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.
Process for forming retrograde profiles in silicon
Weiner, K.H.; Sigmon, T.W.
1996-10-15
A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.
Large area sheet task: Advanced dendritic web growth development
NASA Technical Reports Server (NTRS)
Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.
1981-01-01
The growth of silicon dendritic web for photovoltaic applications was investigated. The application of a thermal model for calculating buckling stresses as a function of temperature profile in the web is discussed. Lid and shield concepts were evaluated to provide the data base for enhancing growth velocity. An experimental web growth machine which embodies in one unit the mechanical and electronic features developed in previous work was developed. In addition, evaluation of a melt level control system was begun, along with preliminary tests of an elongated crucible design. The economic analysis was also updated to incorporate some minor cost changes. The initial applications of the thermal model to a specific configuration gave results consistent with experimental observation in terms of the initiation of buckling vs. width for a given crystal thickness.
New technologies for solar energy silicon - Cost analysis of dichlorosilane process
NASA Technical Reports Server (NTRS)
Yaws, C. L.; Li, K.-Y.; Chu, T. C. T.; Fang, C. S.; Lutwack, R.; Briglio, A., Jr.
1981-01-01
A reduction in the cost of silicon for solar cells is an important objective in a project concerned with the reduction of the cost of electricity produced with solar cells. The cost goal for the silicon material is about $14 per kg (1980 dollars). The process which is currently employed to produce semiconductor grade silicon from trichlorosilane is not suited for meeting this cost goal. Other processes for producing silicon are, therefore, being investigated. A description is presented of results obtained for the DCS process which involves the production of dichlorosilane as a silicon source material for solar energy silicon. Major benefits of dichlorosilane as a silicon source material include faster reaction rates for chemical vapor deposition of silicon. The DCS process involves the reaction 2SiHCl3 yields reversibly SiH2Cl2 + SiCl4. The results of a cost analysis indicate a total product cost without profit of $1.29/kg of SiH2Cl2.
Thin Film Transistors On Plastic Substrates
Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.
2004-01-20
A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.
NASA Technical Reports Server (NTRS)
1981-01-01
The engineering design, fabrication, assembly, operation, economic analysis, and process support research and development for an Experimental Process System Development Unit for producing semiconductor-grade silicon using the slane-to-silicon process are reported. The design activity was completed. About 95% of purchased equipment was received. The draft of the operations manual was about 50% complete and the design of the free-space system continued. The system using silicon power transfer, melting, and shotting on a psuedocontinuous basis was demonstrated.
Demonstration of Minimally Machined Honeycomb Silicon Carbide Mirrors
NASA Technical Reports Server (NTRS)
Goodman, William
2012-01-01
Honeycomb silicon carbide composite mirrors are made from a carbon fiber preform that is molded into a honeycomb shape using a rigid mold. The carbon fiber honeycomb is densified by using polymer infiltration pyrolysis, or through a reaction with liquid silicon. A chemical vapor deposit, or chemical vapor composite (CVC), process is used to deposit a polishable silicon or silicon carbide cladding on the honeycomb structure. Alternatively, the cladding may be replaced by a freestanding, replicated CVC SiC facesheet that is bonded to the honeycomb. The resulting carbon fiber-reinforced silicon carbide honeycomb structure is a ceramic matrix composite material with high stiffness and mechanical strength, high thermal conductivity, and low CTE (coefficient of thermal expansion). This innovation enables rapid, inexpensive manufacturing. The web thickness of the new material is less than 1 millimeter, and core geometries tailored. These parameters are based on precursor carbon-carbon honeycomb material made and patented by Ultracor. It is estimated at the time of this reporting that the HoneySiC(Trademark) will have a net production cost on the order of $38,000 per square meter. This includes an Ultracor raw material cost of about $97,000 per square meter, and a Trex silicon carbide deposition cost of $27,000 per square meter. Even at double this price, HoneySiC would beat NASA's goal of $100,000 per square meter. Cost savings are estimated to be 40 to 100 times that of current mirror technologies. The organic, rich prepreg material has a density of 56 kilograms per cubic meter. A charred carbon-carbon panel (volatile organics burnt off) has a density of 270 kilograms per cubic meter. Therefore, it is estimated that a HoneySiC panel would have a density of no more than 900 kilograms per cubic meter, which is about half that of beryllium and about onethird the density of bulk silicon carbide. It is also estimated that larger mirrors could be produced in a matter of weeks. Each cell is completely uniform, maintaining the shape of the inserted mandrel. Furthermore, the layup creates pressure that insures node bond strength. Each node is a composite laminate using only the inherent resin system to form the bond. This contrasts starkly with the other known method of producing composite honeycomb, in which individual corrugations are formed, cured, and then bonded together in a secondary process. By varying the size of the mandrels within the layup, varying degrees of density can be achieved. Typical sizes are 3/8 and 3/16 in. (approximately 10 and 5 millimeters). Cell sizes up to 1 in. (approximately 25 millimeters) have been manufactured. Similarly, the shape of the core can be altered for a flexible honeycomb structure.
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Yaws, C. L.; Li, K. Y.; Hopper, J. R.; Fang, C. S.; Hansen, K. C.
1981-01-01
Results for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells are presented. Analyses of process system properties are important for chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major physical, thermodynamic and transport property data are reported for silicon source and processing chemical materials.
Method of forming crystalline silicon devices on glass
McCarthy, Anthony M.
1995-01-01
A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.
Silicon material technology status. [assessment for electronic and photovoltaic applications
NASA Technical Reports Server (NTRS)
Lutwack, R.
1983-01-01
Silicon has been the basic element for the electronic and photovoltaic industries. The use of silicon as the primary element for terrestrial photovoltaic solar arrays is projected to continue. The reasons for this projection are related to the maturity of silicon technology, the ready availability of extremely pure silicon, the performance of silicon solar cells, and the considerable present investment in technology and manufacturing facilities. The technologies for producing semiconductor grade silicon and, to a lesser extent, refined metallurgical grade silicon are considered. It is pointed out that nearly all of the semiconductor grade silicon is produced by processes based on the Siemens deposition reactor, a technology developed 26 years ago. The state-of-the-art for producing silicon by this process is discussed. It is expected that efforts to reduce polysilicon process costs will continue.
Toet, Daniel; Sigmon, Thomas W.
2004-12-07
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Toet, Daniel; Sigmon, Thomas W.
2005-08-23
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Toet, Daniel; Sigmon, Thomas W.
2003-01-01
A process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction for use in advanced magnetic random access memory (MRAM) cells for high performance, non-volatile memory arrays. The process is based on pulsed laser processing for the fabrication of vertical polycrystalline silicon electronic device structures, in particular p-n junction diodes, on films of metals deposited onto low temperature-substrates such as ceramics, dielectrics, glass, or polymers. The process preserves underlayers and structures onto which the devices are typically deposited, such as silicon integrated circuits. The process involves the low temperature deposition of at least one layer of silicon, either in an amorphous or a polycrystalline phase on a metal layer. Dopants may be introduced in the silicon film during or after deposition. The film is then irradiated with short pulse laser energy that is efficiently absorbed in the silicon, which results in the crystallization of the film and simultaneously in the activation of the dopants via ultrafast melting and solidification. The silicon film can be patterned either before or after crystallization.
Fluidized bed silicon deposition from silane
NASA Technical Reports Server (NTRS)
Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)
1982-01-01
A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.
Fluidized bed silicon deposition from silane
NASA Technical Reports Server (NTRS)
Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)
1984-01-01
A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.
Method of forming crystalline silicon devices on glass
McCarthy, A.M.
1995-03-21
A method is disclosed for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics. 7 figures.
A continuous silicon-coating facility
NASA Technical Reports Server (NTRS)
Butter, C.; Heaps, J. D.
1979-01-01
Automatic continuous silicon-coating facility is used to process 100 by 10 cm graphite-coated ceramic substrates for silicon solar cells. Process reduces contamination associated with conventional dip-coating processes, improving material service life.
NASA Astrophysics Data System (ADS)
Hussain, Muhammad M.; Rojas, Jhonathan P.; Torres Sevilla, Galo A.
2013-05-01
Today's information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor - heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon - industry's darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%).
NASA Technical Reports Server (NTRS)
Dickson, C. R.; Gould, R. K.; Felder, W.
1981-01-01
High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.
Silicon photonics and challenges for fabrication
NASA Astrophysics Data System (ADS)
Feilchenfeld, N. B.; Nummy, K.; Barwicz, T.; Gill, D.; Kiewra, E.; Leidy, R.; Orcutt, J. S.; Rosenberg, J.; Stricker, A. D.; Whiting, C.; Ayala, J.; Cucci, B.; Dang, D.; Doan, T.; Ghosal, M.; Khater, M.; McLean, K.; Porth, B.; Sowinski, Z.; Willets, C.; Xiong, C.; Yu, C.; Yum, S.; Giewont, K.; Green, W. M. J.
2017-03-01
Silicon photonics is rapidly becoming the key enabler for meeting the future data speed and volume required by the Internet of Things. A stable manufacturing process is needed to deliver cost and yield expectations to the technology marketplace. We present the key challenges and technical results from both 200mm and 300mm facilities for a silicon photonics fabrication process which includes monolithic integration with CMOS. This includes waveguide patterning, optical proximity correction for photonic devices, silicon thickness uniformity and thick material patterning for passive fiber to waveguide alignment. The device and process metrics show that the transfer of the silicon photonics process from 200mm to 300mm will provide a stable high volume manufacturing platform for silicon photonics designs.
NASA Technical Reports Server (NTRS)
Bates, H. E.; Hill, D. M.; Jewett, D. N.
1983-01-01
Drop length necessary to convert molten silicon to shot reduced by proposed new process. Conversion of silicon from powder or chunks to shot often simplifies processing. Shot is more easily handled in most processing equipment. Drops of liquid silicon fall through protective cloud of argon, then through rapidly cooling bath of methanol, where they quickly turn into solid shot.
Fabricating solar cells with silicon nanoparticles
Loscutoff, Paul; Molesa, Steve; Kim, Taeseok
2014-09-02
A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.
Process for Polycrystalline film silicon growth
Wang, Tihu; Ciszek, Theodore F.
2001-01-01
A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.
Improved process for epitaxial deposition of silicon on prediffused substrates
NASA Technical Reports Server (NTRS)
Clarke, M. G.; Halsor, J. L.; Word, J. C.
1968-01-01
Process for fabricating integrated circuits uniformly deposits silicon epitaxially on prediffused substrates without affecting the sublayer diffusion pattern. Two silicon deposits from different sources, and deposited at different temperatures, protect the sublayer pattern from the silicon tetrachloride reaction.
Determination of X-ray flux using silicon pin diodes
Owen, Robin L.; Holton, James M.; Schulze-Briese, Clemens; Garman, Elspeth F.
2009-01-01
Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced. PMID:19240326
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniadis, H.
Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink highmore » efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.« less
NASA Technical Reports Server (NTRS)
1983-01-01
The process technology for the manufacture of semiconductor-grade silicon in a large commercial plant by 1986, at a price less than $14 per kilogram of silicon based on 1975 dollars is discussed. The engineering design, installation, checkout, and operation of an Experimental Process System Development unit was discussed. Quality control of scaling-up the process and an economic analysis of product and production costs are discussed.
Chen, Jian; Shi, Fang; Chen, Min; Yang, Yue; Cheng, Lei; Wu, Haitao
2017-10-01
This work is a retrospective analysis to investigate the critical risk factor for the therapeutic effect of endoscopic keel placement on anterior glottic web. Altogether, 36 patients with anterior glottic web undergoing endoscopic lysis and silicone keel placement were enrolled. Their voice qualities were evaluated using the voice handicap index-10 (VHI-10) questionnaire, and improved significantly 3 months after surgery (21.53 ± 3.89 vs 9.81 ± 6.68, P < 0.0001). However, 10 (27.8%) cases had web recurrence during the at least 1-year follow-up. Therefore, patients were classified according to the Cohen classification or web thickness, and the recurrence rates were compared. The distribution of recurrence rates for Cohen type 1 ~ 4 were 28.6, 16.7, 33.3, and 40%, respectively. The difference was not statistically significant (P = 0.461). When classified by web thickness, only 2 of 27 (7.41%) thin type cases relapsed whereas 8 of 9 (88.9%) cases in the thick group reformed webs (P < 0.001). These results suggest that the therapeutic outcome of endoscopic keel placement mostly depends on the web thickness rather than the Cohen grades. Endoscopic lysis and keel placement is only effective for cases with thin glottic webs. Patients with thick webs should be treated by other means.
NASA Astrophysics Data System (ADS)
Nagai, Shingo
2013-11-01
We report estimation of the effective diffusion coefficient of moisture through a barrier coating to develop an encapsulation technology for the thin-film electronics industry. This investigation targeted a silicon oxide (SiOx) film that was deposited on a plastic substrate by a large-process-area web coater. Using the finite difference method based on diffusion theory, our estimation of the effective diffusion coefficient of a SiOx film corresponded to that of bulk glass that was previously reported. This result suggested that the low diffusivities of barrier films can be obtained on a mass-production level in the factory. In this investigation, experimental observations and mathematical confirmation revealed the limit of the water vapor transmission rate on the single barrier coating.
Process Feasibility Study in Support of Silicon Material Task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analysis of process system properties was continued for silicon source materials under consideration for producing silicon. The following property data are reported for dichlorosilane which is involved in processing operations for silicon: critical constants, vapor pressure, heat of vaporization, heat capacity, density, surface tension, thermal conductivity, heat of formation and Gibb's free energy of formation. The properties are reported as a function of temperature to permit rapid engineering usage. The preliminary economic analysis of the process is described. Cost analysis results for the process (case A-two deposition reactors and six electrolysis cells) are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon. Fixed capital investment estimate for the plant is $12.47 million (1975 dollars) ($17.47 million, 1980 dollars). Product cost without profit is 8.63 $/kg of silicon (1975 dollars)(12.1 $/kg, 1980 dollars).
Flat-plate solar array project. Volume 2: Silicon material
NASA Technical Reports Server (NTRS)
Lutwack, R.
1986-01-01
The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.
Flat-plate solar array project. Volume 2: Silicon material
NASA Astrophysics Data System (ADS)
Lutwack, R.
1986-10-01
The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.
New technologies for solar energy silicon - Cost analysis of BCL process
NASA Technical Reports Server (NTRS)
Yaws, C. L.; Li, K.-Y.; Fang, C. S.; Lutwack, R.; Hsu, G.; Leven, H.
1980-01-01
New technologies for producing polysilicon are being developed to provide lower cost material for solar cells which convert sunlight into electricity. This article presents results for the BCL Process, which produces the solar-cell silicon by reduction of silicon tetrachloride with zinc vapor. Cost, sensitivity, and profitability analysis results are presented based on a preliminary process design of a plant to produce 1000 metric tons/year of silicon by the BCL Process. Profitability analysis indicates a sales price of $12.1-19.4 per kg of silicon (1980 dollars) at a 0-25 per cent DCF rate of return on investment after taxes. These results indicate good potential for meeting the goal of providing lower cost material for silicon solar cells.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4).
Application Of Optical Processing For Growth Of Silicon Dioxide
Sopori, Bhushan L.
1997-06-17
A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.
Improved toughness of silicon carbide
NASA Technical Reports Server (NTRS)
Palm, J. A.
1975-01-01
Several techniques were employed to apply or otherwise form porous layers of various materials on the surface of hot-pressed silicon carbide ceramic. From mechanical properties measurements and studies, it was concluded that although porous layers could be applied to the silicon carbide ceramic, sufficient damage was done to the silicon carbide surface by the processing required so as to drastically reduce its mechanical strength. It was further concluded that there was little promise of success in forming an effective energy absorbing layer on the surface of already densified silicon carbide ceramic that would have the mechanical strength of the untreated or unsurfaced material. Using a process for the pressureless sintering of silicon carbide powders it was discovered that porous layers of silicon carbide could be formed on a dense, strong silicon carbide substrate in a single consolidation process.
Solar silicon via the Dow Corning process
NASA Technical Reports Server (NTRS)
Hunt, L. P.; Dosaj, V. D.
1979-01-01
Technical feasibility for high volume production of solar cell-grade silicon is investigated. The process consists of producing silicon from pure raw materials via the carbothermic reduction of quartz. This silicon was then purified to solar grade by impurity segregation during Czochralski crystal growth. Commercially available raw materials were used to produce 100 kg quantities of silicon during 60 hour periods in a direct arc reactor. This silicon produced single crystalline ingot, during a second Czochralski pull, that was fabricated into solar cells having efficiencies ranging from 8.2 percent to greater than 14 percent. An energy analysis of the entire process indicated a 5 month payback time.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H. C.
1981-01-01
The effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells are defined. The results form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost benefit relationships for the use of less pure, less costly solar grade silicon.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-01-01
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Process for strengthening silicon based ceramics
Kim, Hyoun-Ee; Moorhead, A. J.
1993-04-06
A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.
Process of preparing tritiated porous silicon
Tam, Shiu-Wing
1997-01-01
A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.
Process for producing amorphous and crystalline silicon nitride
Morgan, P.E.D.; Pugar, E.A.
1985-11-12
A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of whiskers'' or needles is heated at temperature ranging from about 900 C to about 1,200 C to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900 C. 6 figs.
Process for producing amorphous and crystalline silicon nitride
Morgan, Peter E. D.; Pugar, Eloise A.
1985-01-01
A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of "whiskers" or needles is heated at temperature ranging from about 900.degree. C. to about 1200.degree. C. to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900.degree. C.
Process of preparing tritiated porous silicon
Tam, S.W.
1997-02-18
A process of preparing tritiated porous silicon is described in which porous silicon is equilibrated with a gaseous vapor containing HT/T{sub 2} gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon. 1 fig.
Characterization of solar-grade silicon produced by the SiF4-Na process
NASA Technical Reports Server (NTRS)
Sanjurjo, A.; Sancier, K. M.; Emerson, R. M.; Leach, S. C.; Minahan, J.
1986-01-01
A process was developed for producing low cost solar grade silicon by the reaction between SiF4 gas and sodium metal. The results of the characterization of the silicon are presented. These results include impurity levels, electronic properties of the silicon after crystal growth, and the performance of solar photovoltaic cells fabricated from wafers of the single crystals. The efficiency of the solar cells fabricated from semiconductor silicon and SiF4-Na silicon was the same.
Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)
2014-01-01
Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1978-01-01
Process system properties are analyzed for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for trichlorosilane: critical constants, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. Work continued on the measurement of gas viscosity values of silicon source materials. Gas phase viscosity values for silicon tetrafluoride between 40 C and 200 C were experimentally determined. Major efforts were expended on completion of the preliminary economic analysis of the silane process. Cost, sensitivity and profitability analysis results are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon by the revised process.
Coatings Boost Solar-Cell Outputs
NASA Technical Reports Server (NTRS)
Rohatgi, Ajeet; Campbell, Robert B.; O'Keefe, T. W.; Rai-Choudbury, Posenjit; Hoffman, Richard A.
1988-01-01
Efficiencies increased by more-complete utilization of incident light. Electrical outputs of thin solar photovoltaic cells made of dendritic-web silicon increased by combination of front-surface, antireflective coatings and back-surface, reflective coatings. Improvements achieved recently through theoretical and experimental studies of ways to optimize coatings for particular wavelengths of incident light, cell thicknesses, and cell materials.
Application of optical processing for growth of silicon dioxide
Sopori, B.L.
1997-06-17
A process for producing a silicon dioxide film on a surface of a silicon substrate is disclosed. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm{sup 2} to about 6 watts/cm{sup 2} for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm{sup 2} for growth of a 100{angstrom}-300{angstrom} film at a resultant temperature of about 400 C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO{sub 2}/Si interface to be very low. 1 fig.
Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2014-09-09
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces
Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.
2015-07-07
A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).
Process for coating an object with silicon carbide
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1989-01-01
A process for coating a carbon or graphite object with silicon carbide by contacting it with silicon liquid and vapor over various lengths of contact time. In the process, a stream of silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a co-reactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into a reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. The precursor gas is decomposed directly to silicon in the reaction chamber. A stream of any decomposition gas and any unreacted precursor gas from said reaction chamber is removed. The object within the reaction chamber is then contacted with silicon, and recovered after it has been coated with silicon carbide.
Novel Bonding Technology for Hermetically Sealed Silicon Micropackage
NASA Astrophysics Data System (ADS)
Lee, Duck-Jung; Ju, Byeong-Kwon; Choi, Woo-Beom; Jeong, Jee-Won; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan
1999-01-01
We performed glass-to-silicon bonding and fabricated a hermetically sealed silicon wafer using silicon direct bonding followed by anodic bonding (SDAB). The hydrophilized glass and silicon wafers in solution were dried and initially bonded in atmosphere as in the silicon direct bonding (SDB) process, but annealing at high temperature was not performed. Anodic bonding was subsequently carried out for the initially bonded specimens. Then the wafer pairs bonded by the SDAB method were different from those bonded by the anodic bonding process only. The effects of the bonding process on the bonded area and tensile strength were investigated as functions of bonding temperature and voltage. Using scanning electron microscopy (SEM), the cross-sectional view of the bonded interface region was observed. In order to investigate the migration of the sodium ions in the bonding process, the concentration of the bonded glass was compared with that of standard glass. The specimen bonded using the SDAB process had higher efficiency than that using the anodic bonding process only.
Hot Electron Injection into Uniaxially Strained Silicon
NASA Astrophysics Data System (ADS)
Kim, Hyun Soo
In semiconductor spintronics, silicon attracts great attention due to the long electron spin lifetime. Silicon is also one of the most commonly used semiconductor in microelectronics industry. The spin relaxation process of diamond crystal structure such as silicon is dominant by Elliot-Yafet mechanism. Yafet shows that intravalley scattering process is dominant. The conduction electron spin lifetime measured by electron spin resonance measurement and electronic measurement using ballistic hot electron method well agrees with Yafet's theory. However, the recent theory predicts a strong contribution of intervalley scattering process such as f-process in silicon. The conduction band minimum is close the Brillouin zone edge, X point which causes strong spin mixing at the conduction band. A recent experiment of electric field-induced hot electron spin relaxation also shows the strong effect of f-process in silicon. In uniaxially strained silicon along crystal axis [100], the suppression of f-process is predicted which leads to enhance electron spin lifetime. By inducing a change in crystal structure due to uniaxial strain, the six fold degeneracy becomes two fold degeneracy, which is valley splitting. As the valley splitting increases, intervalley scattering is reduced. A recent theory predicts 4 times longer electron spin lifetime in 0.5% uniaxially strained silicon. In this thesis, we demonstrate ballistic hot electron injection into silicon under various uniaxial strain. Spin polarized hot electron injection under strain is experimentally one of the most challenging part to measure conduction electron spin lifetime in silicon. Hot electron injection adopts tunnel junction which is a thin oxide layer between two conducting materials. Tunnel barrier, which is an oxide layer, is only 4 ˜ 5 nm thick. Also, two conducting materials are only tens of nanometer. Therefore, under high pressure to apply 0.5% strain on silicon, thin films on silicon substrate can be easily destroyed. In order to confirm the performance of tunnel junction, we use tunnel magnetoresistance(TMR). TMR consists of two kinds of ferromagnetic materials and an oxide layer as tunnel barrier in order to measure spin valve effect. Using silicon as a collector with Schottky barrier interface between metal and silicon, ballistic hot spin polarized electron injection into silicon is demonstrated. We also observed change of coercive field and magnetoresistance due to modification of local states in ferromagnetic materials and surface states at the interface between metal and silicon due to strain.
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilking, S., E-mail: Svenja.Wilking@uni-konstanz.de; Ebert, S.; Herguth, A.
The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems tomore » be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects.« less
Modified low-temperture direct bonding method for vacuum microelectronics application
NASA Astrophysics Data System (ADS)
Ju, Byeong-Kwon; Lee, Duck-Jung; Choi, Woo-Beom; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan
1997-06-01
This paper presents the process and experimental results for the improved silicon-to-glass bonding using silicon direct bonding (SDB) followed by anodic bonding. The initial bonding between glass and silicon was caused by the hydrophilic surfaces of silicon-glass ensemble using SDB method. Then the initially bonded specimen had to be strongly bonded by anodic bonding process. The effects of the bonding process parameters on the interface energy were investigated as functions of the bonding temperature and voltage. We found that the specimen which was bonded using SDB process followed by anodic bonding process had higher interface energy than one using anodic bonding process only. The main factor contributing to the higher interface energy in the glass-to-silicon assemble bonded by SDB followed by anodic bonding was investigated by secondary ion mass spectroscopy analysis.
Carlson, David E.
1982-01-01
An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.
Tsuo, Y. Simon; Deb, Satyen K.
1990-01-01
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.
NASA Technical Reports Server (NTRS)
Goldman, H.; Wolf, M.
1979-01-01
The energy consumed in manufacturing silicon solar cell modules was calculated for the current process, as well as for 1982 and 1986 projected processes. In addition, energy payback times for the above three sequences are shown. The module manufacturing energy was partitioned two ways. In one way, the silicon reduction, silicon purification, sheet formation, cell fabrication, and encapsulation energies were found. In addition, the facility, equipment, processing material and direct material lost-in-process energies were appropriated in junction formation processes and full module manufacturing sequences. A brief methodology accounting for the energy of silicon wafers lost-in-processing during cell manufacturing is described.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.
1991-01-01
A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, S.M.; Tao, H.; Todd-Copley, J.A.
1991-06-11
A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.
Flat-plate solar array project process development area, process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1984-01-01
The program is designed to investigate the fabrication of solar cells on N-type base material by a simultaneous diffusion of N-type and P-type dopants to form an P(+)NN(+) structure. The results of simultaneous diffusion experiments are being compared to cells fabricated using sequential diffusion of dopants into N-base material in the same resistivity range. The process used for the fabrication of the simultaneously diffused P(+)NN(+) cells follows the standard Westinghouse baseline sequence for P-base material except that the two diffusion processes (boron and phosphorus) are replaced by a single diffusion step. All experiments are carried out on N-type dendritic web grown in the Westinghouse pre-pilot facility. The resistivities vary from 0.5 (UC OMEGA)cm to 5 (UC OMEGA)cm. The dopant sources used for both the simultaneous and sequential diffusion experiments are commercial metallorganic solutions with phosphorus or boron components. After these liquids are applied to the web surface, they are baked to form a hard glass which acts as a diffusion source at elevated temperatures. In experiments performed thus far, cells produced in sequential diffusion tests have properties essentially equal to the baseline N(+)PP(+) cells. However, the simultaneous diffusions have produced cells with much lower IV characteristics mainly due to cross-doping of the sources at the diffusion temperature. This cross-doping is due to the high vapor pressure phosphorus (applied as a metallorganic to the back surface) diffusion through the SiO2 mask and then acting as a diffusant source for the front surface.
Al transmon qubits on silicon-on-insulator for quantum device integration
NASA Astrophysics Data System (ADS)
Keller, Andrew J.; Dieterle, Paul B.; Fang, Michael; Berger, Brett; Fink, Johannes M.; Painter, Oskar
2017-07-01
We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T2* = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon.
NASA Technical Reports Server (NTRS)
Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan
2016-01-01
Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.
Surface reaction of silicon chlorides during atomic layer deposition of silicon nitride
NASA Astrophysics Data System (ADS)
Yusup, Luchana L.; Park, Jae-Min; Mayangsari, Tirta R.; Kwon, Young-Kyun; Lee, Won-Jun
2018-02-01
The reaction of precursor with surface active site is the critical step in atomic layer deposition (ALD) process. We performed the density functional theory calculation with DFT-D correction to study the surface reaction of different silicon chloride precursors during the first half cycle of ALD process. SiCl4, SiH2Cl2, Si2Cl6 and Si3Cl8 were considered as the silicon precursors, and an NH/SiNH2*-terminated silicon nitride surface was constructed to model the thermal ALD processes using NH3 as well as the PEALD processes using NH3 plasma. The total energies of the system were calculated for the geometry-optimized structures of physisorption, chemisorption, and transition state. The order of silicon precursors in energy barrier, from lowest to highest, is Si3Cl8 (0.92 eV), Si2Cl6 (3.22 eV), SiH2Cl2 (3.93 eV) and SiCl4 (4.49 eV). Silicon precursor with lower energy barrier in DFT calculation showed lower saturation dose in literature for both thermal and plasma-enhanced ALD of silicon nitride. Therefore, DFT calculation is a promising tool in predicting the reactivity of precursor during ALD process.
MITLL Silicon Integrated Photonics Process: Design Guide
2015-07-31
Silicon Integrated Photonics Process Comprehensive Design Guide 16 Deep Etch for Fiber Coupling (DEEP_ETCH...facets for fiber coupling. Standard design layers for each process are defined in Section 3, but other options can be made available. Notes on...a silicon thinning process that can create very low loss waveguides (and which better suppresses back scatter and, therefore, resonance splitting in
Olson, J.M.; Carleton, K.L.
1982-06-10
A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.
Olson, Jerry M.; Carleton, Karen L.
1984-01-01
A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.
Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R.
1995-01-01
A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.
Chen, Yuan; Liu, Yang; Wang, Xin; Li, Kai; Chen, Pu
2014-01-01
The growing field of silicon solar cells requires a substantial reduction in the cost of semiconductor grade silicon, which has been mainly produced by the rod-based Siemens method. Because silicon can react with almost all of the elements and form a number of alloys at high temperatures, it is highly desired to obtain high purity crystalline silicon at relatively low temperatures through low cost process. Here we report a fast, complete and inexpensive reduction method for converting sodium hexafluorosilicate into silicon at a relatively low reaction temperature (∼200°C). This temperature could be further decreased to less than 180°C in combination with an electrochemical approach. The residue sodium fluoride is dissolved away by pure water and hydrochloric acid solution in later purifying processes below 15°C. High purity silicon in particle form can be obtained. The relative simplicity of this method might lead to a low cost process in producing high purity silicon. PMID:25153509
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... exceeded will be effective July 1, 2013, unless the President grants a waiver before the exclusion goes... available in February 2013 on the Web site of the U.S. International Trade Commission at http://dataweb....10.05--Coniferous wood continuously shaped along any of its ends (Brazil) 7202.99.20--Calcium silicon...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, C.D.; Kulkarni, S.; Louis, E.
1976-05-01
Results of a program to study process routes leading to a low cost large area integrated silicon solar array manufacture for terrestrial applications are reported. Potential processes for the production of solar-grade silicon are evaluated from thermodynamic, economic, and technical feasibility points of view. Upgrading of the present arc-furnace process is found most favorable. Experimental studies of the Si/SiF/sub 4/ transport and purification process show considerable impurity removal and reasonable transport rates. Silicon deformation experiments indicate production of silicon sheet by rolling at 1350/sup 0/C is feasible. Significant recrystallization by strain-anneal technique has been observed. Experimental recrystallization studies using anmore » electron beam line source are discussed. A maximum recrystallization velocity of approximately 9 m/hr is calculated for silicon sheet. A comparative process rating technique based on detailed cost analysis is presented.« less
N-Type delta Doping of High-Purity Silicon Imaging Arrays
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana; Hoenk, Michael; Nikzad, Shouleh
2005-01-01
A process for n-type (electron-donor) delta doping has shown promise as a means of modifying back-illuminated image detectors made from n-doped high-purity silicon to enable them to detect high-energy photons (ultraviolet and x-rays) and low-energy charged particles (electrons and ions). This process is applicable to imaging detectors of several types, including charge-coupled devices, hybrid devices, and complementary metal oxide/semiconductor detector arrays. Delta doping is so named because its density-vs.-depth characteristic is reminiscent of the Dirac delta function (impulse function): the dopant is highly concentrated in a very thin layer. Preferably, the dopant is concentrated in one or at most two atomic layers in a crystal plane and, therefore, delta doping is also known as atomic-plane doping. The use of doping to enable detection of high-energy photons and low-energy particles was reported in several prior NASA Tech Briefs articles. As described in more detail in those articles, the main benefit afforded by delta doping of a back-illuminated silicon detector is to eliminate a "dead" layer at the back surface of the silicon wherein high-energy photons and low-energy particles are absorbed without detection. An additional benefit is that the delta-doped layer can serve as a back-side electrical contact. Delta doping of p-type silicon detectors is well established. The development of the present process addresses concerns specific to the delta doping of high-purity silicon detectors, which are typically n-type. The present process involves relatively low temperatures, is fully compatible with other processes used to fabricate the detectors, and does not entail interruption of those processes. Indeed, this process can be the last stage in the fabrication of an imaging detector that has, in all other respects, already been fully processed, including metallized. This process includes molecular-beam epitaxy (MBE) for deposition of three layers, including metallization. The success of the process depends on accurate temperature control, surface treatment, growth of high-quality crystalline silicon, and precise control of thicknesses of layers. MBE affords the necessary nanometer- scale control of the placement of atoms for delta doping. More specifically, the process consists of MBE deposition of a thin silicon buffer layer, the n-type delta doping layer, and a thin silicon cap layer. The n dopant selected for initial experiments was antimony, but other n dopants as (phosphorus or arsenic) could be used. All n-type dopants in silicon tend to surface-segregate during growth, leading to a broadened dopant-concentration- versus-depth profile. In order to keep the profile as narrow as possible, the substrate temperature is held below 300 C during deposition of the silicon cap layer onto the antimony delta layer. The deposition of silicon includes a silicon- surface-preparation step, involving H-termination, that enables the growth of high-quality crystalline silicon at the relatively low temperature with close to full electrical activation of donors in the surface layer.
Development of a process for high capacity-arc heater production of silicon
NASA Technical Reports Server (NTRS)
Reed, W. H.; Meyer, T. N.; Fey, M. G.; Harvey, F. J.; Arcella, F. G.
1978-01-01
The realization of low cost, electric power from large-area silicon, photovoltaic arrays will depend on the development of new methods for large capacity production of solar grade (SG) silicon with a cost of less than $10 per kilogram by 1986 (established Department of Energy goal). The objective of the program is to develop a method to produce SG silicon in large quantities based on the high temperature-sodium reduction of silicon tetrachloride (SiCl4) to yield molten silicon and the coproduct salt vapor (NaCl). Commercial ac electric arc heaters will be utilized to provide a hyper-heated mixture of argon and hydrogen which will furnish the required process energy. The reactor is designed for a nominal silicon flow rate of 45 kg/hr. Analyses and designs have been conducted to evaluate the process and complete the initial design of the experimental verification unit.
Porous siliconformation and etching process for use in silicon micromachining
Guilinger, Terry R.; Kelly, Michael J.; Martin, Jr., Samuel B.; Stevenson, Joel O.; Tsao, Sylvia S.
1991-01-01
A reproducible process for uniformly etching silicon from a series of micromechanical structures used in electrical devices and the like includes providing a micromechanical structure having a silicon layer with defined areas for removal thereon and an electrochemical cell containing an aqueous hydrofluoric acid electrolyte. The micromechanical structure is submerged in the electrochemical cell and the defined areas of the silicon layer thereon are anodically biased by passing a current through the electrochemical cell for a time period sufficient to cause the defined areas of the silicon layer to become porous. The formation of the depth of the porous silicon is regulated by controlling the amount of current passing through the electrochemical cell. The micromechanical structure is then removed from the electrochemical cell and submerged in a hydroxide solution to remove the porous silicon. The process is subsequently repeated for each of the series of micromechanical structures to achieve a reproducibility better than 0.3%.
Neuromorphic photonic networks using silicon photonic weight banks.
Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R
2017-08-07
Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.
Interaction between antimony atoms and micropores in silicon
NASA Astrophysics Data System (ADS)
Odzhaev, V. B.; Petlitskii, A. N.; Plebanovich, V. I.; Sadovskii, P. K.; Tarasik, M. I.; Chelyadinskii, A. R.
2018-01-01
The interaction between Sb atoms and micropores of a getter layer in silicon is studied. The getter layer was obtained via implantation of Sb+ ions into silicon and subsequent heat treatment processes. The antimony atoms located in the vicinity of micropores are captured by micropores during gettering annealing and lose its electrical activity. The activation energy of capture process to the pores for antimony is lower than that of antimony diffusion in silicon deformation fields around microvoids on the diffusion process.
Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components
NASA Technical Reports Server (NTRS)
Reck, Theodore (Inventor); Perez, Jose Vicente Siles (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Jung-Kubiak, Cecile (Inventor); Mehdi, Imran (Inventor); Chattopadhyay, Goutam (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor)
2016-01-01
A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
Naturally occurring 32Si and low-background silicon dark matter detectors
Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; ...
2018-02-10
Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less
Naturally occurring 32Si and low-background silicon dark matter detectors
NASA Astrophysics Data System (ADS)
Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary; Bunker, Raymond; Finch, Zachary S.
2018-05-01
The naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon "ore" and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.
Naturally occurring 32Si and low-background silicon dark matter detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary
Here, the naturally occurring radioisotope 32Si represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of 32Si and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the 32Si concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude thatmore » production of 32Si-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in 32Si. To quantitatively evaluate the 32Si content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon detectors with low levels of 32Si, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less
Naturally occurring 32 Si and low-background silicon dark matter detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, John L.; Arnquist, Isaac J.; Bliss, Mary
The naturally occurring radioisotope Si-32 represents a potentially limiting background in future dark matter direct-detection experiments. We investigate sources of Si-32 and the vectors by which it comes to reside in silicon crystals used for fabrication of radiation detectors. We infer that the Si-32 concentration in commercial single-crystal silicon is likely variable, dependent upon the specific geologic and hydrologic history of the source (or sources) of silicon “ore” and the details of the silicon-refinement process. The silicon production industry is large, highly segmented by refining step, and multifaceted in terms of final product type, from which we conclude that productionmore » of Si-32-mitigated crystals requires both targeted silicon material selection and a dedicated refinement-through-crystal-production process. We review options for source material selection, including quartz from an underground source and silicon isotopically reduced in Si-32. To quantitatively evaluate the Si-32 content in silicon metal and precursor materials, we propose analytic methods employing chemical processing and radiometric measurements. Ultimately, it appears feasible to produce silicon-based detectors with low levels of Si-32, though significant assay method development is required to validate this claim and thereby enable a quality assurance program during an actual controlled silicon-detector production cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutwack, R.
The goal of the Silicon Material Task, a part of the FSA Project, was to develop and demonstrate the technology for the low-cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. To be compatible with the price goals of the FSA Project, the price of the produced silicon was to be less than $10/kg (in 1975 dollars). Summarized in this document are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and government researchers. The silane-production sectionmore » of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot plant stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. Production of very high-purity silane and silicon was demonstrated. Although it has as yet not achieved commercial application, the development of fluidized-bed technology for the low-cost, high-throughput conversion of silane-to-silicon has been demonstrated in the research laboratory and now is in engineering development.« less
Porous silicon carbide (SIC) semiconductor device
NASA Technical Reports Server (NTRS)
Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)
1996-01-01
Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.
Silicon on insulator self-aligned transistors
McCarthy, Anthony M.
2003-11-18
A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.
Process Research On Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Culik, J. S.; Wohlgemuth, J. H.
1982-01-01
Performance limiting mechanisms in polycrystalline silicon are investigated by fabricating a matrix of solar cells of various thicknesses from polycrystalline silicon wafers of several bulk resistivities. The analysis of the results for the entire matrix indicates that bulk recombination is the dominant factor limiting the short circuit current in large grain (greater than 1 to 2 mm diameter) polycrystalline silicon, the same mechanism that limits the short circuit current in single crystal silicon. An experiment to investigate the limiting mechanisms of open circuit voltage and fill factor for large grain polycrystalline silicon is designed. Two process sequences to fabricate small cells are investigated.
Thermodynamics of Volatile Species in the Silicon-Oxygen-Hydrogen System Studied
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Opila, Elizabeth J.; Copland, Evan H.; Myers, Dwight
2005-01-01
The volatilization of silica (SiO2) to silicon hydroxides and oxyhydroxides because of reaction with water vapor is important in a variety of high-temperature corrosion processes. For example, the lifetimes of silicon carbide (SiC) and silicon nitride (Si3N4) - based components in combustion environments are limited by silica volatility. To understand and model this process, it is essential to have accurate thermodynamic data for the formation of volatile silicon hydroxides and oxyhydroxides.
Silicon-gate CMOS/SOS processing
NASA Technical Reports Server (NTRS)
Ramondetta, P.
1979-01-01
Major silicon-gate CMOS/SOS processes are described. Sapphire substrate preparation is also discussed, as well as the following process variations: (1) the double epi process; and (2) ion implantation.
Pugar, E.A.; Morgan, P.E.D.
1988-04-04
A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about O/degree/C up to about 300/degree/C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200-1700/degree/C for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.
Pugar, Eloise A.; Morgan, Peter E. D.
1990-04-03
A process is disclosed for producing, at a low temperature, a high purity organic reaction product consisting essentially of silicon, hydrogen, nitrogen, and carbon. The process comprises reacting together a particulate elemental high purity silicon with a high purity reactive amine reactant in a liquid state at a temperature of from about 0.degree. C. up to about 300.degree. C. A high purity silicon carbide/silicon nitride ceramic product can be formed from this intermediate product, if desired, by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours or the organic reaction product may be employed in other chemical uses.
Tsuo, Y.S.; Deb, S.K.
1990-10-02
Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, J.; Allen, B.; Wriggins, W.
Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirementmore » for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test methods have been developed that deliver accurate and repeatable data, which will be described.« less
NASA Astrophysics Data System (ADS)
Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.
2012-11-01
Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test methods have been developed that deliver accurate and repeatable data, which will be described.
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag
1996-01-01
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.
Removal of virus and toxin using heatable multi-walled carbon nanotube web filters
NASA Astrophysics Data System (ADS)
Jang, Hoon-Sik; Jeon, Sang Koo; Ryu, Kwon-Sang; Nahm, Seung Hoon
2016-02-01
Many studies have used a carbon nanotube (CNT) filter for pathogen removal and/or inactivation by means of electrochemical or electrochlorination. The large surface area, fine pore size and high electrical and thermal conductivity of CNTs make them suitable and distinct to use for the filtering and removal of pathogens. Here, we grew spin-capable multi-walled CNTs (MWCNTs) and manufactured a web filter using the spun MWCNTs. Botulinum toxin type E light chain (BoT/E-LC) and vaccinia virus (VV) were filtered using the MWCNT web filters and were evaporated and removed by applying direct current (DC) voltage to both sides of the MWCNT webs, excluding electrochemical or electrochlorination. The filtering and removal of BoT/E-LC and VV were performed after seven layers of the MWCNT sheets were coated onto a silicon oxide porous plate. The electrical resistance of the webs in the seven layer sheet was 293 Ω. The temperature of MWCNTs webs was linearly increased to ˜300 °C at 210 V of DC voltage. This temperature was enough to remove BoT/E-LC and VV. From the SEM and XPS results, we confirmed that BoT/E-LC and VV on the MWCNT webs were almost removed by applying a DC voltage and that some element (N, Na, Cl, etc.) as residues on the MWCNT webs remained.
Converting a carbon preform object to a silicon carbide object
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1990-01-01
A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.
Mode-converting coupler for silicon-on-sapphire devices
NASA Astrophysics Data System (ADS)
Zlatanovic, S.; Offord, B. W.; Owen, M.; Shimabukuro, R.; Jacobs, E. W.
2015-02-01
Silicon-on-sapphire devices are attractive for the mid-infrared optical applications up to 5 microns due to the low loss of both silicon and sapphire in this wavelength band. Designing efficient couplers for silicon-on-sapphire devices presents a challenge due to a highly confined mode in silicon and large values of refractive index of both silicon and sapphire. Here, we present design, fabrication, and measurements of a mode-converting coupler for silicon-on-sapphire waveguides. We utilize a mode converter layout that consists of a large waveguide that is overlays a silicon inverse tapered waveguide. While this geometry was previously utilized for silicon-on-oxide devices, the novelty is in using materials that are compatible with the silicon-on-sapphire platform. In the current coupler the overlaying waveguide is made of silicon nitride. Silicon nitride is the material of choice because of the large index of refraction and low absorption from near-infrared to mid-infrared. The couplers were fabricated using a 0.25 micron silicon-on-sapphire process. The measured coupling loss from tapered lensed silica fibers to the silicon was 4.8dB/coupler. We will describe some challenges in fabrication process and discuss ways to overcome them.
Process feasibility study in support of silicon material, task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon.
Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang
2016-07-01
Biopharmaceutical products are increasingly commercialized as drug/device combinations to enable self-administration. Siliconization of the inner syringe/cartridge glass barrel for adequate functionality is either performed at the supplier or drug product manufacturing site. Yet, siliconization processes are often insufficiently investigated. In this study, an optimized bake-on siliconization process for cartridges using a pilot-scale siliconization unit was developed. The following process parameters were investigated: spray quantity, nozzle position, spray pressure, time for pump dosing and the silicone emulsion concentration. A spray quantity of 4mg emulsion showed best, immediate atomization into a fine spray. 16 and 29mg of emulsion, hence 4-7-times the spray volume, first generated an emulsion jet before atomization was achieved. Poor atomization of higher quantities correlated with an increased spray loss and inhomogeneous silicone distribution, e.g., due to runlets forming build-ups at the cartridge lower edge and depositing on the star wheel. A prolonged time for pump dosing of 175ms led to a more intensive, long-lasting spray compared to 60ms as anticipated from a higher air-to-liquid ratio. A higher spray pressure of 2.5bar did not improve atomization but led to an increased spray loss. At a 20mm nozzle-to-flange distance the spray cone exactly reached the cartridge flange, which was optimal for thicker silicone layers at the flange to ease piston break-loose. Initially, 10μg silicone was sufficient for adequate extrusion in filled cartridges. However, both maximum break-loose and gliding forces in filled cartridges gradually increased from 5-8N to 21-22N upon 80weeks storage at room temperature. The increase for a 30μg silicone level from 3-6N to 10-12N was moderate. Overall, the study provides a comprehensive insight into critical process parameters during the initial spray-on process and the impact of these parameters on the characteristics of the silicone layer, also in context of long-term product storage. The presented experimental toolbox may be utilized for development or evaluation of siliconization processes. Copyright © 2016 Elsevier B.V. All rights reserved.
Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem
2014-01-01
In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.
2014-01-01
In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554
Method of fabricating porous silicon carbide (SiC)
NASA Technical Reports Server (NTRS)
Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)
1995-01-01
Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.
Resource Management Scheme Based on Ubiquitous Data Analysis
Lee, Heung Ki; Jung, Jaehee
2014-01-01
Resource management of the main memory and process handler is critical to enhancing the system performance of a web server. Owing to the transaction delay time that affects incoming requests from web clients, web server systems utilize several web processes to anticipate future requests. This procedure is able to decrease the web generation time because there are enough processes to handle the incoming requests from web browsers. However, inefficient process management results in low service quality for the web server system. Proper pregenerated process mechanisms are required for dealing with the clients' requests. Unfortunately, it is difficult to predict how many requests a web server system is going to receive. If a web server system builds too many web processes, it wastes a considerable amount of memory space, and thus performance is reduced. We propose an adaptive web process manager scheme based on the analysis of web log mining. In the proposed scheme, the number of web processes is controlled through prediction of incoming requests, and accordingly, the web process management scheme consumes the least possible web transaction resources. In experiments, real web trace data were used to prove the improved performance of the proposed scheme. PMID:25197692
Process for purification of solids
NASA Technical Reports Server (NTRS)
Herzer, H.; Rath, H. J.; Schmidt, D.
1981-01-01
A process for purifying solids, especially silicon, by melting and subsequent resolidification, is described. Silicon used in solar cell manufacturing is processed more efficiently and cost effectively.
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1981-01-01
The chemical engineering analysis of the preliminary process design of a process for producing solar cell grade silicon from dichlorosilane is presented. A plant to produce 1,000 MT/yr of silicon is analyzed. Progress and status for the plant design are reported for the primary activities of base case conditions (60 percent), reaction chemistry (50 percent), process flow diagram (35 percent), energy balance (10 percent), property data (10 percent) and equipment design (5 percent).
Method for processing silicon solar cells
Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.
1997-05-06
The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.
Method for processing silicon solar cells
Tsuo, Y. Simon; Landry, Marc D.; Pitts, John R.
1997-01-01
The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.
Silicon material development for terrestrial solar cells. Phase of exploration
NASA Astrophysics Data System (ADS)
Sirtl, E.
1983-03-01
A material project based on a multicrystalline silicon is reported. It consists of refining the metallurgical grade silicon via hydro and pyrometallurgical processes, preparation of square shaped ingots by (inert) gas protected or open hearth casting methods, and high speed slicing, using a multiple blade slurry saw. Second generation pilot equipment was constructed. Aluminothermic reduction of quartz sand into silicon and the foil casting process were tested. It is concluded that the production of silicon thru the gaseous phase depends upon the marketing of very cheap basic material (SG-Si 10 dollar/Kg) and that the purification of metallurgical grade silicon by refining is the most promising method.
Anisotropic Tribological Properties of Silicon Carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
The anisotropic friction, deformation and fracture behavior of single crystal silicon carbide surfaces were investigated in two categories. The categories were called adhesive and abrasive wear processes, respectively. In the adhesive wear process, the adhesion, friction and wear of silicon carbide were markedly dependent on crystallographic orientation. The force to reestablish the shearing fracture of adhesive bond at the interface between silicon carbide and metal was the lowest in the preferred orientation of silicon carbide slip system. The fracturing of silicon carbide occurred near the adhesive bond to metal and it was due to primary cleavages of both prismatic (10(-1)0) and basal (0001) planes.
Silicon production in a fluidized bed reactor
NASA Technical Reports Server (NTRS)
Rohatgi, N. K.
1986-01-01
Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.
Incubation behavior of silicon nanowire growth investigated by laser-assisted rapid heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Sang-gil; Kim, Eunpa; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu
2016-08-15
We investigate the early stage of silicon nanowire growth by the vapor-liquid-solid mechanism using laser-localized heating combined with ex-situ chemical mapping analysis by energy-filtered transmission electron microscopy. By achieving fast heating and cooling times, we can precisely determine the nucleation times for nanowire growth. We find that the silicon nanowire nucleation process occurs on a time scale of ∼10 ms, i.e., orders of magnitude faster than the times reported in investigations using furnace processes. The rate-limiting step for silicon nanowire growth at temperatures in the vicinity of the eutectic temperature is found to be the gas reaction and/or the silicon crystalmore » growth process, whereas at higher temperatures it is the rate of silicon diffusion through the molten catalyst that dictates the nucleation kinetics.« less
Conformal chemically resistant coatings for microflow devices
Folta, James A.; Zdeblick, Mark
2003-05-13
A process for coating the inside surfaces of silicon microflow devices, such as electrophoresis microchannels, with a low-stress, conformal (uniform) silicon nitride film which has the ability to uniformly coat deeply-recessed cavities with, for example, aspect ratios of up to 40:1 or higher. The silicon nitride coating allows extended exposure to caustic solutions. The coating enables a microflow device fabricated in silicon to be resistant to all classes of chemicals: acids, bases, and solvents. The process involves low-pressure (vacuum) chemical vapor deposition. The ultra-low-stress silicon nitride deposition process allows 1-2 .mu.m thick films without cracks, and so enables extended chemical protection of a silicon microflow device against caustics for up to 1 year. Tests have demonstrated the resistance of the films to caustic solutions at both ambient and elevated temperatures to 65.degree. C.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.
2016-03-15
The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materialsmore » on the basis of porous silicon and nanostructures with a high aspect ratio.« less
NASA Technical Reports Server (NTRS)
Schmid, F.; Khattak, C. P.
1977-01-01
A controlled growth, heat-flow and cool-down process is described that yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material yielded conversion efficiency of over 9%. Representative characterizations of grown silicon demonstrated a dislocation density of less than 100/sq cm and a minority carrier diffusion length of 31 micron. The source of silicon carbide in silicon ingots was identified to be from graphite retainers in contact with silica crucibles. Higher growth rates were achieved with the use of a graphite plug at the bottom of the silica crucible.
Pugar, Eloise A.; Morgan, Peter E. D.
1990-01-01
A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N.sub.n H.sub.(n+m) wherein: n=1-4 and m=2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si-N-H intermediate enables chemical pathways to be explored previously unavailable in conventional solid state approaches to silicon-nitrogen ceramics.
Zhang, Jie; Zhang, Yinan; Song, Tao; Shen, Xinlei; Yu, Xuegong; Lee, Shuit-Tong; Sun, Baoquan; Jia, Baohua
2017-07-05
Organic-inorganic hybrid solar cells based on n-type crystalline silicon and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) exhibited promising efficiency along with a low-cost fabrication process. In this work, ultrathin flexible silicon substrates, with a thickness as low as tens of micrometers, were employed to fabricate hybrid solar cells to reduce the use of silicon materials. To improve the light-trapping ability, nanostructures were built on the thin silicon substrates by a metal-assisted chemical etching method (MACE). However, nanostructured silicon resulted in a large amount of surface-defect states, causing detrimental charge recombination. Here, the surface was smoothed by solution-processed chemical treatment to reduce the surface/volume ratio of nanostructured silicon. Surface-charge recombination was dramatically suppressed after surface modification with a chemical, associated with improved minority charge-carrier lifetime. As a result, a power conversion efficiency of 9.1% was achieved in the flexible hybrid silicon solar cells, with a substrate thickness as low as ∼14 μm, indicating that interface engineering was essential to improve the hybrid junction quality and photovoltaic characteristics of the hybrid devices.
Pugar, E.A.; Morgan, P.E.D.
1987-09-15
A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N/sub n/H/sub (n+m)/ wherein: n = 1--4 and m = 2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200--1700/degree/C for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si/endash/N/endash/H intermediate enables chemical pathways to be explored previously unavailable in conventional solid-state approaches to silicon-nitrogen ceramics
Silicon crystal growth in vacuum
NASA Technical Reports Server (NTRS)
Khattak, C. P.; Schmid, F.
1982-01-01
The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.
Process and apparatus for obtaining silicon from fluosilicic acid
Sanjurjo, Angel
1988-06-28
Process and apparatus for producing low cost, high purity solar grade silicon ingots in single crystal or quasi single crystal ingot form in a substantially continuous operation in a two stage reactor starting with sodium fluosilicate and a metal more electropositive than silicon (preferably sodium) in separate compartments having easy vapor transport therebetween and thermally decomposing the sodium fluosilicate to cause formation of substantially pure silicon and a metal fluoride which may be continuously separated in the melt and silicon may be directly and continuously cast from the melt.
Studies on the reactive melt infiltration of silicon and silicon-molybdenum alloys in porous carbon
NASA Technical Reports Server (NTRS)
Singh, M.; Behrendt, D. R.
1992-01-01
Investigations on the reactive melt infiltration of silicon and silicon-1.7 and 3.2 at percent molybdenum alloys into porous carbon preforms have been carried out by process modeling, differential thermal analysis (DTA) and melt infiltration experiments. These results indicate that the initial pore volume fraction of the porous carbon preform is a critical parameter in determining the final composition of the raction-formed silicon carbide and other residual phases. The pore size of the carbon preform is very detrimental to the exotherm temperatures due to liquid silicon-carbon reactions encountered during the reactive melt infiltration process. A possible mechanism for the liquid silicon-porous (glassy) carbon reaction has been proposed. The composition and microstructure of the reaction-formed silicon carbide has been discussed in terms of carbon preform microstructures, infiltration materials, and temperatures.
HOLE-BLOCKING LAYERS FOR SILICON/ORGANIC HETEROJUNCTIONS: A NEW CLASS OF HIGH-EFFICIENCY LOW-COST PV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, James
This project is the first investigation of the use of thin titanium dioxide layers on silicon as a hole-blocking / electron-transparent selective contact to silicon. The work was motivated by the goal of a high-efficiency low-cost silicon-based solar cells that could be processed entirely at low temperature (300 Degree Celsius) or less, without requiring plasma-processing.
Method of inhibiting dislocation generation in silicon dendritic webs
Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.
1990-11-20
A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.
Sadana, Devendra Kumar; Holland, Orin Wayne
2001-01-01
A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.
Formation mechanism of a silicon carbide coating for a reinforced carbon-carbon composite
NASA Technical Reports Server (NTRS)
Rogers, D. C.; Shuford, D. M.; Mueller, J. I.
1975-01-01
Results are presented for a study to determine the mechanisms involved in a high-temperature pack cementation process which provides a silicon carbide coating on a carbon-carbon composite. The process and materials used are physically and chemically analyzed. Possible reactions are evaluated using the results of these analytical data. The coating is believed to develop in two stages. The first is a liquid controlled phase process in which silicon carbide is formed due to reactions between molten silicon metal and the carbon. The second stage is a vapor transport controlled reaction in which silicon vapors react with the carbon. There is very little volume change associated with the coating process. The original thickness changes by less than 0.7%. This indicates that the coating process is one of reactive penetration. The coating thickness can be increased or decreased by varying the furnace cycle process time and/or temperature to provide a wide range of coating thicknesses.
NASA Astrophysics Data System (ADS)
Nemchinova, N. V.; Tyutrin, A. A.; Salov, V. M.
2018-03-01
The silicon production process in the electric arc reduction furnaces (EAF) is studied using pelletized charge as an additive to the standard on the basis of the generated mathematical model. The results obtained due to the model will contribute to the analysis of the charge components behavior during melting with the achievement of optimum final parameters of the silicon production process. The authors proposed using technogenic waste as a raw material for the silicon production in a pelletized form using liquid glass and aluminum production dust from the electrostatic precipitators as a binder. The method of mathematical modeling with the help of the ‘Selector’ software package was used as a basis for the theoretical study. A model was simulated with the imitation of four furnace temperature zones and a crystalline silicon phase (25 °C). The main advantage of the created model is the ability to analyze the behavior of all burden materials (including pelletized charge) in the carbothermic process. The behavior analysis is based on the thermodynamic probability data of the burden materials interactions in the carbothermic process. The model accounts for 17 elements entering the furnace with raw materials, electrodes and air. The silicon melt, obtained by the modeling, contained 91.73 % wt. of the target product. The simulation results showed that in the use of the proposed combined charge, the recovery of silicon reached 69.248 %, which is in good agreement with practical data. The results of the crystalline silicon chemical composition modeling are compared with the real silicon samples of chemical analysis data, which showed the results of convergence. The efficiency of the mathematical modeling methods in the studying of the carbothermal silicon obtaining process with complex interphase transformations and the formation of numerous intermediate compounds using a pelletized charge as an additive to the traditional one is shown.
A cochlear implant fabricated using a bulk silicon-surface micromachining process
NASA Astrophysics Data System (ADS)
Bell, Tracy Elizabeth
1999-11-01
This dissertation presents the design and fabrication of two generations of a silicon microelectrode array for use in a cochlear implant. A cochlear implant is a device that is inserted into the inner ear and uses electrical stimulation to provide sound sensations to the profoundly deaf. The first-generation silicon cochlear implant is a passive device fabricated using silicon microprobe technology developed at the University of Michigan. It contains twenty-two iridium oxide (IrO) stimulating sites that are 250 mum in diameter and spaced at 750 mum intervals. In-vivo recordings were made in guinea pig auditory cortex in response to electrical stimulation with this device, verifying its ability to electrically evoke an auditory response. Auditory thresholds as low as 78 muA were recorded. The second-generation implant is a thirty-two site, four-channel device with on-chip CMOS site-selection circuitry and integrated position sensing. It was fabricated using a novel bulk silicon surface micromachining process which was developed as a part of this dissertation work. While the use of semiconductor technology offers many advantages in fabricating cochlear implants over the methods currently used, it was felt that even further advantages could be gained by developing a new micromachining process which would allow circuitry to be distributed along the full length of the cochlear implant substrate. The new process uses electropolishing of an n+ bulk silicon sacrificial layer to undercut and release n- epitaxial silicon structures from the wafer. An extremely abrupt etch-stop between the n+ and n- silicon is obtained, with no electropolishing taking place in the n-type silicon that is doped lower than 1 x 1017 cm-3 in concentration. Lateral electropolishing rates of up to 50 mum/min were measured using this technique, allowing one millimeter-wide structures to be fully undercut in as little as 10 minutes. The new micromachining process was integrated with a standard p-well CMOS integrated circuit process to fabricate the second-generation active silicon cochlear implants.
Silicon-on-Insulator Pin Diodes.
1987-12-01
Thin (0.5 Micron) Silicon-on-Oxidized Silicon Fig. 2.8 SEM Photographs of CVD Silicon Dioxide on Aluminum 28 After 1500 0 C Anneal in Oxygen...silicon nitride over the silicon dioxide encapsu- -9- lation layer and by depositing the silicon dioxide with a plasma CVD process which uses N20 as...relief via thermal expansion matching varies lin- -27- A B Figure 2.8: SEM Photographs of CVD Silicon Dioxide on Aluminum after 15000 C Anneal in Oxygen
NASA Technical Reports Server (NTRS)
Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.
1981-01-01
The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.
In situ spectroscopic ellipsometry study of low-temperature epitaxial silicon growth
NASA Astrophysics Data System (ADS)
Halagačka, L.; Foldyna, M.; Leal, R.; Roca i Cabarrocas, P.
2018-07-01
Low-temperature growth of doped epitaxial silicon layers is a promising way to reduce the cost of p-n junction formation in c-Si solar cells. In this work, we study process of highly doped epitaxial silicon layer growth using in situ spectroscopic ellipsometry. The film was deposited by plasma-enhanced chemical vapor deposition (PECVD) on a crystalline silicon substrate at a low substrate temperature of 200 °C. In the deposition process, SiF4 was used as a precursor, B2H6 as doping gas, and a hydrogen/argon mixture as carrier gas. A spectroscopic ellipsometer with a wide spectral range was used for in situ spectroscopic measurements. Since the temperature during process is 200 °C, the optical functions of silicon differ from these at room temperature and have to be adjusted. Thickness of the epitaxial silicon layer was fitted on in situ ellipsometric data. As a result we were able to determine the dynamics of epitaxial layer growth, namely initial layer formation time and epitaxial growth rate. This study opens new perspectives in understanding and monitoring the epitaxial silicon deposition processes as the model fitting can be applied directly during the growth.
NASA Astrophysics Data System (ADS)
Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari
2018-06-01
We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.
Process for purification of silicon
NASA Technical Reports Server (NTRS)
Rath, H. J.; Sirtl, E.; Pfeiffer, W.
1981-01-01
The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagornov, Yu. S., E-mail: Nagornov.Yuri@gmail.com
2015-12-15
The formation of SiC nanocrystals of the cubic modification in the process of high-temperature carbonization of porous silicon has been analyzed. A thermodynamic model has been proposed to describe the experimental data obtained by atomic-force microscopy, Raman scattering, spectral analysis, Auger spectroscopy, and X-ray diffraction spectroscopy. It has been shown that the surface energy of silicon nanoparticles and quantum filaments is released in the process of annealing and carbonization. The Monte Carlo simulation has shown that the released energy makes it possible to overcome the nucleation barrier and to form SiC nanocrystals. The processes of laser annealing and electron irradiationmore » of carbonized porous silicon have been analyzed.« less
NASA Technical Reports Server (NTRS)
Kerkar, Awdhoot V.; Henderson, Robert J. M.; Feke, Donald L.
1990-01-01
The application of steric stabilization to control particle agglomeration and packing of silicon powder in benzene and trichloroethylene is reported. The results provide useful guidelines for controlling unfavorable particle-particle interactions during nonaqueous processing of silicon-based ceramic materials. The application of steric stabilization to the control and improvement of green processing of nonaqueous silicon slips in pressure consolidation is also demonstrated.
The automated array assembly task of the low-cost silicon solar array project, phase 2
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.
1980-01-01
Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.
1982-01-01
The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.
Low cost silicon solar array project silicon materials task
NASA Technical Reports Server (NTRS)
1977-01-01
A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost.
NASA Technical Reports Server (NTRS)
2000-01-01
A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.
NASA Technical Reports Server (NTRS)
Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.
1977-01-01
The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.
Method for silicon carbide production by reacting silica with hydrocarbon gas
Glatzmaier, G.C.
1994-06-28
A method is described for producing silicon carbide particles using a silicon source material and a hydrocarbon. The method is efficient and is characterized by high yield. Finely divided silicon source material is contacted with hydrocarbon at a temperature of 400 C to 1000 C where the hydrocarbon pyrolyzes and coats the particles with carbon. The particles are then heated to 1100 C to 1600 C to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process. 5 figures.
Method for silicon carbide production by reacting silica with hydrocarbon gas
Glatzmaier, Gregory C.
1994-01-01
A method is described for producing silicon carbide particles using a silicon source material and a hydrocarbon. The method is efficient and is characterized by high yield. Finely divided silicon source material is contacted with hydrocarbon at a temperature of 400.degree. C. to 1000.degree. C. where the hydrocarbon pyrolyzes and coats the particles with carbon. The particles are then heated to 1100.degree. C. to 1600.degree. C. to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.
Method of forming buried oxide layers in silicon
Sadana, Devendra Kumar; Holland, Orin Wayne
2000-01-01
A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.
Making Porous Luminescent Regions In Silicon Wafers
NASA Technical Reports Server (NTRS)
Fathauer, Robert W.; Jones, Eric W.
1994-01-01
Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).
Cold crucible Czochralski for solar cells
NASA Technical Reports Server (NTRS)
Trumble, T. M.
1982-01-01
The efficiency and radiation resistance of present silicon solar cells are a function of the oxygen and carbon impurities and the boron doping used to provide the proper resistivity material. The standard Czochralski process used grow single crystal silicon contaminates the silicon stock material due to the use of a quartz crucible and graphite components. The use of a process which replaces these elements with a water cooled copper to crucible has provided a major step in providing gallium doped (100) crystal orientation, low oxygen, low carbon, silicon. A discussion of the Cold Crucible Czochralski process and recent float Zone developments is provided.
Process for the production of ultrahigh purity silane with recycle from separation columns
NASA Technical Reports Server (NTRS)
Coleman, Larry M. (Inventor)
1982-01-01
Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.
Process for the production of ultrahigh purity silane with recycle from separation columns
Coleman, Larry M.
1982-07-20
Tri- and dichlorosilanes formed by hydrogenation in the course of the reaction of metallurgical silicon, hydrogen and recycle silicon tetrachloride are employed as feed into a separation column arrangement of sequential separation columns and redistribution reactors which processes the feed into ultrahigh purity silane and recycle silicon tetrachloride. A slip stream is removed from the bottom of two sequential columns and added to the recycle silicon tetrachloride process stream causing impurities in the slip streams to be subjected to reactions in the hydrogenation step whereby waste materials can be formed and readily separated.
Cold crucible Czochralski for solar cells
NASA Astrophysics Data System (ADS)
Trumble, T. M.
The efficiency and radiation resistance of present silicon solar cells are a function of the oxygen and carbon impurities and the boron doping used to provide the proper resistivity material. The standard Czochralski process used grow single crystal silicon contaminates the silicon stock material due to the use of a quartz crucible and graphite components. The use of a process which replaces these elements with a water cooled copper to crucible has provided a major step in providing gallium doped (100) crystal orientation, low oxygen, low carbon, silicon. A discussion of the Cold Crucible Czochralski process and recent float Zone developments is provided.
Method of fabricating silicon carbide coatings on graphite surfaces
Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.
1994-07-26
The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.
Method of fabricating silicon carbide coatings on graphite surfaces
Varacalle, Jr., Dominic J.; Herman, Herbert; Burchell, Timothy D.
1994-01-01
The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.
Production of electronic grade lunar silicon by disproportionation of silicon difluoride
NASA Technical Reports Server (NTRS)
Agosto, William N.
1993-01-01
Waldron has proposed to extract lunar silicon by sodium reduction of sodium fluorosilicate derived from reacting sodium fluoride with lunar silicon tetrafluoride. Silicon tetrafluoride is obtained by the action of hydrofluoric acid on lunar silicates. While these reactions are well understood, the resulting lunar silicon is not likely to meet electronic specifications of 5 nines purity. Dale and Margrave have shown that silicon difluoride can be obtained by the action of silicon tetrafluoride on elemental silicon at elevated temperatures (1100-1200 C) and low pressures (1-2 torr). The resulting silicon difluoride will then spontaneously disproportionate into hyperpure silicon and silicon tetrafluoride in vacuum at approximately 400 C. On its own merits, silicon difluoride polymerizes into a tough waxy solid in the temperature range from liquid nitrogen to about 100 C. It is the silicon analog of teflon. Silicon difluoride ignites in moist air but is stable under lunar surface conditions and may prove to be a valuable industrial material that is largely lunar derived for lunar surface applications. The most effective driver for lunar industrialization may be the prospects for industrial space solar power systems in orbit or on the moon that are built with lunar materials. Such systems would require large quantities of electronic grade silicon or compound semiconductors for photovoltaics and electronic controls. Since silicon is the most abundant semimetal in the silicate portion of any solar system rock (approximately 20 wt percent), lunar silicon production is bound to be an important process in such a solar power project. The lunar silicon extraction process is discussed.
Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds
Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie
2013-01-01
Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774
Water-assisted pulsed Er:YAG laser interaction with silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jaehun; Ki, Hyungson, E-mail: hski@unist.ac.kr
2015-07-07
Silicon is virtually transparent to the Er:YAG laser with a wavelength of 2.94 μm. In this study, we report that moderately doped silicon (1–10 Ω cm) can be processed by a pulsed Er:YAG laser with a pulse duration of 350 μs and a peak laser intensity of 1.7 × 10{sup 5} W/cm{sup 2} by applying a thin water layer on top of silicon as a light absorbing medium. In this way, water is heated first by strongly absorbing the laser energy and then heats up the silicon wafer indirectly. As the silicon temperature rises, the free carrier concentration and therefore the absorption coefficient of silicon willmore » increase significantly, which may enable the silicon to get directly processed by the Er:YAG laser when the water is vaporized completely. We also believe that the change in surface morphology after melting could contribute to the increase in the laser beam absorptance. It was observed that 525 nm-thick p-type wafer specimens were fully penetrated after 15 laser pulses were irradiated. Bright yellow flames were observed during the process, which indicates that the silicon surface reached the melting point.« less
NASA Technical Reports Server (NTRS)
Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya
2016-01-01
The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.
Economics of polysilicon process: A view from Japan
NASA Technical Reports Server (NTRS)
Shimizu, Y.
1986-01-01
The production process of solar grade silicon (SOG-Si) through trichlorosilane (TCS) was researched in a program sponsored by New Energy Development Organization (NEDO). The NEDO process consists of the following two steps: TCS production from by-product silicon tetrachloride (STC) and SOG-Si formation from TCS using a fluidized bed reactor. Based on the data obtained during the research program, the manufacturing cost of the NEDO process and other polysilicon manufacturing processes were compared. The manufacturing cost was calculated on the basis of 1000 tons/year production. The cost estimate showed that the cost of producing silicon by all of the new processes is less than the cost by the conventional Siemens process. Using a new process, the cost of producing semiconductor grade silicon was found to be virtually the same with any to the TCS, diclorosilane, and monosilane processes when by-products were recycled. The SOG-Si manufacturing processes using the fluidized bed reactor, which needs further development, shows a greater probablility of cost reduction than the filament processes.
Development of silicon grisms and immersion gratings for high-resolution infrared spectroscopy
NASA Astrophysics Data System (ADS)
Ge, Jian; McDavitt, Daniel L.; Bernecker, John L.; Miller, Shane; Ciarlo, Dino R.; Kuzmenko, Paul J.
2002-01-01
We report new results on silicon grism and immersion grating development using photolithography and anisotropic chemical etching techniques, which include process recipe finding, prototype grism fabrication, lab performance evaluation and initial scientific observations. The very high refractive index of silicon (n=3.4) enables much higher dispersion power for silicon-based gratings than conventional gratings, e.g. a silicon immersion grating can offer a factor of 3.4 times the dispersion of a conventional immersion grating. Good transmission in the infrared (IR) allows silicon-based gratings to operate in the broad IR wavelength regions (~1- 10 micrometers and far-IR), which make them attractive for both ground and space-based spectroscopic observations. Coarser gratings can be fabricated with these new techniques rather than conventional techniques, allowing observations at very high dispersion orders for larger simultaneous wavelength coverage. We have found new etching techniques for fabricating high quality silicon grisms with low wavefront distortion, low scattered light and high efficiency. Particularly, a new etching process using tetramethyl ammonium hydroxide (TMAH) is significantly simplifying the fabrication process on large, thick silicon substrates, while providing comparable grating quality to our traditional potassium hydroxide (KOH) process. This technique is being used for fabricating inch size silicon grisms for several IR instruments and is planned to be used for fabricating ~ 4 inch size silicon immersion gratings later. We have obtained complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 5000 using a silicon echelle grism with a 5 mm pupil diameter at the Lick 3m telescope. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon- based gratings. The future of silicon-based grating applications in ground and space-based IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R>100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.
Evaluation of selected chemical processes for production of low-cost silicon
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.; Wilson, W. J.; Carmichael, D. C.
1976-01-01
Plant construction costs and manufacturing costs were estimated for the production of solar-grade silicon by the reduction of silicon tetrachloride in a fluidized bed of seed particles, and several modifications of the iodide process using either thermal decomposition on heated filaments (rods) or hydrogen reduction in a fluidized bed of seed particles. Energy consumption data for the zinc reduction process and each of the iodide process options are given and all appear to be acceptable from the standpoint of energy pay back. Information is presented on the experimental zinc reduction of SiCl4 and electrolytic recovery of zinc from ZnCl2. All of the experimental work performed thus far has supported the initial assumption as to technical feasibility of producing semiconductor silicon by the zinc reduction or iodide processes proposed. The results of a more thorough thermodynamic evaluation of the iodination of silicon oxide/carbon mixtures are presented which explain apparent inconsistencies in an earlier cursory examination of the system.
NASA Astrophysics Data System (ADS)
Wang, Jing; Asbach, Christof; Fissan, Heinz; Hülser, Tim; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Pui, David Y. H.
2012-03-01
Emission into the workplace was measured for the production process of silicon nanoparticles in a pilot-scale facility at the Institute of Energy and Environmental Technology e.V. (IUTA). The silicon nanoparticles were produced in a hot-wall reactor and consisted of primary particles around 60 nm in diameter. We employed real-time aerosol instruments to measure particle number and lung-deposited surface area concentrations and size distribution; airborne particles were also collected for off-line electron microscopic analysis. Emission of silicon nanoparticles was not detected during the processes of synthesis, collection, and bagging. This was attributed to the completely closed production system and other safety measures against particle release which will be discussed briefly. Emission of silicon nanoparticles significantly above the detection limit was only observed during the cleaning process when the production system was open and manually cleaned. The majority of the detected particles was in the size range of 100-400 nm and were silicon nanoparticle agglomerates first deposited in the tubing then re-suspended during the cleaning process. Appropriate personal protection equipment is recommended for safety protection of the workers during cleaning.
Single-crystal silicon optical fiber by direct laser crystallization
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying; ...
2016-12-05
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
NASA Astrophysics Data System (ADS)
Kim, Bong-Hwan; Kim, Jong-Bok
2009-06-01
We have developed a microfabrication process for high aspect ratio thick silicon wafer molds and electroplating using flipchip bonding with THB 151N negative photoresist (JSR micro). This fabrication technique includes large area and high thickness silicon wafer mold electroplating. The process consists of silicon deep reactive ion etching (RIE) of the silicon wafer mold, photoresist bonding between the silicon mold and the substrate, nickel electroplating and a silicon removal process. High thickness silicon wafer molds were made by deep RIE and flipchip bonding. In addition, nickel electroplating was developed. Dry film resist (ORDYL MP112, TOK) and thick negative-tone photoresist (THB 151N, JSR micro) were used as bonding materials. In order to measure the bonding strength, the surface energy was calculated using a blade test. The surface energy of the bonding wafers was found to be 0.36-25.49 J m-2 at 60-180 °C for the dry film resist and 0.4-1.9 J m-2 for THB 151N in the same temperature range. Even though ORDYL MP112 has a better value of surface energy than THB 151N, it has a critical disadvantage when it comes to removing residue after electroplating. The proposed process can be applied to high aspect ratio MEMS structures, such as air gap inductors or vertical MEMS probe tips.
Rapid Prototyping of Nanofluidic Slits in a Silicone Bilayer
Kole, Thomas P.; Liao, Kuo-Tang; Schiffels, Daniel; Ilic, B. Robert; Strychalski, Elizabeth A.; Kralj, Jason G.; Liddle, J. Alexander; Dritschilo, Anatoly; Stavis, Samuel M.
2015-01-01
This article reports a process for rapidly prototyping nanofluidic devices, particularly those comprising slits with microscale widths and nanoscale depths, in silicone. This process consists of designing a nanofluidic device, fabricating a photomask, fabricating a device mold in epoxy photoresist, molding a device in silicone, cutting and punching a molded silicone device, bonding a silicone device to a glass substrate, and filling the device with aqueous solution. By using a bilayer of hard and soft silicone, we have formed and filled nanofluidic slits with depths of less than 400 nm and aspect ratios of width to depth exceeding 250 without collapse of the slits. An important attribute of this article is that the description of this rapid prototyping process is very comprehensive, presenting context and details which are highly relevant to the rational implementation and reliable repetition of the process. Moreover, this process makes use of equipment commonly found in nanofabrication facilities and research laboratories, facilitating the broad adaptation and application of the process. Therefore, while this article specifically informs users of the Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST), we anticipate that this information will be generally useful for the nanofabrication and nanofluidics research communities at large, and particularly useful for neophyte nanofabricators and nanofluidicists. PMID:26958449
NASA Technical Reports Server (NTRS)
1980-01-01
The design, fabrication, and installation of an experimental process system development unit (EPSDU) were analyzed. Supporting research and development were performed to provide an information data base usable for the EPSDU and for technological design and economical analysis for potential scale-up of the process. Iterative economic analyses were conducted for the estimated product cost for the production of semiconductor grade silicon in a facility capable of producing 1000-MT/Yr.
Materials investigation and tests for the development of space compatible electrical connectors
NASA Technical Reports Server (NTRS)
Pomeroy, C.; Mccabe, T.
1971-01-01
A molding study of compounds based on copolymers of highly fluorinated olefins and of flame retardant silicone is reported. Both single cavity and four cavity molds having size 22 and 24 holes with three webs in each hole were used. Also covered are dielectric strength, arc resistance, Bashore rebound, and maintenance aging tests on the various materials that have been successfully molded.
Plasma processes for producing silanes and derivatives thereof
Laine, Richard M; Massey, Dean Richard; Peterson, Peter Young
2014-03-25
The invention is generally related to process for generating one or more molecules having the formula Si.sub.xH.sub.y, Si.sub.xD.sub.y, Si.sub.xH.sub.yD.sub.z, and mixtures thereof, where x,y and z are integers .gtoreq.1, H is hydrogen and D is deuterium, such as silane, comprising the steps of: providing a silicon containing material, wherein the silicon containing material includes at least 20 weight percent silicon atoms based on the total weight of the silicon containing material; generating a plasma capable of vaporizing a silicon atom, sputtering a silicon atom, or both using a plasma generating device; and contacting the plasma to the silicon containing material in a chamber having an atmosphere that includes at least about 0.5 mole percent hydrogen atoms and/or deuterium atoms based on the total moles of atoms in the atmosphere; so that a molecule having the formula Si.sub.xH.sub.y; (e.g., silane) is generated. The process preferably includes a step of removing one or more impurities from the Si.sub.xH.sub.y (e.g., the silane) to form a clean Si.sub.xH.sub.y, Si.sub.xD.sub.y, Si.sub.xH.sub.yD.sub.z (e.g., silane). The process may also include a step of reacting the Si.sub.xH.sub.y, Si.sub.xD.sub.y, Si.sub.xH.sub.yD.sub.z (e.g., the silane) to produce a high purity silicon containing material such as electronic grade metallic silicon, photovoltaic grade metallic silicon, or both.
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Ferber, R.; Lutwack, R.; Lorenz, J. H.; Pellin, R.
1984-01-01
Photovoltaic arrays that convert solar energy into electrical energy can become a cost effective bulk energy generation alternative, provided that an adequate supply of low cost materials is available. One of the key requirements for economic photovoltaic cells is reasonably priced silicon. At present, the photovoltaic industry is dependent upon polycrystalline silicon refined by the Siemens process primarily for integrated circuits, power devices, and discrete semiconductor devices. This dependency is expected to continue until the DOE sponsored low cost silicon refining technology developments have matured to the point where they are in commercial use. The photovoltaic industry can then develop its own source of supply. Silicon material availability and market pricing projections through 1988 are updated based on data collected early in 1984. The silicon refining industry plans to meet the increasing demands of the semiconductor device and photovoltaic product industries are overviewed. In addition, the DOE sponsored technology research for producing low cost polycrystalline silicon, probabilistic cost analysis for the two most promising production processes for achieving the DOE cost goals, and the impacts of the DOE photovoltaics program silicon refining research upon the commercial polycrystalline silicon refining industry are addressed.
A metallurgical route to solar-grade silicon
NASA Technical Reports Server (NTRS)
Schei, A.
1986-01-01
The aim of the process is to produce silicon for crystallization into ingots that can be sliced to wafers for processing into photovoltaic cells. If the potential purity can be realized, the silicon will also be applicable for ribbon pulling techniques where the purification during crystallization is negligible. The process consists of several steps: selection and purification of raw materials, carbothermic reduction of silica, ladle treatment, casting, crushing, leaching, and melting. The leaching step is crucial for high purity, and the obtainable purity is determined by the solidification before leaching. The most difficult specifications to fulfill are the low contents of boron, phosphorus, and carbon. Boron and phosphorus can be excluded from the raw materials, but the carbothermic reduction will unavoidably saturate the silicon with carbon at high temperature. During cooling carbon will precipitate as silicon carbide crystals, which will be harmful in solar cells. The cost of this solar silicon will depend strongly on the scale of production. It is as yet premature to give exact figures, but with a scale of some thousand tons per year, the cost will only be a few times the cost of ordinary metallurgical silicon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaoyu; Lei, Shiming; Yu, Shih -Ying
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillarymore » fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very welldefined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ~0.47-1dB/cm at the standard telecommunication wavelength (1550 nm). Furthermore, tt also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.« less
Fluidized-Bed Cleaning of Silicon Particles
NASA Technical Reports Server (NTRS)
Rohatgi, Naresh K.; Hsu, George C.
1987-01-01
Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.
Control of carbon balance in a silicon smelting furnace
Dosaj, Vishu D.; Haines, Cathryn M.; May, James B.; Oleson, John D.
1992-12-29
The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.
Process for strengthening aluminum based ceramics and material
Moorhead, Arthur J.; Kim, Hyoun-Ee
2000-01-01
A process for strengthening aluminum based ceramics is provided. A gaseous atmosphere consisting essentially of silicon monoxide gas is formed by exposing a source of silicon to an atmosphere consisting essentially of hydrogen and a sufficient amount of water vapor. The aluminum based ceramic is exposed to the gaseous silicon monoxide atmosphere for a period of time and at a temperature sufficient to produce a continuous, stable silicon-containing film on the surface of the aluminum based ceramic that increases the strength of the ceramic.
Process for forming silicon carbide films and microcomponents
Hamza, A.V.; Balooch, M.; Moalem, M.
1999-01-19
Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C{sub 60} precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C{sub 60} with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C{sub 60} on silicon dioxide at surface temperatures less than 1250 K. 5 figs.
Process for forming silicon carbide films and microcomponents
Hamza, Alex V.; Balooch, Mehdi; Moalem, Mehran
1999-01-01
Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.
Development of processes for the production of solar grade silicon from halides and alkali metals
NASA Technical Reports Server (NTRS)
Dickson, C. R.; Gould, R. K.
1980-01-01
High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.
Current status of solar cell performance of unconventional silicon sheets
NASA Technical Reports Server (NTRS)
Yoo, H. I.; Liu, J. K.
1981-01-01
It is pointed out that activities in recent years directed towards reduction in the cost of silicon solar cells for terrestrial photovoltaic applications have resulted in impressive advancements in the area of silicon sheet formation from melt. The techniques used in the process of sheet formation can be divided into two general categories. All approaches in one category require subsequent ingot wavering. The various procedures of the second category produce silicon in sheet form. The performance of baseline solar cells is discussed. The baseline process included identification marking, slicing to size, and surface treatment (etch-polishing) when needed. Attention is also given to the performance of cells with process variations, and the effects of sheet quality on performance and processing.
Superacid Passivation of Crystalline Silicon Surfaces.
Bullock, James; Kiriya, Daisuke; Grant, Nicholas; Azcatl, Angelica; Hettick, Mark; Kho, Teng; Phang, Pheng; Sio, Hang C; Yan, Di; Macdonald, Daniel; Quevedo-Lopez, Manuel A; Wallace, Robert M; Cuevas, Andres; Javey, Ali
2016-09-14
The reduction of parasitic recombination processes commonly occurring within the silicon crystal and at its surfaces is of primary importance in crystalline silicon devices, particularly in photovoltaics. Here we explore a simple, room temperature treatment, involving a nonaqueous solution of the superacid bis(trifluoromethane)sulfonimide, to temporarily deactivate recombination centers at the surface. We show that this treatment leads to a significant enhancement in optoelectronic properties of the silicon wafer, attaining a level of surface passivation in line with state-of-the-art dielectric passivation films. Finally, we demonstrate its advantage as a bulk lifetime and process cleanliness monitor, establishing its compatibility with large area photoluminescence imaging in the process.
NASA Technical Reports Server (NTRS)
Justi, S.
1985-01-01
It is shown that primary silicon crystals grow polyhedral in super-eutectic AlSi melts and that phosphorus additives to the melt confirm the strong seeding capacity. Primary silicon exhibits strong dendritic seeding effects in eutectic silicon phases of various silicon alloys, whereas primary aluminum does not possess this capacity. Sodium addition also produces a dendritic silicon network growth in the interior of the sample that is attributed to the slower silicon diffusion velocity during cooling.
Modified Process For Formation Of Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Behrendt, Donald R.; Singh, Mrityunjay
1996-01-01
Modified version of process for making SiC-fiber/SiC-matrix composite material reduces damage to SiC (SCS-6) fibers and to carbon-rich coatings on fibers. Modification consists of addition of second polymer-infiltration-and-pyrolysis step to increase carbon content of porous matrix before infiltration with liquid silicon or silicon alloy.
Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices
Liu, Yang; Deng, Lingxiao; Zhang, Mingliang; Zhang, Shuyuan; Ma, Jing; Song, Peishuai; Liu, Qing; Ji, An; Yang, Fuhua; Wang, Xiaodong
2018-01-01
Heavily boron-doped silicon layers and boron etch-stop techniques have been widely used in the fabrication of microelectromechanical systems (MEMS). This paper provides an introduction to the fabrication process of nanoscale silicon thermoelectric devices. Low-dimensional structures such as silicon nanowire (SiNW) have been considered as a promising alternative for thermoelectric applications in order to achieve a higher thermoelectric figure of merit (ZT) than bulk silicon. Here, heavily boron-doped silicon layers and boron etch-stop processes for the fabrication of suspended SiNWs will be discussed in detail, including boron diffusion, electron beam lithography, inductively coupled plasma (ICP) etching and tetramethylammonium hydroxide (TMAH) etch-stop processes. A 7 μm long nanowire structure with a height of 280 nm and a width of 55 nm was achieved, indicating that the proposed technique is useful for nanoscale fabrication. Furthermore, a SiNW thermoelectric device has also been demonstrated, and its performance shows an obvious reduction in thermal conductivity. PMID:29385759
Demonstration of the feasibility of automated silicon solar cell fabrication
NASA Technical Reports Server (NTRS)
Taylor, W. E.; Schwartz, F. M.
1975-01-01
A study effort was undertaken to determine the process, steps and design requirements of an automated silicon solar cell production facility. Identification of the key process steps was made and a laboratory model was conceptually designed to demonstrate the feasibility of automating the silicon solar cell fabrication process. A detailed laboratory model was designed to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility. The study and conceptual design have established the technical feasibility of automating the solar cell manufacturing process to produce low cost solar cells with improved performance. Estimates predict an automated process throughput of 21,973 kilograms of silicon a year on a three shift 49-week basis, producing 4,747,000 hexagonal cells (38mm/side), a total of 3,373 kilowatts at an estimated manufacturing cost of $0.866 per cell or $1.22 per watt.
Lisker, Marco; Marschmeyer, Steffen; Kaynak, Mehmet; Tekin, Ibrahim
2011-09-01
The formation of a Through Silicon Via (TSV) includes a deep Si trench etching and the formation of an insulating layer along the high-aspect-ratio trench and the filling of a conductive material into the via hole. The isolation of the filling conductor from the silicon substrate becomes more important for higher frequencies due to the high coupling of the signal to the silicon. The importance of the oxide thickness on the via wall isolation can be verified using electromagnetic field simulators. To satisfy the needs on the Silicon dioxide deposition, a sub-atmospheric chemical vapor deposition (SA-CVD) process has been developed to deposit an isolation oxide to the walls of deep silicon trenches. The technique provides excellent step coverage of the 100 microm depth silicon trenches with the high aspect ratio of 20 and more. The developed technique allows covering the deep silicon trenches by oxide and makes the high isolation of TSVs from silicon substrate feasible which is the key factor for the performance of TSVs for mm-wave 3D packaging.
Process for Smoothing an Si Substrate after Etching of SiO2
NASA Technical Reports Server (NTRS)
Turner, Tasha; Wu, Chi
2003-01-01
A reactive-ion etching (RIE) process for smoothing a silicon substrate has been devised. The process is especially useful for smoothing those silicon areas that have been exposed by etching a pattern of holes in a layer of silicon dioxide that covers the substrate. Applications in which one could utilize smooth silicon surfaces like those produced by this process include fabrication of optical waveguides, epitaxial deposition of silicon on selected areas of silicon substrates, and preparation of silicon substrates for deposition of adherent metal layers. During etching away of a layer of SiO2 that covers an Si substrate, a polymer becomes deposited on the substrate, and the substrate surface becomes rough (roughness height approximately equal to 50 nm) as a result of over-etching or of deposition of the polymer. While it is possible to smooth a silicon substrate by wet chemical etching, the undesired consequences of wet chemical etching can include compromising the integrity of the SiO2 sidewalls and undercutting of the adjacent areas of the silicon dioxide that are meant to be left intact. The present RIE process results in anisotropic etching that removes the polymer and reduces height of roughness of the silicon substrate to less than 10 nm while leaving the SiO2 sidewalls intact and vertical. Control over substrate versus sidewall etching (in particular, preferential etching of the substrate) is achieved through selection of process parameters, including gas flow, power, and pressure. Such control is not uniformly and repeatably achievable in wet chemical etching. The recipe for the present RIE process is the following: Etch 1 - A mixture of CF4 and O2 gases flowing at rates of 25 to 75 and 75 to 125 standard cubic centimeters per minute (stdcm3/min), respectively; power between 44 and 55 W; and pressure between 45 and 55 mtorr (between 6.0 and 7.3 Pa). The etch rate lies between approximately equal to 3 and approximately equal to 6 nm/minute. Etch 2 - O2 gas flowing at 75 to 125 stdcm3/min, power between 44 and 55 W, and pressure between 50 and 100 mtorr (between 6.7 and 13.3 Pa).
Process Feasibility Study in Support of Silicon Material, Task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
During this reporting period, major activies were devoted to process system properties, chemical engineering and economic analyses. Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of varporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design.
NASA Technical Reports Server (NTRS)
Stanley, Stephanie D.
2008-01-01
Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system, Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various meta! (steel, inconel, and aluminum), phenolic (carbon cloth phenolic and glass cloth phenolic), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber, silica-filled ethylene propylenediene monomer, and carbon-filled ethylene propylenediene monomer) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.
Development of a process for high capacity arc heater production of silicon for solar arrays
NASA Technical Reports Server (NTRS)
Meyer, T. N.
1980-01-01
A high temperature silicon production process using existing electric arc heater technology is discussed. Silicon tetrachloride and a reductant, liquid sodium, were injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction occurred, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon were developed. The desired degree of separation was not achieved. The electrical, control and instrumentation, cooling water, gas, SiCl4, and sodium systems are discussed. The plasma reactor, silicon collection, effluent disposal, the gas burnoff stack, and decontamination and safety are also discussed. Procedure manuals, shakedown testing, data acquisition and analysis, product characterization, disassembly and decontamination, and component evaluation are reviewed.
Silicone absorption of elastomeric closures--an accelerated study.
Degrazio, F L; Hlobik, T; Vaughan, S
1998-01-01
There is a trend in the parenteral industry to move from the use of elastomeric closures which are washed, siliconized, dried and sterilized in-house at the pharmaceutical manufacturers' site to pre-prepared closures purchased from the closure supplier. This preparation can consist of washing to reduce particle-load and bioburden, siliconization, placement in ready-to-sterilize bags and may eventually extend to sterilization by steam autoclave or gamma irradiation. Since silicone oil lubrication is critical to the processability/machinability of closures, research was designed to investigate this phenomenon in closures prepared using the Westar RS (Ready-to-Sterilize) process. This paper presents the data gathered in a study of the characteristic of silicone absorption into elastomeric closures under accelerated conditions. Variables such as silicone viscosity, rubber formulation, effect of sterilization and others are considered.
Application of CMOS Technology to Silicon Photomultiplier Sensors.
D'Ascenzo, Nicola; Zhang, Xi; Xie, Qingguo
2017-09-25
We use the 180 nm GLOBALFOUNDRIES (GF) BCDLite CMOS process for the production of a silicon photomultiplier prototype. We study the main characteristics of the developed sensor in comparison with commercial SiPMs obtained in custom technologies and other SiPMs developed with CMOS-compatible processes. We support our discussion with a transient modeling of the detection process of the silicon photomultiplier as well as with a series of static and dynamic experimental measurements in dark and illuminated environments.
NASA Technical Reports Server (NTRS)
1981-01-01
The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are reported. About 95% of purchased equipment is received and will be reshipped to the West Coast location. The Data Collection System is completed. In the area of melting/consolidation, to the system using silicon powder transfer, melting and shotting on a pseudocontinuous basis is demonstrated. It is proposed to continue the very promising fluid bed work.
Semiconductor technology program: Progress briefs
NASA Technical Reports Server (NTRS)
Galloway, K. F.; Scace, R. I.; Walters, E. J.
1981-01-01
Measurement technology for semiconductor materials, process control, and devices, is discussed. Silicon and silicon based devices are emphasized. Highlighted activities include semiinsulating GaAs characterization, an automatic scanning spectroscopic ellipsometer, linewidth measurement and coherence, bandgap narrowing effects in silicon, the evaluation of electrical linewidth uniformity, and arsenicomplanted profiles in silicon.
Electromigration process for the purification of molten silicon during crystal growth
Lovelace, Alan M. Administrator of the National Aeronautics and Space; Shlichta, Paul J.
1982-01-01
A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. The process has particular applications for silicon crystal growth according to Czochralski techniques and edge-defined film-fed growth (EFG) conditions. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. In the EFG crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities are thereby migrated to one side only of the crystal ribbon. The impurities may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posseme, N., E-mail: nicolas.posseme@cea.fr; Pollet, O.; Barnola, S.
2014-08-04
Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ionsmore » implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blocher, J.M. Jr; Browning, M.F.; Wilson, W.J.
1976-04-08
Plant construction costs and manufacturing costs were estimmated for the production of solar-grade silicon by the reduction of silicon tetrachloride in a fluidized bed of seed particles, and several modifications of the iodide process using either thermal decomposition on heated filaments (rods) or hydrogen reduction in a fluidized bed of seed particles. Energy consumption data for the zinc reduction process and each of the iodide process options are given and all appear to be acceptable from the standpoint of energy pay back. Information is presented on the experimental zinc reduction of SiCl4 and electrolytic recovery of zinc from ZnCl2. Allmore » of the experimental work performed thus far has supported the initial assumption as to technical feasibility of producing semiconductor silicon by the zinc reduction or iodide processes proposed. The results of a more thorough thermodynamic evaluation of the iodination of silicon oxide/carbon mixtures are presented which explain apparent inconsistencies in an earlier cursory examination of the system.« less
Process Research of Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Culik, J. S.
1984-01-01
A passivation process (hydrogenation) that will improve the power generation of solar cells fabricated from presently produced, large grain, cast polycrystalline silicon (Semix), a potentially low cost material are developed. The first objective is to verify the operation of a DC plasma hydrogenation system and to investigate the effect of hydrogen on the electrical performance of a variety of polycrystalline silicon solar cells. The second objective is to parameterize and optimize a hydrogenation process for cast polycrystalline silicon, and will include a process sensitivity analysis. The sample preparation for the first phase is outlined. The hydrogenation system is described, and some early results that were obtained using the hydrogenation system without a plasma are summarized. Light beam induced current (LBIC) measurements of minicell samples, and their correlation to dark current voltage characteristics, are discussed.
Key Processes of Silicon-On-Glass MEMS Fabrication Technology for Gyroscope Application.
Ma, Zhibo; Wang, Yinan; Shen, Qiang; Zhang, Han; Guo, Xuetao
2018-04-17
MEMS fabrication that is based on the silicon-on-glass (SOG) process requires many steps, including patterning, anodic bonding, deep reactive ion etching (DRIE), and chemical mechanical polishing (CMP). The effects of the process parameters of CMP and DRIE are investigated in this study. The process parameters of CMP, such as abrasive size, load pressure, and pH value of SF1 solution are examined to optimize the total thickness variation in the structure and the surface quality. The ratio of etching and passivation cycle time and the process pressure are also adjusted to achieve satisfactory performance during DRIE. The process is optimized to avoid neither the notching nor lag effects on the fabricated silicon structures. For demonstrating the capability of the modified CMP and DRIE processes, a z-axis micro gyroscope is fabricated that is based on the SOG process. Initial test results show that the average surface roughness of silicon is below 1.13 nm and the thickness of the silicon is measured to be 50 μm. All of the structures are well defined without the footing effect by the use of the modified DRIE process. The initial performance test results of the resonant frequency for the drive and sense modes are 4.048 and 4.076 kHz, respectively. The demands for this kind of SOG MEMS device can be fulfilled using the optimized process.
Silicon quantum dots for energetic material applications
NASA Astrophysics Data System (ADS)
Adams, Sarah K.; Piekiel, Nicholas W.; Ervin, Matthew H.; Morris, Christopher J.
2018-06-01
In its history as an energetic material, porous silicon has demonstrated flame speeds in excess of 3 km s-1, tunable combustion behavior, and high energy output, which in theory makes it a very attractive energetic system. In practice, its application within the field is limited by porous silicon's typical substrate-adhered form and caustic chemical processing requirements that limit how and when porous silicon is made. In this work, we have relieved porous silicon of these constraints by creating reactive silicon quantum dots from free-standing porous silicon films. The resulting material is composed of crystalline silicon nanoparticles with diameters as small as 2 nm that retain the chemical properties of the original films including the SiH2 termination layer. The fabricated silicon particles were characterized using FTIR Spectroscopy, TEM, and EDS for determining the size and the chemical composition. For testing as an energetic material fuel, porous silicon was mixed with an oft used oxidizer, sodium perchlorate. During open-channel combustion tests, silicon quantum dots mixed with sodium perchlorate demonstrated flame speeds over 2.5 km s-1, while bomb calorimetry tests showed an average heat of combustion of 7.4 kJ g-1. These results demonstrate the ability to retain the porous silicon material properties that allow for highly energetic material reactions to occur, despite the additional processing steps to create silicon quantum dots. This opens the door for the use of porous silicon in the bulk of the energetic material application space, much of which was previously limited due to the substrate-attached nature of typical porous silicon.
McKee, Rodney A.; Walker, Frederick J.
1993-01-01
A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.
Toxic Compounds in Our Food: Arsenic Uptake By Rice and Potential Mitigation By Silicon
NASA Astrophysics Data System (ADS)
Seyfferth, A.; Gill, R.; Penido, E.
2014-12-01
Arsenic is a ubiquitous element in soils worldwide and has the potential to negatively impact human and ecosystem health under certain biogeochemical conditions. While arsenic is relatively immobile in most oxidized soils due to a high affinity for soil solids, arsenic becomes mobilized under reduced soil conditions due to the reductive dissolution of iron(III) oxides thereby releasing soil-bound arsenic. Since arsenic is a well-known carcinogen, this plant-soil process has the potential to negatively impact the lives of billions of rice consumers worldwide upon plant uptake and grain storage of released arsenic. Moreover, arsenic uptake by rice is excacerbated by the use of As-laden groundwater for rice irrigation. One proposed strategy to decrease arsenic uptake by rice plants is via an increase in dissolved silicon in paddy soil solution (pore-water), since silicic acid and arsenous acid share an uptake pathway. However, several soil processes that influence arsenic cycling may be affected by silicon including desorption from bulk soil, formation and mineralogy of iron(III) oxide plaque, and adsorption/desorption onto/from iron plaque; the effect of silicon on these soil processes will ultimately dictate the effectiveness of altered dissolved silicon in decreasing arsenic uptake at the root, which in turn dictates the concentration of arsenic found in grains. Furthermore, the source of silicon may impact carbon cycling and, in particular, methane emissions. Here, impacts of altered dissolved silicon on processes that affect rhizospheric biogeochemical cycling of arsenic and subsequent plant-uptake, and how it influences other biogeochemical cycles such as carbon and iron are investigated. We show that silicon can decrease arsenic uptake and grain storage under certain conditions, and that altered silicon affects the type of iron (III) oxide that comprises iron plaque.
Negative-tone development of photoresists in environmentally friendly silicone fluids
NASA Astrophysics Data System (ADS)
Ouyang, Christine Y.; Lee, Jin-Kyun; Ober, Christopher K.
2012-03-01
The large amount of organic solvents and chemicals that are used in today's microelectronic fabrication process can lead to environmental, health and safety hazards. It is therefore necessary to design new materials and new processes to reduce the environmental impact of the lithographic process. In addition, as the feature sizes decrease, other issues such as pattern collapse, which is related to the undesirable high surface tension of the developers and rinse liquids, can occur and limit the resolution. In order to solve these issues, silicone fluids are chosen as alternative developing solvents in this paper. Silicone fluids, also known as linear methyl siloxanes, are a class of mild, non-polar solvents that are non-toxic, not ozone-depleting, and contribute little to global warming. They are considered as promising developers because of their environmental-friendliness and their unique physical properties such as low viscosity and low surface tension. Recently, there have been emerging interests in negative-tone development (NTD) due to its better ability in printing contact holes and trenches. It is also found that the performance of negative-tone development is closely related to the developing solvents. Silicone fluids are thus promising developers for NTD because of their non-polar nature and high contrast negative-tone images are expected with chemical amplification photoresists due to the high chemical contrast of chemical amplification. We have previously shown some successful NTD with conventional photoresists such as ESCAP in silicone fluids. In this paper, another commercially available TOK resist was utilized to study the NTD process in silicone fluids. Because small and non-polar molecules are intrinsically soluble in silicone fluids, we have designed a molecular glass resist for silicone fluids. Due to the low surface tension of silicone fluids, we are able achieve high aspect-ratio, high-resolution patterns without pattern collapse.
Development of a Process for a High Capacity Arc Heater Production of Silicon for Solar Arrays
NASA Technical Reports Server (NTRS)
Reed, W. H.
1979-01-01
A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant (sodium) are injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection were developed. Included in this report are: test system preparation; testing; injection techniques; kinetics; reaction demonstration; conclusions; and the project status.
Bond Testing for Effects of Silicone Contamination
NASA Technical Reports Server (NTRS)
Plaia, James; Evans, Kurt
2005-01-01
In 2003 ATK Thiokol discovered that the smocks and coveralls worn by its operations personnel for safety and contamination control were themselves contaminated with a silicone defoamer and a silicone oil. As a growing list of items have been identified as having this form of contamination, it was desirable to devise a test method to determine if the contamination level detected could cause subsequent processing concerns. The smocks and coveralls could potentially contact bonding surfaces during processing so the test method focused on dry transfer of the silicone from the clothing to the bonding surface.
Mesoporous silicon synthesis and applications in Li-ion batteries and solar hydrogen fuel cells
Wang, Donghai; Dai, Fang; Yi, Ran; Zai, Jianto
2017-05-23
We provide a mesoporous silicon material (PSi) prepared via a template-free and HF-free process. The production process is facile and scalable, and it may be conducted under mild reaction conditions. The silicon may be produced directly by the reduction of a silicon-halogenide precursor (for example, SiCl.sub.4) with an alkaline alloy (for example, NaK alloy). The resulting Si-salt matrix is then annealed for the pore formation and crystallite growth. Final product is obtained by removal of the salt by-products with water.
Manufacture of silicon carbide using solar energy
Glatzmaier, Gregory C.
1992-01-01
A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.
Epitaxial growth of silicon on a silicon substrate by hydrogen reduction of SiCl4 was investigated. The chemical and physical processes involved in...silicon layers were produced at temperatures between 1100 and 1300 C. The effects of the concentration of SiCl4 in H2, the flow rate of the gas, the
Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro
NASA Astrophysics Data System (ADS)
Kim, Myong-Seop; Park, Sang-Jun
2009-08-01
Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.
Study of the deposition process of vinpocetine on the surface of porous silicon
NASA Astrophysics Data System (ADS)
Lenshin, A. S.; Polkovnikova, Yu. A.; Seredin, P. V.
Currently the most prospective way in pharmacotherapy is the obtaining of nanoparticles involving pharmaceutical substances. Application of porous inorganic materials on the basis of silicon is among the main features in solving of this problem. The present work is concerned with the problem of the deposition of pharmaceutical drug with nootropic activity - vinpocetine - into porous silicon. Silicon nanoparticles were obtained by electrochemical anodic etching of Si plates. The process of vinpocetine deposition was studied in dependence of the deposition time. As a result of the investigations it was found that infrared transmission spectra of porous silicon with the deposited vinpocetine revealed the absorption bands characteristic of vinpocetine substance.
Ion beam figuring of silicon aspheres
NASA Astrophysics Data System (ADS)
Demmler, Marcel; Zeuner, Michael; Luca, Alfonz; Dunger, Thoralf; Rost, Dirk; Kiontke, Sven; Krüger, Marcus
2011-03-01
Silicon lenses are widely used for infrared applications. Especially for portable devices the size and weight of the optical system are very important factors. The use of aspherical silicon lenses instead of spherical silicon lenses results in a significant reduction of weight and size. The manufacture of silicon lenses is more challenging than the manufacture of standard glass lenses. Typically conventional methods like diamond turning, grinding and polishing are used. However, due to the high hardness of silicon, diamond turning is very difficult and requires a lot of experience. To achieve surfaces of a high quality a polishing step is mandatory within the manufacturing process. Nevertheless, the required surface form accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. To overcome these disadvantages a method called Ion Beam Figuring can be used to manufacture silicon lenses with high surface form accuracies. The general advantage of the Ion Beam Figuring technology is a contactless polishing process without any aging effects of the tool. Due to this an excellent stability of the removal rate without any mechanical surface damage is achieved. The related physical process - called sputtering - can be applied to any material and is therefore also applicable to materials of high hardness like Silicon (SiC, WC). The process is realized through the commercially available ion beam figuring system IonScan 3D. During the process, the substrate is moved in front of a focused broad ion beam. The local milling rate is controlled via a modulated velocity profile, which is calculated specifically for each surface topology in order to mill the material at the associated positions to the target geometry. The authors will present aspherical silicon lenses with very high surface form accuracies compared to conventionally manufactured lenses.
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.; Rose, E. E.; Thompson, W. B.; Schmitt, W. A.; Fippin, J. S.; Kidd, R. W.; Liu, C. Y.; Kerbler, P. S.; Ackley, W. R.
1978-01-01
Progress from October 1, 1977, through December 31, 1977, is reported in the design of the 50 MT/year experimental facility for the preparation of high purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free flowing granular product.
Use of silicon in liquid sintered silicon nitrides and sialons
Raj, Rishi; Baik, Sunggi
1984-12-11
This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.
Simultaneous Purification and Perforation of Low-Grade Si Sources for Lithium-Ion Battery Anode.
Jin, Yan; Zhang, Su; Zhu, Bin; Tan, Yingling; Hu, Xiaozhen; Zong, Linqi; Zhu, Jia
2015-11-11
Silicon is regarded as one of the most promising candidates for lithium-ion battery anodes because of its abundance and high theoretical capacity. Various silicon nanostructures have been heavily investigated to improve electrochemical performance by addressing issues related to structure fracture and unstable solid-electrolyte interphase (SEI). However, to further enable widespread applications, scalable and cost-effective processes need to be developed to produce these nanostructures at large quantity with finely controlled structures and morphologies. In this study, we develop a scalable and low cost process to produce porous silicon directly from low grade silicon through ball-milling and modified metal-assisted chemical etching. The morphology of porous silicon can be drastically changed from porous-network to nanowire-array by adjusting the component in reaction solutions. Meanwhile, this perforation process can also effectively remove the impurities and, therefore, increase Si purity (up to 99.4%) significantly from low-grade and low-cost ferrosilicon (purity of 83.4%) sources. The electrochemical examinations indicate that these porous silicon structures with carbon treatment can deliver a stable capacity of 1287 mAh g(-1) over 100 cycles at a current density of 2 A g(-1). This type of purified porous silicon with finely controlled morphology, produced by a scalable and cost-effective fabrication process, can also serve as promising candidates for many other energy applications, such as thermoelectrics and solar energy conversion devices.
Application of CMOS Technology to Silicon Photomultiplier Sensors
D’Ascenzo, Nicola; Zhang, Xi; Xie, Qingguo
2017-01-01
We use the 180 nm GLOBALFOUNDRIES (GF) BCDLite CMOS process for the production of a silicon photomultiplier prototype. We study the main characteristics of the developed sensor in comparison with commercial SiPMs obtained in custom technologies and other SiPMs developed with CMOS-compatible processes. We support our discussion with a transient modeling of the detection process of the silicon photomultiplier as well as with a series of static and dynamic experimental measurements in dark and illuminated environments. PMID:28946675
NASA Technical Reports Server (NTRS)
Breneman, W. C.; Farrier, E. G.; Rexer, J.
1977-01-01
Extended operation of a small process-development unit routinely produced high quality silane in 97+% yield from dichlorosilane. The production rate was consistent with design loadings for the fractionating column and for the redistribution reactor. A glass fluid-bed reactor was constructed for room temperature operation. The behavior of a bed of silcon particles was observed as a function of various feedstocks, component configurations, and operating conditions. For operating modes other than spouting, the bed behaved in an erratic and unstable manner. A method was developed for casting molten silicon powder into crack-free solid pellets for process evaluation. The silicon powder was melted and cast into thin walled quartz tubes that sacrificially broke on cooling.
Solar silicon via improved and expanded metallurgical silicon technology
NASA Technical Reports Server (NTRS)
Hunt, L. P.; Dosaj, V. D.; Mccormick, J. R.
1977-01-01
A completed preliminary survey of silica sources indicates that sufficient quantities of high-purity quartz are available in the U.S. and Canada to meet goals. Supply can easily meet demand for this little-sought commodity. Charcoal, as a reductant for silica, can be purified to a sufficient level by high-temperature fluorocarbon treatment and vacuum processing. High-temperature treatment causes partial graphitization which can lead to difficulty in smelting. Smelting of Arkansas quartz and purified charcoal produced kilogram quantities of silicon having impurity levels generally much lower than in MG-Si. Half of the goal was met of increasing the boron resistivity from 0.03 ohm-cm in metallurgical silicon to 0.3 ohm-cm in solar silicon. A cost analysis of the solidification process indicate $3.50-7.25/kg Si for the Czochralski-type process and $1.50-4.25/kg Si for the Bridgman-type technique.
Crystal growth for high-efficiency silicon solar cells workshop: Summary
NASA Technical Reports Server (NTRS)
Dumas, K. A.
1985-01-01
The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.
Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons
NASA Technical Reports Server (NTRS)
Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.
1986-01-01
The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.
Electrochemical Formation of a p-n Junction on Thin Film Silicon Deposited in Molten Salt.
Zou, Xingli; Ji, Li; Yang, Xiao; Lim, Taeho; Yu, Edward T; Bard, Allen J
2017-11-15
Herein we report the demonstration of electrochemical deposition of silicon p-n junctions all in molten salt. The results show that a dense robust silicon thin film with embedded junction formation can be produced directly from inexpensive silicates/silicon oxide precursors by a two-step electrodeposition process. The fabricated silicon p-n junction exhibits clear diode rectification behavior and photovoltaic effects, indicating promise for application in low-cost silicon thin film solar cells.
Gooch, E G
1993-01-01
Silicone defoamers are used to control foam during the processing of fruit juices. Residual silicones in fruit juices can be separated from the naturally occurring siliceous materials in fruit products and selectively recovered by solvent extraction, after suitable pretreatment. The recovered silicone is measured by atomic absorption spectroscopy. Silicone concentrations as low as about 1 ppm can be measured. The juices are accurately spiked for recovery studies by the addition of silicone dispersed in D-sorbitol.
NASA Astrophysics Data System (ADS)
Paerl, Hans W.; Yin, Kedong; O'Brien, Todd D.
2015-09-01
Phytoplankton form the base of most aquatic food webs and play a central role in assimilation and processing of carbon and nutrients, including nitrogen, phosphorus, silicon, iron and a wide range of trace elements (Reynolds, 2006). In the marine environment, estuarine and coastal ecosystems (jointly termed coastal here) are among the most productive, resourceful and dynamic habitats on Earth (Malone et al., 1999; Day et al., 2012). These ecosystems constitute only ∼10% of the global oceans' surface, but account for over 30% of its primary production (Day et al., 2012). They process vast amounts of nutrients, sediments, carbonaceous, and xenobiotic compounds generated in coastal watersheds, in which approximately 70% of the world's human population resides (Nixon, 1995; Vitousek et al., 1997; NOAA, 2013). Estuarine and coastal ecosystems are also strongly influenced by localized nutrient enrichment from coastal upwelling, with major impacts on the structure and function of phytoplankton communities and the food webs they support (Legendre and Rassoulzadegan, 2012; Paerl and Justić, 2012). In addition, introductions and invasions of exotic plant and animal species have led to significant "top down" mediated changes in phytoplankton community structure and function (Carlton, 1999; Thompson, 2005). Lastly, the coastal zone is the "front line" of climatically-induced environmental change, including warming, altered rainfall patterns, intensities and magnitudes (Trenberth, 2005; IPCC, 2012), which jointly impact phytoplankton community structure and function (Cloern and Jassby, 2012; Hall et al., 2013). The combined effects of these pressures translate into a myriad of changes in phytoplankton production and community structure along geomorphological and geographic gradients (Fig. 1), with cascading quantitative and qualitative impacts on biogeochemical cycling, food web structure and function, water quality and overall resourcefulness and sustainability of these systems (Cloern, 2001; Paerl et al., 2014).
NASA Technical Reports Server (NTRS)
1986-01-01
The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.
NASA Technical Reports Server (NTRS)
Chitre, S. R.
1978-01-01
The paper presents an experimentally developed surface macro-structuring process suitable for high volume production of silicon solar cells. The process lends itself easily to automation for high throughput to meet low-cost solar array goals. The tetrahedron structure observed is 0.5 - 12 micron high. The surface has minimal pitting with virtually no or very few undeveloped areas across the surface. This process has been developed for (100) oriented as cut silicon. Chemi-etched, hydrophobic and lapped surfaces were successfully texturized. A cost analysis as per Samics is presented.
NASA Technical Reports Server (NTRS)
Heaps, J. D.; Maciolek, R. B.; Zook, J. D.; Harrison, W. B.; Scott, M. W.; Hendrickson, G.; Wolner, H. A.; Nelson, L. D.; Schuller, T. L.; Peterson, A. A.
1976-01-01
The technical and economic feasibility of producing solar cell quality sheet silicon by dip-coating one surface of carbonized ceramic substrates with a thin layer of large grain polycrystalline silicon was investigated. The dip-coating methods studied were directed toward a minimum cost process with the ultimate objective of producing solar cells with a conversion efficiency of 10% or greater. The technique shows excellent promise for low cost, labor-saving, scale-up potentialities and would provide an end product of sheet silicon with a rigid and strong supportive backing. An experimental dip-coating facility was designed and constructed, several substrates were successfully dip-coated with areas as large as 25 sq cm and thicknesses of 12 micron to 250 micron. There appears to be no serious limitation on the area of a substrate that could be coated. Of the various substrate materials dip-coated, mullite appears to best satisfy the requirement of the program. An inexpensive process was developed for producing mullite in the desired geometry.
The integration of InGaP LEDs with CMOS on 200 mm silicon wafers
NASA Astrophysics Data System (ADS)
Wang, Bing; Lee, Kwang Hong; Wang, Cong; Wang, Yue; Made, Riko I.; Sasangka, Wardhana Aji; Nguyen, Viet Cuong; Lee, Kenneth Eng Kian; Tan, Chuan Seng; Yoon, Soon Fatt; Fitzgerald, Eugene A.; Michel, Jurgen
2017-02-01
The integration of photonics and electronics on a converged silicon CMOS platform is a long pursuit goal for both academe and industry. We have been developing technologies that can integrate III-V compound semiconductors and CMOS circuits on 200 mm silicon wafers. As an example we present our work on the integration of InGaP light-emitting diodes (LEDs) with CMOS. The InGaP LEDs were epitaxially grown on high-quality GaAs and Ge buffers on 200 mm (100) silicon wafers in a MOCVD reactor. Strain engineering was applied to control the wafer bow that is induced by the mismatch of coefficients of thermal expansion between III-V films and silicon substrate. Wafer bonding was used to transfer the foundry-made silicon CMOS wafers to the InGaP LED wafers. Process trenches were opened on the CMOS layer to expose the underneath III-V device layers for LED processing. We show the issues encountered in the 200 mm processing and the methods we have been developing to overcome the problems.
Use of silicon in liquid sintered silicon nitrides and sialons
Raj, R.; Baik, S.
1984-12-11
This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.
Use of free silicon in liquid phase sintering of silicon nitrides and sialons
Raj, R.; Baik, S.
1985-11-12
This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.
Use of free silicon in liquid phase sintering of silicon nitrides and sialons
Raj, Rishi; Baik, Sunggi
1985-11-12
This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.
NASA Technical Reports Server (NTRS)
Stanley, Stephanie D.
2008-01-01
Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system. Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing, attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various metal (steel, Inconel, and aluminum), phenolic (carbon-cloth phenolic [CCP] and glass-cloth phenolic [GCP]), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber [ASNBR]; silica-filled ethylene propylenediene monomer [SFEPDM], and carbon-filled ethylene propylenediene monomer [CFEPDM]) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.
Effect of processing parameters on reaction bonding of silicon nitride
NASA Technical Reports Server (NTRS)
Richman, M. H.; Gregory, O. J.; Magida, M. B.
1980-01-01
Reaction bonded silicon nitride was developed. The relationship between the various processing parameters and the resulting microstructures was to design and synthesize reaction bonded materials with improved room temperature mechanical properties.
NASA Astrophysics Data System (ADS)
Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael
This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.
Low energy production processes in manufacturing of silicon solar cells
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.
1976-01-01
Ion implantation and pulsed energy techniques are being combined for fabrication of silicon solar cells totally under vacuum and at room temperature. Simplified sequences allow very short processing times with small process energy consumption. Economic projections for fully automated production are excellent.
NASA Technical Reports Server (NTRS)
1981-01-01
This phase consists of the engineering design, fabrication, assembly, operation, economic analysis, and process support R&D for an Experimental Process System Development Unit (EPSDU). The mechanical bid package was issued and the bid responses are under evaluation. Similarly, the electrical bid package was issued, however, responses are not yet due. The majority of all equipment is on order or has been received at the EPSDU site. The pyrolysis/consolidation process design package was issued. Preparation of process and instrumentation diagram for the free-space reactor was started. In the area of melting/consolidation, Kayex successfully melted chunk silicon and have produced silicon shot. The free-space reactor powder was successfully transported pneumatically from a storage bin to the auger feeder twenty-five feet up and was melted. The fluid-bed PDU has successfully operated at silane feed concentrations up to 21%. The writing of the operating manual has started. Overall, the design phase is nearing completion.
Characterization of zinc oxide thin film for pH detector
NASA Astrophysics Data System (ADS)
Hashim, Uda; Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Uda, M. N. A.
2017-03-01
This paper presents the fabrication process of the zinc oxide thin films for using to act as pH detection by using different PH solution. Sol-gel solution technique is used for preparing zinc oxide seed solution, followed by metal oxide deposition process by using spin coater on the silicon dioxide. Silicon dioxide layer is grown on the silicon wafer, then, ZnO seed solution is deposited on the silicon layer, baked, and annealing process carried on to undergo the characterization of its surface morphology, structural and crystalline phase. Electrical characterization is showed by using PH 4, 7, and 10 is dropped on the surface of the die, in addition, APTES solution is used as linker and also as a references of the electrical characterization.
Chung, Su Eun; Lee, Seung Ah; Kim, Jiyun; Kwon, Sunghoon
2009-10-07
We demonstrate optofluidic encapsulation of silicon microchips using image processing based optofluidic maskless lithography and manipulation using railed microfluidics. Optofluidic maskless lithography is a dynamic photopolymerization technique of free-floating microstructures within a fluidic channel using spatial light modulator. Using optofluidic maskless lithography via computer-vision aided image processing, polymer encapsulants are fabricated for chip protection and guiding-fins for efficient chip conveying within a fluidic channel. Encapsulated silicon chips with guiding-fins are assembled using railed microfluidics, which is an efficient guiding and heterogeneous self-assembly system of microcomponents. With our technology, externally fabricated silicon microchips are encapsulated, fluidically guided and self-assembled potentially enabling low cost fluidic manipulation and assembly of integrated circuits.
Biskupek, Johannes; Kaiser, Ute; Falk, Fritz
2008-06-01
In this study, we describe the transport of gold (Au) nanoparticles from the surface into crystalline silicon (Si) covered by silicon oxide (SiO(2)) as revealed by in situ high-resolution transmission electron microscopy. Complete crystalline Au nanoparticles sink through the SiO(2) layer into the Si substrate when high-dose electron irradiation is applied and temperature is raised above 150 degrees C. Above temperatures of 250 degrees C, the Au nanoparticles finally dissolve into fragments accompanied by crystallization of the amorphized Si substrate around these fragments. The transport process is explained by a wetting process followed by Stokes motion. Modelling this process yields boundaries for the interface energies involved.
Monolithically interconnected silicon-film™ module technology
NASA Astrophysics Data System (ADS)
DelleDonne, E. J.; Ford, D. H.; Hall, R. B.; Ingram, A. E.; Rand, J. A.; Barnett, A. M.
1999-03-01
AstroPower is developing an advanced thin-silicon-based, photovoltaic module product. A low-cost monolithic interconnected device is being integrated into a module that combines the design and process features of advanced light trapped, thin-silicon solar cells. This advanced product incorporates a low-cost substrate, a nominally 50-μm thick grown silicon layer with minority carrier diffusion lengths exceeding the active layer thickness, light trapping due to back-surface reflection, and back-surface passivation. The thin silicon layer enables high solar cell performance and can lead to a module conversion efficiency as high as 19%. These performance design features, combined with low-cost manufacturing using relatively low-cost capital equipment, continuous processing and a low-cost substrate, will lead to high-performance, low-cost photovoltaic panels.
NASA Technical Reports Server (NTRS)
Gurtler, R. W.; Baghdadi, A.
1977-01-01
A ribbon-to-ribbon process was used for routine growth of samples for analysis and fabrication into solar cells. One lot of solar cells was completely evaluated: ribbon solar cell efficiencies averaged 9.23% with a highest efficiency of 11.7%. Spherical reflectors have demonstrated significant improvements in laser silicon coupling efficiencies. Material analyses were performed including silicon photovoltage and open circuit photovoltage diffusion length measurements, crystal morphology studies, modulus of rupture measurements, and annealing/gettering studies. An initial economic analysis was performed indicating that ribbon-to-ribbon add-on costs of $.10/watt might be expected in the early 1980's.
NASA Technical Reports Server (NTRS)
Fleming, J. R.; Holden, S. C.; Wolfson, R. G.
1979-01-01
The use of multiblade slurry sawing to produce silicon wafers from ingots was investigated. The commercially available state of the art process was improved by 20% in terms of area of silicon wafers produced from an ingot. The process was improved 34% on an experimental basis. Economic analyses presented show that further improvements are necessary to approach the desired wafer costs, mostly reduction in expendable materials costs. Tests which indicate that such reduction is possible are included, although demonstration of such reduction was not completed. A new, large capacity saw was designed and tested. Performance comparable with current equipment (in terms of number of wafers/cm) was demonstrated.
Laser ablation of single-crystalline silicon by radiation of pulsed frequency-selective fiber laser
NASA Astrophysics Data System (ADS)
Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.
2015-07-01
We have studied the process of destruction of the surface of a single-crystalline silicon wafer scanned by the beam of a pulsed ytterbium-doped fiber laser radiation with a wavelength of λ = 1062 nm. It is established that the laser ablation can proceed without melting of silicon and the formation of a plasma plume. Under certain parameters of the process (radiation power, beam scan velocity, and beam overlap density), pronounced oxidation of silicon microparticles with the formation of a characteristic loose layer of fine powdered silicon dioxide has been observed for the first time. The range of lasing and beam scanning regimes in which the growth of SiO2 layer takes place is determined.
Direct Growth of Graphene on Silicon by Metal-Free Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Tai, Lixuan; Zhu, Daming; Liu, Xing; Yang, Tieying; Wang, Lei; Wang, Rui; Jiang, Sheng; Chen, Zhenhua; Xu, Zhongmin; Li, Xiaolong
2018-06-01
The metal-free synthesis of graphene on single-crystal silicon substrates, the most common commercial semiconductor, is of paramount significance for many technological applications. In this work, we report the growth of graphene directly on an upside-down placed, single-crystal silicon substrate using metal-free, ambient-pressure chemical vapor deposition. By controlling the growth temperature, in-plane propagation, edge-propagation, and core-propagation, the process of graphene growth on silicon can be identified. This process produces atomically flat monolayer or bilayer graphene domains, concave bilayer graphene domains, and bulging few-layer graphene domains. This work would be a significant step toward the synthesis of large-area and layer-controlled, high-quality graphene on single-crystal silicon substrates. [Figure not available: see fulltext.
All silicon electrode photocapacitor for integrated energy storage and conversion.
Cohn, Adam P; Erwin, William R; Share, Keith; Oakes, Landon; Westover, Andrew S; Carter, Rachel E; Bardhan, Rizia; Pint, Cary L
2015-04-08
We demonstrate a simple wafer-scale process by which an individual silicon wafer can be processed into a multifunctional platform where one side is adapted to replace platinum and enable triiodide reduction in a dye-sensitized solar cell and the other side provides on-board charge storage as an electrochemical supercapacitor. This builds upon electrochemical fabrication of dual-sided porous silicon and subsequent carbon surface passivation for silicon electrochemical stability. The utilization of this silicon multifunctional platform as a combined energy storage and conversion system yields a total device efficiency of 2.1%, where the high frequency discharge capability of the integrated supercapacitor gives promise for dynamic load-leveling operations to overcome current and voltage fluctuations during solar energy harvesting.
From SHG to mid-infrared SPDC generation in strained silicon waveguides
NASA Astrophysics Data System (ADS)
Castellan, Claudio; Trenti, Alessandro; Mancinelli, Mattia; Marchesini, Alessandro; Ghulinyan, Mher; Pucker, Georg; Pavesi, Lorenzo
2017-08-01
The centrosymmetric crystalline structure of Silicon inhibits second order nonlinear optical processes in this material. We report here that, by breaking the silicon symmetry with a stressing silicon nitride over-layer, Second Harmonic Generation (SHG) is obtained in suitably designed waveguides where multi-modal phase-matching is achieved. The modeling of the generated signal provides an effective strain-induced second order nonlinear coefficient of χ(2) = (0.30 +/- 0.02) pm/V. Our work opens also interesting perspectives on the reverse process, the Spontaneous Parametric Down Conversion (SPDC), through which it is possible to generate mid-infrared entangled photon pairs.
Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho
2013-11-01
We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.
Ion implantation reduces radiation sensitivity of metal oxide silicon /MOS/ devices
NASA Technical Reports Server (NTRS)
1971-01-01
Implanting nitrogen ions improves hardening of silicon oxides 30 percent to 60 percent against ionizing radiation effects. Process reduces sensitivity, but retains stability normally shown by interfaces between silicon and thermally grown oxides.
Antireflection/Passivation Step For Silicon Cell
NASA Technical Reports Server (NTRS)
Crotty, Gerald T.; Kachare, Akaram H.; Daud, Taher
1988-01-01
New process excludes usual silicon oxide passivation. Changes in principal electrical parameters during two kinds of processing suggest antireflection treatment almost as effective as oxide treatment in passivating cells. Does so without disadvantages of SiOx passivation.
Process for forming a porous silicon member in a crystalline silicon member
Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.
1999-01-01
Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.
Synthesis of fine-grained .alpha.-silicon nitride by a combustion process
Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.
1990-01-01
A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.
NASA Technical Reports Server (NTRS)
Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Pickering, C.; Grung, B. L.; Koepke, B.; Schuldt, S. B.
1979-01-01
The technical and economic feasibility of producing solar cell quality sheet silicon was investigated. It was hoped this could be done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Work was directed towards the solution of unique cell processing/design problems encountered with the silicon-ceramic (SOC) material due to its intimate contact with the ceramic substrate. Significant progress was demonstrated in the following areas; (1) the continuous coater succeeded in producing small-area coatings exhibiting unidirectional solidification and substatial grain size; (2) dip coater succeeded in producing thick (more than 500 micron) dendritic layers at coating speeds of 0.2-0.3 cm/sec; and (3) a standard for producing total area SOC solar cells using slotted ceramic substrates was developed.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.
1985-01-01
High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.
Graphene/Si CMOS Hybrid Hall Integrated Circuits
Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao
2014-01-01
Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222
Graphene/Si CMOS hybrid hall integrated circuits.
Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao
2014-07-07
Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.
Method for fabricating silicon cells
Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent
1998-08-11
A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.
Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chunyang, E-mail: chunyangliu@126.com; Sui, Xin; Yang, Fang
2014-03-15
A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of themore » microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.« less
NASA Astrophysics Data System (ADS)
Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik
2016-06-01
The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.
Integral glass encapsulation for solar arrays
NASA Technical Reports Server (NTRS)
Young, P. R.
1977-01-01
Electrostatic bonding has been used to join silicon solar cells to borosilicate glass without the aid of any organic binders or adhesives. The results of this investigation have been to demonstrate, without question, the feasibility of this process as an encapsulation technique. The potential of ESB for terrestrial solar arrays was clearly shown. The process is fast, reproducible, and produces a permanent bond between glass and silicon that is stronger than the silicon itself. Since this process is a glass sealing technique requiring no organics it makes moisture tight sealing of solar cells possible.
Narrow band gap amorphous silicon semiconductors
Madan, A.; Mahan, A.H.
1985-01-10
Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, J.W.
1986-06-01
Silica reinforced silicon bases having 0.31 weight percent vinyl content were prepared by using a blend of low and high vinyl content devolatilized M-97 NVB silicone gum. The M-97 NVB is a custom dimethyl-, diphenyl-, methylvinylsiloxane gum. The silicon gum was devolatilized to evaluate the anticipated improved handling characteristics. Previous procured batches of M-97 NVB had not been devolatilized and difficult handling problems were encountered. The synthesis, devolatilization, and compound processes for the M-97 NVB silicone gum are discussed.
NASA Astrophysics Data System (ADS)
Wang, Chenlei
The direct conversion of solar radiation to electricity by photovoltaics has a number of significant advantages as an electricity generator. That is, solar photovoltaic conversion systems tap an inexhaustible resource which is free of charge and available anywhere in the world. Roofing tile photovoltaic generation, for example, saves excess thermal heat and preserves the local heat balance. This means that a considerable reduction of thermal pollution in densely populated city areas can be attained. A semiconductor can only convert photons with the energy of the band gap with good efficiency. It is known that silicon is not at the maximum efficiency but relatively close to it. There are several main parts for the photovoltaic materials, which include, single- and poly-crystalline silicon, ribbon silicon, crystalline thin-film silicon, amorphous silicon, copper indium diselenide and related compounds, cadmium telluride, et al. In this dissertation, we focus on melt growth of the single- and poly-crystalline silicon manufactured by Czochralski (Cz) crystal growth process, and ribbon silicon produced by the edge-defined film-fed growth (EFG) process. These two methods are the most commonly used techniques for growing photovoltaic semiconductors. For each crystal growth process, we introduce the growth mechanism, growth system design, general application, and progress in the numerical simulation. Simulation results are shown for both Czochralski and EFG systems including temperature distribution of the growth system, velocity field inside the silicon melt and electromagnetic field for the EFG growth system. Magnetic field is applied on Cz system to reduce the melt convection inside crucible and this has been simulated in our numerical model. Parametric studies are performed through numerical and analytical models to investigate the relationship between heater power levels and solidification interface movement and shape. An inverse problem control scheme is developed to control the solidification interface of Cz system by adjusting heater powers. For the EFG system, parametric studies are performed to discuss the effect of several growth parameters including window opening size, argon gas flow rate and growth thermal environment on the temperature distribution, silicon tube thickness and pulling rate. Two local models are developed and integrated with the global model to investigate the detailed transport phenomena in a small region around the solidification interface including silicon crystal, silicon melt, free surface, liquid-solid interface and graphite die design. Different convection forms are taken into consideration.
Method for fabricating silicon cells
Ruby, D.S.; Basore, P.A.; Schubert, W.K.
1998-08-11
A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.
Mixed composition materials suitable for vacuum web sputter coating
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Rutledge, Sharon K.; Dever, Joyce A.; Bruckner, Eric J.; Walters, Patricia; Hambourger, Paul D.
1996-01-01
Ion beam sputter deposition techniques were used to investigate simultaneous sputter etching of two component targets so as to produce mixed composition films. Although sputter deposition has been largely confined to metals and metal oxides, at least one polymeric material, poly-tetra-fluorethylene, has been demonstrated to produce sputtered fragments which repolymerize upon deposition to produce a highly cross-linked fluoropolymer resembling that of the parent target Fluoropolymer-filled silicon dioxide and fluoropolymer-filled aluminum oxide coatings have been deposited by means of ion beam sputter coat deposition resulting in films having material properties suitable for aerospace and commercial applications. The addition of fluoropolymer to silicon dioxide films was found to increase the hydrophobicity of the resulting mixed films; however, adding fluoropolymer to aluminum oxide films resulted in a reduction in hydrophobicity, thought to be caused by aluminum fluoride formation.
Single-crystal silicon trench etching for fabrication of highly integrated circuits
NASA Astrophysics Data System (ADS)
Engelhardt, Manfred
1991-03-01
The development of single crystal silicon trench etching for fabrication of memory cells in 4 16 and 64Mbit DRAMs is reviewed in this paper. A variety of both etch tools and process gases used for the process development is discussed since both equipment and etch chemistry had to be improved and changed respectively to meet the increasing requirements for high fidelity pattern transfer with increasing degree of integration. In additon to DRAM cell structures etch results for deep trench isolation in advanced bipolar ICs and ASICs are presented for these applications grooves were etched into silicon through a highly doped buried layer and at the borderline of adjacent p- and n-well areas respectively. Shallow trench etching of large and small exposed areas with identical etch rates is presented as an approach to replace standard LOCOS isolation by an advanced isolation technique. The etch profiles were investigated with SEM TEM and AES to get information on contathination and damage levels and on the mechanism leading to anisotropy in the dry etch process. Thermal wave measurements were performed on processed single crystal silicon substrates for a fast evaluation of the process with respect to plasma-induced substrate degradation. This useful technique allows an optimization ofthe etch process regarding high electrical performance of the fully processed memory chip. The benefits of the use of magnetic fields for the development of innovative single crystal silicon dry
Reducing the Cost of Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scanlon, B.
2012-04-01
Solar-powered electricity prices could soon approach those of power from coal or natural gas thanks to collaborative research with solar startup Ampulse Corporation at the National Renewable Energy Laboratory. Silicon wafers account for almost half the cost of today's solar photovoltaic panels, so reducing or eliminating wafer costs is essential to bringing prices down. Current crystalline silicon technology converts energy in a highly efficient manner; however, that technology is manufactured with processes that could stand some improvement. The industry needs a method that is less complex, creates less waste and uses less energy. First, half the refined silicon is lostmore » as dust in the wafer-sawing process, driving module costs higher. Wafers are sawn off of large cylindrical ingots, or boules, of silicon. A typical 2-meter boule loses as many as 6,000 potential wafers during sawing. Second, the wafers produced are much thicker than necessary. To efficiently convert sunlight into electricity, the wafers need be only one-tenth the typical thickness. NREL, the Oak Ridge National Laboratory and Ampulse have partnered on an approach to eliminate this waste and dramatically lower the cost of the finished solar panels. By using a chemical vapor deposition process to grow the silicon on inexpensive foil, Ampulse is able to make the solar cells just thick enough to convert most of the solar energy into electricity. No more sawdust - and no more wasting refined silicon materials. NREL developed the technology to grow high-quality silicon and ORNL developed the metal foil that has the correct crystal structure to support that growth. Ampulse is installing a pilot manufacturing line in NREL's Process Development Integration Laboratory, where solar companies can work closely with lab scientists on integrated equipment to answer pressing questions related to their technology development, as well as rapidly overcoming R and D challenges and risk. NREL's program is focused on transformative innovation in the domestic PV industry. With knowledge and expertise acquired from the PDIL pilot production line tools, Ampulse plans to design a full-scale production line to accommodate long rolls of metal foil. The Ampulse process 'goes straight from pure silicon-containing gas to high-quality crystal silicon film,' said Brent Nelson, the operational manager for the Process Development Integration Laboratory. 'The advantage is you can make the wafer just as thin as you need it - 10 microns or less.' Most of today's solar cells are made out of wafer crystalline silicon, though thin-film cells made of more exotic elements such as copper, indium, gallium, arsenic, cadmium, tellurium and others are making a strong push into the market. The advantage of silicon is its abundance, because it is derived from sand. Silicon's disadvantage is that purifying it into wafers suitable for solar cells can be expensive and energy intensive. Manufacturers add carbon and heat to sand to produce metallurgical-grade silicon, which is useful in other industries, but not yet suitable for making solar cells. So this metallurgical-grade silicon is then converted to pure trichlorosilane (SiCl3) or silane (SiH4) gas. Typically, the purified gas is then converted to create a silicon feedstock at 1,000 degrees Celsius. This feedstock is melted at 1,414 C and recrystallized into crystal ingots that are finally sawed into wafers. The Ampulse method differs in that it eliminates the last two steps in the traditional process and works directly with the silane gas growing only the needed silicon right onto a foil substrate. A team of NREL scientists had developed a way to use a process called hot-wire chemical vapor deposition to thicken silicon wafers with near perfect crystal structure. Using a hot tungsten filament much like the one found in an incandescent light bulb, the silane gas molecules are broken apart and deposited onto the wafer using the chemical vapor deposition technique at about 700 C - a much lower temperature than needed to make the wafer. The hot filament decomposes the gas, allowing silicon layers to deposit directly onto the substrate. Armed with this new technique, Branz and Teplin searched for ways to grow the silicon on cheaper materials and still use it for solar cells. They found the ideal synergy when visiting venture capitalists from Battelle Ventures asked them whether they could do anything useful with a breakthrough from Oak Ridge's superconducting wire development group. The new development, called the rolling assisted biaxially textured substrate (RABiTS), was just the opportunity the two scientists had been seeking. If metal foil is to work as a substrate, it must be able to act as a seed crystal so the silicon can grow on it with the correct structure. The RABiTS process forms crystals in the foil that are correctly oriented to receive the silicon atoms and lock them into just the right positions.« less
Experiments towards establishing of design rules for R2R-UV-NIL with polymer working shims
NASA Astrophysics Data System (ADS)
Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Stadlober, Barbara
2016-03-01
Roll-to-Roll-UV-nanoimprint lithography (R2R-UV-NIL) enables high resolution large area patterning of flexible substrates and is therefore of increasing industrial interest. We have set up a custom-made R2R-UV-NIL pilot machine which is able to convert 10 inch wide web with velocities of up to 30 m/min. In addition, we have developed self-replicable UV-curable resins with tunable surface energy and Young's modulus for UV-imprint material as well as for polymer working stamp/shim manufacturing. Now we have designed test patterns for the evaluation of the impact of structure shape, critical dimension, pitch, depth, side wall angle and orientation relative to the web movement onto the imprint fidelity and working shim life time. We have used female (recessed structures) silicon masters of that design with critical dimensions between CD = 200 nm and 1600 nm, and structure depths of d = 500 nm and 1000 nm - all with vertical as well as inclined side walls. These entire master patterns have been transferred onto single male (protruding structures) R2R polymer working shims. The polymer working shims have been used for R2R-UV-NIL runs of several hundred meters and the imprint fidelity and process stability of the various test patterns have been compared. This study is intended as a first step towards establishing of design rules and developing of nanoimprint proximity correction strategies for industrial R2R-UV-NIL processes using polymer working shims.
Improved reaction sintered silicon nitride. [protective coatings to improve oxidation resistance
NASA Technical Reports Server (NTRS)
Baumgartner, H. R.
1978-01-01
Processing treatments were applied to as-nitrided reaction sintered silicon nitride (RSSN) with the purposes of improving strength after processing to above 350 MN/m2 and improving strength after oxidation exposure. The experimental approaches are divided into three broad classifications: sintering of surface-applied powders; impregnation of solution followed by further thermal processing; and infiltration of molten silicon and subsequent carburization or nitridation of the silicon. The impregnation of RSSN with solutions of aluminum nitrate and zirconyl chloride, followed by heating at 1400-1500 C in a nitrogen atmosphere containing silicon monoxide, improved RSSN strength and oxidation resistance. The room temperature bend strength of RSSN was increased nearly fifty percent above the untreated strength with mean absolute strengths up to 420 MN/m2. Strengths of treated samples that were measured after a 12 hour oxidation exposure in air were up to 90 percent of the original as-nitrided strength, as compared to retained strengths in the range of 35 to 60 percent for untreated RSSN after the same oxidation exposure.
NASA Astrophysics Data System (ADS)
Peng, Zhuoyin; Liu, Zhou; Chen, Jianlin; Liao, Lida; Chen, Jian; Li, Cong; Li, Wei
2018-06-01
With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.
Fine Collimator Grids Using Silicon Metering Structure
NASA Technical Reports Server (NTRS)
Eberhard, Carol
1998-01-01
The project Fine Collimator Grids Using Silicon Metering Structure was managed by Dr. Carol Eberhard of the Electromagnetic Systems & Technology Department (Space & Technology Division) of TRW who also wrote this final report. The KOH chemical etching of the silicon wafers was primarily done by Dr. Simon Prussin of the Electrical Engineering Department of UCLA at the laboratory on campus. Moshe Sergant of the Superconductor Electronics Technology Department (Electronics Systems & Technology Division) of TRW and Dr. Prussin were instrumental in developing the low temperature silicon etching processes. Moshe Sergant and George G. Pinneo of the Microelectronics Production Department (Electronics Systems & Technology Division) of TRW were instrumental in developing the processes for filling the slots etched in the silicon wafers with metal-filled materials. Their work was carried out in the laboratories at the Space Park facility. Moshe Sergant is also responsible for the impressive array of Scanning Electron Microscope images with which the various processes were monitored. Many others also contributed their time and expertise to the project. I wish to thank them all.
NASA Astrophysics Data System (ADS)
Retherford, Kurt D.; Bai, Yibin; Ryu, Kevin K.; Gregory, James A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winters, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.
2015-10-01
We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.
Processing method for forming dislocation-free SOI and other materials for semiconductor use
Holland, Orin Wayne; Thomas, Darrell Keith; Zhou, Dashun
1997-01-01
A method for preparing a silicon-on-insulator material having a relatively defect-free Si overlayer involves the implanting of oxygen ions within a silicon body and the interruption of the oxygen-implanting step to implant Si ions within the silicon body. The implanting of the oxygen ions develops an oxide layer beneath the surface of the silicon body, and the Si ions introduced by the Si ion-implanting step relieves strain which is developed in the Si overlayer during the implanting step without the need for any intervening annealing step. By relieving the strain in this manner, the likelihood of the formation of strain-induced defects in the Si overlayer is reduced. In addition, the method can be carried out at lower processing temperatures than have heretofore been used with SIMOX processes of the prior art. The principles of the invention can also be used to relieve negative strain which has been induced in a silicon body of relatively ordered lattice structure.
High Surface Area of Porous Silicon Drives Desorption of Intact Molecules
Northen, Trent R.; Woo, Hin-Koon; Northen, Michael T.; Nordström, Anders; Uritboonthail, Winnie; Turner, Kimberly L.; Siuzdak, Gary
2007-01-01
The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation, and surface morphology. The DIOS process is found to be highly laser energy dependent and correlates directly with the appearance of surface ions (Sin+ and OSiH+). A threshold laser energy for DIOS is observed (10 mJ/cm2), which supports that DIOS is driven by surface restructuring and is not a strictly thermal process. In addition, three DIOS regimes are observed which correspond to surface restructuring and melting. These results suggest that higher surface area silicon substrates may enhance DIOS performance. A recent example which fits into this mechanism is silicon nanowires surface which have a high surface energy and concomitantly requires lower laser energy for analyte desorpton. PMID:17881245
LSA silicon material task closed-cycle process development
NASA Technical Reports Server (NTRS)
Roques, R. A.; Wakefield, G. F.; Blocher, J. M., Jr.; Browning, M. F.; Wilson, W.
1979-01-01
The initial effort on feasibility of the closed cycle process was begun with the design of the two major items of untested equipment, the silicon tetrachloride by product converter and the rotary drum reactor for deposition of silicon from trichlorosilane. The design criteria of the initial laboratory equipment included consideration of the reaction chemistry, thermodynamics, and other technical factors. Design and construction of the laboratory equipment was completed. Preliminary silicon tetrachloride conversion experiments confirmed the expected high yield of trichlorosilane, up to 98 percent of theoretical conversion. A preliminary solar-grade polysilicon cost estimate, including capital costs considered extremely conservative, of $6.91/kg supports the potential of this approach to achieve the cost goal. The closed cycle process appears to have a very likely potential to achieve LSA goals.
NASA Astrophysics Data System (ADS)
Zhang, Zhiwei; Chen, Pei; Qin, Fei; An, Tong; Yu, Huiping
2018-05-01
Ultra-thin silicon wafer is highly demanded by semi-conductor industry. During wafer thinning process, the grinding technology will inevitably induce damage to the surface and subsurface of silicon wafer. To understand the mechanism of subsurface damage (SSD) layer formation and mechanical properties of SSD layer, atomistic simulation is the effective tool to perform the study, since the SSD layer is in the scale of nanometer and hardly to be separated from underneath undamaged silicon. This paper is devoted to understand the formation of SSD layer, and the difference between mechanical properties of damaged silicon in SSD layer and ideal silicon. With the atomistic model, the nano-grinding process could be performed between a silicon workpiece and diamond tool under different grinding speed. To reach a thinnest SSD layer, nano-grinding speed will be optimized in the range of 50-400 m/s. Mechanical properties of six damaged silicon workpieces with different depths of cut will be studied. The SSD layer from each workpiece will be isolated, and a quasi-static tensile test is simulated to perform on the isolated SSD layer. The obtained stress-strain curve is an illustration of overall mechanical properties of SSD layer. By comparing the stress-strain curves of damaged silicon and ideal silicon, a degradation of Young's modulus, ultimate tensile strength (UTS), and strain at fracture is observed.
Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka
2014-07-14
Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.
Edmonds, Mary; Kent, Tyler; Chagarov, Evgueni; Sardashti, Kasra; Droopad, Ravi; Chang, Mei; Kachian, Jessica; Park, Jun Hong; Kummel, Andrew
2015-07-08
A saturated Si-Hx seed layer for gate oxide or contact conductor ALD has been deposited via two separate self-limiting and saturating CVD processes on InGaAs(001)-(2 × 4) at substrate temperatures of 250 and 350 °C. For the first self-limiting process, a single silicon precursor, Si3H8, was dosed at a substrate temperature of 250 °C, and XPS results show the deposited silicon hydride layer saturated at about 4 monolayers of silicon coverage with hydrogen termination. STS results show the surface Fermi level remains unpinned following the deposition of the saturated silicon hydride layer, indicating the InGaAs surface dangling bonds are electrically passivated by Si-Hx. For the second self-limiting process, Si2Cl6 was dosed at a substrate temperature of 350 °C, and XPS results show the deposited silicon chloride layer saturated at about 2.5 monolayers of silicon coverage with chlorine termination. Atomic hydrogen produced by a thermal gas cracker was subsequently dosed at 350 °C to remove the Si-Cl termination by replacing with Si-H termination as confirmed by XPS, and STS results confirm the saturated Si-Hx bilayer leaves the InGaAs(001)-(2 × 4) surface Fermi level unpinned. Density function theory modeling of silicon hydride surface passivation shows an Si-Hx monolayer can remove all the dangling bonds and leave a charge balanced surface on InGaAs.
Phase-field model for the two-phase lithiation of silicon
NASA Astrophysics Data System (ADS)
Gao, Fangliang; Hong, Wei
2016-09-01
As an ideal anode material, silicon has the highest lithium-ion capacity in theory, but the broader application is limited by the huge volumetric strain caused by lithium insertion and extraction. To better understand the physical process and to resolve the related reliability issue, enormous efforts have been made. Recent experiments observed sharp reaction fronts in both crystalline and amorphous silicon during the first lithiation half-cycle. Such a concentration profile indicates that the process is likely to be reaction limited. Based on this postulation, a phase-field model is developed and implemented into a finite-element code to simulate the coupled large inelastic deformation and motion of the reaction front in a silicon electrode. In contrast to most existing models, the model treats both volumetric and deviatoric inelastic deformation in silicon as a direct consequence of the lithiation at the reaction front. The amount of deviatoric deformation is determined by using the recently developed kinetic model of stress-induced anisotropic reaction. By considering the role of stress in the lithiation process, this model successfully recovers the self-limiting phenomenon of silicon electrodes, and relates it to the local geometry of electrodes. The model is also used to evaluate the energy-release rate of the surface crack on a spherical electrode, and the result suggests a critical size of silicon nanoparticles to avert fracture. As examples, the morphology evolution of a silicon disk and a Si nanowire during lithiation are also investigated.
NASA Astrophysics Data System (ADS)
Shemukhin, A. A.; Balaskshin, Yu. V.; Evseev, A. P.; Chernysh, V. S.
2017-09-01
As silicon is an important element in semiconductor devices, the process of defect formation under ion irradiation in it is studied well enough. Modern electronic components are made on silicon lattices (films) that are 100-300 nm thick (Chernysh et al., 1980; Shemukhin et al., 2012; Ieshkin et al., 2015). However, there are still features to be observed in the process of defect formation in silicon. In our work we investigate the effect of fluence and target temperature on the defect formation in films and bulk silicon samples. To investigate defect formation in the silicon films and bulk silicon samples we present experimental data on Si+ implantation with an energy of 200 keV, fluences range from 5 * 1014 to 5 * 1015 ion/cm2 for a fixed flux 1 μA/cm2 and the substrate temperatures from 150 to 350 K The sample crystallinity was investigated by using the Rutherford backscattering technique (RBS) in channeling and random modes. It is shown that in contrast to bulk silicon for which amorphization is observed at 5 × 1016 ion/cm2, the silicon films on sapphire amorphize at lower critical fluences (1015 ion/cm2). So the amorphization critical fluences depend on the target temperature. In addition it is shown that under similar implantation parameters, the disordering of silicon films under the action of the ion beam is stronger than the bulk silicon.
Process for manufacture of semipermeable silicon nitride membranes
Galambos, Paul Charles; Shul, Randy J.; Willison, Christi Gober
2003-12-09
A new class of semipermeable membranes, and techniques for their fabrication, have been developed. These membranes, formed by appropriate etching of a deposited silicon nitride layer, are robust, easily manufacturable, and compatible with a wide range of silicon micromachining techniques.
Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
Lowden, Richard A.
1994-01-01
A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.
Bond Sensitivity to Silicone Contamination
NASA Technical Reports Server (NTRS)
Caldwell, G. A.; Hudson, W. D.; Hudson, W. D.; Cash, Stephen F. (Technical Monitor)
2003-01-01
Currently during fabrication of the Space Shuttle booster rocket motors, the use of silicone and silicone-containing products is prohibited in most applications. Many shop aids and other materials containing silicone have the potential, if they make contact with a bond surface, to transfer some of the silicone to the substrates being bonded. Such transfer could result in a reduction of the bond strength or even failure of the subsequent bonds. This concern is driving the need to understand the effect of silicones and the concentration needed to affect a given bond-line strength. Additionally, as silicone detection methods used for materials acceptance improve what may have gone unnoticed earlier is now being detected. Thus, realistic silicone limits for process materials (below which bond performance is satisfactory) are needed rather than having an absolute no silicone permitted policy.
Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.
Lai, Y C; Friends, G D
1997-06-05
In the quest for hydrogel contact lenses with improved extended wear capability, the use of siloxane moieties in the lens materials was investigated. However, the introduction of hydrophobic siloxane groups gave rise to wettability and lipidlike deposit problems. It was found that when polysiloxane-based compositions for hydrogels were processed with polar plastic molds, such as those fabricated from an acrylonitrile-based polymer, the hydrogel lenses fabricated were wettable, with minimized lipidlike deposits. These findings were supported by the wettability of silicone hydrogel films, silicon, and nitrogen element contents near lens surfaces, as well as the results from clinical assessment of silicone hydrogel lenses.
Development of a model and computer code to describe solar grade silicon production processes
NASA Technical Reports Server (NTRS)
Srivastava, R.; Gould, R. K.
1979-01-01
Mathematical models, and computer codes based on these models were developed which allow prediction of the product distribution in chemical reactors in which gaseous silicon compounds are converted to condensed phase silicon. The reactors to be modeled are flow reactors in which silane or one of the halogenated silanes is thermally decomposed or reacted with an alkali metal, H2 or H atoms. Because the product of interest is particulate silicon, processes which must be modeled, in addition to mixing and reaction of gas-phase reactants, include the nucleation and growth of condensed Si via coagulation, condensation, and heterogeneous reaction.
Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere
NASA Astrophysics Data System (ADS)
Chen, Zhiyuan; Morita, Kazuki
2018-03-01
We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.
Kinetic Modeling of a Silicon Refining Process in a Moist Hydrogen Atmosphere
NASA Astrophysics Data System (ADS)
Chen, Zhiyuan; Morita, Kazuki
2018-06-01
We developed a kinetic model that considers both silicon loss and boron removal in a metallurgical grade silicon refining process. This model was based on the hypotheses of reversible reactions. The reaction rate coefficient kept the same form but error of terminal boron concentration could be introduced when relating irreversible reactions. Experimental data from published studies were used to develop a model that fit the existing data. At 1500 °C, our kinetic analysis suggested that refining silicon in a moist hydrogen atmosphere generates several primary volatile species, including SiO, SiH, HBO, and HBO2. Using the experimental data and the kinetic analysis of volatile species, we developed a model that predicts a linear relationship between the reaction rate coefficient k and both the quadratic function of p(H2O) and the square root of p(H2). Moreover, the model predicted the partial pressure values for the predominant volatile species and the prediction was confirmed by the thermodynamic calculations, indicating the reliability of the model. We believe this model provides a foundation for designing a silicon refining process with a fast boron removal rate and low silicon loss.
Low-damage direct patterning of silicon oxide mask by mechanical processing
2014-01-01
To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891
Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Dickerson, R. M.
1996-01-01
Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.
Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays
NASA Technical Reports Server (NTRS)
1979-01-01
The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.
Doping of silicon by carbon during laser ablation process
NASA Astrophysics Data System (ADS)
Raciukaitis, G.; Brikas, M.; Kazlauskiene, V.; Miskinis, J.
2007-04-01
Effect of laser ablation on properties of remaining material was investigated in silicon. It was established that laser cutting of wafers in air induced doping of silicon by carbon. The effect was found to be more distinct by the use of higher laser power or UV radiation. Carbon ions created bonds with silicon in the depth of silicon. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion was performed to clarify its depth profile in silicon. Photo-chemical reactions of such type changed the structure of material and could be a reason for the reduced quality of machining. A controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopori, B. L.
2008-09-01
The National Center for Photovoltaics sponsored the 18th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 3-6, 2008. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'New Directions for Rapidly Growing Silicon Technologies.'
NASA Astrophysics Data System (ADS)
Prasad, A. Guru; Saravanan, S.; Gijo, E. V.; Dasari, Sreenivasa Murty; Tatachar, Raghu; Suratkar, Prakash
2016-02-01
Silicon-based photovoltaics (PV) plays the dominant role in the history of PV due to the continuous process and technology improvement in silicon solar cells and its manufacturing flow. In general, silicon solar cell process uses either p-type- or n-type-doped silicon as the starting material. Currently, most of the PV industries use p-type, boron-doped silicon wafer as the starting material. In this work too, the boron-doped wafers were considered as the starting material to create pn junction and phosphorus was used as n-type doping material. Industries use either phosphorous oxy chloride (POCl3) or ortho phosphoric acid (H3PO4) as the precursor for doping phosphorous. While the industries use POCl3 as the precursor, the throughput is lesser than that of the industries' use of H3PO4 due to the manufacturing limitations of the POCl3-based equipments. Hence, in order to achieve the operational excellence in POCl3-based equipments, business strategies such as the Six Sigma methodology have to be adapted. This paper describes the application of Six Sigma Define-Measure-Analyze-Improve-Control methodology for throughput improvement of the phosphorus doping process. The optimised recipe has been implemented in the production and it is running successfully. As a result of this project, an effective gain of 0.9 MW was reported per annum.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki
1999-02-01
In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.
Son, In Hyuk; Hwan Park, Jong; Kwon, Soonchul; Park, Seongyong; Rümmeli, Mark H.; Bachmatiuk, Alicja; Song, Hyun Jae; Ku, Junhwan; Choi, Jang Wook; Choi, Jae-man; Doo, Seok-Gwang; Chang, Hyuk
2015-01-01
Silicon is receiving discernable attention as an active material for next generation lithium-ion battery anodes because of its unparalleled gravimetric capacity. However, the large volume change of silicon over charge–discharge cycles weakens its competitiveness in the volumetric energy density and cycle life. Here we report direct graphene growth over silicon nanoparticles without silicon carbide formation. The graphene layers anchored onto the silicon surface accommodate the volume expansion of silicon via a sliding process between adjacent graphene layers. When paired with a commercial lithium cobalt oxide cathode, the silicon carbide-free graphene coating allows the full cell to reach volumetric energy densities of 972 and 700 Wh l−1 at first and 200th cycle, respectively, 1.8 and 1.5 times higher than those of current commercial lithium-ion batteries. This observation suggests that two-dimensional layered structure of graphene and its silicon carbide-free integration with silicon can serve as a prototype in advancing silicon anodes to commercially viable technology. PMID:26109057
Lithographic fabrication of nanoapertures
Fleming, James G.
2003-01-01
A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.
HFI Bolometer Detectors Programmatic CDR
NASA Technical Reports Server (NTRS)
Lange, Andrew E.
2002-01-01
Programmatic Critical Design Review (CDR) of the High Frequency Instrument (HFI) Bolometer Detector on the Planck Surveyor is presented. The topics include: 1) Scientific Requirements and Goals; 2) Silicon Nitride Micromesh 'Spider-Web' Bolometers; 3) Sub-Orbital Heritage: BOOMERANG; 4) Noise stability demonstrated in BOOMERANG; 5) Instrument Partners; 6) Bolometer Environment on Planck/HFI; 7) Bolometer Modules; and 8) Mechanical Interface. Also included are the status of the receivables and delivery plans with Europe. This paper is presented in viewgraph form.
CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma
NASA Astrophysics Data System (ADS)
Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves
2018-03-01
The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.
CFD Modeling of Boron Removal from Liquid Silicon with Cold Gases and Plasma
NASA Astrophysics Data System (ADS)
Vadon, Mathieu; Sortland, Øyvind; Nuta, Ioana; Chatillon, Christian; Tansgtad, Merete; Chichignoud, Guy; Delannoy, Yves
2018-06-01
The present study focuses on a specific step of the metallurgical path of purification to provide solar-grade silicon: the removal of boron through the injection of H2O(g)-H2(g)-Ar(g) (cold gas process) or of Ar-H2-O2 plasma (plasma process) on stirred liquid silicon. We propose a way to predict silicon and boron flows from the liquid silicon surface by using a CFD model (©Ansys Fluent) combined with some results on one-dimensional diffusive-reactive models to consider the formation of silica aerosols in a layer above the liquid silicon. The comparison of the model with experimental results on cold gas processes provided satisfying results for cases with low and high concentrations of oxidants. This confirms that the choices of thermodynamic data of HBO(g) and the activity coefficient of boron in liquid silicon are suitable and that the hypotheses regarding similar diffusion mechanisms at the surface for HBO(g) and SiO(g) are appropriate. The reasons for similar diffusion mechanisms need further enquiry. We also studied the effect of pressure and geometric variations in the cold gas process. For some cases with high injection flows, the model slightly overestimates the boron extraction rate, and the overestimation increases with increasing injection flow. A single plasma experiment from SIMaP (France) was modeled, and the model results fit the experimental data on purification if we suppose that aerosols form, but it is not enough to draw conclusions about the formation of aerosols for plasma experiments.
Processing study of injection molding of silicon nitride for engine applications
NASA Technical Reports Server (NTRS)
Rorabaugh, M. E.; Yeh, H. C.
1985-01-01
The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.
Plasma Enabled Fabrication of Silicon Carbide Nanostructures
NASA Astrophysics Data System (ADS)
Fang, Jinghua; Levchenko, Igor; Aramesh, Morteza; Rider, Amanda E.; Prawer, Steven; Ostrikov, Kostya (Ken)
Silicon carbide is one of the promising materials for the fabrication of various one- and two-dimensional nanostructures. In this chapter, we discuss experimental and theoretical studies of the plasma-enabled fabrication of silicon carbide quantum dots, nanowires, and nanorods. The discussed fabrication methods include plasma-assisted growth with and without anodic aluminium oxide membranes and with or without silane as a source of silicon. In the silane-free experiments, quartz was used as a source of silicon to synthesize the silicon carbide nanostructures in an environmentally friendly process. The mechanism of the formation of nanowires and nanorods is also discussed.
Hybrid Integrated Platforms for Silicon Photonics
Liang, Di; Roelkens, Gunther; Baets, Roel; Bowers, John E.
2010-01-01
A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.
Heterogeneous processes in CF4/O2 plasmas probed using laser-induced fluorescence of CF2
NASA Astrophysics Data System (ADS)
Hansen, S. G.; Luckman, G.; Nieman, George C.; Colson, Steven D.
1990-09-01
Laser-induced fluorescence of CF2 is used to monitor heterogeneous processes in ≊300 mTorr CF4/O2 plasmas. CF2 is rapidly removed at fluorinated copper and silver surfaces in 13.56-MHz rf discharges as judged by a distinct dip in its spatial distribution. These metals, when employed as etch masks, are known to accelerate plasma etching of silicon, and the present results suggest catalytic dehalogenation of CF2 is involved in this process. In contrast, aluminum and silicon dioxide exhibit negligible reactivity with CF2, which suggests that aluminum masks will not appreciably accelerate silicon etching and that ground state CF2 does not efficiently etch silicon dioxide. Measurement of CF2 decay in a pulsed discharge coupled with direct laser sputtering of metal into the gas phase indicates the interaction between CF2 and the active metals is purely heterogeneous. Aluminum does, however, exhibit homogeneous reactivity with CF2. Redistribution of active metal by plasma sputtering readily occurs; silicon etch rates may also be enhanced by the metal's presence on the silicon surface. Polymers contribute CF2 to the plasma as they etch. The observation of an induction period suggests fluorination of the polymer surface is the first step in its degradation. Polymeric etch masks can therefore depress the silicon etch rate by removal of F atoms, the primary etchants.
Solution-processed polycrystalline silicon on paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trifunovic, M.; Ishihara, R., E-mail: r.ishihara@tudelft.nl; Shimoda, T.
Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organic and metal-oxide ink materials due to their printability, while these materials lack in the electronic performance when compared to silicon electronics. Silicon electronics, on the other hand, has only recently found their way in solution processes. Printing of cyclopentasilane as the silicon ink has been conducted and devices with far superior electric performance have been mademore » when compared to other ink materials. A thermal annealing step of this material, however, was necessary, which prevented its usage on inexpensive substrates with a limited thermal budget. In this work, we introduce a method that allows polycrystalline silicon (poly-Si) production directly from the same liquid silicon ink using excimer laser irradiation. In this way, poly-Si could be formed directly on top of paper even with a single laser pulse. Using this method, poly-Si transistors were created at a maximum temperature of only 150 °C. This method allows silicon device formation on inexpensive, temperature sensitive substrates such as polyethylene terephthalate, polyethylene naphthalate or paper, which leads to applications that require low-cost but high-speed electronics.« less
Silica substrate or portion formed from oxidation of monocrystalline silicon
Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.
2003-07-15
A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.
Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
Lowden, R.A.
1994-04-05
A process for chemical vapor deposition of crystalline silicon nitride is described which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide. 5 figures.
Producing Silicon Carbide for Semiconductor Devices
NASA Technical Reports Server (NTRS)
Hsu, G. C.; Rohatgi, N. K.
1986-01-01
Processes proposed for production of SiC crystals for use in semiconductors operating at temperatures as high as 900 degrees C. Combination of new processes produce silicon carbide chips containing epitaxial layers. Chips of SiC first grown on porous carbon matrices, then placed in fluidized bed, where additional layer of SiC grows. Processes combined to yield complete process. Liquid crystallization process used to make SiC particles or chips for fluidized-bed process.
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang
1998-06-16
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.
Formation of a Polycrystalline Silicon Thin Film by Using Blue Laser Diode Annealing
NASA Astrophysics Data System (ADS)
Choi, Young-Hwan; Ryu, Han-Youl
2018-04-01
We report the crystallization of an amorphous silicon thin film deposited on a SiO2/Si wafer using an annealing process with a high-power blue laser diode (LD). The laser annealing process was performed using a continuous-wave blue LD of 450 nm in wavelength with varying laser output power in a nitrogen atmosphere. The crystallinity of the annealed poly-silicon films was investigated using ellipsometry, electron microscope observation, X-ray diffraction, and Raman spectroscopy. Polysilicon grains with > 100-nm diameter were observed to be formed after the blue LD annealing. The crystal quality was found to be improved as the laser power was increased up to 4 W. The demonstrated blue LD annealing is expected to provide a low-cost and versatile solution for lowtemperature poly-silicon processes.
NASA Technical Reports Server (NTRS)
Baghdadi, A.; Gurtler, R. W.; Legge, R.; Sopori, B.; Rice, M. J.; Ellis, R. J.
1979-01-01
A technique for growing limited-length ribbons continually was demonstrated. This Rigid Edge technique can be used to recrystallize about 95% of the polyribbon feedstock. A major advantage of this method is that only a single, constant length silicon ribbon is handled throughout the entire process sequence; this may be accomplished using cassettes similar to those presently in use for processing Czochralski waters. Thus a transition from Cz to ribbon technology can be smoothly affected. The maximum size being considered, 3 inches x 24 inches, is half a square foot, and will generate 6 watts for 12% efficiency at 1 sun. Silicon dioxide has been demonstrated as an effective, practical diffusion barrier for use during the polyribbon formation.
Development of lithium diffused radiation resistant solar cells, part 2
NASA Technical Reports Server (NTRS)
Payne, P. R.; Somberg, H.
1971-01-01
The work performed to investigate the effect of various process parameters on the performance of lithium doped P/N solar cells is described. Effort was concentrated in four main areas: (1) the starting material, (2) the boron diffusion, (3) the lithium diffusion, and (4) the contact system. Investigation of starting material primarily involved comparison of crucible grown silicon (high oxygen content) and Lopex silicon (low oxygen content). In addition, the effect of varying growing parameters of crucible grown silicon on lithium cell output was also examined. The objective of the boron diffusion studies was to obtain a diffusion process which produced high efficiency cells with minimal silicon stressing and could be scaled up to process 100 or more cells per diffusion. Contact studies included investigating sintering of the TiAg contacts and evaluation of the contact integrity.
Apparatus for silicon nitride precursor solids recovery
Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.
1995-04-04
Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.
Method for silicon nitride precursor solids recovery
Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.
1992-12-15
Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.
Laser-induced phase separation of silicon carbide
Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae
2016-01-01
Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015
Porous silicon based anode material formed using metal reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia
A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V tomore » 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.« less
Soft chemical synthesis of silicon nanosheets and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Hideyuki; Ikuno, Takashi
2016-12-15
Two-dimensional silicon nanomaterials are expected to show different properties from those of bulk silicon materials by virtue of surface functionalization and quantum size effects. Since facile fabrication processes of large area silicon nanosheets (SiNSs) are required for practical applications, a development of soft chemical synthesis route without using conventional vacuum processes is a challenging issue. We have recently succeeded to prepare SiNSs with sub-nanometer thicknesses by exfoliating layered silicon compounds, and they are found to be composed of crystalline single-atom-thick silicon layers. In this review, we present the synthesis and modification methods of SiNSs. These SiNSs have atomically flat andmore » smooth surfaces due to dense coverage of organic moieties, and they are easily self-assembled in a concentrated state to form a regularly stacked structure. We have also characterized the electron transport properties and the electronic structures of SiNSs. Finally, the potential applications of these SiNSs and organic modified SiNSs are also reviewed.« less
Energy Levels of Defects Created in Silicon Supersaturated with Transition Metals
NASA Astrophysics Data System (ADS)
García, H.; Castán, H.; Dueñas, S.; García-Hemme, E.; García-Hernansaz, R.; Montero, D.; González-Díaz, G.
2018-03-01
Intermediate-band semiconductors have attracted much attention for use in silicon-based solar cells and infrared detectors. In this work, n-Si substrates have been implanted with very high doses (1013 cm-2 and 1014 cm-2) of vanadium, which gives rise to a supersaturated layer inside the semiconductor. However, the Mott limit was not exceeded. The energy levels created in the supersaturated silicon were studied in detail by means of thermal admittance spectroscopy. We found a single deep center at energy near E C - 200 meV. This value agrees with one of the levels found for vanadium in silicon. The capture cross-section values of the deep levels were also calculated, and we found a relationship between the capture cross-section and the energy position of the deep levels which follows the Meyer-Neldel rule. This process usually appears in processes involving multiple excitations. The Meyer-Neldel energy values agree with those previously obtained for silicon supersaturated with titanium and for silicon contaminated with iron.
Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon.
Nohira, Toshiyuki; Yasuda, Kouji; Ito, Yasuhiko
2003-06-01
Silicon dioxide (SiO(2)) is conventionally reduced to silicon by carbothermal reduction, in which the oxygen is removed by a heterogeneous-homogeneous reaction sequence at approximately 1,700 degrees C. Here we report pinpoint and bulk electrochemical methods for removing oxygen from solid SiO(2) in a molten CaCl(2) electrolyte at 850 degrees C. This approach involves a 'contacting electrode', in which a metal wire supplies electrons to a selected region of the insulating SiO(2). Bulk reduction of SiO(2) is possible by increasing the number of contacting points. The same method was also demonstrated with molten LiCl-KCl-CaCl(2) at 500 degrees C. The novelty and relative simplicity of this method might lead to new processes in silicon semiconductor technology, as well as in high-purity silicon production. The methodology may be applicable to electrochemical processing of a wide variety of insulating materials, provided that the electrolyte dissolves the appropriate constituent ion(s) of the material.
Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon
Kaschmitter, J.L.; Sigmon, T.W.
1995-10-10
A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.
Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon
Kaschmitter, James L.; Sigmon, Thomas W.
1995-01-01
A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.
Silicone-containing aqueous polymer dispersions with hybrid particle structure.
Kozakiewicz, Janusz; Ofat, Izabela; Trzaskowska, Joanna
2015-09-01
In this paper the synthesis, characterization and application of silicone-containing aqueous polymer dispersions (APD) with hybrid particle structure are reviewed based on available literature data. Advantages of synthesis of dispersions with hybrid particle structure over blending of individual dispersions are pointed out. Three main processes leading to silicone-containing hybrid APD are identified and described in detail: (1) emulsion polymerization of organic unsaturated monomers in aqueous dispersions of silicone polymers or copolymers, (2) emulsion copolymerization of unsaturated organic monomers with alkoxysilanes or polysiloxanes with unsaturated functionality and (3) emulsion polymerization of alkoxysilanes (in particular with unsaturated functionality) and/or cyclic siloxanes in organic polymer dispersions. The effect of various factors on the properties of such hybrid APD and films as well as on hybrid particles composition and morphology is presented. It is shown that core-shell morphology where silicones constitute either the core or the shell is predominant in hybrid particles. Main applications of silicone-containing hybrid APD and related hybrid particles are reviewed including (1) coatings which show specific surface properties such as enhanced water repellency or antisoiling or antigraffiti properties due to migration of silicone to the surface, and (2) impact modifiers for thermoplastics and thermosets. Other processes in which silicone-containing particles with hybrid structure can be obtained (miniemulsion polymerization, polymerization in non-aqueous media, hybridization of organic polymer and polysiloxane, emulsion polymerization of silicone monomers in silicone polymer dispersions and physical methods) are also discussed. Prospects for further developments in the area of silicone-containing hybrid APD and related hybrid particles are presented. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Greene, Brian Joseph
Thin film silicon on insulator fabrication is an increasingly important technology requirement for improving performance in future generation devices and circuits. One process for SOI fabrication that has recently been generating renewed interest is Lateral Solid Phase Epitaxy (LSPE) of silicon over oxide. This process involves annealing amorphous silicon that has been deposited on oxide patterned Si wafers. The (001) Si substrate forms the crystalline seed for epitaxial growth, permitting the generation of Si films that are both single crystal, and oriented to the substrate. This method is particularly attractive to fabrication that requires low temperature processing, because the Si films are deposited in the amorphous phase at temperatures near 525°C, and crystallized at temperatures near 570°C. It is also attractive for applications requiring three dimensional stacking of active silicon device layers, due to the relatively low temperatures involved. For sub-50 nm gate length MOSFET fabrication, an SOI thickness on the order of 10 nm will be required. One limitation of the LSPE process has been the need for thick films (0.5--2 mum) and/or heavy P doping (10 19--1020 cm-3) to increase the maximum achievable lateral growth distance, and therefore minimize the area on the substrate occupied by seed holes. This dissertation discusses the characterization and optimization of process conditions for large area LSPE silicon film growth, as well as efforts to adapt the traditional LSPE process to achieve ultra-thin SOI layers (Tsilicon ≤ 25 nm) while avoiding the use of heavy active doping layers. MOSFETs fabricated in these films that exhibit electron mobility comparable to the Universal Si MOS Mobility are described.
Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor
NASA Technical Reports Server (NTRS)
Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)
2001-01-01
A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.
Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor
NASA Technical Reports Server (NTRS)
Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)
2000-01-01
A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.
Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.; Rhee, S. S.; Allison, K. L.
1979-01-01
A low cost wafer surface texturizing process was studied. An investigation of low cost cleaning operations to clean residual wax and organics from the surface of silicon wafers was made. The feasibility of replacing dry nitrogen with clean dry air for drying silicon wafers was examined. The two stage texturizing process was studied for the purpose of characterizing relevant parameters in large volume applications. The effect of gettering solar cells on photovoltaic energy conversion efficiency is described.
Fabrication of lightweight ceramic mirrors by means of a chemical vapor deposition process
NASA Technical Reports Server (NTRS)
Goela, Jitendra S. (Inventor); Taylor, Raymond L. (Inventor)
1991-01-01
A process to fabricate lightweigth ceramic mirrors, and in particular, silicon/silicon carbide mirrors, involves three chemical vapor deposition steps: one to produce the mirror faceplate, the second to form the lightweight backstructure which is deposited integral to the faceplate, and the third and final step which results in the deposition of a layer of optical grade material, for example, silicon, onto the front surface of the faceplate. The mirror figure and finish are fabricated into this latter material.
Reduced adherence of Candida to silane-treated silicone rubber.
Price, C L; Williams, D W; Waters, M G J; Coulthwaite, L; Verran, J; Taylor, R L; Stickler, D; Lewis, M A O
2005-07-01
Silicone rubber is widely used in the construction of medical devices that can provide an essential role in the treatment of human illness. However, subsequent microbial colonization of silicone rubber can result in clinical infection or device failure. The objective of this study was to determine the effectiveness of a novel silane-treated silicone rubber in inhibiting microbial adherence and material penetration. Test material was prepared by a combination of argon plasma discharge treatment and fluorinated silane coupling. Chemicophysical changes were then confirmed by X-ray photoelectron spectroscopy, contact-angle measurement, and atomic force microscopy. Two separate adherence assays and a material penetration assay assessed the performance of the new material against four strains of Candida species. Results showed a significant reduction (p < 0.01) of Candida albicans GDH 2346 adherence to silane-treated silicone compared with untreated controls. This reduction was still evident after the incorporation of saliva into the assay. Adherence inhibition also occurred with Candida tropicalis MMU and Candida krusei NCYC, although this was assay dependent. Reduced penetration of silane-treated silicone by Candida was evident when compared to untreated controls, plaster-processed silicone, and acrylic-processed silicone. To summarize, a novel silicone rubber material is described that inhibits both candidal adherence and material penetration. The clinical benefit and performance of this material remains to be determined. Copyright 2005 Wiley Periodicals, Inc.
Porous silicon technology for integrated microsystems
NASA Astrophysics Data System (ADS)
Wallner, Jin Zheng
With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2mum to 6mum have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (˜200°C) and thick/soft bonding layers (˜6mum) have been achieved by In-Au bonding technology, which is able to compensate the potentially rough surface on the porous silicon sample without introducing significant thermal stress. (Abstract shortened by UMI.)
Development of refractory armored silicon carbide by infrared transient liquid phase processing
NASA Astrophysics Data System (ADS)
Hinoki, Tatsuya; Snead, Lance L.; Blue, Craig A.
2005-12-01
Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) for use as a refractory armor using a high power plasma arc lamp at powers up to 23.5 MW/m 2 in an argon flow environment. Both tungsten powder and molybdenum powder melted and formed coating layers on silicon carbide within a few seconds. The effect of substrate pre-treatment (vapor deposition of titanium (Ti) and tungsten, and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). The mechanical properties of the coated materials were evaluated by four-point flexural tests. A strong tungsten coating was successfully applied to the silicon carbide substrate. Tungsten vapor deposition and pre-heating at 5.2 MW/m 2 made for a refractory layer containing no cracks propagating into the silicon carbide substrate. The tungsten coating was formed without the thick reaction layer. For this study, small tungsten carbide grains were observed adjacent to the interface in all conditions. In addition, relatively large, widely scattered tungsten carbide grains and a eutectic structure of tungsten and silicon were observed through the thickness in the coatings formed at lower powers and longer heating times. The strength of the silicon carbide substrate was somewhat decreased as a result of the processing. Vapor deposition of tungsten prior to powder coating helped prevent this degradation. In contrast, molybdenum coating was more challenging than tungsten coating due to the larger coefficient of thermal expansion (CTE) mismatch as compared to tungsten and silicon carbide. From this work it is concluded that refractory armoring of silicon carbide by Infrared Transient Liquid Phase Processing is possible. The tungsten armored silicon carbide samples proved uniform, strong, and capable of withstanding thermal fatigue testing.
NASA Astrophysics Data System (ADS)
Du, Hang; Song, Ci; Li, Shengyi
2018-01-01
In order to obtain high precision and high surface quality silicon carbide mirrors, the silicon carbide mirror substrate is subjected to surface modification treatment. In this paper, the problem of Silicon Carbide (SiC) mirror surface roughness deterioration by MRF is studied. The reasons of surface flaws of “Comet tail” are analyzed. Influence principle of MRF polishing depth and the surface roughness of modified SiC mirrors is obtained by experiments. On this basis, the united process of modified SiC mirrors is proposed which is combined MRF with the small grinding head CCOS. The united process makes improvement in the surface accuracy and surface roughness of modified SiC mirrors.
Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Dickerson, Robert M.
1995-01-01
Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.
Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger
2015-09-02
In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.
Sapphire Multiple Filament and Large Plate Growth Processes
1972-10-01
This is necessary to obtain proper belt tracking. The belts themselves are a silicone / glass fabric manufactured by Dodge Industries, Hoosick Falls...New York. This material is an extremely fine weave fiberglass cloth which is impregnated with silicone rubber. Its properties include high yield...by bonding together (with a silicone adhesive) two 0.010-in. thick strips of Dodge M301 silicone /glass fabric terminating in an angled butt joint to
FUEL ELEMENTS AND METHOD OF MAKING
Noland, R.A.; Marzano, C.
1958-08-19
A process is described of surface-impregnating bodies of metallic uranium with silicon. Silicon metal is added to or admixed with alkali metal selected from the group consisting of sodiunn, potassium, and sodiunnpotassium alloy. The uraniunn body is then immersed in the mixture obtained and the temperature is raised to between 425 and 600 deg C. The silicon is dissolved and deposits as a uranium-silicon compound on the uranium body.
Laser Integration on Silicon Photonic Circuits Through Transfer Printing
2017-03-10
AFRL-AFOSR-UK-TR-2017-0019 Laser integration on silicon photonic circuits through transfer printing Gunther Roelkens UNIVERSITEIT GENT VZW Final...TYPE Final 3. DATES COVERED (From - To) 15 Sep 2015 to 14 Sep 2016 4. TITLE AND SUBTITLE Laser integration on silicon photonic circuits through...parallel integration of III-V lasers on silicon photonic integrated circuits. The report discusses the technological process that has been developed as
LSSA (Low-cost Silicon Solar Array) project
NASA Technical Reports Server (NTRS)
1976-01-01
Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.
NASA Technical Reports Server (NTRS)
1985-01-01
An apparatus was designed for the continuous production of silicon carbide - silicon nitride precursor fibers. The precursor polymer can be fiberized, crosslined and pyrolyzed. The product is a metallic black fiber with the composition of the type C sub x Si sub y n sub z. Little, other than the tensile strength and modulus of elasticity, is known of the physical properties.
Second-harmonic generation in substoichiometric silicon nitride layers
NASA Astrophysics Data System (ADS)
Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca
2013-03-01
Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.
Elastic Distribution of Microshutters, Measurements Obtainable on James Web Space Telescope
NASA Technical Reports Server (NTRS)
Kletetschka, Gunther; King, Todd; Mikula, Vilem
2008-01-01
Spectrographic astronomy measurements in the near-infrared region will be done by functional two-dimensional microshutter arrays that are being fabricated at the NASA Goddard Space Flight Center for the James Webb Space Telescope (JWST). These micro-shutter arrays will represent the first mission-critical MEMS devices to be flown in space. JWST will use microshutter arrays to select focal plane object. 2-D programmable aperture masks of more than 200,000 elements select such space object. The use of silicon wafer material promises high efficiency and high contrast. Microshutter operation temperature is around 35K. Microshutter arrays are fabricated as close-packed silicon nitride membranes with a unit cell size of 105 x 204 micrometers. A layer of magnetic material is deposited onto each shutter. Individual shutters are equipped with a torsion flexure. Reactive ion etching (RIE) releases the shutters so they can open up to 90 degrees using the torsion flexure. Shutter rotation is initiated into a silicon support structure via an external magnetic field. Two electrically independent aluminum electrodes are deposited, one onto each shutter and another onto the support structure side-wall, permitting electrostatic latching and 2-D addressing to hold specific shutters open via external electronics.
Building asynchronous geospatial processing workflows with web services
NASA Astrophysics Data System (ADS)
Zhao, Peisheng; Di, Liping; Yu, Genong
2012-02-01
Geoscience research and applications often involve a geospatial processing workflow. This workflow includes a sequence of operations that use a variety of tools to collect, translate, and analyze distributed heterogeneous geospatial data. Asynchronous mechanisms, by which clients initiate a request and then resume their processing without waiting for a response, are very useful for complicated workflows that take a long time to run. Geospatial contents and capabilities are increasingly becoming available online as interoperable Web services. This online availability significantly enhances the ability to use Web service chains to build distributed geospatial processing workflows. This paper focuses on how to orchestrate Web services for implementing asynchronous geospatial processing workflows. The theoretical bases for asynchronous Web services and workflows, including asynchrony patterns and message transmission, are examined to explore different asynchronous approaches to and architecture of workflow code for the support of asynchronous behavior. A sample geospatial processing workflow, issued by the Open Geospatial Consortium (OGC) Web Service, Phase 6 (OWS-6), is provided to illustrate the implementation of asynchronous geospatial processing workflows and the challenges in using Web Services Business Process Execution Language (WS-BPEL) to develop them.
77 FR 38033 - Notice of Establishment of a Commodity Import Approval Process Web Site
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
... Process Web Site AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are announcing the creation of a new Plant Protection and Quarantine Web site that will provide stakeholders with... comment on draft risk assessments. This Web site will make the commodity import approval process more...
Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization
NASA Astrophysics Data System (ADS)
Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo
2015-08-01
Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.
Silicone Resin Applications for Ceramic Precursors and Composites
Narisawa, Masaki
2010-01-01
This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.
Proton exchange membrane micro fuel cells on 3D porous silicon gas diffusion layers
NASA Astrophysics Data System (ADS)
Kouassi, S.; Gautier, G.; Thery, J.; Desplobain, S.; Borella, M.; Ventura, L.; Laurent, J.-Y.
2012-10-01
Since the 90's, porous silicon has been studied and implemented in many devices, especially in MEMS technology. In this article, we present a new approach to build miniaturized proton exchange membrane micro-fuel cells using porous silicon as a hydrogen diffusion layer. In particular, we propose an innovative process to build micro fuel cells from a “corrugated iron like” 3D structured porous silicon substrates. This structure is able to increase up to 40% the cell area keeping a constant footprint on the silicon wafer. We propose here a process route to perform electrochemically 3D porous gas diffusion layers and to deposit fuel cell active layers on such substrates. The prototype peak power performance was measured to be 90 mW cm-2 in a “breathing configuration” at room temperature. These performances are less than expected if we compare with a reference 2D micro fuel cell. Actually, the active layer deposition processes are not fully optimized but this prototype demonstrates the feasibility of these 3D devices.
Surface Modification of Silicon Nanoparticles by an "Ink" Layer for Advanced Lithium Ion Batteries.
Wu, Fang; Wang, Hao; Shi, Jiayuan; Yan, Zongkai; Song, Shipai; Peng, Bangheng; Zhang, Xiaokun; Xiang, Yong
2018-06-13
Owing to its high specific capacity, silicon is considered as a promising anode material for lithium ion batteries (LIBs). However, the synthesis strategies for previous silicon-based anode materials with a delicate hierarchical structure are complicated or hazardous. Here, Prussian blue analogues (PBAs), widely used in ink, are deposited on the silicon nanoparticle surface (PBAs@Si-450) to modify silicon nanoparticles with transition metal atoms and a N-doped carbon layer. A facile and green synthesis procedure of PBAs@Si-450 nanocomposites was carried out in a coprecipitation process, combined with a thermal treatment process at 450 °C. As-prepared PBAs@Si-450 delivers a reversible charge capacity of 725.02 mAh g -1 at 0.42 A g -1 after 200 cycles. Moreover, this PBAs@Si-450 composite exhibits an exceptional rate performance of ∼1203 and 263 mAh g -1 at current densities of 0.42 and 14 A g -1 , respectively, and fully recovered to 1136 mAh g -1 with the current density returning to 0.42 A g -1 . Such a novel architecture of PBAs@Si-450 via a facile fabrication process represents a promising candidate with a high-performance silicon-based anode for LIBs.
Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells
Rehman, Atteq ur; Lee, Soo Hong
2014-01-01
Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed. PMID:28788516
Enhancing the far-UV sensitivity of silicon CMOS imaging arrays
NASA Astrophysics Data System (ADS)
Retherford, K. D.; Bai, Yibin; Ryu, Kevin K.; Gregory, J. A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winter, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.
2014-07-01
We report our progress toward optimizing backside-illuminated silicon PIN CMOS devices developed by Teledyne Imaging Sensors (TIS) for far-UV planetary science applications. This project was motivated by initial measurements at Southwest Research Institute (SwRI) of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures described in Bai et al., SPIE, 2008, which revealed a promising QE in the 100-200 nm range as reported in Davis et al., SPIE, 2012. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include: 1) Representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory (LL); 2) Preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; 3) Detector fabrication was completed through the pre-MBE step; and 4) Initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments. Early results suggest that potential challenges in optimizing the UV-sensitivity of silicon PIN type CMOS devices, compared with similar UV enhancement methods established for CCDs, have been mitigated through our newly developed methods. We will discuss the potential advantages of our approach and briefly describe future development steps.
Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells.
Rehman, Atteq Ur; Lee, Soo Hong
2014-02-18
Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.
Silicon ball grid array chip carrier
Palmer, David W.; Gassman, Richard A.; Chu, Dahwey
2000-01-01
A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.
Process for producing silicon nitride based articles of high fracture toughness and strength
Huckabee, Marvin; Buljan, Sergej-Tomislav; Neil, Jeffrey T.
1991-01-01
A process for producing a silicon nitride-based article of improved fracture toughness and strength. The process involves densifying to at least 98% of theoretical density a mixture including (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 .mu.m and a surface area of about 8-12 m.sup.2 /g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 .mu.m and a surface area of about 2-4 m.sup.2 /g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. Optionally, the mixture may be blended with a binder and injection molded to form a green body, which then may be densified by, for example, hot isostatic pressing.
Process for producing silicon nitride based articles of high fracture toughness and strength
Huckabee, M.; Buljan, S.T.; Neil, J.T.
1991-09-10
A process for producing a silicon nitride-based article of improved fracture toughness and strength is disclosed. The process involves densifying to at least 98% of theoretical density a mixture including (a) a bimodal silicon nitride powder blend consisting essentially of about 10-30% by weight of a first silicon nitride powder of an average particle size of about 0.2 [mu]m and a surface area of about 8-12 m[sup 2]/g, and about 70-90% by weight of a second silicon nitride powder of an average particle size of about 0.4-0.6 [mu]m and a surface area of about 2-4 m[sup 2]/g, (b) about 10-50 percent by volume, based on the volume of the densified article, of refractory whiskers or fibers having an aspect ratio of about 3-150 and having an equivalent diameter selected to produce in the densified article an equivalent diameter ratio of the whiskers or fibers to grains of silicon nitride of greater than 1.0, and (c) an effective amount of a suitable oxide densification aid. Optionally, the mixture may be blended with a binder and injection molded to form a green body, which then may be densified by, for example, hot isostatic pressing.
Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale.
Wu, Marcelo; Han, Zhanghua; Van, Vien
2010-05-24
Subwavelength conductor-gap-silicon plasmonic waveguides along with compact S-bends and Y-splitters were theoretically investigated and experimentally demonstrated on a silicon-on-insulator platform. A thin SiO2 gap between the conductor layer and silicon core provides subwavelength confinement of light while a long propagation length of 40 microm was achieved. Coupling of light between the plasmonic and conventional silicon photonic waveguides was also demonstrated with a high efficiency of 80%. The compact sizes, low loss operation, efficient input/output coupling, combined with a CMOS-compatible fabrication process, make these conductor-gap-silicon plasmonic devices a promising platform for realizing densely-integrated plasmonic circuits.
NASA Astrophysics Data System (ADS)
Ahmad, I.; Temple, M. P.; Kallis, A.; Wojdak, M.; Oton, C. J.; Barbier, D.; Saleh, H.; Kenyon, A. J.; Loh, W. H.
2008-12-01
Erbium-doped silicon-rich silicon oxide films deposited by plasma enhanced chemical vapor deposition suffer from compressive stress as deposited, which converts to a large tensile stress on annealing due to the release of hydrogen. Although the cracking that results from this stress can be avoided by patterning the films into ridges, significant stress remains along the ridge axis. Measurements of erbium photoluminescence sensitized by silicon nanoclusters in stressed and relaxed films suggest an important role for internal film stresses in promoting the phase separation of excess silicon into nanoclusters, which has previously been thought of as a thermally driven process.
NASA Technical Reports Server (NTRS)
Chapman, P. W.; Zook, J. D.; Heaps, J. D.; Grung, B. L.; Koepke, B.; Schuldt, S. B.
1979-01-01
The technical and economic feasibility of producing solar cell-quality silicon was investigated. This was done by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress in the following areas was demonstrated: (1) fabricating a 10 sq cm cell having 9.9 percent conversion efficiency; (2) producing a 225 sq cm layer of sheet silicon; and (3) obtaining 100 microns thick coatings at pull speed of 0.15 cm/sec, although approximately 50 percent of the layer exhibited dendritic growth.
Process for utilizing low-cost graphite substrates for polycrystalline solar cells
NASA Technical Reports Server (NTRS)
Chu, T. L. (Inventor)
1978-01-01
Low cost polycrystalline silicon solar cells supported on substrates were prepared by depositing successive layers of polycrystalline silicon containing appropriate dopants over supporting substrates of a member selected from the group consisting of metallurgical grade polycrystalline silicon, graphite and steel coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures thereof such that p-n junction devices were formed which effectively convert solar energy to electrical energy. To improve the conversion efficiency of the polycrystalline silicon solar cells, the crystallite size in the silicon was substantially increased by melting and solidifying a base layer of polycrystalline silicon before depositing the layers which form the p-n junction.
Low-cost Solar Array (LSA) project
NASA Technical Reports Server (NTRS)
1978-01-01
Progress made by the Low-Cost Silicon Solar Array Project during the period January through March 1978 is reported. It includes task reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations, and manufacturing techniques, plus the steps taken to integrate these efforts.
LSSA (Low-cost Silicon Solar Array) project
NASA Technical Reports Server (NTRS)
1976-01-01
The Photovoltaic Conversion Program was established to find methods of economically generating enough electrical power to meet future requirements. Activities and progress in the following areas are discussed: silicon-refinement processes; silicon-sheet-growth techniques; encapsulants; manufacturing of off-the-shelf solar arrays; and procurement of semistandardized solar arrays.
A program continuation to develop processing procedures for advanced silicon solar cells
NASA Technical Reports Server (NTRS)
Avery, J. E.; Scott-Monck, J. A.
1976-01-01
Shallow junctions, aluminum back surface fields and tantalum pentoxide (Ta205) antireflection coatings coupled with the development of a chromium-palladium-silver contact system, were used to produce a 2 x 4 cm wraparound contact silicon solar cell. One thousand cells were successfully fabricated using batch processing techniques. These cells were 0.020 mm thick, with the majority (800) made from nominal ten ohm-cm silicon and the remainder from nominal 30 ohm-cm material. Unfiltered, these cells delivered a minimum AMO efficiency at 25 C of 11.5 percent and successfully passed all the normal in-process and acceptance tests required for space flight cells.
Synthesis of silane and silicon in a non-equilibrium plasma jet
NASA Technical Reports Server (NTRS)
Calcote, H. F.; Felder, W.
1977-01-01
The feasibility of using a non-equilibrium hydrogen plasma jet as a chemical synthesis tool was investigated. Four possible processes were identified for further study: (1) production of polycrystalline silicon photovoltaic surfaces, (2) production of SiHCl3 from SiCl4, (3) production of SiH4 from SiHCl3, and (4) purification of SiCl4 by metal impurity nucleation. The most striking result was the recognition that the strongly adhering silicon films, amorphous or polycrystalline, produced in our studies could be the basis for preparing a photovoltaic surface directly; this process has potential advantages over other vapor deposition processes.
Thickening compositions, and related materials and processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Michael Joseph; Perry, Robert James; Enick, Robert Michael
A silicone polymer is provided, modified with at least one functional group from the class of anthraquinone amide groups; anthraquinone sulfonamide groups; thioxanthone amide groups; or thioxanthone sulfone amide groups. The polymer can be combined with a hydrocarbon solvent or with supercritical carbon dioxide (CO.sub.2), and is very effective for increasing the viscosity of either medium. A process for the recovery of oil from a subterranean, oil-bearing formation is also described, using supercritical carbon dioxide modified with the functionalized silicone polymer. A process for extracting natural gas or oil from a bedrock-shale formation is also described, again using the modifiedmore » silicone polymer.« less
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.
1979-01-01
The construction and operation of an experimental process system development unit (EPSDU) for the production of granular semiconductor grade silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles is presented. The construction of the process development unit (PDU) is reported. The PDU consists of four critical units of the EPSDU: the fluidized bed reactor, the reactor by product condenser, the zinc vaporizer, and the electrolytic cell. An experimental wetted wall condenser and its operation are described. Procedures are established for safe handling of SiCl4 leaks and spills from the EPSDU and PDU.
Demonstration of submicron square-like silicon waveguide using optimized LOCOS process.
Desiatov, Boris; Goykhman, Ilya; Levy, Uriel
2010-08-30
We demonstrate the design, fabrication and experimental characterization of a submicron-scale silicon waveguide that is fabricated by local oxidation of silicon. The use of local oxidation process allows defining the waveguide geometry and obtaining smooth sidewalls. The process can be tuned to precisely control the shape and the dimensions of the waveguide. The fabricated waveguides are measured using near field scanning optical microscope at 1550 nm wavelength. These measurements show mode width of 0.4 µm and effective refractive index of 2.54. Finally, we demonstrate the low loss characteristics of our waveguide by imaging the light scattering using an infrared camera.
Semiconductor grade, solar silicon purification project
NASA Technical Reports Server (NTRS)
Ingle, W. M.; Rosler, R. R.; Thompson, S. W.; Chaney, R. E.
1979-01-01
Experimental apparatus and procedures used in the development of a 3-step SiF2(x) polymer transport purification process are described. Both S.S.M.S. and E.S. analysis demonstrated that major purification had occured and some samples were indistinguishable from semiconductor grade silicon (except possibly for phosphorus). Recent electrical analysis via crystal growth reveals that the product contains compensated phosphorus and boron. The low projected product cost and short energy payback time suggest that the economics of this process will result in a cost less than the goal of $10/Kg(1975 dollars). The process appears to be readily scalable to a major silicon purification facility.
Is there a shadow biosphere of silicon utilizing organisms on earth?
NASA Astrophysics Data System (ADS)
Das, P.; Das, S.
2012-12-01
The idea of shadow biosphere was first visualized by Carol Cleland and Shelley Copley of the University of Colorado in 2005. Since that time many scientists were interested in this subject and the basis of this paper is also correlated with this novel idea. A shadow biosphere essentially consists of self replicating bodies utilizing one or more chemicals which are not exploited to such extent by organisms of the real biosphere. Silicon-utilizing organisms mainly belong to the diatoms, some other algae, sponges, monocotyledon plants in this category are classified by us. They can survive in extremes of temperature, pressure, radiation, pH, salinity and nutrient conditions and this unusual tolerance to stress depends on their silicon biomineralization occurring either as a biologically controlled process or as a biologically induced process. In the control process silicate is sequestered and transferred to the intracellular silica deposition vesicle by energy driven pump mechanism in presence of specific transporter protein. In induced silicon mineralization, initial amorphous nucleation of silicon is gradually transformed to a crystalline phase. Besides these two methods, there are also other processes in which formation of silanol and siloxane can occur from oligomers of silica originating from monomers by Hydrogen bonding, cation bridging and direct electrostatic interactions. The structure of the silica biomineralised cell wall in silicon utilizing organisms is very complex, but this may explain their ability to stress tolerance and their possible coordinating role with other essential bioactive elements in nature. When electropositive elements are less, then polymerization of silicon-oxygen excess may occur easily, particularly in carbon and nitrogen paucity in the environment. Thus all these features indicate possibility of a shadow biosphere of these organisms on earth.
Proceedings of the 25th Project Integration Meeting
NASA Technical Reports Server (NTRS)
Phillips, M.
1985-01-01
Topics addressed include: silicon sheet growth and characterization, silicon material, process development, high-efficiency cells, environmental isolation, engineering sciences, and reliability physics.
The chemo-mechanical effect of cutting fluid on material removal in diamond scribing of silicon
NASA Astrophysics Data System (ADS)
Kumar, Arkadeep; Melkote, Shreyes N.
2017-07-01
The mechanical integrity of silicon wafers cut by diamond wire sawing depends on the damage (e.g., micro-cracks) caused by the cutting process. The damage type and extent depends on the material removal mode, i.e., ductile or brittle. This paper investigates the effect of cutting fluid on the mode of material removal in diamond scribing of single crystal silicon, which simulates the material removal process in diamond wire sawing of silicon wafers. We conducted scribing experiments with a diamond tipped indenter in the absence (dry) and in the presence of a water-based cutting fluid. We found that the cutting mode is more ductile when scribing in the presence of cutting fluid compared to dry scribing. We explain the experimental observations by the chemo-mechanical effect of the cutting fluid on silicon, which lowers its hardness and promotes ductile mode material removal.
NASA Astrophysics Data System (ADS)
Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.
2017-09-01
The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.
Colloidal characterization of silicon nitride and silicon carbide
NASA Technical Reports Server (NTRS)
Feke, Donald L.
1986-01-01
The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.
Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.
Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T
2013-01-01
Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic-phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized-with over 1,000 times larger nonlinearity than reported in previous systems-yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip.
NASA Astrophysics Data System (ADS)
Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.
2010-02-01
A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.
Web Growth Used to Confine Screw Dislocations to Predetermined Lateral Positions in 4H-SiC Epilayers
NASA Technical Reports Server (NTRS)
Powell, J. Anthony; Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.; Beheim, Glenn M.
2004-01-01
Silicon-carbide- (SiC-) based power devices could enable substantial aerospace electronics benefits over today's silicon-based electronics. However, present-day SiC wafers contain electrically harmful dislocations (including micropipes) that are unpredictably distributed in high densities across all commercial 4H- and 6H-SiC wafers. The NASA Glenn Research Center recently demonstrated a crystal growth process that moves SiC wafer dislocations to predetermined lateral positions in epitaxial layers so that they can be reproducibly avoided during subsequent SiC electronic device fabrication. The process starts by reactive ion etching mesa patterns with enclosed trench regions into commercial on-axis (0001) 4H- or 6H-SiC substrates. An example of a pregrowth mesa geometry with six enclosed triangular-shaped trench regions is shown. After the etch mask is stripped, homoepitaxial growth is carried out in pure stepflow conditions that enable thin cantilevers to grow laterally from the tops of mesas whose pregrowth top surfaces are not threaded by substrate screw dislocations. The image in the bottom figure shows the postgrowth structure that forms after the lateral cantilevers expand to coalesce and completely roof over each of the six triangular trench regions. Atomic force microscope (AFM) measurements of the roof revealed that three elementary screw dislocation growth spirals, each shown in the AFM insets of the bottom image on the previous page, formed in the film roof at three respective points of cantilever film coalescence. The image above shows the structure following an etch in molten potassium hydroxide (KOH) that produced surface etch pits at the dislocation defects. The larger KOH etch pits--S1, S2, and S3--shown in this image correspond to screw dislocations relocated to the final points of cantilever coalescence. The smaller KOH etch pits are consistent with epilayer threading edge dislocations from the pregrowth substrate mesa (P1, P3, and P4) and a final cantilever coalescence point (P2). No defects (i.e., no etch pits) are observed in other cantilevered portions of the film surface. On the basis of the principle of dislocation Burgers vector conservation, we hypothesize that all vertically propagating substrate dislocations in an enclosed trench region become combined into a single dislocation in the webbed film roof at the point of final roof coalescence. The point of final roof coalescence, and therefore the lateral location of a webbed roof dislocation, can be designed into the pregrowth mesa pattern. Screw dislocations with predetermined lateral positions can then be used to provide the new growth steps necessary for growing a 4H/6H-SiC epilayer with a lower dislocation density than the substrate. Devices fabricated on top of such films can be positioned to avoid the preplaced dislocations.
A transistor based on 2D material and silicon junction
NASA Astrophysics Data System (ADS)
Kim, Sanghoek; Lee, Seunghyun
2017-07-01
A new type of graphene-silicon junction transistor based on bipolar charge-carrier injection was designed and investigated. In contrast to many recent studies on graphene field-effect transistor (FET), this device is a new type of bipolar junction transistor (BJT). The transistor fully utilizes the Fermi level tunability of graphene under bias to increase the minority-carrier injection efficiency of the base-emitter junction in the BJT. Single-layer graphene was used to form the emitter and the collector, and a p-type silicon was used as the base. The output of this transistor was compared with a metal-silicon junction transistor ( i.e. surface-barrier transistor) to understand the difference between a graphene-silicon junction and metal-silicon Schottky junction. A significantly higher current gain was observed in the graphene-silicon junction transistor as the base current was increased. The graphene-semiconductor heterojunction transistor offers several unique advantages, such as an extremely thin device profile, a low-temperature (< 110 °C) fabrication process, low cost (no furnace process), and high-temperature tolerance due to graphene's stability. A transistor current gain ( β) of 33.7 and a common-emitter amplifier voltage gain of 24.9 were achieved.
NASA Technical Reports Server (NTRS)
Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.
2007-01-01
Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.
Low cost solar array project 1: Silicon material
NASA Technical Reports Server (NTRS)
Jewett, D. N.; Bates, H. E.; Hill, D. M.
1980-01-01
The low cost production of silicon by deposition of silicon from a hydrogen/chlorosilane mixture is described. Reactor design, reaction vessel support systems (physical support, power control and heaters, and temperature monitoring systems) and operation of the system are reviewed. Testing of four silicon deposition reactors is described, and test data and consequently derived data are given. An 18% conversion of trichlorosilane to silicon was achieved, but average conversion rates were lower than predicted due to incomplete removal of byproduct gases for recycling and silicon oxide/silicon polymer plugging of the gas outlet. Increasing the number of baffles inside the reaction vessel improved the conversion rate. Plans for further design and process improvements to correct the problems encountered are outlined.
Doping of silicon with carbon during laser ablation process
NASA Astrophysics Data System (ADS)
Račiukaitis, G.; Brikas, M.; Kazlauskienė, V.; Miškinis, J.
2006-12-01
The effect of laser ablation on properties of remaining material in silicon was investigated. It was found that laser cutting of wafers in the air induced the doping of silicon with carbon. The effect was more distinct when using higher laser power or UV radiation. Carbon ions created bonds with silicon atoms in the depth of the material. Formation of the silicon carbide type bonds was confirmed by SIMS, XPS and AES measurements. Modeling of the carbon diffusion to clarify its depth profile in silicon was performed. Photochemical reactions of such type changed the structure of material and could be the reason of the reduced machining quality. The controlled atmosphere was applied to prevent carbonization of silicon during laser cutting.
Silicon in broiler drinking water promotes bone development in broiler chickens.
Sgavioli, S; de Faria Domingues, C H; Castiblanco, D M C; Praes, M F F M; Andrade-Garcia, Giuliana M; Santos, E T; Baraldi-Artoni, S M; Garcia, R G; Junqueira, O M
2016-10-01
Skeletal abnormalities, bone deformities and fractures cause significant losses in broiler production during both rearing and processing. Silicon is an essential mineral for bone and connective tissue synthesis and for calcium absorption during the early stages of bone formation. Performance was not affected by the addition of silicon. However, broilers receiving silicon showed a significant increase of phosphorus, zinc, copper, manganese and ash in the tibia. In conclusion, broiler performance was not impaired by adding the tested silicon product to the drinking water. In addition, bone development improved, as demonstrated by higher mineral and ash content. Further studies are required to determine the optimal concentration of silicon, including heat stress simulations, to better understand the effects of silicon on bone development.
Solar breeder: Energy payback time for silicon photovoltaic systems
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1977-01-01
The energy expenditures of the prevailing manufacturing technology of terrestrial photovoltaic cells and panels were evaluated, including silicon reduction, silicon refinement, crystal growth, cell processing and panel building. Energy expenditures include direct energy, indirect energy, and energy in the form of equipment and overhead expenses. Payback times were development using a conventional solar cell as a test vehicle which allows for the comparison of its energy generating capability with the energies expended during the production process. It was found that the energy payback time for a typical solar panel produced by the prevailing technology is 6.4 years. Furthermore, this value drops to 3.8 years under more favorable conditions. Moreover, since the major energy use reductions in terrestrial manufacturing have occurred in cell processing, this payback time directly illustrates the areas where major future energy reductions can be made -- silicon refinement, crystal growth, and panel building.
Ion assisted deposition of SiO2 film from silicon
NASA Astrophysics Data System (ADS)
Pham, Tuan. H.; Dang, Cu. X.
2005-09-01
Silicon dioxide, SiO2, is one of the preferred low index materials for optical thin film technology. It is often deposited by electron beam evaporation source with less porosity and scattering, relatively durable and can have a good laser damage threshold. Beside these advantages the deposition of critical optical thin film stacks with silicon dioxide from an E-gun was severely limited by the stability of the evaporation pattern or angular distribution of the material. The even surface of SiO2 granules in crucible will tend to develop into groove and become deeper with the evaporation process. As the results, angular distribution of the evaporation vapor changes in non-predicted manner. This report presents our experiments to apply Ion Assisted Deposition process to evaporate silicon in a molten liquid form. By choosing appropriate process parameters we can get SiO2 film with good and stable property.
Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited].
Stojanović, Vladimir; Ram, Rajeev J; Popović, Milos; Lin, Sen; Moazeni, Sajjad; Wade, Mark; Sun, Chen; Alloatti, Luca; Atabaki, Amir; Pavanello, Fabio; Mehta, Nandish; Bhargava, Pavan
2018-05-14
Integrating photonics with advanced electronics leverages transistor performance, process fidelity and package integration, to enable a new class of systems-on-a-chip for a variety of applications ranging from computing and communications to sensing and imaging. Monolithic silicon photonics is a promising solution to meet the energy efficiency, sensitivity, and cost requirements of these applications. In this review paper, we take a comprehensive view of the performance of the silicon-photonic technologies developed to date for photonic interconnect applications. We also present the latest performance and results of our "zero-change" silicon photonics platforms in 45 nm and 32 nm SOI CMOS. The results indicate that the 45 nm and 32 nm processes provide a "sweet-spot" for adding photonic capability and enhancing integrated system applications beyond the Moore-scaling, while being able to offload major communication tasks from more deeply-scaled compute and memory chips without complicated 3D integration approaches.
NASA Astrophysics Data System (ADS)
Noda, Toshihiko; Takao, Hidekuni; Ashiki, Mitsuaki; Ebi, Hiroyuki; Sawada, Kazuaki; Ishida, Makoto
2004-04-01
In this study, a microchip for measurement of hemoglobin in human blood has been proposed, fabricated and evaluated. The measurement principle of hemoglobin is based on the “cyanmethemoglobin method” that calculates the cyanmethemoglobin concentration by absorption photometry. A glass/silicon/silicon structure was used for the microchip. The middle silicon layer includes flow channels, and 45° mirrors formed at each end of the flow channels. Photodiodes and metal oxide semiconductor (MOS) integrated circuits were fabricated on the bottom silicon layer. The performance of the microchip for hemoglobin measurement was evaluated using a solution of red food color instead of a real blood sample. The fabricated microchip exhibited a similar performance to a nonminiaturized absorption cell which has the same optical path length. Signal processing output varied with solution concentration from 5.32 V to 5.55 V with very high stability due to differential signal processing.
Device research task (processing and high-efficiency solar cells)
NASA Technical Reports Server (NTRS)
1986-01-01
This task has been expanded since the last 25th Project Integration Meeting (PIM) to include process research in addition to device research. The objective of this task is to assist the Flat-plate Solar Array (FSA) Project in meeting its near- and long-term goals by identifying and implementing research in the areas of device physics, device structures, measurement techniques, material-device interactions, and cell processing. The research efforts of this task are described and reflect the deversity of device research being conducted. All of the contracts being reported are either completed or near completion and culminate the device research efforts of the FSA Project. Optimazation methods and silicon solar cell numerical models, carrier transport and recombination parameters in heavily doped silicon, development and analysis of silicon solar cells of near 20% efficiency, and SiN sub x passivation of silicon surfaces are discussed.
A deep etching mechanism for trench-bridging silicon nanowires
NASA Astrophysics Data System (ADS)
Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Erdem Alaca, B.
2016-03-01
Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.
A deep etching mechanism for trench-bridging silicon nanowires.
Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Alaca, B Erdem
2016-03-04
Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.
EBIC/TEM investigations of defects in solar silicon ribbon materials
NASA Technical Reports Server (NTRS)
Ast, D. G.
1981-01-01
Transmission electron microscopy was used to investigate the defect structure of edge defined film growth (EFG) material, web dentritic ribbons (WEB), and ribbon to ribbon recrystallized material (RTR). The most common defects in all these materials are coherent first order twin boundaries. These coherent twins can be very thin, a few atomic layers. Bundles of the twins which contain odd numbers of twins will in optical images appear as a seemingly single first twin boundary. First-order coherent twin boundaries are not electrically active, except at locations where they contain intrinsic (grain boundary) dislocations. These dislocations take up small deviations from the ideal twin relation and play the same role in twin boundaries as conventional and play the some role in twin boundaries as conventional edge and screw dislocations in small angle tilt and twist boundaries.
Method of making self-aligned lightly-doped-drain structure for MOS transistors
Weiner, Kurt H.; Carey, Paul G.
2001-01-01
A process for fabricating lightly-doped-drains (LDD) for short-channel metal oxide semiconductor (MOS) transistors. The process utilizes a pulsed laser process to incorporate the dopants, thus eliminating the prior oxide deposition and etching steps. During the process, the silicon in the source/drain region is melted by the laser energy. Impurities from the gas phase diffuse into the molten silicon to appropriately dope the source/drain regions. By controlling the energy of the laser, a lightly-doped-drain can be formed in one processing step. This is accomplished by first using a single high energy laser pulse to melt the silicon to a significant depth and thus the amount of dopants incorporated into the silicon is small. Furthermore, the dopants incorporated during this step diffuse to the edge of the MOS transistor gate structure. Next, many low energy laser pulses are used to heavily dope the source/drain silicon only in a very shallow region. Because of two-dimensional heat transfer at the MOS transistor gate edge, the low energy pulses are inset from the region initially doped by the high energy pulse. By computer control of the laser energy, the single high energy laser pulse and the subsequent low energy laser pulses are carried out in a single operational step to produce a self-aligned lightly-doped-drain-structure.
Silicon solar cells by ion implantation and pulsed energy processing
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.; Minnucci, J. A.; Shaughnessy, T. S.; Greenwald, A. C.
1976-01-01
A new method for fabrication of silicon solar cells is being developed around ion implantation in conjunction with pulsed electron beam techniques to replace conventional furnace processing. Solar cells can be fabricated totally in a vacuum environment at room temperature. Cells with 10% AM0 efficiency have been demonstrated. High efficiency cells and effective automated processing capabilities are anticipated.
Automated aray assembly, phase 2
NASA Technical Reports Server (NTRS)
Daiello, R. V.
1979-01-01
A manufacturing process suitable for the large-scale production of silicon solar array modules at a cost of less than $500/peak kW is described. Factors which control the efficiency of ion implanted silicon solar cells, screen-printed thick film metallization, spray-on antireflection coating process, and panel assembly are discussed. Conclusions regarding technological readiness or cost effectiveness of individual process steps are presented.
Scalloping minimization in deep Si etching on Unaxis DSE tools
NASA Astrophysics Data System (ADS)
Lai, Shouliang; Johnson, Dave J.; Westerman, Russ J.; Nolan, John J.; Purser, David; Devre, Mike
2003-01-01
Sidewall smoothness is often a critical requirement for many MEMS devices, such as microfludic devices, chemical, biological and optical transducers, while fast silicon etch rate is another. For such applications, the time division multiplex (TDM) etch processes, so-called "Bosch" processes are widely employed. However, in the conventional TDM processes, rough sidewalls result due to scallop formation. To date, the amplitude of the scalloping has been directly linked to the silicon etch rate. At Unaxis USA Inc., we have developed a proprietary fast gas switching technique that is effective for scalloping minimization in deep silicon etching processes. In this technique, process cycle times can be reduced from several seconds to as little as a fraction of second. Scallop amplitudes can be reduced with shorter process cycles. More importantly, as the scallop amplitude is progressively reduced, the silicon etch rate can be maintained relatively constant at high values. An optimized experiment has shown that at etch rate in excess of 7 μm/min, scallops with length of 116 nm and depth of 35 nm were obtained. The fast gas switching approach offers an ideal manufacturing solution for MEMS applications where extremely smooth sidewall and fast etch rate are crucial.
NASA Astrophysics Data System (ADS)
Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic
2002-11-01
This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
The commercial production of low-cost semiconductor-grade silicon is an essential requirement of the JPL/DOE (Department of Energy) Low-Cost Solar Array (LSA) Project. A 1000-metric-ton-per-year commercial facility using the Union Carbide Silane Process will produce molten silicon for an estimated price of $7.56/kg (1975 dollars, private financing), meeting the DOE goal of less than $10/kg. Conclusions and technology status are reported for both contract phases, which had the following objectives: (1) establish the feasibility of Union Carbide's Silane Process for commercial application, and (2) develop an integrated process design for an Experimental Process System Development Unit (EPSDU) and a commercial facility,more » and estimate the corresponding commercial plant economic performance. To assemble the facility design, the following work was performed: (a) collection of Union Carbide's applicable background technology; (b) design, assembly, and operation of a small integrated silane-producing Process Development Unit (PDU); (c) analysis, testing, and comparison of two high-temperature methods for converting pure silane to silicon metal; and (d) determination of chemical reaction equilibria and kinetics, and vapor-liquid equilibria for chlorosilanes.« less
Seventh workshop on the role of impurities and defects in silicon device processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-01
This workshop is the latest in a series which has looked at technological issues related to the commercial development and success of silicon based photovoltaic (PV) modules. PV modules based on silicon are the most common at present, but face pressure from other technologies in terms of cell performance and cell cost. This workshop addresses a problem which is a factor in the production costs of silicon based PV modules.
Stationary phase deposition based on onium salts
Wheeler, David R [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM; Dirk, Shawn M [Albuquerque, NM; Trudell, Daniel E [Albuquerque, NM
2008-01-01
Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.
Silicon production process evaluations
NASA Technical Reports Server (NTRS)
1982-01-01
Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.
Silicon solar cell process. Development, fabrication and analysis
NASA Technical Reports Server (NTRS)
Yoo, H. I.; Iles, P. A.; Tanner, D. P.
1978-01-01
Solar cells were fabricated from unconventional silicon sheets, and the performances were characterized with an emphasis on statistical evaluation. A number of solar cell fabrication processes were used and conversion efficiency was measured under AMO condition at 25 C. Silso solar cells using standard processing showed an average efficiency of about 9.6%. Solar cells with back surface field process showed about the same efficiency as the cells from standard process. Solar cells from grain boundary passivation process did not show any improvements in solar cell performance.
Critical technology limits to silicon material and sheet production
NASA Technical Reports Server (NTRS)
Leipold, M. H.
1982-01-01
Earlier studies have indicated that expenditures related to the preparation of high-purity silicon and its conversion to silicon sheet represent from 40 to 52 percent of the cost of the entire panel. The present investigation is concerned with the elements which were selected for study in connection with the Flat-Plate Solar Array (FSA) Project. The first of two technologies which are being developed within the FSA Project involves the conversion of metallurgical-grade silicon through a silane purification process to silicon particles. The second is concerned with the conversion of trichlorosilane to dichlorosilane, and the subsequent production of silicon using modified rod reactors of the Siemens type. With respect to silicon sheet preparation, efforts have been focused both on the preparation of ingots, followed by wafering, and the direct crystallization of molten silicon into a ribbon or film.
Experimental evaluation of the impact of packet capturing tools for web services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choe, Yung Ryn; Mohapatra, Prasant; Chuah, Chen-Nee
Network measurement is a discipline that provides the techniques to collect data that are fundamental to many branches of computer science. While many capturing tools and comparisons have made available in the literature and elsewhere, the impact of these packet capturing tools on existing processes have not been thoroughly studied. While not a concern for collection methods in which dedicated servers are used, many usage scenarios of packet capturing now requires the packet capturing tool to run concurrently with operational processes. In this work we perform experimental evaluations of the performance impact that packet capturing process have on web-based services;more » in particular, we observe the impact on web servers. We find that packet capturing processes indeed impact the performance of web servers, but on a multi-core system the impact varies depending on whether the packet capturing and web hosting processes are co-located or not. In addition, the architecture and behavior of the web server and process scheduling is coupled with the behavior of the packet capturing process, which in turn also affect the web server's performance.« less
Silicon entering through silicon utilizing organisms has biological effects in human beings
NASA Astrophysics Data System (ADS)
Shraddhamayananda, S.
2012-12-01
Except in the lungs, there is no evidence that silicon can do any harm in our body and Silicon is as essential as magnesium and calcium for us. It helps in proper activities of the bone tissues and all of the components in the human skeletal system. It can prevent osteoporosis in bones and also helps in lowering of blood pressure. Silicon can also inhibit fungal disease by physically inhibiting fungal germ tube penetration of the epidermis. Many of our foods which are associated with silicon utilizing organisms like rice, vegetables, wheat etc, contain plenty silicon, however, during processing most silicon get lost. In alternative medicine silicon is used to promote expulsion of foreign bodies from tissue, in formation of suppuration and finally expulsion of pus from abscesses. Silicon is also used to remove fibrotic lesions and scar tissue and in this way it can prevent formation of keloids. Sometimes it is also used to treat chronic otitis media, and chronic fistula,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth
Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturingmore » of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.« less
Processes for producing low cost, high efficiency silicon solar cells
Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.
1998-06-16
Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.
Preparation of wafer-level glass cavities by a low-cost chemical foaming process (CFP).
Shang, Jintang; Chen, Boyin; Lin, Wei; Wong, Ching-Ping; Zhang, Di; Xu, Chao; Liu, Junwen; Huang, Qing-An
2011-04-21
A novel foaming process-chemical foaming process (CFP)-using foaming agents to fabricate wafer-level micro glass cavities including channels and bubbles was investigated. The process consists of the following steps sequentially: (1) shallow cavities were fabricated by a wet etching on a silicon wafer; (2) powders of a proper foaming agent were placed in a silicon cavity, named 'mother cavity', on the etched silicon surface; (3) the silicon cavities were sealed with a glass wafer by anodic bonding; (4) the bonded wafers were heated to above the softening point of the glass, and baked for several minutes, when the gas released by the decomposition of the foaming agent in the 'mother cavity' went into the other sealed interconnected silicon cavities to foam the softened glass into cylindrical channels named 'daughter channels', or spherical bubbles named 'son bubbles'. Results showed that wafer-level micro glass cavities with smooth wall surfaces were achieved successfully without contamination by the CFP. A model for the CFP was proposed to predict the final shape of the glass cavity. Experimental results corresponded with model predictions. The CFP provides a low-cost avenue to preparation of micro glass cavities of high quality for applications such as micro-reactors, micro total analysis systems (μTAS), analytical and bio-analytical applications, and MEMS packaging.
Song, Jae W.; Kim, Hyungjin Myra; Bellfi, Lillian T.; Chung, Kevin C.
2010-01-01
Background All silicone breast implant recipients are recommended by the US Food and Drug Administration to undergo serial screening to detect implant rupture with magnetic resonance imaging (MRI). We performed a systematic review of the literature to assess the quality of diagnostic accuracy studies utilizing MRI or ultrasound to detect silicone breast implant rupture and conducted a meta-analysis to examine the effect of study design biases on the estimation of MRI diagnostic accuracy measures. Method Studies investigating the diagnostic accuracy of MRI and ultrasound in evaluating ruptured silicone breast implants were identified using MEDLINE, EMBASE, ISI Web of Science, and Cochrane library databases. Two reviewers independently screened potential studies for inclusion and extracted data. Study design biases were assessed using the QUADAS tool and the STARDS checklist. Meta-analyses estimated the influence of biases on diagnostic odds ratios. Results Among 1175 identified articles, 21 met the inclusion criteria. Most studies using MRI (n= 10 of 16) and ultrasound (n=10 of 13) examined symptomatic subjects. Meta-analyses revealed that MRI studies evaluating symptomatic subjects had 14-fold higher diagnostic accuracy estimates compared to studies using an asymptomatic sample (RDOR 13.8; 95% CI 1.83–104.6) and 2-fold higher diagnostic accuracy estimates compared to studies using a screening sample (RDOR 1.89; 95% CI 0.05–75.7). Conclusion Many of the published studies utilizing MRI or ultrasound to detect silicone breast implant rupture are flawed with methodological biases. These methodological shortcomings may result in overestimated MRI diagnostic accuracy measures and should be interpreted with caution when applying the data to a screening population. PMID:21364405
Growth of the 889 per cm infrared band in annealed electron-irradiated silicon
NASA Technical Reports Server (NTRS)
Svensson, B. G.; Lindstrom, J. L.; Corbett, J. W.
1985-01-01
Isothermal annealing of electron-irradiated Czochralski silicon has been studied at four different temperatures ranging from 304 to 350 C using infrared spectroscopy. At annealing temperatures above 300 C the irradiation-induced band at 830 per cm, usually attributed to a vacancy-oxygen complex (the A center), disappears and a new band at 889 per cm grows up. Within the experimental accuracy, the activation energy for the growth of this band is found to be identical with the value given by Stavola et al. for 'anomalous' oxygen diffusion in silicon. Also the frequency factors for the two processes are in reasonable agreement. The results show that a vacancy-assisted process may provide an explanation for enhanced motion of oxygen in silicon.
Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vipperla, Ravikumar; Yee, Michael; Steele, Ray
This report presents system and economic analysis for a carbon capture unit which uses an amino-silicone solvent for CO{sub 2} capture and sequestration (CCS) in a pulverized coal (PC) boiler. The amino-silicone solvent is based on GAP-1 with Tri-Ethylene Glycol (TEG) as a co-solvent. The report also shows results for a CCS unit based on a conventional approach using mono-ethanol amine (MEA). Models were developed for both processes and used to calculate mass and energy balances. Capital costs and energy penalty were calculated for both systems, as well as the increase in cost of electricity. The amino-silicone solvent based systemmore » demonstrates significant advantages compared to the MEA system.« less
Silicon solar cell efficiency improvement: Status and outlook
NASA Technical Reports Server (NTRS)
Wolf, M.
1985-01-01
Efficiency and operating life is an economic attribute in silicon solar cells application. The efficiency improvements made during the 30 year existence of the silicon solar cells, from about 6% efficiency at the beginning to 19% in the most recent experimental cells is illustrated. In the more stationary periods, the effort was oriented towards improving radiation resistance and yields on the production lines, while, in other periods, the emphasis was on reaching new levels of efficiency through better cell design and improved material processing. First results were forthcoming from the recent efforts. Considerably more efficiency advancement in silicon solar cells is expected, and the anticipated attainment of efficiencies significantly above 20% is discussed. Major advances in material processing and in the resulting material perfection are required.
NASA Astrophysics Data System (ADS)
Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro
2015-06-01
Topographic structures such as Fin FETs and silicon nanowires for advanced gate fabrication require ultra-shallow high dose infusion of dopants into the silicon subsurface. Plasma doping meets this requirement by supplying a flux of inert ions and dopant radicals to the surface. However, the helium ion bombardment needed to infuse dopants into the fin surface can cause poor dose retention. This is due to the interaction between substrate damage and post doping process wet cleaning solutions required in the front end of line large-scale integration fabrication. We present findings from surface microscopy experiments that reveal the mechanism for dose retention in arsenic doped silicon fin samples using a microwave RLSA™ plasma source. Dilute aqueous hydrofluoric acid (DHF) cleans by themselves are incompatible with plasma doping processes because the films deposited over the dosed silicon and ion bombardment damaged silicon are readily removed. Oxidizing wet cleaning chemistries help retain the dose as silica rich over-layers are not significantly degraded. Furthermore, the dosed retention after a DHF clean following an oxidizing wet clean is unchanged. Still, the initial ion bombardment energy and flux are important. Large ion fluxes at energies below the sputter threshold and above the silicon damage threshold, before the silicon surface is covered by an amorphous mixed phase layer, allow for enhanced uptake of dopant into the silicon. The resulting dopant concentration is beyond the saturation limit of crystalline silicon.
Integration of mask and silicon metrology in DFM
NASA Astrophysics Data System (ADS)
Matsuoka, Ryoichi; Mito, Hiroaki; Sugiyama, Akiyuki; Toyoda, Yasutaka
2009-03-01
We have developed a highly integrated method of mask and silicon metrology. The method adopts a metrology management system based on DBM (Design Based Metrology). This is the high accurate contouring created by an edge detection algorithm used in mask CD-SEM and silicon CD-SEM. We have inspected the high accuracy, stability and reproducibility in the experiments of integration. The accuracy is comparable with that of the mask and silicon CD-SEM metrology. In this report, we introduce the experimental results and the application. As shrinkage of design rule for semiconductor device advances, OPC (Optical Proximity Correction) goes aggressively dense in RET (Resolution Enhancement Technology). However, from the view point of DFM (Design for Manufacturability), the cost of data process for advanced MDP (Mask Data Preparation) and mask producing is a problem. Such trade-off between RET and mask producing is a big issue in semiconductor market especially in mask business. Seeing silicon device production process, information sharing is not completely organized between design section and production section. Design data created with OPC and MDP should be linked to process control on production. But design data and process control data are optimized independently. Thus, we provided a solution of DFM: advanced integration of mask metrology and silicon metrology. The system we propose here is composed of followings. 1) Design based recipe creation: Specify patterns on the design data for metrology. This step is fully automated since they are interfaced with hot spot coordinate information detected by various verification methods. 2) Design based image acquisition: Acquire the images of mask and silicon automatically by a recipe based on the pattern design of CD-SEM.It is a robust automated step because a wide range of design data is used for the image acquisition. 3) Contour profiling and GDS data generation: An image profiling process is applied to the acquired image based on the profiling method of the field proven CD metrology algorithm. The detected edges are then converted to GDSII format, which is a standard format for a design data, and utilized for various DFM systems such as simulation. Namely, by integrating pattern shapes of mask and silicon formed during a manufacturing process into GDSII format, it makes it possible to bridge highly accurate pattern profile information over to the design field of various EDA systems. These are fully integrated into design data and automated. Bi-directional cross probing between mask data and process control data is allowed by linking them. This method is a solution for total optimization that covers Design, MDP, mask production and silicon device producing. This method therefore is regarded as a strategic DFM approach in the semiconductor metrology.
Fabricating a Microcomputer on a Single Silicon Wafer
NASA Technical Reports Server (NTRS)
Evanchuk, V. L.
1983-01-01
Concept for "microcomputer on a slice" reduces microcomputer costs by eliminating scribing, wiring, and packaging of individual circuit chips. Low-cost microcomputer on silicon slice contains redundant components. All components-central processing unit, input/output circuitry, read-only memory, and random-access memory (CPU, I/O, ROM, and RAM) on placed on single silicon wafer.
Fabrication of silicon-based shape memory alloy micro-actuators
NASA Technical Reports Server (NTRS)
Johnson, A. David; Busch, John D.; Ray, Curtis A.; Sloan, Charles L.
1992-01-01
Thin film shape memory alloy has been integrated with silicon in a new actuation mechanism for microelectromechanical systems. This paper compares nickel-titanium film with other actuators, describes recent results of chemical milling processes developed to fabricate shape memory alloy microactuators in silicon, and describes simple actuation mechanisms which have been fabricated and tested.
Efficient solar cells by space processing
NASA Technical Reports Server (NTRS)
Schmidt, F. A.; Campisi, G. J.; Bevolo, A.; Shanks, H. R.; Williams, D. E.
1979-01-01
Thin films of electron beam evaporated silicon were deposited on molybdenum, tantalum, tungsten and molybdenum disilicide under ultrahigh vacuum conditions. Mass spectra from a quadrapole residual gas analyzer were used to determine the partial pressure of 13 residual gases during each processing step. Surface contamination and interdiffusion were monitored by in situ Auger electron spectrometry. The presence of phosphorus in the silicon was responsible for attaining elevated temperatures with silicide formations. Heteroepitaxial silicon growth was sensitive to the presence of oxygen during deposition, the rate and length of deposition as well as the substrate orientation.
Silicon vertical microstructure fabrication by catalytic etching
NASA Astrophysics Data System (ADS)
Huang, Mao-Jung; Yang, Chii-Rong; Chang, Chun-Ming; Chu, Nien-Nan; Shiao, Ming-Hua
2012-08-01
This study presents an effective, simple and inexpensive process for forming micro-scale vertical structures on a (1 0 0) silicon wafer. Several modified etchants and micro-patterns including rectangular, snake-like, circular and comb patterns were employed to determine the optimum etching process. We found that an etchant solution consisting of 4.6 M hydrofluoric acid, 0.44 M hydrogen peroxide and isopropyl alcohol produces microstructures at an etching rate of 0.47 µm min-1 and surface roughness of 17.4 nm. All the patterns were transferred faithfully to the silicon substrate.
Growing Cobalt Silicide Columns In Silicon
NASA Technical Reports Server (NTRS)
Fathauer, Obert W.
1991-01-01
Codeposition by molecular-beam epitaxy yields variety of structures. Proposed fabrication process produces three-dimensional nanometer-sized structures on silicon wafers. Enables control of dimensions of metal and semiconductor epitaxial layers in three dimensions instead of usual single dimension (perpendicular to the plane of the substrate). Process used to make arrays of highly efficient infrared sensors, high-speed transistors, and quantum wires. For fabrication of electronic devices, both shapes and locations of columns controlled. One possible technique for doing this electron-beam lithography, see "Making Submicron CoSi2 Structures on Silicon Substrates" (NPO-17736).
Becker, C.; Wyss, P.; Eisenhauer, D.; Probst, J.; Preidel, V.; Hammerschmidt, M.; Burger, S.
2014-01-01
Crystalline silicon photonic crystal slabs are widely used in various photonics applications. So far, the commercial success of such structures is still limited owing to the lack of cost-effective fabrication processes enabling large nanopatterned areas (≫ 1 cm2). We present a simple method for producing crystalline silicon nanohole arrays of up to 5 × 5 cm2 size with lattice pitches between 600 and 1000 nm on glass and flexible plastic substrates. Exclusively up-scalable, fast fabrication processes are applied such as nanoimprint-lithography and silicon evaporation. The broadband light trapping efficiency of the arrays is among the best values reported for large-area experimental crystalline silicon nanostructures. Further, measured photonic crystal resonance modes are in good accordance with light scattering simulations predicting strong near-field intensity enhancements greater than 500. Hence, the large-area silicon nanohole arrays might become a promising platform for ultrathin solar cells on lightweight substrates, high-sensitive optical biosensors, and nonlinear optics. PMID:25073935
Liu, Jun; Kopold, Peter; van Aken, Peter A; Maier, Joachim; Yu, Yan
2015-08-10
Silicon is an attractive anode material in energy storage devices, as it has a ten times higher theoretical capacity than its state-of-art carbonaceous counterpart. However, the common process to synthesize silicon nanostructured electrodes is complex, costly, and energy-intensive. Three-dimensional (3D) porous silicon-based anode materials have been fabricated from natural reed leaves by calcination and magnesiothermic reduction. This sustainable and highly abundant silica source allows for facile production of 3D porous silicon with very good electrochemical performance. The obtained silicon anode retains the 3D hierarchical architecture of the reed leaf. Impurity leaching and gas release during the fabrication process leads to an interconnected porosity and the reductive treatment to an inside carbon coating. Such anodes show a remarkable Li-ion storage performance: even after 4000 cycles and at a rate of 10 C, a specific capacity of 420 mA h g(-1) is achieved. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Meekum, Utai; Khiansanoi, Apichart
2018-06-01
The poly(lactic acid) (PLA) blend with single component silicone rubber in the presence of reactive amino silane coupling agent and polyester polyols plasticizer were studied. The manufacturing of film packaging for sub-zero temperature applications from the PLA blend was the main objective. The mechanical properties, especially the impact strengths, of PLA/silicone blends were significantly depended on the silicone loading. The outstanding impact strengths, tested at sub-zero temperature, of the blend having silicone content of 8.0 phr was achieved. It was chosen as the best candidate for the processability improvement. Adding the talc filler into the PLA/silicone blend to enhance the rheological properties was investigated. The ductility of the talc filled blends were decreased with increasing the filler contents. However, the shear viscosity of the blend was raised with talc loading. The blend loaded with 40 phr of talc filler was justified as the optimal formula for the blown film process testing and it was successfully performed with a few difficulties. The obtained blown film showed relative good flexibility in comparison with LDPE but it has low transparency.
NASA Astrophysics Data System (ADS)
Bouaziz, Lamia; Dridi, Donia; Karyaoui, Mokhtar; Angelova, Todora; Sanchez Plaza, Guillermo; Chtourou, Radhouane
2017-03-01
In this work, a different SiNx passivation process of silicon nanowires has been opted for the deposition of a hydrogenated silicon nitride (SiNx:H) by a low-cost plasma enhanced chemical vapor deposition (PECVD) using silane ( SiH4 and nitrogen ( N2 as reactive gases. This study is focused on the effect of the gas flow ratio on chemical composition, morphological, optical and optoelectronic properties of silicon nanowires. The existence of Si-N and Si-H bonds was proven by the Fourier transmission infrared (FTIR) spectrum. Morphological structures were shown by scanning electron microscopy (SEM), and the roughness was investigated by atomic force microscopy (AFM). A low reflectivity less than 6% in the wavelength range 250-1200nm has been shown by UV-visible spectroscopy. Furthermore, the thickness and the refractive index of the passivation layer is determined by ellipsometry measurements. As a result, an improvement in minority carrier lifetime has been obtained by reducing surface recombination of silicon nanowires.
NASA Astrophysics Data System (ADS)
Polyakov, D. S.; Yakovlev, E. B.
2018-03-01
We report a theoretical study of heating and photoexcitation of single-crystal silicon by nanosecond laser radiation at a wavelength of 1.06 μm. The proposed physicomathematical model of heating takes into account the complex nonlinear dynamics of the interband absorption coefficient of silicon and the contribution of the radial heat removal to the cooling of silicon between pulses under multipulse irradiation, which allows one to obtain a satisfactory agreement between theoretical predictions of silicon melting thresholds at different nanosecond pulse durations and experimental data (both under single-pulse and multipulse irradiation). It is found that under irradiation by nanosecond pulses at a wavelength of 1.06 μm, the dynamic Burshtein–Moss effect can play an important role in processes of photoexcitation and heating. It is shown that with the regimes typical for laser multipulse microprocessing of silicon (the laser spot diameter is less than 100 μm, and the repetition rate of pulses is about 100 kHz), the radial heat removal cannot be neglected in the analysis of heat accumulation processes.
Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.-G., E-mail: jglee36@kims.re.kr; Nagase, T.; Yasuda, H.
The synthesis of metal silicide at the metal/silicon oxide interface by electronic excitation was investigated using transmission electron microscopy. A platinum silicide, α-Pt{sub 2}Si, was successfully formed at the platinum/silicon oxide interface under 25–200 keV electron irradiation. This is of interest since any platinum silicide was not formed at the platinum/silicon oxide interface by simple thermal annealing under no-electron-irradiation conditions. From the electron energy dependence of the cross section for the initiation of the silicide formation, it is clarified that the silicide formation under electron irradiation was not due to a knock-on atom-displacement process, but a process induced by electronic excitation.more » It is suggested that a mechanism related to the Knotek and Feibelman mechanism may play an important role in silicide formation within the solid. Similar silicide formation was also observed at the palladium/silicon oxide and nickel/silicon oxide interfaces, indicating a wide generality of the silicide formation by electronic excitation.« less
Depth-of-processing effects as college students use academic advising Web sites.
Boatright-Horowitz, Su L; Langley, Michelle; Gunnip, Matthew
2009-06-01
This research examined students' cognitive and affective responses to an academic advising Web site. Specifically, we investigated whether exposure to our Web site increased student reports that they would access university Web sites to obtain various types of advising information. A depth-of-processing (DOP) manipulation revealed this effect as students engaged in semantic processing of Web content but not when they engaged in superficial examination of the physical appearance of the same Web site. Students appeared to scan online academic advising materials for information of immediate importance without noticing other information or hyperlinks (e.g., regarding internships and careers). Suggestions are presented for increasing the effectiveness of academic advising Web sites.
Browsing the Real World using Organic Electronics, Si-Chips, and a Human Touch.
Berggren, Magnus; Simon, Daniel T; Nilsson, David; Dyreklev, Peter; Norberg, Petronella; Nordlinder, Staffan; Ersman, Peter Andersson; Gustafsson, Göran; Wikner, J Jacob; Hederén, Jan; Hentzell, Hans
2016-03-09
Organic electronics have been developed according to an orthodox doctrine advocating "all-printed'', "all-organic'' and "ultra-low-cost'' primarily targeting various e-paper applications. In order to harvest from the great opportunities afforded with organic electronics potentially operating as communication and sensor outposts within existing and future complex communication infrastructures, high-quality computing and communication protocols must be integrated with the organic electronics. Here, we debate and scrutinize the twinning of the signal-processing capability of traditional integrated silicon chips with organic electronics and sensors, and to use our body as a natural local network with our bare hand as the browser of the physical world. The resulting platform provides a body network, i.e., a personalized web, composed of e-label sensors, bioelectronics, and mobile devices that together make it possible to monitor and record both our ambience and health-status parameters, supported by the ubiquitous mobile network and the resources of the "cloud". © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.