Science.gov

Sample records for silver nanoparticles synthesized

  1. Degradation of methylene blue using biologically synthesized silver nanoparticles.

    PubMed

    Vanaja, M; Paulkumar, K; Baburaja, M; Rajeshkumar, S; Gnanajobitha, G; Malarkodi, C; Sivakavinesan, M; Annadurai, G

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time.

  2. Degradation of Methylene Blue Using Biologically Synthesized Silver Nanoparticles

    PubMed Central

    Vanaja, M.; Paulkumar, K.; Baburaja, M.; Rajeshkumar, S.; Gnanajobitha, G.; Malarkodi, C.; Sivakavinesan, M.; Annadurai, G.

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time. PMID:24772055

  3. Antibacterial and catalytic activities of green synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2015-01-01

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  4. Antibacterial and catalytic activities of green synthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2015-01-25

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  5. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    PubMed

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  6. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  7. Characterization and Biocompatibility of ``Green'' Synthesized Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Moulton, Michael; Kunzelman, Samantha; Braydich-Stolle, Laura; Nadagouda, M.; Varma, R.; Hussain, Saber

    2008-10-01

    With ever increasing emphasis on nanotechnology, silver nanoparticle are being considered for many antimicrobial needs ranging from catheter coatings, to burn wound bandages. Current synthesis methods for creating silver nanoparticles typically call for potentially hazardous chemicals, extreme heat, and produce environmentally dangerous byproducts. As a culture intent on reducing our carbon footprint on the earth, societies' focus has turned to ``green'' production capabilities. Therefore, if nanotechnology is to continue to grow at its current rate it is essential that novel ``green'' synthesis of nanoparticles becomes a reality. Furthermore, with the current and near-future applications of silver nanoparticles in biological systems it is imperative to fully analyze the potential toxic effects of these nanoparticles. In this study we have shown that by reducing silver nitrate in solutions of tea extract or epinephrine of varying concentrations spherical silver nanoparticle are formed. Furthermore, evaluation of mitochondrial function (MTS) and membrane integrity (LDH) in alveolar rat macrophages and human keratinocytes showed that these ``green'' synthesized silver nanoparticles were nontoxic.

  8. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    SciTech Connect

    Bharti, Amardeep Goyal, Navdeep; Singh, Suman; Singla, M. L.

    2015-08-28

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  9. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles

    NASA Astrophysics Data System (ADS)

    Niño-Martínez, N.; Martínez-Castañón, G. A.; Aragón-Piña, A.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, Facundo

    2008-02-01

    Silver nanoparticles with a narrow size distribution were synthesized over the surface of two different commercial TiO2 particles using a simple aqueous reduction method. The reducing agent used was NaBH4; different molar ratios TiO2:Ag were also used. The nanocomposites thus prepared were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), dynamic light scattering (DLS) and UV-visible (UV-vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopy studies (TEM and STEM) we observed that the silver nanoparticles are homogeneously distributed over the surface of TiO2 particles and that the TiO2:Ag molar ratio plays an important role. We used three different TiO2Ag molar ratios and the size of the silver nanoparticles is 10, 20 and 80 nm, respectively. It was found that the antibacterial activity of the nanocomposites increases considerably comparing with separated silver nanoparticles and TiO2 particles.

  10. Characterization of silver nanoparticles synthesized on titanium dioxide fine particles.

    PubMed

    Niño-Martínez, N; Martínez-Castañón, G A; Aragón-Piña, A; Martínez-Gutierrez, F; Martínez-Mendoza, J R; Ruiz, Facundo

    2008-02-13

    Silver nanoparticles with a narrow size distribution were synthesized over the surface of two different commercial TiO(2) particles using a simple aqueous reduction method. The reducing agent used was NaBH(4); different molar ratios TiO(2):Ag were also used. The nanocomposites thus prepared were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), dynamic light scattering (DLS) and UV-visible (UV-vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopy studies (TEM and STEM) we observed that the silver nanoparticles are homogeneously distributed over the surface of TiO(2) particles and that the TiO(2):Ag molar ratio plays an important role. We used three different TiO(2)Ag molar ratios and the size of the silver nanoparticles is 10, 20 and 80 nm, respectively. It was found that the antibacterial activity of the nanocomposites increases considerably comparing with separated silver nanoparticles and TiO(2) particles.

  11. Evaluation of green synthesized silver nanoparticles against parasites.

    PubMed

    Marimuthu, Sampath; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Santhoshkumar, Thirunavukkarasu; Kirthi, Arivarasan Vishnu; Jayaseelan, Chidambaram; Bagavan, Asokan; Zahir, Abdul Abduz; Elango, Gandhi; Kamaraj, Chinnaperumal

    2011-06-01

    Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. The present study was based on assessments of the antiparasitic activities to determine the efficacies of synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Mimosa pudica Gaertn (Mimosaceae) against the larvae of malaria vector, Anopheles subpictus Grassi, filariasis vector Culex quinquefasciatus Say (Diptera: Culicidae), and Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae). Parasite larvae were exposed to varying concentrations of aqueous extract of M. pudica and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of M. pudica and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of A. subpictus, C. quinquefasciatus, and R. microplus (LC(50) = 13.90, 11.73, and 8.98 mg/L, r (2) = 0.411, 0.286, and 0.479), respectively. This is the first report on antiparasitic activity of the plant extract and synthesized AgNPs.

  12. Antimicrobial and mosquitocidal activity of microbial synthesized silver nanoparticles.

    PubMed

    Soni, Namita; Prakash, Soam

    2015-03-01

    Microbial synthesis of nanoparticles is a green approach that interconnects nanotechnology and microbial biotechnology. Here, we synthesized the silver nanoparticles (AgNPs) using bacterial strains of Listeria monocytogenes, Bacillus subtilius and Streptomyces anulatus. We tested the efficacy of AgNPs against the larvae, pupae and adults of Anopheles stephensi and Culex quinquefasciatus. We have also investigated the antifungal activity of AgNPs against the soil keratinophilic fungus of Chrysosporium keratinophilum. The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The results were obtained using a UV-visible spectrophotometer, and the images were recorded with a transmission electron microscope (TEM). The synthesized AgNPs were in varied shape and sizes. The larvae and pupae of Cx. quinquefasciatus were found highly susceptible to AgNPs synthesized using the L. monocytogenes, B. subtilius and S. anulatus than the An. stephensi, while the adults of An. stephensi were found more susceptible to the AgNPs synthesized using the L. monocytogenes, B. subtilius and S. anulatus the Cx. quinquefasciatus. Further, these nanoparticles have also been tested as antifungal activity against the entomopathogenic fungus C. keratinophilum. The higher zone of inhibition occurred at the concentration level of 50 μl. This study gives an innovative approach to develop eco-friendly AgNPs which act as an effective antifungal agent/fungicide and insecticide.

  13. Antimicrobial Activities of Silver Nanoparticles Synthesized by Using Water Extract of Arnicae anthodium.

    PubMed

    Dobrucka, Renata; Długaszewska, Jolanta

    2015-06-01

    Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV-visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM-EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.

  14. Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Wang, Chao; Mathiyalagan, Ramya; El-Agamy Farh, Mohamed; Yang, Deok Chun

    2016-05-01

    In the present study, we report a green methodology for the synthesis of silver and gold nanoparticles, using the root extract of the herbal medicinal plant Korean red ginseng. The silver and gold nanoparticles were synthesized within 1 h and 10 min respectively. The nanoparticles generated were not aggregated, and remained stable for a long time, which suggests the nature of nanoparticles. The phytochemicals and ginsenosides present in the root extract assist in reducing and stabilizing the synthesized nanoparticles. The red ginseng root extract-generated silver nanoparticles exhibit antimicrobial activity against pathogenic microorganisms including Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Candida albicans. In addition, the silver nanoparticles exhibit biofilm degrading activity against S. aureus and Pseudomonas aeruginosa. Thus, the present study opens up a new possibility of synthesizing silver and gold nanoparticles in a green and rapid manner using Korean red ginseng root extract, and explores their biomedical applications.

  15. Characterization and Biocompatibility of Green Synthesized Silver Nanoparticles

    EPA Science Inventory

    There are currently ~1,000 commercially available products which contain some form of silver nanotechnology, ranging from topological creams and cosmetics, to anti-microbial socks and household cleansers. Previous studies have indicated that silver nanoparticles (Ag NPs) have a ...

  16. Antibacterial activity of silver nanoparticles synthesized from serine.

    PubMed

    Jayaprakash, N; Judith Vijaya, J; John Kennedy, L; Priadharsini, K; Palani, P

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV-Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443nm. The emission spectrum of Ag NPs showed an emission band at 484nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO3 against Gram-positive and Gram-negative bacteria.

  17. Biocatalytic and antibacterial visualization of green synthesized silver nanoparticles using Hemidesmus indicus.

    PubMed

    Latha, M; Sumathi, M; Manikandan, R; Arumugam, A; Prabhu, N M

    2015-05-01

    In the present investigation, we described the green synthesis of silver nanoparticles using plant leaf extract of Hemidesmus indicus. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). TEM images proved that the synthesized silver nanoparticles were spherical in shape with an average particle size of 25.24 nm. To evaluate antibacterial efficacy, bacteria was isolated from poultry gut and subjected to 16S rRNA characterization and confirmed as Shigella sonnei. The in vitro antibacterial efficacy of synthesized silver nanoparticles was studied by agar bioassay, well diffusion and confocal laser scanning microscopy (CLSM) assay. The H. indicus mediated synthesis of silver nanoparticles shows rapid synthesis and higher inhibitory activity (34 ± 0.2 mm) against isolated bacteria S. sonnei at 40 μg/ml.

  18. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    PubMed Central

    2014-01-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles. PMID:25242904

  19. Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

    NASA Astrophysics Data System (ADS)

    Han, Jae Woong; Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Choi, Yun-Jung; Kwon, Deug-Nam; Park, Jin-Ki; Kim, Jin-Hoi

    2014-09-01

    The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate . The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.

  20. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.

    PubMed

    Amooaghaie, Rayhaneh; Saeri, Mohammad Reza; Azizi, Morteza

    2015-10-01

    Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs.

  1. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit.

    PubMed

    Reddy, N Jayachandra; Nagoor Vali, D; Rani, M; Rani, S Sudha

    2014-01-01

    Silver nanoparticles synthesized through bio-green method has been reported to have biomedical applications to control pathogenic microbes as it is cost effective compared to commonly used physical and chemical methods. In present study, silver nanoparticles were synthesized using aqueous Piper longum fruit extract (PLFE) and confirmed by UV-visible spectroscopy. The nanoparticles were spherical in shape with an average particle size of 46nm as determined by scanning electronic microscopy (SEM) and dynamic light scattering (DLS) particle size analyzer respectively. FT-IR spectrum revealed the capping of the phytoconstituents, probably polyphenols from P. longum fruit extract and stabilizing the nanoparticles. Further the ferric ion reducing test, confirmed that the capping agents were condensed tannins. The aqueous P. longum fruit extract (PLFE) and the green synthesized silver nanoparticles (PLAgNPs) showed powerful antioxidant properties in in vitro antioxidant assays. The results from the antimicrobial assays suggested that green synthesized silver nanoparticles (PLAgNPs) were more potent against pathogenic bacteria than the P. longum fruit extract (PLFE) alone. The nanoparticles also showed potent cytotoxic effect against MCF-7 breast cancer cell lines with an IC 50 value of 67μg/ml/24h by the MTT assay. These results support the advantages of using bio-green method for synthesizing silver nanoparticles with antioxidant, antimicrobial and cytotoxic activities those are simple and cost effective as well.

  2. Plasma-Synthesized Silver Nanoparticles on Electrospun Chitosan Nanofiber Surfaces for Antibacterial Applications.

    PubMed

    Annur, Dhyah; Wang, Zhi-Kai; Liao, Jiunn-Der; Kuo, Changshu

    2015-10-12

    Chitosan nanofibers have been electrospun with poly(ethylene oxide) and silver nitrate, as a coelectrospinning polymer and silver nanoparticle precursor, respectively. The average diameter of the as-spun chitosan nanofibers with up to 2 wt % silver nitrate loading was approximately 130 nm, and there was no evidence of bead formation or polymer agglomeration. Argon plasma was then applied for surface etching and synthesis of silver nanoparticles via precursor decomposition. Plasma surface bombardment induced nanoparticle formation primarily on the chitosan nanofiber surfaces, and the moderate surface plasma etching further encouraged maximum exposure of silver nanoparticles. UV-vis spectra showed the surface plasmon resonance signature of silver nanoparticles. The surface-immobilized nanoparticles were visualized by TEM and were found to have average particle diameters as small as 1.5 nm. Surface analysis by infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the interactions between the silver nanoparticles and chitosan molecules, as well as the effect of plasma treatment on the nanofiber surfaces. Finally, a bacteria inhibition study revealed that the antibacterial activity of the electrospun chitosan nanofibers correspondingly increased with the plasma-synthesized silver nanoparticles.

  3. Spectroscopic, microscopic and catalytic properties of silver nanoparticles synthesized using Saraca indica flower

    NASA Astrophysics Data System (ADS)

    Vidhu, V. K.; Philip, Daizy

    2014-01-01

    The bioprospective field is dynamic area of research in the recent years. The present article reports a green synthetic route for the production of highly stable, bio-inspired silver nanoparticles using dried Saraca indica flower. The method is facile, cost effective, simple and reproducible. The reduction of silver ions and the formation of silver nanoparticles has been monitored using UV-visible spectroscopy. The TEM, SAED and XRD result reveal that the silver nanoparticles are crystalline in nature. FTIR spectra are used to identify the biomolecules that bind on the surface of silver nanoparticles, which increased the stability of the particles. S. indica flower extract plays its role as an excellent reducing agent of silver ions and the biosynthesized silver nanoparticles are safer to environment. Also the size dependent catalytic activity of silver nanoparticles in the reduction of cationic dye, Methylene blue by NaBH4 is studied by UV-visible spectroscopy. The efficiency of synthesized nanoparticles as an excellent catalyst is proved by the reduction of Methylene blue which is confirmed by the decrease in the absorbance with time and is attributed to electron relay effect.

  4. Bactericidal Efficiency of Silver Nanoparticles Synthesized from Annona squamosa

    NASA Astrophysics Data System (ADS)

    Jayavardhanan, R.; Nanda, Anima

    2016-09-01

    Nanotechnology is described as an emerging technology that not only holds promise for society, but also is capable of providing novel approaches to overcome our common problems. The present study focused on the synthesis of silver nanoparticles using the metabolites of Annona squamosa seeds. The biological reduction procedure proposed in this method was considered as better one compared to chemical mediated reduction methods. The advantages include nontoxic to the environment, less energy consuming and highly suitable for further biological applications. The seeds were separated from the fruit pulp, grinded into powder and dissolved in distilled water. The suspension was used as reducing agent and treated with silver nitrate at the concentration of 1mM. The reduction reaction was continuously monitored by UV-visible photo spectrometer. Further the samples were subjected to AFM, SEM and XRD analysis for the confirmation of their size, structure, agglomerations and the arrangements of crystals. Finally the antibacterial properties of nanoparticles were tested against clinically important pathogenic microorganisms using disc diffusion method and compared with the activities of standard antibiotics. The combinational effects of nanoparticles with commercial antibiotics also were tested by the same method.

  5. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaler, Abhishek; Mittal, Amit Kumar; Katariya, Mahesh; Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog; Banerjee, Uttam Chand

    2014-09-01

    Therapeutic use of nano-silver is claimed to have reduced side effects and enhanced curative activity as compared to its ionic counterpart (silver ions). The present work aims to screen microbes for the synthesis of silver nanoparticles (AgNPs), to formulate the nano-silver-based Carbopol gel and evaluating its wound healing efficacy on rat model. The goal was to develop the topical formulation based on bio-nano-silver to control the infection and healing the wounds with higher efficacy. Procedure involved the use of Saccharomyces boulardii for the synthesis of silver nanoparticles in the size range of 3-10 nm and these nanoparticles were used for the preparation of Carbopol-based nano-silver gel. Highly stable Carbopol nanogel was developed with good rheological properties. The burn wound healing potential of this nano-silver gel was evaluated on SD rats via visual observation, transepidermal water loss and histology of skin. Excellent wound healing was observed with AgNPs. Biologically synthesized AgNPs-based nano-silver gel showed superior wound healing efficacy as compared to marketed formulations and silver ions.

  6. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion.

    PubMed

    Roy, Kaushik; Sarkar, C K; Ghosh, C K

    2015-07-05

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles.

  7. Photocatalytic activity of biogenic silver nanoparticles synthesized using potato (Solanum tuberosum) infusion

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-07-01

    In this study, we have reported a fast and eco-benign procedure to synthesis silver nanoparticle at room temperature using potato (Solanum tuberosum) infusion along with the study of its photocatalytic activity on methyl orange dye. After addition of potato infusion to silver nitrate solution, the color of the mixture changed indicating formation of silver nanoparticles. Time dependent UV-Vis spectra were obtained to study the rate of nanoparticle formation with time. Purity and crystallinity of the biogenic silver nanoparticles were examined by X-ray diffraction (XRD). Average size and morphology of the nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Fourier transform infra-red spectroscopy (FTIR) was employed to detect functional bio-molecules responsible that contribute to the reduction and capping of biosynthesized Ag nanoparticles. Further, these synthesized nanoparticles were used to investigate their ability to degrade methyl orange dye under sunlight irradiation and the results showed effective photocatalytic property of these biogenic silver nanoparticles.

  8. Impregnation of cotton fabric with silver nanoparticles synthesized by dextran isolated from bacterial species Leuconostoc mesenteroides T3.

    PubMed

    Davidović, Slađana; Miljković, Miona; Lazić, Vesna; Jović, Danica; Jokić, Bojan; Dimitrijević, Suzana; Radetić, Maja

    2015-10-20

    This study was aimed to highlight the possibility of cotton fabric impregnation with silver nanoparticles synthesized by dextran isolated from Leuconostoc mesenteroides T3 in order to obtain antimicrobial properties. The fabrication of dextran was proved by FTIR spectroscopy. Particle sizes of synthesized dextran and silver nanoparticles were measured by dynamic light scattering method. The presence of silver nanoparticles on the surface of cotton fabric was confirmed by scanning electron microscopy, X-ray diffraction measurements and reflectance spectrophotometry. Antimicrobial activity of cotton fabric impregnated with silver nanoparticles was tested against bacteria Escherichia coli and Staphylococcus aureus, and fungus Candida albicans. The results indicated that synthesized silver nanoparticles can provide satisfactory antimicrobial activity. However, maximum reduction (99.9%) of all tested microorganisms can be obtained only when 1.0mmolL(-1) colloid consisting of silver nanoparticles is applied.

  9. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.

    PubMed

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Tahir, Kamran; Rehman, Aziz Ur; Khan, Arifullah; Ullah, Sadeeq; Yuan, Qipeng

    2017-01-01

    Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles.

  10. Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Vasaka (Justicia adhatoda L.) Leaf Extract.

    PubMed

    Bose, Debadin; Chatterjee, Someswar

    2015-06-01

    There is an increasing demand for silver nanoparticles due to its wide applicability in various area of biological science such as in field of antimicrobial and therapeutics, biosensing, drug delivery etc. To use in bioprocess the silver nanoparticles should be biocompatible and free from toxic chemicals. In the present study we report a cost effective and environment friendly route for green synthesis of silver nanoparticles using Vasaka (Justicia adhatoda L.) leaf extract as reducing as well as capping agent. This plant has been opted for the present study for its known medicinal properties and it is easily available. The biosynthesized silver nanoparticles are characterized by UV-Vis spectroscopy and TEM analysis. It is observed the nanoparticles are well shaped and the average particle size is 20 nm in the range of 5-50 nm. The antibacterial activity of these nanoparticles against Pseudomonas aeruginosa MTCC 741 has been measured by disc diffusion method, agar cup assay and serial dilution turbidity measurement assay. The results show green synthesized silver nanoparticles, using Vasaka leaf extract, have a potential to inhibit the growth of bacteria.

  11. Size-Controlled and Optical Properties of Monodispersed Silver Nanoparticles Synthesized by the Radiolytic Reduction Method

    PubMed Central

    Saion, Elias; Gharibshahi, Elham; Naghavi, Kazem

    2013-01-01

    Size-controlled and monodispersed silver nanoparticles were synthesized from an aqueous solution containing silver nitrate as a metal precursor, polyvinyl alcohol as a capping agent, isopropyl alcohol as hydrogen and hydroxyl radical scavengers, and deionized water as a solvent with a simple radiolytic method. The average particle size decreased with an increase in dose due to the domination of nucleation over ion association in the formation of the nanoparticles by gamma reduction. The silver nanoparticles exhibit a very sharp and strong absorption spectrum with the absorption maximum λmax blue shifting with an increased dose, owing to a decrease in particle size. The absorption spectra of silver nanoparticles of various particle sizes were also calculated using a quantum physics treatment and an agreement was obtained with the experimental absorption data. The results suggest that the absorption spectrum of silver nanoparticles possibly derived from the intra-band excitations of conduction electrons from the lowest energy state (n = 5, l = 0) to higher energy states (n ≥ 6; Δl = 0, ±1; Δs = 0, ±1), allowed by the quantum numbers principle. This demonstrates that the absorption phenomenon of metal nanoparticles based on a quantum physics description could be exploited to be added into the fundamentals of metal nanoparticles and the related fields of nanoscience and nanotechnology. PMID:23579953

  12. A comparative study of silver nanoparticles synthesized by arc discharge and femtosecond laser ablation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqiang; Zou, Guisheng; Liu, Lei; Li, Yong; Tong, Hao; Sun, Zhenguo; Zhou, Y. Norman

    2016-10-01

    Silver nanoparticles have been synthesized by arc discharge and femtosecond laser ablation in polyvinylpyrrolidone (PVP) aqueous solution. Both methods are the simple, cost-effective and environment-friendly way to obtain the purity silver nanoparticles. In this study, the structure, composition, morphology, size and distribution, stability, production rate and sintering properties of silver nanoparticles synthesized by both methods were compared. The spherical or pseudo-spherical silver nanoparticles were synthesized by both methods, and the diameters were below 50 nm. The arc discharge-synthesized particle distribution varied with the breakdown voltage, and laser-synthesized particle size mainly depended on the laser energy. PVP solution could cap and stabilize the silver nanoparticles by Ag-O bond, while arc discharge and laser ablation resulted in some level of PVP degradation during processing. Sliver nanoparticle colloids synthesized by both methods had the high negative values of zeta potential and exhibited the good stability. The maximum production rates of the silver nanoparticles synthesized by arc discharge and femtosecond laser ablation were 6.0 and 3.0 mg/min, respectively. In addition, the sintering properties of silver nanoparticles synthesized by both methods were also discussed.

  13. A comparative study on biologically and chemically synthesized silver nanoparticles induced Heat Shock Proteins on fresh water fish Oreochromis niloticus.

    PubMed

    Girilal, M; Krishnakumar, V; Poornima, Paramasivan; Mohammed Fayaz, A; Kalaichelvan, P T

    2015-11-01

    The wide applicability of silver nanoparticles in medicine and pharmaceutical industries leads to its over exploitation and thus contaminating our environment. Majority of these nanoscale dimension particles finally accumulates in fresh water and marine ecosystem. As the nanoparticles behave entirely different from its corresponding bulk material, a better understanding of their environmental impacts in aquatic ecosystems is inevitable. The study was focused on a comparative stress physiology analysis of chemically synthesized silver nanoparticles and biogenic silver nanoparticles. Half maximal inhibitory concentration of biologically synthesized and chemically synthesized nanoparticles was found out (30μg/mL and 20μg/mL respectively). The Heat Shock Protein (HSP70) secretion was analysed in the fresh water fish Oreochromis niloticus after exposing to different concentrations of biologically and chemically synthesized silver nanoparticles along with the silver in its ionic form. The intense immune-histochemical staining of fish tissues (muscle, kidney and liver) analyzed proportionately reflected the stress created. The colour intensity was directly proportional to the stress created or the stress protein released. High level of HSP70 expression was observed in all of the fish tissues exposed to silver ions and chemically synthesized silver nanoparticles, when compared to that of biologically synthesized. The results revealed the significance of comparatively safe and less toxic biogenic nanoparticles compared to the chemically synthesized.

  14. Antimicrobial, Antioxidant and Cytotoxic Activity of Silver Nanoparticles Synthesized by Leaf Extract of Erythrina suberosa (Roxb.)

    PubMed Central

    Mohanta, Yugal K.; Panda, Sujogya K.; Jayabalan, Rasu; Sharma, Nanaocha; Bastia, Akshaya K.; Mohanta, Tapan K.

    2017-01-01

    In this experiment, biosynthesized silver nanoparticles (AgNPs) were synthesized using aqueous leaf extract of Erythrina suberosa (Roxb.). The biosynthesis of silver nanoparticle was continuously followed by UV-vis spectrophotometric analysis. The response of the phytoconstituents resides in E. suberusa during synthesis of stable AgNPs were analyzed by ATR- fourier-transform infrared spectroscopy. Further, the size, charge, and polydispersity nature of AgNPs were studied using dynamic light scattering spectroscopy. The morphology of the nanoparticles was determined by scanning electron microscopy. Current result shows core involvement of plant extracts containing glycosides, flavonoids, and phenolic compounds played a crucial role in the biosynthesis of AgNPs. The antimicrobial activities of silver nanoparticles were evaluated against different pathogenic bacterium and fungi. The antioxidant property was studied by radical scavenging (DPPH) assay and cytotoxic activity was evaluated against A-431 osteosarcoma cell line by MTT assay. The characteristics of the synthesized silver nanoparticles suggest their application as a potential antimicrobial and anticancer agent. PMID:28367437

  15. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract.

    PubMed

    Mamun Or Rashida, Md; Shafiul Islam, Md; Azizul Haque, Md; Arifur Rahman, Md; Tanvir Hossain, Md; Abdul Hamid, Md

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV-Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can't be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program.

  16. Antibacterial Activity of Polyaniline Coated Silver Nanoparticles Synthesized from Piper Betle Leaves Extract

    PubMed Central

    Mamun Or Rashida, Md.; Shafiul Islam, Md.; Azizul Haque, Md.; Arifur Rahman, Md.; Tanvir Hossain, Md.; Abdul Hamid, Md.

    2016-01-01

    Plants or natural resources have been found to be a good alternative method for nanoparticles synthesis. In this study, polyaniline coated silver nanoparticles (AgNPs) synthesized from Piper betle leaves extract were investigated for their antibacterial activity. Silver nanoparticles were prepared from the reduction of silver nitrate and NaBH4 was used as reducing agent. Silver nanoparticles and extracts were mixed thoroughly and then coated by polyaniline. Prepared nanoparticles were characterized by Visual inspection, Ultraviolet-visible spectroscopy (UV), Fourier transform infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) techniques. Antibacterial activities of the synthesized silver nanoparticles were tested against Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. UV–Vis spectrum of reaction mixture showed strong absorption peak with centering at 400 nm. The FT-IR results imply that Ag-NPs were successfully synthesized and capped with bio-compounds present in P. betle. TEM image showed that Ag-NPs formed were well dispersed with a spherical structures and particle size ranging from 10 to 30 nm. The result revealed that Ag-Extract NPs showed 32.78±0.64 mm zone of inhibition against S. aureus, whereas norfloxacin (positive control) showed maximum 32.15±0.40 mm zone of inhibition for S. aureus. Again, maximum zone of inhibition 29.55±0.45 mm was found for S. typhi, 27.12±0.38 mm for E. coli and 21.95±0.45 mm for P. aeruginosa. The results obtained by this study can’t be directly extrapolated to human; so further studies should be undertaken to established the strong antimicrobial activity of Ag-Extract NPs for drug development program. PMID:27642330

  17. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.

    PubMed

    Gholami-Shabani, Mohammadhassan; Akbarzadeh, Azim; Norouzian, Dariush; Amini, Abdolhossein; Gholami-Shabani, Zeynab; Imani, Afshin; Chiani, Mohsen; Riazi, Gholamhossein; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2014-04-01

    Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of -34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

  18. Studies of antibacterial efficacy of different biopolymer protected silver nanoparticles synthesized under reflux condition

    NASA Astrophysics Data System (ADS)

    Su, Chia Hung; Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Adhikary, Shritama; Pandian, Kannaiyan; Anbu, Periyasamy

    2017-01-01

    In the present study, a simple method to impregnate silver nanoparticles (AgNPs) into carboxymethyl cellulose (CMC) and sodium alginate (SA) is reported for the first time. Single step synthesis of carboxymethyl cellulose (CMC) and sodium alginate (SA) biopolymer protected silver nanoparticles (AgNPs) using aniline as a reducing agent under reflux conditions was investigated. The synthesized nanoparticles were characterized by UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The FESEM results of CMC@AgNPs and SA@AgNPs showed the formation of spherical nanoparticles sized 30-60 nm. Testing of the antibiofilm efficacy of the polymer protected AgNPs against different bacterial strains such as Klebsiella pneumoniae MTCC 4032 and Streptococcus pyogenes MTCC 1924 revealed that the biopolymer protected AgNPs had excellent antibiofilm activity.

  19. Spectral Studies of UV and Solar Photocatalytic Degradation of AZO Dye and Textile Dye Effluents Using Green Synthesized Silver Nanoparticles

    PubMed Central

    Mariselvam, R.; Ranjitsingh, A. J. A.; Mosae Selvakumar, P.; Alarfaj, Abdullah A.; Munusamy, Murugan A.

    2016-01-01

    The photocatalytic degradation of the chemical dye AZO and dye effluents in different time duration has been investigated using biologically synthesized silver nanoparticles. Dye industry effluents and AZO dye undergo degradation to form harmless intermediate and colourless products following irradiation by UV and solar light in the presence of green synthesized silver nanoparticles. The degree of degradation was tested under the experimental conditions such as PH, temperature, and absorbance of the dye in UV and solar light was measured. The degradation was higher in the UV light source than in the solar light source. Green synthesized silver nanoparticles in the UV light source were found to expedite the dye degradation process. PMID:27382364

  20. Spectral Studies of UV and Solar Photocatalytic Degradation of AZO Dye and Textile Dye Effluents Using Green Synthesized Silver Nanoparticles.

    PubMed

    Mariselvam, R; Ranjitsingh, A J A; Mosae Selvakumar, P; Alarfaj, Abdullah A; Munusamy, Murugan A

    2016-01-01

    The photocatalytic degradation of the chemical dye AZO and dye effluents in different time duration has been investigated using biologically synthesized silver nanoparticles. Dye industry effluents and AZO dye undergo degradation to form harmless intermediate and colourless products following irradiation by UV and solar light in the presence of green synthesized silver nanoparticles. The degree of degradation was tested under the experimental conditions such as P(H), temperature, and absorbance of the dye in UV and solar light was measured. The degradation was higher in the UV light source than in the solar light source. Green synthesized silver nanoparticles in the UV light source were found to expedite the dye degradation process.

  1. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system).

    PubMed

    Mukherjee, Sudip; Chowdhury, Debabrata; Kotcherlakota, Rajesh; Patra, Sujata; B, Vinothkumar; Bhadra, Manika Pal; Sreedhar, Bojja; Patra, Chitta Ranjan

    2014-01-01

    In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future.

  2. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1 System)

    PubMed Central

    Mukherjee, Sudip; Chowdhury, Debabrata; Kotcherlakota, Rajesh; Patra, Sujata; B, Vinothkumar; Bhadra, Manika Pal; Sreedhar, Bojja; Patra, Chitta Ranjan

    2014-01-01

    In this report, we have designed a simple and efficient green chemistry approach for the synthesis of colloidal silver nanoparticles (b-AgNPs) that is formed by the reduction of silver nitrate (AgNO3) solution using Olax scandens leaf extract. The colloidal b-AgNPs, characterized by various physico-chemical techniques exhibit multifunctional biological activities (4-in-1 system). Firstly, bio-synthesized silver nanoparticles (b-AgNPs) shows enhanced antibacterial activity compared to chemically synthesize silver nanoparticles (c-AgNPs). Secondly, b-AgNPs show anti-cancer activities to different cancer cells (A549: human lung cancer cell lines, B16: mouse melanoma cell line & MCF7: human breast cancer cells) (anti-cancer). Thirdly, these nanoparticles are biocompatible to rat cardiomyoblast normal cell line (H9C2), human umbilical vein endothelial cells (HUVEC) and Chinese hamster ovary cells (CHO) which indicates the future application of b-AgNPs as drug delivery vehicle. Finally, the bio-synthesized AgNPs show bright red fluorescence inside the cells that could be utilized to detect the localization of drug molecules inside the cancer cells (a diagnostic approach). All results together demonstrate the multifunctional biological activities of bio-synthesized AgNPs (4-in-1 system) that could be applied as (i) anti-bacterial & (ii) anti-cancer agent, (iii) drug delivery vehicle, and (iv) imaging facilitator. To the best of our knowledge, there is not a single report of biosynthesized AgNPs that demonstrates the versatile applications (4-in-1 system) towards various biomedical applications. Additionally, a plausible mechanistic approach has been explored for the synthesis of b-AgNPs and its anti-bacterial as well as anti-cancer activity. We strongly believe that bio-synthesized AgNPs will open a new direction towards various biomedical applications in near future. PMID:24505239

  3. Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract.

    PubMed

    Nagajyothi, P C; Sreekanth, T V M; Lee, Jae-il; Lee, Kap Duk

    2014-01-05

    In the present study, silver nanoparticles (AgNPs) were rapidly synthesized from silver nitrate solution at room temperature using Inonotus obliquus extract. The mycogenic synthesized AgNPs were characterized by UV-Visible absorption spectroscopy, Fourier transform infrared (FTIR), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). SEM revealed mostly spherical nanoparticles ranging from 14.7 to 35.2nm in size. All AgNPs concentrations showed good ABT radical scavenging activity. Further, AgNPs showed effective antibacterial activity against both gram negative and gram positive bacteria and antiproliferative activity toward A549 human lung cancer (CCL-185) and MCF-7 human breast cancer (HTB-22) cell lines. The samples demonstrated considerably high antibacterial, and antiproliferative activities against bacterial strains and cell lines.

  4. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization.

    PubMed

    Amendola, Vincenzo; Polizzi, Stefano; Meneghetti, Moreno

    2007-06-05

    Stable colloidal solutions of free silver nanoparticles (AgNPs) have been synthesized without reducing and stabilizing agents in pure acetonitrile and N,N-dimethylformamide by laser ablation of the bulk metal. Synthesis in tetrahydrofuran and dimethyl sulfoxide gave nanoparticles surrounded by a carbon shell or included in a carbon matrix. Mie theory for free and core@shell spheres accounts for the UV-vis spectra of the nanoparticles and allows their structural characterization. Transmission electron microscopy confirms the structure of the synthesized AgNPs. It is shown that free nanoparticles can be immediately functionalized, without further treatments, in the organic solvent used for the synthesis with molecules which are soluble in the same solvent.

  5. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells.

    PubMed

    Jang, Suk Ju; Yang, In Jun; Tettey, Clement O; Kim, Ki Mo; Shin, Heung Mook

    2016-11-01

    In recent years, green synthesis of metallic nanoparticles is a growing area of research because of their potential applications in nanomedicine. In the present study we synthesized silver nanoparticles (silver NPs) from AgNO3 using aqueous extract of Lonicera hypoglauca flower as reducing and capping agents. The synthesized silver NPs were characterized using UV-Vis spectroscopy, FTIR, SEM-ED, TEM and SAED. Silver NPs were found to be significantly toxic to MCF-7 cells via the induction of apoptosis whereas sparing normal immune system (RAW 264.7) cells.

  6. Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Gnana Selvi, B. Clara; Madhavan, J.; Santhanam, Amutha

    2016-09-01

    In recent years researchers were attracted towards marine sources due to the presence of active components in it. Seaweeds were widely used in pharmaceutical research for their known biological activities. The biological synthesis method of silver nanoparticles (AgNPs) using Padina tetrastromatica seaweed extract and their cytotoxicity against breast cancer MCF-7 cells was reported in this study. The synthesized AgNPs using seaweed extract were subjected to x-ray diffraction, UV-visible spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscope, energy dispersive x-ray, zeta potential to elucidate the structural, morphology, size as well as surface potential parameters. An absorption peak at 430 nm in UV-visible spectrum reveals the excitation and surface plasmon resonance of AgNPs. FE-SEM micrographs exhibits the biosynthesized AgNPs, which are pre-dominantly round shaped and the size ranges between 40-50 nm. The zeta potential value of -27.6 mV confirms the stable nature of biosynthesized silver nanoparticles. Furthermore, the biological synthesized Ag NPs exhibited a dose-dependent cytotoxicity against human breast cancer cell (MCF-7) and the inhibitory concentration (IC50) was found for AgNPs against MCF-7 at 24 h incubation. Biological method of synthesizing silver nanoparticles shows a environmental friendly property which helps in effective electrifying usage in many fields.

  7. The CdSe/CdS Quantum Dots Luminescence Enhancement Near Silica Layer with the Ion-Synthesized Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shamilov, R. R.; Galyametdinov, Yu G.; Nugaeva, A. A.; Nuzhdin, V. I.; Valeev, V. F.; Stepanov, A. L.

    2016-08-01

    Photoluminescence characteristics of hybrid quantum dots CdSe/CdS deposited on the surface of silica containing the layer of ion-synthesized silver nanoparticles were studied. The quenching or enhancement of the luminescence depending on distance between silver nanoparticles and quantum dots layers was detected. The optimal spacer layer and excitation waveleghth for the highest intensity of their photoluminescence in the plasmon field of metal nanoparticles was defined.

  8. Luminescence of CdSe quantum dots near a layer of silver nanoparticles ion-synthesized in sapphire

    NASA Astrophysics Data System (ADS)

    Galyametdinov, Yu. G.; Shamilov, R. R.; Nuzhdin, V. I.; Valeev, V. F.; Stepanov, A. L.

    2016-11-01

    We study the characteristics of the luminescence of composite films based on polymethyl methacrylate with CdSe quantum dots deposited from solution onto the surface of a sapphire substrate containing a preliminarily formed layer with ion-synthesized silver nanoparticles. The sapphire layer with silver nanoparticles exhibits selective plasmon absorption in the visible spectral range with a peak at 463 nm. Enhancement in the exciton luminescence intensity of quantum dots with a peak at 590 nm is observed upon excitation at wavelengths lying in the region of plasmon resonance of metal nanoparticles, as well as luminescence quenching for quantum dots located in the vicinity of silver nanoparticles.

  9. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    NASA Astrophysics Data System (ADS)

    Ren, Yan-yu; Yang, Hui; Wang, Tao; Wang, Chuang

    2016-11-01

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag+ (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO3) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO3 concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV-vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10-16 nm. FTIR analysis revealed that biological macromolecules with groups of sbnd NH2, sbnd OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications.

  10. Fucan-coated silver nanoparticles synthesized by a green method induce human renal adenocarcinoma cell death.

    PubMed

    Rocha Amorim, Monica Oliveira; Lopes Gomes, Dayanne; Dantas, Larisse Araujo; Silva Viana, Rony Lucas; Chiquetti, Samanta Cristina; Almeida-Lima, Jailma; Silva Costa, Leandro; Oliveira Rocha, Hugo Alexandre

    2016-12-01

    Polysaccharides containing sulfated L-fucose are often called fucans. The seaweed Spatoglossum schröederi synthesizes three fucans, among which fucan A is the most abundant. This polymer is not cytotoxic against various normal cell lines and is non-toxic to rats when administered at high doses. In addition, it exhibits low toxicity against tumor cells. With the aim of increasing the toxicity of fucan A, silver nanoparticles containing this polysaccharide were synthesized using a green chemistry method. The mean size of these nanoparticles was 210nm. They exhibited a spherical shape and negative surface charge and were stable for 14 months. When incubated with cells, these nanoparticles did not show any toxic effects against various normal cell lines; however, they decreased the viability of various tumor cells, especially renal adenocarcinoma cells 786-0. Flow cytometry analyses showed that the nanoparticles induced cell death responses of 786-0 cells through necrosis. Assays performed with several renal cell lines (HEK, VERO, MDCK) showed that these nanoparticles only induce death of 786-0 cells. The data obtained herein leads to the conclusion that fucan A nanoparticles are promising agents against renal adenocarcinoma.

  11. Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol-gel technique

    NASA Astrophysics Data System (ADS)

    Jadalannagari, Sushma; Deshmukh, Ketaki; Ramanan, Sutapa Roy; Kowshik, Meenal

    2013-02-01

    Silver doped hydroxyapatite (Ag x Ca100-x (PO4)6 (OH)2) nanorods were synthesized using a modified sol gel method at a low temperature of 100 °C. Silver concentration was varied as x = 1, 3 and 5. X-ray diffraction studies showed that the synthesized silver doped hydroxyapatite (Ag-HAp) was fully crystalline with hexagonal structure and an average crystallite size of 25 nm. At all the doping concentrations, the nanoparticles were rod shaped with an average length of 110-180 nm and diameter of 20-25 nm as determined from transmission electron microscopy (TEM) studies. These compounds were tested for their antimicrobial activities against E. coli (MTCC 2345) and S. aureus (MTCC 737). Antimicrobial activity was observed for all the three silver doping concentrations with the highest activity for x = 3, in terms of the zone of inhibition and the percentage reduction in the number of colonies. Hemolysis ratios for x = 1 and 3 Ag-HAp samples were below 2 %, indicating that they are highly hemocompatible and can be a promising biomaterial for tissue engineering applications in orthopedics.

  12. Mechanistic aspects of biologically synthesized silver nanoparticles against food- and water-borne microbes.

    PubMed

    Krishnaraj, Chandran; Harper, Stacey L; Choe, Ho Sung; Kim, Kwang-Pyo; Yun, Soon-Il

    2015-10-01

    In the present study, silver nanoparticles (AgNPs) synthesized from aqueous leaves extract of Malva crispa and their mode of interaction with food- and water-borne microbes were investigated. Formation of AgNPs was conformed through UV-Vis, FE-SEM, EDS, AFM, and HR-TEM analyses. Further the concentration of silver (Ag) in the reaction mixture was conformed through ICP-MS analysis. Different concentration of nanoparticles (1-3 mM) tested to know the inhibitory effect of bacterial pathogens such as Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, Salmonella typhi, Salmonella enterica and the fungal pathogens of Penicillium expansum, Penicillium citrinum, Aspergillus oryzae, Aspergillus sojae and Aspergillus niger. Interestingly, nanoparticles synthesized from 2 to 3 mM concentration of AgNO3 showed excellent inhibitory activities against both bacterial and fungal pathogens which are well demonstrated through well diffusion, poison food technique, minimum inhibitory concentration (MIC), and minimum fungicidal concentration (MFC). In addition, mode of interaction of nanoparticles into both bacterial and fungal pathogens was documented through Bio-TEM analysis. Further the genomic DNA isolated from test bacterial strains and their interaction with nanoparticles was carried out to elucidate the possible mode of action of nanoparticles against bacteria. Interestingly, AgNPs did not show any genotoxic effect against all the tested bacterial strains which are pronounced well in agarose gel electrophoresis and for supporting this study, UV-Vis and Bio-TEM analyses were carried out in which no significant changes observed compared with control. Hence, the overall results concluded that the antimicrobial activity of biogenic AgNPs occurred without any DNA damage.

  13. Photoscopic characterization of green synthesized silver nanoparticles from Trichosanthes tricuspidata and its antibacterial potential.

    PubMed

    Yuvarajan, Ragunathan; Natarajan, Devarajan; Ragavendran, Chinnasamy; Jayavel, Ramasamy

    2015-08-01

    The present study focused on the finding of reducing agents for the formation of silver nanoparticles (AgNPs) from the plant, Trichosanthes tricuspidata. The synthesized AgNPs were characterized using UV-Visible spectroscopy, particle size analyzer (PSA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses. The UV-Visible spectrum resulted a sharp peak (at 430nm) represents the strong plasmon resonance of silver. The average size distributions of AgNPs were found to be 78.49nm, through (PSA), and the silver ion with its crystalline nature was confirmed using intensity (2θ) peak value of 38.22°, 44.66°, 64.61°, and 77.49°. The SEM micrograph revealed that the synthesized AgNPs have a spherical morphology with the size ranges from 20 to 28nm. AFM showed the presence of polydispersed AgNPs with its size (20 to 60nm in height). The gas chromatography-mass spectroscopy (GC-MS) study analyzed the responsible compounds present in the methanolic extracts for the bio-reduction of AgNPs and their antibacterial effect was studied. AgNPs exhibited preponderant activity than the methanolic extracts on clinical pathogens. Thus, the synthesized AgNPs might act as an effective antibacterial agent. Further studies are required to isolate the specific compound responsible for the reduction capability and its their inhibitory mechanisms for target bacterial strains.

  14. Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles.

    PubMed

    Fortunati, E; Rinaldi, S; Peltzer, M; Bloise, N; Visai, L; Armentano, I; Jiménez, A; Latterini, L; Kenny, J M

    2014-01-30

    Ternary nano-biocomposite films based on poly(lactic acid) (PLA) with modified cellulose nanocrystals (s-CNC) and synthesized silver nanoparticles (Ag) have been prepared and characterized. The functionalization of the CNC surface with an acid phosphate ester of ethoxylated nonylphenol favoured its dispersion in the PLA matrix. The positive effects of the addition of cellulose and silver on the PLA barrier properties were confirmed by reductions in the water permeability (WVP) and oxygen transmission rate (OTR) of the films tested. The migration level of all nano-biocomposites in contact with food simulants were below the permitted limits in both non-polar and polar simulants. PLA nano-biocomposites showed a significant antibacterial activity influenced by the Ag content, while composting tests showed that the materials were visibly disintegrated after 15 days with the ternary systems showing the highest rate of disintegration under composting conditions.

  15. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.

    PubMed

    Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

    2015-02-05

    The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise in vitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation.

  16. Antibacterial and cytotoxic potential of silver nanoparticles synthesized using latex of Calotropis gigantea L.

    NASA Astrophysics Data System (ADS)

    Rajkuberan, Chandrasekaran; Sudha, Kannaiah; Sathishkumar, Gnanasekar; Sivaramakrishnan, Sivaperumal

    2015-02-01

    The present study aimed to synthesis silver nanoparticles (AgNPs) in a greener route using aqueous latex extract of Calotropis gigantea L. toward biomedical applications. Initially, synthesis of AgNPs was confirmed through UV-Vis spectroscopy which shows the surface plasmonic resonance peak (SPR) at 420 nm. Fourier transform infrared spectroscopy (FTIR) analysis provides clear evidence that protein fractions present in the latex extract act as reducing and stabilizing bio agents. Energy dispersive X-ray (EDAX) spectroscopy confirms the presence of silver as a major constituent element. X-ray diffractograms displays that the synthesized AgNPs were biphasic crystalline nature. Electron microscopic studies such as Field emission scanning electron microscopic (Fe-SEM) and Transmission electron microscope (TEM) reveals that synthesized AgNPs are spherical in shape with the size range between 5 and 30 nm. Further, crude latex aqueous extract and synthesized AgNPs were evaluated against different bacterial pathogens such as Bacillus cereus, Enterococci sp, Shigella sp, Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus aureus and Escherichia coli. Compared to the crude latex aqueous extract, biosynthesized AgNPs exhibits a remarkable antimicrobial activity. Likewise invitro anticancer study manifests the cytotoxicity value of synthesized AgNPs against tested HeLa cells. The output of this study clearly suggesting that biosynthesized AgNPs using latex of C. gigantea can be used as promising nanomaterial for therapeutic application in context with nanodrug formulation.

  17. Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes

    PubMed Central

    Raza, Muhammad Akram; Kanwal, Zakia; Rauf, Anum; Sabri, Anjum Nasim; Riaz, Saira; Naseem, Shahzad

    2016-01-01

    Silver nanoparticles (AgNPs) of different shapes and sizes were prepared by solution-based chemical reduction routes. Silver nitrate was used as a precursor, tri-sodium citrate (TSC) and sodium borohydride as reducing agents, while polyvinylpyrrolidone (PVP) was used as a stabilizing agent. The morphology, size, and structural properties of obtained nanoparticles were characterized by scanning electron microscopy (SEM), UV-visible spectroscopy (UV-VIS), and X-ray diffraction (XRD) techniques. Spherical AgNPs, as depicted by SEM, were found to have diameters in the range of 15 to 90 nm while lengths of the edges of the triangular particles were about 150 nm. The characteristic surface plasmon resonance (SPR) peaks of different spherical silver colloids occurring in the wavelength range of 397 to 504 nm, whereas triangular particles showed two peaks, first at 392 nm and second at 789 nm as measured by UV-VIS. The XRD spectra of the prepared samples indicated the face-centered cubic crystalline structure of metallic AgNPs. The in vitro antibacterial properties of all synthesized AgNPs against two types of Gram-negative bacteria, Pseudomonas aeruginosa and Escherichia coli were examined by Kirby–Bauer disk diffusion susceptibility method. It was noticed that the smallest-sized spherical AgNPs demonstrated a better antibacterial activity against both bacterial strains as compared to the triangular and larger spherical shaped AgNPs. PMID:28335201

  18. In Vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (Danio rerio).

    PubMed

    Krishnaraj, Chandran; Harper, Stacey L; Yun, Soon-Il

    2016-01-15

    The present study examines the deleterious effect of biologically synthesized silver nanoparticles in adult zebrafish. Silver nanoparticles (AgNPs) used in the study were synthesized by treating AgNO3 with aqueous leaves extract of Malva crispa Linn., a medicinal herb as source of reductants. LC50 concentration of AgNPs at 96 h was observed as 142.2 μg/l. In order to explore the underlying toxicity mechanisms of AgNPs, half of the LC50 concentration (71.1 μg/l) was exposed to adult zebrafish for 14 days. Cytological changes and intrahepatic localization of AgNPs were observed in gills and liver tissues respectively, and the results concluded a possible sign for oxidative stress. In addition to oxidative stress the genotoxic effect was observed in peripheral blood cells like presence of micronuclei, nuclear abnormalities and also loss in cell contact with irregular shape was observed in liver parenchyma cells. Hence to confirm the oxidative stress and genotoxic effects the mRNA expression of stress related (MTF-1, HSP70) and immune response related (TLR4, NFKB, IL1B, CEBP, TRF, TLR22) genes were analyzed in liver tissues and the results clearly concluded that the plant extract mediated synthesis of AgNPs leads to oxidative stress and immunotoxicity in adult zebrafish.

  19. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method

    NASA Astrophysics Data System (ADS)

    Zhu, Shao-Peng; Tang, Shao-Chun; Meng, Xiang-Kang

    2009-07-01

    Silver nanoparticles with an average size of about 20 nm are synthesized in a colloidal solution with the aid of microwave irradiation. Neither additional reductant nor stabilizer is required in this microwave-assisted method. The color of the colloidal solution is found to be dark green, different from the characteristic yellow of silver colloidal solutions. The silver nanoparticles in the colloidal solution have a narrow size distribution and large yield quantity. UV-visible absorption spectroscopy analysis reveals that the as-synthesized monodisperse silver nanoparticles have exceptional optical properties. Raman spectroscopy measurements demonstrate that these silver nanoparticles exhibit a notable surface-enhanced Raman scattering ability.

  20. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast ( Saccharomyces cerevisiae) extract

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sarkar, C. K.; Ghosh, C. K.

    2015-11-01

    Synthesis of metallic and semiconductor nanoparticles through physical and chemical route is quiet common but biological synthesis procedures are gaining momentum due to their simplicity, cost-effectivity and eco-friendliness. Here, we report green synthesis of silver nanoparticles from aqueous solution of silver salts using yeast ( Saccharomyces cerevisiae) extract. The nanoparticles formation was gradually investigated by UV-Vis spectrometer. X-ray diffraction analysis was done to identify different phases of biosynthesized Ag nanoparticles. Transmission electron microscopy was performed to study the particle size and morphology of silver nanoparticles. Fourier transform infrared spectroscopy of the nanoparticles was performed to study the role of biomolecules capped on the surface of Ag nanoparticles during interaction. Photocatalytic activity of these biosynthesized nanoparticles was studied using an organic dye, methylene blue under solar irradiation and these nanoparticles showed efficacy in degrading the dye within a few hours of exposure.

  1. Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus.

    PubMed

    Rajakumar, G; Abdul Rahuman, A

    2012-08-01

    Traditional parasite control is primarily based on the use of chemical acaricides, which unfortunately have many negative side effects. The aim of the present study was to evaluate the effect of plant synthesized silver nanoparticles (AgNPs) using aqueous leaf extract of Manilkara zapota to control Rhipicephalus (Boophilus) microplus. The synthesized AgNPs were characterized by UV-vis spectrum, scanning electron microscopy (SEM), Fourier transform infrared and X-ray diffraction. The UV-vis spectrum of the aqueous medium containing silver nanostructures showed a peak at 421 nm corresponding to the surface plasmon resonance band of AgNPs. SEM supports the biosynthesis and characterization of AgNPs with spherical and oval in shape and size of 70-140 nm. Acaricidal activity of aqueous leaf extract of M. zapota and synthesized AgNPs were carried out against R. (B.) microplus and the results showed the LC(50) values of 16.72 and 3.44 mg/L; r(2)=0.856 and 0.783), respectively.

  2. Photocatalytic and antibacterial activities of gold and silver nanoparticles synthesized using biomass of Parkia roxburghii leaf.

    PubMed

    Paul, Bappi; Bhuyan, Bishal; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    The present study reports a green approach for synthesis of gold (Au) and silver (Ag) nanoparticles (NPs) using dried biomass of Parkia roxburghii leaf. The biomass of the leaf acts as both reductant as well as stabilizer. The as-synthesized nanoparticles were characterized by time-dependent UV-visible, Fourier transform infrared (FT-IR), powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) analyses. The UV-visible spectra of synthesized Au and Ag NPs showed surface plasmon resonance (SPR) at 555 and 440 nm after 12h. Powder XRD studies revealed formation of face-centered cubic structure for both Au and Ag NPs with average crystallite size of 8.4 and 14.74 nm, respectively. The TEM image showed the Au NPs to be monodispersed, spherical in shape with sizes in the range of 5-25 nm. On the other hand, Ag NPs were polydispersed, quasi-spherical in shape with sizes in the range of 5-25 nm. Investigation of photocatalytic activities of Au and Ag NPs under solar light illumination reveals that both these particles have pronounced effect on degradation of dyes viz., methylene blue (MB) and rhodamine b (RhB). Antibacterial activity of the synthesized NPs was studied on Gram positive bacteria Staphylococcus aureus and Gram negative bacteria Escherichia coli. Both Au and Ag NPs showed slightly higher activity on S. aureus than on E. coli.

  3. Microalgae associated Brevundimonas sp. MSK 4 as the nano particle synthesizing unit to produce antimicrobial silver nanoparticles.

    PubMed

    Rajamanickam, Karthic; Sudha, S S; Francis, Mebin; Sowmya, T; Rengaramanujam, J; Sivalingam, Periyasamy; Prabakar, Kandasamy

    2013-09-01

    The biosynthesis of silver nanoparticles and its antimicrobial property was studied using bacteria isolated from Spirulina products. Isolated bacteria were identified as Bacillus sp. MSK 1 (JX495945), Staphylococcus sp. MSK 2 (JX495946), Bacillus sp. MSK 3 (JX495947) and Brevundimonas sp. MSK 4 (JX495948). Silver nanoparticles (AgNPs) were synthesized using bacterial culture filtrate with AgNO3. The initial syntheses of Ag nanoparticles were characterized by UV-vis spectrophotometer (by measuring the color change to intense brown). Fourier Transform Infrared Spectroscopy (FTIR) study showed evidence that proteins are possible reducing agents and Energy-dispersive X-ray (EDX) study showing the metal silver as major signal. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Synthesized Ag nanoparticles with an average size of 40-65 nm have antimicrobial property against human pathogens like Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Among the isolates Brevundimonas sp. MSK 4 alone showed good activity in both synthesis of AgNPs and antimicrobial activity. This work demonstrates the possible use of biological synthesized silver nanoparticles to combat the drug resistant problem.

  4. Microalgae associated Brevundimonas sp. MSK 4 as the nano particle synthesizing unit to produce antimicrobial silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Rajamanickam, Karthic; Sudha, S. S.; Francis, Mebin; Sowmya, T.; Rengaramanujam, J.; Sivalingam, Periyasamy; Prabakar, Kandasamy

    2013-09-01

    The biosynthesis of silver nanoparticles and its antimicrobial property was studied using bacteria isolated from Spirulina products. Isolated bacteria were identified as Bacillus sp. MSK 1 (JX495945), Staphylococcus sp. MSK 2 (JX495946), Bacillus sp. MSK 3 (JX495947) and Brevundimonas sp. MSK 4 (JX495948). Silver nanoparticles (AgNPs) were synthesized using bacterial culture filtrate with AgNO3. The initial syntheses of Ag nanoparticles were characterized by UV-vis spectrophotometer (by measuring the color change to intense brown). Fourier Transform Infrared Spectroscopy (FTIR) study showed evidence that proteins are possible reducing agents and Energy-dispersive X-ray (EDX) study showing the metal silver as major signal. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and X-ray diffraction (XRD). Synthesized Ag nanoparticles with an average size of 40-65 nm have antimicrobial property against human pathogens like Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. Among the isolates Brevundimonas sp. MSK 4 alone showed good activity in both synthesis of AgNPs and antimicrobial activity. This work demonstrates the possible use of biological synthesized silver nanoparticles to combat the drug resistant problem.

  5. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors.

    PubMed

    Rajakumar, G; Abdul Rahuman, A

    2011-06-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In this study, larvicidal activity of synthesized silver nanoparticles (AgNPs) utilizing aqueous extract from Eclipta prostrata, a member of the Asteraceae was investigated against fourth instar larvae of filariasis vector, Culex quinquefasciatus say and malaria vector, Anopheles subpictus Grassi (Diptera: Culicidae). The synthesized AgNPs characterized by UV-vis spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). SEM analyses of the synthesized AgNPs were clearly distinguishable measured 35-60 nm in size. Larvae were exposed to varying concentrations of aqueous extract of synthesized AgNPs for 24h. The maximum efficacy was observed in crude aqueous, and synthesized AgNPs against C. quinquefasciatus (LC(50)=27.49 and 4.56 mg/L; LC(90)=70.38 and 13.14 mg/L), and against A. subpictus (LC(50)=27.85 and 5.14 mg/L; LC(90)=71.45 and 25.68 mg/L) respectively. The chi-square value were significant at p<0.05 level. These results suggest that the synthesized AgNPs have the potential to be used as an ideal eco-friendly approach for the control of the Culex tritaeniorhynchus and A. subpictus. This method is considered as a new approach to control vectors. Therefore, this study provides first report on the mosquito larvicidal activity of synthesized AgNPs against vectors.

  6. Antibacterial Activity of Electrochemically Synthesized Colloidal Silver Nanoparticles Against Hospital-Acquired Infections

    NASA Astrophysics Data System (ADS)

    Thuc, Dao Tri; Huy, Tran Quang; Hoang, Luc Huy; Hoang, Tran Huy; Le, Anh-Tuan; Anh, Dang Duc

    2017-02-01

    This study evaluated the antibacterial activity of electrochemically synthesized colloidal silver nanoparticles (AgNPs) against hospital-acquired infections. Colloidal AgNPs were synthesized via a single process using bulk silver bars, bi-distilled water, trisodium citrate, and direct current voltage at room temperature. Colloidal AgNPs were characterized by transmission electron microscopy, field-emission scanning electron microscopy, and energy-dispersive x-ray analyses. The antibacterial activity of colloidal AgNPs against four bacterial strains isolated from clinical samples, including methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, multidrug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Klebsiella pneumonia, was evaluated by disc diffusion, minimum inhibitory concentration (MIC), and ultrathin sectioning electron microscopy. The results showed that the prepared AgNPs were 19.7 ± 4.3 nm in size, quasi-spherical, and of high purity. Zones of inhibition approximately 6-10 mm in diameter were found, corresponding to AgNPs concentrations of 50 μg/mL to 100 μg/mL. The MIC results revealed that the antibacterial activity of the prepared AgNPs was strongly dependent on the concentration and strain of the tested bacteria.

  7. Antibacterial Potential of Jatropha curcas Synthesized Silver Nanoparticles against Food Borne Pathogens

    PubMed Central

    Chauhan, Nitin; Tyagi, Amit K.; Kumar, Pushpendar; Malik, Anushree

    2016-01-01

    The aqueous leaf extract of Jatropha curcas was used for the synthesis of silver nanoparticles (Jc-AgNps) which were further evaluated for its antibacterial potential against food borne pathogens. J. curcas leaf extract could synthesize stable silver nanoparticles (Zeta potential: -23.4 mV) with absorption band at 430 nm. Fourier transform infrared spectroscopy indicated various biological compounds responsible for capping and stabilizing Jc-AgNps in suspension, while the presence of silver was authenticated by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray. Jc-AgNps were confirmed to be uniform in shape, size and behavior through dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction, SEM, and atomic force microscopy (AFM) analysis. To investigate the antibacterial activity, disk diffusion and microplate dilution assays were performed and zone of inhibition (ZOI) as well as minimum inhibitory/bactericidal concentrations (MIC/MBCs) were evaluated against selected bacterial strains. Overall results showed that Escherichia coli (ZOI: 23 mm, MBC: 0.010 mg/ml) was the most sensitive organism, whereas Staphylococcus aureus (ZOI: 14.66 mm, MBC: 0.041 mg/ml) and Salmonella enterica (ZOI: 16.66 mm, MBC: 0.041 mg/ml) were the least sensitive against Jc-AgNps. The detailed microscopic investigations using SEM, TEM, and AFM were performed to understand the antibacterial impacts of Jc-AgNps against Listeria monocytogenes. SEM and TEM analysis showed the clear deformation and disintegration of treated L. monocytogenes cells, whereas AFM established a decrease in the height and cell surface roughness (root mean square value) in the treated L. monocytogenes. PMID:27877160

  8. A novel PLED architecture containing biologically synthesized gold nanoparticles and ultra thin silver layer

    NASA Astrophysics Data System (ADS)

    Pıravadılı Mucur, Selin; Tekin, Emine; San, Sait Eren; Duygulu, Özgür; Öztürk, Hasan Ümit; Utkan, Güldem; Denizci, Aziz Akın

    2015-09-01

    The influences of biologically synthesized gold nanoparticles (bio-GNPs) and ultra thin silver layer (UTSL) on the polymer light emitting diodes (PLEDs) are investigated for the first time. The performance of the fabricated PLEDs is enhanced by embedding of bio-GNPs into the hole transport layer (HTL). Furthermore, the tailored device architecture containing UTSL increases the electron transport through lightning rod effect. Bio-GNPs are successfully produced as spherical shape with size of circa 10.4 nm. Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene (MEH-PPV) and [poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate); (PEDOT:PSS)/bio-GNPs blends are used as an active layer and HTL, respectively. Novel PLEDs fabricated with 0.125 wt% bio-GNPs/PEDOT:PSS and 0.5 nm UTSL exhibit nearly 2.5-fold enhancement in the device efficiency.

  9. Synthesis, characterization and biocompatibility of ``green'' synthesized silver nanoparticles using tea polyphenols

    NASA Astrophysics Data System (ADS)

    Moulton, Michael C.; Braydich-Stolle, Laura K.; NadagoudaPresent Address: Pegasus Technical Services, 46 E. Hollister Street, Cincinnati, 45219, Ohio, Usa., Mallikarjuna N.; Kunzelman, Samantha; Hussain, Saber M.; Varma, Rajender S.

    2010-05-01

    Since ancient times, people have taken advantage of the antimicrobial effects of colloidal silver particles. Aside from the medical prospects, silver nanoparticles are found in a wide range of commercially available consumer products ranging from cosmetics to household cleansers. Current synthetic methods for creating silver nanoparticles typically call for potentially hazardous chemicals, extreme heat, and produce environmentally dangerous byproducts. Therefore, it is essential that novel ``green'' synthesis of nanoparticles becomes a reality, and it is imperative to fully analyze the potential toxic effects of these nanoparticles. In this study, we have shown that by reducing silver nitrate in solutions of tea extract or epicatechin of varying concentrations, spherical silver nanoparticles were formed that had controllable size distributions depending on the concentration of tea extract or epicatechin in the samples. Our ultra-resolution microscopy demonstrated that the nanoparticles were in fact interacting with the keratinocytes. Furthermore, evaluation of mitochondrial function (MTS) to assess cell viability and membrane integrity (LDH) in human keratinocytes showed that the silver nanoparticles were nontoxic. These results demonstrated that these nanoparicles are potentially biocompatible and warrant further evaluation in other biological systems.

  10. Green Synthesized Silver Nanoparticles Exhibit Reduced Toxicity to Mammalian Cells and Retain Antimicrobial Activity

    EPA Science Inventory

    The interest in silver nanoparticles (AgNPs) and silver nanomaterial stems from their antimicrobial properties. AgNPs are being added to clothing, paint, refrigerators, washing machines and a variety of other commercially available items. Recent in vitro and in vivo studies, howe...

  11. Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract.

    PubMed

    Nakkala, Jayachandra Reddy; Mata, Rani; Gupta, Arvind Kumar; Sadras, Sudha Rani

    2014-10-06

    Nanomedicine utilize biocompatible nanomaterials for diagnostic and therapeutic purposes. This study reports the synthesis of silver nanoparticles using aqueous rhizome extract of Acorus calamus (ACRE) and evaluation of antioxidant, antibacterial as well as anticancer effects of synthesized A. calamus silver nanoparticles (ACAgNPs). The formation of ACAgNPs was confirmed by UV-visible spectroscopy and their average size was found to be 31.83 nm by DLS particle size analyzer. Scanning electron micrograph (SEM) revealed spherical shape of ACAgNPs and energy dispersive spectroscopy (EDX) data showed the presence of metallic silver. Fourier transform infrared spectroscopy (FTIR) analysis indicated the presence of phenol/alcohol, aromatic amine and carbonyl groups in ACRE that were involved in reduction and capping of nanoparticles. ACRE and ACAgNPs exhibited substantial free radical quenching ability in various in vitro antioxidant assays performed in this study. ACAgNPs also displayed appreciable antibacterial activity against three different pathogenic bacteria and the growth kinetic study with Escherichia coli designated the inhibition of bacterial growth at the log phase. The cytotoxic effect of ACAgNPs was assessed by MTT assay in HeLa and A549 cells. The IC50 value of ACAgNPs respectively after 24 and 48 h was found to be 92.48 and 69.44 μg/ml in HeLa cells and in A549 cells it was 53.2 and 32.1 μg/ml. Apoptotic cell death in ACAgNPs treated cells was indicated by acridine orange/ethidium bromide (AO/EB) and annexinV-Cy3 staining techniques. Staining with propidium iodide (PI) and 4', 6-diamidino-2-phenylindole, dihydrochloride (DAPI) also confirmed nuclear changes such as condensation and fragmentation. Further, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed distribution of ACAgNPs treated cells in the late apoptotic stage. These findings emphasize that such biocompatible green nanoparticles with multifaceted biological

  12. Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers

    NASA Astrophysics Data System (ADS)

    Van Phu, Dang; Quoc, Le Anh; Duy, Nguyen Ngoc; Lan, Nguyen Thi Kim; Du, Bui Duy; Luan, Le Quang; Hien, Nguyen Quoc

    2014-04-01

    Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli ( E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields.

  13. Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites.

    PubMed

    Jayaseelan, Chidambaram; Rahuman, Abdul Abdul; Rajakumar, Govindasamy; Santhoshkumar, Thirunavukkarasu; Kirthi, Arivarasan Vishnu; Marimuthu, Sampath; Bagavan, Asokan; Kamaraj, Chinnaperumal; Zahir, Abdul Abduz; Elango, Gandhi; Velayutham, Kanayairam; Rao, Kokati Venkata Bhaskara; Karthik, Loganathan; Raveendran, Sankariah

    2012-08-01

    The purpose of the present study was to investigate the acaricidal and larvicidal activity against the larvae of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and larvae of hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae) and against the fourth-instar larvae of malaria vector, Anopheles stephensi Liston, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) of synthesized silver nanoparticles (AgNPs) utilizing aqueous leaf extract from Musa paradisiaca L. (Musaceae). The color of the extract changed to light brown within an hour, and later it changed to dark brown during the 30-min incubation period. AgNPs results were recorded from UV-vis spectrum at 426 nm; Fourier transform infrared (FTIR) analysis confirmed that the bioreduction of Ag(+) ions to silver nanoparticles are due to the reduction by capping material of plant extract, X-ray diffraction (XRD) patterns clearly illustrates that the nanoparticles formed in the present synthesis are crystalline in nature and scanning electron microscopy (SEM) support the biosynthesis and characterization of AgNPs with rod in shape and size of 60-150 nm. After reaction, the XRD pattern of AgNPs showed diffraction peaks at 2θ = 34.37°, 38.01°, 44.17°, 66.34° and 77.29° assigned to the (100), (111), (102), (110) and (120) planes, respectively, of a faced centre cubic (fcc) lattice of silver were obtained. For electron microscopic studies, a 25 μl sample was sputter-coated on copper stub, and the images of nanoparticles were studied using scanning electron microscopy. The spot EDX analysis showed the complete chemical composition of the synthesized AgNPs. The parasite larvae were exposed to varying concentrations of aqueous extract of M. paradisiaca and synthesized AgNPs for 24 h. In the present study, the percent mortality of aqueous extract of M. paradisiaca were 82, 71, 46, 29, 11 and 78, 66, 38, 31and 16 observed in the concentrations of 50, 40, 30, 20, 10 mg

  14. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa

    PubMed Central

    2014-01-01

    Nanomedicine is now being introduced as a recent trend in the field of medicine. It has been documented that metal nanoparticles have antimicrobial effects for bacteria, fungi and viruses. Recent advances in technology has revived the use of silver nanoparticles in the medical field; treatment, diagnosis, monitoring and control of disease. It has been used since ancient times for treating wide range of illnesses. Bacterial cells adheres to surfaces and develop structures known as biofilms. These structures are natural survival strategy of the bacteria to invade the host. They are more tolerant to commonly used antimicrobial agents, thus being more difficult to be controlled. This leads to increase in severity of infection. In this study, we have investigated the effect of silver nanoparticles in the formation of biofilm in multidrug resistant strains of Pseudomonas aeruginosa. Observation showed that biofilm formation occurred at bacterial concentration of 106 cfu/ml for the sensitive strain of P. aeruginosa while in the resistant strain, the biofilm was evident at bacterial concentration of about 103 cfu/ml. The biofilm were then tested against various concentrations of silver nanoparticles to determine the inhibitory effect of the silver nanoparticles. In the sensitive strain, 20 μg/ml of silver nanoparticles inhibited the growth optimally at bacterial concentration of 104 cfu/ml with an inhibition rate of 67%. Similarly, silver nanoparticles inhibited the formation of biofilm in the resistant strain at an optimal bacterial concentration of 105 cfu/ml with an inhibition rate of 56%. Thus, silver nanoparticles could be used as a potential alternative therapy to reduce severity of disease due to P. aeruginosa infections. PMID:24422704

  15. Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes.

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Hoti, S L

    2014-12-01

    Diseases transmitted by blood-feeding mosquitoes, such as dengue fever, dengue hemorrhagic fever, Japanese encephalitis, malaria, and filariasis, are increasing in prevalence, particularly in tropical and subtropical zones. To control mosquitoes and mosquito-borne diseases, which have worldwide health and economic impacts, synthetic insecticide-based interventions are still necessary, particularly in situations of epidemic outbreak and sudden increases of adult mosquitoes. Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and eco-friendly reducing and capping agents. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Heliotropium indicum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. Adult mosquitoes were exposed to varying concentrations of aqueous extract of H. indicum and synthesized AgNPs for 24 h. AgNPs were rapidly synthesized using the leaf extract of H. indicum, and the formation of nanoparticles was observed within 6 h. The results recorded from UV-vis spectrum, Fourier transform infrared, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the adult of A. stephensi (lethal dose (LD)₅₀ = 26.712 μg/mL; LD₉₀ = 49.061 μg/mL), A. aegypti (LD₅₀ = 29.626 μg/mL; LD₉₀ = 54.269 μg/mL), and C. quinquefasciatus (LD₅₀ = 32.077 μg/mL; LD₉₀ = 58.426 μg/mL), respectively. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H.indicum and green synthesis of AgNPs have the potential to be used as an ideal eco-friendly approach for the control of

  16. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-03-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving use of chemical insecticides are becoming less effective due to the development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of A. aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the synthesized AgNPs from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 3,447.77, 2,923.30, and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM analysis

  17. Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti.

    PubMed

    Suganya, Ganesan; Karthi, Sengodan; Shivakumar, Muthugounder S

    2014-05-01

    Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) C═O group. The band 1,383 developed for C═C and C═N stretching, respectively, and was commonly found in the proteins. SEM

  18. Phytoextracts-Synthesized Silver Nanoparticles Inhibit Bacterial Fish Pathogen Aeromonas hydrophila.

    PubMed

    Mahanty, Arabinda; Mishra, Snehasish; Bosu, Ranadhir; Maurya, Uk; Netam, Surya Prakash; Sarkar, Biplab

    2013-12-01

    Fish disease is a major stumbling block towards sustainable growth of the fisheries sector. Aeromonas hydrophila, which is a major infectious aquatic pathogen is reportedly the causative agent of ulcers, fin-rot, tail-rot, hemorrhagic septicemia in fish, and has reportedly developed resistance against many of the available antibiotics. In this context, the inhibitory function of silver nanoparticles (AgNPs) against A. hydrophila was studied to evaluate its possible application in aquaculture as alternative to antibiotics. AgNPs were synthesized using the leaf extracts of subtropical plants Mangifera indica (Mango), Eucalyptus terticornis (Eucalyptus), Carica papaya (Papaya) and Musa paradisiaca (Banana). The absorbance maxima, size range and shape of the AgNPs as characterized by the UV-Vis spectroscopy, high resolution transmission electron microscopy (HR-TEM), and energy dispersive X-ray spectroscopy (EDX) were, Mangifera-442, 50-65 nm, ovular; Eucalyptus-465, 60-150 nm, oval; Carica-442, 25-40 nm, round, irregular; and Musa-454, 10-50 nm, round, irregular, respectively. Well-diffusion of these AgNPs for their antimicrobial characteristics exhibited that, the papaya leaf extract synthesized AgNPs had maximum antimicrobial activity at 153.6 μg/ml concentrations, and that from the eucalyptus leaves was least effective. As observed, the potency of the nanoparticles enhanced with the decrease in particle size, from 60-150 nm in eucalyptus to 25-40 nm in papaya. Due to its purely natural sourcing, phytosynthesized AgNPs can be applied as alternative to antibiotics and other biocides as a cost-effective and eco-friendly therapeutic agent against A. hydrophila stimulated diseases in aquatic animals.

  19. Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus).

    PubMed

    Emeka, Elemike Elias; Ojiefoh, Oseghale Charles; Aleruchi, Chuku; Hassan, Labulo Ayomide; Christiana, Owoseni Mojisola; Rebecca, Mfon; Dare, Enock Olugbenga; Temitope, Adesuji Elijah

    2014-02-01

    Pineapple leaf was used in this study for the synthesis of silver nanoparticles based on the search for sustainable synthetic means. Indeed, this offered an economical and sustainable synthetic route relative to expensive and toxic chemical methods. The leaf extract was used and the corresponding nanoparticles obtained were subjected to UV-vis analysis at different times. The UV-vis was used to monitor the silver nanoparticle formation through sampling at time intervals. The formation of silver nanoparticles was apparently displayed within 2 min with evidence of surface plasmon bands (SPB) between 440 and 460 nm. The crystals was equally characterized using FTIR, X-ray diffraction methods and TEM. The different results obtained suggested the appearance of silver nanoparticles (SNPs) as determined by the process parameters with a particle size of 12.4 nm. The sample was further screened against Staphylococcus aureus, Streptococcus pneumoniae, Proteus mirabilis and Escherichia coli using Gentamicin as control. From the results, there is evidence of inhibition towards bacteria growth. It can now be inferred from the studies that biosynthesis of nanoparticles could be a gateway to our numerous health issues.

  20. Physicochemical characterization of silver nanoparticles synthesize using Aloe Vera (Aloe barbadensis)

    NASA Astrophysics Data System (ADS)

    Kuponiyi, Abiola; Kassama, Lamin; Kukhtareva, Tatiana

    2014-08-01

    Production of silver nanoparticles (AgNPs) using different biological methods is gaining recognition due to their multiple applications. Although, several physical and chemical methods have been used for the synthesis and stabilizing of AgNPs, yet, a green chemistry method is preferable because it is cost effective and environmentally friendly. The synthesis was done using Aloe Vera (AV) extract because it has chemical compounds such as "Antrokinon" that are known for its antibacterial, antivirus and anticancer properties. We hypothesize that AV extract can produce a stable nanoparticles within the 100 nm range and be biologically active. The biological compounds were extracted from AV skin with water and ethanol which was used as the reduction agent for the synthesis of nanoparticles. The biological extract and AgNO3 were blended and heated to synthesize AgNPs. The reaction process was monitored using UV-Visible spectroscopy. Fourier Transfer Infrared spectroscopy (FTIR) was used for the characterization of biological compounds and their substituent groups before and after the reaction process. Dynamic Light scattering (DLS) method was used to characterize particle size of AgNPs and their biomolecular stability. Results showed that biological compounds such as aliphatic amines, alkenes (=C-H), alkanes (C-H), alcohol (O-H) and unsaturated esters(C-O), which has an average particle size of 109 and 215.8 nm and polydispersity index of 0.451 and 0.375 for ethanol and water extract, respectively. According to TEM measurements the size of AgNPs are in the range 5-20 nm The results suggested that ethanol derived AgNPs contained higher yield of organic compounds, thus has better solubility power than water. Ag NPs can be used to control salmonella in poultry industry.

  1. Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Jeyaraj, Muniyandi; Kim, Jin-Hoi

    2013-01-01

    Silver nanoparticles (AgNPs) have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant of Bacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spectrophotometer, particle size analyzer, and transmission electron microscopy (TEM). The toxicity was evaluated using cell viability, metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were treated with various concentrations of AgNPs (5 to 25 μg/mL) for 24 h. We found that AgNPs inhibited the growth in a dose-dependent manner using MTT assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells through activation of the lactate dehydrogenase (LDH), caspase-3, reactive oxygen species (ROS) generation, eventually leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. The present results showed that AgNPs might be a potential alternative agent for human breast cancer therapy. PMID:23936814

  2. Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion

    SciTech Connect

    Ji, M.; Chen, X.; Wai, C.M.; Fulton, J.L.

    1999-03-24

    Reverse micelles and microemulsions formed in liquid and supercritical carbon dioxide (CO{sub 2}) allow highly polar or polarizable compounds to be dispersed in this nonpolar fluid. However, since the polarizability per unit volume of dense CO{sub 2} is quite low, it is difficult to overcome the strong van der Waals attractive interactions between particles in order to stably suspend macromolecular species. Conventional surfactants by themselves do not form reverse micelles or microemulsions in CO{sub 2} because the van der Waals interdroplet attractions are too high. The use of surfactants or cosurfactants with fluorinated tails provides a layer of a weakly attractive compound covering the highly attractive droplet cores, thus preventing their short-range interactions that would destabilize the system. Using this strategy, the authors describe a method to synthesize and stabilize metallic silver nanoparticles having diameters from 5 to 15 nm in supercritical CO{sub 2} using an optically transparent, water-in-CO{sub 2} microemulsion.

  3. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process

    SciTech Connect

    Iqbal, Nida; Abdul Kadir, Mohammed Rafiq; Nik Malek, Nik Ahmad Nazim; Mahmood, Nasrul Humaimi Bin; Murali, Malliga Raman; Kamarul, T.

    2013-09-01

    Highlights: • Stable nano sized silver substitute hydroxyapatite is prepared under surfactant assisted microwave process at 600 W power for 7 min. • The nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. • Increase in silver concentration resulted in better dielectric properties. • Good antibacterial activity and silver release. - Abstract: The present study reports a relatively simple method for the synthesis of stable silver substituted hydroxyapatite nanoparticles with controlled morphology and particle size. In order to achieve this, CTAB is included as a surfactant in the microwave refluxing process (600 W for 7 min). The nanoparticles produced with different silver ion concentrations (0.05, 0.1 and 0.2 wt%) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) and Brunauer–Emmett–Teller (BET) analysis. XRD and FTIR analyses reveal that the Ag-HA nanoparticles were phase pure at 1000 °C. FESEM images showed that the produced nanoparticles are in the size range of 58–72 nm and exert uniform elongated spheroid morphology. The dielectric properties suggest that the increase in dielectric constant (ε′) and dissipation factor (D) values with increasing Ag concentrations. Antibacterial performance of the Ag-HA samples elucidated using disk diffusion technique (DDT) and minimum inhibitory concentration (MIC) demonstrates anti-bacterial activity against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli. This effect was dose dependent and was more pronounced against Gram-negative bacteria than Gram-positive organisms.

  4. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study.

    PubMed

    Kummara, Sivaiah; Patil, Mrityunjaya B; Uriah, Tiewlasubon

    2016-12-01

    Silver nanoparticles (AgNPs) are superior cluster of nanomaterials that are recently recognized for their different applications in various pharmaceutical and clinical settings. The objective of this work deals with novel method for biosynthesis of AgNPs using Azadirachta indica (neem) leaf extract as reducing agent. These bio and chemical synthesized nanoparticles were characterized with the help of UV-vis Spectroscopy, Nanotarc, Dynamic light scattering (DLS), Zeta Potential (ZP), Transmission Electron Microscopy and Fourier transform infrared spectroscopy (FTIR). The obtained results from Nanotrac and TEM revealed that the synthesized AgNPs possess spherical shape with a mean diameter at 94nm for green and 104nm for chemical method, the zeta potential values was -12.02mV for green AgNPs and -10.4mV for chemical AgNPs. In addition, FT-IR measurement analysis was conceded out to identify the Ag(+) ions reduced from the specific functional groups on the AgNPs, which increased the stability of the particles. Further, we compared the toxicities of green and chemical AgNPs against human skin dermal fibroblast (HDFa) and brine shrimp followed by anticancer activity in NCI-H460 cells. We observed green AgNPs cause dose-dependent decrease in cell viability and increase in reactive oxygen species (ROS) generation. Further, we proved to exhibit excellent cytotoxic effect and induction of cellular apoptosis in NCI-H460 cells. Furthermore, green AgNPs had no significant changes in cell viability, ROS production and apoptotic changes in HDFa cells. In contrary, we observed that the chemical AgNPs possess significant toxicities in HDFa cells. Hence, the green AgNPs were able to induce selective toxicity in cancer cells than the chemical AgNPs. Furthermore, green AgNPs exhibit less toxic effects against human red blood cells and brine shrimp (Artemia salina) nauplii than the chemical AgNPs. It was concluded, that apart from being superior over chemical AgNPs, the green Ag

  5. Silver Nanoparticles Synthesized Using Mint Extract and their Application in Chitosan/Gelatin Composite Packaging Film

    NASA Astrophysics Data System (ADS)

    Bhoir, Shraddha A.; Chawla, S. P.

    The present study reports synthesis of silver nanoparticles (AgNPs) using mint extract (ME) in the presence of polyvinyl alcohol (PVA) as capping material. PVA, ME and silver nitrate at concentration of 1%, 0.01% and 0.02%, respectively were found to be optimum for the synthesis of nanoparticles. The formation of AgNPs was confirmed by measuring surface plasmon resonance (SPR) peak. The intensity of SPR peak remained unaltered thus suggesting stability of colloid without aggregation during storage. The nanoparticles inhibited the growth of food borne bacteria namely Escherichia coli, Pseudomonas aeruginosa and Bacillus cereus. The incorporation of these nanoparticles in chitosan and gelatin blend resulted in homogenous films. Mechanical properties and water vapor transmission rate of chitosan-gelatin films improved due to addition of AgNPs, whereas optical (opacity and UV light transmittance) and oxygen permeability properties remained unchanged. These films had the ability to inhibit growth of 5 log CFU of the above test organisms. These findings suggest that the AgNPs obtained by reduction of silver by ME can be effectively utilized to prepare antibacterial eco-friendly food packaging material.

  6. Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant

    PubMed Central

    Khan, Mujeeb; Khan, Shams Tabrez; Khan, Merajuddin; Adil, Syed Farooq; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Alkhathlan, Hamad Z

    2014-01-01

    The antibacterial properties of nanoparticles (NPs) can be significantly enhanced by increasing the wettability or solubility of NPs in aqueous medium. In this study, we investigated the effects of the stabilizing agent on the solubility of silver NPs and its subsequent effect on their antimicrobial activities. Silver NPs were prepared using an aqueous solution of Pulicaria glutinosa plant extract as bioreductant. The solution also acts as a capping ligand. During this study, the antimicrobial activities of silver NPs, as well as the plant extract alone, were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus. Silver NPs were prepared with various concentrations of the plant extract to study its effect on antimicrobial activity. Interestingly, various concentrations of P. glutinosa extract did not show any effect on the growth of tested bacteria; however, a significant effect on the antimicrobial property of plant extract capped silver NPs (Ag-NPs-PE) was observed. For instance, the half maximal inhibitory concentration values were found to decrease (from 4% to 21%) with the increasing concentrations of plant extract used for the synthesis of Ag-NPs-PE. These results clearly indicate that the addition of P. glutinosa extracts enhances the solubility of Ag-NPs-PE and, hence, increases their toxicity against the tested microorganisms. PMID:25114525

  7. Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant.

    PubMed

    Khan, Mujeeb; Khan, Shams Tabrez; Khan, Merajuddin; Adil, Syed Farooq; Musarrat, Javed; Al-Khedhairy, Abdulaziz A; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Alkhathlan, Hamad Z

    2014-01-01

    The antibacterial properties of nanoparticles (NPs) can be significantly enhanced by increasing the wettability or solubility of NPs in aqueous medium. In this study, we investigated the effects of the stabilizing agent on the solubility of silver NPs and its subsequent effect on their antimicrobial activities. Silver NPs were prepared using an aqueous solution of Pulicaria glutinosa plant extract as bioreductant. The solution also acts as a capping ligand. During this study, the antimicrobial activities of silver NPs, as well as the plant extract alone, were tested against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Micrococcus luteus. Silver NPs were prepared with various concentrations of the plant extract to study its effect on antimicrobial activity. Interestingly, various concentrations of P. glutinosa extract did not show any effect on the growth of tested bacteria; however, a significant effect on the antimicrobial property of plant extract capped silver NPs (Ag-NPs-PE) was observed. For instance, the half maximal inhibitory concentration values were found to decrease (from 4% to 21%) with the increasing concentrations of plant extract used for the synthesis of Ag-NPs-PE. These results clearly indicate that the addition of P. glutinosa extracts enhances the solubility of Ag-NPs-PE and, hence, increases their toxicity against the tested microorganisms.

  8. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier

    SciTech Connect

    Kanipandian, Nagarajan; Ramesh, Ramar; Subramanian, Periyasamy

    2014-01-01

    Graphical abstract: The figure is the TEM image of green synthesized silver nanoparticles from Cleistanthus collinus. In this investigation we have used the poisonous plant as a reducing and capping agent. This is a first time data to synthesis the metal nanoparticles using poisonous plant. - Highlights: • A hitherto unreported venomous plant mediated AgNPs synthesis. • The particle size is observed in the range of 20–40 nm. • Surface morphology of the well-dispersed silver nanoparticles is studied using SEM and TEM. • Crystalline nature of AgNPs is confirmed by X-ray diffraction analysis. • Antioxidant activities of green synthesized AgNPs are tested in vitro. - Abstract: We report, here a simple green method for the preparation of silver nanoparticles (AgNPs) using the plant extract of Cleistanthus collinus as potential phyto reducer. The synthesized AgNPs were characterized by UV–vis spectra, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained results confirmed that the AgNPs were crystalline in nature and the morphological studies reveal the spherical shape of AgNPs with size ranging from 20 to 40 nm. The in vitro antioxidant activity of AgNPs showed a significant effect on scavenging of free radicals. The cytotoxicity study exhibited a dose-dependent effect against human lung cancer cells (A549) and normal cells (HBL-100), the inhibitory concentration (IC{sub 50}) were found to be 30 μg/mL and 60 μg/mL respectively. The in vivo histopathology of mouse organs proved that AgNPs does not possess toxic effect and can be extensively applied in biomedical sciences.

  9. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam

    NASA Astrophysics Data System (ADS)

    Rathi Sre, P. R.; Reka, M.; Poovazhagi, R.; Arul Kumar, M.; Murugesan, K.

    2015-01-01

    Simple, yet an effective and rapid approach for the green synthesis of silver nanoparticles (Ag NPs) using root extract of Erythrina indica and its in vitro antibacterial activity was tried against human pathogenic bacteria and its cytotoxic effect in breast and lung cancer cell lines has been demonstrated in this study. Various instrumental techniques were adopted to characterize the synthesized Ag NPs viz. UV-Vis (Ultra violet), FTIR (Fourier Transform Infrared), XRD (X-ray diffraction), DLS (Dynamic light scattering), HR TEM (High-resolution transmission electron microscopy), EDX (Energy-dispersive X-ray spectroscopy). Surface plasmon spectra for Ag NPs are centered nearly at 438 nm with dark brown color. FTIR analysis revealed the presence of terpenes, phenol, flavonols and tannin act as effective reducing and capping agents for converting silver nitrate to Ag NPs. The synthesized Ag NPs were found to be spherical in shape with size in the range of 20-118 nm. Moreover, the synthesized Ag NPs showed potent antibacterial activity against Gram positive and Gram negative bacteria and these biologically synthesized nanoparticles were also proved to exhibit excellent cytotoxic effect on breast and lung cancer cell lines.

  10. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method.

    PubMed

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-03-01

    Silver nanoparticles (AgNPs) are used as sustained-release bactericidal agents for water treatment. Among the physicochemical characteristics of AgNPs, shape is an important parameter relevant to the antibacterial activity. Three typically shaped AgNPs, nanocubes, nanospheres, and nanowires, were prepared via a microwave-assisted method and characterized by TEM, UV-vis, and XRD. The antibacterial activity of AgNPs was determined by OD growth curves tests, MIC tests, and cell viability assay against Escherichia coli. The interaction between AgNPs and bacterial cells was observed by TEM. The results showed that the three differently shaped AgNPs were nanoscale, 55 ± 10 nm in edge length for nanocubes, 60 ± 15 nm in diameter for nanospheres, 60 ± 10 nm in diameter and 2-4 μm in length for nanowires. At the bacterial concentration of 10(4) CFU/mL, the MIC of nanocubes, nanospheres, and nanowires were 37.5, 75, and 100 μg/mL, respectively. Due to the worst contact with bacteria, silver nanowires exhibited the weakest antibacterial activity compared with silver nanocubes and silver nanospheres. Besides, silver nanocubes mainly covered by {100} facets showed stronger antibacterial activity than silver nanospheres covered by {111} facets. It suggests that the shape effect on the antibacterial activity of AgNPs is attributed to the specific surface areas and facets reactivity; AgNPs with larger effective contact areas and higher reactive facets exhibit stronger antibacterial activity.

  11. Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Roni, Mathath; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Hwang, Jiang-Shiou

    2013-03-01

    Green nanoparticle synthesis has been achieved using environmentally acceptable plant extract and ecofriendly reducing and capping agents. The present study was carried out to establish the larvicidal activity of synthesized silver nanoparticles (AgNPs) using leaf extract of Nerium oleander (Apocynaceae) against the first to fourth instar larvae and pupae of malaria vector, Anopheles stephensi (Diptera: Culicidae). Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by the aqueous extract of the plant parts to generate extremely stable silver nanoparticles in water. The results were recorded from UV-Vis spectrum, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy analysis. The production of the AgNPs synthesized using leaf extract of N. oleander was evaluated through a UV-Vis spectrophotometer in a wavelength range of 200 to 700 nm. This revealed a peak at 440 nm in N. oleander leaf extracts, indicating the production of AgNPs. The FTIR spectra of AgNPs exhibited prominent peaks at 509.12 cm(-1) (C-H bend alkenes), 1,077.05 cm(-1) (C-O stretch alcohols), 1,600.63 cm(-1) (N-H bend amines), 2,736.49 and 2,479.04 cm(-1) (O-H stretch carboxylic acids), and 3,415.31 cm(-1) (N-H stretching due to amines group). An SEM micrograph showed 20-35-nm-size aggregates of spherical- and cubic-shaped nanoparticles. EDX showed the complete chemical composition of the synthesized nanoparticles of silver. Larvicidal activity of aqueous leaf extract of N. oleander and synthesized AgNPs was carried out against Anopheles stephensi, and the results showed that the highest larval mortality was found in the synthesized AgNPs against the first to fourth instar larvae and pupae of Anopheles stephensi with the following values: LC(50) of instar larvae 20.60, 24.90, 28.22, and 33.99 ppm; LC(90) of instar larvae 41.62, 50.33, 57.78, and 68.41

  12. Silver Nanoparticles in Dental Biomaterials

    PubMed Central

    Corrêa, Juliana Mattos; Mori, Matsuyoshi; Sanches, Heloísa Lajas; da Cruz, Adriana Dibo; Poiate, Isis Andréa Venturini Pola

    2015-01-01

    Silver has been used in medicine for centuries because of its antimicrobial properties. More recently, silver nanoparticles have been synthesized and incorporated into several biomaterials, since their small size provides great antimicrobial effect, at low filler level. Hence, these nanoparticles have been applied in dentistry, in order to prevent or reduce biofilm formation over dental materials surfaces. This review aims to discuss the current progress in this field, highlighting aspects regarding silver nanoparticles incorporation, such as antimicrobial potential, mechanical properties, cytotoxicity, and long-term effectiveness. We also emphasize the need for more studies to determine the optimal concentration of silver nanoparticle and its release over time. PMID:25667594

  13. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats.

    PubMed

    Naraginti, Saraschandra; Kumari, P Lakshmi; Das, Raunak Kumar; Sivakumar, A; Patil, Sagar Hindurao; Andhalkar, Vaibhav Vilas

    2016-05-01

    Wound healing, a complex biological process, has attained a lot of attention as dermatologists are primarily interested in stimulated wound closure without formation of scar or a faint scar. The recent upsurgence of nanotechnology has provided novel therapeutic materials in the form of silver and gold nanoparticles which accelerate the wound healing process. The effect of formulated nanoparticles using Coleus forskohlii root extract (green synthesized) has been tried out for ameliorating full thickness excision wounds in albino Wistar male rats. The evaluation of in vivo activity of nanoparticles in wound healing was carried out on open wounds made by excision on the dorsal sides of albino Wistar rats under anesthesia, and the healing of the wounds was assessed. Histological aspects of the healing process were studied by a HE (Hematoxylin and Eosin) staining method to assess various degrees of re-epithelialization and the linear alignment of the granulation tissue whereas Van Gieson's histochemical staining was performed to observe collagen fibers. The healing action shown by the formulated nanoparticles was remarkable during the early stages of wound healing, which resulted in the substantial reduction of the whole healing period. Topical application of formulated gold nanoparticles was found to be more effective in suppressing inflammation and stimulating re-epithelialization compared to silver nanoparticles during the healing process. The results throw light on the amelioration of excision wounds using nanoparticles which could be a novel therapeutic way of improving wound healing in clinical practice. The mechanism of advanced healing action of both types of nanoparticles could be due to their antimicrobial, antioxidant and anti-inflammatory properties.

  14. Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi.

    PubMed

    Patil, Chandrashekhar D; Patil, Satish V; Borase, Hemant P; Salunke, Bipinchandra K; Salunkhe, Rahul B

    2012-05-01

    In the present study activity of silver nanoparticles (AgNPs) synthesized using Plumeria rubra plant latex against second and fourth larval instar of Aedes aegypti and Anopheles stephensi was determined. Range of concentrations of synthesized AgNps (10, 5, 2.5, 1.25, 0.625, 0.3125 ppm) and aqueous crude latex (1,000, 500, 250, 125, 62.50, 31.25 ppm) were tested against larvae of A. aegypti and A. Stephensi. The synthesized AgNps from P. rubra latex were highly toxic than crude latex extract in both mosquito species. The LC(50) values for second and fourth larval instars after 24 h of crude latex exposure were 1.49, 1.82 ppm against A. aegypti and 1.10, 1.74 ppm against A. stephensi respectively. These figures were 181.67, 287.49 ppm against A. aegypti and 143.69, 170.58 ppm against A. stephensi respectively for crude latex extract. The mortality rates were positively correlated with the concentration of AgNPs. The characterization studies of synthesized AgNPs by UV-Vis spectrophotometry, transmission electron microscopy (TEM), Particle size analysis (PSA) and zeta potential confirmed the spherical shape and size (32-200 nm) of silver nanoparticles along with stability. Toxicity studies carried out against non-target fish species Poecilia reticulata, the most common organism in the habitats of A. aegypti and A. stephensi showed no toxicity at LC(50) and LC(90) doses of the AgNPs. This is the first report on mosquito larvicidal activity of latex synthesized nanoparticles.

  15. A novel polyol method to synthesize colloidal silver nanoparticles by ultrasonic irradiation.

    PubMed

    Byeon, Jeong Hoon; Kim, Young-Woo

    2012-01-01

    A polyol synthesis of silver nanoparticles in the presence of ultrasonic irradiation was compared with other configurations (at ambient temperature, 120° C, and 120 °C with injected solutions) in the absence of ultrasonic irradiation in order to obtain systematic results for morphology and size distribution. For applying ultrasonic irradiation, rather fine and uniform spherical silver particles (21±3.7 nm) were obtained in a simple (at ambient temperature without mechanical stirring) and fast (within 4 min, 3.61×10(-3) mol min(-1)) manner than other cases (at ambient temperature (for 8 h, 0.03×10(-3) mol min(-1)): 86±16.8 nm, 120 °C (for 12 min, 1.16×10(-3) mol min(-1)): 64±14.9 nm, and 120 °C with injected solutions (during 12 min): 35±6.8 nm; all other cases contained anisotropic shaped particles). Even though the temperature of polyol reaction reached only at 80 °C (<120 °C) in the presence of ultrasonic irradiation, a uniform mixing (i.e. enhanced collision between silver particle and surrounding components) by ultrasonic irradiation might induce a better formation kinetics and morphological uniformity.

  16. Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms.

    PubMed

    Emmanuel, R; Palanisamy, Selvakumar; Chen, Shen-Ming; Chelladurai, K; Padmavathy, S; Saravanan, M; Prakash, P; Ajmal Ali, M; Al-Hemaid, Fahad M A

    2015-11-01

    Development of biologically inspired green synthesis of silver nanoparticles is evolving into an important branch of nano-biotechnology. In the present investigation, we report the green synthesis of silver nanoparticles (AgNPs) employing the leaf extract of Justicia glauca. Water-soluble organics present in the leaf extract are mainly responsible for the reduction of silver nitrate (AgNO3) solution to AgNPs. The AgNPs are 10-20nm in dimensions as determined by TEM images. The antimicrobial activities of green synthesized AgNPs and drug blended AgNPs have been evaluated against the dental caries and periodontal disease causing microorganisms such as Streptococcus mutans, Staphylococcus aureus, Lactobacillus acidophilus, Micrococcus luteus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. The AgNPs and drug blended AgNPs show a significant antibacterial and antifungal activity. Minimum inhibitory concentration (MIC) value of AgNPs determined against the selected dental caries and periodontal disease causing microorganisms are noticeable between the range of 25-75μg/mL.

  17. Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract

    NASA Astrophysics Data System (ADS)

    Seralathan, Janani; Stevenson, Priscilla; Subramaniam, Shankar; Raghavan, Rachana; Pemaiah, Brindha; Sivasubramanian, Aravind; Veerappan, Anbazhagan

    2014-01-01

    Nanosized silver have been widely used in many applications, such as catalysis, photonics, sensors, medicine etc. Thus, there is an increasing need to develop high-yield, low cost, non-toxic and eco-friendly procedures for the synthesis of nanoparticles. Herein, we report an efficient, green synthesis of silver nanoparticles utilizing the aqueous extract of Salicornia brachiata, a tropical plant of the Chenopodiaceae family. Silver nanoparticles have been characterized by ultraviolet-visible spectroscopy, scanning electron microscopy and transmission electron microscopy. The morphology of the particles formed consists of highly diversified shapes like spherical, rod-like, prism, triangular, pentagonal and hexagonal pattern. However, addition of sodium hydroxide to the extract produces mostly spherical particles. The stable nanoparticles obtained using this green method show remarkable catalytic activity in the reduction of 4-nitro phenol to 4-amino phenol. The reduction catalyzed by silver nanoparticles followed the first-order kinetics, with a rate constant of, 0.6 × 10-2 s-1. The bactericidal activity of the synthesized silver nanoparticles against the pathogenic bacteria, Staphylococcus aureus, Staphylococcus aureus E, Bacillus subtilis and Escherichia coli, was also explored using REMA. The obtained results showed that the minimum inhibitory concentration required to induce bactericidal effect is lower than the control antibiotic, ciprofloxacin. In addition to these, the biogenic synthesized nanoparticles also exhibited excellent free radical scavenging activity.

  18. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae).

    PubMed

    Priyadarshini, Karthikeyan Agalya; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Ponarulselvam, Sekar; Hwang, Jiang-Shiou; Nicoletti, Marcello

    2012-09-01

    Vector control is a critical requirement in epidemic disease situations, as is an urgent need to develop new and improved mosquito control methods that are economical and effective yet safe for nontarget organisms and the environment. Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, activity of silver nanoparticles (AgNPs) synthesized using Euphorbia hirta (E. hirta) plant leaf extract against malarial vector Anopheles stephensi (A. stephensi) was determined. Range of concentrations of synthesized AgNPs (3.125, 6.25, 12.5, 25, and 50 ppm) and methanol crude extract (50, 100, 150, 200, and 250 ppm) were tested against larvae of A. stephensi. The synthesized AgNPs from E. hirta were highly toxic than methanolic crude extract against malarial vector, A. stephensi. The synthesized AgNPs were characterized by UV-vis spectrum, scanning electron microscopy (SEM), and X-ray diffraction. SEM analyses of the synthesized showed that AgNPs, measuring 30-60 nm in size, were clearly distinguishable. The synthesized AgNPs showed larvicidal effects after 24 h of exposure; however, the highest larval mortality was found in the synthesized AgNPs against the first to fourth instar larvae and pupae of values LC(50) (10.14, 16.82, 21.51, and 27.89 ppm, respectively), LC(90) (31.98, 50.38, 60.09, and 69.94 ppm, respectively), and the LC(50) and LC(90) values of pupae of 34.52 and 79.76 ppm, respectively. Methanol extract exhibited the larval toxicity against the first to fourth instar larvae and pupae of values LC(50) (121.51, 145.40, 169.11, and 197.40 ppm, respectively), LC(90) (236.44, 293.75, 331.42, and 371.34 ppm, respectively), and the LC(50) and LC(90) values of

  19. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria.

    PubMed

    Tamboli, Dhawal P; Lee, Dae Sung

    2013-09-15

    The development of eco-friendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology. In this study, an extracellular enzyme system of a newly isolated microorganism, Exiguobacterium sp. KNU1, was used for the reduction of AgNO₃ solutions to silver nanoparticles (AgNPs). The extracellularly biosynthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infra-red spectroscopy and transmission electron microscopy. The AgNPs were approximately 30 nm (range 5-50 nm) in size, well-dispersed and spherical. The AgNPs were evaluated for their antimicrobial effects on different gram negative and gram positive bacteria using the minimum inhibitory concentration method. Reasonable antimicrobial activity against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was observed. The morphological changes occurred in all the microorganisms tested. In particular, E. coli exhibited DNA fragmentation after being treated with the AgNPs. Finally, the mechanism for their bactericidal activity was proposed according to the results of scanning electron microscopy and single cell gel electrophoresis.

  20. New procedure to synthesize silver nanoparticles and their interaction with local anesthetics.

    PubMed

    Mocanu, Aurora; Pasca, Roxana Diana; Tomoaia, Gheorghe; Garbo, Corina; Frangopol, Petre T; Horovitz, Ossi; Tomoaia-Cotisel, Maria

    2013-01-01

    Silver nanoparticles (AgNPs) were prepared in aqueous colloid dispersions by the reduction of Ag(+) with glucose in alkaline medium. Tetraethyl orthosilicate and L-asparagine were added as stabilizers of NPs. The AgNPs were characterized, and their interaction with three local anesthetics (procaine, dibucaine, or tetracaine) was investigated. Optical spectra show the characteristic absorption band of AgNPs, due to surface plasmon resonance. Modifications in the position and shape of this band reflect the self-assembly of metal NPs mediated by anesthetic molecules and the progress in time of the aggregation process. Zeta-potential measuring was applied in order to characterize the electrostatic stability of the NPs. The size and shape of the AgNPs, as well as the features of the assemblies formed by their association in the presence of anesthetics, were evidenced by transmission electron microscopy images. Atomic force microscopy images showed the characteristics of the films of AgNPs deposited on glass support. The effect of the anesthetics could be described in terms of electrostatic forces between the negatively charged AgNPs and the anesthetic molecules, existing also in their cationic form at the working pH. But also hydrophobic and hydrogen bonding interactions between the coated nanoparticles and anesthetics molecular species should be considered.

  1. Silver nanoparticles synthesized using aqueous leaf extract of Ziziphus oenoplia (L.) Mill: Characterization and assessment of antibacterial activity.

    PubMed

    Soman, Soumya; Ray, J G

    2016-10-01

    Biological approach to synthesis of metal nanoparticles using aqueous leaf extract is a highly relevant and recent theme in nanotechnological research. Phytosynthesized AgNPs have better inhibitory and antimicrobial effects compared to aqueous leaf extract and silver nitrate. In the present investigation crystalline silver nanoparticles (AgNPs) with size of 10nm have been successfully synthesized using aqueous leaf extract (AQLE) of Ziziphus oenoplia (L.) Mill., which act as both reducing as well as capping agent. The particles were characterized using UV Visible spectroscopy, HRTEM-EDAX, XRD, FT-IR and DLS. An evaluation of the anti bacterial activity was carried out using Agar well diffusion method and MIC determination against four bacterial strains, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi; the AgNPs exhibited quite high antibacterial activity. Furthermore, bactericidal studies with TEM at different time intervals after AgNPs treatment showed the presence of AgNPs near cell membrane of bacteria at about 30min exposure and the bacterial-lysis was found completed at 24h. This gave an insight on the mechanism of bacterial-lysis by direct damage to the cell membrane.

  2. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages.

    PubMed

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H; Baer, Donald R; Smith, Jordan N; Liu, Chongxuan; Kodali, Vamsi; Thrall, Brian D; Chen, Shu; Porter, Alexandra E; Ryan, Mary P

    2015-09-15

    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies.

  3. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages

    PubMed Central

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H.; Baer, Donald R.; Smith, Jordan N.; Liu, Chongxuan; Kodali, Vamsi; Thrall, Brian D.; Chen, Shu; Porter, Alexandra E.; Ryan, Mary P.

    2015-01-01

    Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies. PMID:26178265

  4. Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi.

    PubMed

    Murugan, Kadarkarai; Dinesh, Devakumar; Kumar, Prabhu Jenil; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Madhiyazhagan, Pari; Suresh, Udaiyan; Nicoletti, Marcello; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Mehlhorn, Heinz; Benelli, Giovanni

    2015-12-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. The employ of synthetic insecticides to control Anopheles populations leads to high operational costs, non-target effects, and induced resistance. Recently, plant-borne compounds have been proposed for efficient and rapid extracellular synthesis of mosquitocidal nanoparticles. However, their impact against predators of mosquito larvae has been poorly studied. In this study, we synthesized silver nanoparticles (AgNPs) using the Datura metel leaf extract as reducing and stabilizing agent. The biosynthesis of AgNPs was confirmed analyzing the excitation of surface plasmon resonance using ultraviolet-visible (UV-vis) spectroscopy. Scanning electron microscopy (SEM) showed the clustered and irregular shapes of AgNPs, with a mean size of 40-60 nm. The presence of silver was determined by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy analysis investigated the identity of secondary metabolites, which may be acting as AgNP capping agents. In laboratory, LC50 of D. metel extract against Anopheles stephensi ranged from 34.693 ppm (I instar larvae) to 81.500 ppm (pupae). LC50 of AgNP ranged from 2.969 ppm (I instar larvae) to 6.755 ppm (pupae). Under standard laboratory conditions, the predation efficiency of Anax immaculifrons nymphs after 24 h was 75.5 % (II instar larvae) and 53.5 % (III instar larvae). In AgNP-contaminated environment, predation rates were boosted to 95.5 and 78 %, respectively. Our results documented that D. metel-synthesized AgNP might be employed at rather low doses to reduce larval populations of malaria vectors, without detrimental effects on behavioral traits of young instars of the dragonfly Anax immaculifrons.

  5. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?

    PubMed

    Dinesh, Devakumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Panneerselvam, Chellasamy; Kumar, Palanisamy Mahesh; Nicoletti, Marcello; Jiang, Wei; Benelli, Giovanni; Chandramohan, Balamurugan; Suresh, Udaiyan

    2015-04-01

    Mosquitoes represent an important threat for lives of millions of people worldwide, acting as vectors for devastating pathogens, such as malaria, yellow fever, dengue, and West Nile. In addition, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. Here, we investigated the mosquitocidal and antibacterial properties of Aloe vera leaf extract and silver nanoparticles synthesized using A. vera extract. Mosquitocidal properties were assessed in laboratory against larvae (I-IV instar) and pupae of the malaria vector Anopheles stephensi. Green-synthesized silver nanoparticles were tested against An. stephensi also in field conditions. Antibacterial properties of nanoparticles were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. The synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In laboratory conditions, the A. vera extract was toxic against An. stephensi larvae and pupae, even at low dosages. LC50 were 48.79 ppm (I instar), 59.09 ppm (II instar), 70.88 ppm (III instar), 83.58 ppm (IV instar), and 152.55 ppm (pupae). Green-synthesized silver nanoparticles were highly toxic against An. stephensi. LC50 were 3.825 ppm (I instar), 4.119 ppm (II instar), 4.982 ppm (III instar), 5.711 ppm (IV instar), and 6.113 ppm (pupae). In field conditions, the application of A. vera-synthesized silver nanoparticles (10 × LC50) leads to An. stephensi larval reduction of 74.5, 86.6, and 97.7%, after 24, 48, and 72 h, respectively. Nanoparticles also showed antibacterial properties, and the maximum concentration tested (150 mg/L) evoked an inhibition zone wider than 80 mm in all tested bacterium species. This study adds knowledge about the use of green synthesis of nanoparticles in

  6. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core. Structure, dissolution in cell culture media, and biological impact on macrophages

    DOE PAGES

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H.; ...

    2015-07-15

    Widespread use of silver nanoparticles raises questions of environmental impact and toxicity. Both silver particles and silver ions formed by particle dissolution may impact biological systems. Therefore it is important to understand the characteristics of silver nanoparticles and their stability in relevant media. The synthesis route can impact physical and chemical characteristics of the particles and we report the characterization and solution stability of three types of silver nanoparticles (20 nm particles with and without gold cores and 110 nm particles with gold cores) in cell culture media with serum proteins: FBS10%/RPMI. These nanoparticles were synthesized in aqueous solution andmore » characterized using both in situ and ex situ analysis methods. Dissolution studies were carried at particle concentrations from 1 µg/ml to 50 µg/ml. Particles with gold cores had smaller crystallite size and higher apparent solubility than pure silver particles. A dissolution model was found to describe the time variation of particle size and amount of dissolved silver for particle loadings above 9 µg/ml. An effective solubility product obtained from fitting the data was higher for the 20 nm gold core particles in comparison to the pure silver or 110 nm particles. Dissolution of the nanoparticles was enhanced by presence of serum proteins contained in fetal bovine serum. In addition, the protocol of the dispersion in the medium was found to influence particle agglomeration and dissolution. Results show that particle structure can impact the concentration of dissolved silver and the dose to which cells would be exposed during in vitro studies.« less

  7. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core. Structure, dissolution in cell culture media, and biological impact on macrophages

    SciTech Connect

    Munusamy, Prabhakaran; Wang, Chongmin; Engelhard, Mark H.; Baer, Donald R.; Smith, Jordan N.; Liu, Chongxuan; Kodali, Vamsi K.; Thrall, Brian D.; Chen, Shu; Porter, Alexandra E.; Ryan, Mary P.

    2015-07-15

    Widespread use of silver nanoparticles raises questions of environmental impact and toxicity. Both silver particles and silver ions formed by particle dissolution may impact biological systems. Therefore it is important to understand the characteristics of silver nanoparticles and their stability in relevant media. The synthesis route can impact physical and chemical characteristics of the particles and we report the characterization and solution stability of three types of silver nanoparticles (20 nm particles with and without gold cores and 110 nm particles with gold cores) in cell culture media with serum proteins: FBS10%/RPMI. These nanoparticles were synthesized in aqueous solution and characterized using both in situ and ex situ analysis methods. Dissolution studies were carried at particle concentrations from 1 µg/ml to 50 µg/ml. Particles with gold cores had smaller crystallite size and higher apparent solubility than pure silver particles. A dissolution model was found to describe the time variation of particle size and amount of dissolved silver for particle loadings above 9 µg/ml. An effective solubility product obtained from fitting the data was higher for the 20 nm gold core particles in comparison to the pure silver or 110 nm particles. Dissolution of the nanoparticles was enhanced by presence of serum proteins contained in fetal bovine serum. In addition, the protocol of the dispersion in the medium was found to influence particle agglomeration and dissolution. Results show that particle structure can impact the concentration of dissolved silver and the dose to which cells would be exposed during in vitro studies.

  8. Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon

    NASA Astrophysics Data System (ADS)

    Yugandhar, P.; Savithramma, N.

    2016-02-01

    In nanotechnology, the plant mediated synthesis of nanoparticles has terrific application in biomedicine due to its novel properties and its eco-friendly nature. The present study deals with the biosynthesis of stable silver nanoparticles (SNPs) from aqueous fruit extract of S. alternifolium an endemic medicinal plant to Eastern Ghats. The synthesized nanoparticles are characterized by UV-VIS spectroscopy, FTIR, XRD, AFM, SEM with EDAX and TEM. Colour change from brown to grey indicates the formation of nanoparticles and UV-VIS surface plasmon resonance spectroscopy observed at 442 nm further confirms the synthesized nanoparticles are SNPs. FTIR studies reveal that the phenols and primary amines of proteins are main responsible for reduction, stabilization and capping agents towards these SNPs. The XRD data show crystalline nature of nanoparticles and EDAX measurements reveal the (12.74 %) percentage presence of Ag metal. AFM, SEM and TEM microscopic analyses revealed that the size of synthesized SNPs ranging from 5 to 68 nm has spherical shape and they are in polydispersed condition. Further, the antimicrobial studies of synthesized SNPs show high toxicity towards different bacterial and fungal isolates. This is the first report on fruit mediated synthesis of silver nanoparticles from S. alternifolium.

  9. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes

    NASA Astrophysics Data System (ADS)

    Gonzalez-Carter, Daniel A.; Leo, Bey Fen; Ruenraroengsak, Pakatip; Chen, Shu; Goode, Angela E.; Theodorou, Ioannis G.; Chung, Kian Fan; Carzaniga, Raffaella; Shaffer, Milo S. P.; Dexter, David T.; Ryan, Mary P.; Porter, Alexandra E.

    2017-03-01

    Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson’s disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity.

  10. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes

    PubMed Central

    Gonzalez-Carter, Daniel A.; Leo, Bey Fen; Ruenraroengsak, Pakatip; Chen, Shu; Goode, Angela E.; Theodorou, Ioannis G.; Chung, Kian Fan; Carzaniga, Raffaella; Shaffer, Milo S. P.; Dexter, David T.; Ryan, Mary P.; Porter, Alexandra E.

    2017-01-01

    Silver nanoparticles (AgNP) are known to penetrate into the brain and cause neuronal death. However, there is a paucity in studies examining the effect of AgNP on the resident immune cells of the brain, microglia. Given microglia are implicated in neurodegenerative disorders such as Parkinson’s disease (PD), it is important to examine how AgNPs affect microglial inflammation to fully assess AgNP neurotoxicity. In addition, understanding AgNP processing by microglia will allow better prediction of their long term bioreactivity. In the present study, the in vitro uptake and intracellular transformation of citrate-capped AgNPs by microglia, as well as their effects on microglial inflammation and related neurotoxicity were examined. Analytical microscopy demonstrated internalization and dissolution of AgNPs within microglia and formation of non-reactive silver sulphide (Ag2S) on the surface of AgNPs. Furthermore, AgNP-treatment up-regulated microglial expression of the hydrogen sulphide (H2S)-synthesizing enzyme cystathionine-γ-lyase (CSE). In addition, AgNPs showed significant anti-inflammatory effects, reducing lipopolysaccharide (LPS)-stimulated ROS, nitric oxide and TNFα production, which translated into reduced microglial toxicity towards dopaminergic neurons. Hence, the present results indicate that intracellular Ag2S formation, resulting from CSE-mediated H2S production in microglia, sequesters Ag+ ions released from AgNPs, significantly limiting their toxicity, concomitantly reducing microglial inflammation and related neurotoxicity. PMID:28251989

  11. Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus.

    PubMed

    Santhoshkumar, Thirunavukkarasu; Rahuman, Abdul Abdul; Bagavan, Asokan; Marimuthu, Sampath; Jayaseelan, Chidambaram; Kirthi, Arivarasan Vishnu; Kamaraj, Chinnaperumal; Rajakumar, Govindasamy; Zahir, Abdul Abduz; Elango, Gandhi; Velayutham, Kanayairam; Iyappan, Moorthy; Siva, Chinnadurai; Karthik, Loganathan; Rao, Kokati Venkata Bhaskara

    2012-10-01

    The present study was to determine the efficacies of anti-parasitic activities of synthesized silver nanoparticles (Ag NPs) using stem aqueous extract of Cissus quadrangularis against the adult of hematophagous fly, Hippobosca maculata (Diptera: Hippoboscidae), and the larvae of cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Contact toxicity method was followed to determine the potential of parasitic activity. Twelve milliliters of stem aqueous extract of C. quadrangularis was treated with 88 ml of 1mM silver nitrate (AgNO(3)) solution at room temperature for 30 min and the resulting solution was yellow-brown color indicating the formation extracellular synthesis of Ag NPs. The synthesized Ag NPs were characterized with UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) spectroscopy. The synthesized Ag NPs were recorded by UV-visible spectrum at 420 nm and XRD patterns showed the nanoparticles crystalline in nature. FTIR analysis confirmed that the bioreduction of Ag((+)) ions to Ag NPs were due to the reduction by capping material of plant extract. FESEM image of Ag NPs showed spherical and oval in shape. By using the Bragg's Law and Scherrer's constant, the average mean size of synthesized Ag NPs was 42.46 nm. The spot EDX analysis showed the complete chemical composition of the synthesized Ag NPs. The mortality obtained by the synthesized Ag NPs from the C. quadrangularis was more effective than the aqueous extract of C. quadrangularis and AgNO(3) solution (1 mM). The adulticidal activity was observed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the adult of H. maculata with LC(50) values of 37.08, 40.35 and 6.30 mg/L; LC(90) values of 175.46, 192.17 and 18.14 mg/L and r(2) values of 0.970, 0.992 and 0.969, respectively. The maximum efficacy showed in the aqueous extract, AgNO(3

  12. Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house fly, Musca domestica (Diptera: Muscidae).

    PubMed

    Kamaraj, Chinnaperumal; Rajakumar, Govindasamy; Rahuman, Abdul Abdul; Velayutham, Kanayairam; Bagavan, Asokan; Zahir, Abdul Abduz; Elango, Gandhi

    2012-12-01

    With a greater awareness of the hazards associated with the use of synthetic organic insecticides, there has been an urgent need to explore suitable alternative products for pest control. Musca domestica is ubiquitous insect that has the potential to spread a variety of pathogens to humans and livestock. They are mechanical carriers of more than hundred human and animal intestinal diseases and are responsible for protozoan, bacterial, helminthic, and viral infections. The present work aimed to investigate the feeding deterrent activity of synthesized silver nanoparticles (Ag NPs) using leaf aqueous extract of Manilkara zapota against M. domestica. The synthesized Ag NPs were recorded from UV-vis spectrum at 421 nm and scanning electron microscopy confirm the biosynthesis and characterization of Ag NPs with spherical and oval in shape and size of 70-140 nm. The FTIR analysis of the purified nanoparticles showed the presence of bands 1,079, 1,383, 1,627, 2,353, and 2,648 cm(-1), which were complete synthesis of AgNPs; the XRD pattern of AgNPs showed diffraction peaks at 2θ values of 38.06°, 44.37°, 64.51°, and 77.31° sets of lattice planes were observed (111), (200), (220), and (311) facts of silver, respectively. Adult flies were exposed to different concentrations of the aqueous extract of synthesized Ag NPs, 1 mM silver nitrate (AgNO(3)) solution and aqueous extract of M. zapota for 1, 2, and 3 h; however, AgNPs showed 72% mortality in 1 h, 89% mortality was found in 2 h, and 100% mortality was found in 3 h exposure at the concentration of 10 mg/mL and the leaf aqueous extract showed 32% mortality in 1 h, 48% mortality was found in 2 h, and 83% mortality was found in 3 h exposure at concentration of 50 mg/mL. The most efficient activity was observed in synthesized Ag NPs against M. domestica (LD(50) = 3.64 mg/mL; LD(90) = 7.74 mg/mL), the moderate activity reported in the aqueous extract of M. zapota (LD(50) = 28.35 mg/mL; LD(90) = 89.19 mg/mL) and nil

  13. Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus.

    PubMed

    Murugan, Kadarkarai; Benelli, Giovanni; Ayyappan, Suganya; Dinesh, Devakumar; Panneerselvam, Chellasamy; Nicoletti, Marcello; Hwang, Jiang-Shiou; Kumar, Palanisamy Mahesh; Subramaniam, Jayapal; Suresh, Udaiyan

    2015-06-01

    Nearly 1.4 billion people in 73 countries worldwide are threatened by lymphatic filariasis, a parasitic infection that leads to a disease commonly known as elephantiasis. Filariasis is vectored by mosquitoes, with special reference to the genus Culex. The main control tool against mosquito larvae is represented by treatments with organophosphates and insect growth regulators, with negative effects on human health and the environment. Recently, green-synthesized nanoparticles have been proposed as highly effective larvicidals against mosquito vectors. In this research, we attempted a reply to the following question: do green-synthesized nanoparticles affect predation rates of copepods against mosquito larvae? We proposed a novel method of seaweed-mediated synthesis of silver nanoparticles using the frond extract of Caulerpa scalpelliformis. The toxicity of the seaweed extract and silver nanoparticles was assessed against the filarial vector Culex quinquefasciatus. Then, we evaluated the predatory efficiency of the cyclopoid crustacean Mesocyclops longisetus against larval instars of C. quinquefasciatus in a nanoparticle-contaminated water environment. Green-synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In mosquitocidal assays, the LC₅₀ values of the C. scalpelliformis extract against C. quinquefasciatus were 31.38 ppm (I), 46.49 ppm (II), 75.79 ppm (III), 102.26 ppm (IV), and 138.89 ppm (pupa), while LC₅₀ of silver nanoparticles were 3.08 ppm, (I), 3.49 ppm (II), 4.64 ppm (III), 5.86 ppm (IV), and 7.33 ppm (pupa). The predatory efficiency of the copepod M. longisetus in the control treatment was 78 and 59% against I and II instar larvae of C. quinquefasciatus. In a nanoparticle-contaminated environment, predation efficiency was 84 and 63%, respectively. Predation was higher against first instar larvae over other instars

  14. Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract.

    PubMed

    Du, Juan; Singh, Hina; Yi, Tae-Hoo

    2016-12-01

    This study described a simple and green approach for the synthesis of silver nanoparticles (AgNPs) employing benzoin gum water extract as a reducing and capping agent and their applications. The AgNPs were characterized by ultraviolet-visible spectrophotometer, X-ray diffraction pattern, field emission transmission electron microscopy, dynamic light scattering, zeta potential and fourier transform infrared spectroscopy. The AgNPs showed promising antimicrobial activity against various pathogens (Gram-negative, Gram-positive and fungus) and possessed high free radical scavenging activity (104.5 ± 7.21 % at 1 mg/ml). In addition, the AgNPs exhibited strong cytotoxicity towards human cervical cancer and human lung cancer cells as compared to the normal mouse macrophage cells. Moreover, the AgNPs possessed anti-biofilm activity against Escherichia coli, and compatibility to human keratinocyte HaCaT cells, which suggests the use of dressing with the AgNPs in chronic wound treatment. Therefore, AgNPs synthesized by benzoin gum extract are comparatively green and may have broad spectrum potential application in biomedicine.

  15. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    PubMed Central

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750

  16. Aristolochia indica green-synthesized silver nanoparticles: A sustainable control tool against the malaria vector Anopheles stephensi?

    PubMed

    Murugan, Kadarkarai; Labeeba, Mohammed Aamina; Panneerselvam, Chellasamy; Dinesh, Devakumar; Suresh, Udaiyan; Subramaniam, Jayapal; Madhiyazhagan, Pari; Hwang, Jiang-Shiou; Wang, Lan; Nicoletti, Marcello; Benelli, Giovanni

    2015-10-01

    Malaria is a life-threatening disease caused by parasites transmitted to people and animals through the bites of infected mosquitoes. We biosynthesized silver nanoparticles (AgNP) using Aristolochia indica extract as reducing and stabilizing agent. AgNP were characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. In laboratory, LC50 of A. indica extract against Anopheles stephensi ranged from 262.66 (larvae I) to 565.02 ppm (pupae). LC50 of AgNP against A. stephensi ranged from 3.94 (larvae I) to 15.65 ppm (pupae). In the field, the application of A. indica extract and AgNP (10 × LC50) leads to 100% larval reduction after 72 h. In laboratory, 24-h predation efficiency of Diplonychus indicus against A. stephensi larvae was 33% (larvae II) and 57% (larvae III). In AgNP-contaminated environment (1 ppm), it was 45.5% (larvae II) and 71.75% (larvae III). Overall, A. indica-synthesized AgNP may be considered as newer and safer control tools against Anopheles vectors.

  17. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes.

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu

    2014-11-01

    Mosquito-borne diseases with an economic impact create loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates. Mosquito control is facing a threat because of the emergence of resistance to synthetic insecticides. Extracts from plants may be alternative sources of mosquito control agents because they constitute a rich source of bioactive compounds that are biodegradable into nontoxic products and potentially suitable for use to control mosquitoes. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticide, in the present study, the adulticidal activity of silver nanoparticles (AgNPs) synthesized using Feronia elephantum plant leaf extract against adults of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus was determined. The range of concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg mL(-1)) and aqueous leaf extract (40, 80, 120, 160, and 200 μg mL(-1)) were tested against the adults of A. stephensi, A. aegypti, and C. quinquefasciatus. Adults were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of F. elephantum for all three important vector mosquitoes. The synthesized AgNPs from F. elephantum were highly toxic than crude leaf aqueous extract to three important vector mosquito species. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy analysis (EDX), and transmission electron microscopy (TEM). Synthesized AgNPs against the vector mosquitoes A. stephensi, A. aegypti, and C. quinquefasciatus had the following lethal dose (LD)₅₀ and LD₉₀ values: A. stephensi had LD₅₀ and LD₉₀ values of 18

  18. Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay.

    PubMed

    Panda, Kamal K; Achary, V Mohan M; Phaomie, Ganngam; Sahu, Hrushi K; Parinandi, Narasimham L; Panda, Brahma B

    2016-08-01

    The silver nanoparticles (AgNPs) were synthesized extracellularly from silver nitrate (AgNO3) using kernel extract from ripe mango Mengifera indica L. under four different reaction conditions of the synthesis media such as the (i) absence of the reducing agent, trisodium citrate (AgNPI), (ii) presence of the reducing agent (AgNPII), (iii) presence of the cleansing agent, polyvinyl polypyrrolidone, PVPP (AgNPIII), and (iv) presence of the capping agent, polyvinyl pyrrolidone, PVP (AgNPIV). The synthesis of the AgNPs was monitored by UV-vis spectrophotometry. The AgNPs were characterised by the energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and small-angle X-ray scattering. Functional groups on the AgNPs were established by the Fourier transform infrared spectroscopy. The AgNPs (AgNPI, AgNPII, AgNPIII and AgNPIV) were spherical in shape with the diameters and size distribution-widths of 14.0±5.4, 19.2±6.6, 18.8±6.6 and 44.6±13.2nm, respectively. Genotoxicity of the AgNPs at concentrations ranging from 1 to 100mgL(-1) was determined by the Lathyrus sativus L. root bioassay and several endpoint assays including the generation of reactive oxygen species and cell death, lipid peroxidation, mitotic index, chromosome aberrations (CA), micronucleus formation (MN), and DNA damage as determined by the Comet assay. The dose-dependent induction of genotoxicity of the silver ion (Ag(+)) and AgNPs was in the order Ag(+)>AgNPII>AgNPI>AgNPIV>AgNPIII that corresponded with their relative potencies of induction of DNA damage and oxidative stress. Furthermore, the findings underscored the CA and MN endpoint-based genotoxicity assay which demonstrated the genotoxicity of AgNPs at concentrations (≤10mgL(-1)) lower than that (≥10mgL(-1)) tested in the Comet assay. This study demonstrated the protective action of PVPP against the genotoxicity of AgNPIII which was independent of the size of the AgNPs in the L. sativus L. root bioassay

  19. S argassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens.

    PubMed

    Madhiyazhagan, Pari; Murugan, Kadarkarai; Kumar, Arjunan Naresh; Nataraj, Thiyagarajan; Dinesh, Devakumar; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Mahesh Kumar, Palanisamy; Suresh, Udaiyan; Roni, Mathath; Nicoletti, Marcello; Alarfaj, Abdullah A; Higuchi, Akon; Munusamy, Murugan A; Benelli, Giovanni

    2015-11-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this research, silver nanoparticles (AgNP) were synthesized using the aqueous extract of the seaweed Sargassum muticum. The production of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometry. AgNP were characterized by FTIR, SEM, EDX, and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and mean size was 43-79 nm. Toxicity of AgNP was assessed against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. In laboratory, AgNP were highly toxic against larvae and pupae of the three mosquito species. Maximum efficacy was observed against A. stephensi larvae, with LC50 ranging from 16.156 ppm (larva I) to 28.881 ppm (pupa). In the field, a single treatment with AgNP (10 × LC50) in water storage reservoirs was effective against the three mosquito vectors, allowing complete elimination of larval populations after 72 h. In ovicidal experiments, egg hatchability was reduced by 100% after treatment with 30 ppm of AgNP. Ovideterrence assays highlighted that 10 ppm of AgNP reduced oviposition rates of more than 70% in A. aegypti, A. stephensi, and C. quinquefasciatus (OAI = -0.61, -0.63, and -0.58, respectively). Antibacterial properties of AgNP were evaluated against Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. AgNP tested at 50 ppm evoked growth inhibition zones larger than 5 mm in all tested bacteria. Overall, the chance to use S. muticum-synthesized AgNP for control of mosquito vectors seems promising since they are effective at low doses and may constitute an advantageous alternative to build newer and safer mosquito control tools. This is the first

  20. Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis.

    PubMed

    Baskar, Venkidasamy; Venkatesh, Jelli; Park, Se Won

    2015-11-01

    Silver nanoparticles (AgNPs) were extensively used in various fields, particularly in medicine as an antimicrobial agent. The unavoidable and extensive usage of AgNPs in turn accumulates in the environment. Plants are the essential base of ecosystem and are ready to disturb by environmental pollutants. Therefore, in the present study, we have planned to evaluate the impact of biologically synthesized AgNPs on the essential food crop Chinese cabbage (Brassica rapa ssp. pekinensis). The effects of AgNP-induced plant morphological and physiological changes were investigated in different concentrations (100, 250, and 500 mg/L). The results of morphological features showed that AgNPs at lower concentrations (100 mg/L) exhibit growth-stimulating activity, whereas at higher concentrations (250 and 500 mg/L), particularly, 500 mg/L exhibited growth-suppressing activities which are in terms of reduced root, shoot growth, and fresh biomass. The increased reactive oxygen species (ROS) generation, malondialdehyde production, anthocyanin biosynthesis, and decreased chlorophyll content were also more obviously present at higher concentrations of AgNPs. The concentration-dependent DNA damage was observed in the AgNP-treated plants. The molecular responses of AgNPs indicate that most of the genes related to secondary metabolism (glucosinolates, anthocyanin) and antioxidant activities were induced at higher concentrations of AgNP treatment. The dose-dependent phytotoxicity effects of AgNPs were also observed. Taken together, the highest concentration of AgNPs (500 mg/L) could induce growth-suppressing activities via the induction of ROS generation and other molecular changes in B. rapa seedlings.

  1. Step-reduced synthesis of starch-silver nanoparticles.

    PubMed

    Raghavendra, Gownolla Malegowd; Jung, Jeyoung; Kim, Dowan; Seo, Jongchul

    2016-05-01

    In the present process, silver nanoparticles were directly synthesized in a single step by microwave irradiation of a mixture of starch, silver nitrate, and deionized water. This is different from the commonly adopted procedure for starch-silver nanoparticle synthesis in which silver nanoparticles are synthesized by preparing a starch solution as a reaction medium first. Thus, the additional step associated with the preparation of the starch solution was eliminated. In addition, no additional reducing agent was utilized. The adopted method was facile and straight forward, affording spherical silver nanoparticles with diameter below 10nm that exhibited good antibacterial activity. Further, influence of starch on the size of the silver nanoparticles was noticed.

  2. Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells.

    PubMed

    Baldi, Franco; Daniele, Salvatore; Gallo, Michele; Paganelli, Stefano; Battistel, Dario; Piccolo, Oreste; Faleri, Claudia; Puglia, Anna Maria; Gallo, Giuseppe

    2016-04-01

    Silver nanoparticles (AgNPs), embedded into a specific exopolysaccharide (EPS), were produced by Klebsiella oxytoca DSM 29614 by adding AgNO3 to the cultures during exponential growth phase. In particular, under aerobic or anaerobic conditions, two types of silver nanoparticles, named AgNPs-EPS(aer) and the AgNPs-EPS(anaer), were produced respectively. The effects on bacterial cells was demonstrated by using Escherichia coli K12 and Kocuria rhizophila ATCC 9341 (ex Micrococcus luteus) as Gram-negative and Gram-positive tester strains, respectively. The best antimicrobial activity was observed for AgNPs-EPS(aer), in terms of minimum inhibitory concentrations and minimum bactericidal concentrations. Observations by transmission electron microscopy showed that the cell morphology of both tester strains changed during the exposition to AgNPs-EPS(aer). In particular, an electron-dense wrapped filament was observed in E. coli cytoplasm after 3 h of AgNPs-EPS(aer) exposition, apparently due to silver accumulation in DNA, and both E. coli and K. rhizophila cells were lysed after 18 h of exposure to AgNPs-EPS(aer). The DNA breakage in E. coli cells was confirmed by the comparison of 3-D fluorescence spectra fingerprints of DNA. Finally the accumulation of silver on DNA of E. coli was confirmed directly by a significant Ag(+) release from DNA, using the scanning electrochemical microscopy and the voltammetric determinations.

  3. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study

    PubMed Central

    Rónavári, Andrea; Kovács, Dávid; Igaz, Nóra; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Pfeiffer, Ilona; Kiricsi, Mónika

    2017-01-01

    Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles. PMID:28184158

  4. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study.

    PubMed

    Rónavári, Andrea; Kovács, Dávid; Igaz, Nóra; Vágvölgyi, Csaba; Boros, Imre Miklós; Kónya, Zoltán; Pfeiffer, Ilona; Kiricsi, Mónika

    2017-01-01

    Due to obvious disadvantages of the classical chemical methods, green synthesis of metallic nanoparticles has attracted tremendous attention in recent years. Numerous environmentally benign synthesis methods have been developed yielding nanoparticles via low-cost, eco-friendly, and simple approaches. In this study, our aim was to determine the suitability of coffee and green tea extracts in green synthesis of silver nanoparticles as well as to compare the performance of the obtained materials in different biological systems. We successfully produced silver nanoparticles (C-AgNP and GT-AgNP) using coffee and green tea extracts; moreover, based on our comprehensive screening, we delineated major differences in the biological activity of C-AgNPs and GT-AgNPs. Our results indicate that although GT-AgNPs exhibited excellent antimicrobial activity against all the examined microbial pathogens, these particles were also highly toxic to mammalian cells, which limits their potential applications. On the contrary, C-AgNPs manifested substantial inhibitory action on the tested microbes but were nontoxic to human and mouse cells, indicating an outstanding capacity to discriminate between potential pathogens and mammalian cells. These results clearly show that the various green materials used for stabilization and for reduction of metal ions have a defining role in determining and fine-tuning the biological activity of the obtained nanoparticles.

  5. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae).

    PubMed

    Salunkhe, Rahul B; Patil, Satish V; Patil, Chandrashekhar D; Salunke, Bipinchandra K

    2011-09-01

    Larvicides play a vital role in controlling mosquitoes in their breeding sites. The present study was carried out to establish the larvicidal activities of mycosynthesized silver nanoparticles (AgNPs) against vectors: Aedes aegypti and Anopheles stephensi responsible for diseases of public health importance. The AgNPs synthesized by filamentous fungus Cochliobolus lunatus, characterized by UV-Vis spectrophotometry, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The characterization studies confirmed the spherical shape and size (3-21 nm) of silver nanoparticles. The efficacy of mycosynthesized AgNPs at all the tested concentrations (10, 5, 2.5, 1.25, 0.625, and 0.3125 ppm) against second, third, and fourth instar larvae of A. aegypti (LC(50) 1.29, 1.48, and 1.58; LC(90) 3.08, 3.33, and 3.41 ppm) and against A. stephensi (LC(50) 1.17, 1.30, and 1.41; LC(90) 2.99, 3.13, and 3.29 ppm) were observed, respectively. The mortality rates were positively correlated with the concentration of AgNPs. Significant (P < 0.05) changes in the larval mortality was also recorded between the period of exposure against fourth instar larvae of A. aegypti and A. stephensi. The possible larvicidal activity may be due to penetration of nanoparticles through membrane. Toxicity studies carried out against non-target fish species Poecilia reticulata, the most common organism in the habitats of A. aegypti and A. stephensi showed no toxicity at LC50 and LC90 doses of the AgNPs. This is the first report on mosquito larvicidal activity of mycosynthesized nanoparticles. Thus, the use of fungus C. lunatus to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents.

  6. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract

    NASA Astrophysics Data System (ADS)

    Kumara Swamy, M.; Sudipta, K. M.; Jayanta, K.; Balasubramanya, S.

    2015-01-01

    Biosynthesis of silver nanoparticles (Ag Nps) was carried out using methanol leaves extract of L. reticulata. Ag Nps were characterized based on the observations of UV-visible spectroscopy, transmission electron microscopy, and X-ray diffraction (XRD) analysis. These Ag Nps were tested for antimicrobial activity by agar well diffusion method against different pathogenic microorganisms and antioxidant activity was performed using DPPH assay. Further, the in vitro cytotoxic effects of Ag Nps were screened against HCT15 cancer cell line and viability of tumor cells was confirmed using MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) assay. The nuclear condensation was studied using the propidium iodide-staining method. The color change from green to dark brown and the absorbance peak at about 420 nm indicated the formation of nanoparticles. XRD pattern showed characteristic peaks indexed to the crystalline planes (111), (200) and (220) of face-centered cubic silver. The nanoparticles were of spherical shape with varying sizes ranging from 50 to 70 nm. Biosynthesized Ag Nps showed potent antibacterial activity and effective radical scavenging activity. MTT assay revealed a dose-dependent decrease in cell viability. Microscopic observations showed distinct cellular morphological changes indicating unhealthy cells, whereas the control appeared normal. Increase in the number of propidium iodide positive cells were observed in maximum concentration. Methanolic leaf extract of L. reticulata acts as an excellent capping agent for the formation of silver nanoparticles and demonstrates immense biological activities. Hence, these Ag NPs can be used as antibacterial, antioxidant as well as cytotoxic agent in treating many medical complications.

  7. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor.

    PubMed

    Pourreza, Nahid; Golmohammadi, Hamed; Naghdi, Tina; Yousefi, Hossein

    2015-12-15

    Herein, we introduce a new strategy for green, in-situ generation of silver nanoparticles using flexible and transparent bacterial cellulose nanopapers. In this method, adsorbed silver ions on bacterial cellulose nanopaper are reduced by the hydroxyl groups of cellulose nanofibers, acting as the reducing agent producing a bionanocomposite "embedded silver nanoparticles in transparent nanopaper" (ESNPs). The fabricated ESNPs were investigated and characterized by field emission scanning electron microscopy (FE-SEM), UV-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and energy-dispersive X-ray spectroscopy (EDX). The important parameters affecting the ESNPs were optimized during the fabrication of specimens. The resulting ESNPs were used as a novel and sensitive probe for the optical sensing of cyanide ion (CN(-)) and 2-mercaptobenzothiazole (MBT) in water samples with satisfactory results. The change in surface plasmon resonance absorption intensity of ESNPs was linearly proportional to the concentration in the range of 0.2-2.5 µg mL(-1) and 2-110 µg mL(-1) with a detection limit of 0.012 µg mL(-1) and 1.37 µg mL(-1) for CN(-) and MBT, respectively.

  8. Low-temperature Raman spectroscopy of copper and silver nanoparticles ion-synthesized in a silica glass and subjected to laser annealing

    NASA Astrophysics Data System (ADS)

    Kurbatova, N. V.; Galyautdinov, M. F.; Shtyrkov, E. I.; Nuzhdin, V. I.; Stepanov, A. L.

    2010-06-01

    The modification of the shape of ion-synthesized silver and copper nanoparticles in a silica glass during laser annealing has been studied for the first time by Raman spectroscopy at a temperature of 77 K. The laser annealing has been carried out for a wavelength of 694 nm at the edge of the plasmon absorption spectrum of nanoparticles. A comparison of the experimental spectra and the calculated modes of in-phase bending vibrations of the “harmonica” type in nanostrings of the corresponding metals has demonstrated their good agreement. The effects observed have been discussed from the standpoint of the size quantization of vibrations in metal nanowires. This methodical approach has made it possible to estimate the sizes of the Ag and Cu nanoparticles under the assumption that they have an elongated form; in this case, their average lengths are equal to 2.5 and 1.4 nm, respectively.

  9. Mercaptoethane sulfonate protected, water-soluble gold and silver nanoparticles: Syntheses, characterization and their building multilayer films with polyaniline via ion-dipole interactions.

    PubMed

    Zou, Xiangqin; Bao, Haifeng; Guo, Hongwei; Zhang, Lei; Qi, Li; Jiang, Junguang; Niu, Li; Dong, Shaojun

    2006-03-15

    Mercaptoethane sulfonate protected, water-soluble gold and silver nanoparticles (Au-MES and Ag-MES) are synthesized by one-phase method and characterized by TEM, TGA and XPS techniques, UV-vis and FTIR spectra. Both Au-MES and Ag-MES nanoparticles are soluble in the water up to 2.0 mg/ml and the stability of Au-MES is much better than that of Ag-MES. When dissolved in the water, they behave like a polyanion and can be used to build multilayer films with polyaniline (PANI) by way of layer-by-layer. A new approach is presented to fabricate the multilayer films of Au-MES/PANI and Ag-MES/PANI. The assembly mechanism of these multilayer films is also discussed. We anticipate highly conducting PANI films can be obtained by doping with these nanoparticles.

  10. Effect of heating rate and plant species on the size and uniformity of silver nanoparticles synthesized using aromatic plant extracts

    NASA Astrophysics Data System (ADS)

    Hernández-Pinero, Jorge Luis; Terrón-Rebolledo, Manuel; Foroughbakhch, Rahim; Moreno-Limón, Sergio; Melendrez, M. F.; Solís-Pomar, Francisco; Pérez-Tijerina, Eduardo

    2016-11-01

    Mixing aqueous silver solutions with aqueous leaf aromatic plant extracts from basil, mint, marjoram and peppermint resulted in the synthesis of quasi-spherical silver nanoparticles in a range of size between 2 and 80 nm in diameter as analyzed by analytical high-resolution electron microscopy. The average size could be controlled by applying heat to the initial reaction system at different rates of heating, and by the specific botanical species employed for the reaction. Increasing the rate of heating resulted in a statistically significant decrease in the size of the nanoparticles produced, regardless of the species employed. This fact was more evident in the case of marjoram, which decreased the average diameter from 27 nm at a slow rate of heating to 8 nm at a high rate of heating. With regard to the species, minimum sizes of <10 nm were obtained with basil and peppermint, while marjoram and mint yielded an average size between 10 and 25 nm. The results indicate that aromatic plant extracts can be used to achieve the controlled synthesis of metal nanoparticles.

  11. Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Dawood, M. K.; Tripathy, S.; Dolmanan, S. B.; Ng, T. H.; Tan, H.; Lam, J.

    2012-10-01

    We report on the structural and vibrational characterization of silicon (Si) nanowire arrays synthesized by metal-assisted chemical etching (MACE) of Si deposited with metal nanoparticles. Gold (Au) and silver (Ag) metal nanoparticles were synthesized by glancing angle deposition, and MACE was performed in a mixture of H2O2 and HF solution. We studied the structural differences between Au and Ag-etched Si nanowires. The morphology of the synthesized nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The optical and vibrational properties of the Si nanostructures were studied by photoluminescence and Raman spectroscopy using three different excitation sources (UV, visible, and near-infrared) and are correlated to their microstructures. The structural differences between Au-etched and Ag-etched nanowires are due to the higher degree of hole injection by the Au nanoparticle and diffusion into the Si nanowires, causing enhanced Si etching by HF on the nanowire surface. Au-etched nanowires were observed to be mesoporous throughout the nanowire while Ag-etched nanowires consisted of a thin porous layer around the crystalline core. In addition, the surface-enhanced resonant Raman scattering observed is attributed to the presence of the sunken metal nanoparticles. Such Si nanostructures may be useful for a wide range of applications such as photovoltaic and biological and chemical sensing.

  12. Green synthesis of silver nanoparticles using tannins

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  13. Effect of different polymers on morphology and particle size of silver nanoparticles synthesized by modified polyol method

    NASA Astrophysics Data System (ADS)

    Fereshteh, Zeinab; Rojaee, Ramin; Sharifnabi, Ali

    2016-10-01

    In this work, simple, economic, eco-friendly modified method with high efficiency was applied for synthesis of silver nanoparticles (Ag NPs) by using polyethylene glycol (PEG) as a capping agent, reductant, and media agent. In order to preparation uniform and small Ag NPs, the reaction parameters such as type of polymer, AgNO3/Polymer weight concentration ratio, and AgNO3/NaBH4 molar concentration ratio were modified. The best condition was optimized in concentration ratio of AgNO3: PEG: NaBH4 where are 1:10:0.01, respectively with 82% efficiency and 98.95% purity. Therefore, this modified polyol method can also be scaled up for synthesis of Ag NPs appropriately. Due to polymeric coating on the Ag NPs, they can be employed as a promising candidate for drug delivery systems.

  14. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Veerakumar, Kaliyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Muthukumaran, Udaiyan

    2014-06-01

    Mosquitoes transmit dreadful diseases to human beings wherein biological control of these vectors using plant-derived molecules would be an alternative to reduce mosquito population. In the present study activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using Helitropium indicum plant leaves against late third instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (30, 60, 90, 120, and 150 μg/mL) were tested against the larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The synthesized AgNPs from H. indicum were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy analysis, transmission electron microscopy, and histogram. The synthesized AgNPs showed larvicidal effects after 24 h of exposure. Considerable mortality was evident after the treatment of H. indicum for all three important vector mosquitoes. The LC50 and LC90 values of H. indicum aqueous leaf extract appeared to be effective against A. stephensi (LC50, 68.73 μg/mL; LC90, 121.07 μg/mL) followed by A. aegypti (LC50, 72.72 μg/mL; LC90, 126.86 μg/mL) and C. quinquefasciatus (LC50, 78.74 μg/mL; LC90, 134.39 μg/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 18.40 and 32.45 μg/mL, A. aegypti had LC50 and LC90 values of 20.10 and 35.97 μg/mL, and C. quinquefasciatus had LC50 and LC90 values of 21.84 and 38.10 μg/mL. No mortality was observed in the control. These results suggest that the leaf aqueous extracts of H. indicum and green synthesis of silver nanoparticles have the

  15. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments.

    PubMed

    Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B

    2016-08-01

    The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.

  16. Synthesizing A Phase Changing Bistable Electroactive Polymer And Silver Nanoparticles Coated Fabric As A Resistive Heating Element

    NASA Astrophysics Data System (ADS)

    Ren, Zhi

    that decreases to several MPa at above 70°C after a rigid-to-rubbery transition via glass transition. The rubbery BSEP possesses a stable storage modulus regardless of temperature fluctuations, which is beneficial to stable electrical actuation performances under an electric field. The bimodal structure creates a framework involving both long chain crosslinkers and small molecular crosslinkers. Due to the limited chain extensibility of this bimodal framework, the rubbery BSEP can self-stiffen at modest strains to suppress electromechanical instability, which is responsible for the premature electrical breakdown of the previous BSEP materials in their rubbery states. A BSEP actuator with a braille dot size exhibits steadily increased actuation height with increasing electric field at 70 °C. A stable actuation with a cycle lifetime of over 2000 cycles at a raised dot height of 0.4 mm was demonstrated. A fabrication process for a page-size braille paper using the BSEP has been developed. A selective heating strategy has been investigated based on a 2-cell device to provide a selective actuation strategy of BSEP braille dots. Wearable thermal management strategy has presented itself recently as a new challenge to offer an optimal thermal experience for the occupant as well as to reduce building energy usage for heating, ventilation and air conditioning (HVAC). Joule heating based on silver nanoparticles (AgNPs) coated non-woven fabric can provide a wearable localized heating element.A sheet resistance of <0.3 ohm/square can be achieved for AgNPs-coated polyester fabrics upon thermal annealing. Multistep electroless deposition creates chemical bonding between oxygen groups on the fabrics' surface and AgNPs. As a result, the bonding between the AgNPs layer and the polyester fabrics is strong enough to resist sonication damage. The resistance only increased slightly after an 80minutes of sonication and therefore the AgNPs-polyester fabrics composite are regarded as washable

  17. Biogenic synthesized nanoparticles and their applications

    NASA Astrophysics Data System (ADS)

    Singh, Abhijeet; Sharma, Madan Mohan

    2016-05-01

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO3 via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV-vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  18. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels

    PubMed Central

    Mekkawy, Aml I; El-Mokhtar, Mohamed A; Nafady, Nivien A; Yousef, Naeima; Hamad, Mostafa A; El-Shanawany, Sohair M; Ibrahim, Ehsan H; Elsabahy, Mahmoud

    2017-01-01

    In the present study, silver nanoparticles (AgNPs) were synthesized via biological reduction of silver nitrate using extract of the fungus Fusarium verticillioides (green chemistry principle). The synthesized nanoparticles were spherical and homogenous in size. AgNPs were coated with polyethylene glycol (PEG) 6000, sodium dodecyl sulfate (SDS), and β-cyclodextrin (β-CD). The averaged diameters of AgNPs were 19.2±3.6, 13±4, 14±4.4, and 15.7±4.8 nm, for PEG-, SDS-, and β-CD-coated and uncoated AgNPs, respectively. PEG-coated AgNPs showed greater stability as indicated by a decreased sedimentation rate of particles in their water dispersions. The antibacterial activities of different AgNPs dispersions were investigated against Gram-positive bacteria (methicillin-sensitive and methicillin-resistant Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) by determination of the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs). MIC and MBC values were in the range of 0.93–7.5 and 3.75–15 µg/mL, respectively, which were superior to the reported values in literature. AgNPs-loaded hydrogels were prepared from the coated-AgNPs dispersions using several gelling agents (sodium carboxymethyl cellulose [Na CMC], sodium alginate, hydroxypropylmethyl cellulose, Pluronic F-127, and chitosan). The prepared formulations were evaluated for their viscosity, spreadability, in vitro drug release, and antibacterial activity, and the combined effect of the type of surface coating and the polymers utilized to form the gel was studied. The in vivo wound-healing activity and antibacterial efficacy of Na CMC hydrogel loaded with PEG-coated AgNPs in comparison to the commercially available silver sulfadiazine cream (Dermazin®) were evaluated. Superior antibacterial activity and wound-healing capability, with normal skin appearance and hair growth, were demonstrated for the hydrogel formulations, as compared to the silver

  19. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels.

    PubMed

    Mekkawy, Aml I; El-Mokhtar, Mohamed A; Nafady, Nivien A; Yousef, Naeima; Hamad, Mostafa A; El-Shanawany, Sohair M; Ibrahim, Ehsan H; Elsabahy, Mahmoud

    2017-01-01

    In the present study, silver nanoparticles (AgNPs) were synthesized via biological reduction of silver nitrate using extract of the fungus Fusarium verticillioides (green chemistry principle). The synthesized nanoparticles were spherical and homogenous in size. AgNPs were coated with polyethylene glycol (PEG) 6000, sodium dodecyl sulfate (SDS), and β-cyclodextrin (β-CD). The averaged diameters of AgNPs were 19.2±3.6, 13±4, 14±4.4, and 15.7±4.8 nm, for PEG-, SDS-, and β-CD-coated and uncoated AgNPs, respectively. PEG-coated AgNPs showed greater stability as indicated by a decreased sedimentation rate of particles in their water dispersions. The antibacterial activities of different AgNPs dispersions were investigated against Gram-positive bacteria (methicillin-sensitive and methicillin-resistant Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) by determination of the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs). MIC and MBC values were in the range of 0.93-7.5 and 3.75-15 µg/mL, respectively, which were superior to the reported values in literature. AgNPs-loaded hydrogels were prepared from the coated-AgNPs dispersions using several gelling agents (sodium carboxymethyl cellulose [Na CMC], sodium alginate, hydroxypropylmethyl cellulose, Pluronic F-127, and chitosan). The prepared formulations were evaluated for their viscosity, spreadability, in vitro drug release, and antibacterial activity, and the combined effect of the type of surface coating and the polymers utilized to form the gel was studied. The in vivo wound-healing activity and antibacterial efficacy of Na CMC hydrogel loaded with PEG-coated AgNPs in comparison to the commercially available silver sulfadiazine cream (Dermazin(®)) were evaluated. Superior antibacterial activity and wound-healing capability, with normal skin appearance and hair growth, were demonstrated for the hydrogel formulations, as compared to the silver

  20. Structural characterization and evaluation of mosquito-larvicidal property of silver nanoparticles synthesized from the seaweed, Turbinaria ornata (Turner) J. Agardh 1848.

    PubMed

    Deepak, Paramasivam; Sowmiya, Rajamani; Ramkumar, Rajendiran; Balasubramani, Govindasamy; Aiswarya, Dilipkumar; Perumal, Pachiappan

    2016-06-21

    The silver nanoparticles synthesized from Turbinaria ornata (To-AgNPs) showed spherical with crystalline nature (20-32 nm) was evaluated against fourth instar larvae of three mosquitoes. The maximum activity of To-AgNPs was recorded on Aedes aegypti followed by Anopheles stephensi and Culex quinquefasciatus with the following lethal concentration values (μg/ml): LC50 of 0.738, 1.134, and 1.494; and LC90 of 3.342, 17.982, and 22.475, respectively. The obtained respective values (μg/ml) vis-a-vis aqueous extract (To-AE) were: 2.767 and 40.577; 4.347 and 158.399, and 7.351 and 278.994. The findings revealed that To-AgNPs could form a base for the development of an eco-friendly, low-cost pesticide.

  1. Mycosynthesis of silver nanoparticles bearing antibacterial activity

    PubMed Central

    Azmath, Pasha; Baker, Syed; Rakshith, Devaraju; Satish, Sreedharamurthy

    2015-01-01

    Mycosynthesis of silver nanoparticles was achieved by endophytic Colletotrichum sp. ALF2-6 inhabiting Andrographis paniculata. Well dispersed nanoparticles were characterized using UV–Visible spectrometry with maximum absorption conferring at 420 nm. FTIR analysis revealed possible biomolecules reducing the metal salt and stabilization of nanoparticles. XRD analysis depicted the diffraction intensities exhibiting between 20 and 80 °C at 2theta angle thus conferring the crystalline nature of nanoparticles. Morphological characteristic using TEM revealed the polydispersity of nanoparticles with size ranging from 20 to 50 nm. Synthesized nanoparticles exhibited bactericidal activity against selected human pathogens. Nanoparticles mode of action was carried out to reveal DNA damage activity. Thus the present investigation reports facile fabrication of silver nanoparticles from endophytic fungi. PMID:27013906

  2. Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus?

    PubMed

    Murugan, Kadarkarai; Venus, Joseph Selvaraj Eugine; Panneerselvam, Chellasamy; Bedini, Stefano; Conti, Barbara; Nicoletti, Marcello; Sarkar, Santosh Kumar; Hwang, Jiang-Shiou; Subramaniam, Jayapal; Madhiyazhagan, Pari; Kumar, Palanisamy Mahesh; Dinesh, Devakumar; Suresh, Udaiyan; Benelli, Giovanni

    2015-11-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this study, silver nanoparticles (AgN) were biosynthesized a cheap aqueous extract of T. asiatica leaves as reducing and stabilizing agent. The formation of nanoparticle was confirmed by surface Plasmon resonance band illustrated in UV-vis spectrophotometer. AgN were characterized by FTIR, SEM, EDX, and XRD analyses. AgN were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 25-30 nm. T. asiatica aqueous extract and green-synthesized AgN showed excellent larvicidal and pupicidal toxicity against the filariasis vector Culex quinqufasciatus, both in laboratory and field experiments. AgN LC50 ranged from 16.48 (I instar larvae) to 31.83 ppm (pupae). T. asiatica-synthesized were also highly effective in inhibiting growth of Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. Lastly, we evaluated if sublethal doses of nanoparticles affect predation rates of fishes, Poecilia reticulata, against C. quinquefasciatus. In AgN-contaminated environment, predation of guppies against mosquito larvae was slightly higher over normal laboratory conditions. Overall, this study highlighted that T. asiatica-synthesized AgN are easy to produce, stable over time, and may be employed at low dosages to reduce populations of filariasis vectors, without detrimental effects on predation rates of mosquito natural enemies.

  3. An Evidence-Based Environmental Perspective Of Manufactured Silver Nanoparticle In Syntheses And Applications: A Systematic Review And Critical Appraisal Of Peer-Reviewed Scientific Papers

    EPA Science Inventory

    Most recently, renewed interest has arisen in manufactured silver nanoparticles because of their unusually enhanced physiochemical properties and biological activities compared to the bulk parent materials. A wide range of applications has emerged in consumer products ranging fr...

  4. High-value utilization of egg shell to synthesize Silver and Gold-Silver core shell nanoparticles and their application for the degradation of hazardous dyes from aqueous phase-A green approach.

    PubMed

    Sinha, Tanur; Ahmaruzzaman, M

    2015-09-01

    The common household material, egg shell of Anas platyrhynchos is utilized for the synthesis of Silver and Gold-Silver core shell nanoparticles using greener, environment friendly and economic way. The egg shell extracts were acting as a stabilizing and reducing agents. This method avoids the use of external reducing and stabilizing agents, templates and solvents. The effects of various reaction parameters, such as reaction temperature, concentration in the formation of nanoparticles have also been investigated. The compositional abundance of gelatin may be envisaged for the effective reductive as well as stabilizing potency. The mechanisms for the formation of NPs have also been presented. The synthesized Ag NPs formed were predominantly spherical in nature with an average size of particles in the range of 6-26 nm. While, Au-Ag core shell nanoparticles formed were spherical and oval shaped, within a narrow size spectrum of 9-18 nm. Both the Ag NPs Au-and Ag core shell nanoparticles showed characteristic Bragg's reflection planes of fcc structure and surface plasmon resonance at 430 nm and 365 nm, respectively. The NPs were utilized for the removal of toxic and hazardous dyes, such as Rose Bengal, Methyl Violet 6 B and Methylene Blue from aqueous phase. Approximately 98.2%, 98.4% and 97% degradations of Rose Bengal, Methyl Violet 6 B, and Methylene Blue were observed with Ag NPs, while the percentage degradation of these dyes was 97.3%, 97.6% and 96% with Au-Ag NPs, respectively. Therefore, the present study has opened up an innovative way for synthesizing Ag NPs and Au-Ag bimetallic nanostructures of different morphologies and sizes involving the utilization of egg shell extract. The high efficiency of the NPs as photocatalysts has opened a promising application for the removal of hazardous dyes from the industrial effluents.

  5. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae.

    PubMed

    Kalpana, Duraisamy; Lee, Yang Soo

    2013-03-05

    Silver nanoparticles were synthesized by biological method using cultural filtrate of Klebsiella pneumoniae cultured under simulated microgravity and silver nitrate solution as precursor. The nanoparticles exhibited typical plasmon absorption maximum of silver nanoparticles between 405 and 407 nm. Spherical silver nanoparticles were found to have size between 15 and 37 nm by TEM analysis. XRD pattern corresponding to planes (111), (200), (220) (311) revealed the crystalline nature of the biosynthesized silver nanoparticles. FTIR spectrum proposed stabilization of silver nanoparticles by the protein molecules present in the cultural filtrate. The silver nanoparticles exhibited high bactericidal activity against Salmonella enterica, Escherichia coli and moderate bactericidal activity against Streptococcus pyogenes.

  6. Fighting arboviral diseases: low toxicity on mammalian cells, dengue growth inhibition (in vitro), and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles.

    PubMed

    Murugan, Kadarkarai; Aruna, Palanimuthu; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Paulpandi, Manickam; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Syuhei, Ban; Canale, Angelo; Benelli, Giovanni

    2016-02-01

    Dengue is a mosquito-borne viral disease that has rapidly spread in all regions of the world in recent years. Female mosquitoes, mainly Aedes aegypti, transmit dengue. Approximately 3,900 million people, in 128 countries, are at risk of dengue infection. Recently, a focus has been provided on the potential of green-synthesized nanoparticles as inhibitors of the production of dengue viral envelope (E) protein in Vero cells and downregulators of the expression of dengue viral E gene. Algae are an outstanding reservoir of novel compounds, which may help in the fight against mosquito-borne diseases. In this research, silver nanoparticles (AgNP) were rapidly synthesized using a cheap extract of the alga Centroceras clavulatum. AgNP were characterized by UV–vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, LC50 values of C. clavulatum extract against A. aegypti larvae and pupae were 269.361 ppm (larva I), 309.698 ppm (larva II), 348.325 ppm (larva III), 387.637 ppm (larva IV), and 446.262 ppm (pupa). C. clavulatum extract also exhibited moderate antioxidant activity, both in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging assays. LC50 values of C. clavulatum-synthesized AgNP were 21.460 ppm (larva I), 23.579 ppm (larva II), 25.912 ppm (larva III), 29.155 ppm (larva IV), and 33.877 ppm (pupa). Furthermore, C. clavulatum-synthesized AgNP inhibited dengue (serotype dengue virus type-2 (DEN-2)) viral replication in Vero cells. Notably, 50 μg/ml of green-synthesized AgNP showed no cytotoxicity on Vero cells while reduced DEN-2 viral growth of more than 80%; 12.5 μg/ml inhibited viral growth of more than 50%. Cellular internalization assays highlighted that untreated infected cells showed high intensity of fluorescence emission, which denotes high level of viral internalization. Conversely

  7. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species.

    PubMed

    Farah, Mohammad Abul; Ali, Mohammad Ajmal; Chen, Shen-Ming; Li, Ying; Al-Hemaid, Fahad Mohammad; Abou-Tarboush, Faisal Mohammad; Al-Anazi, Khalid Mashay; Lee, Joongku

    2016-05-01

    Silver nanoparticles (AgNPs) are an important class of nanomaterial used for a wide range of industrial and biomedical applications. Adenium obesum is a plant of the family Apocynaceae that is rich in toxic cardiac glycosides; however, there is scarce information on the anticancer potential of its AgNPs. We herein report the novel biosynthesis of AgNPs using aqueous leaf extract of A. obesum (AOAgNPs). The synthesis of AOAgNPs was monitored by color change and ultraviolet-visible spectroscopy (425 nm). It was further characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The FTIR spectra for the AOAgNPs indicated the presence of terpenoids, long chain fatty acids, secondary amide derivatives and proteins that could be responsible for the reduction and capping of the formed AOAgNPs. X-ray diffraction confirmed the crystallinity of the AgNPs. The TEM images revealed mostly spherical particles in the size range of 10-30 nm. The biological properties of novel AOAgNPs were investigated on MCF-7 breast cancer cells. Cell viability was determined by the MTT assay. Generation of reactive oxygen species (ROS), DNA damage, induction of apoptosis and autophagy were assessed. A dose-dependent decrease in the cell viability was observed. The IC50 value was calculated as 217 μg/ml. Both qualitative and quantitative evaluation confirmed about a 2.5 fold increase in the generation of ROS at the highest concentration of 150 μg/ml. A significant (p<0.05) increase in the DNA damage evaluated by comet assay was evident. Flow cytometry revealed an increase in the apoptotic cells (24%) in the AOAgNPs treated group compared to the control. Acridine orange staining of acidic vesicles in exposed cells confirmed the induction of autophagy. These findings suggest that AOAgNPs increased the level of ROS resulting in heightened the DNA damage, apoptosis and autophagy in MCF-7 cells.

  8. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

    PubMed Central

    Hazarika, Ankita; Deka, Biplab K.; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-01

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90–100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene. PMID:28074877

  9. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene

    NASA Astrophysics Data System (ADS)

    Hazarika, Ankita; Deka, Biplab K.; Kim, Doyoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-01

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90–100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.

  10. Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene.

    PubMed

    Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Kong, Kyungil; Park, Young-Bin; Park, Hyung Wook

    2017-01-11

    We synthesized Ag nanoparticle-decorated multilayered graphene nanosheets (Ag-graphene) from graphite nanoplatelets and silver nitrate through 90-100 s of microwave exposure, without the use of any mineral acids or harsh reducing agents. Fe nanoparticle-decorated carbon nanotubes (Fe-CNTs) were grown on polypyrrole (PPy) deposited on woven Kevlar fibre (WKF), using ferrocene as a catalyst, under microwave irradiation. Fe-CNTs grown on WKF and Ag-graphene dispersed in polyester resin (PES) were combined to fabricate Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites by vacuum-assisted resin transfer moulding. The combined effect of Fe-CNTs and Ag-graphene in the resulting composites resulted in a remarkable enhancement of tensile properties (a 192.56% increase in strength and 100.64% increase in modulus) as well as impact resistance (a 116.33% increase). The electrical conductivity significantly increased for Ag-graphene/Fe-CNT/PPy-coated WKF/PES composites. The effectiveness of electromagnetic interference shielding, which relies strongly on the Ag-graphene content in the composites, was 25 times higher in Ag-graphene/Fe-CNT/PPy-coated WKF/PES than in neat WKF/PES composites. The current work offers a novel route for fabricating highly promising, cost effective WKF/PES composites through microwave-assisted synthesis of Fe-CNTs and Ag-graphene.

  11. Biologically green synthesized silver nanoparticles as a facile and rapid label-free colorimetric probe for determination of Cu2 + in water samples

    NASA Astrophysics Data System (ADS)

    Basiri, Sedigheh; Mehdinia, Ali; Jabbari, Ali

    2017-01-01

    A highly sensitive and cost-effective colorimetric sensing platform for the selective trace analysis of Cu2 + ions was developed based on the accelerated etching of Riboflavin stabilized silver nanoparticles (R/AgNPs). The R/AgNPs were prepared from the Cucumis melo juice by a green chemistry approach. The bio-synthesized AgNPs were studied by UV-Vis spectroscopy and showed an intense absorption band at 404 nm that were further confirmed by FTIR and EDS analysis. Simultaneous presence of Cu2 + and thiosulfate decreased the absorption intensity of green synthesized AgNPs which resulted in sensitive and selective determination of Cu2 +. The selectivity of R/AgNPs detection system for Cu2 + was excellent. Furthermore, the method offered a wide linear detection range from 5 nM to 100 nM with a detection limit of 1.12 nM. Surprisingly, it was a quick approach and the decolorization of the R/AgNPs solutions occurred only within 5 min. Our results clearly indicate these R/AgNPs could be used as an efficient probe for the colorimetric sensing of Cu2 + in environmental water samples.

  12. Biofabrication of silver nanoparticles using Andrographis paniculata.

    PubMed

    Kotakadi, Venkata S; Gaddam, Susmila Aparna; Subba Rao, Y; Prasad, T N V K V; Varada Reddy, A; Sai Gopal, D V R

    2014-02-12

    New and novel strategies are of recent interest in the development of silver nanoparticles. The plant extracts are eco-friendly, economical and cost effective for synthesis of nanoparticles. In this paper, we represent biofabrication of silver nanoparticles (AgNPs) using Andrographis paniculata and the synthesized AgNPs was monitored by ultra-violet visible spectroscopy (UV-Vis). The morphology and crystalline nature of AgNPs were determined from scanning electron microscopy (SEM) with Energy dispersive X-ray (EDX), X-ray diffraction patterns (XRD), Fourier transform-infrared spectroscopy (FT-IR). The size and the stability were detected by using Nanoparticle analyzer. The average size of the AgNPs was found to be 54 ± 2 nm and the Zeta potential was found to be -50.7 mV. The synthesized AgNPs have very good antifungal activity.

  13. Antimicrobial activity of silver nanoparticles impregnated wound dressing

    NASA Astrophysics Data System (ADS)

    Shinde, V. V.; Jadhav, P. R.; Patil, P. S.

    2013-06-01

    In this work, silver nanoparticles were synthesized by simple wet chemical reduction method. The silver nitrate was reduced by Sodium borohydride used as reducing agent and Poly (vinyl pyrrolidone) (PVP) as stabilizing agent. The formation of silver nanoparticles was evaluated by UV-visible spectroscope and transmission electron microscope (TEM). Absorption spectrum consist two plasmon peaks at 410 and 668 nm revels the formation of anisotropic nanoparticles confirmed by TEM. The formation of silver nanoparticles was also evidenced by dynamic light scattering (DLS) study. DLS showed polydisperse silver nanoparticles with hydrodynamic size 32 nm. Protecting mechanism of PVP was manifested by FT-Raman study. Silver nanoparticles were impregnated into wound dressing by sonochemical method. The Kirby-Bauer disc diffusion methods were used for antimicrobial susceptibility testing. The antimicrobial activity of the samples has been tested against gram-negative bacterium Escherichia coli and gram-positive bacterium Staphylococcus aureus.

  14. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  15. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella.

    PubMed

    Roni, Mathath; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Nicoletti, Marcello; Madhiyazhagan, Pari; Dinesh, Devakumar; Suresh, Udaiyan; Khater, Hanem F; Wei, Hui; Canale, Angelo; Alarfaj, Abdullah A; Munusamy, Murugan A; Higuchi, Akon; Benelli, Giovanni

    2015-11-01

    Two of the most important challenges facing humanity in the 21st century comprise food production and disease control. Eco-friendly control tools against mosquito vectors and agricultural pests are urgently needed. Insecticidal products of marine origin have a huge potential to control these pests. In this research, we reported a single-step method to synthesize silver nanoparticles (AgNP) using the aqueous leaf extract of the seaweed Hypnea musciformis, a cheap, nontoxic and eco-friendly material, that worked as reducing and stabilizing agent during the biosynthesis. The formation of AgNP was confirmed by surface plasmon resonance band illustrated in UV-vis spectrophotometer. AgNP were characterized by FTIR, SEM, EDX and XRD analyses. AgNP were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 40-65nm. Low doses of H. musciformis aqueous extract and seaweed-synthesized AgNP showed larvicidal and pupicidal toxicity against the dengue vector Aedes aegypti and the cabbage pest Plutella xylostella. The LC50 value of AgNP ranged from 18.14 to 38.23ppm for 1st instar larvae (L1) and pupae of A. aegypti, and from 24.5 to 38.23ppm for L1 and pupae of P. xylostella. Both H. musciformis extract and AgNP strongly reduced longevity and fecundity of A. aegypti and P. xylostella adults. This study adds knowledge on the toxicity of seaweed borne insecticides and green-synthesized AgNP against arthropods of medical and agricultural importance, allowing us to propose the tested products as effective candidates to develop newer and cheap pest control tools.

  16. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan

    2015-03-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Mosquito control is to enhance the health and quality of life of county residents and visitors through the reduction of mosquito populations. Mosquito control is a serious concern in developing countries like India due to the lack of general awareness, development of resistance, and socioeconomic reasons. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, larvicidal activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using C. asiatica plant leaves against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Cx. quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (40, 80, 120, 160, and 200 μg/mL) were tested against the larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. The synthesized AgNPs from C. asiatica were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis (EDX). Considerable mortality was evident after the treatment of C. asiatica for all three important vector mosquitoes. The LC50 and LC90 values of C. asiatica aqueous leaf extract appeared to be effective against An. stephensi (LC50, 90.17 μg/mL; LC90, 165.18 μg/mL) followed by Ae. aegypti (LC50, 96.59 μg/mL; LC90, 173.83 μg/mL) and Cx. quinquefasciatus (LC50, 103.08 μg/mL; LC90, 183.16 μg/mL). Synthesized AgNPs against the vector mosquitoes of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus had the following LC50 and LC90

  17. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent

    NASA Astrophysics Data System (ADS)

    Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

    2013-02-01

    Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV

  18. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways.

    PubMed

    Dayem, Ahmed Abdal; Kim, BongWoo; Gurunathan, Sangiliyandi; Choi, Hye Yeon; Yang, Gwangmo; Saha, Subbroto Kumar; Han, Dawoon; Han, Jihae; Kim, Kyeongseok; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-07-01

    Nano-scale materials are noted for unique properties, distinct from those of their bulk material equivalents. In this study, we prepared spherical silver nanoparticles (AgNPs) with an average size of about 30 nm and tested their potency to induce neuronal differentiation of SH-SY5Y cells. Human neuroblastoma SH-SY5Y cells are considered an ideal in vitro model for studying neurogenesis, as they can be maintained in an undifferentiated state or be induced to differentiate into neuron-like phenotypes in vitro by several differentiation-inducing agents. Treatment of SH-SY5Y cells by biologically synthesized AgNPs led to cell morphological changes and significant increase in neurite length and enhanced the expression of neuronal differentiation markers such as Map-2, β-tubulin III, synaptophysin, neurogenin-1, Gap-43, and Drd-2. Furthermore, we observed an increase in generation of intracellular reactive oxygen species (ROS), activation of several kinases such as ERK and AKT, and downregulation of expression of dual-specificity phosphatases (DUSPs) in AgNPs-exposed SH-SY5Y cells. Our results suggest that AgNPs modulate the intracellular signaling pathways, leading to neuronal differentiation, and could be applied as promising nanomaterials for stem cell research and therapy.

  19. Pseudomonas deceptionensis DC5-mediated synthesis of extracellular silver nanoparticles.

    PubMed

    Jo, Jae H; Singh, Priyanka; Kim, Yeon J; Wang, Chao; Mathiyalagan, Ramya; Jin, Chi-Gyu; Yang, Deok C

    2016-09-01

    The biological synthesis of metal nanoparticles is of great interest in the field of nanotechnology. The present work highlights the extracellular biological synthesis of silver nanoparticles using Pseudomonas deceptionensis DC5. The particles were synthesized in the culture supernatant within 48 h of incubation. Extracellular synthesis of silver nanoparticles in the culture supernatant was confirmed by ultraviolet-visible spectroscopy, which showed the absorption peak at 428 nm, and also under field emission transmission electron microscopy which displayed the spherical shape. In addition, the particles were characterized by X-ray diffraction spectroscopy, which corresponds to the crystalline nature of nanoparticles, and energy-dispersive X-ray analysis which exhibited the intense peak at 3 keV, resembling the silver nanoparticles. Further, the synthesized nanoparticles were examined by elemental mapping which displayed the dominance of the silver element in the synthesized product, and dynamic light scattering which showed the distribution of silver nanoparticles with respect to intensity, volume, and number of particles. Moreover, the silver nanoparticles have been found to be quite active in antimicrobial activity and biofilm inhibition activity against pathogenic microorganisms. Thus, the present work emphasized the prospect of using the P. deceptionensis DC5 to achieve the extracellular synthesis of silver nanoparticles in a facile and environmental manner.

  20. Verification of resistance to three mediated microbial strains and cancerous defense against MCF7 compared to HepG2 through microwave synthesized plant-mediated silver nanoparticle

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, W. I.; Eid, M. M.; Hanafy, M. F.; Hussein, M.; Abd El-Moez, Sh I.; El-Hallouty, S. M.; Mohamed, E.

    2015-09-01

    The antimicrobial and anticancer efficiencies of green synthesized silver nanoparticles (AgNPs) through biogenic extracts were assessed on three bacterial strains and two cancer cell lines. Bio-synthesized AgNPs were achieved through domestic microwave generator for obtaining extracts from Asian nuts and Egyptian blackberry fruits. Surface plasmon resonance (SPR) ˜435 nm demonstrated AgNPs earlier formation by the fruit extract. Capping by triglycerides/almond and phenols/berry extracts were responsible for the reduction proved by FTIR. XRD calculated particle sizes were 18 and 42 nm while TEM sizes are 24.5 and 21.5 nm for AgNPs from almond nut and blackberry fruits extracts (Alm.N.Ext. and BB.F.Ext.), respectively. Ag 3d5/2 was recorded at 368.12 eV for both samples through XPS. The monodispersed AgNPs recorded 0.727 and 0.5 polydispersity indices (PdI) for almond/Ag and berry/Ag, respectively. Zeta potential ˜ -31 and -13.2 for the same sequence confirmed the higher stability of the former. Reaction kinetics confirmed the advantage of fruit extract consuming only six minutes compared to nuts, consuming twice. Bactericidal effect of the extracts seldomly presented remarkable inhibition compared to extracts/Ag against the three species. In addition, Alm.N.Ext. showed the highest inhibition against staphylococcus aureus (S. aureus) at 4 mM. The anti-cancerous effect of Ag/berry against HepG2 is stronger than Ag/almond, and similarly for MCF7.

  1. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti.

    PubMed

    Sujitha, Vasu; Murugan, Kadarkarai; Paulpandi, Manickam; Panneerselvam, Chellasamy; Suresh, Udaiyan; Roni, Mathath; Nicoletti, Marcello; Higuchi, Akon; Madhiyazhagan, Pari; Subramaniam, Jayapal; Dinesh, Devakumar; Vadivalagan, Chithravel; Chandramohan, Balamurugan; Alarfaj, Abdullah A; Munusamy, Murugan A; Barnard, Donald R; Benelli, Giovanni

    2015-09-01

    Dengue is an arthropod-borne viral infection mainly vectored through the bite of Aedes mosquitoes. Recently, its transmission has strongly increased in urban and semi-urban areas of tropical and sub-tropical regions worldwide, becoming a major international public health concern. There is no specific treatment for dengue. Its prevention and control solely depends on effective vector control measures. In this study, we proposed the green-synthesis of silver nanoparticles (AgNP) as a novel and effective tool against the dengue serotype DEN-2 and its major vector Aedes aegypti. AgNP were synthesized using the Moringa oleifera seed extract as reducing and stabilizing agent. AgNP were characterized using a variety of biophysical methods including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and sorted for size categories. AgNP showed in vitro antiviral activity against DEN-2 infecting vero cells. Viral titer was 7 log10 TCID50/ml in control (AgNP-free), while it dropped to 3.2 log10 TCID50/ml after a single treatment with 20 μl/ml of AgNP. After 6 h, DEN-2 yield was 5.8 log10 PFU/ml in the control, while it was 1.4 log10 PFU/ml post-treatment with AgNP (20 μl/ml). AgNP were highly effective against the dengue vector A. aegypti, with LC50 values ranging from 10.24 ppm (I instar larvae) to 21.17 ppm (pupae). Overall, this research highlighted the concrete potential of green-synthesized AgNP in the fight against dengue and its primary vector A. aegypti. Further research on structure-activity relationships of AgNP against other dengue serotypes is urgently required.

  2. Development of Biogenic Silver Nanoparticle Using Rosa Chinensis Flower Extract and Its Antibacterial Property.

    PubMed

    Meng, Yongde; Sun, Yanjie

    2016-04-01

    In the present study, biosynthesis of silver nanoparticles was carried out using Rosa chinensis flower extract as reducing agent. The characterization of silver nanoparticles was done by UV-VIS spectrum. The morphology and size of silver nanoparticles were determined by transmission electron microscope (TEM) image. The crystallization of silver nanoparticles was confirmed by X-ray diffraction (XRD) measurements. The Fourier transform infrared (FT-IR) analysis was used to confirm the possible involvement in the formation and stabilization of synthesized silver nanoparticles by the extract of Rosa chinensis flower. Antibacterial activity of silver nanoparticles was studied against Gram positive Staphycoccus aureus and Gram negative Escherichia coil.

  3. Plasmonic twinned silver nanoparticles with molecular precision

    PubMed Central

    Yang, Huayan; Wang, Yu; Chen, Xi; Zhao, Xiaojing; Gu, Lin; Huang, Huaqi; Yan, Juanzhu; Xu, Chaofa; Li, Gang; Wu, Junchao; Edwards, Alison J.; Dittrich, Birger; Tang, Zichao; Wang, Dongdong; Lehtovaara, Lauri; Häkkinen, Hannu; Zheng, Nanfeng

    2016-01-01

    Determining the structures of nanoparticles at atomic resolution is vital to understand their structure–property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter). As the largest thiolated metal nanoparticles crystallographically determined so far, these Ag nanoparticles enter the truly metallic regime with the emergence of surface plasmon resonance. As miniatures of fivefold twinned nanostructures, these structures demonstrate a subtle distortion within fivefold twinned nanostructures of face-centred cubic metals. The Ag nanoparticles reported in this work serve as excellent models to understand the detailed structure distortion within twinned metal nanostructures and also how silver nanoparticles can span from the molecular to the metallic regime. PMID:27611564

  4. Plasmonic twinned silver nanoparticles with molecular precision

    NASA Astrophysics Data System (ADS)

    Yang, Huayan; Wang, Yu; Chen, Xi; Zhao, Xiaojing; Gu, Lin; Huang, Huaqi; Yan, Juanzhu; Xu, Chaofa; Li, Gang; Wu, Junchao; Edwards, Alison J.; Dittrich, Birger; Tang, Zichao; Wang, Dongdong; Lehtovaara, Lauri; Häkkinen, Hannu; Zheng, Nanfeng

    2016-09-01

    Determining the structures of nanoparticles at atomic resolution is vital to understand their structure-property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization by single-crystal X-ray analysis. Here we report the chemical syntheses and structures of two giant thiolated Ag nanoparticles containing 136 and 374 Ag atoms (that is, up to 3 nm core diameter). As the largest thiolated metal nanoparticles crystallographically determined so far, these Ag nanoparticles enter the truly metallic regime with the emergence of surface plasmon resonance. As miniatures of fivefold twinned nanostructures, these structures demonstrate a subtle distortion within fivefold twinned nanostructures of face-centred cubic metals. The Ag nanoparticles reported in this work serve as excellent models to understand the detailed structure distortion within twinned metal nanostructures and also how silver nanoparticles can span from the molecular to the metallic regime.

  5. Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Guangyu; Liu, Yan; Gao, Xiaoliang; Chen, Yuyue

    2014-05-01

    A silver nanoparticle solution was prepared in one step by mixing AgNO3 and a multi-amino compound (RSD-NH2) solution under ambient condition. RSD-NH2 was in-house synthesized by methacrylate and polyethylene polyamine in methanol, which has abundant amino and imino groups. However, the characterization of silver nanoparticles indicated that these nanoparticles are easy to agglomerate in solution. Therefore, an in situ synthesis method of silver nanoparticles on the silk fabrics was developed. The examined results confirmed that the in situ synthesized silver nanoparticles were evenly distributed on the surface of fibers. The inhibition zone test and the antibacterial rate demonstrated that the finished fabrics have an excellent antibacterial property against Staphylococcus aureus and Escherichia coli. Moreover, the nanosilver-treated silk fabrics were laundered 0, 5, 10, 20, and 50 times and still retained the exceptional antibacterial property. When the treated fabrics were washed 50 times, the antibacterial rate is more than 97.43% for S. aureus and 99.86% for E. coli. The excellent laundering durability may be attributed to the tight binding between silver nanoparticles and silk fibers through the in situ synthesis. This method provides an economic method to enhance the antibacterial capability of silk fabrics with good resistance to washings.

  6. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?

    PubMed

    Murugan, Kadarkarai; Samidoss, Christina Mary; Panneerselvam, Chellasamy; Higuchi, Akon; Roni, Mathath; Suresh, Udaiyan; Chandramohan, Balamurugan; Subramaniam, Jayapal; Madhiyazhagan, Pari; Dinesh, Devakumar; Rajaganesh, Rajapandian; Alarfaj, Abdullah A; Nicoletti, Marcello; Kumar, Suresh; Wei, Hui; Canale, Angelo; Mehlhorn, Heinz; Benelli, Giovanni

    2015-11-01

    Malaria, the most widespread mosquito-borne disease, affects 350-500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41%, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.

  7. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata.

    PubMed

    Patil, Chandrashekhar D; Borase, Hemant P; Patil, Satish V; Salunkhe, Rahul B; Salunke, Bipinchandra K

    2012-08-01

    In present study, the bioactivity of latex-producing plant Pergularia daemia as well as synthesized silver nanoparticles (AgNPs) against the larval instars of Aedes aegypti and Anopheles stephensi mosquito larvae was determined. The range of concentrations of plant latex (1,000, 500, 250, 125, 62.25, and 31.25 ppm) and AgNPs (10, 5, 2.5, 1.25, 0.625, and 0.3125 ppm) were prepared. The LC(50) and LC(90) values for first, second, third, and fourth instars of synthesized AgNPs-treated first, second, third, and fourth instars of A. aegypti (LC(50) = 4.39, 5.12, 5.66, 6.18; LC(90) = 9.90, 11.13, 12.40, 12.95 ppm) and A. stephensi (LC(50) = 4.41, 5.35, 5.91, 6.47; LC(90) = 10.10, 12.04, 13.05, 14.08 ppm) were found many fold lower than crude latex-treated A. aegypti (LC(50) = 55.13, 58.81, 75.66, 94.31; LC(90) = 113.00, 118.25, 156.95, 175.71 ppm) and A. stephensi (LC(50) = 81.47, 92.09, 96.07, 101.31; LC(90) = 159.51, 175.97, 180.67, 190.42 ppm). The AgNPs did not exhibit any noticeable effects on Poecillia reticulata after either 24 or 48 h of exposure at their LC(50) and LC(90) values against fourth-instar larvae of A. aegypti and A. stephensi. The UV-visible analysis shows absorbance for AgNPs at 520 nm. TEM reveals spherical shape of synthesized AgNPs. Particle size analysis revealed that the size of particles ranges from 44 to 255 nm with average size of 123.50 nm. AgNPs were clearly negatively charged (zeta potential -27.4 mV). This is the first report on mosquito larvicidal activity P. daemia-synthesized AgNPs.

  8. Synthesis, characterization and SERS activity of biosynthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Sathe, V.; Umadevi, M.

    2013-11-01

    Silver nanoparticles were rapidly synthesized using Moringa oleifera flower extract as the reducing agent shows surface plasmon resonance peak at 439 nm. The size and shape of the nanoparticles controlled by varying the concentration of M. oleifera flower extract in the reaction medium. The synthesized silver nanoparticles were well-dispersed spherical nanoparticles with the average size of 14 nm. The retinoic acid present in M. oleifera flower extract used as reducing agent and proteins was responsible for capping of the bioreduced silver nanoparticles. The obtained nanoparticle shows size-dependent SERS activity. The SERS spectrum indicates that the pyridine adsorbed on the silver surface in a stand-on orientation via its nitrogen lone pair electrons.

  9. Functional Application of Noble Metal Nanoparticles In Situ Synthesized on Ramie Fibers

    NASA Astrophysics Data System (ADS)

    Tang, Bin; Yao, Ya; Li, Jingliang; Qin, Si; Zhu, Haijin; Kaur, Jasjeet; Chen, Wu; Sun, Lu; Wang, Xungai

    2015-09-01

    Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers.

  10. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae.

    PubMed

    Korbekandi, Hassan; Mohseni, Soudabeh; Mardani Jouneghani, Rasoul; Pourhossein, Meraj; Iravani, Siavash

    2016-01-01

    The objectives of this study were the biosynthesis of silver nanoparticles (NPs) by biotransformations using Saccharomyces cerevisiae and analysis of the sizes and shapes of the NPs produced. Dried and freshly cultured S. cerevisiae were used as the biocatalyst. Dried yeast synthesized few NPs, but freshly cultured yeast produced a large amount of them. Silver NPs were spherical, 2-20 nm in diameter, and the NPs with the size of 5.4 nm were the most frequent ones. NPs were seen inside the cells, within the cell membrane, attached to the cell membrane during the exocytosis, and outside of the cells.

  11. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    SciTech Connect

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  12. Method of synthesizing tungsten nanoparticles

    SciTech Connect

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  13. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum.

    PubMed

    Mie, Ropisah; Samsudin, Mohd Wahid; Din, Laily B; Ahmad, Azizan; Ibrahim, Nazlina; Adnan, Siti Noor Adnalizawati

    2014-01-01

    Development of a green chemistry process for the synthesis of silver nanoparticles has become a focus of interest. This would offer numerous benefits, including ecofriendliness and compatibility for biomedical applications. Here we report the synthesis of silver nanoparticles from the reduction of silver nitrate and an aqueous extract of the lichen Parmotrema praesorediosum as a reductant as well as a stabilizer. The physical appearance of these silver nanoparticles was characterized using ultraviolet-visible spectroscopy, electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction techniques. The results show that silver nanoparticles synthesized using P. praesorediosum have an average particle size of 19 nm with a cubic structure. The antibacterial activity of the synthesized silver nanoparticles was tested against eight micro-organisms using the disk diffusion method. The results reveal that silver nanoparticles synthesized using P. praesorediosum have potential antibacterial activity against Gram-negative bacteria.

  14. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum

    PubMed Central

    Mie, Ropisah; Samsudin, Mohd Wahid; Din, Laily B; Ahmad, Azizan; Ibrahim, Nazlina; Adnan, Siti Noor Adnalizawati

    2014-01-01

    Development of a green chemistry process for the synthesis of silver nanoparticles has become a focus of interest. This would offer numerous benefits, including ecofriendliness and compatibility for biomedical applications. Here we report the synthesis of silver nanoparticles from the reduction of silver nitrate and an aqueous extract of the lichen Parmotrema praesorediosum as a reductant as well as a stabilizer. The physical appearance of these silver nanoparticles was characterized using ultraviolet-visible spectroscopy, electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction techniques. The results show that silver nanoparticles synthesized using P. praesorediosum have an average particle size of 19 nm with a cubic structure. The antibacterial activity of the synthesized silver nanoparticles was tested against eight micro-organisms using the disk diffusion method. The results reveal that silver nanoparticles synthesized using P. praesorediosum have potential antibacterial activity against Gram-negative bacteria. PMID:24379670

  15. Toxicity of silver nanoparticles in zebrafish models.

    PubMed

    Asharani, P V; Lian Wu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh

    2008-06-25

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag(+) ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

  16. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent.

    PubMed

    Holtz, R D; Souza Filho, A G; Brocchi, M; Martins, D; Durán, N; Alves, O L

    2010-05-07

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  17. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent

    NASA Astrophysics Data System (ADS)

    Holtz, R. D.; Souza Filho, A. G.; Brocchi, M.; Martins, D.; Durán, N.; Alves, O. L.

    2010-05-01

    In this work we report the synthesis, characterization and application of silver vanadate nanowires decorated with silver nanoparticles as a novel antibacterial agent. These hybrid materials were synthesized by a precipitation reaction of ammonium vanadate and silver nitrate followed by hydrothermal treatment. The silver vanadate nanowires have lengths of the order of microns and diameters around 60 nm. The silver nanoparticles decorating the nanowires present a diameter distribution varying from 1 to 20 nm. The influence of the pH of the reaction medium on the chemical structure and morphology of silver vanadates was studied and we found that synthesis performed at pH 5.5-6.0 led to silver vanadate nanowires with a higher morphological yield. The antimicrobial activity of these materials was evaluated against three strains of Staphylococcus aureus and very promising results were found. The minimum growth inhibiting concentration value against a MRSA strain was found to be ten folds lower than for the antibiotic oxacillin.

  18. Silver nanoparticle containing silk fibroin bionanotextiles

    NASA Astrophysics Data System (ADS)

    Calamak, Semih; Aksoy, Eda Ayse; Erdogdu, Ceren; Sagıroglu, Meral; Ulubayram, Kezban

    2015-02-01

    Development of new generation bionanotextiles is an important growing field, and they have found applications as wound dressings, bandages, tissue scaffolds, etc. In this study, silver nanoparticle (AgNP) containing silk-based bionanotextiles were fabricated by electrospinning, and processing parameters were optimized and discussed in detail. AgNPs were in situ synthesized within fibroin nanofibers by UV reduction of silver ions to metallic silver. The influence of post-treatments via methanol treatment and glutaraldehyde (GA) vapor exhibited changes in the secondary structure of silk. Methanol treatment increased the tensile properties of fibers due to supported crystalline silk structure, while GA vapor promoted amorphous secondary structure. AgNP containing silk fibroin bionanotextiles had strong antibacterial activity against gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa.

  19. Silver-based biohybrids "green" synthesized from Chelidonium majus L.

    NASA Astrophysics Data System (ADS)

    Barbinta-Patrascu, Marcela Elisabeta; Badea, Nicoleta; Ungureanu, Camelia; Constantin, Marioara; Pirvu, Cristian; Rau, Ileana

    2016-06-01

    This paper describes an original bio-design of organic/inorganic hybrid architectures containing biomimetic membranes and celandine-nanoAg for different bioapplications. A simple, time efficient, low-cost and ecofriendly bottom-up procedure was used to build for the first time, celandine/nanoAg-based hybrids. Dipalmitoyl phosphatidylcholine bio-inspired lipid bilayers were obtained by thin film hydration method. Chlorophyll a inserted into these liposomes was used as a spectral marker to detect the changes occurred in the artificial membranes. For the first time, silver nanoparticles were eco-synthesized using an aqueous extract of celandine (Chelidonium majus L.). The physical stability of the samples was evaluated in terms of zeta potential. Chlorophyll a photonic properties (based on UV-Vis absorption and emission spectra) were used to monitor the synthesis of silver nanoparticles and of bio-based hybrids. The size of samples was monitored by Dynamic Light Scattering measurements and the morphological aspects were provided by Atomic Force Microscopy analysis. The obtained silver-based biohybrids exhibited high antioxidant activity (98.48%) and strong antimicrobial properties against Escherichia coli ATCC 8738 (offering an inhibition zone of 51 mm diameter) and presented good physical stability (zeta potential reached the value of -30.7 mV) as compared to phyto-nanoAg alone.

  20. Synthesis, Structural, Optical and Electrical Properties of IN-SITU Synthesized Polyaniline/silver Nanocomposites

    NASA Astrophysics Data System (ADS)

    Alam, Fahad; Ansari, Sajid Ali; Khan, Wasi; Ehtisham Khan, M.; Naqvi, A. H.

    2012-09-01

    Polyaniline (PANI) is recognized as one of the most important conducting polymers due to its high conductivity and good stability. In this paper, polyaniline/silver (PANI/Ag) nanocomposites were synthesized by in-situ polymerization of aniline using ammonium peroxydisulphate (APS) as oxidizing agent with varying concentration of Ag nanoparticles colloids (0 ml, 25 ml and 50 ml). Silver nanoparticles were synthesized separately in colloidal form from silver nitrate (Ag2NO3) with the help of reducing agent sodium borohydride (NaBH4). The PANI/Ag nanocomposites were characterized by XRD, SEM, AFM, UV-visible, temperature dependent resistivity and dielectric measurements. All samples show a single phase nature of the nanoparticles. The electrical resistivity as function of temperature was measured in the temperature range 298-383 K, which indicates a semiconducting to metallic transition at 373 K and 368 K for 25 ml and 50 ml silver colloid samples, respectively.

  1. Metal-metal bonding using silver/copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Kobayashi, Y.; Maeda, T.; Yasuda, Y.; Morita, T.

    2016-08-01

    A method for producing nanoparticles composed of silver and copper and a metal-metal bonding technique using the silver/copper nanoparticles are proposed. The method consists of three steps. First, copper oxide nanoparticles are produced by mixing Cu(NO3)2 aqueous solution and NaOH aqueous solution. Second, copper metal nanoparticles are fabricated by reducing the copper oxide nanoparticles with hydrazine in the presence of poly(vinylpyrrolidone) (PVP). Third, silver/copper nanoparticles are synthesized by reducing Ag+ ions with hydrazine in the presence of the copper metal nanoparticles. Initial concentrations in the final silver/copper particle colloid, composed of 0.0075 M Cu2+, 0.0025 M Ag+, 1.0 g/L PVP, and 0.6 M hydrazine, produced silver/copper nanoparticles with an average size of 49 nm and a crystal size of 16.8 nm. Discs of copper metal were successfully bonded by the silver/copper nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in not only hydrogen gas but also nitrogen gas. The shear force required to separate the bonded discs was 22.3 MPa for the hydrogen gas annealing and 14.9 MPa for the nitrogen gas annealing (namely, 66.8 % of that for hydrogen gas annealing).

  2. Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum

    PubMed Central

    Korbekandi, Hassan; Ashari, Zeynab; Iravani, Siavash; Abbasi, Sajjad

    2013-01-01

    Silver nanoparticles are increasingly used in various fields of biotechnology and applications in the medicine. Objectives of this study were optimization of production of silver nanoparticles using biotransformations by Fusarium oxysporum, and a further study on the location of nanoparticles synthesis in this microorganism. The reaction mixture contained the following ingredients (final concentrations): AgNO3 (1-10 mM) as the biotransformation substrate, biomass as the biocatalyst, glucose (560 mM) as the electron donor, and phosphate buffer (pH= 7, 100 mM). The samples were taken from the reaction mixtures at different times, and the absorbance (430 nm) of the colloidal suspensions of silver nanoparticles hydrosols was read freshly (without freezing) and immediately after dilution (1:40). SEM and TEM analyses were performed on selected samples. The presence of AgNO3 (0.1 mM) in the culture as enzyme inducer, and glucose (560 mM) as electron donor had positive effects on nanoparticle production. In SEM micrographs, silver nanoparticles were almost spherical, single (25-50 nm) or in aggregates (100 nm), attached to the surface of biomass. The reaction mixture was successfully optimized to increase the yield of silver nanoparticles production. More details of the location of nanoparticles production by this fungus were revealed, which support the hypothesis that silver nanoparticles are synthesized intracellularly and not extracellularly. PMID:24250635

  3. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A biological method was used to synthesize stable silver nanoparticles. The nanoparticles were tested as larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous AgNO3 to stable silver nanoparticles with average particle siz...

  4. The silver ions contribution into the cytotoxic activity of silver and silver halides nanoparticles

    NASA Astrophysics Data System (ADS)

    Klimov, A. I.; Zherebin, P. M.; Gusev, A. A.; Kudrinskiy, A. A.; Krutyakov, Y. A.

    2015-11-01

    The biocidal action of silver nanoparticles capped with sodium citrate and silver halides nanoparticles capped with non-ionic surfactant polyoxyethylene(20)sorbitan monooleate (Tween 80®) against yeast cells Saccharomyces cerevisiae was compared to the effect produced by silver nitrate and studied through the measurement of cell loss and kinetics of K+ efflux from the cells. The cytotoxicity of the obtained colloids was strongly correlated with silver ion content in the dispersions. The results clearly indicated that silver and silver halides nanoparticles destroyed yeast cells through the intermediate producing of silver ions either by dissolving of salts or by oxidation of silver.

  5. Synthesis, characterization and evaluation of silver nanoparticles through leaves of Abrus precatorius L.: an important medicinal plant

    NASA Astrophysics Data System (ADS)

    Gaddala, Bhumi; Nataru, Savithramma

    2015-01-01

    Biologically synthesized nanoparticles have been widely used in the field of medicine. The present study reports the green synthesis of silver nanoparticles using Abrus precatorius leaf extract with silver nitrate solution as reducing agent. The synthesized silver nanoparticles were analyzed through UV-Visible spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, atomic force microscopy and Fourier transform infrared. The synthesized silver nanoparticles were disk shaped with an average size of 19 nm. These silver nanoparticles were evaluated for antibacterial activity. The diameter of inhibition zones around the disk of Pseudomonas aeruginosa and Staphylococcus aureus are resistant to silver nanoparticles, whereas Escherichia coli and Bacillus thuringiensis are susceptible when compared with the other two species. The results were compared with the ciprofloxacin-positive control and silver nitrate. It is concluded that the green synthesis of silver nanoparticles is very fast, easy, cost-effective and eco-friendly and without any side effects.

  6. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ingle, Avinash; Rai, Mahendra; Gade, Aniket; Bawaskar, Manisha

    2009-11-01

    We report extracellular biosynthesis of silver nanoparticles by Fusarium solani (USM-3799), a phytopathogen causing disease in onion, when challenged with 1 mM silver nitrate (AgNO3). The formation of nanoparticles was characterized by visual observation followed by UV-Vis spectrophotometric analysis, which showed a peak at about 420 nm, which is very specific for silver nanoparticles. Further analysis carried out by Fourier Transform Infrared Spectroscopy (FTIR), provides evidence for the presence of proteins as capping agent, which helps in increasing the stability of the synthesized silver nanoparticles. Transmission Electron Microscopy (TEM) investigations confirmed that silver nanoparticles were formed. The synthesized silver nanoparticles were found to be polydispersed, spherical in the range of 5-35 nm with average diameter of 16.23 nm. Extracellular synthesis of nanoparticles could be highly advantageous from the point of view of synthesis in large quantities and easy downstream processing.

  7. Coconut water assisted green synthesis of silver nanoparticles

    PubMed Central

    Elumalai, Erusan Kuppan; Kayalvizhi, Karuppsamy; Silvan, Simon

    2014-01-01

    Aim of the Study: The synthesis, characterization and application of biologically synthesized nanomaterials are an important aspect in nanotechnology. Materials and Methods: The present study deals with the synthesis of silver nanoparticles (Ag-NPs) using the coconut water (C. nucifera) as the reducing agent. The formation of Ag-NPs was characterized by UV-Visible Spectroscopy, Scanning Electron Microscopy (SEM), EDX, X-ray Diffraction (XRD) and FTIR spectroscopy. Results: The synthesized Ag-NPs were predominately polydispersed. Crystalline nature of the nanoparticle in the face centered cubic (fcc) structure are confirmed by the peaks in the XRD pattern corresponding to (111), (200), (220) and (311) planes. Fourier Transform Infra-Red (FT-IR) spectroscopy analysis showed that the synthesized nanoparicles was capped with bimolecular compounds which are responsible for the reduction of silver ions. Conclusion: The approach of green synthesis appears to be cost efficient, ecofriendly and easy alternative to conventional methods of silver nanoparticle synthesis. PMID:25400406

  8. Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate.

    PubMed

    Raut, Rajesh Warluji; Mendhulkar, Vijay Damodhar; Kashid, Sahebrao Balaso

    2014-03-05

    The metal nanoparticle synthesis is highly explored field of nanotechnology. The biological methods seem to be more effective; however, due to slow reduction rate and polydispersity of the resulting products, they are less preferred. In the present study, we report rapid and facile synthesis of silver nanoparticles at room temperature. The exposure of reaction mixtures containing silver nitrate and dried leaf powder of Withania somnifera Linn to direct sunlight resulted in reduction of metal ions within five minutes whereas, the dark exposure took almost 12h. Further studies using different light filters reveal the role of blue light in reduction of silver ions. The synthesized silver nanoparticles were characterized by UV-Vis, Infrared spectroscopy (IR), Transmission Electron Microscopy (TEM), X-ray Diffraction studies (XRD), Nanoparticle Tracking Analysis (NTA), Energy Dispersive Spectroscopy (EDS), and Cyclic Voltammetry (CV). The Antibacterial and antifungal studies showed significant activity as compared to their respective standards.

  9. Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles.

    PubMed

    Kong, Hyeyoung; Jang, Jyongsik

    2008-03-04

    Poly(methyl methacrylate) (PMMA) nanofiber containing silver nanoparticles was synthesized by radical-mediated dispersion polymerization and applied to an antibacterial agent. UV-vis spectroscopic analysis indicated that the silver nanoparticles were continually released from the polymer nanofiber in aqueous solution. The antibacterial properties of silver/PMMA nanofiber against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria were evaluated using minimum inhibitory concentration (MIC), the modified Kirby-Bauer method, and a kinetic test. The MIC test demonstrated that the silver/PMMA nanofiber had enhanced antimicrobial efficacy compared to that of silver sulfadiazine and silver nitrate at the same silver concentration.

  10. The morphology of silver nanoparticles prepared by enzyme-induced reduction.

    PubMed

    Schneidewind, Henrik; Schüler, Thomas; Strelau, Katharina K; Weber, Karina; Cialla, Dana; Diegel, Marco; Mattheis, Roland; Berger, Andreas; Möller, Robert; Popp, Jürgen

    2012-01-01

    Silver nanoparticles were synthesized by an enzyme-induced growth process on solid substrates. In order to customize the enzymatically grown nanoparticles (EGNP) for analytical applications in biomolecular research, a detailed study was carried out concerning the time evolution of the formation of the silver nanoparticles, their morphology, and their chemical composition. Therefore, silver-nanoparticle films of different densities were investigated by using scanning as well as transmission electron microscopy to examine their structure. Cross sections of silver nanoparticles, prepared for analysis by transmission electron microscopy were additionally studied by energy-dispersive X-ray spectroscopy in order to probe their chemical composition. The surface coverage of substrates with silver nanoparticles and the maximum particle height were determined by Rutherford backscattering spectroscopy. Variations in the silver-nanoparticle films depending on the conditions during synthesis were observed. After an initial growth state the silver nanoparticles exhibit the so-called desert-rose or nanoflower-like structure. This complex nanoparticle structure is in clear contrast to the auto-catalytically grown spherical particles, which maintain their overall geometrical appearance while increasing their diameter. It is shown, that the desert-rose-like silver nanoparticles consist of single-crystalline plates of pure silver. The surface-enhanced Raman spectroscopic (SERS) activity of the EGNP structures is promising due to the exceptionally rough surface structure of the silver nanoparticles. SERS measurements of the vitamin riboflavin incubated on the silver nanoparticles are shown as an exemplary application for quantitative analysis.

  11. Synthesis and antibacterial activity of silver nanoparticles with different sizes

    NASA Astrophysics Data System (ADS)

    Martínez-Castañón, G. A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, Facundo

    2008-12-01

    Silver nanoparticles with different sizes (7, 29, and 89 nm mean values) were synthesized using gallic acid in an aqueous chemical reduction method. The nanoparticles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and ultraviolet-visible (UV-Vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopies studies (TEM) we observed that silver nanoparticles have spherical (7 and 29 nm) and pseudospherical shape (89 nm) with a narrow size distribution. The sizes of the silver nanoparticles were controlled by varying some experimental conditions. It was found that the antibacterial activity of the nanoparticles varies when their size diminishes.

  12. Silver nanoparticles: synthesis, properties, and therapeutic applications

    PubMed Central

    Wei, Liuya; Lu, Jingran; Xu, Huizhong; Patel, Atish; Chen, Zhe-Sheng; Chen, Guofang

    2014-01-01

    Silver nanoparticles (AgNPs) have been widely used in biomedical fields because of their intrinsic therapeutic properties. Here, we introduce methods of synthesizing AgNPs and discuss their physicochemical, localized surface plasmon resonance (LSPR) and toxicity properties. We also review the impact of AgNPs on human health and the environment along with the underlying mechanisms. More importantly, we highlight the newly emerging applications of AgNPs as antiviral agents, photosensitizers and/or radiosensitizers, and anticancer therapeutic agents in the treatment of leukemia, breast cancer, hepatocellular carcinoma, lung cancer, and skin and/or oral carcinoma. PMID:25543008

  13. Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kumar, Rajendran; Roopan, Selvaraj Mohana; Prabhakarn, Arunachalam; Khanna, Venkatesan Gopiesh; Chakroborty, Subhendu

    2012-05-01

    Development of reliable and eco-friendly process for the synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. We have developed modern method by using agriculture waste to synthesize silver nanoparticles by employing an aqueous peel extract of Annona squamosa in AgNO3. Controlled growth of silver nanoparticles was formed in 4 h at room temperature (25 °C) and 60 °C. AgNPs were irregular spherical in shape and the average particle size was about 35 ± 5 nm and it is consistent with particle size obtained by XRD Scherer equation.

  14. Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles.

    PubMed

    Kumar, Rajendran; Roopan, Selvaraj Mohana; Prabhakarn, Arunachalam; Khanna, Venkatesan Gopiesh; Chakroborty, Subhendu

    2012-05-01

    Development of reliable and eco-friendly process for the synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. We have developed modern method by using agriculture waste to synthesize silver nanoparticles by employing an aqueous peel extract of Annona squamosa in AgNO(3). Controlled growth of silver nanoparticles was formed in 4h at room temperature (25°C) and 60°C. AgNPs were irregular spherical in shape and the average particle size was about 35±5 nm and it is consistent with particle size obtained by XRD Scherer equation.

  15. Efficient synthesis and structural characterization of silver nanoparticle/ bis(o-phenolpropyl)silicone composites.

    PubMed

    Kim, Myoung-Hee; Woo, Hee-Gweon; Lee, Byeong-Gweon; Kim, Do-Heyoung; Yang, Kap-Seung; Kim, Bo-Hye; Park, Yeong-Joon; Ko, Young Chun; Roh, Sung-Hee; Sohn, Honglae

    2011-02-01

    Silver nanoparticle/bis(o-phenolpropyl)silicone composites have been synthesized by the reduction of silver nitrate with bis(o-phenolpropyl)silicone BPPS [(o-phenolpropyl)2(SiMe2O)n, n = 2, 3, 8, 236]. TEM and FE-SEM data clearly show that the silver nanoparticles with the size of < 20 nm are well dispersed throughout the BPPS matrix in the composites. XRD patterns are consistent with those for multicrystalline silver. The size of silver nanoparticles increased with increasing the relative molar concentration of silver salts added. It was found that in the absence of BPPS, most of the silver nanoparticles undergo macroscopic precipitation by agglomeration, indicating that BPPS is essential to stabilize the silver nanoparticles.

  16. Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Apalangya, Vitus; Rangari, Vijaya; Tiimob, Boniface; Jeelani, Shaik; Samuel, Temesgen

    2014-03-01

    Biobased calcium carbonate and silver hybrid nanoparticles were synthesized using a simple mechanochemical milling technique. The XRD spectrum showed that the hybrid materials is composed of crystalline calcite and silver nanoparticles. The TEM results indicated that the silver nanoparticles are discrete, uncapped and well stabilized in the surface of the eggshell derived calcium carbonate particles. The silver nanoparticles are spherical in shape and 5-20 nm in size. The SEM studies indicated that the eggshells are in micron size with the silver nanoparticle embedded in their surface. The hybrid eggshell/silver nanocomposite exhibited superior inhibition of E. coli growth using the Kirby-Bauer discs diffusion assay and comparing the zone of inhibition around the filter paper disc impregnated with the hybrid particles against pristine silver nanoparticles.

  17. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires

    NASA Astrophysics Data System (ADS)

    Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  18. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires.

    PubMed

    Ajmal, C Muhammed; Menamparambath, Mini Mol; Choi, Hyouk Ryeol; Baik, Seunghyun

    2016-06-03

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm(-1)) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  19. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties

    PubMed Central

    Geethalakshmi, R; Sarada, DVL

    2012-01-01

    Background There is an increasing commercial demand for nanoparticles due to their wide applicability in various markets, including medicine, catalysis, electronics, chemistry, and energy. In this report, a simple and ecofriendly chemical reaction for the synthesis of gold and silver nanoparticles from Trianthema decandra (Aizoaceae) has been developed. Methods and results On treatment of aqueous solutions containing chloroauric acid or silver nitrate with root extract of T. decandra, stable gold or silver nanoparticles were rapidly formed. The kinetics of reduction of gold and silver ions during the reaction was analyzed by ultraviolet-visible spectroscopy. Field emission-scanning electron microscopy showed formation of gold nanoparticles in various shapes, including spherical, cubical, triangular, and hexagonal, while silver nanoparticles were spherical. The size of the gold nanoparticles was 33–65 nm and that of the silver nanoparticles was 36–74 nm. Energy dispersive x-ray and Fourier transform infrared spectroscopy confirmed the presence of metallic gold and metallic silver in the respective nanoparticles. The antimicrobial properties of the synthesized nanoparticles were analyzed using the Kirby-Bauer method. The results show varied susceptibility of microorganisms to the gold and silver nanoparticles. Conclusion It is believed that phytochemicals present in T. decandra extract reduce the silver and gold ions into metallic nanoparticles. This strategy reduces the cost of production and the environmental impact. The silver and gold nanoparticles formed showed strong activity against all microorganisms tested. PMID:23091381

  20. Antibacterial activity of pH-dependent biosynthesized silver nanoparticles against clinical pathogen.

    PubMed

    Chitra, Kethirabalan; Annadurai, Gurusamy

    2014-01-01

    Simple, nontoxic, environmental friendly method is employed for the production of silver nanoparticles. In this study the synthesized nanoparticles UV absorption band occurred at 400 nm because of the surface Plasmon resonance of silver nanoparticles. The pH of the medium plays important role in the synthesis of control shaped and sized nanoparticles. The colour intensity of the aqueous solution varied with pH. In this study, at pH 9, the colour of the aqueous solution was dark brown, whereas in pH 5 the colour was yellowish brown; the colour difference in the aqueous solution occurred due to the higher production of silver nanoparticles. The antibacterial activity of biosynthesized silver nanoparticles was carried out against E. coli. The silver nanoparticles synthesized at pH 9 showed maximum antibacterial activity at 50 μL.

  1. Rapid biological synthesis of silver nanoparticles using plant leaf extracts.

    PubMed

    Song, Jae Yong; Kim, Beom Soo

    2009-01-01

    Five plant leaf extracts (Pine, Persimmon, Ginkgo, Magnolia and Platanus) were used and compared for their extracellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO(3) with the plant leaf extracts as reducing agent of Ag(+) to Ag(0). UV-visible spectroscopy was used to monitor the quantitative formation of silver nanoparticles. Magnolia leaf broth was the best reducing agent in terms of synthesis rate and conversion to silver nanoparticles. Only 11 min was required for more than 90% conversion at the reaction temperature of 95 degrees C using Magnolia leaf broth. The synthesized silver nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle analyzer. The average particle size ranged from 15 to 500 nm. The particle size could be controlled by changing the reaction temperature, leaf broth concentration and AgNO(3) concentration. This environmentally friendly method of biological silver nanoparticles production provides rates of synthesis faster or comparable to those of chemical methods and can potentially be used in various human contacting areas such as cosmetics, foods and medical applications.

  2. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles.

    PubMed

    Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu

    2014-08-13

    In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.

  3. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    NASA Astrophysics Data System (ADS)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  4. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Patil, Rupali S.; Kokate, Mangesh R.; Kolekar, Sanjay S.

    2012-06-01

    Biosynthesis of nanoparticles is under exploration due to wide biomedical applications and research interest in nanotechnology. We herein reports bioinspired synthesis of silver nanoparticles with the aid of novel, non toxic ecofriendly biological material namely Ocimum tenuiflorum leaf extract. It acts as reducing as well as stabilizing agent. An intense surface plasmon resonance band at ˜450 nm in the UV-visible spectrum clearly reveals the formation of silver nanoparticles. The photoluminescence spectrum was recorded to study excitation and emission. TEM and PSD by dynamic light scattering studies showed that size of silver nanoparticles to be in range 25-40 nm. Face centered cubic structure of silver nanoparticles are confirmed by SAED pattern. The charge on synthesized silver nanoparticles was determined by zeta potential. The colloidal solution of silver nanoparticles were found to exhibit high antibacterial activity against three different strains of bacteria Escherichia coli (Gram negative), Corney bacterium (gram positive), Bacillus substilus (spore forming).

  5. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity.

    PubMed

    Patil, Rupali S; Kokate, Mangesh R; Kolekar, Sanjay S

    2012-06-01

    Biosynthesis of nanoparticles is under exploration due to wide biomedical applications and research interest in nanotechnology. We herein reports bioinspired synthesis of silver nanoparticles with the aid of novel, non toxic ecofriendly biological material namely Ocimum tenuiflorum leaf extract. It acts as reducing as well as stabilizing agent. An intense surface plasmon resonance band at ∼450 nm in the UV-visible spectrum clearly reveals the formation of silver nanoparticles. The photoluminescence spectrum was recorded to study excitation and emission. TEM and PSD by dynamic light scattering studies showed that size of silver nanoparticles to be in range 25-40 nm. Face centered cubic structure of silver nanoparticles are confirmed by SAED pattern. The charge on synthesized silver nanoparticles was determined by zeta potential. The colloidal solution of silver nanoparticles were found to exhibit high antibacterial activity against three different strains of bacteria Escherichia coli (Gram negative), Corney bacterium (gram positive), Bacillus substilus (spore forming).

  6. Synthesis and characterization of dextran-capped silver nanoparticles with enhanced antibacterial activity.

    PubMed

    Yang, Guili; Lin, Qiuxia; Wang, Chunren; Li, Junjie; Wang, Jian; Zhou, Jin; Wang, Yan; Wang, Changyong

    2012-05-01

    Dextran-capped silver nanoparticles were synthesized by reducing silver nitrate with NaBH4 in the presence of dextran as capping agent. The characters of silver nanoparticles were investigated using UV-Vis spectrophotometer, nano-grainsize analyzer, X-ray diffraction, and transmission electron microscopy. Results showed that the silver nanoparticles capped with dextran were in uniform shape and narrow size distribution. Moreover, compared with polyvinylpyrrolidone (PVP)-capped silver nanoparticles, the dextran-capped ones possessed better stability. Antibacterial tests of these silver nanoparticles were carried out for Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Results suggested that the dextran-capped silver nanoparticles had high antibacterial activity against both Gram-positive and Gram-negative bacteria. In addition, the cytotoxicity in vitro of the dextran-capped silver nanoparticles was investigated using mouse fibrosarcoma cells (L929). The toxicity was evaluated by the changes of cell morphology and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. Results indicated that these silver nanoparticles had slight effect on the survival and proliferation of L-929 cells at their minimal inhibitory concentration (MIC). After modified by dextran, the physiochemical properties of the silver nanoparticles had been improved. We anticipated that these dextran-capped silver nanoparticles could be integrated into systems for biological and pharmaceutical applications.

  7. Green Synthesis of Silver Nanoparticles Using Neem Leaf (Azadirachta indica) Extract

    NASA Astrophysics Data System (ADS)

    Shukla, Vineet Kumar; Pandey, Shipra; Pandey, Avinash C.

    2010-10-01

    Silver nanoparticles were successfully synthesized using crude neem leaf (Azadirachta indica) extract at room temperature. The formation and crystallinity of synthesized silver nanoparticles was confirmed by X-Ray diffraction (XRD) pattern. The average size of these silver nanoparticles is about 20-50 nm as observed by Transmission electron microscopy (TEM) images. Optical absorption measurements were performed to determine band-edge energy gap of these silver nanoparticles. Photoluminescence (PL) studies were performed to emphasize its emission properties. The synthesized silver nanoparticles could have major applications in the area of nanoscale optoelectronics devices and biomedical engineering. Our synthesis method has advantage over other conventional chemical routes because it is cost effective & environmental compatibility.

  8. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Mehta, R. V.; Upadhyay, R. V.

    2010-06-01

    In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive ( Bacillus megaterium and Staphylococcus aureus), and three Gram negative ( Escherichia coli, Proteus vulgaris and Shigella sonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

  9. Properties of polypropylene nanocomposites containing silver nanoparticles.

    PubMed

    Jang, Myung Wook; Kim, Ju-Young; Ihn, Kyo Jin

    2007-11-01

    Silver/polypropylene (PP) nanocomposites containing silver nanoparticles smaller than 10 nm were prepared using a new synthetic method. AgNO3 crystals were dissolved into hydrophilic domain of polyoxyethylene maleate-based surfactant (PEOM), which gives self-assembly nano-structures. The AgNO3 in the nano-domains of PEOM was reduced by NaBH4 to form nanoparticles. The colloidal solutions with silver nanoparticles were diluted with ethanol and were mixed with PP pellets. Silver nanocomposites were prepared by extrusion compounding process after drying the pellets. Contents of silver nanoparticles dispersed within PP resin were changed from 100 to 1000 ppm. Formation of silver nanoparticles within PP was confirmed by UV-Vis spectroscopy and TEM. Size and distribution of dispersed silver nanoparticles were also measured by TEM. Silver/PP nanocomposites films showed not only improved thermal stability but also increased mechanical properties compared to neat PP film. Tensile properties of PP nanocomposites were largely improved compared with neat PP resin, and elongation increased also by 175% for the nanocomposites containing 1000 ppm silver nanoparticles.

  10. Endophytic synthesis of silver chloride nanoparticles from Penicillium sp. of Calophyllum apetalum

    NASA Astrophysics Data System (ADS)

    Chandrappa, C. P.; Govindappa, M.; Chandrasekar, N.; Sarkar, Sonia; Ooha, Sepuri; Channabasava, R.

    2016-06-01

    In the present study, Penicillium species extract isolated from Calophyllum apetalum was used for the synthesis of silver nanoparticles and it was confirmed by changing the color of the silver nitrate UV-Vis spectrum. The synthesized nanoparticles have been characterized by biophysical techniques such as scanning electron microscopy and x-ray diffraction.

  11. Synthesis and optical properties of silver nanoparticles

    SciTech Connect

    Singh, Jaiveer; Kaurav, Netram; Choudhary, K. K.; Okram, Gunadhor S.

    2015-07-31

    The preparation of stable, uniform silver nanoparticles by reduction of silver acetate by ethylene glycol (EG) is reported in the present paper. It is a simple process of recent interest for obtaining silver nanoparticles. The samples were characterized by X-Ray diffraction (XRD), which reveals an average particle size (D) of 38 nm. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 319 nm.

  12. Risk assessment of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Shipelin, V. A.; Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanoparticles of metallic silver (Ag) are among the most widely used products of nanotechnology. Nanosized colloidal silver (NCS) is presented in many kinds of production as solutions of particles with diameter less than 100 nm. NCS is used in a variety of fields, including food supplements, medicines, cosmetics, packaging materials, disinfectants, water filters, and many others. Problems of toxicity and related safety of NCS for humans and environmental systems are recently overestimated basing on data of numerous toxicological studies in vitro and in vivo. The article discusses the results of current studies in recent years and the data of author's own experiments on studying the safety of NCS, that allows to move on to risk assessment of this nanomaterial presented in consumer products and environmental samples.

  13. Antibacterial efficacy of silver nanoparticles against Escherichia coli

    NASA Astrophysics Data System (ADS)

    Pattabi, Rani M.; Thilipan, G. Arun Kumar; Bhat, Vinayachandra; Sridhar, K. R.; Pattabi, Manjunatha

    2013-02-01

    Silver nanoparticles (AgNPs) synthesized by subjecting an aqueous solution of AgNO3 and polyvinyl alcohol to irradiation from an UV lamp has been studied for its antibacterial potential against Gram-negative bacteria (Escherichia coli). The diameter of the zone of inhibition is found to depend on both the irradiation time and the nanoparticle concentration. As the synthesis method adopted uses no toxic reagents, these particles may serve as promising candidates in the search for better antibacterial agents.

  14. Ameliorating Effects of Green Synthesized Silver Nanoparticles on Glycated End Product Induced Reactive Oxygen Species Production and Cellular Toxicity in Osteogenic Saos-2 Cells.

    PubMed

    Ashe, Sarbani; Nayak, Debasis; Kumari, Manisha; Nayak, Bismita

    2016-11-09

    Advanced glycation end-products (AGEs) that result from nonenzymatic glycation are one of the major factors involved in diabetes and its secondary complications and diseases. This necessitates our urge to discover new compounds that may be used as potential AGEs inhibitors without affecting the normal structure and function of biomolecules. In the present study, we investigated the inhibitory effects of AgNP (silver nanoparticles) on AGEs formation as well as their inhibitory effects on glycation mediated cell toxicity via reactive oxygen species (ROS) production and DNA damage. The excitation-emission fluorescence spectroscopy was employed to investigate the interaction of AgNP during glycation. The values of conditional stability constant (log Ka = 4.44) derived from the Stern-Volmer equation indicate that AgNP have strong binding capacity for glycated protein. UV-vis, fluorescence, and Fourier transform infrared spectral data reveal complexation of AgNP with glycated bovine serum albumin, which significantly inhibits AGEs formation in a concentration-dependent manner. Cytotoxic evaluations suggest that simultaneous administration of AgNP and glycated product reduces cell death (42.82% ± 3.54) as compared to the glycated product alone. Similarly, ROS production in AgNP treated cells is significantly less compared to only glycated product treated cells. Although DNA damage studies show DNA damage in both GP and GP-AgNP treated cells, fluorescence activated cell sorting analysis demonstrates that glycated products induce cell death by necrosis, while AgNP cause cell death via apoptotic pathways. AgNP have a positive effect on restoring native protein structure deduced from spectral studies, and hence, inferences can be drawn that AgNP have ameliorating effects on glycated induced cytotoxicity observed in osteogenic Saos-2 cells.

  15. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies.

    PubMed

    Chandramohan, Balamurugan; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Chandirasekar, Ramachandran; Dinesh, Devakumar; Kumar, Palanisamy Mahesh; Kovendan, Kalimuthu; Suresh, Udaiyan; Subramaniam, Jayapal; Rajaganesh, Rajapandian; Aziz, Al Thabiani; Syuhei, Ban; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Wei, Hui; Benelli, Giovanni

    2016-03-01

    Mosquitoes (Diptera: Culicidae) serve as important vectors for a wide number of parasites and pathogens of huge medical and veterinary importance. Aedes aegypti is a primary dengue vector in tropical and subtropical urban areas. There is an urgent need to develop eco-friendly mosquitocides. In this study, silver nanoparticles (AgNP) were biosynthesized using neem cake, a by-product of the neem oil extraction from the seed kernels of Azadirachta indica. AgNP were characterized using a variety of biophysical methods, including UV-vis spectrophotometry, FTIR, SEM, EDX, and XRD analyses. Furthermore, the neem cake extract and the biosynthesized AgNP were tested for acute toxicity against larvae and pupae of the dengue vector Ae. aegypti. LC50 values achieved by the neem cake extract ranged from 106.53 (larva I) to 235.36 ppm (pupa), while AgNP LC50 ranged from 3.969 (larva I) to 8.308 ppm (pupa). In standard laboratory conditions, the predation efficiency of a Carassius auratus per day was 7.9 (larva II) and 5.5 individuals (larva III). Post-treatment with sub-lethal doses of AgNP, the predation efficiency was boosted to 9.2 (larva II) and 8.1 individuals (larva III). The genotoxic effect of AgNP was studied on C. auratus using the comet assay and micronucleus frequency test. DNA damage was evaluated on peripheral erythrocytes sampled at different time intervals from the treatment; experiments showed no significant damages at doses below 12 ppm. Overall, this research pointed out that neem cake-fabricated AgNP are easy to produce, stable over time, and can be employed at low dosages to reduce populations of dengue vectors, with moderate detrimental effects on non-target mosquito natural enemies.

  16. Development of a new colorimetric assay for detection of bisphenol-A in aqueous media using green synthesized silver chloride nanoparticles: experimental and theoretical study.

    PubMed

    Khalililaghab, Shiva; Momeni, Safieh; Farrokhnia, Maryam; Nabipour, Iraj; Karimi, Sadegh

    2017-02-08

    In the present study, a cost-effective, green and simple synthesis method was applied for preparation of stable silver chloride nanoparticles (AgCl-NPs). The method was done by forming AgCl-NPs from Ag(+) ions using aqueous extract of brown algae (Sargassum boveanum) obtained from the Persian Gulf Sea. This extract served as capping agent during the formation of AgCl-NPs. Creation of AgCl-NPs was confirmed by UV-visible spectroscopy, powder X-ray diffraction, energy-dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy, while the morphology and size analyses were characterized using high-resolution transmission electron microscopy and dynamic light scattering. After optimization of some experimental conditions, particularly pH, a simple and facile system was developed for the naked-eye detection of bisphenol-A. Moreover, a theoretical study of AgCl interaction with bisphenol-A was performed at the density functional level of theory in both gas and solvent phases. Theoretical results showed that electrostatic and van der Waal interactions play important roles in complexation of bisphenol-A with AgCl-NPs, which can lead to aggregation of the as-prepared AgCl-NPs and results in color change from specific yellow to dark purple, where a new aggregation band induced at 542 nm appears. The absorbance at 542 nm was found to be linearly dependent on the bisphenol-A concentration in the range of 1 × 10(-6)-1 × 10(-4) M, with limit of detection of 45 nM. In conclusion, obtained results from the present study can open up an innovative application of the green synthesis of AgCl-NPs using brown algae extract as colorimetric sensors.

  17. Bio-functionalized silver nanoparticles: a novel colorimetric probe for cysteine detection.

    PubMed

    Borase, Hemant P; Patil, Chandrashekhar D; Salunkhe, Rahul B; Suryawanshi, Rahul K; Kim, Beom S; Bapat, Vishwas A; Patil, Satish V

    2015-04-01

    Chemical interactions between nanoparticles and biomolecules are vital for applying nanoparticles in medicine and life science. Development of sensitive, rapid, low-cost, and eco-friendly sensors for the detection of molecules acting as disease indicator is need of an hour. In the present investigation, a green trend for silver nanoparticle synthesis was followed using leaf extract of Calotropis procera. Silver nanoparticles exhibited surface plasmon absorption peak at 421 nm, spherical shape with average size of 10 nm, and zeta potential of -22.4 mV. The as-synthesized silver nanoparticles were used for selective and sensitive detection of cysteine. Cysteine induces aggregation in stable silver nanoparticles owing to selective and strong interaction of -SH group of cysteine with silver nanoparticle surface. Cysteine-induced silver nanoparticle aggregation can be observed visually by change in color of silver nanoparticles from yellow to pink. Cysteine concentration was estimated colorimetrically by measuring absorption at surface plasmon wavelength. Limit of detection for cysteine using silver nanoparticles is ultralow, i.e., 100 nM. The mechanistic insight into cysteine detection by silver nanoparticles was investigated using FT-IR, TEM, DLS, and TLC analysis. Proposed method can be applied for the detection of cysteine in blood plasma and may give rise to a new insight into development of eco-friendly fabricated nanodiagnostic device in future.

  18. Controlling the Shape and Crystallinity of Gold and Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Personick, Michelle Louise

    The strong dependence of the optical, electronic, and catalytic properties of noble metal nanoparticles on their shape has necessitated the high-yield synthesis of gold and silver nanostructures with precisely defined morphologies. This directed synthesis requires a detailed mechanistic understanding of the chemical and physical factors which control nanoparticle shape; however, these mechanistic explanations are still incomplete. To this end, the work of this dissertation seeks to enhance the understanding of nanoparticle growth on a mechanistic level, while also developing synthetic methods for producing novel nanoparticle shapes. Chapter 1 describes the state of the art in shape-controlled noble metal nanoparticle synthesis prior to the work conducted in this dissertation. In Chapter 2, a method is reported for synthesizing {110}-faceted bipyramids and rhombic dodecahedra, in which the combination of a chloride-containing surfactant and a low concentration of silver ions leads to the stabilization of the {110} facets. Chapter 3 explores in mechanistic detail the use of silver underpotential deposition to control particle growth in the synthesis of four gold nanoparticle shapes: octahedra, rhombic dodecahedra, truncated ditetragonal prisms, and concave cubes. This mechanistic understanding is expanded in Chapter 4, where the independent and synergistic roles of silver ions and halide ions in the seed-mediated synthesis of gold nanoparticles are systematically probed, culminating in a set of design considerations for controlling the shape of gold nanoparticles. Chapter 5 investigates the role of excitation wavelength in controlling the rate of silver ion reduction in the plasmon-mediated synthesis of silver nanoparticles and describes the synthesis of silver cubes with an unusual twinning structure. Finally, Chapter 6 combines the mechanistic insights gained in Chapters 2-5 to address a standing challenge in shape-controlled gold nanoparticle synthesis: the direct

  19. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue.

    PubMed

    Jo, Yun Kee; Seo, Jeong Hyun; Choi, Bong-Hyuk; Kim, Bum Jin; Shin, Hwa Hui; Hwang, Byeong Hee; Cha, Hyung Joon

    2014-11-26

    During implant surgeries, antibacterial agents are needed to prevent bacterial infections, which can cause the formation of biofilms between implanted materials and tissue. Mussel adhesive proteins (MAPs) derived from marine mussels are bioadhesives that show strong adhesion and coating ability on various surfaces even in wet environment. Here, we proposed a novel surface-independent antibacterial coating strategy based on the fusion of MAP to a silver-binding peptide, which can synthesize silver nanoparticles having broad antibacterial activity. This sticky recombinant fusion protein enabled the efficient coating on target surface and the easy generation of silver nanoparticles on the coated-surface under mild condition. The biosynthesized silver nanoparticles showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria and also revealed good cytocompatibility with mammalian cells. In this coating strategy, MAP-silver binding peptide fusion proteins provide hybrid environment incorporating inorganic silver nanoparticle and simultaneously mediate the interaction of silver nanoparticle with surroundings. Moreover, the silver nanoparticles were fully synthesized on various surfaces including metal, plastic, and glass by a simple, surface-independent coating manner, and they were also successfully synthesized on a nanofiber surface fabricated by electrospinning of the fusion protein. Thus, this facile surface-independent silver nanoparticle-generating antibacterial coating has great potential to be used for the prevention of bacterial infection in diverse biomedical fields.

  20. Synthesis of gold and silver nanoparticles using leaf extract of Perilla frutescens--a biogenic approach.

    PubMed

    Basavegowda, Nagaraj; Lee, Yong Rok

    2014-06-01

    The present investigation demonstrates a rapid biogenic approach for the synthesis of gold and silver nanoparticles using biologically active and medicinal important Perilla frutescens leaf extract as a reducing and stabilizing agent under ambient conditions. Gold and silver nanoparticles were first synthesized from Perilla frutescens leaf extract which was used as a vegetable and in traditional medicines for a long time in Korea, Japan, and China. The nanoparticles obtained were characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Surface plasmon resonance spectra of gold and silver nanoparticles were obtained at 540 and 430 nm and triangular and spherical shape respectively. TEM studies showed that the particle sizes of gold and silver nanoparticles ranges -50 nm and -40 nm respectively. X-ray diffraction studies confirm that the biosynthesized nanoparticles were crystalline gold and silver. Fourier transform infra-red spectroscopy revealed that biomolecules were involved in the synthesis and capping of the nanoparticles produced. XRD and EDX confirmed the formation of gold and silver nanoparticles. This is a simple, efficient and rapid method to synthesize gold and silver nanoparticles at room temperature without use of toxic chemicals. Obtained gold and silver nanoparticles can be used in various biomedical and biotechnological applications.

  1. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Van Dong, Pham; Ha, Chu Hoang; Binh, Le Tran; Kasbohm, Jörn

    2012-06-01

    Silver nanoparticles are useful for medical applications due to their strong antibacterial activity. The antibacterial activity can be tuned by controlling the size and shape of the prepared silver nanoparticles. In this work, silver nanoparticles with different sizes and shapes were synthesized by solution phase routes, and their interactions with Escherichia coli were studied. Triangular silver nanoprisms were prepared by the reduction of silver nitrate at room temperature in the presence of polyvinylpyrrolidone, sodium citrate, hydrogen peroxide and sodium borohydride. Spherical silver nanoparticles were also prepared using silver nitrate as metal precursor and sodium citrate as well as sodium borohydride as reducing agents. The morphologies and structures of the nanoparticles were characterized by transmission electron microscopy, UV-visible spectroscopy and X-ray diffraction. The results indicated that spherical silver nanoparticles were obtained with different average sizes of 4, 21 and 40 nm, respectively. The edged silver nanoprisms containing mainly {111} lattice planes were obtained in the range size of 25 to 400 nm. The antibacterial study revealed that the edged triangular silver nanoprisms with {111} lattice planes exhibited the strongest antibacterial property, compared with spherical nanoparticles. Our study demonstrated that triangular silver nanoprisms with sharp edges also display a good antibacterial activity in comparison to other shaped nanoparticles.

  2. Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity.

    PubMed

    Panneerselvam, Chellasamy; Murugan, Kadarkarai; Roni, Mathath; Aziz, Al Thabiani; Suresh, Udaiyan; Rajaganesh, Rajapandian; Madhiyazhagan, Pari; Subramaniam, Jayapal; Dinesh, Devakumar; Nicoletti, Marcello; Higuchi, Akon; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh; Desneux, Nicolas; Benelli, Giovanni

    2016-03-01

    Malaria remains a major public health problem due to the emergence and spread of Plasmodium falciparum strains resistant to chloroquine. There is an urgent need to investigate new and effective sources of antimalarial drugs. This research proposed a novel method of fern-mediated synthesis of silver nanoparticles (AgNP) using a cheap plant extract of Pteridium aquilinum, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Phytochemical analysis of P. aquilinum leaf extract revealed the presence of phenols, alkaloids, tannins, flavonoids, proteins, carbohydrates, saponins, glycosides, steroids, and triterpenoids. LC/MS analysis identified at least 19 compounds, namely pterosin, hydroquinone, hydroxy-acetophenone, hydroxy-cinnamic acid, 5, 7-dihydroxy-4-methyl coumarin, trans-cinnamic acid, apiole, quercetin 3-glucoside, hydroxy-L-proline, hypaphorine, khellol glucoside, umbelliferose, violaxanthin, ergotamine tartrate, palmatine chloride, deacylgymnemic acid, methyl laurate, and palmitoyl acetate. In DPPH scavenging assays, the IC50 value of the P. aquilinum leaf extract was 10.04 μg/ml, while IC50 of BHT and rutin were 7.93 and 6.35 μg/ml. In mosquitocidal assays, LC50 of P. aquilinum leaf extract against Anopheles stephensi larvae and pupae were 220.44 ppm (larva I), 254.12 ppm (II), 302.32 ppm (III), 395.12 ppm (IV), and 502.20 ppm (pupa). LC50 of P. aquilinum-synthesized AgNP were 7.48 ppm (I), 10.68 ppm (II), 13.77 ppm (III), 18.45 ppm (IV), and 31.51 ppm (pupa). In the field, the application of P. aquilinum extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. Both the P. aquilinum extract and AgNP reduced longevity and fecundity of An. stephensi adults. Smoke toxicity experiments conducted against An. stephensi adults showed that P. aquilinum leaf-, stem-, and root-based coils

  3. In situ synthesis of nano silver/lecithin on wool: enhancing nanoparticles diffusion.

    PubMed

    Barani, Hossein; Montazer, Majid; Samadi, Nasrin; Toliyat, Tayebeh

    2012-04-01

    Silver nanoparticles are being used increasingly in various applications because of their antibacterial properties. It is necessary to lower their direct contact with the skin by embedding in a polymer reducing their side effects. In this study, silver nanoparticles were synthesized inside the wool fibers acted as a polyfunctional ligands. Lecithin as a biological lipid was used to enhance the diffusion of silver ions and nanoparticles into the wool fibers reducing cytotoxicity effects of the nano silver loaded wool. The highest loading efficiency and inhibition zone was observed on the wool with the highest lecithin concentration. Presence of lecithin reduced the rate of nano silver release which results in decreasing the specific coefficient of lethality. Also, the extracted solution of the synthesized silver nanoparticles on the wool has not altered the morphology of L929 fibroblast cells.

  4. Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Oluwaniyi, Omolara O.; Adegoke, Haleemat I.; Adesuji, Elijah T.; Alabi, Aderemi B.; Bodede, Sunday O.; Labulo, Ayomide H.; Oseghale, Charles O.

    2016-08-01

    Biosynthesizing of silver nanoparticles using microorganisms or various plant parts have proven more environmental friendly, cost-effective, energy saving and reproducible when compared to chemical and physical methods. This investigation demonstrated the plant-mediated synthesis of silver nanoparticles using the aqueous leaf extract of Thevetia peruviana. UV-Visible spectrophotometer was used to measure the surface plasmon resonance of the nanoparticles at 460 nm. Fourier Transform Infrared showed that the glycosidic -OH and carbonyl functional group present in extract were responsible for the reduction and stabilization of the silver nanoparticles. X ray diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Selected Area Electron Diffraction analyses were used to confirm the nature, morphology and shape of the nanoparticles. The silver nanoparticles are spherical in shape with average size of 18.1 nm. The synthesized silver nanoparticles showed activity against fungal pathogens and bacteria. The zone of inhibition observed in the antimicrobial study ranged between 10 and 20 mm.

  5. Photocurrent enhancement in polythiophene doped with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Szeremeta, Janusz; Nyk, Marcin; Samoc, Marek

    2014-11-01

    We studied the spectral dependence of the influence of silver nanoparticles (Ag NPs) on the photoconductivity of poly(3-hexylthiophene) (P3HT) thin films. 7 ± 2 nm silver nanoparticles were synthesized by thermal decomposition of an organometallic silver salt in organic solvent. Optical properties of the mixture of P3HT and Ag NPs and thin films with various Ag content were investigated. Spectral dependences of the photocurrent were measured for the films cast on the top of interdigitated microelectrodes. Antibatic behavior of the photocurrent with respect to the absorption spectrum was observed. Results shows 40-150 times enhancement of the photocurrents, depending on the wavelength, in films doped with Ag NPs compared with the pristine films. The existing theories on the influence of metallic nanoparticles in the photoactive layer of organic solar cells are reviewed and discussed.

  6. Targeted silver nanoparticles for ratiometric cell phenotyping

    NASA Astrophysics Data System (ADS)

    Willmore, Anne-Mari A.; Simón-Gracia, Lorena; Toome, Kadri; Paiste, Päärn; Kotamraju, Venkata Ramana; Mölder, Tarmo; Sugahara, Kazuki N.; Ruoslahti, Erkki; Braun, Gary B.; Teesalu, Tambet

    2016-04-01

    Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The binding and uptake of the peptide-functionalized AgNPs by cultured PPC-1 prostate cancer and M21 melanoma cells was dependent on the cell surface expression of the cognate peptide receptors. Barcoded peptide-functionalized AgNPs were synthesized from silver and palladium isotopes. The cells were incubated with a cocktail of the barcoded nanoparticles [RPARPAR (R), GKRK (K), and control], and cellular binding and internalization of each type of nanoparticle was assessed by inductively coupled plasma mass spectrometry. The results of isotopic analysis were in agreement with data obtained using optical methods. Using ratiometric measurements, we were able to classify the PPC-1 cell line as mainly NRP-1-positive, with 75 +/- 5% R-AgNP uptake, and the M21 cell line as only p32-positive, with 89 +/- 9% K-AgNP uptake. The isotopically barcoded multiplexed AgNPs are useful as an in vitro ratiometric phenotyping tool and have potential uses in functional evaluation of the expression of accessible homing peptide receptors in vivo.Affinity targeting is used to deliver nanoparticles to cells and tissues. For efficient targeting, it is critical to consider the expression and accessibility of the relevant receptors in the target cells. Here, we describe isotopically barcoded silver nanoparticles (AgNPs) as a tool for auditing affinity ligand receptors in cells. Tumor penetrating peptide RPARPAR (receptor: NRP-1) and tumor homing peptide GKRK (receptor: p32) were used as affinity ligands on the AgNPs. The

  7. Nelumbo nucifera leaf extract mediated synthesis of silver nanoparticles and their antimicrobial properties against some human pathogens

    NASA Astrophysics Data System (ADS)

    Premanand, G.; Shanmugam, N.; Kannadasan, N.; Sathishkumar, K.; Viruthagiri, G.

    2016-03-01

    In the present report, bio-reduction of silver nitrate into silver nanoparticles using the leaf extract of Nelumbo nucifera is explained. The synthesized nanoparticles exhibited surface Plasmon resonance at 410 nm. The crystalline nature of the biosynthesized silver nanoparticles was confirmed from the X-ray diffraction pattern. The functional groups responsible for bio-reduction of silver nitrate into silver were analyzed by Fourier transform infrared spectroscopy and confirmed by X-ray photoelectron spectrum. Field emission transmission electron microscope micrographs showed the formation of well-separated silver nanoparticles of size in the range of 30-40 nm. The result of dynamic light scattering also confirms the mono-dispersed silver nanoparticles with average size of 35 nm. The synthesized nanoparticles exhibited excellent antibacterial activity against the Gram-positive bacteria B. subtilis.

  8. Synthesis and characterization of silver and gold nanoparticles in ionic liquid

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Kumari, Kamlesh; Katyal, Anju; Kalra, Rashmi; Chandra, Ramesh

    2009-07-01

    In this paper, we report the reduction of silver and gold salts by methanolic solution of sodium borohydride in tetrazolium based ionic liquid as a solvent at 30 °C leads to pure phase of silver and gold nanoparticles. Silver and gold nanoparticles so-prepared were well characterized by powder X-ray diffraction measurements (XRD), transmission electron microscopy (TEM) and QELS. XRD analysis revealed all relevant Bragg's reflection for crystal structure of silver and gold metal. XRD spectra also revealed no oxidation of silver nanoparticles to silver oxide. TEM showed nearly uniform distribution of the particles in methanol and it was confirmed by QELS. Silver and gold nanoparticles in ionic liquid can be easily synthesized and are quite stable too.

  9. Biomimetic Synthesis of Silver Nanoparticles Using Endosymbiotic Bacterium Inhabiting Euphorbia hirta L. and Their Bactericidal Potential

    PubMed Central

    Syed, Baker; Yashavantha Rao, Hoovinakola Chinnappa; Nagendra-Prasad, Mysore Nagalingaswamy; Prasad, Ashwini; Harini, Ballagere Puttaraju; Azmath, Pasha; Rakshith, Devaraju; Satish, Sreedharamurthy

    2016-01-01

    The present investigation aims to evaluate biomimetic synthesis of silver nanoparticles using endophytic bacterium EH 419 inhabiting Euphorbia hirta L. The synthesized nanoparticles were initially confirmed with change in color from the reaction mixture to brown indicating the synthesis of nanoparticles. Further confirmation was achieved with the characteristic absorption peak at 440 nm using UV-Visible spectroscopy. The synthesized silver nanoparticles were subjected to biophysical characterization using hyphenated techniques. The possible role of biomolecules in mediating the synthesis was depicted with FTIR analysis. Further crystalline nature of synthesized nanoparticles was confirmed using X-ray diffraction (XRD) with prominent diffraction peaks at 2θ which can be indexed to the (111), (200), (220), and (311) reflections of face centered cubic structure (fcc) of metallic silver. Transmission electron microscopy (TEM) revealed morphological characteristics of synthesized silver nanoparticles to be polydisperse in nature with size ranging from 10 to 60 nm and different morphological characteristics such as spherical, oval, hexagonal, and cubic shapes. Further silver nanoparticles exhibited bactericidal activity against panel of significant pathogenic bacteria among which Pseudomonas aeruginosa was most sensitive compared to other pathogens. To the best of our knowledge, present study forms first report of bacterial endophyte inhabiting Euphorbia hirta L. in mediating synthesizing silver nanoparticles. PMID:27403378

  10. Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent.

    PubMed

    Hu, Sixiao; Hsieh, You-Lo

    2015-10-20

    Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli.

  11. Plasmonic resonances of silver nano-particles

    NASA Astrophysics Data System (ADS)

    Sukharenko, Vitaly; Suslov, Anatoliy; Dorsinville, Roger

    2016-09-01

    Silver (Ag) nanoparticles (NPs) have unique optical, electrical, and thermal properties that are being incorporated into products ranging from optical communication devices and photovoltaics to biological, DNA and other chemical sensors. The optical properties of silver nanoparticles are strongly influenced by their shape, size, distribution, and surrounding environment. One of the main challenges is to maximize the coupling efficiency of incident radiation into plasmonic resonances. In this paper, we present a method to optimize the selection of mono-dispersed Ag NPs size and the wavelength of incident radiation to enhance coupling efficiency. The results are supported by experimental measurements of optical properties of mono-dispersed silver nanoparticles.

  12. SERS investigations of 2,3-dibromo-1,4-naphthoquinone on silver nanoparticles.

    PubMed

    Anuratha, M; Jawahar, A; Umadevi, M; Sathe, V G; Vanelle, P; Terme, T; Meenakumari, V; Milton Franklin Benial, A

    2013-03-15

    In the present study silver nanoparticles were synthesized using a solution combustion method with glycine as fuel. The prepared silver nanoparticles show an fcc crystalline structure with a particle size of 39 nm. Surface-enhanced Raman scattering (SERS) spectra of 2,3-dibromo-1,4-naphthoquinone (DBNQ) adsorbed on silver nanoparticles were investigated. The C-C stretching modes were enhanced and they were broaden in SERS spectrum with respect to normal Raman spectrum. The spectral analysis reveals that the DBNQ adsorbed flat-on orientation on the silver surface. DFT calculations are also performed to study the vibrational features of DBNQ.

  13. Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application.

    PubMed

    Priyadarshini, S; Gopinath, V; Meera Priyadharsshini, N; MubarakAli, D; Velusamy, P

    2013-02-01

    Synthesis of metallic nanoparticles has attracted by bacterial based production and alternative to physical and chemical approaches. The present work was focused to nominate a bacterial strain for synthesis of potential silver nanoparticles. The target was achieved by screening of 127 isolates from silver mining wastes. A strain designated S-27 found to be a potential candidate for rapid synthesis of silver nanoparticles among tested microorganisms. It was subjected to molecular characterization by 16S rDNA sequence analysis. It was found that S-27 belonging to Bacillus flexus. Synthesis of silver nanoparticles was achieved by addition of culture supernatants with aqueous silver nitrate solution, immediately it turns to brown colour solution showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles by UV-vis spectroscopy. Various instrumentation techniques, such as AFM, FESEM, XRD and FTIR, were adopted to characterize the synthesized nanoparticles. Anisotropic nanoparticles, such as spherical and triangular shaped nanoparticles, have been synthesized and sizes were found to be 12 and 65 nm, respectively. It was stable in aqueous solution in five months period of storage at room temperature in the dark. Synthesized nanoparticles showed efficacy on antibacterial property against clinically isolated multi-drug resistant (MDR) microorganisms. It is suggested that biogenic synthesis of nanoparticles have wide-application in medicine and physical chemistry and it can produce with eco-friendly, easy downstream processing and rapid scale-up processing.

  14. Green Synthesis of Silver Nanoparticles from Fresh Leaf Extract of Centella asiatica and Their Applications

    NASA Astrophysics Data System (ADS)

    Vuong, Le Dai; Luan, Nguyen Dinh Tung; Ngoc, Dao Duy Hong; Anh, Phan Tuan; Bao, Vo-Van Quoc

    The synthesis, characterization and application of biologically synthesized nanomaterials have become an important branch of nanotechnology. In the present study, we report the synthesis of silver nanoparticles from fresh leaf extract of Centella asiatica (LEC). UV-Vis spectrum for silver colloids contains a strong plasmon band near 425nm, which confirms the formation of nanoparticles. The experimental results show that the silver nanoparticles are formed easily in the extract at ambient temperature. The resulting silver nanoparticles (AgNPs) were in the spherical form and the average size of the nanoparticles was in the range from 3nm to 30nm. From the above silver nanoparticles, we were taken up to investigate the effects of various concentrations of AgNPs on growth, development and yield of peanut plants. The results of the present experiment showed that the optimized concentration of AgNPs of the good germination, growth and pod yield of peanut plant is 5ppm.

  15. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?

    PubMed

    Subramaniam, Jayapal; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Kovendan, Kalimuthu; Madhiyazhagan, Pari; Kumar, Palanisamy Mahesh; Dinesh, Devakumar; Chandramohan, Balamurugan; Suresh, Udaiyan; Nicoletti, Marcello; Higuchi, Akon; Hwang, Jiang-Shiou; Kumar, Suresh; Alarfaj, Abdullah A; Munusamy, Murugan A; Messing, Russell H; Benelli, Giovanni

    2015-12-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.

  16. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    SciTech Connect

    Ghosh, Tapas; Satpati, Biswarup

    2015-06-24

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  17. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    SciTech Connect

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-08-06

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  18. Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity

    NASA Astrophysics Data System (ADS)

    Sahu, Nidhi; Soni, Deepika; Chandrashekhar, B.; Satpute, D. B.; Saravanadevi, Sivanesan; Sarangi, B. K.; Pandey, R. A.

    2016-07-01

    Three different flavonoids -hesperidin, naringin and diosmin (constituents of citrus plants) were used for the synthesis of silver nanoparticles (AgNPs). Aqueous solutions of pure flavonoids (0.2 mg mL-1) mixed with 1 mM AgNO3 solution were exposed to bright sunlight to prepare the nanoparticles. Characterization of the synthesized nanoparticles by UV-Visible spectrophotometer, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy revealed that the synthesized silver nanoparticles were 10-80 nm in size and polydispersed in nature. Bactericidal effect against common pathogens and cytotoxicity of the synthesized silver nanoparticles was investigated on human promyelocytic leukemic (HL-60) cells. It is concluded that AgNPs synthesized using Naringin as reducing agent showed higher stability and better antibacterial and cytotoxic activities.

  19. Biocide silver nanoparticles in two different silica-based coating

    NASA Astrophysics Data System (ADS)

    Babapour, A.; Yang, B.; Bahang, S.; Cao, W.

    2012-09-01

    Silica-based coatings containing biocide silver nanoparticles have been synthesized using low temperature sol-gel method. Two different silane based matrices, phenyltriethoxysilane (PhTEOS) and tetraethyl orthosilicate (TEOS), were selected as precursor to prepare silica-based film. The films were analyzed by using UV-visible spectrophotometry, atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their optical, surface morphological as well as structural properties. Optical properties of nanosilver in these two matrices showed that the peak absorption observed at different wavelength, which is due to the fact that optical absorption of nanoparticles is affected by the surrounding medium. It is also found that the silver absorption has higher intensity in PhTEOS than in TEOS matrix, indicating higher concentration of silver nanoparticles being loaded into the coating. To study silver release property, the films were immersed in water for 12 and 20 days. AFM and SEM analyzes present that higher concentration of silver nanoparticles and smaller particle sizes were synthesis in PhTEOS coating and consequently, more particles remains on the surfaces after 20 days which leads to longer antibacterial activity of PhTEOS coating.

  20. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process

    SciTech Connect

    Mokhtari, Narges; Daneshpajouh, Shahram; Seyedbagheri, Seyedali; Atashdehghan, Reza; Abdi, Khosro; Sarkar, Saeed; Minaian, Sara; Shahverdi, Hamid Reza; Shahverdi, Ahmad Reza

    2009-06-03

    This study has investigated different visible-light irradiation's effect on the formation of silver nanoparticles from silver nitrate using the culture supernatant of Klebsiella pneumonia. Our study shows that visible-light emission can significantly prompt the synthesis of silver nanoparticles. Also, the study experimentally investigated the liquid mixing process effect on silver nanoparticle synthesis by visible-light irradiation. This study successfully synthesized uniformly dispersed silver nanoparticles with a uniform size and shape in the range of 1-6 nm with an average size of 3 nm. Furthermore, the study investigated the mechanism of the reduction of silver ions by culture supernatant of K. pneumonia, and used X-ray diffraction to characterize silver chloride as an intermediate compound. Silver chloride was prepared synthetically and used as a substrate for the synthesis of silver nanoparticles by culture supernatant of K. pneumonia. The silver nanoparticles have been prepared from silver chloride during this investigation for the first time.

  1. Synthesizing nanoparticles by mimicking nature

    EPA Science Inventory

    As particulate matter with at least one dimension that is less than 100 nm, nanoparticles are the minuscule building blocks of new commercial products and consumer materials in the emerging field of nanotechnology. Nanoparticles are being discovered and introduced in the marketpl...

  2. A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Venkatesham, Maragoni; Ayodhya, Dasari; Madhusudhan, Alle; Veera Babu, Nagati; Veerabhadram, Guttena

    2014-01-01

    Stable silver nanoparticles were synthesized using chitosan acting as both reducing and stabilizing agent without using any toxic chemicals. This reaction was carried out in an autoclave at a pressure of 15 psi and 120 °C temperature by varying the time. The influence of different parameters such as time, change of concentration of silver nitrate and concentration of chitosan on the formation of silver nanoparticles were studied. The synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared, X-ray diffraction and transmission electron microscopy. The results of catalytic reduction of 4-nitrophenol by sodium borohydride in the presence of green synthesized silver nanoparticles were presented. The antimicrobial activity of silver nanoparticles was tested against Escherichia coli and Micrococcus luteus and was found to be possessing inhibiting property.

  3. Cytotoxic Potential of Silver Nanoparticles

    PubMed Central

    Zhang, Tianlu; Wang, Liming

    2014-01-01

    Silver nanoparticles (AgNPs) have been widely used in industrial, household, and healthcare-related products due to their excellent antimicrobial activity. With increased exposure of AgNPs to human beings, the risk of safety has attracted much attention from the public and scientists. In review of recent studies, we discuss the potential impact of AgNPs on individuals at the cell level. In detail, we highlight the main effects mediated by AgNPs on the cell, such as cell uptake and intracellular distribution, cytotoxicity, genotoxicity, and immunological responses, as well as some of the major factors that influence these effects in vivo and in vivo, such as dose, time, size, shape, surface chemistry, and cell type. At the end, we summarize the main influences on the cell and indicate the challenges in this field, which may be helpful for assessing the risk of AgNPs in future. PMID:24532494

  4. Influence of pH on the properties of PVA capped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ajitha, B.; Reddy, P. Sreedhara

    2013-06-01

    Silver nanoparticles were synthesized by chemical reduction method using ascorbic acid as reductant and PVA as surfactant and studied the pH influence on the structural, compositional and optical properties of silver nanoparticles. Broadened XRD peaks confirmed the formation of small nanosized silver nanoparticles with face centered cubic (FCC) structure. The particle size decreased with increasing pH value. We have observed blue shift of Surface Plasmon Resonance (SPR) band from optical absorption spectra. The obtained nanoparticles were well dispersed in water, ethanol and polar solvents and thus more suitable for biocompatible.

  5. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2014-01-01

    Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn(2+) and Cu(4+) selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature.

  6. Surface plasmon resonance optical sensor and antibacterial activities of biosynthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2014-03-01

    Silver nanoparticles were prepared using aqueous fruit extract of Ananas comosus as reducing agent. These silver nanoparticles showed surface plasmon peak at 439 nm. They were monodispersed and spherical in shape with an average particle size of 10 nm. The crystallinity of these nanoparticles was evident from clear lattice fringes in the HRTEM images and bright circular spots in the SAED pattern. The antibacterial activities of prepared nanoparticles were found to be size-dependent, the smaller nanoparticles showing more bactericidal effect. Aqueous Zn2+ and Cu4+ selectivity and sensitivity study of this green synthesized nanoparticle was performed by optical sensor based surface plasmon resonance (SPR) at room temperature.

  7. Preparation and characterization of size controllable spherical silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Ai-ling; Li, Shun-pin; Wang, Yu-jin; Bao, Xi-chang; Yang, Ren-qiang

    2014-05-01

    By adjusting pH values of reactant system, the mass ratio of stabilizer/water and aging temperature, size controllable spherical silver nanoparticles (NPs) were synthesized. The properties of silver NPs are characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and ultraviolet visible (UV-VIS) absorption spectra. Within the pH values of 7.0-11.0, the aging temperature of 80 °C is better to improve silver NPs in shape to nearly sphere, concentrate size distribution and reduce aggregation than the aging temperature of 25 °C. The shape and dispersibility of silver NPs are the best when the pH of the reactant system is within 7.0-8.0. With pH of 7.5, aging at 80 °C, and stabilizer/water mass ratio of 1%, the spherical silver NPs with sizes of 50-70 nm were synthesized. The results are promising to be used to synthesize core/shell NPs when silver NPs are as core.

  8. Microwave-assisted deposition of silver nanoparticles on bamboo pulp fabric through dopamine functionalization

    NASA Astrophysics Data System (ADS)

    Peng, Linghui; Guo, Ronghui; Lan, Jianwu; Jiang, Shouxiang; Lin, Shaojian

    2016-11-01

    Silver nanoparticles were synthesized on bamboo pulp fabric with dopamine as the adhesive and reducing agent under microwave radiation. The silver nanoparticle coated bamboo pulp fabrics were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and X-ray diffraction. Ultraviolet (UV) protection, color and water contact angles of the silver nanoparticle coated bamboo pulp fabrics were evaluated. In addition, the influences of concentrations of dopamine and treatment time on color strength (K/S values) of the silver nanoparticle coated fabric were investigated. Fastness to washing was employed to evaluate the adhesive strength between the silver coating and the bamboo pulp fabric modified with dopamine. The results show that the dopamine modified bamboo pulp fabric is evenly covered with silver nanoparticles. The silver nanoparticle coated bamboo pulp fabric modified with dopamine shows the excellent UV protection with an ultraviolet protection factor of 157.75 and the hydrophobicity with a water contact angle of 132.4°. In addition, the adhesive strength between the silver nanoparticles and bamboo pulp fabric is significantly improved. Silver nanoparticles coating on bamboo pulp fabric modified with dopamine is environmentally friendly, easy to carry out and highly efficient.

  9. Myco-synthesis of silver nanoparticles using Beauveria bassiana against dengue vector, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Banu, A Najitha; Balasubramanian, C

    2014-08-01

    The efficacy of silver synthesized biolarvicide with the help of entomopathogenic fungus, Beauveria bassiana, was assessed against the different larval instars of dengue vector, Aedes aegypti. The silver nanoparticles were observed and characterized by a scanning electron microscope (SEM) and energy-dispersive X-ray (EDX). A surface plasmon resonance band was observed at 420 nm in UV-vis spectrophotometer. The characterization was confirmed by shape (spherical), size 36.88-60.93 nm, and EDX spectral peak at 3 keV of silver nanoparticles. The synthesized silver nanoparticles have been tested against the different larval instars of Ae. aegypti at different concentrations for a period of 24 h. Ae. aegypti larvae were found more susceptible to the synthesized silver nanoparticles. The LC50 and LC90 values are 0.79 and 1.09 ppm with respect to the Ae. aegypti treated with B. bassiana (Bb) silver nanoparticles (AgNPs). First and second instar larvae of Ae. aegypti have shown cent percent mortality while third and fourth instars found 50.0, 56.6, 70.0, 80.0, and 86.6 and 52.4, 60.0, 68.5, 76.0, and 83.3% mortality at 24 h of exposure in 0.06 and 1.00 ppm, respectively. It is suggested that the entomopathogenic fungus synthesized silver nanoparticles would be appropriate for environmentally safer and greener approach for new leeway in vector control strategy through a biological process.

  10. Removal of Protein Capping Enhances the Antibacterial Efficiency of Biosynthesized Silver Nanoparticles

    PubMed Central

    Jain, Navin; Bhargava, Arpit; Rathi, Mohit; Dilip, R. Venkataramana; Panwar, Jitendra

    2015-01-01

    The present study demonstrates an economical and environmental affable approach for the synthesis of “protein-capped” silver nanoparticles in aqueous solvent system. A variety of standard techniques viz. UV-visible spectroscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) measurements were employed to characterize the shape, size and composition of nanoparticles. The synthesized nanoparticles were found to be homogenous, spherical, mono-dispersed and covered with multi-layered protein shell. In order to prepare bare silver nanoparticles, the protein shell was removed from biogenic nanoparticles as confirmed by UV-visible spectroscopy, FTIR and photoluminescence analysis. Subsequently, the antibacterial efficacy of protein-capped and bare silver nanoparticles was compared by bacterial growth rate and minimum inhibitory concentration assay. The results revealed that bare nanoparticles were more effective as compared to the protein-capped silver nanoparticles with varying antibacterial potential against the tested Gram positive and negative bacterial species. Mechanistic studies based on ROS generation and membrane damage suggested that protein-capped and bare silver nanoparticles demonstrate distinct mode of action. These findings were strengthened by the TEM imaging along with silver ion release measurements using inductively coupled plasma atomic emission spectroscopy (ICP-AES). In conclusion, our results illustrate that presence of protein shell on silver nanoparticles can decrease their bactericidal effects. These findings open new avenues for surface modifications of nanoparticles to modulate and enhance their functional properties. PMID:26226385

  11. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    PubMed Central

    Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M

    2012-01-01

    Background Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Methods Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. Results The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. Conclusion The present work has developed a new biocompatible antifungal PMMA denture base material. PMID:22969297

  12. Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects.

    PubMed

    Rajagopal, Thangavel; Jemimah, Irudayaraj Anto Amal; Ponmanickam, Ponnirul; Ayyanar, Muniappan

    2015-11-01

    Phytosynthesis of silver nanoparticles has attracted considerable attention due to their biocompatibility, low toxicity, cost-effectiveness and being a novel method has an eco-friendly approach. Biological activity of root extracts as well as synthesized silver nanoparticles of Catharanthus roseus were evaluated against larvae of Aedes aegyptiand Culex quinquefasciatus. The structure and proportion of the synthesized nanoparticles was defined by exploitation ultraviolet spectrophotometry, X-ray diffraction, fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy and scanning electron microscopy methods. Reduction of silver ions occurred when silver nitrate solution was treated with aqueous root extract at 60°C. Synthesized silver nanoparticles (AgNPs) were confirmed by analyzing the excitation of surface plasmon resonance (SPR) using UV-vis spectrophotometer at 423 nm. FTIR showed aliphatic amines and alkanes corresponding peaks to be presence of responsible compounds to produced nanoparticles in the reaction mixture. Spherical shaped and crystalline nature of particles was recorded under XRD analysis. Presence of silver metal and 35-55nm sized particles were recorded using EDAX and SEM respectively. Larvicidal activitywas observed after24 hrs of exposure to root extracts and synthesized silver nanoparticles. The highest larval mortality was observed in synthesized silver nanopartiucles against Aedes aegypti (LC50= 2.01 ± 0.34; LC90= 5.29 ± 0.07 at 5.0 mg(-1) concentration) and Culex quinquefasciatus (LC50= 1.18 ± 0.15; LC90= 2.55 ± 0.76 at 3.5 to 5.0 mgl(-1) concentration) respectively. The present study provides evidence that synthesized silver nanoparticles of Catharanthus roseus offer potential source for larvicidal activity againstthe larvae of both dengue and filariasis vectors.

  13. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities.

    PubMed

    Gogoi, Nayanmoni; Babu, Punuri Jayasekhar; Mahanta, Chandan; Bora, Utpal

    2015-01-01

    Here we report the synthesis of silver nanoparticles using ethanolic flower extract of Nyctanthes arbortristis, UVvisible spectra and TEM indicated the successful formation of silver nanoparticles. Crystalline nature of the silver nanoparticles was confirmed by X-ray diffraction. Fourier Transform Infra-Red Spectroscopy analysis established the capping of the synthesized silver nanoparticles with phytochemicals naturally occurring in the ethanolic flower extract of N. arbortristis. The synthesized silver nanoparticles showed antibacterial activity against the pathogenic strain of Escherichia coli MTCC 443. Furthermore, cytotoxicity of the silver nanoparticles was tested on mouse fibroblastic cell line (L929) and found to be non-toxic, which thus proved their biocompatibility. Antibacterial activity and cytotoxicity assay carried out in this study open up an important perspective of the synthesized silver nanoparticles.

  14. Continuous synthesis of monodispersed silver nanoparticles using a homogeneous heating microwave reactor system.

    PubMed

    Nishioka, Masateru; Miyakawa, Masato; Kataoka, Haruki; Koda, Hidekazu; Sato, Koichi; Suzuki, Toshishige M

    2011-06-01

    Continuous synthesis of silver nanoparticles based on a polyol process was conducted using a microwave-assisted flow reactor installed in a cylindrical resonance cavity. Silver nitrate (AgNO(3)) and poly(N-vinylpyrrolidone) (PVP) dissolved in ethylene glycol were used respectively as a silver metal precursor and as a capping agent of nanoparticles. Ethylene glycol worked as the solvent and simultaneously as the reductant. Silver nanoparticles of narrow size distributions were synthesized steadily for 5 h, maintaining almost constant yield (>93%) and quality. The reaction was achieved within 2.8 s of residence time, although nanoparticles were not formed under this flow rate by conventional heating. A narrower particle size distribution was realized by the increased flow rate of the reaction solution. Nanoparticles of 9.8 nm average size with a standard deviation of 0.9 nm were synthesized at the rate of 100 ml h(-l).

  15. Complex conductivity response to silver nanoparticles in ...

    EPA Pesticide Factsheets

    The increase in the use of nanoscale materials in consumer products has resulted in a growing concern of their potential hazard to ecosystems and public health from their accidental or intentional introduction to the environment. Key environmental, health, and safety research needs include knowledge and methods for their detection, characterization, fate, and transport. Specifically, techniques available for the direct detection and quantification of their fate and transport in the environment are limited. Their small size, high surface area to volume ratio, interfacial, and electrical properties make metallic nanoparticles, such as silver nanoparticles, good targets for detection using electrical geophysical techniques. Here we measured the complex conductivity response to silver nanoparticles in sand columns under varying moisture conditions (0–30%), nanoparticle concentrations (0–10 mg/g), lithology (presence of clay), pore water salinity (0.0275 and 0.1000 S/m), and particle size (35, 90–210 and 1500–2500 nm). Based on the Cole-Cole relaxation models we obtained the chargeability and the time constant. We demonstrate that complex conductivity can detect silver nanoparticles in porous media with the response enhanced by higher concentrations of silver nanoparticles, moisture content, ionic strength, clay content and particle diameter. Quantification of the volumetric silver nanoparticles content in the porous media can also be obtained from complex co

  16. Heteroaggregation of Silver Nanoparticles with Clay Minerals in Aqueous System

    NASA Astrophysics Data System (ADS)

    Liu, J.; Burrow, E.; Hwang, Y.; Lenhart, J.

    2013-12-01

    Nanoparticles are increasingly being used in industrial processes and consumer products that exploit their beneficial properties and improve our daily lives. Nevertheless, they also attract attention when released into natural environment due to their potential for causing adverse effects. The fate and transport of nanoparticles in aqueous systems have been the focus of intense study. However, their interactions with other natural particles have received only limited attention. Clay minerals are ubiquitous in most aquatic systems and their variably charged surfaces can act as deposition sites that can alter the fate and transport of nanoparticles in natural aqueous environments. In this study, we investigated the homoaggregation of silver nanoparticles with different coating layers and their heteroaggregation behavior with clay minerals (illite, kaolinite, montmorillonite) in neutral pH solutions. Silver nanoparticles with a nominal diameter of 80 nm were synthesized with three different surface coating layers: uncoated, citrate-coated and Tween-coated. Illite (IMt-2), kaolinite (KGa-2), and montmorillonite (SWy-2) were purchased from the Clay Mineral Society (Indiana) and pretreated to obtain monocationic (Na-clay) and dicationic (Ca-clay) suspensions before the experiments. The change in hydrodynamic diameter as a function of time was monitored using dynamic light scattering (DLS) measurements in order to evaluate early stage aggregation as a function of electrolyte concentration in both the homo- and heteroaggregation scenarios. A shift in the critical coagulation concentration (CCC) values to lower electrolyte concentrations was observed in binary systems, compared to single silver nanoparticle and clay systems. The results also suggest more rapid aggregation in binary system during the early aggregation stage when compared to the single-particle systems. The behavior of citrate-coated silver nanoparticles was similar to that of the bare particles, while the

  17. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi

    NASA Astrophysics Data System (ADS)

    Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. T.

    In this present study, silver nanoparticles were synthesized by green chemistry approach using Acalypha indica leaf extract as reducing agents. The reaction medium employed in the synthesis process was optimized to attain better yield, controlled size and stability. Further, the biosynthesized silver nanoparticles were conformed through UV-vis spectrum, XRD and HR-TEM analyses. Different concentration of silver nanoparticles were tested to know the inhibitory effect of fungal plant pathogens namely Alternaria alternata, Sclerotinia sclerotiorum, Macrophomina phaseolina, Rhizoctonia solani, Botrytis cinerea and Curvularia lunata. Interestingly, 15 mg concentration of silver nanoparticles showed excellent inhibitory activity against all the tested pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.

  18. Biogenic synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Bose, Debadin; Chatterjee, Someswar

    2016-08-01

    Among the various inorganic nanoparticles, silver nanoparticles have received substantial attention in the field of antimicrobial research. For safe and biocompatible use of silver nanoparticles in antimicrobial research, the different biogenic routes are developed to synthesize silver nanoparticles that do not use toxic chemicals. Among those, to synthesize silver nanoparticles, the use of plant part extract becomes an emerging field because plant part acts as reducing as well as capping agent. For large-scale production of antibacterial silver nanoparticles using plant part, the synthesis route should be very simple, rapid, cost-effective and environment friendly based on easy availability and non-toxic nature of plant, stability and antibacterial potential of biosynthesized nanoparticles. In the present study, we report a very simple, rapid, cost-effective and environment friendly route for green synthesis of silver nanoparticles using guava ( Psidium guajava) leaf extract as reducing as well as capping agent. This plant has been opted for the present study for its known medicinal properties, and it is easily available in all seasons and everywhere. The biosynthesized silver nanoparticles are characterized by UV-Vis and TEM analysis. The average particle size is 40 nm in the range of 10-90 nm. The antibacterial activity of these nanoparticles against Pseudomonas aeruginosa MTCC 741 has been measured by disc diffusion method, agar cup assay and serial dilution turbidity measurement assay. The results show that green synthesized silver nanoparticles, using guava ( Psidium guajava) leaf extract, have a potential to inhibit the growth of bacteria.

  19. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities.

    PubMed

    Balakumaran, M D; Ramachandran, R; Kalaichelvan, P T

    2015-09-01

    The aim of this study was to synthesize highly biocompatible and functionalized silver nanoparticles using endophytic fungi isolated from the leaves of medicinal plants. Among 13 fungi tested, the isolate, Guignardia mangiferae (Bios PTK 4) extracellularly synthesized well-dispersed and extremely stable silver nanoparticles under optimized reaction conditions within 12 h. These nanoparticles were characterized by HR-TEM, SAED, XRD and EDX analyses. G. mangiferae synthesized 5-30 nm sized, spherical shaped silver nanoparticles. Effect of pH on the antibacterial activity of silver nanoparticles was studied using well diffusion assay; on the basis of particle stability and antibacterial activity, pH 7 was found to be optimum. The leakage of intracellular components has clearly demonstrated that silver nanoparticles damage the bacterial cells by formation of pores, which affect the membrane permeability and finally leads to cell death. In addition, silver nanoparticles exhibited excellent antifungal activity against plant pathogenic fungi. Cytotoxic effects of silver nanoparticles showed IC50 values of 63.37, 27.54 and 23.84 μg/mL against normal African monkey kidney (Vero), HeLa (cervical) and MCF-7 (breast) cells, respectively, at 24 h incubation period. Thus, the obtained results convincingly suggest that silver nanoparticles synthesized from G. mangiferae are highly biocompatible and have wider applicability and they could be explored as promising candidates for a variety of biomedical/pharmaceutical and agricultural applications.

  20. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity.

    PubMed

    Panacek, Ales; Kvítek, Libor; Prucek, Robert; Kolar, Milan; Vecerova, Renata; Pizúrova, Nadezda; Sharma, Virender K; Nevecna, Tat'jana; Zboril, Radek

    2006-08-24

    A one-step simple synthesis of silver colloid nanoparticles with controllable sizes is presented. In this synthesis, reduction of [Ag(NH(3))(2)](+) complex cation by four saccharides was performed. Four saccharides were used: two monosaccharides (glucose and galactose) and two disaccharides (maltose and lactose). The syntheses performed at various ammonia concentrations (0.005-0.20 mol L(-1)) and pH conditions (11.5-13.0) produced a wide range of particle sizes (25-450 nm) with narrow size distributions, especially at the lowest ammonia concentrations. The average size, size distribution, morphology, and structure of particles were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and UV/Visible absorption spectrophotometry. The influence of the saccharide structure (monosacharides versus disaccharides) on the size of silver particles is briefly discussed. The reduction of [Ag(NH(3))(2)](+) by maltose produced silver particles with a narrow size distribution with an average size of 25 nm, which showed high antimicrobial and bactericidal activity against Gram-positive and Gram-negative bacteria, including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus. Antibacterial activity of silver nanoparticles was found to be dependent on the size of silver particles. A very low concentration of silver (as low as 1.69 mug/mL Ag) gave antibacterial performance.

  1. Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens

    NASA Astrophysics Data System (ADS)

    Shanmugam, N.; Rajkamal, P.; Cholan, S.; Kannadasan, N.; Sathishkumar, K.; Viruthagiri, G.; Sundaramanickam, A.

    2014-10-01

    In this paper, we have reported on biological synthesis of nano-sized silver and its antibacterial activity against human pathogens. The nanoparticles of silver were formed by the reduction of silver nitrate to aqueous silver metal ions during exposure to the extract of marine seaweed Sargassum wightii. The optical properties of the obtained silver nanoparticles were characterized using UV-visible absorption and room temperature photoluminescence. The X-ray diffraction results reveal that the synthesized silver nanoparticles are in the cubic phase. The existence of functional groups was identified using Fourier transform infrared spectroscopy. The morphology and size of the synthesized particles were studied with atomic force microscope and high-resolution transmission electron microscope measurements. The synthesized nanoparticles have an effective antibacterial activity against S. aureus, K. pneumoniae, and S. typhi.

  2. Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting.

    PubMed

    Sathyavathi, R; Krishna, M Bala Murali; Rao, D Narayana

    2011-03-01

    The Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. The work presented here with the biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics. The aqueous silver ions when exposed to Moringa oleifera leaf extract are reduced resulting in silver nanoparticles demonstrating the biosynthesis. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. TEM analysis shows a dispersion of the nanoparticles in a range of 5-80 nm with the average around 46 nm and are crystallized in face centred cubic symmetry. To show that these biosynthesized silver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route, we carried out the Z-scan studies with a 6 ns, 532 nm pulsed laser. We estimated the nonlinear absorption coefficient and compare it with the literature values of the nanoparticles synthesized through chemical route. The silver nanoparticles suspended in solution exhibited reverse saturable absorption with optical limiting threshold of 100 mJ/cm2.

  3. Silver nanoparticles: Large scale solvothermal synthesis and optical properties

    SciTech Connect

    Wani, Irshad A.; Khatoon, Sarvari; Ganguly, Aparna; Ahmed, Jahangeer; Ganguli, Ashok K.; Ahmad, Tokeer

    2010-08-15

    Silver nanoparticles have been successfully synthesized by a simple and modified solvothermal method at large scale using ethanol as the refluxing solvent and NaBH{sub 4} as reducing agent. The nanopowder was investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible and BET surface area studies. XRD studies reveal the monophasic nature of these highly crystalline silver nanoparticles. Transmission electron microscopic studies show the monodisperse and highly uniform nanoparticles of silver of the particle size of 5 nm, however, the size is found to be 7 nm using dynamic light scattering which is in good agreement with the TEM and X-ray line broadening studies. The surface area was found to be 34.5 m{sup 2}/g. UV-visible studies show the absorption band at {approx}425 nm due to surface plasmon resonance. The percentage yield of silver nanoparticles was found to be as high as 98.5%.

  4. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum

    NASA Astrophysics Data System (ADS)

    Kannan, R. Ragupathi Raja; Arumugam, R.; Ramya, D.; Manivannan, K.; Anantharaman, P.

    2013-06-01

    The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the seaweed ( Chaetomorpha linum) extract . The silver nanoparticles obtained were characterized by UV-visible spectrum, FTIR and scanning electron microscopy. The characteristic absorption peak at 422 nm in UV-vis spectrum confirmed the formation of silver nanoparticles. The colour intensity at 422 nm increased with duration of incubation. The size of nanoparticles synthesized varied from 3 to 44 nm with average of ~30 nm. The FTIR spectrum of C. linum extract showed peaks at 1,020, 1,112, 1,325, 1,512, 1,535, 1,610, 1,725, 1,862, 2,924, 3,330 cm-1. The vibrational bands corresponding to the bonds such as -C=C (ring), -C-O, -C-O-C and C=C (chain) are derived from water-soluble compounds such as amines, peptides, flavonoids and terpenoids present in C. linum extract. Hence, it may be inferred that these biomolecules are responsible for capping and efficient stabilization. Since no synthetic reagents were used in this investigation, it is environmentally safe and have potential for application in biomedicine and agriculture.

  5. Light-driven transformation processes of anisotropic silver nanoparticles.

    PubMed

    Lee, George P; Shi, Yichao; Lavoie, Ellen; Daeneke, Torben; Reineck, Philipp; Cappel, Ute B; Huang, David M; Bach, Udo

    2013-07-23

    The photoinduced formation of silver nanoprisms from smaller silver seed particles in the presence of citrate anions is a classic example of a photomorphic reaction. In this case, light is used as a convenient tool to dynamically manipulate the shape of metal nanoparticles. To date, very little is known about the prevailing reaction mechanism of this type of photoreaction. Here we provide a detailed study of the shape transformation dynamics as a function of a range of different process parameters, such as photon energy and photon flux. For the first time, we provide direct evidence that the photochemical synthesis of silver nanoprisms from spherical seed nanoparticles proceeds via a light-activated two-dimensional coalescence mechanism. On the other hand, we could show that Ostwald ripening becomes the dominant reaction mechanism when larger silver nanoprisms are grown from photochemically synthesized smaller nanoprisms. This two-step reaction proceeds significantly faster and yields more uniform, sharper nanoprisms than the classical one-step photodevelopment process from seeds. The ability to dynamically control nanoparticle shapes and properties with light opens up novel synthesis avenues but also, more importantly, allows one to conceive new applications that exploit the nonstatic character of these nanoparticles and the ability to control and adjust their properties at will in a highly dynamic fashion.

  6. Solid-State Synthesis of Silver Nanoparticles at Room Temperature: Poly(vinylpyrrolidone) as a Tool.

    PubMed

    Debnath, Dipen; Kim, Chorong; Kim, Sung H; Geckeler, Kurt E

    2010-03-16

    Silver nanoparticles have been used for a long time and recently various methods have been additionally developed for their production. Here we report for the first time a solid-state high-speed vibration milling method for the synthesis of silver nanoparticles, in which poly(vinylpyrrolidone) is used for the reduction of the silver salt. The synthesis is performed at room temperature and no surfactant to direct the anisotropic growth of the nanoparticles is required. The formation of the nanoparticles was studied by UV-Visible spectroscopy, transmission electron microscopy, and powder X-ray diffraction techniques. The nanoparticles synthesized were found to be uniform in size and shape with an average diameter of less than 5 nm. In addition, the antimicrobial activity of these silver nanoparticles was investigated against Escherichia coli and found to be positive.

  7. Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route

    PubMed Central

    2012-01-01

    Background The aim of this study is to investigate the functions of polymers and size of nanoparticles on the antibacterial activity of silver bionanocomposites (Ag BNCs). In this research, silver nanoparticles (Ag NPs) were incorporated into biodegradable polymers that are chitosan, gelatin and both polymers via chemical reduction method in solvent in order to produce Ag BNCs. Silver nitrate and sodium borohydride were employed as a metal precursor and reducing agent respectively. On the other hand, chitosan and gelatin were added as a polymeric matrix and stabilizer. The antibacterial activity of different sizes of silver nanoparticles was investigated against Gram-positive and Gram-negative bacteria by the disk diffusion method using Mueller-Hinton Agar. Results The properties of Ag BNCs were studied as a function of the polymer weight ratio in relation to the use of chitosan and gelatin. The morphology of the Ag BNCs films and the distribution of the Ag NPs were also characterized. The diameters of the Ag NPs were measured and their size is less than 20 nm. The antibacterial trait of silver/chitosan/gelatin bionanocomposites was investigated. The silver ions released from the Ag BNCs and their antibacterial activities were scrutinized. The antibacterial activities of the Ag BNC films were examined against Gram-negative bacteria (E. coli and P. aeruginosa) and Gram-positive (S. aureus and M. luteus) by diffusion method using Muller-Hinton agar. Conclusions The antibacterial activity of Ag NPs with size less than 20 nm was demonstrated and showed positive results against Gram-negative and Gram-positive bacteria. The Ag NPs stabilized well in the polymers matrix. PMID:22967920

  8. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles.

    PubMed

    Parashar, Upendra Kumar; Kumar, Vinod; Bera, Tanmay; Saxena, Preeti S; Nath, Gopal; Srivastava, Sunil K; Giri, Rajiv; Srivastava, Anchal

    2011-10-14

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag(+) by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag(+) has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  9. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Parashar, Upendra Kumar; Kumar, Vinod; Bera, Tanmay; Saxena, Preeti S.; Nath, Gopal; Srivastava, Sunil K.; Giri, Rajiv; Srivastava, Anchal

    2011-10-01

    The extensive use of silver nanoparticles needs a synthesis process that is greener without compromising their properties. The present study describes a novel green synthesis of silver nanoparticles using Guava (Psidium guajava) leaf extract. In order to compare with the conventionally synthesized ones, we also prepared Ag-NPs by chemical reduction. Their optical and morphological characteristics were thoroughly investigated and tested for their antibacterial properties on Escherichia coli. The green synthesized silver nanoparticles showed better antibacterial properties than their chemical counterparts even though there was not much difference between their morphologies. Fourier transform infrared (FTIR) spectroscopic analysis of the used extract and as-synthesized silver nanoparticles suggests the possible reduction of Ag + by the water-soluble ingredients of the guava leaf like tannins, eugenol and flavonoids. The possible reaction mechanism for the reduction of Ag + has been proposed and discussed. The time-dependent electron micrographs and the simulation studies indicated that a physical interaction between the silver nanoparticles and the bacterial cell membrane may be responsible for this effect. Based on the findings, it seems very reasonable to believe that this greener way of synthesizing silver nanoparticles is not just an environmentally viable technique but it also opens up scope to improve their antibacterial properties.

  10. Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods.

    PubMed

    Murugan, Kadarkarai; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Madhiyazhagan, Pari; Hwang, Jiang-Shiou; Wang, Lan; Dinesh, Devakumar; Suresh, Udaiyan; Roni, Mathath; Higuchi, Akon; Nicoletti, Marcello; Benelli, Giovanni

    2016-08-01

    Mosquitoes act as vectors of devastating pathogens and parasites, representing a key threat for millions of humans and animals worldwide. The control of mosquito-borne diseases is facing a number of crucial challenges, including the emergence of artemisinin and chloroquine resistance in Plasmodium parasites, as well as the presence of mosquito vectors resistant to synthetic and microbial pesticides. Therefore, eco-friendly tools are urgently required. Here, a synergic approach relying to nanotechnologies and biological control strategies is proposed. The marine environment is an outstanding reservoir of bioactive natural products, which have many applications against pests, parasites, and pathogens. We proposed a novel method of seaweed-mediated synthesis of silver nanoparticles (AgNP) using the spongeweed Codium tomentosum, acting as a reducing and capping agent. AgNP were characterized by UV-Vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). In mosquitocidal assays, the 50 % lethal concentration (LC50) of C. tomentosum extract against Anopheles stephensi ranged from 255.1 (larva I) to 487.1 ppm (pupa). LC50 of C. tomentosum-synthesized AgNP ranged from 18.1 (larva I) to 40.7 ppm (pupa). In laboratory, the predation efficiency of Mesocyclops aspericornis copepods against A. stephensi larvae was 81, 65, 17, and 9 % (I, II, III, and IV instar, respectively). In AgNP contaminated environment, predation was not affected; 83, 66, 19, and 11 % (I, II, III, and IV). The anti-plasmodial activity of C. tomentosum extract and spongeweed-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) of C. tomentosum were 51.34 μg/ml (CQ-s) and 65.17 μg/ml (CQ-r); C. tomentosum-synthesized AgNP achieved IC50 of 72.45 μg/ml (CQ-s) and 76.08

  11. Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial

    NASA Astrophysics Data System (ADS)

    Gopinathan, Priya; Ashok, Anuradha M.; Selvakumar, R.

    2013-07-01

    The present study was carried out to synthesize one dimensional silver nanoparticle impregnated flagellar bionanomaterial. Flagella was isolated from Salmonella typhimurium and depolymerised into flagellin monomers. The flagellin monomers were repolymerised again into flagella using suitable technique. The molecular weight of native (NF) and polymerized flagella (PF) was determined using polyacrylamide gel electrophoresis. The NF and PF were used as a template, over which silver nanoparticles were impregnated using in situ chemical reduction process. The synthesized flagellar-silver nanoparticle bionanomaterials were characterized using UV-vis, FT-IR Raman and XRD spectroscopy, and High resolution transmission electron microscopy (HR-TEM). The characterization studies confirmed the attachment of silver nanoparticles over flagella and repolymerised flagella. The size of the silver nanoparticles on the flagella and repolymerised flagella varied and was in the range of 3-11 nm. I-V characteristics of the bionanomaterials were analyzed using Kethley meter which indicated the increase of conductivity after impregnation of silver nanoparticles. The results indicated that flagellar-silver nanoparticle bionanomaterials can be used as a potential one dimensional bionanomaterials for various applications.

  12. Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia

    NASA Astrophysics Data System (ADS)

    Amaladhas, T. Peter; Sivagami, S.; Akkini Devi, T.; Ananthi, N.; Priya Velammal, S.

    2012-12-01

    In this study Cassia angustifolia (senna) is used for the environmentally friendly synthesis of silver nanoparticles. Stable silver nanoparticles having symmetric surface plasmon resonance (SPR) band centred at 420 nm were obtained within 10 min at room temperature by treating aqueous solutions of silver nitrate with C. angustifolia leaf extract. The water soluble components from the leaves, probably the sennosides, served as both reducing and capping agents in the synthesis of silver nanoparticles. The nanoparticles were characterized using UV-Vis, Fourier transform infrared (FTIR) spectroscopic techniques and transmission electron microscopy (TEM). The nanoparticles were poly-dispersed, spherical in shape with particle size in the range 9-31 nm, the average size was found to be 21.6 nm at pH 11. The zeta potential was -36.4 mV and the particles were stable for 6 months. The crystalline phase of the nanoparticles was confirmed from the selected area diffraction pattern (SAED). The rate of formation and size of silver nanoparticles were pH dependent. Functional groups responsible for capping of silver nanoparticles were identified from the FTIR spectrum. The synthesized silver nanoparticles exhibited good antibacterial potential against Escherichia coli and Staphylococcus aureus.

  13. Synthesis of silver nanoparticles and the optical properties

    NASA Astrophysics Data System (ADS)

    Yang, Ai-ling; Zhang, Zhen-zhen; Yang, Yun; Bao, Xi-chang; Yang, Ren-qiang

    2013-01-01

    Silver nanoparticles (NPs) of 5-15 nm are synthesized with the reduction of silver nitrate (AgNO3) by formaldehyde (HCHO) and using polyethylenemine (PEI) as a stabilizer. Transmission electron microscopy (TEM) analysis shows the size of the Ag NPs increases with the increase of HCHO contents. The absorption and emission peaks of the original colloids are red shifted with increasing the size of Ag NPs. The absorption and emission peaks are at 344 nm, 349 nm, 357 nm, 362 nm, 364 nm and 444 nm, 458 nm, 519 nm, 534 nm, 550 nm, respectively. The fluorescence intensities of the silver colloids increase with increasing the NPs size (or the contents of HCHO). With the diluted fold increasing, the fluorescence intensity of the diluted silver colloids increases firstly then decreases. Compared with that of the original silver colloids, the emission peaks are blue shifted. For the diluted silver colloids, when the fluorescence intensity is maximum, the emission peaks are all near 444 nm. The 16-fold diluted silver colloid gets to the maximum emission intensity when the mole ratio of AgNO3 and HCHO is 1:6.

  14. Silver nanoparticles in the environment.

    PubMed

    Yu, Su-juan; Yin, Yong-guang; Liu, Jing-fu

    2013-01-01

    Silver nanoparticles (AgNPs) are well known for their excellent antibacterial ability and superior physical properties, and are widely used in a growing number of applications ranging from home disinfectants and medical devices to water purificants. However, with the accelerating production and introduction of AgNPs into commercial products, there is likelihood of release into the environment, which raises health and environmental concerns. This article provides a critical review of the state-of-knowledge about AgNPs, involving the history, analysis, source, fate and transport, and potential risks of AgNPs. Although great efforts have been made in each of these aspects, there are still many questions to be answered to reach a comprehensive understanding of the positive and negative effects of AgNPs. In order to fully investigate the fate and transport of AgNPs in the environment, appropriate methods for the preconcentration, separation and speciation of AgNPs should be developed, and analytical tools for the characterization and detection of AgNPs in complicated environmental samples are also urgently needed. To elucidate the environmental transformation of AgNPs, the behavior of AgNPs should be thoroughly monitored in complex environmental relevant conditions. Furthermore, additional in vivo toxicity studies should be carried out to understand the exact toxicity mechanism of AgNPs, and to predict the health effects to humans.

  15. Cytotoxicity and genotoxicity of biogenic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lima, R.; Feitosa, L. O.; Ballottin, D.; Marcato, P. D.; Tasic, L.; Durán, N.

    2013-04-01

    Biogenic silver nanoparticles with 40.3 ± 3.5 nm size and negative surface charge (- 40 mV) were prepared with Fusarium oxysporum. The cytotoxicity of 3T3 cell and human lymphocyte were studied by a TaliTM image-based cytometer and the genotoxicity through Allium cepa and comet assay. The results of BioAg-w (washed) and BioAg-nw (unwashed) biogenic silver nanoparticles showed cytotoxicity exceeding 50 μg/mL with no significant differences of response in 5 and 10 μg/mL regarding viability. Results of genotoxicity at concentrations 5.0 and 10.0 ug/mL show some response, but at concentrations 0.5 and 1.0 μg/mL the washed and unwashed silver nanoparticles did not present any effect. This in an important result since in tests with different bacteria species and strains, including resistant, MIC (minimal inhibitory concentration) had good answers at concentrations less than 1.9 μg/mL. This work concludes that biogenic silver nanoparticles may be a promising option for antimicrobial use in the range where no cyto or genotoxic effect were observed. Furthermore, human cells were found to have a greater resistance to the toxic effects of silver nanoparticles in comparison with other cells.

  16. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells.

    PubMed

    Peetsch, Alexander; Greulich, Christina; Braun, Dieter; Stroetges, Christian; Rehage, Heinz; Siebers, Bettina; Köller, Manfred; Epple, Matthias

    2013-02-01

    Spherical silver-doped calcium phosphate nanoparticles were synthesized in a co-precipitation route from calcium nitrate/silver nitrate and ammonium phosphate in a continuous process and colloidally stabilized by carboxymethyl cellulose. Nanoparticles with 0.39 wt% silver content and a diameter of about 50-60 nm were obtained. The toxic effects toward mammalian and prokaryotic cells were determined by viability tests and determination of the minimal inhibitory and minimal bactericidal concentrations (MIC and MBC). Three mammalian cells lines, i.e. human mesenchymal stem cells (hMSC) and blood peripheral mononuclear cells (PBMC, monocytes and T-lymphocytes), and two prokaryotic strains, i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were used. Silver-doped calcium phosphate nanoparticles and silver acetate showed similar effect toward mammalian and prokaryotic cells with toxic silver concentrations in the range of 1-3 μg mL(-1).

  17. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K.

    2011-08-01

    Biosynthesis of silver nanoparticles (AgNPs) was achieved by a novel, simple green chemistry procedure using citrus sinensis peel extract as a reducing and a capping agent. The effect of temperature on the synthesis of silver nanoparticles was carried out at room temperature (25 °C) and 60 °C. The successful formation of silver nanoparticles has been confirmed by UV-vis, FTIR, XRD, EDAX, FESEM and TEM analysis and their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and Staphylococcus aureus (Gram-positive) has been studied. The results suggest that the synthesized AgNPs act as an effective antibacterial agent.

  18. Development and Antibacterial Activity of Cashew Gum-Based Silver Nanoparticles

    PubMed Central

    Quelemes, Patrick V.; Araruna, Felipe B.; de Faria, Bruna E. F.; Kuckelhaus, Selma A. S.; da Silva, Durcilene A.; Mendonça, Ronaldo Z.; Eiras, Carla; dos S. Soares, Maria José; Leite, José Roberto S. A.

    2013-01-01

    The present study describes the development of a green synthesis of silver nanoparticles reduced and stabilized by exuded gum from Anacardium occidentale L. and evaluates in vitro their antibacterial and cytotoxic activities. Characterization of cashew gum-based silver nanoparticles (AgNPs) was carried out based on UV–Vis spectroscopy, transmission electron microscopy and dynamic light scattering analysis which revealed that the synthesized silver nanoparticles were spherical in shape, measuring about 4 nm in size with a uniform dispersal. AgNPs presented antibacterial activity, especially against Gram-negative bacteria, in concentrations where no significant cytotoxicity was observed. PMID:23455467

  19. Physicochemical properties of protein-modified silver nanoparticles in seawater

    NASA Astrophysics Data System (ADS)

    Zhong, Hangyue

    2013-10-01

    This study investigated the physicochemical properties of silver nanoparticles stabilized with casein protein in seawater. UV?vis spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) were applied to measure the stability of silver nanoparticles in seawater samples. The obtained results show an increased aggregation tendency of silver nanoparticles in seawater, which could be attributed its relatively high cation concentration that could neutralize the negatively charges adsorbed on the surface of silver nanoparticles and reduce the electrostatic repulsion forces between nanoparticles. Similarly, due to the surface charge screening process, the zeta potential of silver nanoparticles in seawater decreased. This observation further supported the aggregation behavior of silver nanoparticles. This study also investigated the dissolution of silver nanoparticles in seawater. Result shows that the silver nanoparticle dissolution in DI water is lower than in seawater, which is attributed to the high Cl? concentration present in seawater. As Cl? can react with silver and form soluble AgCl complex, dissolution of silver nanoparticles was enhanced. Finally, this study demonstrated that silver nanoparticles are destabilized in seawater condition. These results may be helpful in understanding the environmental risk of discharged silver nanoparticles in seawater conditions.

  20. Production of silver nanoparticles in water solution by radiation treatment

    NASA Astrophysics Data System (ADS)

    Mikhailenko, M. A.; Korobeinikov, M. V.; Bryazgin, A. A.; Tolochko, B. P.

    2017-01-01

    Radiation-chemical synthesis of silver nanoparticles was studied. The silver nanoparticles in arabinogalactan (AG) water solution are stabilized in conglomerates, it is fixed by rise of additional bands in the optical absorption spectra. Pre-radiation treatment of AG causes crosslinking and oxidation. Pretreated AG solution increases the stability of conglomerates containing silver nanoparticles in case of dilution.

  1. Synthesis of gold and silver nanoparticles using purified URAK.

    PubMed

    Deepak, Venkataraman; Umamaheshwaran, Paneer Selvam; Guhan, Kandasamy; Nanthini, Raja Amrisa; Krithiga, Bhaskar; Jaithoon, Nagoor Meeran Hasika; Gurunathan, Sangiliyandi

    2011-09-01

    This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml.

  2. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens.

    PubMed

    Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy

    2014-01-01

    Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7-50 nm and 9-30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology.

  3. Piper nigrum Leaf and Stem Assisted Green Synthesis of Silver Nanoparticles and Evaluation of Its Antibacterial Activity Against Agricultural Plant Pathogens

    PubMed Central

    Paulkumar, Kanniah; Gnanajobitha, Gnanadhas; Vanaja, Mahendran; Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Pandian, Kannaiyan; Annadurai, Gurusamy

    2014-01-01

    Utilization of biological materials in synthesis of nanoparticles is one of the hottest topics in modern nanoscience and nanotechnology. In the present investigation, the silver nanoparticles were synthesized by using the leaf and stem extract of Piper nigrum. The synthesized nanoparticle was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray analysis (EDAX), and Fourier Transform Infrared Spectroscopy (FTIR). The observation of the peak at 460 nm in the UV-vis spectra for leaf- and stem-synthesized silver nanoparticles reveals the reduction of silver metal ions into silver nanoparticles. Further, XRD analysis has been carried out to confirm the crystalline nature of the synthesized silver nanoparticles. The TEM images show that the leaf- and stem-synthesized silver nanoparticles were within the size of about 7–50 nm and 9–30 nm, respectively. The FTIR analysis was performed to identify the possible functional groups involved in the synthesis of silver nanoparticles. Further, the antibacterial activity of the green-synthesized silver nanoparticles was examined against agricultural plant pathogens. The antibacterial property of silver nanoparticles is a beneficial application in the field of agricultural nanotechnology. PMID:24558336

  4. Synthesis, characterization and optical properties of gelatin doped with silver nanoparticles.

    PubMed

    Mahmoud, K H; Abbo, M

    2013-12-01

    In this study, silver nanoparticles were synthesized by chemical reduction of silver salt (AgNO3) solution. Formation of nanoparticles was confirmed by UV-visible spectrometry. The surface plasmon resonance peak is located at 430 nm. Doping of silver nanoparticles (Ag NPs) with gelatin biopolymer was studied. The silver content in the polymer matrix was in the range of 0.4-1 wt%. The formation of nanoparticles disappeared for silver content higher than 1 wt%. The morphology and interaction of gelatin doped with Ag NPs was examined by transmission electron microscopy and FTIR spectroscopy. The content of Ag NPs has a pronounced effect on optical and structural properties of gelatin. Optical parameters such as refractive index, complex dielectric constant were calculated. The dispersion of the refractive index was discussed in terms of the single--oscillator Wemple-DiDomenico model. Color properties of the prepared samples were discussed in the framework of CIE L(*)u(*)v(*) color space.

  5. Starch based biodegradable graft copolymer for the preparation of silver nanoparticles.

    PubMed

    Das, Subhadip; Sasmal, Dinabandhu; Pal, Sagar; Kolya, Haradhan; Pandey, Akhil; Tripathy, Tridib

    2015-11-01

    The synthesis and characterization of a novel biodegradable graft copolymer based on partially hydrolyzed polymethylacrylate (PMA) grafted amylopectin (AP) was reported which was developed for the synthesis of silver nanoparticles from silver nitrate solution by facile green technique. The prepared graft copolymer was biodegradable which was shown by fungal growth. Characterization of silver nanoparticles was carried out by UV-VIS spectroscopy (417nm), HR-TEM, SAED and FESEM analysis. The TEM findings revealed that the silver nanoparticles are crystalline and globular shaped with average particle size ranging from 11 to 15nm. The synthesized silver nanoparticles exhibit excellent antibacterial sensitivity towards both Gram negative and Gram positive bacteria namely Vibrio parahaemolyticus (ATCC-17802) and Bacillus cereus (ATCC-14579) respectively and were also shown a good catalytic activity towards 4-nitrophenol reduction.

  6. Leaf extract assisted green synthesis and characterization of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ajitha, B.; Reddy, Y. Ashok Kumar; Reddy, P. Sreedhara

    2015-06-01

    In the present study AgNPs were synthesized through simple green route using leaf extract of Crossandra nilotica which act as combined reductant and surfactant at once. The bio-reduced AgNPs were appropriately characterized for studying their structural and optical properties. TEM micrograph confirms the formation of spherical nanoparticles without any agglomeration and particle size range was found to be 12 nm. UV-Vis study elucidates the presence of single plasmon peak, attesting the spherical nanoparticles formation. FTIR results revealed that different functional groups of leaf extract are responsible for the reduction of silver ions and their stabilization.

  7. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ashraf, Sumaira; Chatha, Mariyam Asghar; Ejaz, Wardah; Janjua, Hussnain Ahmed; Hussain, Irshad

    2014-10-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests.

  8. Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity

    PubMed Central

    2014-01-01

    Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests. PMID:25435831

  9. Genotoxicity of silver nanoparticles in Allium cepa.

    PubMed

    Kumari, Mamta; Mukherjee, A; Chandrasekaran, N

    2009-09-15

    Potential health and environmental effects of nanoparticles need to be thoroughly assessed before their widespread commercialization. Though there are few studies on cytotoxicity of nanoparticles on mammalian and human cell lines, there are hardly any reports on genotoxic and cytotoxic behavior of nanoparticles in plant cells. This study aims to investigate cytotoxic and genotoxic impacts of silver nanoparticles using root tip cells of Allium cepa as an indicator organism. A.cepa root tip cells were treated with four different concentrations (25, 20, 75, and 100 ppm) of engineered silver nanoparticles (below 100 nm size) dispersion, to study endpoints like mitotic index, distribution of cells in mitotic phases, different types of chromosomal aberrations, disturbed metaphase, sticky chromosome, cell wall disintegration, and breaks. For each concentration five sets of microscopic observations were carried out. No chromosomal aberration was observed in the control (untreated onion root tips) and the mitotic index (MI) value was 60.3%. With increasing concentration of the nanoparticles decrease in the mitotic index was noticed (60.30% to 27.62%). The different cytological effects including the chromosomal aberrations were studied in detail for the treated cells as well as control. We infer from this study that silver nanoparticles could penetrate plant system and may impair stages of cell division causing chromatin bridge, stickiness, disturbed metaphase, multiple chromosomal breaks and cell disintegration. The findings also suggest that plants as an important component of the ecosystems need to be included when evaluating the overall toxicological impact of the nanoparticles in the environment.

  10. Phytofabrication of bioinduced silver nanoparticles for biomedical applications.

    PubMed

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60-80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs.

  11. Phytofabrication of bioinduced silver nanoparticles for biomedical applications

    PubMed Central

    Ahmad, Nabeel; Bhatnagar, Sharad; Ali, Syed Salman; Dutta, Rajiv

    2015-01-01

    Synthesis of nanomaterials holds infinite possibilities as nanotechnology is revolutionizing the field of medicine by its myriad applications. Green synthesis of nanoparticles has become the need of the hour because of its eco-friendly, nontoxic, and economic nature. In this study, leaf extract of Rosa damascena was used as a bioreductant to reduce silver nitrate, leading to synthesis of silver nanoparticles (AgNPs) in a single step, without the use of any additional reducing or capping agents. The synthesized nanoparticles were characterized by the use of UV-visible spectroscopy, fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy. Time-dependent synthesis of AgNPs was studied spectrophotometrically. Synthesized AgNPs were found to possess flower-like spherical structure where individual nanoparticles were of 16 nm in diameter, whereas the agglomerated AgNPs were in the range of 60–80 nm. These biologically synthesized AgNPs exhibited significant antibacterial activity against Gram-negative bacterial species but not against Gram-positive ones (Escherichia coli and Bacillus cereus). Anti-inflammatory and analgesic activities were studied on a Wistar rat model to gauge the impact of AgNPs for a probable role in these applications. AgNPs tested positive for both these activities, although the potency was less as compared to the standard drugs. PMID:26648715

  12. Monitoring the coordination of amine ligands on silver nanoparticles using NMR and SERS.

    PubMed

    Cure, Jérémy; Coppel, Yannick; Dammak, Thameur; Fazzini, Pier Francesco; Mlayah, Adnen; Chaudret, Bruno; Fau, Pierre

    2015-02-03

    Low size dispersity silver nanoparticles (ca. 6 nm) have been synthesized by the hydrogenolysis of silver amidinate in the presence of hexadecylamine. Combining NMR techniques with SERS and DFT modeling, it is possible to observe an original stabilization mechanism. Amidine moiety is strongly coordinated to the Ag(0) nanoparticles surface whereas HDA ligand is necessary to prevent agglomeration, although it is only weakly interacting with the surface.

  13. Synthesis and characterization of silver nanoparticles by a reverse micelle process

    NASA Astrophysics Data System (ADS)

    Bae, Dong-Sik; Kim, Eun-Jung; Bang, Jae-Hee; Kim, Sang-Woo; Han, Kyong-Sop; Lee, Jong-Kyu; Kim, Byung-Ik; Adair, James H.

    2005-08-01

    The preparation of silver nanoparticles by the reduction of AgNO3 with hydrazine in lgepal CO-520/cyclohexane reverse micelle solutions has been studied. Transmission electron microscope, electron diffraction, and X-ray diffraction pattern analyses revealed the resultant particles to be silver. The average size of the synthesized nanoparticles first increased and thereafter approached a constant value with increased molar ratio of water to Igepal CO 520 and with increasing concentration of AgNO3.

  14. Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential.

    PubMed

    Singh, Priyanka; Kim, Yeon J; Wang, Chao; Mathiyalagan, Ramya; Yang, Deok C

    2016-09-01

    Nanoparticles and nanomaterials are at the prominent edge of the rapidly developing field of nanotechnology. Recently, nanoparticle synthesis using biological resources has been found to be a new area with considerable prospects for development. Biological systems are the masters of ambient condition chemistry and are able to synthesize nanoparticles by utilizing metal salts. In the perspective of the current initiative to develop green technologies for the synthesis of nanoparticles, microorganisms are of considerable interest. Thus, the present study describes a bacterial strain-Weissella oryzae DC6-isolated from mountain ginseng, for the green and facile synthesis of silver nanoparticles. The particles were synthesized effectively without the need for any supplementary modification to maintain stability. The synthesized nanoparticles were evaluated by several instrumental techniques, comprising ultraviolet-visible spectrophotometry, field emission transmission electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping, X-ray diffraction, and dynamic light scattering. In addition, the biosynthesized silver nanoparticles were explored for their antimicrobial activity against clinical pathogens including Vibrio parahaemolyticus, Bacillus cereus, Bacillus anthracis, Staphylococcus aureus, Escherichia coli, and Candida albicans. Furthermore, the potential of nanoparticles has been observed for biofilm inhibition against Staphylococcus aureus and Pseudomonas aeruginosa. Thus, the synthesis of silver nanoparticles by the strain W. oryzae DC6 may serve as a simple, green, cost-effective, consistent, and harmless method to produce antimicrobial silver nanoparticles.

  15. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Kumar, Deenadayalan Ashok; Palanichamy, V.; Roopan, Selvaraj Mohana

    2014-06-01

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10 min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis.

  16. Silver nanoparticles and their orthopaedic applications.

    PubMed

    Brennan, S A; Ní Fhoghlú, C; Devitt, B M; O'Mahony, F J; Brabazon, D; Walsh, A

    2015-05-01

    Implant-associated infection is a major source of morbidity in orthopaedic surgery. There has been extensive research into the development of materials that prevent biofilm formation, and hence, reduce the risk of infection. Silver nanoparticle technology is receiving much interest in the field of orthopaedics for its antimicrobial properties, and the results of studies to date are encouraging. Antimicrobial effects have been seen when silver nanoparticles are used in trauma implants, tumour prostheses, bone cement, and also when combined with hydroxyapatite coatings. Although there are promising results with in vitro and in vivo studies, the number of clinical studies remains small. Future studies will be required to explore further the possible side effects associated with silver nanoparticles, to ensure their use in an effective and biocompatible manner. Here we present a review of the current literature relating to the production of nanosilver for medical use, and its orthopaedic applications.

  17. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    NASA Astrophysics Data System (ADS)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  18. Unusual transient absorption dynamics of silver nanoparticles in solutions of carboxylated amine complexons

    NASA Astrophysics Data System (ADS)

    Shevchenko, G. P.; Zhuravkov, V. A.; Tretyak, E. V.; Tikhomirov, S. A.; Buganov, O. V.; Ponyavina, A. N.; Pham, Hong Minh; Do, Hoang Tung; Duong Pham, Van; Nguyen, Dai Hung

    2016-09-01

    We present the results of research on fast relaxation dynamics in the electronic excitation of silver nanoparticles synthesized in the presence of carboxylated amine complexons (NTA, Na2EDTA, DTPA) without any reductant or polymeric stabilizer. Unusual transient absorption dynamics in these objects after femtosecond laser irradiation was found, manifesting as the appearance of an additional long-lived bleaching band. The effect may be assigned to the inhomogeneous and porous shell of silver nanoparticles synthesized by such a procedure, as the consequence of a partial fragmentation of this shell due to heating under femtosecond laser excitation of plasmonic nanoparticles and subsequent electron-phonon energy relaxation.

  19. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications.

    PubMed

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications.

  20. Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications

    PubMed Central

    Arunachalam, Kantha D; Annamalai, Sathesh Kumar

    2013-01-01

    The exploitation of various plant materials for the biosynthesis of nanoparticles is considered a green technology as it does not involve any harmful chemicals. The aim of this study was to develop a simple biological method for the synthesis of silver and gold nanoparticles using Chrysopogon zizanioides. To exploit various plant materials for the biosynthesis of nanoparticles was considered a green technology. An aqueous leaf extract of C. zizanioides was used to synthesize silver and gold nanoparticles by the bioreduction of silver nitrate (AgNO3) and chloroauric acid (HAuCl4) respectively. Water-soluble organics present in the plant materials were mainly responsible for reducing silver or gold ions to nanosized Ag or Au particles. The synthesized silver and gold nanoparticles were characterized by ultraviolet (UV)-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis. The kinetics decline reactions of aqueous silver/gold ion with the C. zizanioides crude extract were determined by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to the extract were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. This eco-friendly approach for the synthesis of nanoparticles is simple, can be scaled up for large-scale production with powerful bioactivity as demonstrated by the synthesized silver nanoparticles. The synthesized nanoparticles can have clinical use as antibacterial, antioxidant, as well as cytotoxic agents and can be used for biomedical applications. PMID:23861583

  1. Fungal mediated silver nanoparticle synthesis using robust experimental design and its application in cotton fabric

    NASA Astrophysics Data System (ADS)

    Velhal, Sulbha Girish; Kulkarni, S. D.; Latpate, R. V.

    2016-09-01

    Among the different methods employed for the synthesis of nanoparticles, the biological method is most favorable and quite well established. In microorganisms, use of fungi in the biosynthesis of silver nanoparticles has a greater advantage over other microbial mediators. In this study, intracellular synthesis of silver nanoparticles from Aspergillus terrerus (Thom) MTCC632 was carried out. We observed that synthesis of silver nanoparticles depended on factors such as temperature, amount of biomass and concentration of silver ions in the reaction mixture. Hence, optimization of biosynthesis using these parameters was carried out using statistical tool `robust experimental design'. Size and morphology of synthesized nanoparticles were determined using X-ray diffraction technique, field emission scanning electron microscopy, energy dispersion spectroscopy, and transmission electron microscopy. Nano-embedded cotton fabric was further prepared and studied for its antibacterial properties.

  2. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves

    EPA Science Inventory

    Silver nanoparticles with size range 5-10 nm has been synthesized under microwave irradiation conditions using gluathione, an absolutely benign antioxidant that serves as the reducing as well as capping agent in aqueous medium. This rapid protocol yields the nanoparticles within ...

  3. Green synthesis of silver nanoparticles using Calotropis gigantea and their potential mosquito larvicidal property

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years the utilization of secondary metabolites from plant extract has emerged as a novel technology for the synthesis of nanoparticles. The aim of the present study was to evaluate the effect of plant synthesized silver nanoparticles (Ag NPs) using aqueous leaf extract of Calotropis gigan...

  4. Effect of accelerator in green synthesis of silver nanoparticles.

    PubMed

    Darroudi, Majid; Ahmad, Mansor Bin; Abdullah, Abdul Halim; Ibrahim, Nor Azowa; Shameli, Kamyar

    2010-10-12

    Silver nanoparticles (Ag-NPs) were successfully synthesized in the natural polymeric matrix. Silver nitrate, gelatin, glucose, and sodium hydroxide have been used as silver precursor, stabilizer, reducing agent, and accelerator reagent, respectively. This study investigated the role of NaOH as the accelerator. The resultant products have been confirmed to be Ag-NPs using powder X-ray diffraction (PXRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The colloidal sols of Ag-NPs obtained at different volumes of NaOH show strong and different surface plasmon resonance (SPR) peaks, which can be explained from the TEM images of Ag-NPs and their particle size distribution. Compared with other synthetic methods, this work is green, rapid, and simple to use. The newly prepared Ag-NPs may have many potential applications in chemical and biological industries.

  5. Extracellular synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 and their biological applications.

    PubMed

    Singh, Priyanka; Singh, Hina; Kim, Yeon Ju; Mathiyalagan, Ramya; Wang, Chao; Yang, Deok Chun

    2016-05-01

    The present study highlights the microbial synthesis of silver and gold nanoparticles by Sporosarcina koreensis DC4 strain, in an efficient way. The synthesized nanoparticles were characterized by ultraviolet-visible spectrophotometry, which displayed maximum absorbance at 424nm and 531nm for silver and gold nanoparticles, respectively. The spherical shape of nanoparticles was characterized by field emission transmission electron microscopy. The energy dispersive X-ray spectroscopy and elemental mapping were displayed the purity and maximum elemental distribution of silver and gold elements in the respective nanoproducts. The X-ray diffraction spectroscopy results demonstrate the crystalline nature of synthesized nanoparticles. The particle size analysis demonstrate the nanoparticles distribution with respect to intensity, volume and number of nanoparticles. For biological applications, the silver nanoparticles have been explored in terms of MIC and MBC against pathogenic microorganisms such as Vibrio parahaemolyticus, Escherichia coli, Salmonella enterica, Bacillus anthracis, Bacillus cereus and Staphylococcus aureus. Moreover, the silver nanoparticles in combination with commercial antibiotics, such as vancomycin, rifampicin, oleandomycin, penicillin G, novobiocin, and lincomycin have been explored for the enhancement of antibacterial activity and the obtained results showed that 3μg concentration of silver nanoparticles sufficiently enhance the antimicrobial efficacy of commercial antibiotics against pathogenic microorganism. Furthermore, the silver nanoparticles potential has been reconnoitered for the biofilm inhibition by S. aureus, Pseudomonas aeruginosa and E. coli and the results revealed sufficient activity at 6μg concentration. In addition, gold nanoparticles have been applied for catalytic activity, for the reduction of 4-nitrophenol to 4-aminophenol using sodium borohydride and positive results were attained.

  6. Mycosynthesis of silver and gold nanoparticles: Optimization, characterization and antimicrobial activity against human pathogens.

    PubMed

    Balakumaran, M D; Ramachandran, R; Balashanmugam, P; Mukeshkumar, D J; Kalaichelvan, P T

    2016-01-01

    This study was aimed to isolate soil fungi from Kolli and Yercaud Hills, South India with the ultimate objective of producing antimicrobial nanoparticles. Among 65 fungi tested, the isolate, Bios PTK 6 extracellularly synthesized both silver and gold nanoparticles with good monodispersity. Under optimized reaction conditions, the strain Bios PTK 6 identified as Aspergillus terreus has produced extremely stable nanoparticles within 12h. These nanoparticles were characterized by UV-vis. spectrophotometer, HR-TEM, FTIR, XRD, EDX, SAED, ICP-AES and Zetasizer analyses. A. terreus synthesized 8-20 nm sized, spherical shaped silver nanoparticles whereas gold nanoparticles showed many interesting morphologies with a size of 10-50 nm. The presence and binding of proteins with nanoparticles was confirmed by FTIR study. Interestingly, the myco derived silver nanoparticles exhibited superior antimicrobial activity than the standard antibiotic, streptomycin except against Staphylococcus aureus and Bacillus subtilis. The leakage of intracellular components such as protein and nucleic acid demonstrated that silver nanoparticles damage the bacterial cells by formation of pores, which affects membrane permeability and finally leads to cell death. Further, presence of nanoparticles in the bacterial membrane and the breakage of cell wall were also observed using SEM. Thus, the obtained results clearly reveal that these antimicrobial nanoparticles could be explored as promising candidates for a variety of biomedical and pharmaceutical applications.

  7. Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion.

    PubMed

    Lee, Hyun Ju; Lee, Se Guen; Oh, Eun Jung; Chung, Ho Yun; Han, Sang Ik; Kim, Eun Jung; Seo, Song Yi; Ghim, Han Do; Yeum, Jeong Hyun; Choi, Jin Hyun

    2011-11-01

    Excellent colloidal stability and antimicrobial activity are important parameters for silver nanoparticles (AgNPs) in a range of biomedical applications. In this study, polyethyleneimine (PEI)-capped silver nanoparticles (PEI-AgNPs) were synthesized in the presence of sodium borohydride (NaBH(4)) and PEI at room temperature. The PEI-AgNPs had a positive zeta potential of approximately +49 mV, and formed a stable nanocolloid against agglomeration due to electrostatic repulsion. The particle size and hydrodynamic cluster size showed significant correlations with the amount of PEI and NaBH(4). PEI-AgNPs and even PEI showed excellent antimicrobial activity against Staphylococus aureus and Klebsiella pneumoniae. The cytotoxic effects of PEI and PEI-AgNPs were confirmed by an evaluation of the cell viability. The results suggest that the amount of PEI should be minimized to the level that maintains the stability of PEI-AgNPs in a colloidal dispersion.

  8. Bactericidal Effect of Silver Nanoparticles on Intramacrophage Brucella abortus 544

    PubMed Central

    Alizadeh, Hamed; Salouti, Mojtaba; Shapouri, Reza

    2014-01-01

    Background: Brucellosis is an infectious disease that is caused by Brucella spp. As Brucella spp. are intramacrophage pathogens, the treatment of this infection is very difficult. On the other hand, due to the side effects of the brucellosis treatment regime, it is necessary to find new antimicrobial agents against it. Objectives: The aim of this study was to investigate the antimicrobial effect of silver nanoparticles against Brucella abortus 544 in the intramacrophage condition. Materials and Methods: The antimicrobial effect of silver nanoparticles was determined by an agar well diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against B. abortus 544 were determined by a broth macrodilution method. The effect of time on the antimicrobial activity of silver nanoparticles was analyzed. The effect of silver nanoparticles on the intramacrophage survival of B. abortus 544 was studied on mice peritoneal macrophages. Results: The well diffusion agar study showed that silver nanoparticles have an antimicrobial effect on B. abortus 544. The MIC and MBC of silver nanoparticles against B. abortus 544 were; 6 ppm and 8 ppm, respectively. The silver nanoparticles showed antibacterial effects within 40 minutes. The results of the macrophage culture indicated that silver nanoparticles have antibacterial activity against intramacrophage B. abortus 544, and the highest efficiency was observed at a concentration of 8-10 ppm of silver nanoparticles. Conclusions: The results showed that silver nanoparticles have an antimicrobial effect against intramacrophage B. abortus 544. PMID:25147682

  9. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    PubMed

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  10. Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl4-induced hepato-cancerous Swiss albino mice

    NASA Astrophysics Data System (ADS)

    Arockia John Paul, J.; Karunai Selvi, B.; Karmegam, N.

    2015-11-01

    In this study, we report the biosynthesis of silver nanoparticles using the ethanolic leaf powder extract of Premna serratifolia L. and its anticancer activity in carbon tetra chloride (CCl4)-induced liver cancer in Swiss albino mice (Balb/c). The synthesized silver nanoparticles were characterized by SEM, FTIR and XRD analyses. The Debye-Scherrer equation was used to calculate particle size and the average size of silver nanoparticles synthesized from P. serratifolia leaf extract was 22.97 nm. The typical pattern revealed that the sample contained cubic structure of silver nanoparticles. FTIR analysis confirmed that the bioreduction of silver ions to silver nanoparticles is due to reduction by capping material of the plant extract. The silver nanoparticles of P. serratifolia leaf extract were effective in treating liver cancer in Swiss albino mice when compared with P. serratifolia leaf extract with isoleucine.

  11. Morphological transformations of silver nanoparticles in seedless photochemical synthesis

    NASA Astrophysics Data System (ADS)

    Lu, Ya; Zhang, Congyun; Hao, Rui; Zhang, Dongjie; Fu, Yizheng; Moeendarbari, Sina; Pickering, Christopher S.; Hao, Yaowu; Liu, Yaqing

    2016-05-01

    Photochemical synthesis is an easily controlled and reliable method for the fabrication of silver (Ag) nanoparticles with various morphologies. In this work, we have systematically investigated the seedless photochemical synthesis of anisotropic Ag nanoparticles with and without PVP as surface capping agent. The time evolution of anisotropic Ag nanoparticles during the synthesis process are studied using UV-visible spectra, optical images and transmission electron microscopy. The results show that the light irradiation precisely controls the start and termination of the reaction, and the presence or absence of PVP greatly affects the morphology evolution of anisotropic Ag nanoparticles. With PVP as the surface capping agent, Ag nanoparticles grow into decahedra or prism by the deposition of Ag atoms on {111} or {110} facets through epitaxial growth. However, a different morphology evolution could happen when Ag nanoparticle is synthesized without PVP as surface capping agent. In this case, Ag nanoparticles can fuse into the decahedrons through an edge-selective particle fusion mechanism, which involves attachment, rotation and realignment of Ag nanoparticles. This process was evidenced with HRTEM images at the different stages of the transformation from Ag colloid to decahedra nanoparticles. Oriented attachment and Ostwald ripening also play important role in the transformation process.

  12. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D.; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO 3 contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO 3 concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  13. Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis.

    PubMed

    Guidelli, Eder José; Ramos, Ana Paula; Zaniquelli, Maria Elisabete D; Baffa, Oswaldo

    2011-11-01

    Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation. Lower AgNO(3) concentration led to decreased particle size. The silver nanoparticles presented diameters ranging from 2 nm to 100 nm and had spherical shape. The selected area electron diffraction (SAED) patterns indicated that the silver nanoparticles have face centered cubic (fcc) crystalline structure. FTIR spectra suggest that reduction of the silver ions are facilitated by their interaction with the amine groups from ammonia, which is used for conservation of the NRL, whereas the stability of the particles results from cis-isoprene binding onto the surface of nanoparticles. Therefore natural rubber latex extracted from H. brasiliensis can be employed in the preparation of stable aqueous dispersions of silver nanoparticles acting as a dispersing and/or capping agent. Moreover, this work provides a new method for the synthesis of silver nanoparticles that is simple, easy to perform, pollutant free and inexpensive.

  14. Silver nanoparticles decorated lipase-sensitive polyurethane micelles for on-demand release of silver nanoparticles.

    PubMed

    Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Yao, Yongchao; Luo, Jianbin

    2017-04-01

    In order to improve the antibacterial activities while decrease the cytotoxity of silver nanoparticles, we prepared a novel nanocomposites composed of silver nanoparticles decorated lipase-sensitive polyurethane micelles (PUM-Ag) with MPEG brush on the surface. The nanocomposite was characterized by UV-vis, TEM and DLS. UV-vis and TEM demonstrated the formation of silver nanoparticles on PU micelles and the nanoassembly remained intact without the presence of lipase. The silver nanoparticles were protected by the polymer matrix and PEG brush which show good cytocompatibility to HUVEC cells and low hemolysis. Moreover, at the presence of lipase, the polymer matrix of nanocomposites is subject to degradation and the small silver nanoparticles were released as is shown by DLS and TEM. The MIC and MBC studies showed an enhanced toxicity of the nanocomposites to both gram negative and gram positive bacteria, i.e. E. coli and S. aureus, as the result of the degradation of polymer matrix by bacterial lipase. Therefore, the nanocomposites are biocompatible to mammalian cells cells which can also lead to activated smaller silver nanoparticles release at the presence of bacteria and subsequently enhanced inhibition of bacteria growth. The satisfactory selectivity for bacteria compared to HUVEC and RBCs make PUM-Ag a promising antibacterial nanomedicine in biomedical field.

  15. Lantana camara leaf extract mediated silver nanoparticles: Antibacterial, green catalyst.

    PubMed

    Ajitha, B; Ashok Kumar Reddy, Y; Shameer, Syed; Rajesh, K M; Suneetha, Y; Sreedhara Reddy, P

    2015-08-01

    Silver nanoparticles (AgNPs) have been synthesized by Lantana camara leaf extract through simple green route and evaluated their antibacterial and catalytic activities. The leaf extract (LE) itself acts as both reducing and stabilizing agent at once for desired nanoparticle synthesis. The colorless reaction mixture turns to yellowish brown attesting the AgNPs formation and displayed UV-Vis absorption spectra. Structural analysis confirms the crystalline nature and formation of fcc structured metallic silver with majority (111) facets. Morphological studies elicit the formation of almost spherical shaped nanoparticles and as AgNO3 concentration is increased, there is an increment in the particle size. The FTIR analysis evidences the presence of various functional groups of biomolecules of LE is responsible for stabilization of AgNPs. Zeta potential measurement attests the higher stability of synthesized AgNPs. The synthesized AgNPs exhibited good antibacterial activity when tested against Escherichia coli, Pseudomonas spp., Bacillus spp. and Staphylococcus spp. using standard Kirby-Bauer disc diffusion assay. Furthermore, they showed good catalytic activity on the reduction of methylene blue by L. camara extract which is monitored and confirmed by the UV-Vis spectrophotometer.

  16. Fraxinus paxiana bark mediated photosynthesis of silver nanoparticles and their size modulation using swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Sharma, Hemant; Vendamani, V. S.; Pathak, Anand P.; Tiwari, Archana

    2015-12-01

    Photosynthesis of silver nanoparticles is presented using bark extracts of Fraxinus paxiana var. sikkimensis. The synthesized nanoparticles are characterised by UV-Vis absorption, photoluminescence, powder X-ray diffraction and scanning and transmission electron microscopy. In addition, the bark samples are irradiated with 100 MeV silver ions and the subsequent structural modifications are analyzed. The swift heavy ion irradiated Fraxinus paxiana var. sikkimensis bark is also used for the synthesis of silver nanoparticles. It is illustrated that the irradiated bark assists in synthesizing smaller nanoparticles of homogenous size distribution as compared to when the pristine bark is used. The newly synthesized silver nanoparticles are also used to demonstrate the antimicrobial activities on Escherichia coli bacteria.

  17. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi ( Ocimum sanctum) leaf

    NASA Astrophysics Data System (ADS)

    Philip, Daizy; Unni, C.

    2011-05-01

    Aqueous extract of Ocimum sanctum leaf is used as reducing agent for the environmentally friendly synthesis of gold and silver nanoparticles. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. These methods allow the synthesis of hexagonal gold nanoparticles having size ∼30 nm showing two surface plasmon resonance (SPR) bands by changing the relative concentration of HAuCl 4 and the extract. Broadening of SPR is observed at larger quantities of the extract possibly due to biosorption of gold ions. Silver nanoparticles with size in the range 10-20 nm having symmetric SPR band centered around 409 nm are obtained for the colloid synthesized at room temperature at a pH of 8. Crystallinity of the nanoparticles is confirmed from the XRD pattern. Biomolecules responsible for capping are different in gold and silver nanoparticles as evidenced by the FTIR spectra.

  18. Anaerobic Toxicity of Cationic Silver Nanoparticles

    EPA Science Inventory

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged p...

  19. Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles.

    PubMed

    Abdel-Halim, E S; Alanazi, Humaid H; Al-Deyab, Salem S

    2015-04-01

    Hydroxypropyl carboxymethyl cellulose samples having varying degrees of substitution and varying degrees of polymerization were used to reduce silver nitrate to silver nanoparticles. UV spectral analysis of silver nanoparticles colloidal solution reveal that increasing the pH of the reduction solution leads to improvement in the intensity of the absorption band for silver nanoparticles, to be maximum at pH 11. The absorption peak intensity also enhanced upon prolonging the reaction duration up to 60 min. The conversion of silver ions to metallic silver nanoparticles was found to be temperature-dependent and maximum transformation occurs at 60 °C. The reduction efficiency of hydroxypropyl carboxymethyl cellulose was found to be affected by its degree of polymerization. Colloidal solutions of silver nanoparticles having concentration up to 1000 ppm can be prepared upon fixing the ratio between silver nitrate and hydroxypropyl carboxymethyl cellulose at 0.017-0.3g per each 100ml of the reduction solution.

  20. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles

    PubMed Central

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20–50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10–45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50–90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles. PMID:21753878

  1. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles.

    PubMed

    Elavazhagan, Tamizhamudu; Arunachalam, Kantha D

    2011-01-01

    We used an aqueous leaf extract of Memecylon edule (Melastomataceae) to synthesize silver and gold nanoparticles. To our knowledge, this is the first report where M. edule leaf broth was found to be a suitable plant source for the green synthesis of silver and gold nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with M. edule leaf extract, stable silver and gold nanoparticles were rapidly formed. The gold nanoparticles were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and Fourier transform infra-red spectroscopy (FTIR). The kinetics of reduction of aqueous silver and gold ions during reaction with the M. edule leaf broth were easily analyzed by UV-visible spectroscopy. SEM analysis showed that aqueous gold ions, when exposed to M. edule leaf broth, were reduced and resulted in the biosynthesis of gold nanoparticles in the size range 20-50 nm. TEM analysis of gold nanoparticles showed formation of triangular, circular, and hexagonal shapes in the size range 10-45 nm. The resulting silver nanoparticles were predominantly square with uniform size range 50-90 nm. EDAX results confirmed the presence of triangular nanoparticles in the adsorption peak of 2.30 keV. Further FTIR analysis was also done to identify the functional groups in silver and gold nanoparticles. The characterized nanoparticles of M. edule have potential for various medical and industrial applications. Saponin presence in aqueous extract of M. edule is responsible for the mass production of silver and gold nanoparticles.

  2. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum

    SciTech Connect

    Basavaraja, S.; Balaji, S.D.; Lagashetty, Arunkumar; Rajasab, A.H.; Venkataraman, A.

    2008-05-06

    Development of environmental friendly procedures for the synthesis of metal nanoparticles through biological processes is evolving into an important branch of nanobiotechnology. In this paper, we report on the use of fungus 'Fusarium semitectum' for the extracellular synthesis of silver nanoparticles from silver nitrate solution (i.e. through the reduction of Ag{sup +} to Ag{sup 0}). Highly stable and crystalline silver nanoparticles are produced in solution by treating the filtrate of the fungus F. semitectum with the aqueous silver nitrate solution. The formations of nanoparticles are understood from the UV-vis and X-ray diffraction studies. Transmission electron microscopy of the silver particles indicated that they ranged in size from 10 to 60 nm and are mostly spherical in shape. Interestingly the colloidal suspensions of silver nanoparticles are stable for many weeks. Possible medicinal applications of these silver nanoparticles are envisaged.

  3. [Controllable synthesis and UV-Vis spectral analysis of silver nanoparticles in AOT microemulsion].

    PubMed

    Zhang, Wan-Zhong; Qiao, Xue-Liang; Luo, Lang-Li; Chen, Jian-Guo

    2009-03-01

    Colloidal silver nanoparticles were synthesized in water-in-oil microemulsion using silver nitrate solubilized in the water core of a microemulsion as source of silver ions, hydrazine hydrate solubilized in the water core of another one as reducing agent, cyclohexane as the continuous phase, and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as the surfactant. The main factors affecting the formation of silver nanoparticles were systematically studied. Ultraviolet-visible (UV-Vis) spectra were used for analyzing the effects of reaction parameters, including the type of reducing agents, the molar ratio of water to surfactant and the concentration of AgNO3 and AOT and so on, on the formation of silver nanoparticles. Original results for the controllable synthesis of silver nanoparticles were obtained when the synthesis proceeded in AOT-cyclohexane-AgNO3 microemulsion. The UV-Vis spectra of silver sols formed in the microemulsion with various parameters were studied systematically. The results show that the amount and average size of the obtained nanoparticles obviously depend on the above parameters. When the concentration of AgNO3 is lower, smaller silver nanoparticles are easy to form by increasing the concentration of AgNO3 appropriately. The higher W value was found to form larger numbers of silver nanoparticles with larger particle size. Compared to the solubility of NaBH4 in AOT reverse micelles, hydrazine hydrate is well soluble in these micelles, and thus it is favorable to reduce the silver ions solubilized in the water core of AOT-cyclohexane-AgNO3 microemulsion. The increase in the concentration of AOT induces an increase in the number of AOT micelles and a decrease in the molar ratio of water to surfactant. As a result, the solubilization capacity of reactants in the micelles increases and the radii of the micelles decrease. That is to say, with the increase in AOT concentration, the amount of the formed nanoparticles increases and the average size of the

  4. Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus.

    PubMed

    Manikprabhu, Deene; Cheng, Juan; Chen, Wei; Sunkara, Anil Kumar; Mane, Sunilkumar B; Kumar, Ram; das, Mousumi; N Hozzein, Wael; Duan, Yan-Qing; Li, Wen-Jun

    2016-05-01

    Synthesis of silver nanoparticles using microorganism are many, but there are only scanty reports using actinobacteria. In the present study, the actinobacterium of the genus Sinomonas was reported to synthesis silver nanoparticles for the first time. A photo-irradiation based method was developed for the synthesis of silver nanoparticles, which includes two day old cultural supernatant of novel species Sinomonas mesophila MPKL 26 and silver nitrate solution, exposed to sunlight. The preliminary synthesis of silver nanoparticles was noted by the color change of the solution from colorless to brown; the synthesis was further confirmed using UV-visible spectroscopy which shows a peak between 400 and 450nm. Spherical shape silver nanoparticles of size range 4-50nm were synthesized, which were characterized using transmission electron microscopy. The Fourier transform infrared spectroscopy result indicates that, the metabolite produced by the novel species S. mesophila MPKL 26 was the probable reducing/capping agent involved in the synthesis of silver nanoparticles. The synthesized silver nanoparticles maintained consistent shape with respect to different time periods. The synthesized silver nanoparticles were evaluated for the antimicrobial activity against multi drug resistant Staphylococcus aureus which show good antimicrobial activity. The method developed for synthesis is easy, requires less time (20min) and produces spherical shape nanoparticles of size as small as 4nm, having good antimicrobial activity. Hence, our study enlarges the scope of actinobacteria for the rapid biosynthesis of silver nanoparticles and can be used in formulating remedies for multi drug resistant S. aureus.

  5. Colored and functional silver nanoparticle-wool fiber composites.

    PubMed

    Kelly, Fern M; Johnston, James H

    2011-04-01

    Silver nanoparticles utilizing the surface plasmon resonance effect of silver have been used to color merino wool fibers as well as imparting antimicrobial and antistatic properties to them to produce a novel silver nanoparticle-wool composite material. This is accomplished by the reduction of silver ions in solution by trisodium citrate (TSC) in the presence of merino wool fibers or fabrics. The silver metal nanoparticles simultaneously bind to the amino acids of the keratin protein in the wool fibers using TSC as the linker. The colors of the resulting merino wool-silver nanoparticle composites range from yellow/brown to red/brown and then to brown/black, because of the surface plasmon resonance effect of silver, and are tuned by controlling the reduction of silver ions to silver nanoparticles to give the required particle size on the fiber surface. In addition to the surface plasmon resonance optical effects, the silver nanoparticle-wool composites exhibit effective antimicrobial activity, thus inhibiting the growth of microbes and also an increase in the electrical conductivity, imparting antistatic properties to the fibers. Therefore, silver nanoparticles function as a simultaneous colorant and antimicrobial and antistatic agent for wool. Chemical and physical characterizations of the silver nanoparticle-merino wool composite materials have been carried out using scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, synchrotron radiation X-ray diffraction, atomic absorption spectroscopy, X-ray photoelectron spectroscopy, direct-current electrical conductivity measurements, wash-fast and rub-fast tests, and antimicrobial tests.

  6. Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings

    NASA Astrophysics Data System (ADS)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2016-03-01

    An open wound is highly prone to bacterial colonization and infection. Bacterial barrier property is an important factor that determines the success of a wound coverage material. Apart from the bacterial barrier property, presence of antibacterial agents can successfully eliminate the invasion and colonization of pathogen in the wound. Silver nanoparticles are well-known antimicrobial agents against a wide range of microorganisms. Biosynthesized silver nanoparticles are more acceptable for medical applications due to superior biocompatibility than chemically synthesized ones. Presence of biomolecules on biosynthesized silver nanoparticles enhances its therapeutic efficiency. Polycaprolactone (PCL) is a well-known material for biomedical applications including wound dressings. Electrospinning is an excellent technique for the fabrication of thin membranes for wound coverage applications with barrier property against microbes. In this paper, we report the fabrication and characterization of electrospun PCL membranes incorporated with biosynthesized silver nanoparticles for wound dressing applications.

  7. Facile Synthesis of Silver Nanoparticles Under {gamma}-Irradiation: Effect of Chitosan Concentration

    SciTech Connect

    Huang, N. M.; Radiman, S.; Ahmad, A.; Idris, H.; Lim, H. N.; Khiew, P. S.; Chiu, W. S.; Tan, T. K.

    2009-06-01

    In the present study, a biopolymer, low molecular weight chitosan had been utilized as a 'green' stabilizing agent for the synthesis of silver nanoparticles under {gamma}-irradiation. The as-synthesized silver nanoparticles have particle diameters in the range of 5 nm-30 nm depending on the percentage of chitosan used (0.1 wt%, 0.5 wt%, 1.0 wt% and 2.0 wt%). It was found that the yield of the silver nanoparticles was in accordance with the concentration of chitosan presence in the solution due to the reduction by the chitosan radical during irradiation. The highly stable chitosan encapsulated silver nanoparticles were characterized using transmission electron microscopy (TEM), UV-Visible spectrophotometer (UV-VIS) and X-ray diffraction spectroscopy (XRD)

  8. Green Route for Silver Nanoparticles Synthesis by Raphanus Sativus Extract in a Continuous Flow Tubular Microreactor

    NASA Astrophysics Data System (ADS)

    Jolhe, P. D.; Bhanvase, B. A.; Patil, V. S.; Sonawane, S. H.

    The present work deals with the investigation of the greener route for the production of silver nanoparticles using Raphanus sativus (R. sativus) bioextract in a continuous flow tubular microreactor. The parameters affecting the particle size and distribution were investigated. From the results obtained it can be inferred that the ascorbic acid (reducing agent) present in the R. sativus bioextract is responsible for the reduction of silver ions. At optimum condition, the particle size distribution of nanoparticles is found between 18nm and 39nm. The absorbance value was found to be decreased with an increase in the diameter of the microreactor. It indicates that a number of nuclei are formed in the micrometer sized (diameter) reactor because of the better solute transfer rate leading to the formation of large number of silver nanoparticles. The study of antibacterial activity of green synthesized silver nanoparticles shows effective inhibitory activity against waterborne pathogens, Shegella and Listeria bacteria.

  9. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts).

    PubMed

    Rodríguez-León, Ericka; Iñiguez-Palomares, Ramón; Navarro, Rosa Elena; Herrera-Urbina, Ronaldo; Tánori, Judith; Iñiguez-Palomares, Claudia; Maldonado, Amir

    2013-01-01

    We have synthesized silver nanoparticles from silver nitrate solutions using extracts of Rumex hymenosepalus, a plant widely found in a large region in North America, as reducing agent. This plant is known to be rich in antioxidant molecules which we use as reducing agents. Silver nanoparticles grow in a single-step method, at room temperature, and with no addition of external energy. The nanoparticles have been characterized by ultraviolet-visible spectroscopy and transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. The nanoparticle diameters are in the range of 2 to 40 nm. High-resolution transmission electron microscopy and fast Fourier transform analysis show that two kinds of crystal structures are obtained: face-centered cubic and hexagonal.

  10. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts)

    PubMed Central

    2013-01-01

    We have synthesized silver nanoparticles from silver nitrate solutions using extracts of Rumex hymenosepalus, a plant widely found in a large region in North America, as reducing agent. This plant is known to be rich in antioxidant molecules which we use as reducing agents. Silver nanoparticles grow in a single-step method, at room temperature, and with no addition of external energy. The nanoparticles have been characterized by ultraviolet-visible spectroscopy and transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. The nanoparticle diameters are in the range of 2 to 40 nm. High-resolution transmission electron microscopy and fast Fourier transform analysis show that two kinds of crystal structures are obtained: face-centered cubic and hexagonal. PMID:23841946

  11. Synthesis and characterization of silver-copper core-shell nanoparticles using polyol method for antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Hikmah, N.; Idrus, N. F.; Jai, J.; Hadi, A.

    2016-06-01

    Silver and copper nanoparticles are well-known as the good antimicrobial agent. The nano-size of particles influences in enhancing the antimicrobial activity. This paper discusses the effect of molarity on the microstructure and morphology of silver-copper core-shell nanoparticles prepared by a polyol method. In this study, silver-copper nanoparticles are synthesized through the green approach of polyol method using ethylene glycol (EG) as green solvent and reductant, and polyoxyethylene-(80)-sorbitan monooleate (Tween 80) as a nontoxic stabilizer. The phase and morphology of silver-copper nanoparticles are characterized by X-ray diffraction (XRD) and Field emission scanning electron microscope (FESEM) and Transmission electron microscope (TEM). The results XRD confirm the pure crystalline of silver and copper nanoparticles with face-centered cubic (FCC) structure. FESEM and TEM analysis confirm the existence of Ag and Cu nanoparticles in core-shell shape.

  12. Differential genotoxicity mechanisms of silver nanoparticles and silver ions.

    PubMed

    Li, Yan; Qin, Taichun; Ingle, Taylor; Yan, Jian; He, Weiwei; Yin, Jun-Jie; Chen, Tao

    2017-01-01

    In spite of many reports on the toxicity of silver nanoparticles (AgNPs), the mechanisms underlying the toxicity are far from clear. A key question is whether the observed toxicity comes from the silver ions (Ag(+)) released from the AgNPs or from the nanoparticles themselves. In this study, we explored the genotoxicity and the genotoxicity mechanisms of Ag(+) and AgNPs. Human TK6 cells were treated with 5 nM AgNPs or silver nitrate (AgNO3) to evaluate their genotoxicity and induction of oxidative stress. AgNPs and AgNO3 induced cytotoxicity and genotoxicity in a similar range of concentrations (1.00-1.75 µg/ml) when evaluated using the micronucleus assay, and both induced oxidative stress by measuring the gene expression and reactive oxygen species in the treated cells. Addition of N-acetylcysteine (NAC, an Ag(+) chelator) to the treatments significantly decreased genotoxicity of Ag(+), but not AgNPs, while addition of Trolox (a free radical scavenger) to the treatment efficiently decreased the genotoxicity of both agents. In addition, the Ag(+) released from the highest concentration of AgNPs used for the treatment was measured. Only 0.5 % of the AgNPs were ionized in the culture medium and the released silver ions were neither cytotoxic nor genotoxic at this concentration. Further analysis using electron spin resonance demonstrated that AgNPs produced hydroxyl radicals directly, while AgNO3 did not. These results indicated that although both AgNPs and Ag(+) can cause genotoxicity via oxidative stress, the mechanisms are different, and the nanoparticles, but not the released ions, mainly contribute to the genotoxicity of AgNPs.

  13. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna

    PubMed Central

    2012-01-01

    Background To better understand the potential ecotoxicological impacts of silver nanoparticles released into freshwater environments, the Daphnia magna 48-hour immobilization test was used. Methods The toxicities of silver nitrate, two types of colloidal silver nanoparticles, and a suspension of silver nanoparticles were assessed and compared using standard OECD guidelines. Also, the swimming behavior and visible uptake of the nanoparticles by Daphnia were investigated and compared. The particle suspension and colloids used in the toxicity tests were well-characterized. Results The results obtained from the exposure studies showed that the toxicity of all the silver species tested was dose and composition dependent. Plus, the silver nanoparticle powders subsequently suspended in the exposure water were much less toxic than the previously prepared silver nanoparticle colloids, whereas the colloidal silver nanoparticles and AgNO3 were almost similar in terms of mortality. The silver nanoparticles were ingested by the Daphnia and accumulated under the carapace, on the external body surface, and connected to the appendages. All the silver species in this study caused abnormal swimming by the D. magna. Conclusion According to the present results, silver nanoparticles should be classified according to GHS (Globally Harmonized System of classification and labeling of chemicals) as "category acute 1" to Daphnia neonates, suggesting that the release of nanosilver into the environment should be carefully considered. PMID:22472056

  14. Synthesis of gold nanoparticles and silver nanoparticles via green technology

    NASA Astrophysics Data System (ADS)

    Ahmed, Zulfiqaar; Balu, S. S.

    2012-11-01

    The proposed work describes the comparison of various methods of green synthesis for preparation of Gold and Silver nanoparticles. Pure extracts of Lemon (Citrus limon) and Tomato (Solanum lycopersicum) were mixed with aqueous solution of auric tetrachloride and silver nitrate. The resultant solutions were treated with four common techniques to assist in the reduction namely photo catalytic, thermal, microwave assisted reduction and solvo - thermal reduction. UV - Visible Spectroscopy results and STM images of the final solutions confirmed the formation of stable metallic nanoparticles. A preliminary account of the green synthesis work is presented here.

  15. Silver nanoparticles: Synthesis methods, bio-applications and properties.

    PubMed

    Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad

    2016-01-01

    Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.

  16. Gellan gum capped silver nanoparticle dispersions and hydrogels: cytotoxicity and in vitro diffusion studies

    NASA Astrophysics Data System (ADS)

    Dhar, S.; Murawala, P.; Shiras, A.; Pokharkar, V.; Prasad, B. L. V.

    2012-01-01

    The preparation of highly stable water dispersions of silver nanoparticles using the naturally available gellan gum as a reducing and capping agent is reported. Further, exploiting the gel formation characteristic of gellan gum silver nanoparticle incorporated gels have also been prepared. The optical properties, morphology, zeta potential and long-term stability of the synthesized silver nanoparticles were investigated. The superior stability of the gellan gum-silver nanoparticle dispersions against pH variation and electrolyte addition is revealed. Finally, we studied the cytotoxicity of AgNP dispersions in mouse embryonic fibroblast cells (NIH3T3) and also evaluated the in vitro diffusion of AgNP dispersions/gels across rat skin.The preparation of highly stable water dispersions of silver nanoparticles using the naturally available gellan gum as a reducing and capping agent is reported. Further, exploiting the gel formation characteristic of gellan gum silver nanoparticle incorporated gels have also been prepared. The optical properties, morphology, zeta potential and long-term stability of the synthesized silver nanoparticles were investigated. The superior stability of the gellan gum-silver nanoparticle dispersions against pH variation and electrolyte addition is revealed. Finally, we studied the cytotoxicity of AgNP dispersions in mouse embryonic fibroblast cells (NIH3T3) and also evaluated the in vitro diffusion of AgNP dispersions/gels across rat skin. Electronic supplementary information (ESI) available: Time dependent UV-Vis spectral studies revealing the stability of AgNP dispersions and agar plate images displaying the antibacterial activity of AgNPs. See DOI: 10.1039/c1nr10957j

  17. Synthesis and Study of Silver Nanoparticles

    ERIC Educational Resources Information Center

    Soloman, Sally D.; Bahadory, Mozghan; Jeyarajasingam, Aravindan V.; Rutkowsky, Susan A.; Boritz, Charles; Mulfinger, Lorraine

    2007-01-01

    A laboratory experiment was conducted in which the students synthesized yellow colloidal silver, estimate particle size using visible spectroscopy and studied aggregation effects. The students were thus introduced to nanotechnology along with other topics such as redox chemistry, limiting and excess reactants, spectroscopy and atomic size.

  18. Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles

    PubMed Central

    Jeong, Lim; Park, Won Ho

    2014-01-01

    Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). PMID:24758929

  19. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates

    SciTech Connect

    Zaki, Sahar; El Kady, M.F.; Abd-El-Haleem, Desouky

    2011-10-15

    Graphical abstract: In this study five bacterial isolates belong to different genera were found to be able to biosynthesize silver nanoparticles. Biosynthesis and spectral characterization are reported here. Highlights: {yields} About 300 bacterial isolates were screened for their ability to produce nanosilvers {yields} Five of them were potential candidates for synthesis of silver nanoparticles {yields} Production of silver nanoparticles was examined using UV-Vis, XRD, SEM and EDS. {yields} The presence of nanoparticles with all five bacterial isolates was confirmed. -- Abstract: This study aimed to develop a green process for biosynthesis of silver nanomaterials by some Egyptian bacterial isolates. This target was achieved by screening an in-house culture collection consists of 300 bacterial isolates for silver nanoparticle formation. Through screening process, it was observed that strains belonging to Escherichia coli (S30, S78), Bacillus megaterium (S52), Acinetobacter sp. (S7) and Stenotrophomonas maltophilia (S54) were potential candidates for synthesis of silver nanoparticles. The extracellular production of silver nanoparticles by positive isolates was investigated by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results demonstrated that UV-visible spectrum of the aqueous medium containing silver ion showed a peak at 420 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy micrograph showed formation of silver nanoparticles in the range of 15-50 nm. XRD-spectrum of the silver nanoparticles exhibited 2{theta} values corresponding to the silver nanocrystal that produce in hexagonal and cubic crystal configurations with different plane of orientation. In addition, the signals of the silver atoms were observed by EDS-spectrum analysis that confirms the presence of silver nanoparticles (Ag

  20. Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property

    NASA Astrophysics Data System (ADS)

    Chauhan, Ritika; Reddy, Arpita; Abraham, Jayanthi

    2015-01-01

    The development of eco-friendly alternative to chemical synthesis of metal nanoparticles is of great challenge among researchers. The present study aimed to investigate the biological synthesis, characterization, antimicrobial study and synergistic effect of silver and zinc oxide nanoparticles against clinical pathogens using Pichia fermentans JA2. The extracellular biosynthesis of silver and zinc oxide nanoparticles was investigated using Pichia fermentans JA2 isolated from spoiled fruit pulp bought in Vellore local market. The crystalline and stable metallic nanoparticles were characterized evolving several analytical techniques including UV-visible spectrophotometer, X-ray diffraction pattern analysis and FE-scanning electron microscope with EDX-analysis. The biosynthesized metallic nanoparticles were tested for their antimicrobial property against medically important Gram positive, Gram negative and fungal pathogenic microorganisms. Furthermore, the biosynthesized nanoparticles were also evaluated for their increased antimicrobial activities with various commercially available antibiotics against clinical pathogens. The biosynthesized silver nanoparticles inhibited most of the Gram negative clinical pathogens, whereas zinc oxide nanoparticles were able to inhibit only Pseudomonas aeruginosa. The combined effect of standard antibiotic disc and biosynthesized metallic nanoparticles enhanced the inhibitory effect against clinical pathogens. The biological synthesis of silver and zinc oxide nanoparticles is a novel and cost-effective approach over harmful chemical synthesis techniques. The metallic nanoparticles synthesized using Pichia fermentans JA2 possess potent inhibitory effect that offers valuable contribution to pharmaceutical associations.

  1. Extracellular synthesis of silver nanoparticles by novel Pseudomonas veronii AS41G inhabiting Annona squamosa L. and their bactericidal activity

    NASA Astrophysics Data System (ADS)

    Baker, Syed; Mohan Kumar, K.; Santosh, P.; Rakshith, D.; Satish, S.

    2015-02-01

    In present investigation extracellular synthesis of silver nanoparticles were synthesized using cell free supernatant of Pseudomonas veronii AS41G isolated from Annona squamosa L. The bacterium significantly reduced silver nitrate to generate silver nanoparticles which was characterized with hyphenated techniques. Synthesis of silver nanoparticles preliminary confirmed by UV-Visible spectrophotometry with the intense peak at 410 nm, Further FTIR analysis revealed the possible role of biomolecules in the supernatant responsible for mediating the nanoparticles formation. The XRD spectra exhibited the characteristic Bragg peaks of 1 0 0, 1 1 1, 2 0 0, and 2 2 0 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. TEM microgram showed polydispersity of nanoparticles with size ranging from 5 to 50 nm. Synthesized silver nanoparticles showed antibacterial activity against human and environmental pathogens including MRSA. The study enlightens the role of biosynthesized silver nanoparticles as an emerging alternative for drug resistant microorganisms. The obtained results are promising enough to pave the environmentally benign nanoparticle synthesis processes without use of any toxic chemicals and also envision the emerging role of endophytes towards synthesis of nanoparticles. With scanty reports available on P.veronii species, a new role has been reported in this study which will be very valuable for future researchers working on it.

  2. Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens.

    PubMed

    Wang, Chao; Singh, Priyanka; Kim, Yeon Ju; Mathiyalagan, Ramya; Myagmarjav, Davaajargal; Wang, Dandan; Jin, Chi-Gyu; Yang, Deok Chun

    2016-11-01

    Various microorganisms were found to be cable of synthesizing gold and silver nanoparticles when gold and silver salts were supplied in the reaction system. The main objective of this study was to evaluate the extracellular synthesis of gold and silver nanoparticles by the type strain Microbacterium resistens(T) [KACC14505]. The biosynthesized gold and silver nanoparticles were characterized by ultraviolet-visible spectroscopy (UV-Vis), field emission transmission electron micrograph (FE-TEM), energy dispersive X-ray spectroscopy (EDX), elemental mapping, and dynamic light scattering (DLS). Moreover, the nanoparticles were evaluated for antimicrobial potential against various pathogenic microorganisms such as Vibrio parahaemolyticus [ATCC 33844], Salmonella enterica [ATCC 13076], Staphylococcus aureus [ATCC 6538], Bacillus anthracis [NCTC 10340], Bacillus cereus [ATCC 14579], Escherichia coli [ATCC 10798], and Candida albicans [KACC 30062]. The silver nanoparticles were found as a potent antimicrobial agent whereas gold nanoparticles not showed any ability. Therefore, the current study describes the simple, green, and extracellular synthesis of gold and silver nanoparticles by the type strain Microbacterium resistens(T) [KACC14505].

  3. "Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract".

    PubMed

    Kharat, Sopan N; Mendhulkar, Vijay D

    2016-05-01

    The simple, eco-friendly and cost effective method of green synthesis of silver nanoparticle in the leaf extract of medicinal plant Elephantopus scaber L. is illustrated in the present work. The synthesized silver nanoparticles (AgNPs) were characterized with UV-Vis-spectroscopy, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The UV-spectra show maximum absorbance at 435 nm, NTA analysis shows 78 nm average sizes of nanoparticles, TEM analysis indicates spherical shape of the nanoparticles with the average diameter of 50 nm. The XRD peaks at 2θ range of 30-80° correspond to (111), (200), (220), (311) reflection planes that indicate the structure of metallic silver. FTIR analysis reveals surface capping of phenolic groups. Existence of peaks in the range of 1611 to 1400 cm(-1) indicates the presence of aromatic rings in the leaf extract. The peak at 1109 cm(-1) is due to the presence of OH groups. The antioxidant activity of synthesized nanoparticles was evaluated performing DPPH assay and it is observed that the photosynthesized nanoparticle also possesses antioxidant potentials. Thus, it can be used as potential free radical scavenger. Silver particles have tremendous applications in the field of diagnostics and therapeutics. To this context, the surface coating of plant metabolite constituents has great potentials. Therefore, the present work has been undertaken to synthesize the AgNPs using leaf extract of medicinal plant, E. scaber, to characterize and access their antioxidant properties.

  4. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles

    EPA Science Inventory

    Applications for silver nanomaterials in consumer products are rapidly expanding, creating an urgent need for toxicological examination of the exposure potential and ecological effects of silver nanoparticles (AgNPs). The integration of genomic techniques into environmental toxic...

  5. Substrate independent silver nanoparticle based antibacterial coatings.

    PubMed

    Taheri, Shima; Cavallaro, Alex; Christo, Susan N; Smith, Louise E; Majewski, Peter; Barton, Mary; Hayball, John D; Vasilev, Krasimir

    2014-05-01

    Infections arising from bacterial adhesion and colonization on medical device surfaces are a significant healthcare problem. Silver based antibacterial coatings have attracted a great deal of attention as a potential solution. This paper reports on the development of a silver nanoparticles based antibacterial surface that can be applied to any type of material surface. The silver nanoparticles were surface engineered with a monolayer of 2-mercaptosuccinic acid, which facilitates the immobilization of the nanoparticles to the solid surface, and also reduces the rate of oxidation of the nanoparticles, extending the lifetime of the coatings. The coatings had excellent antibacterial efficacy against three clinically significant pathogenic bacteria i.e. Staphylococcus epidermidis, Staphylococcus aureus and Pseudomonas aeruginosa. Studies with primary human fibroblast cells showed that the coatings had no cytotoxicity in vitro. Innate immune studies in cultures of primary macrophages demonstrated that the coatings do not significantly alter the level of expression of pro-inflammatory cytokines or the adhesion and viability of these cells. Collectively, these coatings have an optimal combination of properties that make them attractive for deposition on medical device surfaces such as wound dressings, catheters and implants.

  6. Silver nanoparticles with tunable work functions

    SciTech Connect

    Wang, Pangpang; Tanaka, Daisuke; Ryuzaki, Sou; Araki, Shohei; Okamoto, Koichi; Tamada, Kaoru

    2015-10-12

    To improve the efficiencies of electronic devices, materials with variable work functions are required to decrease the energy level differences at the interfaces between working layers. Here, we report a method to obtain silver nanoparticles with tunable work functions, which have the same silver core of 5 nm in diameter and are capped by myristates and 1-octanethoilates self-assembled monolayers, respectively. The silver nanoparticles capped by organic molecules can form a uniform two-dimensional sheet at air-water interface, and the sheet can be transferred on various hydrophobic substrates. The surface potential of the two-dimensional nanoparticle sheet was measured in terms of Kelvin probe force microscopy, and the work function of the sheet was then calculated from the surface potential value by comparing with a reference material. The exchange of the capping molecules results in a work function change of approximately 150–250 meV without affecting their hydrophobicity. We systematically discussed the origin of the work function difference and found it should come mainly from the anchor groups of the ligand molecules. The organic molecule capped nanoparticles with tunable work functions have a potential for the applications in organic electronic devices.

  7. Bioactivity of albumins bound to silver nanoparticles.

    PubMed

    Mariam, Jessy; Sivakami, S; Kothari, D C; Dongre, P M

    2014-06-01

    The last decade has witnessed a tremendous rise in the proposed applications of nanomaterials in the field of medicine due to their very attractive physiochemical properties and novel actions such as the ability to reach previously inaccessible targets such as brain. However biological activity of functional molecules bound to nanoparticles and its physiological consequences is still unclear and hence this area requires immediate attention. The functional properties of Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) bound to silver nanoparticles (~60 nm) have been studied under physiological environment. Esterase activity, binding of drugs (warfarin and ibuprofen), antioxidant activity and copper binding by albumins was evaluated. The catalytic efficiencies of HSA and BSA diminished upon binding to silver nanoparticles. Perturbation in binding of warfarin and ibuprofen, loss of free sulphydryls, antioxidant activity and enhancement of copper binding were observed in albumins bound to nanoparticles. These alterations in functional activity of nanoparticle bound albumins which will have important consequences should be taken into consideration while using nanoparticles for diagnostic and therapeutic purposes.

  8. Synergistic effect of silver seeds and organic modifiers on the morphology evolution mechanism of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Aili; Yin, Hengbo; Ren, Min; Liu, Yuming; Jiang, Tingshun

    2008-08-01

    Triangular, truncated triangular, quadrangular, hexagonal, and net-structured silver nanoplates as well as decahedral silver nanoparticles were manipulatively prepared starting from silver nitrate and silver seeds in the presence of poly(ethylene glycol) (PEG), poly( N-vinyl pyrrolidone) (PVP), and Tween 80 at room temperature, respectively. UV-vis spectroscopy, XRD, HRTEM, SAED, and FTIR were used to illustrate the crystal growth process and to characterize the resultant silver nanoparticles. It was found that the silver seeds and organic modifiers synergistically affected the morphology evolution of the silver nanoparticles. The co-presence of silver seeds and PEG was beneficial to the formation of triangular and truncated triangular silver nanoplates; the silver seeds and PVP favored the formation of polygonal silver nanoplates; the silver seeds and Tween 80 preferred to the formation of net-structured silver plates. The morphology evolution of the resultant silver nanoparticles was correlated with the crystallinity of the silver seeds and the adsorption ability of the organic modifiers on the crystal surfaces.

  9. Optimization of green synthesis of silver nanoparticles from leaf extracts of Pimenta dioica (Allspice).

    PubMed

    Geetha, Akshay Rajeev; George, Elizabeth; Srinivasan, Akshay; Shaik, Jameel

    2013-01-01

    Production of silver nanoparticles from the leaf extracts of Pimenta dioica is reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles-fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.

  10. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity.

    PubMed

    Bindhu, M R; Umadevi, M

    2013-01-15

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  11. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  12. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Yang, Deok Chun

    2016-12-01

    The study highlights the synthesis of gold nanoparticles and silver nanoparticles by fresh leaves of Panax ginseng, an herbal medicinal plant. The reduction of auric chloride and silver nitrate led to the formation of gold and silver nanoparticles within 3 and 45 min, at 80°C, respectively. The developed methodology was rapid, facile, ecofriendly and the utmost significant is quite economical, which did not require subsequent processing for reduction or stabilization of nanoparticles. The nanoparticles were further characterized by Ultraviolet-visible spectroscopy (UV-vis) which showed the relevant peak for gold and silver nanoparticles at 578 and 420 nm, correspondingly. Field-emission transmission electron microscopy (FE-TEM) displayed the spherical shape of monodispersed nanoparticles. FE-TEM revealed that the gold nanoparticles were 10-20 nm and silver nanoparticles were 5-15 nm. The energy dispersive X-ray (EDX) and elemental mapping results indicated the maximum distribution of gold and silver elements in the respective nanoproducts, which further corresponds the purity. Further, the X-ray diffraction (XRD) results confirm the crystalline nature of synthesized nanoparticles. The biosynthesized AgNPs served as an efficient antimicrobial agent at 3 μg concentration against many pathogenic strains for instance, Escherichia coli, Salmonella enterica, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus anthracis and Bacillus cereus. In addition, AgNPs showed complete inhibition of biofilm formation by S. aureus and Pseudomonas aeruginosa at 4 μg/ml concentration. Moreover, the AuNPs and AgNPs found as a potent anticoagulant agent. Thus, the study claims the rapid synthesis of gold and silver nanoparticles by fresh P. ginseng leaf extract and its biological applications.

  13. Novel method for synthesis of silver nanoparticles and their application on wool

    NASA Astrophysics Data System (ADS)

    Boroumand, Majid Nasiri; Montazer, Majid; Simon, Frank; Liesiene, Jolanta; Šaponjic, Zoran; Dutschk, Victoria

    2015-08-01

    In this study, a new method for the synthesis of silver nanoparticles (AgNPs) suitable to impart antibacterial properties of wool fabric is proposed. AgNPs were synthesized by a biochemical reduction method. An aqueous solution of extracted dye from Pomegranate peel was used as a reducing agent for the synthesis of AgNPs from silver nitrate. The ratio of dye to silver nitrate concentration (RDye/Ag = [Dye]/[AgNO3]) is the influencing factor in the synthesis of silver nanoparticles. The nanoparticles formation was followed by UV/Vis absorption spectroscopy. The size and shape of AgNPs were studied by transmission electron microscopy (TEM). The size distribution and Zetapotential of nanoparticles were evaluated using diffraction light scattering (DLS) measurements. The antibacterial potential of biosynthesized silver nanoparticles against Escherichia coli (E. coli) was examined qualitatively and quantitatively. Kinetic analysis of the bacteria reduction using AgNPs synthesized in different way was performed. AgNPs were applied on wool fabrics by exhaustion. The changes in surface morphology of wool fibers after AgNPs loading were studied using scanning electron microscopy (SEM). The amounts of silver deposited on wool fabrics at different pH and temperature were compared applying energy-dispersive X-ray spectroscopy (EDX). AgNPs loaded fabrics showed excellent antibacterial efficiency even after five washing cycles. To investigate the nature of interaction and bonding between the AgNPs and the wool substrate XPS measurements were performed.

  14. On the fluorescence of luminol in a silver nanoparticles complex.

    PubMed

    Voicescu, Mariana; Ionescu, Sorana

    2013-05-01

    The photophysical properties of luminol in a silver nanoparticles complex have been studied by steady-state and time resolved fluorescence spectroscopy. The effect of the serum albumin on the luminol fluorescence in the silver nanoparticles has been also investigated. It was found that the fluorescence quantum yield value of luminol in a silver nanoparticles complex is φ = 0.00407. The decrease of the average fluorescence lifetime value of the luminol in the silver nanoparticles complex was found to be low, <τ> = 1.712 ns. The luminol does not bind to the serum albumins in the presence of silver nanoparticles. The formation of a new species of luminol on silver nanoparticles is discussed. The results have influence regarding the use of luminol as an assay for bio-analytical applications.

  15. A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity.

    PubMed

    Yakout, Sobhy M; Mostafa, Ashraf A

    2015-01-01

    A green method of Silver nanoparticles (AgNPs) preparation has been established. This method depends on reduction of silver nitrate with soluble starch. The formation of AgNPs was observed by the color change from colorless to dark brown through the starch addition into silver nitrate solution. It was observed that use of starch makes convenient method for the synthesis of silver nanoparticles and can reduce silver ions into the produced silver nanoparticles within one hour of reaction time without using any harsh conditions. The prepared silver nanoparticles were characterized by using UV-visible spectroscopy and evaluated for its antimicrobial activity. The synthesized green AgNPs showed a potential antibacterial activity that was stronger against Gram positive pathogenic bacteria (Staphylococus aureus and Streptococus pyogenes) than against Gram negative pathogenic bacteria (Salmonella typhi, Shigellasonnei and Pseudomonas aeruginosa). Inhibition zones diameter of antibacterial activity depends upon nanoparticles concentration as AgNPs exhibited greater inhibition zone for S.aureus (16.4 mm) followed by P. aeruginosa and S. pyogenes while the least activity was observed for S. typhi (10.4 mm) at 40 μl/ disc. These results suggested that AgNPs can be used as an effective antiseptic agents in medical fields and process of synthesis creates new opportunities in process development for the synthesis of safe and eco-friendly AgNPs.

  16. A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity

    PubMed Central

    Yakout, Sobhy M; Mostafa, Ashraf A

    2015-01-01

    A green method of Silver nanoparticles (AgNPs) preparation has been established. This method depends on reduction of silver nitrate with soluble starch. The formation of AgNPs was observed by the color change from colorless to dark brown through the starch addition into silver nitrate solution. It was observed that use of starch makes convenient method for the synthesis of silver nanoparticles and can reduce silver ions into the produced silver nanoparticles within one hour of reaction time without using any harsh conditions. The prepared silver nanoparticles were characterized by using UV-visible spectroscopy and evaluated for its antimicrobial activity. The synthesized green AgNPs showed a potential antibacterial activity that was stronger against Gram positive pathogenic bacteria (Staphylococus aureus and Streptococus pyogenes) than against Gram negative pathogenic bacteria (Salmonella typhi, Shigellasonnei and Pseudomonas aeruginosa). Inhibition zones diameter of antibacterial activity depends upon nanoparticles concentration as AgNPs exhibited greater inhibition zone for S.aureus (16.4 mm) followed by P. aeruginosa and S. pyogenes while the least activity was observed for S. typhi (10.4 mm) at 40 μl/ disc. These results suggested that AgNPs can be used as an effective antiseptic agents in medical fields and process of synthesis creates new opportunities in process development for the synthesis of safe and eco-friendly AgNPs. PMID:26064246

  17. Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens

    NASA Astrophysics Data System (ADS)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram; Manikandan, Nachiappan

    2011-12-01

    The silver nanoparticles were synthesized by chemical reduction method and the nanoparticles were characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy and X-ray diffraction (XRD) studies. The synthesized silver nanoparticles were investigated to evaluate the antibacterial activity against urinary tract infectious (UTIs) bacterial pathogens. Thirty-two bacteria were isolated from mid urine samples of 25 male and 25 female patients from Thondi, Ramanathapuram District, Tamil Nadu, India and identified by conventional methods. Escherichia coli was predominant (47%) followed by Pseudomonas aeruginosa (22%), Klebsiella pneumoniae (19%), Enterobacter sp. (6%), Proteus morganii (3%) and Staphylococcus aureus (3%). The antibacterial activity of silver nanoparticles was evaluated by disc diffusion assay. P. aeruginosa showed maximum sensitivity (11 ± 0.58 mm) followed by Enterobacter sp. (8 ± 0.49 mm) at a concentration of 20 μg disc-1 and the sensitivity was highly comparable with the positive control kanamycin and tetracycline. K. pneumoniae, E. coli, P. morganii and S. aureus showed no sensitivity against all the tested concentrations of silver nanoparticles. The results provided evidence that, the silver nanoparticles might indeed be the potential sources to treat urinary tract infections caused by P. aeruginosa and Enterobacter sp.

  18. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue.

    PubMed

    Arjunan, Naresh Kumar; Murugan, Kadarkarai; Rejeeth, Chandrababu; Madhiyazhagan, Pari; Barnard, Donald R

    2012-03-01

    A biological method was used to synthesize stable silver nanoparticles that were tested as mosquito larvicides against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Annona squamosa leaf broth (5%) reduced aqueous 1 mM AgNO₃ to stable silver nanoparticles with an average size of 450 nm. The structure and percentage of synthesized nanoparticles was characterized by using ultraviolet spectrophotometry, X-Ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy methods. The median lethal concentrations (LC₅₀) of silver nanoparticles that killed fourth instars of Ae. aegypti, Cx. quinquefasciatus, and An. stephensi were 0.30, 0.41, and 2.12 ppm, respectively. Adult longevity (days) in male and female mosquitoes exposed as larvae to 0.1 ppm silver nanoparticles was reduced by ~30% (p<0.05), whereas the number of eggs laid by females exposed as larvae to 0.1 ppm silver nanoparticles decreased by 36% (p<0.05).

  19. Biocidal properties study of silver nanoparticles used for application in green housing

    NASA Astrophysics Data System (ADS)

    Küünal, Siim; Kutti, Sander; Rauwel, Protima; Guha, Mithu; Wragg, David; Rauwel, Erwan

    2016-07-01

    We report on the study of surfactant-free silver nanoparticles synthesized using non-hydrolytic sol-gel methods for applications in straw bale constructions. Micro-organism infestation in green constructions is of concern as their proliferation tends to induce health problems. We demonstrate the biocidal properties of these Ag nanoparticles and their efficacy against fungi. Outdoor tests with Ag nanoparticles have demonstrated the effective protection of straw against micro-organisms. Indoor tests using broth liquid are compared with a method of testing we recently developed where the possible nature of the biocidal properties of the silver nanoparticles are further probed. In contrast to the commonly reported results, this study shows that Ag nanoparticles synthesized using non-hydrolytic sol-gel methods have antifungal properties against common fungi in outdoor conditions which demonstrate high potential in related applications.

  20. Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles.

    PubMed

    Suvith, V S; Philip, Daizy

    2014-01-24

    The scientific community is searching for new synthesis methods for the production of metallic nanoparticles. Green synthesis has now become a vast developing area of research. Here we report for the first time to best of our knowledge, a new green method for the synthesis of silver and gold nanoparticles using the Kashayam, Guggulutiktham, an ayurvedic medicine. This method is nontoxic and environmentally benign. The reduction and the stabilization capacity of the ayurvedic Kashayam are described in this paper. The size and shape of the silver and gold nanoparticles can be tuned by varying the quantity of the Kashayam. The synthesized nanoparticles are characterized using UV-VIS spectroscopy, TEM, XRD and FTIR. The size dependent catalytic activity of the synthesized nanoparticles is established in the reduction of Methylene Blue (MB) by NaBH4.

  1. Multistate resistive switching in silver nanoparticle films

    PubMed Central

    Sandouk, Eric J; Gimzewski, James K; Stieg, Adam Z

    2015-01-01

    Resistive switching devices have garnered significant consideration for their potential use in nanoelectronics and non-volatile memory applications. Here we investigate the nonlinear current–voltage behavior and resistive switching properties of composite nanoparticle films comprising a large collective of metal–insulator–metal junctions. Silver nanoparticles prepared via the polyol process and coated with an insulating polymer layer of tetraethylene glycol were deposited onto silicon oxide substrates. Activation required a forming step achieved through application of a bias voltage. Once activated, the nanoparticle films exhibited controllable resistive switching between multiple discrete low resistance states that depended on operational parameters including the applied bias voltage, temperature and sweep frequency. The films’ resistance switching behavior is shown here to be the result of nanofilament formation due to formative electromigration effects. Because of their tunable and distinct resistance states, scalability and ease of fabrication, nanoparticle films have a potential place in memory technology as resistive random access memory cells. PMID:27877824

  2. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Dezhong; Tang, Yang; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-04-01

    In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  3. Light controlled assembly of silver nanoparticles.

    PubMed

    Polywka, Andreas; Tückmantel, Christian; Görrn, Patrick

    2017-03-23

    Metal nanoparticles show a particularly strong interaction with light, which is the basis for nanoparticle plasmonics. One of the main goals of this emerging research field is the alignment of nanoparticles and their integration into sophisticated nanostructures providing a tailored interaction with light. This assembly of nanoparticles at well-controlled substrate sites often involves expensive technological approaches, such as electron beam lithography in order to fabricate the nanoparticle structures. Furthermore difficult numerical simulations are needed to predict their optical properties. Both requirements, fabrication and prediction, complicate a cost-efficient exploitation of nanoparticle plasmonics in optoelectronic devices. Here we show that silver nanoparticles deposited under exposure to visible light arrange in a way that the resulting structure shows an optimized interaction with that light. This way, the light not only controls the nanoparticle alignment with an estimated accuracy of well below 20 nm during deposition from the liquid phase, but also defines the optical properties of the growing structure, and therefore complicated prediction is not needed.

  4. Light controlled assembly of silver nanoparticles

    PubMed Central

    Polywka, Andreas; Tückmantel, Christian; Görrn, Patrick

    2017-01-01

    Metal nanoparticles show a particularly strong interaction with light, which is the basis for nanoparticle plasmonics. One of the main goals of this emerging research field is the alignment of nanoparticles and their integration into sophisticated nanostructures providing a tailored interaction with light. This assembly of nanoparticles at well-controlled substrate sites often involves expensive technological approaches, such as electron beam lithography in order to fabricate the nanoparticle structures. Furthermore difficult numerical simulations are needed to predict their optical properties. Both requirements, fabrication and prediction, complicate a cost-efficient exploitation of nanoparticle plasmonics in optoelectronic devices. Here we show that silver nanoparticles deposited under exposure to visible light arrange in a way that the resulting structure shows an optimized interaction with that light. This way, the light not only controls the nanoparticle alignment with an estimated accuracy of well below 20 nm during deposition from the liquid phase, but also defines the optical properties of the growing structure, and therefore complicated prediction is not needed. PMID:28332582

  5. Light controlled assembly of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Polywka, Andreas; Tückmantel, Christian; Görrn, Patrick

    2017-03-01

    Metal nanoparticles show a particularly strong interaction with light, which is the basis for nanoparticle plasmonics. One of the main goals of this emerging research field is the alignment of nanoparticles and their integration into sophisticated nanostructures providing a tailored interaction with light. This assembly of nanoparticles at well-controlled substrate sites often involves expensive technological approaches, such as electron beam lithography in order to fabricate the nanoparticle structures. Furthermore difficult numerical simulations are needed to predict their optical properties. Both requirements, fabrication and prediction, complicate a cost-efficient exploitation of nanoparticle plasmonics in optoelectronic devices. Here we show that silver nanoparticles deposited under exposure to visible light arrange in a way that the resulting structure shows an optimized interaction with that light. This way, the light not only controls the nanoparticle alignment with an estimated accuracy of well below 20 nm during deposition from the liquid phase, but also defines the optical properties of the growing structure, and therefore complicated prediction is not needed.

  6. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems.

  7. Biosynthesis of silver nanoparticles using Aeromonas sp. THG-FG1.2 and its antibacterial activity against pathogenic microbes.

    PubMed

    Singh, Hina; Du, Juan; Yi, Tae-Hoo

    2017-05-01

    Silver nanoparticles were prepared through green route with the aid of Aeromonas sp. THG-FG1.2 as reductant. Visual observation, ultraviolet-visible spectroscopy, transmission electron microscopy, elemental mapping, energy dispersive X-ray spectroscopy, selected area diffraction pattern (SAED), and X-ray diffraction (XRD) were used to characterize the synthesized silver nanoparticles. UV visible studies indicated the surface plasmon resonance at 400 nm which depicts the formation of silver nanoparticles. The TEM images show spherical silver nanoparticles of 8-16 nm. XRD and SAED fringes revealed the structure of silver nanoparticles as face centered cubic (fcc). These silver nanoparticles also tested for their antimicrobial potential and showed effective antimicrobial activity against tested pathogens and thus applicable as potent antimicrobial agent. Furthermore, the nanoparticles potential has been reconnoitered for their enhanced synergistic effect with antibiotics against multidrug resistant bacteria. Thus, the silver nanoparticles synthesized by Aeromonas sp. THG-FG1.2, were effective in inhibition of pathogenic microbes and also show enhanced antibacterial activity with antibiotics.

  8. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    NASA Astrophysics Data System (ADS)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-06-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of -41.98 mV for the gold nanoparticles and -53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV-visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7-99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  9. Effect of silver nanoparticles on fluorescence and nonlinear properties of naturally occurring betacyanin dye

    NASA Astrophysics Data System (ADS)

    Sarkar, Arindam; Thankappan, Aparna; Nampoori, V. P. N.

    2015-01-01

    We present the linear and nonlinear optical studies of a natural dye betacyanin extracted from red beet root in the presence of silver nano particles in colloidal solution. We synthesized silver nano particles and characterized by XRD and HRTEM. We show how appropriate concentration of silver nanoparticles can enable tuning of dye fluorescence efficiency. Nonlinear properties are studied using open aperture Z scan technique with Nd:YAG laser (532 nm, 7 ns, 10 Hz). We show modification of nonlinear properties for the dye to the desired level can be achieved in the presence of silver nanoparticles. High nonlinearity we also demonstrated in PVA/Ag nano/Betacyanin composite films. Theoretical analysis is performed using model based on nonlinear absorption of materials and scattering of metal nanoparticles.

  10. Magnetite and magnetite/silver core/shell nanoparticles with diluted magnet-like behavior

    SciTech Connect

    Garza-Navarro, Marco; Gonzalez, Virgilio; Ortiz, Ubaldo; De la Rosa, Elder

    2010-01-15

    In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems. - Graphical abstract: Biopolymer chitosan was used as stabilization media to synthesize both magnetite and magnetite/silver core/shell nanoparticles. Results of HRTEM and NBD patterns confirm core/shell morphology of the obtained nanoparticles. It was found that the composites show diluted magnet-like behavior.

  11. Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action

    NASA Astrophysics Data System (ADS)

    Mahl, Dirk; Diendorf, Jörg; Ristig, Simon; Greulich, Christina; Li, Zi-An; Farle, Michael; Köller, Manfred; Epple, Matthias

    2012-10-01

    Silver, gold, and silver-gold-alloy nanoparticles were prepared by citrate reduction modified by the addition of tannin during the synthesis, leading to a reduction in particle size by a factor of three. Nanoparticles can be prepared by this easy water-based synthesis and subsequently functionalized by the addition of either tris(3-sulfonatophenyl)phosphine or poly( N-vinylpyrrolidone). The resulting nanoparticles of silver (diameter 15-25 nm), gold (5-6 nm), and silver-gold (50:50; 10-12 nm) were easily dispersable in water and also in cell culture media (RPMI + 10 % fetal calf serum), as shown by nanoparticle tracking analysis and differential centrifugal sedimentation. High-resolution transmission electron microscopy showed a polycrystalline nature of all nanoparticles. EDX on single silver-gold nanoparticles indicated that the concentration of gold is higher inside a nanoparticle. The biologic action of the nanoparticles toward human mesenchymal stem cells (hMSC) was different: Silver nanoparticles showed a significant concentration-dependent influence on the viability of hMSC. Gold nanoparticles showed only a small effect on the viability of hMSC after 7 days. Surprisingly, silver-gold nanoparticles had no significant influence on the viability of hMSC despite the silver content. Silver nanoparticles and silver-gold nanoparticles in the concentration range of 5-20 μg mL-1 induced the activation of hMSC as indicated by the release of IL-8. In contrast, gold nanoparticles led to a reduction of the release of IL-6 and IL-8.

  12. Enhancement of antibacterial properties of silver nanoparticles-ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis.

    PubMed

    Harshiny, Muthukumar; Matheswaran, Manickam; Arthanareeswaran, Gangasalam; Kumaran, Shanmugam; Rajasree, Shanmuganathan

    2015-11-01

    Green synthesis of nanoparticles with low range of toxicity and conjugation to antibiotics has become an attractive area of research for several biomedical applications. Nanoconjugates exhibited notable increase in biological activity compared to free antibiotic molecules. With this perception, we report the biosynthesis of silver nanoparticles using aqueous extract of leaves of Mukia maderaspatana and subsequent conjugation of the silver nanoparticles to antibiotic ceftriaxone. The leaves of this plant are known to be a rich source of phenolic compounds with high antioxidant activity that are used as reducing agents. The size, morphology, crystallinity, composition of the synthesized silver nanoparticles and conjugation of ceftriaxone to silver nanoparticles were studied using analytical techniques. The activity of the conjugates against Bacillus subtilis (MTCC 1790), Klebsiella pneumoniae (MTCC 3384), Staphylococcus aureus (ATCC 25923), and Salmonella typhi (MTCC 3224) was compared to ceftriaxone and unconjugated nanoparticles using disc diffusion method. The effect of silver nanoparticles on the reduction of biofilms of Pseudomonas fluorescens (MTCC 6732) was determined by micro plate assay method. The antioxidant activities of extract, silver nitrate, silver nanoparticles, ceftriaxone and conjugates of nanoparticles were evaluated by radical scavenging 1, 1- diphenyl-2-picrylhydrazyl test. Ultraviolet visible spectroscopy and Fourier transform infrared spectroscopy confirmed the formation of metallic silver nanoparticles and conjugation to ceftriaxone. Atomic force microscopy, transmission electron microscopy and particle size analysis showed that the formed particles were of spherical morphology with appreciable nanosize and the conjugation was confirmed by slight increase in surface roughness. The results thus showed that the conjugation of ceftriaxone with silver nanoparticles has better antioxidant and antimicrobial effects than ceftriaxone and unconjugated

  13. Aquatic Toxicity Comparison of Silver Nanoparticles and Silver Nanowires.

    PubMed

    Sohn, Eun Kyung; Johari, Seyed Ali; Kim, Tae Gyu; Kim, Jin Kwon; Kim, Ellen; Lee, Ji Hyun; Chung, Young Shin; Yu, Il Je

    2015-01-01

    To better understand the potential ecotoxicological impact of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) released into freshwater environments, the toxicities of these nanomaterials were assessed and compared using Organization for Economic Cooperation and Development (OECD) test guidelines, including a "Daphnia sp., acute immobilization test," "Fish, acute toxicity test," and "freshwater alga and cyanobacteria, growth inhibition test." Based on the estimated median lethal/effective concentrations of AgNPs and AgNWs, the susceptibility to the nanomaterials was different among test organisms (daphnia > algae > fish), suggesting that the AgNPs are classified as "category acute 1" for Daphnia magna, "category acute 2" for Oryzias latipes, and "category acute 1" for Raphidocelis subcapitata, while the AgNWs are classified as "category acute 1" for Daphnia magna, "category acute 2" for Oryzias latipes, and "category acute 2" for Raphidocelis subcapitata, according to the GHS (Globally Harmonized System of Classification and Labelling of Chemicals). In conclusion, the present results suggest that more attention should be paid to prevent the accidental or intentional release of silver nanomaterials into freshwater aquatic environments.

  14. Corrosion processes of triangular silver nanoparticles compared to bulk silver

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Myles, T. A.; Shahcheraghi, N.; Cortie, M. B.

    2016-02-01

    Excessive corrosion of silver nanoparticles is a significant impediment to their use in a variety of potential applications in the biosensing, plasmonic and antimicrobial fields. Here we examine the environmental degradation of triangular silver nanoparticles (AgNP) in laboratory air. In the early stages of corrosion, transmission electron microscopy shows that dissolution of the single-crystal, triangular, AgNP (side lengths 50-120 nm) is observed with the accompanying formation of smaller, polycrystalline Ag particles nearby. The new particles are then observed to corrode to Ag2S and after 21 days nearly full corrosion has occurred, but some with minor Ag inclusions remaining. In contrast, a bulk Ag sheet, studied in cross section, showed an adherent corrosion layer of only around 20-50 nm in thickness after over a decade of being exposed to ambient air. The results have implications for antibacterial properties and ecotoxicology of AgNP during corrosion as the dissolution and reformation of Ag particles during corrosion will likely be accompanied by the release of Ag+ ions.

  15. Silver nanoparticles cause complications in pregnant mice

    PubMed Central

    Zhang, Xi-Feng; Park, Jung-Hyun; Choi, Yun-Jung; Kang, Min-Hee; Gurunathan, Sangiliyandi; Kim, Jin-Hoi

    2015-01-01

    Background Silver nanoparticles (AgNPs) have attracted much interest and have been used for antibacterial, antifungal, anticancer, and antiangiogenic applications because of their unique properties. The increased usage of AgNPs leads to a potential hazard to human health. However, the potential effects of AgNPs on animal models are not clear. This study was designed to investigate the potential impact of AgNPs on pregnant mice. Methods The synthesis of AgNPs was performed using culture extracts of Bacillus cereus. The synthesized AgNPs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. AgNPs were administrated into pregnant mice via intravenous infusion at 1.0 mg/kg doses at 6.5 days postcoitum (dpc). At 13.5, 15.5, and 17.5 dpc, the pregnant mice were euthanized, and the embryo and placenta were isolated. The meiotic status of oocytes was evaluated. DNA methylation studies were performed, and aberrant imprinting disrupted fetal, placental, and postnatal development. Quantitative real-time polymerase chain reaction analysis and Western blot were used to analyze various gene expressions. Results The synthesized AgNPs were uniformly distributed and were spherical in shape with an average size of 8 nm. AgNPs exposure increased the meiotic progression of female germ cells in the fetal mouse ovaries, and maternal AgNP exposure significantly disrupted imprinted gene expression in 15.5 dpc embryos and placentas, such as Ascl2, Snrpn, Kcnq1ot1, Peg3, Zac1, H19, Igf2r, and Igf2; DNA methylation studies revealed that AgNPs exposure significantly altered the methylation levels of differentially methylated regions of Zac1. Conclusion The results from this study indicated that early exposure to AgNPs has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. These results can contribute to research involved in the safe use of

  16. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract

    NASA Astrophysics Data System (ADS)

    Sumi Maria, Babu; Devadiga, Aishwarya; Shetty Kodialbail, Vidya; Saidutta, M. B.

    2015-08-01

    In the present paper, biosynthesis of silver nanoparticles using Zizyphus xylopyrus bark extract is reported. Z. xylopyrus bark extract is efficiently used for the biosynthesis of silver nanoparticles. UV-Visible spectroscopy showed surface plasmon resonance peaks in the range 413-420 nm confirming the formation of silver nanoparticles. Different factors affecting the synthesis of silver nanoparticles like methodology for the preparation of extract, concentration of silver nitrate solution used for biosynthesis and initial pH of the reaction mixture were studied. The extract prepared with 10 mM AgNO3 solution by reflux extraction method at optimum initial pH of 11, resulted in higher conversion of silver ions to silver nanoparticles as compared with those prepared by open heating or ultrasonication. SEM analysis showed that the biosynthesized nanoparticles are spherical in nature and ranged from 60 to 70 nm in size. EDX suggested that the silver nanoparticles must be capped by the organic components present in the plant extract. This simple process for the biosynthesis of silver nanoparticles using aqueous extract of Z. xylopyrus is a green technology without the usage of hazardous and toxic solvents and chemicals and hence is environment friendly. The process has several advantages with reference to cost, compatibility for its application in medical and drug delivery, as well as for large-scale commercial production.

  17. Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening.

    PubMed

    Smetana, Alexander B; Klabunde, Kenneth J; Sorensen, Christopher M; Ponce, Audaldo A; Mwale, Benny

    2006-02-09

    We describe a remarkable and simple alloying procedure in which noble metal intermetallic nanoparticles are produced in gram quantities via digestive ripening. This process involves mixing of separately prepared colloids of pure Au and pure Ag or Cu particles and then heating in the presence of an alkanethiol under reflux. The result after 1 h is alloy nanoparticles. Particles synthesized according to this procedure were characterized by UV-vis spectroscopy, EDX analysis, and high-resolution electron microscopy, the results of which confirm the formation of alloy particles. The particles of 5.6+/-0.5 nm diameter for Au/Ag and 4.8+/-1.0 nm diameter for Cu/Au undergo facile self-assembly to form 3-D superlattice ordering. It appears that during this digestive ripening process, the organic ligands display an extraordinary chemistry in which atom transfer between atomically pure copper, silver, and gold metal nanoparticles yields monodisperse alloy nanoparticles.

  18. Synthesis of silver nanoparticles by silver salt reduction and its characterization

    NASA Astrophysics Data System (ADS)

    Muzamil, Muhammad; Khalid, Naveed; Danish Aziz, M.; Aun Abbas, S.

    2014-06-01

    The wet chemical method route by metal salt reduction has been used to synthesize nanoparticles, using silver nitrate as an inorganic salt, aldehyde as a reducing agent and amino acid as a catalyst. During the reaction aldehyde oxidizes to carboxylic acid and encapsulates the silver nanoparticles to prevent agglomeration and provide barrier in the growth of particle. The existing work produces particles using lab grade chemical, here the presented work is by using industrial grade chemicals to make the process more cost & time effective. The nano silver powder has been studied for their formation, particle size, shape & compositional analysis using Scanning Electron Microscope (SEM) equipped with EDS. The particles size distributions were analyzed by Laser Particle Analyzer (LPA), structure & morphological analysis using x-ray diffraction (XRD) and Fourier-transform-infrared Spectroscopy (FTIR) confirmed the stabilization of particles by coating of carboxylic group. These studies infer that the particles are mostly spherical in shape and have an average size between 70 to 350 nm.

  19. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties

    PubMed Central

    Kemp, Melissa M; Kumar, Ashavani; Clement, Dylan; Ajayan, Pulickel; Mousa, Shaker

    2009-01-01

    Aims Silver nanoparticles exhibit unique antibacterial properties that make these ideal candidates for biological and medical applications. We utilized a clean method involving a single synthetic step to prepare silver nanoparticles that exhibit antimicrobial activity. Materials & methods These nanoparticles were prepared by reducing silver nitrate with diaminopyridinylated heparin (DAPHP) and hyaluronan (HA) polysaccharides and tested for their efficacy in inhibiting microbial growth. Results & discussion The resulting silver nanoparticles exhibit potent antimicrobial activity against Staphylococcus aureus and modest activity against Escherichia coli. Silver–HA showed greater antimicrobial activity than silver–DAPHP, while silver–glucose nanoparticles exhibited very weak antimicrobial activity. Neither HA nor DAPHP showed activity against S. aureus or E. coli. Conclusion These results suggest that DAPHP and HA silver nanoparticles have potential in antimicrobial therapeutic applications. PMID:19505245

  20. Silver nanoparticles in X-ray biomedical applications

    NASA Astrophysics Data System (ADS)

    Mattea, Facundo; Vedelago, José; Malano, Francisco; Gomez, Cesar; Strumia, Miriam C.; Valente, Mauro

    2017-01-01

    The fluorescence of silver nanoparticles or ions can be used for detection and dose enhancement purposes in X-ray irradiation applications. This study is focused on the full integration of the chemical synthesis of silver nanoparticles suitable for dosimetric and radiological purposes with characteristics that can be exploited in radiotherapy and radiodiagnostic. A narrow size distribution and a compatible stabilizing agent is often desired in order to obtain homogeneous behaviors in nanoparticle suspension. With the method proposed in this study, nanoparticles ranging from 5 to 20 nm were obtained. The fluorescence of aqueous suspensions of silver nanoparticles has been measured experimentally and simulated with the Monte Carlo PENELOPE code for different silver concentrations and geometrical configurations. Finally, the feasibility of using these nanoparticles for the elaboration of Fricke gel dosimeters has been tested obtaining a dose enhancement when compared with the same material irradiated below the silver K-edge.

  1. Synthesis of Silver Nanoparticles Using Hydroxyl Functionalized Ionic Liquids and Their Antimicrobial Activity

    PubMed Central

    Dorjnamjin, Demberelnyamba; Ariunaa, Maamaa; Shim, Young Key

    2008-01-01

    We report a new one phase method for the synthesis of uniform monodisperse crystalline Ag nanoparticles in aqueous systems that has been developed by using newly synthesized mono and dihydroxylated ionic liquids and cationic surfactants based on 1,3-disubstituted imidazolium cations and halogens anions. The hydroxyl functionalized ionic liquids (HFILs) and hydroxyl functionalized cationic surfactants (HFCSs) also simultaneously acts both as the reductant and protective agent. By changing the carbon chain length, alcohol structure and anion of the 1,3-imidazolium based HFILs and HFCSs the particle size, uniform and dispersibility of nanoparticles in aqueous solvents could be controlled. Transmission electron microscopy (TEM), electron diffraction, UV-Vis and NMR, were used for characterization of HFILs, HFCSs and silver nanoparticles. TEM studies on the solution showed representative spherical silver nanoparticles with average sizes 2–8 nm, particularly 2.2 nm and 4.5 nm in size range and reasonable narrow particle size distributions (SD-standard distribution) 0.2 nm and 0.5 nm respectively. The all metal nanoparticles are single crystals with face centered cubic (fcc) structure. The silver nanoparticles surface of plasmon resonance band (λmax) around 420 nm broadened and little moved to the long wavelength region that indicating the formation of silver nanoparticles dispersion with broad absorption around infrared (IR) region. Silver complexes of these HFILs as well as different silver nanoparticles dispersions have been tested in vitro against several gram positive and gram negative bacteria and fungus. The silver nanoparticles providing environmentally friendly and high antimicrobial activity agents. PMID:19325785

  2. Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antimicrobial activity.

    PubMed

    Dorjnamjin, Demberelnyamba; Ariunaa, Maamaa; Shim, Young Key

    2008-05-01

    We report a new one phase method for the synthesis of uniform monodisperse crystalline Ag nanoparticles in aqueous systems that has been developed by using newly synthesized mono and dihydroxylated ionic liquids and cationic surfactants based on 1,3-disubstituted imidazolium cations and halogens anions. The hydroxyl functionalized ionic liquids (HFILs) and hydroxyl functionalized cationic surfactants (HFCSs) also simultaneously acts both as the reductant and protective agent. By changing the carbon chain length, alcohol structure and anion of the 1,3-imidazolium based HFILs and HFCSs the particle size, uniform and dispersibility of nanoparticles in aqueous solvents could be controlled. Transmission electron microscopy (TEM), electron diffraction, UV-Vis and NMR, were used for characterization of HFILs, HFCSs and silver nanoparticles. TEM studies on the solution showed representative spherical silver nanoparticles with average sizes 2-8 nm, particularly 2.2 nm and 4.5 nm in size range and reasonable narrow particle size distributions (SD-standard distribution) 0.2 nm and 0.5 nm respectively. The all metal nanoparticles are single crystals with face centered cubic (fcc) structure. The silver nanoparticles surface of plasmon resonance band (lambda(max)) around 420 nm broadened and little moved to the long wavelength region that indicating the formation of silver nanoparticles dispersion with broad absorption around infrared (IR) region. Silver complexes of these HFILs as well as different silver nanoparticles dispersions have been tested in vitro against several gram positive and gram negative bacteria and fungus. The silver nanoparticles providing environmentally friendly and high antimicrobial activity agents.

  3. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae.

    PubMed

    Soni, Namita; Prakash, Soam

    2012-01-01

    Chrysosporium tropicum is a pathogenic fungus. It is known to be an effective mosquito control agent. In the present study, we have synthesized the silver and gold nanoparticles using C. tropicum. These nanoparticles have been characterized through Microscan reader, X-ray diffractometer, transmission electron microscopy, and further confirmed by scanning electron microscopy. The characterization study confirmed the spherical shape and size (2-15 and 20-50 nm) of gold and silver nanoparticles. These silver and gold nanoparticles have been tested as a larvicide against the Aedes aegypti larvae. The larvicidal efficacy was noted when performed against all instars of A. aegypti at six different log concentrations, and significant results could be observed. The gold nanoparticles used as an efficacy enhancer have shown mortality at three times higher concentration than the silver nanoparticles. The larval mortality was observed after different time of exposures. The mortality values were obtained using the probit analysis. The larvae of A. aegypti were found to be highly susceptible for the silver nanoparticles. The second instar larvae have shown 100% mortality against the silver nanoparticles after 1 h, whereas the first, third, and fourth instars have shown efficacy (LC(50) = 3.47, 4, and 2; LC(90) = 12.30, 8.91, and 4; LC(99) = 13.18, 13.18, and 7.58, respectively) after 1 h. The results could suggest that the use of fungus C. tropicum, silver, and gold nanoparticles is a rapid, environmentally safer, and greener approach for mosquito control. This could lead us to a new possibility in vector control strategy.

  4. Anaerobic Toxicity of Cationic Silver Nanoparticles | Science ...

    EPA Pesticide Factsheets

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNps) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10-15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L-1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L-1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L-1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. The current

  5. Biopolymer protected silver nanoparticles on the support of carbon nanotube as interface for electrocatalytic applications

    NASA Astrophysics Data System (ADS)

    Satyanarayana, M.; Kumar, V. Sunil; Gobi, K. Vengatajalabathy

    2016-04-01

    In this research, silver nanoparticles (SNPs) are prepared on the surface of carbon nanotubes via chitosan, a biopolymer linkage. Here chitosan act as stabilizing agent for nanoparticles and forms a network on the surface of carbon nanotubes. Synthesized silver nanoparticles-MWCNT hybrid composite is characterized by UV-Visible spectroscopy, XRD analysis, and FESEM with EDS to evaluate the structural and chemical properties of the nanocomposite. The electrocatalytic activity of the fabricated SNP-MWCNT hybrid modified glassy carbon electrode has been evaluated by cyclic voltammetry and electrochemical impedance analysis. The silver nanoparticles are of size ˜35 nm and are well distributed on the surface of carbon nanotubes with chitosan linkage. The prepared nanocomposite shows efficient electrocatalytic properties with high active surface area and excellent electron transfer behaviour.

  6. Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria

    NASA Astrophysics Data System (ADS)

    Thuy Duong, Thi; Son Le, Thanh; Thu Huong Tran, Thi; Kien Nguyen, Trung; Ho, Cuong Tu; Hien Dao, Trong; Phuong Quynh Le, Thi; Chau Nguyen, Hoai; Dang, Dinh Kim; Thu Huong Le, Thi; Thu Ha, Phuong

    2016-09-01

    Silver nanoparticle (AgNP) has a wide range antibacterial effect and is extensively used in different aspects of medicine, food storage, household products, disinfectants, biomonitoring and environmental remediation etc. In the present study, we examined the growth inhibition effect of engineered silver nanoparticles against bloom forming cyanobacterial M. aeruginosa strain. AgNPs were synthesized by a chemical reduction method at room temperature and UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM) showed that they presented a maximum absorption at 410 nm and size range between 10 and 18 nm. M. aeruginosa cells exposed during 10 d to AgNPs to a range of concentrations from 0 to 1 mg l-1. The changes in cell density and morphology were used to measure the responses of the M. aeruginosa to AgNPs. The control and treatment units had a significant difference in terms of cell density and growth inhibition (p < 0.05). Increasing the concentration of AgNPs, a reduction of the cell growths in all treatment was observed. The inhibition efficiency was reached 98.7% at higher concentration of AgNPs nanoparticles. The term half maximal effective concentration (EC50) based on the cell growth measured by absorbance at 680 nm (A680) was 0.0075 mg l-1. The inhibition efficiency was 98.7% at high concentration of AgNPs (1 mg l-1). Image of SEM and TEM reflected a shrunk and damaged cell wall indicating toxicity of silver nanoparticles toward M. aeruginosa.

  7. Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahamed, Maqusood; Majeed Khan, M. A.; Siddiqui, M. K. J.; AlSalhi, Mohamad S.; Alrokayan, Salman A.

    2011-04-01

    Although green synthesis of silver nanoparticles (Ag NPs) by various plants and microorganisms has been reported, the potential of plants as biological materials for the synthesis of nanoparticles and their compatibility to biological systems is yet to be fully explored. In this study, we report a simple green method for the synthesis of Ag NPs using garlic clove extract as a reducing and stabilizing agent. In addition to green synthesis, biological response of Ag NPs in human lung epithelial A549 cells was also assessed. Ag NPs were rapidly synthesized using garlic clove extract and the formation of nanoparticles was observed within 30 min. The green synthesized Ag NPs were characterized using UV-vis spectrum, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray energy-dispersive spectroscopy (EDX) and dynamic light scattering (DLS). Characterization data demonstrated that the particles were crystalline in nature and spherical shaped with an average diameter of 12 nm. Measurements of cell viability, cell membrane integrity and intracellular production of reactive oxygen species have shown that the green synthesized Ag NPs were nontoxic to human lung epithelial A549 cells. This study demonstrated a simple, cost-effective and environmentally benign synthesis of Ag NPs with excellent biocompatibility to human lung epithelial A549 cells. This preliminary in vitro investigation needs to be followed up by future studies with various biological systems.

  8. Antifungal activity of silver nanoparticles obtained by green synthesis.

    PubMed

    Mallmann, Eduardo José J; Cunha, Francisco Afrânio; Castro, Bruno N M F; Maciel, Auberson Martins; Menezes, Everardo Albuquerque; Fechine, Pierre Basílio Almeida

    2015-01-01

    Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.

  9. Silver metal nanoparticles study for biomedical and green house applications

    NASA Astrophysics Data System (ADS)

    Rauwel, E.; Simón-Gracia, L.; Guha, M.; Rauwel, P.; Kuunal, S.; Wragg, D.

    2017-02-01

    Metallic nanoparticles (MNP) with diameters ranging from 2 to 100nm have received extensive attention during the past decades due to their many potential applications. This paper presents a structural and cytotoxicity study of silver metal nanoparticles targeted towards biomedical applications. Spherical Ag MNPs of diameter from 20 to 50 nm have been synthesized. The encapsulation of Ag MNPs inside pH-sensitive polymersomes has been also studied for the development of biomedical applications. A cytotoxicity study of the Ag MNPs against primary prostatic cancer cell line (PPC-1) has demonstrated a high mortality rate for concentrations ranging from 100 to 200mg/L. The paper will discuss the potential for therapeutic treatments of these Ag MNPs.

  10. ANTIFUNGAL ACTIVITY OF SILVER NANOPARTICLES OBTAINED BY GREEN SYNTHESIS

    PubMed Central

    MALLMANN, Eduardo José J.; CUNHA, Francisco Afrânio; CASTRO, Bruno N.M.F.; MACIEL, Auberson Martins; MENEZES, Everardo Albuquerque; FECHINE, Pierre Basílio Almeida

    2015-01-01

    Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment. PMID:25923897

  11. Strain specificity in antimicrobial activity of silver and copper nanoparticles.

    PubMed

    Ruparelia, Jayesh P; Chatterjee, Arup Kumar; Duttagupta, Siddhartha P; Mukherji, Suparna

    2008-05-01

    The antimicrobial properties of silver and copper nanoparticles were investigated using Escherichia coli (four strains), Bacillus subtilis and Staphylococcus aureus (three strains). The average sizes of the silver and copper nanoparticles were 3 nm and 9 nm, respectively, as determined through transmission electron microscopy. Energy-dispersive X-ray spectra of silver and copper nanoparticles revealed that while silver was in its pure form, an oxide layer existed on the copper nanoparticles. The bactericidal effect of silver and copper nanoparticles were compared based on diameter of inhibition zone in disk diffusion tests and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of nanoparticles dispersed in batch cultures. Bacterial sensitivity to nanoparticles was found to vary depending on the microbial species. Disk diffusion studies with E. coli and S. aureus revealed greater effectiveness of the silver nanoparticles compared to the copper nanoparticles. B. subtilis depicted the highest sensitivity to nanoparticles compared to the other strains and was more adversely affected by the copper nanoparticles. Good correlation was observed between MIC and MBC (r2=0.98) measured in liquid cultures. For copper nanoparticles a good negative correlation was observed between the inhibition zone observed in disk diffusion test and MIC/MBC determined based on liquid cultures with the various strains (r2=-0.75). Although strain-specific variation in MIC/MBC was negligible for S. aureus, some strain-specific variation was observed for E. coli.

  12. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity

    NASA Astrophysics Data System (ADS)

    Shen, Wenfeng; Zhang, Xianpeng; Huang, Qijin; Xu, Qingsong; Song, Weijie

    2014-01-01

    Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (~8.0 μΩ cm) were prepared simply by dispersing the synthesized silver NP powder in water. These inks are stable, fairly homogeneous and suitable for a wide range of patterning techniques. The inks were successfully printed on paper and polyethylene terephthalate (PET) substrates using a common color printer. Upon annealing at 180 °C, the resistivity of the printed silver patterns decreased to 3.7 μΩ cm, which is close to twice that of bulk silver. Various factors affecting the resistivity of the printed silver patterns, such as annealing temperature and the number of printing cycles, were investigated. The resulting high conductivity of the printed silver patterns reached over 20% of the bulk silver value under ambient conditions, which enabled the fabrication of flexible electronic devices, as demonstrated by the inkjet printing of conductive circuits of LED devices.Silver nanoparticles (NPs) which could be kept in solid form and were easily stored without degeneration or oxidation at room temperature for a long period of time were synthesized by a simple and environmentally friendly wet chemistry method in an aqueous phase. Highly stable dispersions of aqueous silver NP inks, sintered at room temperature, for printing highly conductive tracks (~8.0 μΩ cm) were prepared simply by dispersing the synthesized silver NP powder in water. These inks are stable, fairly homogeneous and suitable for a wide range of patterning techniques. The inks were successfully printed on paper and polyethylene terephthalate (PET) substrates using a common color printer. Upon annealing at 180 °C, the

  13. Synthesis of one-dimensional silver oxide nanoparticle arrays and silver nanorods templated by Langmuir monolayers.

    PubMed

    Liu, Hong-Guo; Xiao, Fei; Wang, Chang-Wei; Xue, Qingbin; Chen, Xiao; Lee, Yong-Ill; Hao, Jingcheng; Jiang, Jianzhuang

    2007-10-01

    One-dimensional (1D) silver oxide nanoparticle arrays were synthesized by illuminating the composite Langmuir-Blodgett monolayers of porphyrin derivatives/Ag(+) and n-hexadecyl dihydrogen phosphate (n-HDP)/Ag(+) deposited on carbon-coated copper grids with daylight and then exposing them to air. Transmission electron microscopy (TEM) observation shows that the nanoparticle size is around 3 nm, with the separation of about 2-3 nm. High-resolution TEM (HRTEM) investigation indicates that the particles are made up of Ag(2)O. Ag nanorods with the width of 15-35 nm and the length of several hundreds of nanometers were synthesized by irradiating the composite Langmuir monolayers of porphyrin derivatives/Ag(+) and n-HDP/Ag(+) by UV-light directly at the air/water interface at room temperature. HRTEM image and selected-area electron diffraction (SAED) pattern indicate that the nanorods are single crystals with the (110) face of the face-centered cubic (fcc) silver parallel to the air/water interface. The formation of the 1D arrays and the nanorods should be attributed to the templating effect of the linear supramolecules formed by porphyrin derivative or n-HDP molecules in Langmuir monolayers through non-covalent interactions.

  14. Antibacterial wound dressing from chitosan/polyethylene oxide nanofibers mats embedded with silver nanoparticles.

    PubMed

    Wang, Xiaoli; Cheng, Feng; Gao, Jing; Wang, Lu

    2015-03-01

    Novel antibacterial nanomaterials have been developed for biomedical applications. The present study involves the preparation and properties of antibacterial nanofibers from chitosan/polyethylene oxide electrospun nanofibers incorporated with silver nanoparticles. Silver nanoparticles were efficiently synthesized in situ after ultra violet (UV) with AgNO3 as precursor and chitosan/polyethylene oxide as reducing agent and protecting agent, respectively. Then the resultant solutions were electrospun into nanofibers. The formation of silver nanoparticles was confirmed with ultraviolet visible (UV-vis) and transmission electron microscopy (TEM), and the electrospun nanofibers were characterized by scanning electron microscopy and energy dispersive X-ray. The resultant fibers exhibited uniform morphology with silver nanoparticles distributed throughout the fiber. Also, the fibers showed certain tensile strength and excellent antibacterial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Sustained release of silver nanoparticles from fibers could last for over 72 h. The silver-containing chitosan/polyethylene oxide nanofibers showed excellent cytocompatibility.

  15. Synthesis of silver nanoparticles in textile finish aqueous system and their antimicrobial properties on cotton fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silver nanoparticles (NPs) were synthesized by a simple and environmentally benign procedure using poly (ethylene glycol) (PEG) as reducing agent and stabilizer in the textile finish aqueous system, and their antimicrobial properties on greige (mechanically cleaned) and bleached cotton fibers were i...

  16. One-step synthesis of silver nanoparticle-filled Nylon 6 nanofibers and their antibacterial properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel and facile one-step approach to in situ synthesize silver nanoparticle-filled nylon 6 nanofibers by electrospinning is reported. The method does not need post-treatments and can be carried out at ambient conditions without using additional chemicals. It employs the electrospinning solvent as...

  17. Active Silver Nanoparticles for Wound Healing

    PubMed Central

    Rigo, Chiara; Ferroni, Letizia; Tocco, Ilaria; Roman, Marco; Munivrana, Ivan; Gardin, Chiara; Cairns, Warren R. L.; Vindigni, Vincenzo; Azzena, Bruno; Barbante, Carlo; Zavan, Barbara

    2013-01-01

    In this preliminary study, the silver nanoparticle (Ag NP)-based dressing, Acticoat™ Flex 3, has been applied to a 3D fibroblast cell culture in vitro and to a real partial thickness burn patient. The in vitro results show that Ag NPs greatly reduce mitochondrial activity, while cellular staining techniques show that nuclear integrity is maintained, with no signs of cell death. For the first time, transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses were carried out on skin biopsies taken from a single patient during treatment. The results show that Ag NPs are released as aggregates and are localized in the cytoplasm of fibroblasts. No signs of cell death were observed, and the nanoparticles had different distributions within the cells of the upper and lower dermis. Depth profiles of the Ag concentrations were determined along the skin biopsies. In the healed sample, most of the silver remained in the surface layers, whereas in the unhealed sample, the silver penetrated more deeply. The Ag concentrations in the cell cultures were also determined. Clinical observations and experimental data collected here are consistent with previously published articles and support the safety of Ag NP-based dressing in wound treatment. PMID:23455461

  18. TOP as ligand and solvent to synthesize silver telluride nanosheets

    SciTech Connect

    Chen, Shutang; Lee, Soonil

    2015-11-15

    Highlights: • Silver telluride nanosheets were prepared through one-pot synthetic strategy. • TOP as both ligand and solvent favors silver telluride nanosheets growth. • The I–V curve of an Ag{sub 2}Te-nanosheet film indicates that as-prepared Ag{sub 2}Te nanosheets have good electric conductivity. - Abstract: Ag{sub 2}Te nanosheets are synthesized by a simple one-pot route using trioctylphosphine (TOP) as both solvent and stabilizer. Various controlling parameters were examined, such as molar ratios of AgNO{sub 3} to tellurium powder, reaction temperature and time, and precursor concentration. The morphology and composition of the products were characterized by X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. On the basis of a series of synthesis and characterizations, the formation mechanism of the Ag{sub 2}Te nanosheets are discussed. The I–V curve of an Ag{sub 2}Te-nan osheet film indicates that as-prepared Ag{sub 2}Te nanosheets have good electric conductivity.

  19. Synthesis of silver nanoparticles in melts of amphiphilic polyesters

    NASA Astrophysics Data System (ADS)

    Vasylyev, S.; Damm, C.; Segets, D.; Hanisch, M.; Taccardi, N.; Wasserscheid, P.; Peukert, W.

    2013-03-01

    The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens’ reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion.

  20. Study of ecotoxicity of silver nanoparticles using daphnids

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.; Abramenko, N. B.

    2016-12-01

    Silver nanoparticles have been prepared and tested for their ecotoxicity using daphnids as a hydrobiotic test. The toxicity was supposed to originate from Ag+ ions released into the aqueous solution. Also, the toxicity of the stabilizing agent was found to be comparable to that of silver nanoparticles.

  1. Chitin membranes containing silver nanoparticles for wound dressing application.

    PubMed

    Singh, Rita; Singh, Durgeshwer

    2014-06-01

    Silver nanoparticles are gaining importance as an antimicrobial agent in wound dressings. Chitin is a biopolymer envisioned to promote rapid dermal regeneration and accelerate wound healing. This study was focused on the evaluation of chitin membranes containing silver nanoparticles for use as an antimicrobial wound dressing. Silver nanoparticles were synthesised by gamma irradiation at doses of 50 kGy in the presence of sodium alginate as stabiliser. The UV-Vis absorption spectra of nanoparticles exhibited an absorption band at 415-420 nm, which is the typical plasmon resonance band of silver nanoparticles. The peaks in the X-ray diffraction (XRD) pattern are in agreement with the standard values of the face-centred cubic silver. Transmission electron microscopy (TEM) images indicate silver nanoparticles with spherical morphology and small particle size in the range of 3-13 nm. In vitro antimicrobial tests were performed using Pseudomonas aeruginosa and Staphylococcus aureus to determine the antimicrobial efficiency of the chitin membranes containing 30, 50, 70 and 100 ppm nanosilver. No viable counts for P. aeruginosa were detected with 70 ppm silver nanoparticles dressing after 1-hour exposure. A 2-log reduction in viable cell count was observed for S. aureus after 1 hour and a 4-log reduction after 6 hours with 100 ppm nanosilver chitin membranes. This study demonstrates the antimicrobial capability of chitin membranes containing silver nanoparticles. The chitin membranes with 100 ppm nanosilver showed promising antimicrobial activity against common wound pathogens.

  2. Transformation of Silver Nanoparticles in Fresh, Aged, and Incinerated Biosolids

    EPA Science Inventory

    Abstract The purpose of this research was to assess the chemical transformation of silver nanoparticles (AgNPs) in aged, fresh, and incinerated biosolids in order to provide information for AgNP life cycle analyses. Silver nanoparticles were introduced to the influent of a pilot...

  3. Study of ecotoxicity of silver nanoparticles using algae

    NASA Astrophysics Data System (ADS)

    Kustov, L. M.; Abramenko, N. B.

    2016-11-01

    Silver nanoparticles have been prepared and tested for their ecotoxicity using Chlorella vulgaris Beijer. algae as a hydrobiotic test organism and a photometric method of control. The toxicity was supposed to originate from Ag+ ions released into the aqueous solution. Also, the toxicity of the stabilizing agent was found to be comparable to that of silver nanoparticles.

  4. Biocompatibility and antibacterial activity of the Adathoda vasica Linn extract mediated silver nanoparticles.

    PubMed

    Latha, M; Priyanka, M; Rajasekar, P; Manikandan, R; Prabhu, N M

    2016-04-01

    The aim of this study is to investigate the biocompatibility and anti-Vibrio efficacy of green synthesized silver nanoparticles (AgNPs) using an aqueous leaf extract of Adathoda vasica (A. vasica). The green synthesized silver nanoparticles were characterized by UV-vis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). A. vasica AgNPs showed significant antibacterial activity against Vibrio parahaemolyticus in agar bioassay and well diffusion method. Further, nanoparticles interactions with bacteria and its antibacterial activity were confirmed by CLSM analysis. In vivo evaluation results confirmed that synthesized A. vasica AgNPs had good antibacterial efficacy and also nontoxic to the Artemia nauplii.

  5. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles

    PubMed Central

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela

    2013-01-01

    The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801

  6. Biogenic silver nanoparticles: efficient and effective antifungal agents

    NASA Astrophysics Data System (ADS)

    Netala, Vasudeva Reddy; Kotakadi, Venkata Subbaiah; Domdi, Latha; Gaddam, Susmila Aparna; Bobbu, Pushpalatha; Venkata, Sucharitha K.; Ghosh, Sukhendu Bikash; Tartte, Vijaya

    2016-04-01

    Biogenic synthesis of silver nanoparticles (AgNPs) by exploiting various plant materials is an emerging field and considered green nanotechnology as it involves simple, cost effective and ecofriendly procedure. In the present study AgNPs were successfully synthesized using aqueous callus extract of Gymnema sylvestre. The aqueous callus extract treated with 1nM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs showed a peak at 437 nm in the UV Visible spectrum. The synthesized AgNPs were characterized using Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and X-ray diffraction spectroscopy (XRD). FTIR spectra showed the peaks at 3333, 2928, 2361, 1600, 1357 and 1028 cm-1 which revealed the role of different functional groups possibly involved in the synthesis and stabilization of AgNPs. TEM micrograph clearly revealed the size of the AgNPs to be in the range of 3-30 nm with spherical shape and poly-dispersed nature; it is further confirmed by Particle size analysis that the stability of AgNPs is due its high negative Zeta potential (-36.1 mV). XRD pattern revealed the crystal nature of the AgNPs by showing the braggs peaks corresponding to (111), (200), (220) and (311) planes of face-centered cubic crystal phase of silver. Selected area electron diffraction pattern showed diffraction rings and confirmed the crystalline nature of synthesized AgNPs. The synthesized AgNPs exhibited effective antifungal activity against Candida albicans, Candida nonalbicans and Candida tropicalis.

  7. A green approach for synthesis of gold and silver nanoparticles by Leishmania sp.

    PubMed

    Ramezani, Fatemeh; Jebali, Ali; Kazemi, Bahram

    2012-11-01

    The application of microorganisms for the synthesis of metal nanoparticles as an eco-friendly and promising approach is ongoing. In this paper, an attempt has been made to investigate the capability of Leishmania sp. for synthesis of metal nanoparticles from aqueous silver and gold ions. The samples were analyzed by a UV-Vis spectroscopy and the results showed the absorbance peak values at 420 and 540 nm, respectively, for the surface plasmon resonance of silver and gold nanoparticles. The surface morphology of the nanoparticles in solution was visualized by atomic force microscope and scanning electron microscope images, which showed the production of metallic nanoparticles by this protozoan. Fourier transform infrared spectroscopy analyses confirmed the presence of different bands of protein as capping and stabilizing agent on the nanoparticles surfaces. The synthesized silver and gold nanoparticles were with dimensions ranging between 10 and 100 nm for silver and 50-100 nm for gold. These results of the present study have demonstrated the efficiency of this protozoan for synthesis of nanoparticles, by offering the merits of environmentally friendly, amenability, and time saving for large-scale production.

  8. Biotemplates in the green synthesis of silver nanoparticles.

    PubMed

    Vijayaraghavan, Krishnan; Nalini, S P Kamala

    2010-10-01

    This article recapitulates the scientific advancement towards the greener synthesis of silver nanoparticles. Applications of noble metals have increased throughout human civilization, and the uses for nano-sized particles are even more remarkable. "Green" nanoparticle synthesis has been achieved using environmentally acceptable solvent systems and eco-friendly reducing and capping agents. Numerous microorganisms and plant extracts have been applied to synthesize inorganic nanostructures either intracellularly or extracellularly. The use of nanoparticles derived from noble metals has spread to many areas including jewelery, medical fields, electronics, water treatment and sport utilities, thus improving the longevity and comfort in human life. The application of nanoparticles as delivery vehicles for bactericidal agents represents a new paradigm in the design of antibacterial therapeutics. Orientation, size and physical properties of nanoparticles influences the performance and reproducibility of a potential device, thus making the synthesis and assembly of shape- and size-controlled nanocrystals an essential component for any practical application. This need has motivated researchers to explore different synthesis protocols.

  9. Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity

    PubMed Central

    2012-01-01

    Polyhexamethylene biguanide (PHMB), a broad spectrum disinfectant against many pathogens, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles. The particles formed were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering, electrophoretic mobility, and TEM to measure their morphology and surface chemistry. PHMB-functionalized silver nanoparticles were then evaluated for their antimicrobial activity against a gram-negative bacterial strain, Escherichia coli. These silver nanoparticles were found to have about 100 times higher bacteriostatic and bactericidal activities, compared to the previous reports, due to the combined antibacterial effect of silver nanoparticles and PHMB. In addition to other applications, PHMB-functionalized silver nanoparticles would be extremely useful in textile industry due to the strong interaction of PHMB with cellulose fabrics. PMID:22625664

  10. Polyhexamethylene biguanide functionalized cationic silver nanoparticles for enhanced antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Ashraf, Sumaira; Akhtar, Nasrin; Ghauri, Muhammad Afzal; Rajoka, Muhammad Ibrahim; Khalid, Zafar M.; Hussain, Irshad

    2012-05-01

    Polyhexamethylene biguanide (PHMB), a broad spectrum disinfectant against many pathogens, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles. The particles formed were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering, electrophoretic mobility, and TEM to measure their morphology and surface chemistry. PHMB-functionalized silver nanoparticles were then evaluated for their antimicrobial activity against a gram-negative bacterial strain, Escherichia coli. These silver nanoparticles were found to have about 100 times higher bacteriostatic and bactericidal activities, compared to the previous reports, due to the combined antibacterial effect of silver nanoparticles and PHMB. In addition to other applications, PHMB-functionalized silver nanoparticles would be extremely useful in textile industry due to the strong interaction of PHMB with cellulose fabrics.

  11. Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity

    NASA Astrophysics Data System (ADS)

    Mane Gavade, S. J.; Nikam, G. H.; Dhabbe, R. S.; Sabale, S. R.; Tamhankar, B. V.; Mulik, G. N.

    2015-12-01

    In this study well defined silver nanoparticles were synthesized by using carambola fruit extract. After exposing the silver ions to the fruit extract, the rapid reduction of silver ions led to the formation of stable AgNPs in solution due to the reducing and stabilizing properties of carambola fruit juice. The synthesized NPs were analyzed by ultraviolet-visible spectroscopy and x-ray diffraction pattern. The as-synthesized AgNPs were phase pure and well crystalline with a face-centered cubic structure. The AgNPs were characterized by TEM to determine their size and morphology. The antimicrobial activity of the synthesized AgNPs was investigated against Escherichia coli and Pseudomonas aeruginosa by agar well diffusion method. This newly developed method is eco-friendly and could prove a better substitute for the current physical and chemical methods for the synthesis of AgNPs.

  12. Invertebrate water extracts as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles.

    PubMed

    Han, Lina; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2013-08-01

    We report the use of water extracts of two invertebrates, snail body and earthworm, as biocompatible reducing agents for the green synthesis of gold and silver nanoparticles. The reaction conditions were optimized by varying the extract concentration, gold ion or silver ion concentration, reaction time, and reaction temperature. The gold and silver nanoparticles exhibited their characteristic surface plasmon resonance bands. Mostly spherical and amorphous shapes of the nanoparticles were synthesized. The average diameters of the gold and silver nanoparticles were 4.56 +/- 1.81 nm and 11.12 +/- 5.25 nm, respectively, when the extract of snail body was used as the reducing agent. The earthworm extracts produced gold and silver nanoparticles with average diameters of 6.70 +/- 2.69 nm and 12.19 +/- 4.28 nm, respectively. This report suggests that the invertebrate natural products have potential as biocompatible reducing agents for the green synthesis of metallic nanoparticles. This utility would open up novel applications of invertebrate natural products as nanocomposites and in nanomedicine.

  13. Synthesis and characterization of cysteine functionalized silver nanoparticles for biomolecule immobilization.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2014-11-01

    A facile method for the aqueous phase synthesis of cysteine-functionalized silver nanoparticles by potato extract has been reported in the present work. These functionalized nanoparticles were then used for the covalent immobilization of a biomolecule, alkaline phosphatase, on its surface through carbodiimide coupling. Different reaction parameters such as cysteine concentration, reducing agent concentration, temperature, pH and reaction time were varied during the nanoparticles' formation, and their effects on plasmon resonance were studied using Ultraviolet-visible spectroscopy. Fourier transform infrared spectroscopy was used to confirm the surface modification of silver nanoparticles by cysteine and the particle size analysis was done using particle size analyzer, which showed the average nanoparticles' size of 61 nm for bare silver nanoparticles and 201 nm for the enzyme-immobilized nanoparticles. The synthesized nanoparticles were found to be highly efficient for the covalent immobilization of alkaline phosphatase on its surface and retained 67% of its initial enzyme activity (9.44 U/mg), with 75% binding efficiency. The shelf life of the enzyme-nanoparticle bioconjugates was found to be 60 days, with a 12% loss in the initial enzyme activity. With a simple synthesis strategy, high immobilization efficiency and enhanced stability, these enzyme-coated nanoparticles have the potential for further integration into the biosensor technology.

  14. Caging antimicrobial silver nanoparticles inside cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, a stable, non-leaching Ag-cotton nanocomposite fiber has been characterized. Siver nanoparticles (Ag NPs) were previously synthesized in the alkali-swollen substructure of cotton fiber; the nano-sized micofibrillar channels allowed diffusion-controlled conditions to produce mono-dispe...

  15. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents

    PubMed Central

    Singh, Richa; Nawale, Laxman; Arkile, Manisha; Wadhwani, Sweety; Shedbalkar, Utkarsha; Chopade, Snehal; Sarkar, Dhiman; Chopade, Balu Ananda

    2016-01-01

    Purpose Multi- and extensively drug-resistant tuberculosis (TB) is a global threat to human health. It requires immediate action to seek new antitubercular compounds and devise alternate strategies. Nanomaterials, in the present scenario, have opened new avenues in medicine, diagnosis, and therapeutics. In view of this, the current study aims to determine the efficacy of phytogenic metal nanoparticles to inhibit mycobacteria. Methods Silver (AgNPs), gold (AuNPs), and gold–silver bimetallic (Au–AgNPs) nanoparticles synthesized from medicinal plants, such as Barleria prionitis, Plumbago zeylanica, and Syzygium cumini, were tested against Mycobacterium tuberculosis and M. bovis BCG. In vitro and ex vivo macrophage infection model assays were designed to determine minimum inhibitory concentration (MIC) and half maximal inhibitory concentration of nanoparticles. Microscopic analyses were carried out to demonstrate intracellular uptake of nanoparticles in macrophages. Besides this, biocompatibility, specificity, and selectivity of nanoparticles were also established with respect to human cell lines. Results Au–AgNPs exhibited highest antitubercular activity, with MIC of <2.56 μg/mL, followed by AgNPs. AuNPs did not show such activity at concentrations of up to 100 μg/mL. In vitro and ex vivo macrophage infection model assays revealed the inhibition of both active and dormant stage mycobacteria on exposure to Au–AgNPs. These nanoparticles were capable of entering macrophage cells and exhibited up to 45% cytotoxicity at 30 μg/mL (ten times MIC concentration) after 48 hours. Among these, Au–AgNPs synthesized from S. cumini were found to be more specific toward mycobacteria, with their selectivity index in the range of 94–108. Conclusion This is the first study to report the antimycobacterial activity of AuNPs, AgNPs, and Au–AgNPs synthesized from medicinal plants. Among these, Au–AgNPs from S. cumini showed profound efficiency, specificity, and

  16. Synthesis and applications of novel silver nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Dukes, Kyle

    The field of nanotechnology is rapidly expanding across disciplines as each new development is realized. New exciting technologies are being driven by advances in the application of nanotechnology; including biochemical, optical, and semiconductors research. This thesis will focus on the use of silver nanoparticles as optical labels on cells, methods of forming different small structures of silver nanoparticles, as well as the use of silver nanoparticles in the development of a photovoltaic cell. Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core-shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide-azide coupling chemistry and biotinylated antibodies targeting cell surface receptors were bound to the nanoparticle surface. The nanoparticle labels exhibited long-term stability under physiological conditions without aggregation or silver ion leaching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared to unlabeled cells. Dimers of silver nanoparticles have been fabricated by first immobilizing a monolayer of single silver nanoparticles onto poly(4-vinylpyridine) covered glass slides. The monolayer was then exposed to adenine, which has two amines which will bind to silver. The nanoparticle monolayer, now modified with adenine, is exposed to a second suspension of nanoparticles which will bind with the amine modified monolayer. Finally, a thin silica shell is formed about the structure via solgel chemistry to prevent dissolution or aggregation upon sonication/striping. Circular arrays of silver nanoparticels are developed using a

  17. Investigation of antibacterial properties silver nanoparticles prepared via green method

    PubMed Central

    2012-01-01

    Background This study aims to investigate the influence of different stirring times on antibacterial activity of silver nanoparticles in polyethylene glycol (PEG) suspension. The silver nanoparticles (Ag-NPs) were prepared by green synthesis method using green agents, polyethylene glycol (PEG) under moderate temperature at different stirring times. Silver nitrate (AgNO3) was taken as the metal precursor while PEG was used as the solid support and polymeric stabilizer. The antibacterial activity of different sizes of nanosilver was investigated against Gram–positive [Staphylococcus aureus] and Gram–negative bacteria [Salmonella typhimurium SL1344] by the disk diffusion method using Müeller–Hinton Agar. Results Formation of Ag-NPs was determined by UV–vis spectroscopy where surface plasmon absorption maxima can be observed at 412–437 nm from the UV–vis spectrum. The synthesized nanoparticles were also characterized by X-ray diffraction (XRD). The peaks in the XRD pattern confirmed that the Ag-NPs possessed a face-centered cubic and peaks of contaminated crystalline phases were unable to be located. Transmission electron microscopy (TEM) revealed that Ag-NPs synthesized were in spherical shape. The optimum stirring time to synthesize smallest particle size was 6 hours with mean diameter of 11.23 nm. Zeta potential results indicate that the stability of the Ag-NPs is increases at the 6 h stirring time of reaction. The Fourier transform infrared (FT-IR) spectrum suggested the complexation present between PEG and Ag-NPs. The Ag-NPs in PEG were effective against all bacteria tested. Higher antibacterial activity was observed for Ag-NPs with smaller size. These suggest that Ag-NPs can be employed as an effective bacteria inhibitor and can be applied in medical field. Conclusions Ag-NPs were successfully synthesized in PEG suspension under moderate temperature at different stirring times. The study clearly showed that the Ag-NPs with different stirring times

  18. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope

    PubMed Central

    Salaheldin, Taher A.; Husseiny, Sherif M.; Al-Enizi, Abdullah M.; Elzatahry, Ahmed; Cowley, Alan H.

    2016-01-01

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity. PMID:26950118

  19. Surface enhanced Raman scattering study of the antioxidant alkaloid boldine using prismatic silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Herrera, M. A.; Jara, G. P.; Villarroel, R.; Aliaga, A. E.; Gómez-Jeria, J. S.; Clavijo, E.; Garrido, C.; Aguayo, T.; Campos Vallette, M. M.

    2014-12-01

    Prismatic silver nanoparticles (PNps) were used in the surface enhanced Raman scattering (SERS) study of the antioxidant alkaloid boldine (5,6,6a,7-tetrahydro-1,10-dimethoxy-6-methyl-4H-dibenzo[de,g]quinoline-2,9-diol). Prismatic and quasi-spherical (QsNps) silver nanoparticles were synthesized and characterized by UV-Vis spectra, topographic profile (AFM) and zeta potential measurements. Raman and infrared (IR) spectra of the boldine were registered. Theoretical model calculations of the boldine onto the Ag surface predict a nearly coplanar orientation of the benzo[de]quinoline moiety and non-bonded interactions (electrostatic).

  20. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Otari, S. V.; Patil, R. M.; Ghosh, S. J.; Thorat, N. D.; Pawar, S. H.

    2015-02-01

    Intracellular synthesis of silver nanoparticles (AgNPs) using Rhodococcus spp. is demonstrated. The synthesized nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction, energy dispersive spectroscopy, Fourier trans-form infrared spectroscopy, and transmission electron microscopy. Transmission electron microscopy study of microorganisms' revealed synthesis of nanoparticle was occurring inside the cell, in the cytoplasm. AgNPs ranged from 5 to 50 nm. Formed nanoparticles were stable in the colloidal solution due to presence of proteins on the surface. AgNPs showed excellent bactericidal and bacteriostatic activity against pathogenic microorganisms.

  1. Synthesis of bimetallic gold/silver nanoparticles via in situ seeding

    NASA Astrophysics Data System (ADS)

    Gorbachevskiy, M. V.; Kopitsyn, D. S.; Tiunov, I. A.; Kotelev, M. S.; Vinokurov, V. A.; Novikov, A. A.

    2017-01-01

    A way of synthesizing bimetallic gold/silver nanoparticles with in situ seeding initiated by the addition of sodium borohydride is proposed. The obtained nanoparticles are studied by means of transmission electron microscopy (TEM). Changes in the optical density spectra of the nanoparticles during their coagulation are investigated. The technique allows the rapid acquisition of nontoxic SERS-active nanoparticles with maximum SERS enhancement factor about 105 in the near infrared range for Raman shifts typical for biological objects such as bacterial cells and spores.

  2. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise

    PubMed Central

    Ahmed, Shakeel; Ahmad, Mudasir; Swami, Babu Lal; Ikram, Saiqa

    2015-01-01

    Metallic nanoparticles are being utilized in every phase of science along with engineering including medical fields and are still charming the scientists to explore new dimensions for their respective worth which is generally attributed to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. Among several noble metal nanoparticles, silver nanoparticles have attained a special focus. Conventionally silver nanoparticles are synthesized by chemical method using chemicals as reducing agents which later on become accountable for various biological risks due to their general toxicity; engendering the serious concern to develop environment friendly processes. Thus, to solve the objective; biological approaches are coming up to fill the void; for instance green syntheses using biological molecules derived from plant sources in the form of extracts exhibiting superiority over chemical and/or biological methods. These plant based biological molecules undergo highly controlled assembly for making them suitable for the metal nanoparticle syntheses. The present review explores the huge plant diversity to be utilized towards rapid and single step protocol preparatory method with green principles over the conventional ones and describes the antimicrobial activities of silver nanoparticles. PMID:26843966

  3. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiliang; Zhang, Xingye; Xin, Zhiqing; Deng, Mengmeng; Wen, Yongqiang; Song, Yanlin

    2011-10-01

    In this study, monodisperse silver nanoparticles were synthesized with a new reduction system consisting of adipoyl hydrazide and dextrose at ambient temperature. By this facile and rapid approach, high concentration monodisperse silver nanoparticles were obtained on a large scale at low protectant/AgNO3 mass ratio which was highly beneficial to low cost and high conductivity. Based on the synthesized monodisperse silver nanoparticles, conductive inks were prepared with water, ethanol and ethylene glycol as solvents, and were expected to be more environmentally friendly. A series of electrocircuits were fabricated by ink-jet printing silver nanoparticle ink on paper substrate with a commercial printer, and they had low resistivity in the range of 9.18 × 10 - 8-8.76 × 10 - 8 Ω m after thermal treatment at 160 °C for 30 min, which was about five times that of bulk silver (1.586 × 10 - 8 Ω m). Moreover, a radio frequency identification (RFID) antenna was fabricated by ink-jet printing, and 6 m wireless identification was realized after an Alien higgs-3 chip was mounted on the printed antenna by the flip-chip method. These flexible electrocircuits produced by ink-jet printing would have enormous potential for low cost electrodes and sensor devices.

  4. Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Taihua; Park, Hyun Gyu; Lee, Hee-Seung; Choi, Seong-Ho

    2004-10-01

    Chiral biomolecules conjugated with silver nanoparticles were investigated by circular dichroism (CD) spectroscopy. Silver nanoparticles were prepared by the citrate reduction method and were characterized by UV spectroscopy and TEM. Conjugation of thiol group-containing biomolecules, such as cysteine, glutathione and penicillamine, with silver nanoparticles resulted in the generation of new characteristic CD signals in the region of 240-400 nm, whereas no CD signal changes were found with lysine or glutamine. Association through hydrogen bonding among the biomolecules is considered to be essential for CD signal generation, which was confirmed by experiment with cysteine methyl ester. Interestingly, Au nanoparticles were not found to generate CD signals in the wavelength region tested, indicating that this phenomenon is a unique feature of silver nanoparticles, distinguished from gold nanoparticles.

  5. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles.

    PubMed

    Singh, Priyanka; Kim, Yeon Ju; Singh, Hina; Wang, Chao; Hwang, Kyu Hyon; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2015-01-01

    In the present study, the strain Brevibacterium frigoritolerans DC2 was explored for the efficient and extracellular synthesis of silver nanoparticles. These biosynthesized silver nanoparticles were characterized by ultraviolet-visible spectrophotometry, which detected the formation of silver nanoparticles in the reaction mixture and showed a maximum absorbance at 420 nm. In addition, field emission transmission electron microscopy revealed the spherical shape of the nanoparticles. The dynamic light scattering results indicated the average particle size of the product was 97 nm with a 0.191 polydispersity index. Furthermore, the product was analyzed by energy dispersive X-ray spectroscopy, X-ray diffraction, and elemental mapping, which displayed the presence of elemental silver in the product. Moreover, on a medical platform, the product was checked against pathogenic microorganisms including Vibrio parahaemolyticus, Salmonella enterica, Bacillus anthracis, Bacillus cereus, Escherichia coli, and Candida albicans. The nanoparticles demonstrated antimicrobial activity against all of these pathogenic microorganisms. Additionally, the silver nanoparticles were evaluated for their combined effects with the commercial antibiotics lincomycin, oleandomycin, vancomycin, novobiocin, penicillin G, and rifampicin against these pathogenic microorganisms. These results indicated that the combination of antibiotics with biosynthesized silver nanoparticles enhanced the antimicrobial effects of antibiotics. Therefore, the current study is a demonstration of an efficient biological synthesis of silver nanoparticles by B. frigoritolerans DC2 and its effect on the enhancement of the antimicrobial efficacy of well-known commercial antibiotics.

  6. Silver nanoparticles: synthesis and application in mineralization of pesticides using membrane support

    NASA Astrophysics Data System (ADS)

    Manimegalai, G.; Shanthakumar, S.; Sharma, Chandan

    2014-05-01

    Pesticides are deliberately used for controlling the pests in agriculture and public health, due to which, a part of it is present in the drinking water. Due to their widespread use, they are present in both surface and ground water. Most of the pesticides are resistant to biodegradation and are found to be carcinogenic in nature even at trace levels. Conventional methods of pesticide removal are disadvantageous due to their inherent time consumption or expensiveness. Nanoparticles alleviate both of these drawbacks and hence, they can be effectively utilized for the mineralization of pesticides. To prevent the presence of nanoparticles in the purified water after mineralization of pesticides, they need to be incorporated on a support. In earlier studies, researchers employed activated carbon and alumina as support for silver nanoparticles in pesticide mineralization. However, not many studies have been carried out on polymeric membranes as support for silver nanoparticles in the mineralization of pesticides (chlorpyrifos and malathion). With this in view, a detailed study has been carried out to estimate the mineralization potential of silver nanoparticles (synthesized using glucose) supported on cellulose acetate membrane. It is observed that the silver nanoparticles can effectively mineralize the pesticides, and the concentration of nanoparticles enhances the rate of mineralization.

  7. Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf

    NASA Astrophysics Data System (ADS)

    Pant, Gaurav; Nayak, Nitesh; Gyana Prasuna, R.

    2013-10-01

    The present investigation describes simple and effective method for synthesis of silver nanoparticles via green route. Solanum trilobatum Linn extract were prepared by both conventional and homogenization method. We optimized the production of silver nanoparticles under sunlight, microwave and room temperature. The best results were obtained with sunlight irradiation, exhibiting 15-20 nm silver nanoparticles having cubic and hexagonal shape. Biosynthesized nanoparticles were highly toxic to various bacterial strains tested. In this study we report antibacterial activity against various Gram negative ( Klebsiella pneumoniae, Vibrio cholerae and Salmonella typhi) and Gram positive ( Staphylococcus aureus, Bacillus cereus and Micrococcus luteus) bacterial strains. Screening was also performed for any antifungal properties of the nanoparticles against human pathogenic fungal strains ( Candida albicans and Candida parapsilosis). We also demonstrated that these nanoparticles when mixed with shampoo enhance the anti-dandruff effect against dandruff causing fungal pathogens ( Pityrosporum ovale and Pityrosporum folliculitis). The present study showed a simple, rapid and economical route to synthesize silver nanoparticles and their applications hence has a great potential in biomedical field.

  8. Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Ma, Qian; Wang, Shu-Dong; Liu, Hua; Zhang, Sheng-Zhong; Bao, Wei; Zhang, Ke-Qin; Ling, Liang-Zhong

    2016-01-01

    In this paper, silver nanoparticles (NPs) were reduced form silver nitrate. Morphology and distribution of the synthesized silver NPs were characterized. In order to obtain cellulose acetate (CA), nanofibrous membrane with high effective adsorption performance to carry silver NPs for treatment of dye wastewater, different solvent systems were used to fabricate CA nanofibrous membranes with different morphologies and porous structures via electrospinning. Morphologies and structures of the obtained CA nanofibrous membranes were compared by scanning electron microscopy (SEM), which showed that CA nanofibrous membrane obtained from acetone/dichloromethane (1/2, v/v) was with the highly porous structure. SEM, energy-dispersive spectrometry and Fourier transform infrared spectrometry showed that the silver NPs were effectively incorporated in the CA nanofibrous membrane and the addition of silver NPs did not damage the porous structure of the CA nanofibrous membrane. Adsorption of dye solution (rhodamine B aqueous solution) revealed that the highly porous CA nanofibrous membrane exhibited effective adsorption performance and the addition of silver NPs did not affect the adsorption of the dye. Antibacterial property of the CA nanofibrous membrane showed that the silver-loaded highly porous CA nanofibrous membrane had remarkable antibacterial property when compared to the CA nanofibrous membrane without silver NPs. The silver-loaded highly porous CA nanofibrous membrane could be considered as an ideal candidate for treatment of the dye wastewater.

  9. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity.

    PubMed

    Litvin, Valentina A; Minaev, Boris F

    2013-05-01

    In this present study, silver nanoparticles were synthesized using synthetic humic substances (HSs) as reducing and stabilizing agents. Preference of synthetic HSs over natural humic matter is determined by a standardization problem resolution of the product due to the strict control of conditions of the synthetic HSs formation. It allows to receive the silver nanoparticles with the standardized biologically-active protective shell that is very important for their use, mainly in medicine. The concentration of sodium hydroxide, synthetic HSs, silver nitrate and temperature employed in the synthesis process are optimized to attain better yield, controlled size and stability by means of UV-visible technique. In the optimal reaction conditions the concentrated silver colloids (55 mM) with 99.99% yield are obtained which were stable for more than 1 year under ambient conditions. The received silver nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and transmission electron microscopy (TEM). The antimicrobial activity of silver nanoparticles against fungal and bacterial strains is also shown.

  10. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Litvin, Valentina A.; Minaev, Boris F.

    2013-05-01

    In this present study, silver nanoparticles were synthesized using synthetic humic substances (HSs) as reducing and stabilizing agents. Preference of synthetic HSs over natural humic matter is determined by a standardization problem resolution of the product due to the strict control of conditions of the synthetic HSs formation. It allows to receive the silver nanoparticles with the standardized biologically-active protective shell that is very important for their use, mainly in medicine. The concentration of sodium hydroxide, synthetic HSs, silver nitrate and temperature employed in the synthesis process are optimized to attain better yield, controlled size and stability by means of UV-visible technique. In the optimal reaction conditions the concentrated silver colloids (55 mM) with 99.99% yield are obtained which were stable for more than 1 year under ambient conditions. The received silver nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and transmission electron microscopy (TEM). The antimicrobial activity of silver nanoparticles against fungal and bacterial strains is also shown.

  11. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity.

    PubMed

    Dhand, Vivek; Soumya, L; Bharadwaj, S; Chakra, Shilpa; Bhatt, Deepika; Sreedhar, B

    2016-01-01

    A novel green source was opted to synthesize silver nanoparticles using dried roasted Coffea arabica seed extract. Bio-reduction of silver was complete when the mixture (AgNO3+extract) changed its color from light to dark brown. UV-vis spectroscopy result showed maximum adsorption at 459 nm, which represents the characteristic surface plasmon resonance of nanosilver. X-ray crystal analysis showed that the silver nanoparticles are highly crystalline and exhibit a cubic, face centered lattice with characteristic (111), (200), (220) and (311) orientations. Particles exhibit spherical and ellipsoidal shaped structures as observed from TEM. Composition analysis obtained from SEM-EDXA confirmed the presence of elemental signature of silver. FTIR results recorded a downward shift of absorption bands between 800-1500 cm(-1) indicting the formation of silver nanoparticles. The mean particle size investigated using DLS was found to be in between 20-30 nm respectively. Anti-bacterial activity of silver nanoparticles on E. coli and S. aureus demonstrated diminished bacterial growth with the development of well-defined inhibition zones.

  12. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity.

    PubMed

    Mariselvam, R; Ranjitsingh, A J A; Usha Raja Nanthini, A; Kalirajan, K; Padmalatha, C; Mosae Selvakumar, P

    2014-08-14

    Green synthesis of nanoparticles using plant source has been given much importance. In the present study, silver nanoparticles (AgNPs) were synthesized using the ethyl acetate and methanol (EA: M 40:60) extracts of the inflorescence of the tree Cocous nucifera. The synthesized nanoparticles were characterized by UV-visible spectroscope, FTIR and TEM analysis. The particle size of the synthesized AgNPs was 22nm as confirmed by TEM. The qualitative assessment of reducing potential of the extracts of inflorescence indicated the presence of reducing agents. Synthesized AgNPs exhibited significant antimicrobial activity against human bacterial pathogens viz., Klebsiella pneumoniae, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella paratyphi.

  13. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Mariselvam, R.; Ranjitsingh, A. J. A.; Usha Raja Nanthini, A.; Kalirajan, K.; Padmalatha, C.; Mosae Selvakumar, P.

    2014-08-01

    Green synthesis of nanoparticles using plant source has been given much importance. In the present study, silver nanoparticles (AgNPs) were synthesized using the ethyl acetate and methanol (EA: M 40:60) extracts of the inflorescence of the tree Cocous nucifera. The synthesized nanoparticles were characterized by UV-visible spectroscope, FTIR and TEM analysis. The particle size of the synthesized AgNPs was 22 nm as confirmed by TEM. The qualitative assessment of reducing potential of the extracts of inflorescence indicated the presence of reducing agents. Synthesized AgNPs exhibited significant antimicrobial activity against human bacterial pathogens viz., Klebsiella pneumoniae, Bacillus subtilis, Pseudomonas aeruginosa and Salmonella paratyphi.

  14. Silver nanoparticles-coated glass frits for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yingfen; Gan, Weiping; Li, Biyuan

    2016-04-01

    Silver nanoparticles-coated glass frit composite powders for silicon solar cells were prepared by electroless plating. Silver colloids were used as the activating agent of glass frits. The products were characterized by X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The characterization results indicated that silver nanoparticles with the melting temperature of 838 °C were uniformly deposited on glass frit surface. The particle size of silver nanoparticles could be controlled by adjusting the [Ag(NH3)2]NO3 concentration. The as-prepared composite powders were applied in the front side metallization of silicon solar cells. Compared with those based on pure glass frits, the solar cells containing the composite powders had the denser silver electrodes and the better silver-silicon ohmic contacts. Furthermore, the photovoltaic performances of solar cells were improved after the electroless plating.

  15. Biological Mechanism of Silver Nanoparticle Toxicity

    NASA Astrophysics Data System (ADS)

    Armstrong, Najealicka Nicole

    Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to sc